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Abstract

Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have
used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and
expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a
check, and detecting a checkmate) with chess players of two levels of expertise (novices and club players). Results show that
the influence of target complexity depends on level of structure of the visual display. Different functional relationships were
found between artificial (random chess positions) and ecologically valid (game positions) stimuli: With artificial, but not with
ecologically valid stimuli, a ‘‘pop out’’ effect was present when a target was visually more complex than distractors but
could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments
using artificial stimuli with low ecological validity to real-life stimuli.
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Introduction

Under some circumstances, the ability to detect a target

makes the difference between life and death (e.g., detecting cars

at a crossroads). Considerable research has been carried out in

cognitive psychology and cognitive neuroscience on visual

search behaviour, focussing on questions such as the number

of targets, target-distractor discriminability, distractor complex-

ity, and whether information is processed sequentially [1].

However, most of this research has been carried out with

artificial stimuli and little is known about how search for

complex targets is performed in ecologically valid environments

– that is in experimental environments that approximate the

characteristics of the real-life situation under study (Neisser,

1976). (Note that these environments can be natural or human-

made. What matters is that the experimental situation relates to

a situation with which participants are intimately familiar. Thus,

both trekking in the wilderness and crossing a road could be the

source of ecologically valid experiments.) In the few studies

using ecologically valid stimuli, the exploration of the mecha-

nisms underpinning human visual search has revealed that

experts can detect domain-specific patterns faster than novices

[2]. This finding has led psychologists to propose that domain-

specific knowledge directs attention towards potentially relevant

locations [3]. Strikingly, sophisticated models of attention (e.g.,

[1]) account for a wide range of findings but do not address

domain-specific guidance of attention in ecologically valid

situations. The high importance of complex targets in ecolog-

ically valid settings [4], on the one hand, and the established

influence of knowledge in exploring visual scenes [5,6] on the

other hand, call for research remedying this gap.

Complexity is a concept that displays variations in its definition.

A traditional definition is that of a system made of numerous

components which interact. Due to the actual difficulty in

analysing systems at the level of units, some researchers have

approached complexity by analysing how the system as a whole

behaves. Complexity is then often defined by the potential states

that the system can display (e.g., cyclical, chaotic, or self-

organising). Considered in the context of cognitive psychology,

and particularly when referring to perceptual processes, complex-

ity refers to the visual or auditory properties of a stimulus. Close to

the traditional definition, complexity in the present article refers to

the combination of units (i.e., pieces) and interactions (attack or

defence dynamics linking the pieces).

One reason for the lack of research on the role of complexity

and expertise in ecologically valid tasks is the difficulty of finding

an appropriate environment. The environment used must have

several crucial characteristics: it should be possible to present

situations visually for a brief period of time; stimulus complexity

should be both controllable by the experimenter and ecologically

valid; and there should be a way to measure complexity. Finally,

given the difficulty of measuring expertise in most domains [7], the

environment should ideally have an internal and ecologically valid

measure of skill. Chess is a unique environment, in that it meets all

these criteria. In particular, it offers a controllable and ecologically

valid measure of complexity: the number of occupied and empty

squares implicated in a particular pattern. Since chess is an

environment designed by humans, it also minimizes the influence
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of hard-wired search strategies designed by evolution to explore

visual scenes [8]. This makes chess a good candidate for exploring

the influence of knowledge on visual search. This paper aims to

close this gap in the literature by examining the extent to which

domain-specific knowledge facilitates the processing of scenes of

varying visual complexity. It does this by contrasting the

performance in ecologically valid and ecologically invalid settings.

Chase and Simon [9] posited that experts’ perceptual advantage

was due to them having chunks of visual information (typical piece

configurations on the board) stored in long-term memory. Upon

recognition of a chunk, attention is directed towards potentially

salient locations and potential moves. The studies conducted with

chess have confirmed that domain-specific knowledge orients

attention in ecological stimuli, making experts faster than novices

in detecting targets [2,10]. Since the amount of information

captured by perception at any moment is limited [11], and the

understanding of a problem situation takes several eye fixations

[3,12], an important effect of complexity on cognition is to

increase the cost of processing information [10]. Whether this

effect can be attenuated by expertise is as yet unknown.

Chess has long been a central paradigm for understanding the

components of expertise [13]. However, the studies carried out to

study the influence of knowledge (expertise) on complexity in

search tasks [2,14–18] suffer from several infelicities in their design

that make comparison between studies difficult and thus limit the

general conclusions that can be drawn. These include: small

samples (e.g., three participants in a group; [2]), differences in

board size (e.g., 868 vs. 363 squares) differences in target salience

(minor piece [bishop or knight] vs. king), unsystematic manipu-

lation of complexity and different definitions of skill levels across

experiments. In the present study, we addressed these issues by

systematically manipulating complexity and recruiting participants

spanning a wide range of expertise levels.

Based on dominant theories of perceptual expertise, such as

chunking [9] and template theories [19], we made several

predictions. First, since complexity increases the amount of

information to process, we expected an effect of complexity on

both performance and processing time. Second, considering that

domain-specific knowledge orients attention to relevant locations

in structured but not in unstructured scenes, unstructured stimuli

should force the perceiver to develop new strategies to explore the

visual scene. Thus, and in line with previous findings, the time

taken to find a target should be longer in unstructured stimuli than

in structured stimuli. Third, considering that the knowledge of the

perceiver is used to structure the stimuli and that a lack of

structure will lead to a perceptual overload, we expected

complexity to interact with structure. In particular, we examined

the effect of complexity on ecologically valid stimuli. This

prediction relates to the hypothesis that chunking makes it possible

to recode and compress information, and thus to reduce

perceptual complexity.

Methods

Participants
Twenty-nine chess players (1 female) were recruited from

several chess clubs in France and the Netherlands. All participants

had normal or corrected-to-normal vision. The mean rating was

M = 1681 Elo (SD = 262.69 Elo) and the ratings ranged from 1240

to 2300. (The Elo rating is a scale widely used in the chess world to

measure chess skill; see Elo [20] for details.) Two levels of expertise

were defined by splitting players around the median of Elo rating

(median = 1622 Elo). The novice group comprised 14 players

(M = 1470 Elo; SD = 101 Elo). The club players group consisted of

15 players (M = 1907 Elo; SD = 176 Elo). The difference between

the means of the two groups (437 Elo) reflects a huge difference in

skill t(27) = 28.28, p,.001, which translates into a probability of

winning for the best player equal to p = .94.

Procedure
Participants were instructed that the purpose of the study was to

understand how chess players carry out king, check and checkmate

detections. After signing a consent form, they were asked whether

they had a past of epileptic seizure (i.e., evidence of photosensi-

tivity) and whether they were familiar with chess programs. None

of the participants were photosensitive and all were familiar with

chess programs. Participants sat 40 cm from the screen of a

Toshiba laptop. The experiment was conducted individually in a

quiet and well-lit room. After completion of the experiment, they

received J10.

Participants were asked to go through a detection task that

implemented three levels of visuospatial pattern complexity

(henceforth, complexity): detection of white king, detection of

check, and detection of checkmate. The targets were present in

half of the trials, and absent in the other half. Structure was

manipulated by using either ecologically valid stimuli (i.e., game

positions) or ecologically invalid stimuli (i.e., random positions).

Participants had to complete 40 king detections, 40 check

detections, and 40 checkmate detections. There were two orders,

which were counterbalanced across the participants: (a) king,

check, and checkmate, and (b) checkmate, check, and king. In

each trial, participants’ response, latency, and accuracy were

recorded.

As in the previous paragraphs, the term complexity refers to the

complexity of the stimulus. In spite of the change in instructions,

the task remains the same: to detect a visual pattern. It must be

noted that from chess players’ point of view, a chess position

contains many patterns with two or more pieces, a same piece

being able to belong to different patterns. Some patterns (e.g.,

fianchetto) present little variability and are predictable in terms of

their location over the board and amount of pieces. We needed

patterns that can occur in different places of the board and that

can vary in complexity. The check and checkmate situations meet

these criteria. The chosen approach allowed us both to provide the

participants with ecological instructions and to present the

experimenters with a new, valid method for measuring complex-

ityMaterial.

For each level of complexity (i.e., king, check, checkmate), ten

game positions were selected randomly from a database of

2,000,000 games. To ensure a good ecological validity, only

games from experts were used. Complexity was measured as the

total number of squares (both occupied squares [pieces] and

unoccupied squares) implicated in the target pattern. For the king

condition, one piece (the king) and zero empty squares had to be

detected, thus complexity equalled 1 square. For the check

condition, the patterns were made of 2 pieces (SD = 0 pieces) and

1.9 empty squares (SD = 1.73), on average. Hence, the average

space to be covered to recognise the pattern was of 3.9 squares on

average (SD = 1.73 squares). Finally, for the checkmate conditions,

the patterns were made of 4.7 pieces (SD = 1.06 pieces) and 17.7

empty squares (SD = 2.45 squares). Hence, the space to be covered

to recognise the checkmate patterns was of 22.4 squares on

average (SD = 3.03 squares). In summary, the average complexity

of patterns spanned three levels: 1 square (king), 3.9 squares

(check), and 22.4 squares (checkmate). As the number of pieces on

the board was similar in the three conditions (M = 23.5 pieces,

SD = 4.06 pieces), the visual load was controlled for.

Complexity in Visual Search
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The game positions were used to generate non-target and

random stimuli. Non-target stimuli were generated either by

deleting the white king (king detection) or by moving the attacking

piece to a new, non-attacking square (check and checkmate

detection). Note that it was necessary to keep the king on the board

in the check and checkmate conditions, because getting rid of the

king would make the non-target conditions similar to no-king

condition. By applying these procedures, we obtained ten more

positions per level of complexity. Finally, random positions were

created by randomly reallocating the pieces of each position to a

new square. A constraint was that the white king could only end

up on a square occupied by a white king in one of the nine other

positions. Targets were present in half the random positions and

absent in the other half. Figure 1 presents an example of a stimulus

in each experimental condition for the check level of complexity.

Results

The presentation of results is divided in three sections. In the

first section we outline the procedure used to pre-process the data.

The second section presents the results for all positions and reports

whether complexity and structure affected players’ response time

and proportion of correct answers. In the third section, we focus

on ecologically valid situations.

Data Trimming and Transformation of Response Times
To ensure that the inferential tests were carried out without

violation of the statistical assumptions, we used a systematic

procedure for the response times (RTs). For each participant, the

first step was to trim the data by discarding trials with an RT less

than 200 ms or superior to the mean plus three standard

deviations (3.26% of observations). The second step was to discard

all trials in which the participants did not answer correctly (8.61%

of observations after trimming). The third step was to test whether

the data were normally distributed. Since the Kolmogorov-

Smirnov revealed that the normality assumption could not be

held, all RTs were log-transformed. Whenever Mauchly’s test

indicated that the distribution of data was not spherical, the most

conservative correction (i.e., half bound) was used to adjust the F

values of the ANOVA.

General Results
The means and standard deviations for each experimental

condition are reported in Table 1. The upper half of the table

reports the RTs, and the lower half reports the proportion of

correct responses. Overall, the participants performed the

detection task in 3.96 s on average (SD = .82 s) and with high

accuracy (M = .91, SD = .05).

We carried out an analysis of variance on RT and proportion

correct separately, using a 2 (expertise) 62 (structure) 62 (target

presence) 6 3 (complexity) mixed design. Expectedly, there was a

main effect of expertise on performance F(1, 27) = 5.01, p,.05,

MSE = 0.02. However, the two expertise groups did not differ in

RTs, F(1, 27) = .94, p = .34, MSE = 0.15. Consistent with previous

research, we found a significant main effect of structure on RT,

F(1, 27) = 91.97, p,.01, MSE ,0.01, and performance,

F(1,27) = 8.96, p,.01, MSE ,0.01. Participants were slower in

completing the task with random positions (M3.96 s; SD = 3.01 s)

than with game positions (M = 3.72 s; SD = 2.93 s); and perfor-

mance with game positions (M = .94, SD = 0.08) was higher by 2%

than with random positions (M = .92, SD = .11). Target presence

(M = 3.72 s; SD = 2.47 s) was on average spotted faster than target

absence (M = 3.95 s; SD = 3.40 s), F(1, 27) = 272.46, p,.01,

MSE = 0.02. Yet target had no effect on performance F(1,

27) = 2.51, p = .12, MSE = 0.01. Crucially, complexity significantly

affected RTs and performance, F(2, 54) = 609.22, p,.01,

MSE = 0.02 and F(2, 54) = 10.27, p,.01, MSE ,0.01, respective-

ly. With increasing levels of complexity, the mean RT increased

(king M = 1.66 s, SD = .53 s; check M = 2.65 s, SD = 1.03 s; and

checkmate M = 7.21 s, SD = 2.75 s) and the mean performance

decreased (king M = .95, SD = .10; check M = .94, SD = .08, checkmate

M = .90, SD = .11). Note that the effect is considerable with RTs: a

factor of 1.7 between the king and check conditions, and a factor

of 4.3 between the king and checkmate conditions.

Complexity interacted significantly with structure both with

respect to RTs, F(2, 54) = 10.25, p,.01, MSE ,0.01 and

proportion correct, F(2, 54) = 8.90, p,.01, MSE ,0.01. Com-

plexity had an effect on the speed with which targets were

detected, F(2, 54) = 132.57, p,.01, MSE ,0.01 and performance,

F(2, 54) = 10.28, p,.01, MSE ,0.01. The significant interactions,

which include complexity, are displayed in Figure 2. These

interactions are very informative with respect to how complexity

modulates the effects of structure and target. We first consider the

interaction between complexity and structure, starting with RTs.

In random stimuli, when complexity increased, the participants

tended to reduce their response criterion compared to ecologically

valid stimuli as shown by the fact that the curves converge. With

performance, the pattern is much different. With game positions,

the increase in complexity was reflected by a decrease in

performance. With random positions, however, mean perfor-

mance reached a peak in the intermediate level of complexity and

then dropped dramatically. This finding is also reflected by the

interaction between complexity and target presence: In spite of

using much more time in the highest level of complexity, the

performance dropped dramatically.

Visual inspection of the third quadrant of Figure 2 suggests that,

while proportion correct is a linear function of level of complexity

for the game positions, it is a quadratic function for the random

stimuli. It could be argued that there is a speed-accuracy trade-off

in our results, which would make it hard to interpret them.

However, Figure 2 also shows that, overall, while response time

increases from the King to the Checkmate condition, accuracy
Figure 1. Stimuli sample for the check condition.
doi:10.1371/journal.pone.0053420.g001
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decreases. This is the opposite pattern to what would be observed if

there was a speed-accuracy trade-off. Statistical analysis supported

this impression. While trend analysis found only a statistically

significant linear term for the game condition, F(1, 28) = 24.51,

p,.01 it found both a linear and a quadratic term for the random

condition, F(1, 28) = 7.25, p,.05, and F(1, 28) = 9.24, p,.01,

respectively. These crucial results show that performance in

random stimuli, but not in game stimuli, follow a curvilinear

Table 1. Reaction times (top panel) and proportion correct (bottom panel) as a function of complexity, structure, target presence,
and skill level.

King Complexity Check Checkmate

Structure

Random Game Random Game Random Game

Target

A P A P A P A P A P A P

N M 2.16 1.53 1.83 1.21 3.70 2.20 3.27 2.12 6.89 7.90 6.60 8.04

RT SD 0.42 0.48 0.44 0.23 0.85 0.67 0.92 0.54 2.09 1.81 1.71 1.90

C M 2.06 1.44 1.79 1.26 3.29 1.90 2.94 1.70 6.61 7.73 6.24 7.59

SD 0.52 0.38 0.56 0.32 0.96 0.59 1.05 0.46 3.03 3.59 2.84 4.20

N M 0.99 0.82 0.99 0.93 0.96 0.94 0.89 0.93 0.86 0.83 0.91 0.90

Prop. SD 0.03 0.16 0.04 0.07 0.06 0.08 0.10 0.11 0.11 0.15 0.11 0.12

C M 0.97 0.91 0.99 0.99 0.95 0.94 0.91 0.99 0.91 0.93 0.93 0.94

SD 0.08 0.11 0.03 0.04 0.11 0.08 0.05 0.03 0.09 0.07 0.08 0.06

Note. RT: response time, Prop.: Proportion of correct responses, N: Novices, C: Club players A: Absent, P: Present.
doi:10.1371/journal.pone.0053420.t001

Figure 2. Interactions between complexity and other factors.
doi:10.1371/journal.pone.0053420.g002
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progression. The influence of complexity on random stimuli can

be investigated further by modelling it by a quadratic equation.

Equation 1 shows the relationship between complexity (C) and

proportion of correct hits (P).

P~{0:00058 � C2z0:011778 � Cz0:91122,

C[ � 1,50½ �,r2~1
ð1Þ

P’~{0:00117 � Cz0:011778 ð2Þ

Interestingly, this equation predicts that performance will reach

zero when complexity is equal to 51 squares. Hence, there is a

maximal complexity that can be handled by memory. In addition,

the analysis of the derivative (see Equation 2) indicates that

performance peaks when C = 10.1, i.e. when the complexity of the

target pattern covers 10 squares. Hence, 10 squares is where the

pop out effect peaks, making performance close to perfection

(P = .97).

Focus on Ecologically Valid Stimuli
When the analysis with expertise and complexity as indepen-

dent variables, and RTs and performance as dependent variables,

was restricted to ecologically valid conditions (i.e., game positions),

an opposite pattern was found: Expertise significantly affected

performance, F(1,27) = 6.42, p,.05, MSE = 0.01, but complexity

failed to reach significance, F(1,27) = 3.02, p = .06, MSE ,0.01. By

contrast, complexity affected RT but expertise did not,

F(1,27) = 555.88, p,.01, MSE = 0.02, F(1,27) = 1.39, p = 0.25,

MSE = .04, respectively.

Next, we tested the hypothesis that spatial dynamics are

encapsulated in chunks. Under the assumption that empty squares

are essential for attack-defence relationships, we predicted that

empty space affects perceptual speed. When we regressed RT on

complexity (C) (see Table 2), we found a nearly perfect linear

relationship (see Equation 3), F(1, 2) = 1,021.15, MSE = 26.25,

p = .02, r2 = .999. We found the same relationship when RTs were

regressed on the number of empty squares (ES) (see Equation 4),

F(1, 2) = 63,277, MSE = 26.27, p,.01, r2 = 1.

RT~0:312 � Cz0:824,C[N� 1,64½ � ð3Þ

RT~0:373 � ESz1:226,ES[N� 1,64½ � ð4Þ

Equation 3 indicates that an increase in one complexity unit

increases RT by 0.312 s, and Equation 4 shows that adding an

empty square to the target pattern increases RT by an average of

M = 0.373 s. The results strengthen the hypothesis that chunks

encompass spatial information.

Discussion

The present study investigated the effect of knowledge on

recognition of visually complex patterns in a visual search task. To

this purpose, novice and club chess players searched for visual

targets of various complexity levels in random and game chess

positions. We found main effects of expertise, structure and

complexity on performance, as well as main effects of structure,

target presence and complexity on response times. By large, these

results replicate the well-established effects that expertise, struc-

ture, complexity and target presence have on behavioural

indicators [2,14–17,21]. However, while previous research

suggests that an increase in complexity entails an increase in

difficulty, the present study has revealed an unexpected pattern of

results: in unstructured environments, a medium level of

complexity facilitates the detection of domain-specific targets. To

the best of our knowledge, the present study is the first to show that

complexity can facilitate perception in specific situations.

Crucially, the interaction between complexity and structure has

uncovered a potential facilitator effect of complexity. With game

positions, the proportion of correct responses is inversely

proportional to complexity. However, with random positions,

players performed better in the check condition (medium

complexity) than in less complex and more complex conditions.

When the targets are visually simple (i.e., a king), performance is

lower because knowledge of the stimuli structure does not guide

attention to relevant locations. Since the target stimuli and

distractors occupy one square each, discriminability is reduced,

making detection difficult. When the target stimulus is a two-pieces

interaction (i.e., a check), complexity increases. However, as the

target spans a larger number of squares (3.9 on average) than

randomly-distributed, individual distractors, it emerges as a single

object. In the checkmate condition (maximal complexity), the

effect is eliminated because the target pattern itself is of high

complexity; since it cannot be retrieved from memory, it has to be

computed in real time, hence the drop in performance. Strikingly,

the novice and advanced players in our sample were affected by

complexity in the same way, as indicated by the lack of significant

interaction between expertise and complexity. Taken together,

these findings suggest that complexity in visual signals can have a

facilitator effect if the complexity of the target, but not of the full

setting, is captured by memory chunks.

The trends analysis and our mathematical model are highly

informative regarding how the structure of the environment

Table 2. Data used for regressions.

Level of Complexity Complexity Components Complexity Dependent variable

Piece Empty square RT

King 1 0 1 1.24

Check 2 1.9 3.9 1.92

Checkmate 4.7 17.7 22.4 7.83

The numbers are means.
Note. The data from novice and club players were pooled as no effect of expertise on RTs in ecologically valid situations was detected.
doi:10.1371/journal.pone.0053420.t002
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modulates the perception of complex targets. While the trend in

game positions is linear, random positions generated an inverted-

U curve. More specifically, the mathematical model predicts that

performance will peak for targets that encompass 10 squares and

then will gradually decreases until it reaches 0% for 50-square

targets; beyond this point, the model is not able to predict

performance. With game positions, target detection is helped by

the structure of the environment itself, while this cannot occur in

random environments. It can be argued that the model is built

upon a restricted number of points and as such might not be

representative for high levels of complexity. Although we

acknowledge the limits is predictability of the model, we reason

that since human cognition is limited [22,23], performance cannot

increase indefinitely and so our model likely offers a first

approximation of the inherent limits of pattern recognition.

A number of caveats should be noted in interpreting the present

results. Although we view the influence of complexity results as

very encouraging for the research of expertise acquisition, we are

unable to generalize our findings to natural scenes. We encourage

future research in the field to disentangle which components of the

pop-out effect revealed in this paper also apply to visual search in

natural scenes. A second caveat is that, although we enrolled

advanced chess players and some experts, the results might not

generalize to high levels of expertise. In this respect, future

research should address at which level this pop out effect appears

and at which level, if ever, it disappears. Another potential avenue

for future research is to evaluate the relative weights of the visual

and spatial components. In chess, visual and spatial factors are

entangled so that our model does not differentiate between these

two factors. Studies investigating the relative weights of spatial and

visual information in loading the perceptual span could reveal

which component draws more heavily on perceptual load. Such

studies would prove useful in cognitive engineering. Also, in line

with the measure of the limits of pattern recognition, it would be of

high interest to use experts in other fields to contrast the limits

found in the present research in chess expertise with those in

related board games [24]. Combining estimates from different

field of expertise would provide a more reliable estimate of the

actual limit in perceptual span.

This study investigated the role of complexity in relation to

expertise and the ecological validity of the stimuli in a visual search

task. Increases in complexity led to different functional relation-

ships for artificial and ecologically valid stimuli. A direct

implication is that most of research in experimental psychology,

which uses artificial stimuli, leads to conclusions that cannot be

generalised to ecologically valid stimuli. While others have made

this point (most notably [25]), it is particularly well illustrated in

the current paper, as different mathematical functions (linear vs.

quadratic) were observed in the game and random conditions.

Thus, the difference was not only about the strength of the

relationship between complexity and RTs. The difference was

more drastic: the entire relationship was different for the two types

of stimuli. This suggests that caution should be exercised when

generalising from experiments using artificial stimuli with low

ecological validity, which is the case with most experiments in

cognitive psychology and cognitive neuroscience, to real-life

stimuli.
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