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ABSTRACT -, 

The introduction of overhead camshaft valve train systems some 25 years ago 

has resulted in improved engine performance and efficiency, this in turn 

however, has caused increased wear problems. In order to understand the 

tribological behaviour of overhead camshaft systems, test engines and 
°\ dyn\meter test methods have been extensively used. These are however, time 

consuming and expensive, a cheaper and quicker method of camshaft material 

and lubricant appraisal is therefore required and this has resulted in the 

design and construction of a simulative overhead camshaft test rig. A range 

of commercially available camshaft and follower materials have been tested 

using both a fully formulated and a -mineral base -equivalent. The most 

commonly encountered cam and follower wear failures of scuffing, pitting 

and polishing were reproduced. 

Results showed scuffing wear to be associated with all of the camshaft 

'materials using the mineral base 
. oil under high load, boundary lubrication 

conditions. Scuffing also occurred under low load, mixed lubrication 

conditions using the case-hardened steel cam and chilled white iron follower 

combinations. The remaining cam materials, carbonitrided and induction 

hardened grey flake iron did not fail under similar test conditions due to the 

presence of free graphite in the microstructure. The fully formulated oil 

generally suppressed the onset of scuffing under all test conditions due to the 

presence of the zinc-dialkyldithiophosphate (Z. D. D. P) anti-wear additive in 

the oil. 

Pitting failure was associated with the chilled white iron follower\using the 

fully formulated oil under high load conditions. This failure could have been 

initiated by either a surface, sub-surface or stress - corrosion mechanism. 

Analysis of this type of failure is complicated by the difference in both chill 
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depth and hardness and also the presence. of cracks within, samples prior to 

examination and testing. Standardisation of chilled white irons therefore 

needs to be carried out in order to understand fully the wear behaviour of such 

materials. 

Polishing wear was associated with the fully formulated oil at low loads, and 

appeared to occur by a chemical reaction between the contacting surfaces 

and the additives present in the oil. 

The use of the acetate replica technique proved a satisfactory method of 

analysing the change in surface topography of cam surfaces. Using the fully 

formulated oil the cam surface 'ran in' satisfactorily, by a process of plastic 

deformation and fracture, whilst the mineral base oil caused instanteous 

scuffing of the cam surface. 

Once the surfaces had 'run in' satisfactorily by using either the additives in 

the oil or by a diamond lapping operation, the cams continued to run without 

scuffing in the mineral base oil under continuous, non stop test conditions. An 

intermittent, stop/start operating cycle however results in eventual scuffing 

due to additive film depletion and repeated surface interaction under 

boundary lubrication conditions. 

From a range of 'new' materials tested for follower application the ceramics, 

with the exception of the toughened zirconia, exhibited the best wear 

characteristics using a case hardened steel cam as a standard and tested under 

mineral base oil conditions. The silicon carbide and sialon ceramics both 

exhibited a low frictional resistance and wear rate, whilst the metallic 

follower materials of cobalt and nickel base hard facing alloys and a ceramic 

fibre reinforced aluminium/silicon alloy all suffered some form of material 
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transfer against the steel cam, resulting in surface roughening and a 

correspondingly high frictional resistance. 

f 
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CHAPTER ONE 

1. INTRODUCTION 

Valve train systems have been used for many years in both petrol and 

diesel engines, the design and utilization of materials for their 

construction are considered to be extremely important as they-affect 

the performance and economics of the engine. 

In recent years a change from the overhead pushrod to overhead 

camshaft valve system has brought about an improvement in engine 

efficiency and performance by the elimination of flexing and distortion 

of pushrods and their associated components. However, a review of the 

literature and the experience of those working in the automotive and oil 

industries has shown that problems are still encountered with the wear 

of these cam/follower systems. Even with the trend towards the use of 

overhead camshaft valve-train designs which utilize finger follower 

actuating mechanisms, wear problems are still apparent. These wear 

problems are not fully understood, and are further complicated by 

metallurgy, lubricant chemistry and operating conditions, all affecting 

cam and cam follower performance. 

Until recently the approach to the solution of wear problems in this 

area has been largely empirically based, and has accounted for the need 

to improve the understanding of the mechanisms of lubrication and 

wear that are responsible for tribological behaviour. A range of 

materials were selected for this study including steels and cast irons, 

enabling a preliminary but broad based investigation to be undertaken 

covering materials currently used in service, rig and bench tests. Also 

included in the study was the use of 'new' materials, brought about by 
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advances made in materials science research over the years. These 

include materials such as ceramics, oxyacetylene deposited hard-faced 

coatings and composite materials. 

In this investigation interest has centered on the friction and wear 

behaviour of materials used in overhead camshaft and finger follower 

valve train designs. A practical approach to this study has been 

adopted and the lubricated wear tests reported in this thesis have been 

carried out under conditions 'which relate to thöse 'experienced in 

service. 

The main aims of this investigation are to observe the effects of base 

stock oil and the additive formulation of automotive oil on' the friction 

and wear characteristics of overhead camshaft and finger follower 

systems. Both conventional and new materials have been used to 

investigate specific areas of cam/cam follower wear behaviour such as 

'running in' and the effect of lubricant chemistry on the satisfactory 

operation of such systems. 

S. 
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2. LITERATURE REVIEW 

2.1 Valve Train Types 

2.1.1 Introduction 

The modern high compression overhead valve engine has attained 

universal acceptance throughout the world. The valve actuating 

mechanisms used on this type of engine can be divided into two 

categories based on the camshaft location. The push rod - actuated 

system with the camshaft in the cylinder block, and the overhead 

system with the camshaft in the cylinder head. 

2.1.2 Overhead Push Rod Mechanism 

The push rod actuated mechanism consists of the camshaft located in 

the cylinder block. The camshaft actuates the valves by means of the 

lifter, push rod, and rocker arm. The rocker shaft supported in a bearing 

is mounted on the cylinder block and carries a row of rockers transmitting the 

motion from the top of the push rod to the end of the valve stem 

(Fig. 1. ). 

Due to large temperature variations, some provision for thermal 

expansion has to be included in the system. For this reason some 

engines employ mechanical valve lifters provided with a slight lash at 

the rocker arm. However, the latter can be a potential source of valve 

train noise and therefore hydraulic valve lifters have been 

6. 



Fig. 1. TYPICAL PUSH ROD-ACTUATED=VALVE TRAIN 

Fig. 2. DIRECT-ACTING OVERHEAD CAMSHAFT VALVE TRAIN 
WITH SHIM-TYPE LASH ADJUSTMENT 
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incorporated in some engines; thus compensating for thermal expansion 

as well as dimensional tolerances. Other'. factors that must be 

considered in the prevention of breakdown of such a system are the 

strength of the valve'spring, required acceleration, deceleration and 

lift, choice of rocker (ratio of distance of rocker head to the two rocker 

ends) and adequate lubrication, particularly of the heavily loaded 

contact face. One of the most serious problems encountered was 

distortion of the long push rod, however, this was eliminated with the 

advent of short stroke engines using a shorter push rod or by 

arrangement of the camshaft in a location high up in the crankcase, 

thus reducing the distance travelled by the push rod. 

2.1.3 " Overhead Camshaft Mechanism 

As an alternative to the use of push rods and their associated 

components, ` the overhead camshaft mounted in close proximity to the 

valves has many advantages. By eliminating a large number of 

components liable to flexing and unpredictable distortion under 

operating conditions, the overhead camshaft provides for a much 

greater consistency in timing and the desired requirement in regard to 

opening and closing periods and lift. Reduction of reciprocating motion 

inertia should also add to mechanical efficiency (Fig. 2). 

The overhead camshaft allows a free choice in combustion space design. 

With a single shaft operating through suitable followers, the valves can 

be arranged either in a row similar to those in many push rod engines or 

at an angle in a hemispherical head, (Fig. 3). With two camshafts along 

the head the valves can be disposed at the desired angle without the use 

of long follower or cam levers. In this case the valve operation is 
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normally through inserted tappets with shim adjustment between the 

interior face of the tappet and the valve stem end. Other arrangements 

can be made where there is a single row of valves, in these engines all 

parts are brought out to one side of the head. There are also 

types having cam followers with the valves disposed at each side of the 

camshaft and in this case the followers are adjusted by the use of eccentric 

bushes on the follower shafts. 

The principle. advantage of the overhead cam over the overhead valve 

configuration is the increased natural frequency of O. H. C. valve trains, 

making possible the expansion of the operating ranges of an engine, 

this accounts for it's increased use in high speed engines. Other 

advantages include: - 

1. An O. H. C. engine has fewer moving parts in the valve train, which 

permits the use of. higher engine speeds. 

2. The absence of push rods produces a valve train of increased 

stiffness. This in turn makes possible the following desirable 

characteristics: 

a. Improved valve train durability. 

b. Reduced valve train noise level. 

c. More accurate reproduction of valve timings. 

d. The height of the . cam quietening_ ramps can be reduced, 

- improving idle 
. quantity and lowering of hydrocarbon 

emission at idle. 
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3. The elimination of push rods and the mounting of the entire valve 

train on top of the cylinder head results in: 

a. Greater scope in the design of intake and exhaust ports, 

combustion chamber and valve arrangement for increased 

efficiency. 

b. A more symmetrical design of the cylinder block. 

4. The adoption of a finger follower arrangement, allows the 

optimisation of the valve arrangement using only a single 

camshaft. 

Disadvantages 

1. It was thought that a direct change to O. H. C. would bring about a 

reduction in valve train weight(l). The use of direct acting overhead 

camshaft valve actuation reduces the effective valve train weight 

at the valve, compared to a push rod system, by about 5% at the 

maximum. However, depending on the type of follower used, the 

overhead camshaft may, in fact, incur a weight penalty of up to 

35%. Only when a rocker actuated overhead camshaft mechanism 

is used does an appreciable weight saving of up to 20% occur(2). 

The effective valve train weight of an overhead camshaft 

mechanism therefore depends on the particular design, and the use 

of such a system does not necessarily result in an inherent weight 

reduction of the valve train. 
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2. Cams and tappets can be considered as the most sensitive working 

parts of an internal combustion engine, relying on satisfactory 

lubrication from crank-case oil for efficient running. With an 

overhead camshaft arrangement these parts are extremely difficult 

to lubricate especially as engine speeds increase, hence the problem 

of wear becomes even more apparent. 

2.2. Cam and Follower Materials and Method of Manufacture 

'There are a wide range of materials in current usage for both camshaft 

and cam followers. A survey carried out by Eyre and Crawley( 
3 

showed that for the European market, camshaft and cam follower 

materials are `listed as: chilled cast grey iron, hardened grey iron, 

hardened steel, hardened nodular and malleable iron, and carbonitrided 

grey flake and spheroidal graphite irons. 'Table 1 shows the materials 

and treatments commonly used for camshaft and cam follower 

components. 

For cast camshaft production, green sand moulding is generally utilised 

although some shell moulding is used. For chilled camshafts, casting is 

carried out against'iron chills to achieve-a hardness range of 45-55 

Rockwell Scale 'C' around the cam nose. "+' -3 

Material developments have - included ° the use of grey iron " with 

phosphorus contents of up to 0.7%. The matrix consists of hard iron- 

phosphide eutectic in pearlite with a fine dispersion of graphite brought 

about by secondary graphitisation. Iron containing controlled amounts of 

chromium and molybdenum are also used, these produce carbides, which 

improves wear resistance. 
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Nodular and malleable camshafts are cast in the same way as grey iron 

but with an added complication of a more expensive malleabilizing 

treatment carried out on the latter. Nodular and malleable irons are mainly 

found in O. H. C. systems where the use of a split bearing enables a larger 

cam nose radius to be used. 

The most common materials used for cam follower component 

production are also cast irons, this is due to their ease of casting 

making the more complex shaped finger followers easier to produce 

particularly when compared to standard steel bucket followers which 

are machined from round bar stock. 

2.3 Surface Treatments 

The aim of surface treatments is to modify the chemical, mechanical 

and topographic characteristics of the surface so as to achieve the 

optimum conditions for wear resistance. The various types of surface 

treatment can be divided into two separate categories; those that have 

a life shorter than the life of the component, these treatments are 

commonly known as "running in" coatings and as the name suggests are 

concerned with successfully 'running in' and conforming of 

contacting surfaces to aid the satisfactory operation of engineering 

systems. The other coatings are those expected to last for the full life 

of the component. There is no clear distinction between the two groups 

and both treatments are often applied to a component, i. e. a gear with 

a carburised long life surface with a short life phosphate coating. 
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2.3.1 Short Life/'Running In' Treatments 

These treatments involve the interposing of thin adherent layers 

between surfaces. They have a limited life span due to conditions of 

continuous movement and contact, causing rapid wear and eventual 

removal unless some form of renewal mechanism is introduced. The 

two most important instances of film/coating renewal is the use of 1) 

Oxide films on metals (4,5)and 2) the reaction between metals and E. P. 

additives in lubricating oils (6). Limited life coatings with no renewal 

mechanisms, typically include phosphating and chemically formed oxide 

layers on steel and cast iron surfaces. 

2.3.1.1 Phosphate Coatings 

Phosphate coatings are used to reduce wear and prevent corrosion on 

cast iron and steel surfaces. These coatings are usually applied to the 

surfaces of contacting machine component such as gears, cams and 

tappets and piston rings(7). Many coatings consist primarily of 

manganese phosphate crystals, with the composition, size and 

morphology of the crystals dependent in the operational conditions of 

the process. The resultant coating takes the form of channels and pits 

which improve oil retention thus assisting improved lubrication 

characteristics. 

2.3.1.2 Oxide Films 

Naturally formed oxide films are regarded as thin adherent layers 

interposed between surfaces. Wear resistant oxide films on steels for 

example, can be formed by both chemical and electrochemical 

techniques. A thick, crack free oxide can be produced on steel by 

annealing at 800 - 900°C in a weak oxidising atmosphere(8,9) 
P 
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alternatively heating in steam between 260°C - 400°C will again produce 

a thick, well adhering oxide film commonly known as the ferrox 

treatment. 

2.3.1.3 Thin Metal Films 

These thin films are formed by electro or vapour deposition processes 

and are used to combat wear during running-in. The tin plating of both 

cast iron and aluminium alloy pistons is a prime example of such 

deposits with a typical thickness of 1-2 microns. 

2.3.2 Long Life Treatments 

Surface treatments having long life characteristics can be divided into 

three main areas: - 

A) Surface Hardening- without changing the com position e. g. flame 

hardening and induction hardening processes, usually applied 

to medium carbon steels and cast irons. 

B) Diffusion Treatments- the surface layer composition is changed 

by the diffusion of elements such as carbon, nitrogen,, 

silicon, sulphur and boron, into the surface. These diffusion 

processes are usually of a high temperature nature 

invariably requiring a specialised follow up heat-treatment. 

C) Direct Application Coatings - applied by such techniques as 

electrodeposition, welding and metal spraying. 

2.3.2.1 Surface Hardening Without Composition Change 

Plain carbon, alloy steels and cast irons, with combined carbon contents 

of over 0.35% can be surface hardened by flame and induction 
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hardening(10,11,12). The surface is rapidly heated into the gamma phase 

region and quenched before the heat soaks through to the core of the 

component. The final result is a hard martensitic surface with a tough 

core. The "volume expansion associated with the martensitic 

transformation induces compressive stresses in the surface layers thus 

improving fatigue and stress corrosion crack resistance. 

2.3.2.2 Diffusion Treatments 

One of the most widely used methods of improving the wear resistance 

of metals is by the diffusion of elements into the surface. The diffusion 

processes are of an atomic nature, by either interstitial or 

substitutional mechanisms. An example of substitutional solid solution 

hardening is'provided by the diffusion of silicon into iron(13). The 

silicon atoms replace iron atoms in the crystal lattice and introduces 

distortion into the lattice thus interfering with the slip processes and 

hardens the metal. On the other hand the diffusion of carbon or nitrogen 

into iron takes place by an intersitial mechanism. The solubility of 

these elements in ferrite however is extremely low, thus carbide or 

nitride compounds are soon precipitated. To promote the precipation of 

these hard carbides in steels elements such as aluminium, titanium and 

chromium are added to the steel during casting. 

2.3.2.3 Carburization 

This process is normally carried on steel with carbon contents less than 

A. M. They alloy in the austenitic condition is exposed to highly 

reducing conditions in the presence of carbon where well over 1% 

carbon can dissolve into the austenite. The rate of uptake and 

penetration of carbon depends mainly on the carburizing atmosphere, 
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the time and temperature of the operation and the composition of the 

steel. Diffusion rates increase markedly with temperature so diffusion 

times giving the same thickness of diffused layer decrease as diffusion 

temperatures increase. The thickness of diffused layers lies in the 

region of 0.25 to 2mm. After carburising the component is allowed to 

cool slowly thus retaining the softness of the core. Hardening is carried 

out by re-heating the component to about 780°C, this temperature 

being austenitic for the high carbon skin but not the lower carbon core. 

Quenching is then carried out so that the skin becomes martensitic 

leaving the core tough and ductile(10). 

2.3.2.4 Nitridi 

Traditional nitriding involves heating steels of special compositions in 

an atmosphere of cracked ammonia at about 550°C, and produces a 

fine, well dispersed, precipitate of hard nitrides in the surface layers. 

The formation of these nitrides is enhanced by the addition of elements 

in the steel with a high affinity for nitrogen such as molybdenum, 

vanadium, aluminium, chromium and titanium(10). Nitrided layers are 

intrinsically hard and do not require quenching to develop their 

hardness. This factor coupled with the relatively _low 
temperature 

required for nitriding, means that components suffer little distortion 

and therefore do not require additional machining after treatment(14). 

Nitrided layers have also been found to have a greater resistance to 

thermal softening than carburized layers and therefore have a higher 

scuff resistance. 

2.3.2.5 Carbonitriding 

In this process carbon and nitrogen are taken up into the surface layers 

by gaseous diffusion. Carbonitrided layers are obtained by mixed about 
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10% ammonia with a normal carburizing gas at around 900°C. The 

proportion of nitrogen uptake decreases with an increase in 

temperature, the resultant surfaces are enriched with carbon and 

nitrogen resulting in improved resistance to adhesive wear compared to 

conventionally carburized surfaces. These mixed layers have a greater 

thermal stability giving a greater resistance to softening at elevated 

temperatures. 

2.3.2.6 Sulfiniz Process (Soft Nitriding) 

The sulfiniz treatment is carried out essentially in a nitriding salt bath 

into which an incompletely oxidized sulphur compound (sodium sulphide) 

is added(15). The treatment is carried out at around 570°C for periods 

between 15 minutes and 2 hours. This gives a thin sulphur rich layer on 

top of a carbonitrided surface capable of increasing wear resistance, in 

particular, wear during running in. The sulfiniz process can be applied 

to a wide variety of ferrous alloys including mild steel, stainless steel 

and cast irons(16). 

2.3.2.7 Tufftride Process 

In this process the nitriding action of cyanide-based salt baths is 

accelerated by blowing compressed air through them. The process is 

similar to the Sulfiniz treatment' except that it does not give a sulphur- 

rich surface depth range, instead, a thin-non-brittle surface layer of 

carbon bearing epsilon iron nitride is produced. The tufftride process 

can be applied to the same range of alloys as the sulfiniz process, 

however both these processes suffer a major disadvantage in that the 

operating temperatures of 550-600°C tend to soften hardened layers 

such as case-hardened, and if Sulfiniz and Tufftride are used alone, the 
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wear resistant surface skin of ten collapses under heavy load due to lack of 

support from the tough core. This is overcome by the use of the 

Noskuff Process(16,17). 

2.3.2.8 Noskuff Process 

This process is similar to Tufftriding with the exception of the 

operating temperature, of around 760°C followed by a quenching 

operation. This enables the carburized surfaces to retain their hardness 

and provides a greater depth of hardening allowing corrective grinding 

without the removal of the wear resistant layer. 

2.3.2.9 Diffusion Layers - Ferrous Materials 

The wear resistance of ferrous materials can be significantly improved 

by the diffusion of other metals into their. surfaces. Some of these 

metal diffused layers can have specific advantages in overcoming both 

wear and corrosive conditions, an example being siliconizing(18) and 

chromizing(19,20). In both processes the components for treatment are 

exposed to gaseous chlorides at temperatures of around 1000°C, silicon 

diffusion due to the presence of silicon carbide and chlorine or silicon 

chloride vapour and chromizing using chromium and chromous chloride. 

2.3.2.10 Thermally Deposited Coatings 

Coatings such as these can be applied by welding or spraying techniques 

and are primarily intended for use in the wear resistance of areas such 

as earth movingequipment(21,22,23,24,25). These coatings however, cannot 

be laid down to fine tolerences and an expensive grinding operation 

usually follows. Nevertheless, these coatings are often used to build up 

worn surfaces and resist wear at high temperatures. 
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2.3.2.11 Electrodeposited Chromium 

Electrodeposited wear resistant chromium more commonly known as 

hard chromium is a directly deposited chromium hydride coating in 

thicknesses ranging from 0.075 to 0.75 mm(10,26). This differs appreciably 

to the decorative chrome plate commonly used, and has an as plated 

hardness of around 800 Hv. In order to enhance the lubrication 

characteristics of the chrome plate on such components as cylinder 

liners and tappet faces the plated surface is treated in some way to 

make it porous enabling oil retention to occur. An etching process can 

be carried out to produce this surface or alternatively techniques such 

as the Van der Horst or the Honey Chrome processes can be used. New 

processes such as plasma-sprayed chromium piston rings have found 

great success due to their inherent porosity which leads to improved oil 

retention. 

2.4 New Materials 

Improvements in Materials Science Research over the past 10 to 20 

years has lead to a steady increase in the use of new materials for the 

prevention of wear in standard engineering systems, including the 

internal combustion engine (I. C. E. ), both diesel and petroleum fuelled. 

These materials are both metallic and non-metallic and also 

combinations of the two. 

Considerable development has occurred in utilising wear resistant 

coatings on cheap bulk materials. Processes such as arc, plasma and 

vapour deposited hard facing coatings are in current usage today. 
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Ceramic materials based on silica and alumina have become 

increasingly popular in the I. C. E. since the mid 1960's due partly to 

government legislation concerning engine emission standards, and 

improvements in ceramic technology and analytical design parameters. 

This has lead to the use of ceramics under severe environmental 

conditions(27,28,29). The ultimate goal for designers and engineers 

being a fully adiabatic engine which does not require a conventional 

cooling or lubrication system(30). Cummins Engineering Co in the 

U. S. A. have been involved in a joint project with the Propulsion Systems 

Division of the U. S. Army Tank Automobile Research and Development 

Command (TARADCOM) to produce an adiabatic diesel engine for use 

in the M60 series armoured tank. 

Research into the combination of both metallic and non-metallic 

materials has resulted in advances in such processes as spray coated 

ceramics and more importantly advances in composite materials 

technology. A typical example of such a composite material is the 

ceramic fibre reinforced aluminium silicon alloy which has potential 

for piston crown applications in the I. C. E. 

The area of new materials is indeed vast, the techniques and 

composition of these material conversion processes are numerous and 

are changing and becoming improved day by day. A 

resume of all new materials available and techniques currently under 

development would be virtually impossible to conduct within the scope 

of this thesis, therefore, only the new materials utilized for this 

research programme will be discussed in brief. These materials being: - 
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2.4.1 

Hard face coatings - 

Ceramics - 

Composite materials - 

Hard Faced Coatings 

cobalt and nickel based 

reaction sintered silicon carbide, sialon 

and partially stabilized 'toughened' 

zirconia. 

ceramic fibre reinforced aluminium/ 

silicon alloy. 

With the present trend in increasing costs and shortages of strategic 

metals, protective coatings or facings are finding increasing usage in 

such applications as earth moving equipment and high temperature 

automotive components to improve wear and corrosion resistance. A 

typical example of these hard facing materials are the stellite alloys, 

first developed by Elwood Haynes circa 1900. These materials are 

cobalt based consisting initially, of a simple binary system with the 

addition of chromium, modified later by the additions of tungsten 

and/or molybdenum(31). The price of cobalt has risen dramatically in the 

last few years however, making these popular hard facing alloys 

increasingly expensive. An alternative to these alloys are nickel rich 

hard facing coatings based in on the nickel-chromium solid solution with the 

additions of boron and silicon to lower the melting point. Carbon is also 

added to the alloy to increase carbide content by reaction with the 

chromium(32). 

Both of these hard faced coatings can be applied by a variety of 

methods. Techniques such as metallic arc, plasma, gas and laser 

depositing are readily used to form and 'build up' worn component surfaces 

such as exhaust valve seats in the internal combustion engine. Their 

excellent wear and corrosion resistant properties are attributed to the 

large carbide networks present in the matrix. 

22. 



2.4.2 Ceramics 

2.4.2.1 Reaction Sintered Silicon Carbide 

The sintering temperature required to form conventional silicon carbide 

ceramic powders is in excess of 2200°C, thus proving difficult and 

extremely expensive. This is overcome by a process know as reaction 

sintering, allowing temperatures of around 1400°C to be used. In this 

process a compacted body of a-SiC and graphite powder is heated in 

contact with liquid silicon, which impregnates the body converting the 

graphite to ß-SiC which bonds the original alpha grains. With 

sufficient porosity present in the body, to accommodate both the 

volume change on reaction and cause complete silicon impregnation, 

a body of zero porosity can be obtained, the result and structure 

, 
being areas of free silicon and a SiC grains in a ß-SiC matrix(33). . 

The three key properties of reaction sintered silicon carbide in the 

field of engineering- ceramics are it's resistance to high temperature, 

thermal stress/thermal shock, high temperature corrosion resistance in 

oxidising atmospheres and excellent wear resistance. Typical 

applications include fuel tubes in advanced gas cooled nuclear reactors, 

gas turbine components and non-lubricated bearings. 

2.4.2.2 Sialon 

The sialon range of ceramics are based upon silicon nitride Si3N4, the 

difference being the substitution of various elements in the ceramic 

powder mixture before processing. The main elements present in 

sialons are Si, Al, 02, and N. The standard composition of silicon 

nitride is changed-by the substitution of some of the silicon present 

with aluminium and some of the nitrogen present with oxygen, the final 

structure becomes S13N4 + A1203 (34). The presence of these elements 

23. 



is thought to improve both fabricating and physical properties, thus 

proving superior properties to the already well estabilished silicon nitride 

ceramics for high temperature engineering and wear applications. 

2.4.2.3 Partially Stabilised 'Toughened' Zirconia 

Zirconia ceramics based on ZrO2 and stabilised using oxides such as 

MgO, CaO and Y203 have found increasing use in wear resistant 

applications including use in the internal combustion engine. Zirconia 

alone exhibits three well defined polymorphs: monoclinic, tetragonal 

and cubic phases(35). 

The temperatures at which these phase transformations occur is 

dependent upon the stabilising oxide used. The important feature of 

these ceramics is the tetragonal-monoclinic transformation which is 

associated with a large volume change (3-5%) causing cracking of 

individual particles in zirconia phases, the addition of these stabilising 

elements eliminates this volume change thus producing a fully 

stabilized ceramic. A satisfactory compromise is reached if an 

intermediate condition is adopted, thus producing a partially stabilized 

ceramic with, as will be explained, superior mechanical properties. If 

controlled, the tetragonal - monoclinic transformation helps to induce 

both directly and indirectly a toughening effect, thus improving the 

mechanical properties in particular fracture toughness, K1C. This 

occurs by two mechanisms: - 

1) Micro-cracking 

Micro-cracking around Zr02 particles during the transformation, thus 

diverting and nullifying any external crack growth. 
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2) Stress induced transformation toughening 

If for example the Zr02 is finely divided, zirconia particles can be 

retained in the metastable tetragonal form. The toughening mechanism 

arises due to the stress induced transformation of the metastable 

tetragonal particles to the monoclinic form under the action of external 

crack movement within the structure. The high tensile stresses induced 

at the crack tip causes this stress induced martensitic type 

transformation, thus forming compressive stresses around the 

transformed particles and arresting crick growth(36,37). 

2.4.3 Composite Materials 

2.4.3.1 Ceramic Fibre Reinforced Al/Si Alloy 

The use of cast aluminium for pistons has frequently met with problems of 

ring sticking within the top ring groove of the piston body. This 

problem is alleviated by reinforcing the aluminium/silicon matrix with 

fibres, typically Titanate K20 (T102)6 and Pitch Carbon. Superior 

results however have been achieved by the development and subsequent 

use of ceramic fibres in the matrix giving excellent wear and seizure 

resistance against cast iron(38). In addition, improved thermal 

conductivity and high temperature strength, has also resulted giving, 

increased performance without substantial rises in manufacturing 

costs. It is the considerable improvement in wear resistance however, 

that is leading to further research into the use of such materials for 

different component applications within the internal combustion 

engine. 

2.5 Camshaft Requirements 

The basic requirements of the camshaft material is to be compatable 
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with the follower material under operating conditions. With increase in 

engine power and speed, cam operating conditions have become more 

arduous. Increases in power have resulted in steeper cam ramps and 

smaller cam nose radii, resulting in higher contact stresses between 

cam and follower. Increases in speed require higher spring loads to 

offset increased valve train inertia loads, this has resulted in higher 

contact stresses when the engine is running at low speeds. 

2.6 Lubrication 

The purpose of introducing a lubricant into a system is to separate the 

moving parts with 'a_: film having a low shear resistance in an attempt 

not only to minimise friction and wear, but to perform a secondary 

function by removing heat and harmful wear debris away from 

contacting surfaces. The regimes which exist under highly loaded fluid 

lubricated conditions may be classified under four basic headings(39). 

Boundary, mixed, elastohydrodynamic and fluid film. 

Between 1900 and 1902, Stribeck(40), performed a series of experiments 

on the friction of sliding and rolling bearings'measured as a function of 

load, speed and oil temperature. The result is the now familiar 

Stribeck curve representing the general characteristics of lubricated 

moving surfaces as a function of viscosity, normal load and velocity as 

seen in Fig. 4. This curve however does not clarify the effect of load 

and speed variables under conditions found in automotive valve train 

systems, in particular isothermal conditions controlled by heat 

generation at the cam/tappet interface. Thus the schematic diagram 

shown in Fig. 5, attempts to elucidate this effect and its subsequent 

consequences. 
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2.6.1 Hydrodynamic Lubrication 

This lubrication regime is represented by Region I of Fig. 4. 

Hydrodynamic or "Fluid Film" conditions are produced in systems where the 

viscosity, geometry and the relative motion of the surfaces are such 

that pressures are sufficiently high as to prevent surface contact. The 

separation of these surfaces by a lubricant film is produced by fluid 

adhering to the moving surfaces and being dragged into the converging 

zone in the direction of motion, thus building up a pressure sufficient to 

carry the load. The behaviour of the hydrodynamic regime is generally 

governed by the bulk physical properties of the lubricant as no direct 

physical interaction between the surfaces occurs,. frictional 

characteristics therefore arise purely from the shearing of the viscous 

lubricant. The important geometrical features of these contacts, for 

example journal bearings, means the lubricating films are normally 

many times thicker than the surface roughness of the bearing surfaces. 

2.6.2 Elastohydrodynamic Lubrication 

The theory of elastohydrodynamic lubrication (EHL) has been 

established(41) to explain the fluid film lubrication of highly 

concentrated contacts such as gear teeth, round element bearings and 

cam-followers(42). EHL is essentially an extension of hydrodynamic 

lubrication first described by Reynolds in 1886, with many of the 

fundamental concepts involved with hydrodynamic theory applicable to 

elastohydrodynamics. The basic difference between the two, is that in 

EHL the surfaces are not rigid but distort elastically to support a co- 

herent hydrodynamic film. Providing this film is thick enough asperity 

interaction can be prevented. Fig. 6 shows the shape and pressure 

distribution associated with EHL films. The practical importance of 

EHL to cam-follower applications lies in the ability to express oil film 
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thickness in terms of operating conditions. An equation derived from 

theory(41) is given by: 

hm = 2.65 (pou)0.7a0.54 80.43 

E0.03 ßq0.13 (For'a geometric 

line contact) 

Where 

hm = film thickness at the rear constriction. 

uo = viscosity at atmospheric pressure. 

a= pressure-viscosity coefficient. 

u= (ul + u2) where ui and u2 are 

'the individual velocities of the moving surfaces. 

R= radius 'of equivalent cylinder. 

W= load per unit length 

E= elastic modulus' of equivalent cyclinder (flat surface 

assumed rigid). 

Clearly before the oil film thickness can be measured in valve train 

systems using this equation, a series of other factors must be considered, 

including friction induced temperature effects, surface roughness, 

squeeze action and lubrication starvation. Barwell(43) reviewed these 

effects and concluded that a safety factor should be introduced in 

applying film thickness calculations to cams due to the many areas of 

uncertainty surrounding the direct application of EHL theory to design 

parameters. 

The EHL regime occupies a domain to the left of hydrodynamic 

lubrication designated as region II of the Stribeck curve, Fig. 4. 
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The equation shows that the film thickness is most sensitive to velocity 

(u), the lubricant properties (µo and a) and the radius of curvature 

(R). The load (W) and the elastic modulus (E) have little influence on 

film thickness since their exponents are very small. These 

effects throw some doubt on - the application of straight E. H. L. 

theory to cam-follower applications and has led to the concept of a third 

lubrication regime known as mixed lubrication or partial E. H. L. The 

onset of mixed then E. H. L. is shown by line AA in Fig. 4, there is no 

clear transition, and cannot be defined in terms of friction alone. 

Dowson (39) describes the transition in terms of multimolecular 

boundary layers working within the oil film thickness thus influencing 

the lubrication mechanism. Thus mixed lubrication would be expected 

when surface separation' is reduced to 0.025 Am. This definition is 

difficult to relate to engineering surfaces, because the surfaces are 

assumed to be perfectly smooth. A further modification which 

accounts for surface roughness is now widely used. The general form of 

this parameter is given by: 

X= Calculated film thickness 

E Surface Roughness 

Full E. H. L. conditions can be expected when x is greater than five. 

2.6.3 Mixed Lubrication 

If a lubricated engineering system is running in regime III of Fig. 4 it is 

said to be operating in a condition of mixed lubrication. This lubrication 

mechanism is basically a compromise between E. H. L. and boundary 

effects, that is to say the lubricant films formed on surfaces are not 
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wholly responsible for the lubrication mechanism as the rheology of the oil 

also plays an important role. Surface separation is likely to be of 

molecular proportions, with the oil film thickness ratio in the range 

1 to 5. Begelinger et al (44) have described this lubrication, condition in 

terms of a transition diagram, shown in Fig. 7 related to the operating 

variables force (F), sliding speed (V) and temperature (T). The results of 

the experimental work showed, that the load carrying capacity of the 

film is reduced with increasing speed, caused, by a decrease In oil 

viscosity due to considerable heat generation in the film. Of course at 

the other extreme it has been established that low velocity conditions 

will also lead to a diminished oil film. It is extremely difficult to 

distinguish between these two forms of mixed lubricaton with reference 

to the. Stribeck curve alone, however reference to- the schematic 

hypothetical- illustration in Fig. 5, clearly shows these two forms of 

mixed lubrication, the lubrication of cam-follower systems can be shown 

to be exclusively to the right hand side of this diagram. The material, 

additive type and base oil viscosity all have a significant role in wear 

behaviour under such lubrication conditions. 

2.6.4 Boundary Lubrication 

There have been many reviews on the subject of boundary lubrication(39). 

Since the term was originated by Hardy, confusion has arisen as to the 

specific mechanisms involved because of the diversity of many authors 

I experimental apparatus and techniques. It is generally agreed however, 

that the term describes lubrication by a liquid under conditions where 

solid surfaces come into appreciable contact with each other during 

operation. Under these conditions the bulk properties of the lubricants 

play little part in the friction and wear behaviour. The surface action 
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which dictates the behaviour of the system may be the result of 

physically or chemically adsorbed films or chemical reactions. The 

conditions under which these films are most effective varies according 

to the species, surface chemistry and operating parameters. 

Experiments to evaluate boundary lubrication were initially 

confined to static and slow speed friction studies thus effectively 

evaluating the oiliness of a lubricant, that is the ability to reduce 

friction by mechanism of physical or chemical adsorption. The 

conditions under which cam follower systems operate however, are 

markedly different with sliding speeds typically three orders of 

magnitude higher and bulk temperatures in the region of 1400C(45). 

Effective boundary lubrication is therefore more likely to be as a result 

of chemical reactions between the oil additives and the metals surface. 

Another effect the additive may have is to increase the load carrying 

capacity, in this case they are referred to as extreme pressure (EP) 

additives. 

Although the lubrication mode of cam follower contacts is not 

exclusively boundary, evidence from the literature shows surface films 

influence the wear behaviour considerably. One such additive, of 

great importance for use in valve train system lubrication, zinc 

dialkyldithiophosphate is discussed in detail in the following section. 

2.6.4.1 The Anti-Wear Mechanism of Zinc dialkyldithiophosphate 

The high applied stress, sliding conditions and geometric design of many 

modern day valve train systems often makes the cam follower interface 

one of the most difficult areas in the engine to lubricate. The presence 

of additives In an internal combustion engine oil has been shown to play a 
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significant role in wear mitigation and the prevention of catastrophic 

failure of these components. The most widely used and useful additive 

for this purpose is zinc dialkyldithiophosphate (Z. D. D. P. )(46-49). Over 

many years additive packages in automotive oils have become more 

complex to meet the needs of increased performance requirements and 

this has inevitably placed greater demands on the anti-wear behaviour 

of Z. D. D. P. s. There is considerable commercial interest to increase the 

effectiveness of Z. D. D. P. s, particularly as no other efficient substitute 

has yet been found. 

It has generally been accepted that boundary lubrication is achieved as 

a result of the reaction between Z. D. D. P or its breakdown products and 

the metal surface(50). Studies have tended to concentrate on two 

main areas of research, namely, decomposition of the additive in the bulk 

oil and analysis of surface films formed on contacting surfaces. 

In the late 1950's it was realised that surface films formed at the 

mating cam follower interface was a significant factor in anti-wear 

behaviour(51). The films observed were visible to the naked eye and it 

was concluded that the considerable differences in wear behaviour 

reflected the materials ability to form an anti-wear film. The most 

widely held view of the physical nature of these films is that they are 

soft and act as easily sheared layers on the rubbed surfaces, preventing 

metal-to-metal contact and seizure. An alternative model has been 

proposed by Martin et a1(52,53)ß who suggests a paste is formed during 

frictional contact and this is the principal factor in wear 

characterisation. No direct evidence of the formation of this paste has 

been produced, the deduction of its formation being drawn from the 

presence of shallow tracks which coincide on opposing sliding surfaces. 
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Much work over the past 15 years has been concerned with the 

formation and composition of surface films in lubricated concentrated 

contacts. The films formed from Z. D. D. P. have been studied by a 

number of workers using electron probe microanalysis (EPMA), x-ray 

photo electron spectroscopy (XPS) and scanning auger spectroscopy 

(SAM). These films have in general been found to contain zinc, 

phosphorus and sulphur. A recent detailed an by Bird et al(54) using 

XPS and EPMA, has indicated that two types of film exist, a zinc 

thiophosphate and a ferrous sulphide, the latter found to be associated 

with high wear score marks on the surface. 

As mentioned previously, published data on the anti-wear performance 

of additives operating under service conditions has shown significant 

differences depending on the cam or follower material, and although 

much work has been carried out related to the effect of metal structure 

and composition in lubricated tests, little work has been undertaken 

regarding surface film chemistry with respect to metal structure and 

wear performance. One exception to this has been the investigations 

carried out by Rounds(55)into the effects of steel composition on 

additive performance. Using x-ray flourescence (XRF), Rounds found 

considerable differences in the anti-wear behaviour of a 

range of materials with various types, although he found no differences 

in the case of Z. D. D. P. additive. He concluded that this was due to the 

mechanism by which Z. D. D. P. lubricates the contact, by adsorption not 

chemical reaction. The validity of this suggestion is questionable when 

one considers the majority of work was carried out on static immersion 

tests, and also the sensitivity of XRF is poor, typically analysing several 

millimetres in the sample. 
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Watkins(5) using XPS analysis of surface films on worn cam and 

follower components, also deduced the presence of two types of film. 

He suggests that sulphur reacts with iron at the surface to form a 

ternary eutectic with iron oxide and that the zinc polyphosphate is 

physically adsorbed. If zinc polyphosphate is physically adsorbed in the 

surface its role may be considered similar to that described by 

Cameron(57) in the lubrication of gears. His results with unreactive 

metals such as 18/8 austenitic stainless steel, have shown that 

physisorbed films have to desorb before sulphur can react with the 

surface, however, reactive metals such as carbon steels were found to 

behave differently. This has been attributed to a sufficiently long time 

period for the sulphur reaction to take place under slow running 

conditions, masking the deliterious effect of the physisorbed layer. 

Results obtained by Grew(58) and Begelinger et al (59) showed 

martensitic steels to be more reactive with sulphur additives than those 

containing retained austenite. Under conditions of partial EHL 

however, increasing retained austenite contents appeared to enhance 

the load carrying capacity, it follows therefore that any apparent 

discrepancies in results regarding austenite content produced by other 

authors can be attributed alsoie to differences in the lubricating regime. 

2.7 Wear Mechanisms 

Wear effects maintenance and economy due to it's\ffect on reducing 

efficiency and increasing power losses, oil consumption, and the rate of 

component replacement. 

Wear may occur under various conditions of operation, therefore great 

care is needed in the choice of materials to suit the operating 

conditions. General metallurgical solutions cannot in many cases be 
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automatically applied to wear., problems, for example,, an increase in 

hardness does not necessarily 
. 
mean a reduction in the wear rate as 

would be logically thought. Therefore the choice of materials for 

certain operating conditions is dependent on tests, specially devised so 

as to simulate as closely to provide the particular operating conditions. 

Wear in industrial situations can be broadly divided into the following 

categories. 

ABRASIVE 50% 

ADHESIVE 15% 

EROSION 8% 

FRETTING 8% 

CHEMICAL 5% 

In a particular wear situation a combination of the above types of wear 

may operate together. 

2.7.1 Abrasive Wear 

Abrasive wear occurs when hard particles penetrate a surface and 

displace material in the form of elongated chips or 'swarf'. Abrasive 

wear occurs under 2 conditions, generally referred to as two and three 

body abrasive wear processes respectively. 

Abrasive wear is very widely utilised in material finishing operations. The 

two body type of abrasive wear is made use of in files, abrasive paper, 

cloths and wheels, whilst three body wear is used for lapping and 

polishing. 
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In order to derive a quantitative expression for abrasive wear, consider 

a simple model where the asperities on the hard surface are conical 

(Fig 8). Considering a single asperity carrying a load A L, the extent 

to which it penetrates the softer surface is given by: 

L=PEA=PTrr2 . ý_ .... 

Where P is the hardness of the softer surface. 

The projected areas of the penetrating cone in the vertical plane is rX. 

Then when the cone moves through a distance' dl it will sweep out a 

volume dV given by: - 

dV =rX dl = r2 tane dl =L tan dl 

7r P 

dV tL tan 

dl irP 

Now, by adding the contribution of all asperities we have 

dV L tan 6 

dl 7rP 

Where, tan 0 is a weighted average of the tan 0value of all the individual 

cones. 
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Fig. 8. ABRASIVE WEAR MECHANISM 

In abrasive wear, particle penetration is given by 

LOAD ON THE PARTICLE W 

HARDNESS OF THE SURFACE Hv 

If A is the cross section of the groove, and L is the length, the volume 

of wear is: 

Wear Volume =W 

HvV 

From work carried out by Krushov°) the relative wear resistance is 

defined as: 

E_ 
Linear wear of a standard 

Linear wear of test material 
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which is usually greater than 1, since the standard has a relatively low 

hardness. E is proportional to hardness, but varies with the 

microstructure if the alloy is changed. Serpik(61) showed that E 

increases with carbon content in steel. Abrasive wear resistance can be 

considerably improved by refining the pearlite, this is due to the 

increased rate of work hardening produced. Popov(6 2) has shown in 

steels both the volume and composition of carbides have an affect on 

the wear properties. 

It has been shown that the maximum hardness produced by wear, rather 

than the hardness of the unworn surface should be considered. Work 

carried out on white cast irons which do not work harden showed good 

correlation between wear volume and hardness. Steels that work 

harden give results in the worn condition that fall into the scatter band 

for other materials. 
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Fig. 9. ABRASIVE WEAR RATE DEPENDS ON THE HARDNESS OF THE 

WORN RATHER THAN THE UNWORN SURFACE. 
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There is no simple relationship between material hardness and wear 

resistance. Richardson(63) showed that the hardness of the surface 

resisting wear must be greater than half the hardness of the abrasive if 

any improvement in wear resistance is to be achieved. 

KT = Hv of surface 

Hv of abrasive 

KT must be greater than 0.5. However an increase in the hardness of 

the material beyond 1.3 times that of the abrasive will produce no 

further significant improvement in wear resistance. 

Data produced by Alenkov(64)shows a graph of wear rate/hardness 

against hardness, (Fig. 10), it shows a horizontal line up to a certain 

point and then drops drastically. The hardness value at which the 

abrasive wear rate drops reduces is approximately 0.65 the hardness of 

the abrasive. 
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Fig. 10. THE WEAR RATE HARDNESS PRODUCT DROPS OFF DRASTICALLY 
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2.7.2 Adhesive Wear 

This type of wear occurs when two surfaces slide against each other. 

The pressure produced by contacting asperities eventually reaches a rate 

sufficiently high enough to cause local plastic deformation, adhesion 

and in some cases welding of the asperities. Adhesion occurs between a 

few asperities which increase their size as motion continues. The 

junctions of the asperities eventually rupture causing metal transfer 

from one surface to another, but may in some cases come off in a 

loose form. 

Adhesion is favoured by clean, non-oxidised surfaces and by chemical 

and structural simularities between the sliding couple. This is due to 

the attractive forces which exist between the surface atoms of the two 

similar materials(651 If two surfaces are brought together and then 

separated, either normally or tangently the attractive forces act in 

such a way so as to attempt to pull material from one surface onto the 

other, thus increasing the likelyhood of bonding and welding(66). 

Since the area of contact is inversely proportional to hardness, wear 

decreases with increasing asperity hardness. In some cases wear debris 

may become considerably harder due to work hardening, ultimately 

causing phase hardening and further wear by an abrasive mechanism. 

According to Archard(67) 

Wear Volume = KSP 

Pm 
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Where K is a wear constant, S the sliding distance, P the applied load 

and Pm the flow stress of the wear surface. 

The ability of pure metals to form solid solutions is related to their 

tendency for adhesion to occur(65). For example, lead having a low 

solubility with cobalt, chromium, nickel and iron is therefore a good 

choice for a counterface material. Chemical contamination of a metal 

surface improves the wear resistance due to the non-adhesive, 

antiwelding properties of the contaminant. 

From work carried out with' various unlubricated materials, it is 

possible to write the laws of adhesion as follows(65): 

1. The amount of wear is generally proportional to the load. 

2. The amount of wear is generally proportional to the sliding 

distance. 

3. The amount of wear is generally inversely proportional to the 

hardness P of the surface being worn away. 

Or, we can write the volume worn away in the form: 

V= CLX. 

P 

Where C is a constant depending on the materials in contact and their 

exact degree of cleanliness. 
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The volume of transferred fragments formed in sliding through a 

distance X was found to be 

V= KLX 

3P 

In the case of the two bodies sliding over one another P is the flow 

pressure of the softer of the metals. - This may be considered the 

fundamental law of adhesive wear, with K being the coefficient of wear. 

Wear under adhesive conditions, unlike abrasive wear is subject to sharp 

transitions in behaviour. Variations in load and speed may bring about 

marked thermal changes which preceed, and cause, changes in wear(66). 

Welsh(68) was one of the first to examine the concept of mild wear 

(oxidative) and severe wear (metallic) and the sharp transitions between 

them, referred to as Tl and T2 transitions respectively. 

Wear below the T1 transition load Is due to the removal of oxide 

particles from an oxidised surface supported on a work hardened 

substrate. At T1 severe wear occurs due to the break up of the oxide 

layer produced at lower loads. Plastic deformation occurs due to the 

lowering of the metals yield point caused by a higher bulk temperature, 

the wear 'rate increasing considerably with the production of metallic 

debris. 
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Fig. 11. TRANSITION WEAR BEHAVIOUR OF DIFFERENT STEELS. 

Between T1 and T2 severe wear occurs. At the T2 transition load the 

wear rate decreases due to a phase hardening process caused by higher 

friction induced surface temperatures. Phase hardening produces a 

hard 'white layer' structure which prevents deformation and helps to 

establish an oxidised surface once more. 

During the early stages of rubbing under adhesive conditions, wear 

proceeds at a relatively high rate due to the surfaces being clean. 

Eventually, however, an oxidised surface forms. Under some conditions, 

particularly at loads close to the mild/severe (T1) transition load, a 

particular form of wear called "scuffing" occurs, under such conditions 

the surface topography changes and a rough surface results. This 

roughening usually begins in localised narrow bands and gradually 

spreads along the rubbed surfaces. 
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2.7.3 Corrosive Wear 

This form of wear occurs in situations in which the environment 

surrounding a sliding surface interacts chemically with it. If the 

products of reaction are worn off the surface, corrosive wear has 

occurred. 

The first stage of corrosive wear involves the chemical attack of the 

surface, similar to that occurring in ordinary corrosion. Corrosion, 

initially rapid tends to slow down with time due to a, film formation 

separating the reacting species. However, in some cases . the initial 

reaction rate continues throughout the corrosion cycle either due to the 

lack or breakdown of the protective film. 

The second stage of the corrosive wear process involves the wear of the 

reaction product film, as a result of sliding taking place. When this 

occurs, the naked surface is exposed and corrosive attack continues. 

The corrosion products are usually harder and more brittle than the 

surface on which they form, and can cause additional abrasive wear. 

2.7.4 Fatigue 

Wear by a fatigue mechanism occurs on surfaces which come into 

repeated contact at stresses, higher 
-than . the fatigue limit. Damage 

occurs in, or just below the surface, ultimately causing fracture and the 

production of surface pitting. Early fatigue failures may initiate from 

corrosion in the surface, or subsurface defects. 
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The metallurgy of the material plays a large role in the prevention of 

fatigue. For example, surface treatments that increase the hardness 

and form residual compressive . stresses on the surface, enhance the 

fatigue resistance. 

2.7.5 Delamination 

Wear by delamination involves extensive deformation and fracture of 

the metal surface, producing a plate like debris. Observation of the 

debris shows it to be unlike the characteristic morphologies of abrasion 

(metal slivers) or of adhesion (particles with length to width ratios of 

3.1), the plate-like debris has a length often exceeding 10 times the 

thickness. . 

This type of failure can be commonly found in automobile engine 

components for example cylinder liners and cam and tappet 

applications(66). 

Delamination can occur under abrasive conditions if the cutting 

efficiency is low and under metal to metal sliding conditions if little 

adhesion occurs. Work carried out by Suh(69)showed that soft (ductile) 

layers enhanced a metals resistance to delamination. The effect of the 

deformation is very localised and it-is sometimes possible to see these 

plates originating at impurities in the steel. 

2.7.6 The Phenomena of Wear in the Cam and Tappet System 

As already reported the lubrication of cam and tappets in overhead 

camshaft systems has become more difficult especially with the, advent 
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of increased engine speeds. The most important factor governing the 

performance of cam and tappets is the metallurgy of these components, 

although the properties of the lubricating oil and cam/tappet geometry 

play an important role. 

The majority of cam and tappet wear problems can be divided as 

follows: - Scuffing, Pitting, Polishing and Accelerated Normal Wear. 

2.7.6.1 Scuffing 

This form of wear is characterized by a roughening of the surfaces 

associated with the break down of oil films. The surface roughening is 

due to the rupture of small welds formed between the contacting 

surfaces and normally occurs fairly suddenly during the early stages of 

operation. 

Under mild conditions, at low loads and temperatures the surfaces are 

completely separated by a lubricant film. However, if the load is 

increased, the bulk temperature increases, and a decrease in the oil film 

thickness occurs due to a lowering of the lubricant viscosity. At first 

the surface will be undisturbed, but gradually interaction and 

modification of the surfaces will occur. It is this interaction of the 

surfaces that if too severe, leads to surface damage. Associated with 

this damage are increases in the coefficient of friction, in some cases by 

a factor of 3 and the production of hard, white etch resistant phases 

commonly known as "white layer". These layers are claimed to be 

produced by an austenitic transformation with surface temperatures in 

excess of 723°C evident, the result is a hard brittle 'martensitic' type 

layer, leading to eventual failure by a spelling mechanism. 
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The theory of scuffing and associated white layer formation in ferrous 

alloys is dominated by Blok (1939) with his flash temperature concept(70). 

Blok's hypothesis is based on, the idea that a given system operating 

under given conditions will scuff if the maximum temperature in the 

contact area exceeds a critical value. 

The temperature, in the contact _-area 
is the steady bulk metal 

temperature of,, the, rubbing parts, added to the temporary rise in 

temperature of a point 
, 
in 

, 
the rubbing surface as; it traverses, the 

contact, this latter, temperature is known as the flash temperature. This 

is the more important component of the contact temperature because 

of its 
. 
thermal magnitude, but is however, extremely,, difficult to 

measure since it is of very short time duration and decays rapidly with 

both time after the surface has left the contact and with the depth 

below the surface. This theory is not of great practical use because it 

assumes single asperity contact with the material properties remaining 

constant. It does provide a general 
, 
idea of, the magnitude of the 

temperature rise and it's effect on phase transformations can therefore 

be predicted. More information is, required before 
, 
the, method, of 

calculation and the values obtained can be used to predict the systems 

behaviour. 

The application of Blok's flash temperature concept to, cam, and 
-tappet 

wear problems has been carried out by Dyson(71) who claims that the 

contact temperature reaches : a, maximum at three points für the valve 

operating cycle; at the cam nose and at the two points at, zero tappet, 

acceleration, the values obtained being dependant on cam contour, 

spring forces, materials of construction and other, relevant factors. 

2.7.6.2 Pitting 

Pitting failure is readily recognised by an irregular distribution of pits 
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on the surface. Pitting failures in valve train components are 

experienced predominatly when manufactured from chilled white iron, 

the origin of the sub-surface cracks causing this type of failure being a 

subject of some dispute in which two opposing views are held. One 

theory considers that crack initiation occurs beneath the surface at a 

position corresponding to high shear stresses and is based on Herztian 

contact concepts. The other proposes that cracks are initiated at the 

surface and propogation occurs parallel to and beneath the wear surface 

until material is free to detach. Since there is evidence to show that 

pitting is both a stress and chemical dependant process it would seem 

likely that both mechanisms are possible, depending on the precise 

operating and environmental conditions. 

The Motor Research Association(72) have reported failures initiating at 

the point of maximum Hertzian contact beneath the surface, and also 

concluded that crack propogation is assisted by oil pressure build up 

within the cracks during the operating cycle. Supportive evidence for 

this theory arises from observations that predominant crack orientation 

effects can be distinguished with respect to the direction of , motion of 

the contacting surfaces. 

The use of additives in lubricants such as zine dialkyldithiophosphate 

(Z. D. D. P. ) has also been shown to influence the fatigue process. 

Caldicott(73) reported that chilled white iron running in a mineral base 

oil performed satisfactorily, whereas the addition of Z. D. D. P. resulted 

in increased pitting susceptability. Other authors have reported the 

migration of, lubricant additive components along surface initiated 

cracks to depths of up to 150 microns thus possibly increasing the 

susceptability of accelerated fatigue crack growth by a stress corrosion 

mechanism(74). 
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2.7.6.3 Polishing Wear 

This wear mode has been defined as a general attrition of the 

contacting surfaces( 75) in which wear occurs progressively. - The initial 

wear rate during 'running in' tends 'to diminish with time until a 

constant low rate is achieved, the higher the load the greater wear rate. 

There is no clear consensus of opinion as to the underlying mechanisms 

responsible for this phenomenon although many theories have been put 

forward. 

Some workers have associated this type of wear with the flash 

temperature concept of correlating the ý severly worn areas of the 

surfaces to positions of maximum flash temperature(76). Another 

theory assumes polishing wear to be formed chemically by additive 

interactions and corrosive means(77). A third possibility is wear 

resulting from the abrasive action of dispersed solids less than -1 

micron in size, typically found in crankcase oils. These particles are 

usually contaminants from one or two sources; particles of airborne dust 

such as Si02 and internally generated wear debris or combustion 

products. 

2.7.6.4 Accelerated Wear 

This severe form of wear is characterized by the 

appearance of the damaged parts, the only abnormality present is the 

very high rate of wear. In some cases the surface has the appearance 

of a machined surface which is typically associated with a worn cutting 

tool with a 'built up edge'. 
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2.8 Condition Monitoring 

The introduction of condition based' monitoring has increased 

considerably the efficiency and economy in machinery operation. 

Monitoring the condition of machinery can permit detection of 

potential breakdowns, thus allowing time for remedial action. When 

used in conjunction with improved design information and materials, 

condition monitoring can increase service life and reliability. In 

addition, condition monitoring can be used extensively for tribological 

wear analysis where wear rates are difficult to measure without the 

removal of reciprocating parts for analysis for instance 

those fully submerged in a lubricant. 

The principle of condition monitoring is to select an appropriate 

indicator of a machines condition which can be monitored and measured 

successfully at different time intervals. The measurements, once 

recorded can be plotted against service time to indicate any 

deterioration of an operating system. 

There are six basic methods of condition monitoring, these can be 

classified as follows: - 

1. Visual Monitoring 

2. Vibration Monitoring 

3. Wear Debris Monitoring 

4. Performance Monitoring 

5. Corrosion Monitoring 

6. Structural Integrity Monitoring 
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Wear debris monitoring being a widely used condition monitoring 

technique works on the principle that the working surfaces of a machine are 

washed by its lubricating oil, thus any damage occurring to the working 

surfaces should be detectable by analysis of the wear debris in the oil. 

If the debris consists of large particles they can be removed by 

magnetic plugs placed on the oil return lines. For smaller particles, 

analysis of the debris can be carried out by spectrometric analysis or 

microscopic examination of the debris after magnetic separation. 

Wear debris analysis can be both quantitative and qualitative. 

QUANTITATIVE: giving ' information on the size, size distribution, 

concentration of . -, the-,. * debris and the elemental composition. 

QUALITATIVE: state of the debris, e. g. oxidation, morphology and 

colour. 

The objective of oil analysis is to provide: 

1. Detection of abnormal wear indicating incipient failure. 

2. Information on the morphology, location and wear mode of the 

debris and it's subsequent severity. , 
3. Prognosis of the future state of the machinery. 

4. Action to betaken for maintenance rectification. 
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3. EXPERIMENTAL PROCEDURE 

3.1 INTRODUCTION 

Test methods used in the study of friction, wear' and lubrication are 

many and varied(78), their basic purpose being to study the effects of 

systems variables on tribological processes. The vast majority of test 

procedures used in determining the wear performance of automotive 

valve train systems(79"81)fall into the category of simulation to evaluate 

lubricants and/or materials. These techniques range from single cam 

lobe and follower systems, to fully fired engine tests. It is the cost 

however, of these fully fired engine tests, running sometimes into many 

thousands of pounds per test which has swung more emphasis onto the 

choice of cheaper laboratory bench rigs for the screening and 

evaluation of both lubricants and materials. Another important 

consideration in the selection of testing procedures is the significance 

of variables influencing the friction and wear processes, and the ability 

to control or measure these variables during testing. 

The experimental work involved in this thesis is as the title suggests 

"The effect of base stock and additive package on the friction and wear 

behaviour of overhead camshaft and finger follower 'systems", and 

attempts to establish more confidence in laboratory based rig testing 

for the evaluation of materials and lubricants. The objectives of this 

work run in 3 main categories: - 
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6 
Objective One 

The main objective in this section is the evaluation of the laboratory 

based test rig for lubricant and material studies, in an attempt to 

introduce a "cheaper and more convenient alternative to dynamometer 

and engine testing for the performance screening of lubricants and 

materials, for both design and quality 'a ssurance/control purposes. 

Secondary objectives can be divided into two main parts: 

i) A pre-requisite to the success of laboratory bench rig testing is the 

reproduction of service failures commonly encountered under 

engine test and service conditions. This area'of 'work is concerned 

with the reproduction of such service failures, the great advantage 

of rig testing being the elimination of variables encountered under 

fired engine conditions such as contamination from areas such as 

airborne dust and products of combustion and oil degredation due 

to engine atmosphere. These variables, to mention only a few, 

have served to confuse and mislead engineers and tribologists alike 

for - many years. This has prevented a more fundamental 

understanding of wear mechanisms and surface interactions 

occurring in overhead camshaft systems and has only ' served to 

aggravate the already highly complex nature of these operating 

components. Rig testing' therefore allows a more simplistic study 

of these components, thus attempting to give a more fundamental 

understanding of the wear behaviour of these components. 

ii) To observe and examine the wear behaviour of well established 

camshaft and follower materials under fully lubricated conditions 

using a base stock oil and its full additive formulation. This Is to 
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compare some of the effects of lubrication regime, oil rheology 

and additives on - the friction and wear characteristics of these 

materials under well defined test conditions. 

Objective Two 

The importance of the wear mechanisms associated with the 

'running in' of contacting surfaces, allowing the conforming and the 

-successful operation of engineering systems has in the author , view 

been neglected by many, especially in,, the, area of , overhead 

camshaft and follower systems. - The objective in this part of the 

experimental work therefore is to : analyse , 
and . 

illustrate 
, 
the 

importance of satisfactory 'running in' of surfaces and, thus the 

formation --of these surfaces. To compare the 'running in' 

characteristics with base and fully formulated oils for a standard 

material combination,! using a variety of surface topographies, test 

conditions and analytical techniques. 

t 

Objective Three 

This area of experiment work is concerned with the use of new 

materials for overhead camshaft systems. Samples of material 

have been supplied in insert form and consequently used for finger 

follower applications, and run. against a standard, ferrous cam 

material. Tests were conducted fully submerged in base oil 

(without additives) to observe and analyse the friction and wear 

characteristics ý of these new materials under low load conditions. 

The tests were of a 'screening' nature, the results obtained should 

be used to form the basis of further research work to be carried 

using these materials. 
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An important factor concerned with the experimental apparatus is the 

ability to obtain data, to provide a more fundamental understanding of the 

processes occurring during contact. The available literature classifies 

wear under generalised headings which -relate to the mechanism or 

mechanisms responsible for a particular type of surface damage. There 

is little information in the field of valve train wear studies to explain 

the initiation and progress of many of these wear regimes. This can be 

achieved, by the use of various techniques to monitor the state of a 

number of variables in the system. One variable which was easy to 

measure and partly fulfilled this testing objective was the coefficient 

of friction measurements.: The study of the direct wear rate is difficult 

to achieve due to the geometric and operational constraints of the rig 

design. . The use of indirect wear rate methods such as emission 

spectroscopy, - ferrographic and rotary particle deposition, techniques 

provides methods of accumulating wear data of a quantitative nature 

without detracting from the simulation design. The " rig design also 

allows for accurate control of load, sliding speed and oil temperature 

throughout the duration of each experiment. This wide range of 

controllable, operating conditions allowed service conditions to be 

reproduced. 

The philosophy behind the rig design was to simulate an O. H. C. finger 

follower system as closely as such factors as economics and ease of 

operation would allow. For this purpose a cylinder on flat configuration 

was utilised to give nominal line contact conditions. Load is applied to 

this conjunction by the reaction of a spring to the eccentric motion of 

the cylinder. The layout of the configuration is based on the European 

Ford Finger Follower System, a comparison of which can be seen in 

Fig. 12. This. enabled a number of components from. the production 

valve train - to be 
. utilised in the construction of the rig 
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and gave the additional advantage ` of " superior surface alignment 

characteristics afforded by this design. The use of a cylinder on flat 

configuration allowed specimens to be produced in a wide range of 

materials and treatments and enabled the machining of the specimens 

from bar stock,. thus keeping their manufacture under the author's 

control. 

3.2 Description of Cam-Follower Test Rig 

Wear testing has been carried out by loading a flat specimen, in line 

contact with an eccentrically rotating cylinder. The cylindrical cam 

specimens- used throughout the experimental programme measure\ 

32.00mm diameter by 20mm wide, a' drawing of which can be seen in 

Fig. 13A. The follower specimen size and shape was chosen from 

considerations of suitability for insertion into a Cambridge S600 

Scanning Electron Microscope and also ease of manufacture. The 

contacting face of the specimen measures 30mm by 16.5mm as shown in 

Fig. 13B. The use of hard materials for wear testing meant that the 

manufacture of specimens became difficult and uneconomic to produce. 

This was overcome by the use of inserts of size 17 x 12 x 3mm and were 

manufactured out of chilled white iron and all the new materials tested. 

A standard mild steel specimen was 'machined and "a recess milled into 

the contacting surface of the follower. The insert was then epoxy 

bonded into this recess and allowed to cure, a specimen can be seen in 

Fig. 13C. A specially hardened steel carrier was used to hold the test 

specimen within the apparatus, acting as a simulated follower arm. The 

carrier assembly is located in the rig between a spherically ended pivot 

and the top of a hardened silver steel valve stem by two spring 

retaining clips. By using a spherically ended pivot, the follower surface 

is free to align itself in the plane parallel to the line of contact. 
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Load is applied to the contacting surfaces when the rotation of the cam 

causes the carrier to arc downwards against a spring loaded valve stem. 

A standard Ford inlet valve spring was used for this purpose and was 

calibrated for load in the rig base block using a specially constructed 

compression jig. 

The test configuration is totally enclosed in a rectangular container 

serving as an oil tank, associated with this is an independant filtration 

system. Lubricant temperatures in the rig are controlled by the use of 

two 2 KW heaters, thermostatically controlled in the rig base block. 

Friction measurements are obtained by the displacement of the pivot 

point with cam revolution. This displacement is measured by the use of 

an AC linear variable differential transformer (LVDT) linked to a signal 

conditioning module. The output signal from this unit is displayed on a 

Digital Storage Oscilloscope, from there the signal is fed into a B. B. C. 

microprocessor unit via a specially constructed interface and the 

friction measurements recorded continuously with time. The test rig 

and data logging system can be seen in Figs 14,15 and 16. The 

program used for friction measurement in the microprocessor can be 

seen in Appendix 1. 

3.3 Preparation of Cam and Follower Test Specimens 

The 32mm diameter cam specimens were manufactured from cast or 

rolled bar stock in a range of materials listed in Table 3. After 

machining, the cam specimens were heat-treated using various methods 

depending upon the material and final properties required. After heat- 

treatment the periphery of each specimen was circumferentially ground 

to the final diameter of 32.0mm and a surface roughness of 0.35 -0.45 

pm Ra. 

59. 



The follower test specimens were milled from flat or bar stock to the 

dimensions given in Fig 16B and from the range of materials given in. 

Tables 3 and 8. 

3.4 Experimental Procedure 

All the experimental work was carried out under fully flooded 

conditions within the oil tank, holding approximately one litre of test 

lubricant. Once the test temperature was reached, 10 minutes was 

allowed for temperature stabilization, and the computer program was 

loaded before testing commenced. 

At periodic intervals throughout the duration of all experiments, a 10ml 

volume of lubricant was withdrawn from the oil tank by a pipette at a 

position corresponding to the lubricant exit point from the cam and 

follower interface. Fig. 14. These samples were then used to obtain 

diagnostic information on the character and severity of the wear 

process. 

3.5 Experimental Techniques 

3.5.1 Condition Monitoring 

The lubricant samples removed during testing were used to determine 

wear rates indirectly, using emission spectroscopy and 

Ferrographic/R. P. D. techniques. 
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3.5.1.1 Atomic Emission Spectroscopy 

Analysis of oil samples using emission spectroscopy was carried out 

using a Rank-Hilger medium quartz emission spectrometer with a FS165 

source. The principle of atomic emission spectroscopy is to vapourize 

the oil sample by means of an electrical discharge, the energy for the 

discharge is provided by source units. Whilst the oil burns off, the 

atoms present in the remaining wear debris are excited by the discharge 

and emit light which is focussed onto a concave diffraction grating or 

prism, thus breaking down the emitted light into a spectrum containing, 

at discrete wavelengths, the spectral lines of all the elements present 

in the sample. 

At least one line for each element whose concentration is to be 

determined is selected by passing the emitted light through a narrow 

exit slit after which it is focussed by a mirror onto the cathode of a 

photomultiplier tube. This converts the weak light signal into an 

electric current which can be measured. The luminous intensity of the 

line is related to the concentration of the relative element Fig. 17. The 

results are expressed in terms of parts per million of specific element 

and plotted graphically against test time(82). 

3.5.1.2 Ferrographic And R. P. D. Analysis 

The basic principle of ferrographic wear debris analysis Is the magnetic 

separation of wear debris from lubricant 
, 
samples taken from a 

recirculating system. One of the most well established techniques to 

date for the analysis of wear debris is ferrography, this consists of two 

stages, direct reading and analytical ferrography. 
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3.5.1.2.1 Direct Reading Ferrography 

A2 ml mixture of used oil and a fixer solution is siphoned through a 

glass precipitator tube place on a permanent magnet. Two fibre optic 

systems, 5mm apart, are situated near the front edge of the 

precipitator tube. The magnet is graded such that the ferromagnetic 

wear particles are precipitated at a position dependant upon their size, 

particles >5 microns are precipitated at the first fibre optic unit and 

particles <2 microns at the second fibre optic unit(82). The units are 

connected to photodetectors which measure the light attenuation at 

these points. The reduction in light is proportional to the percentage 

area covered by the particles, Fig 18. The results are in a digital form 

DL = large particles DS = small particles. 

Total Wear = DL + DS 

Severity of Wear = DL - DS 

A high number of large particles indicates a severe wear mode, thus 

giving a higher DL value, and a correspondingly higher severity of wear 

value. 

3.5.1.2.2 Analytical Ferrography 

The standard ferrograph analyser consists of a peristatic pump to 

deliver the lubricant sample, a magnet that developes a high gradient 

magnetic field near its poles, and a treated transparent substrate for 

particle deposition. The lubricant sample, diluted with a solvent to 

promote the precipitation of wear particles, is pumped across the 

transparent substrate which is mounted at a slight incline. A washing 
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and fixing cycle is then carried out to remove residual oil leaving the 

wear particles adhering to the slide as a permanent record, Fig 19. 

The adhered substrate particles are distributed according to their size 

and magnetic permeability. Large ferrous particles being deposited 

first with non-ferrous particles attached to small magnetic debris being 

deposited further down the substrate(83). The deposited debris may 

range in size from sub-micron to several hundred microns. 

Although the technique of ferrography is well established and extremely 

popular, doubts have been cast by Tribologists in two particular areas of 

ferrographic analysis: 

(1) Dilution 

(2) Debris deformation and fracture. 

Exact dilutions are required in both direct reading and analytical 

ferrography to enable satisfactory investigation of debris quantity and 

morphology. Over dilution for example gives rise to debris 'pile up' and 

overlapping at both the precipitator tube in the direct reading, and the 

entry point of the treated substrate of the analytical method, leading to 

misleading and inaccurate analysis of the results obtained. Accurate 

and consistent dilution can prove extremely difficult without extensive 

experience in ferrography, especially when considering the reduced size 

of some oil samples taken from small recirculating oil system. 

Debris deformation is confined to the analytical technique and occurs 

with the movement of the lubricant sample through the peristatic pump 
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arrangement. The small clearance allowed for debris passage in the 

pump are not big enough to allow free movement of large particles such 

as those produced in "scuffing", spalling and delamination. The 

resultant effect is mechanically deformed and fractured wear debris 

which may confuse investigators in the detection of the true wear 

mechanisms. 

A relatively new technique developed by the Tribology Centre at 

University College Swansea U. K., has helped alleviate these problems by 

the use of a larger substrate area enabling improved debris spread and a 

straight syringe oil sample deposition method. This technique is called 

the Rotary Particle Depositor (R. P. D. ) Fig. 20. The principle of the 

R. P. D. consists of depositing a fixed volume of a sample containing 

debris onto a substrate which is located within a magnetic field. The 

substrate/magnet system can be rotated by means of a variable speed 

motor such that the deposited sample fluid flows radially outward and 

the particulate content is deposited on the slide as a series of 

concentric rings. Washing of the slide is achieved using a syringe-pump 

system. 

Slide preparation is achieved by a sequence of sample deposition, 

washing and drying. A ice sample of the warm, thoroughly shaken, bulk 

fluid is deposited in a controlled manner at the centre of the slide 

which is rotating at about 70 r. p. m. On completion of sample 

deposition, a washing procedure is carried out in which solvent is 

supplied to the slide using a syringe pump system whilst the rotational 

speed is increased up to 150 r. p. m. Drying of the slide is accomplished 

by rotation at about 200 r. p. m. for a few minutes, after which the slide 

is ready for optical and/or electron microscopic exam ination(84-86). An 

additional piece of equipment called the Particle Quantifier (PQ) 
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enables a quantitative result from the debris deposited. This technique 

works on the principle of measuring the change in magnetic field 

intensity with increases or decreases in debris content. The results are 

in a digital form giving trends in wear rate with running times and thus 

can be plotted graphically Fig. 21. 

Due to the ease of operation and interpretation the technique of Rotary 

Particle Deposition (R. P. D. ) was used exclusively for this experimental 

work. 

3.5.2 Wear Surface Examination 

3.5.2.1 Optical and Scanning Electron Microscopy 

Worn surfaces obtained from the experimental work have been 

examined using optical and scanning electron microscopic techniques. 

Scanning electron microscopy was carried out using both Cambridge 

S600 and S250 instruments equipped with energy dispersive x-ray 

analysis facilities. Photography of relevant wear features were taken 

at suitable magnifications. X-ray analysis of surfaces was extensively 

used to produce qualitative information on the distribution of elements 

in surface films. In addition the technique was used to obtain a semi- 

quantative assessment of film composition at selected points. This is 

somewhat limited by the fact that the surface films are thinner than 

the depth of sample being analysed. The presence of transferred 

material was also identified in a number of cases. 
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3.5.2.2' Surface Replication 

This technique as the name suggests, allows the replication of wear 

surfaces using acetate films. The process of replication can be seen in 

Fig 22. and consists of flooding the wear surface with acetone, an 

acetate sheet is then placed on the flooded wear surface and allowed to 

soften. The softening of the film allows the contour of the wear 

surface to be reproduced on the acetate film and on drying, the film 

peeled off and inverted through 180° to give a replica of the wear 

surface, although 'back to front' Fig. 23. This can be improved by the 

use of a carbon shadowing technique, dissolving the acetate replica and 

thus forming an exact replica of the wear surface in carbon. 

3.5.2.3 Surface ProfHometry 

Surface roughness characteristics have been studied by the use of a 

Rank Taylor Hobson Talysurf. In addition, some of these surface 

roughness traces have been supplemented and subsequently compared 

with three dimensional surface plots produced by a computer aided 

talysurf machine used at C. E. G. B. Berkeley Laboratories, Glos. 

3.5.3 Weight loss Measurements 

Before testing commenced both the cam and-follower specimens were 

weighed to an accuracy of 0.0001 gm. After testing, ' weight 

measurements were repeated to show evidence of weight loss and 

expressed as percentage weight loss from the original bulk specimen. 
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3.5.4 Metallography 

3.5.4.1 Taper-Sectioning 

The production of taper-sections enables relatively thin surface layers 

to be examined in more detail than would be possible with a normal 90° 

section. 

The main stages of preparation involves the production -of a taper 

section through the surface which is first protected with epoxy resin 

and then mounted in bakelite for metallographic examination. The 

polished and etched specimen can be examined metallographically and 

then removed from the bakelite, the protective epoxy resin film is then 

also removed from the surface prior to S. E. M. examination, Fig. 24. 

Tapersections of cam and follower surfaces, both worn and as-ground 

were produced for metallographic and S. E. M. examination using this 

technique. 

3.5.5 Lubricants and Additives 

The range of lubricants used in the experimental programme consisted 

of a base stock oil and its full additive formulation. The base stock 

lubricant was a mineral base oil commercially known as Stanco 150, the 

properties of the oil and the nature of the additive package can be seen 

in Table 2. 
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3.6 Test Programme Description 

3.6.1 Objective 1 

As mentioned previously in this chapter, the introduction of more 

laboratory based test rigs to replace fired engine and dynonometer rigs 

for the evaluation and testing of lubricants and materials, requires the 

reproduction of ý failures occuring in engine test and service conditions. 

In addition, laboratory based test rigs should allow a more simplistic 

approach to understanding the fundamental mechanisms occuring during 

these wear processes. 

This series of tests therefore, have been. concerned with lubricant and 

material behaviour under well defined 'conditions with a base and 

fully formulated oil, using a range " of well established production 

materials. The materials used include case hardened steel, chilled 

white cast iron, induction hardened grey flake iron, hardened and 

tempered nodular iron and carbonitrided grey flake iron. The test 

conditions can be seen in Table 3, ' the only variable being load. The 

different loads chosen, 80 kg and 120 kg were `used to produce two 

different lubrication regimes, mixed elastohydrodynamic "thin film" and 

boundary lubrication conditions- respectively, based on results 

from pilot tests. 

3.6.2 Objective 2 

The "running in" of cam and follower surfaces has, in this investigation 

been analysed using both fully formulated and a base oil. The 

material combination used exclusively for these tests was a case 

hardened steel cam and a chilled white iron follower, thus eliminating 
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the effects of free graphite in microstructures on the 'running in' 

characteristics of these materials. This series of experimental work 

consisting of five main test procedures, the conditions of which can be 

seen in Table 4. 

i) The use of the replication technique to build up a surface 

topographical 'story' of how cam surfaces 'run in' and conform 

with time, using both fully formulated and base oils. 

At periodic time intervals during testing, an oil sample was 

withdrawn from the lubricant tank for wear debris analysis and 

the test immediately stopped. When sufficiently cooled, a 

replica of the cam surface was taken without removing the cam 

specimen or dismantling the apparatus. Once the replica of the 

cam surface was formed and dried it was removed and logged for 

analysis and the test restarted for the next predetermined test 

time interval. 

ii) The need for the use of E. P. additives in oils for the satisfactory 

'running in' of cam/follower applications is well established, yet 

not fully understood. This test procedure attempted to analyse 

and illustrate whether such systems can operate satisfactorily 

with a non-additive base oil after the successful 'running in, of a 

cam/follower combination with a fully formulated oil. The 

combination was tested for 40 hours in a fully formulated oil, 

allowing satisfactory 'running in' of the surfaces, shown by a 

stabilised friction coefficient. The test was then stopped, the 

cam specimen removed and the surface analysed using energy 
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dispersive x-ray techniques. Once the presence of surface films 

had been established associated with the use of additives such as 

Z. D. D. P., the cam specimen was returned to the test rig 

apparatus and the fully formulated oil replaced with a base 

oil and the test continued for a further 60 hours. After 

the test was completed the cam surface was again analysed to 

establish the continued existence of these surface films from the 

fully formulated oil and its correlation with friction coefficient 

and debris formation. 

iii) This test procedure was similar to ii) in that the surfaces of the 

cam/follower combination were 'run in' satisfactorily with a fully 

formulated oil, a stable coefficient of friction produced and the 

subsequent removal and analysis of the cam and the replacing of 

the fully formulated with a base oil and the recommencement of 

the test. In this test procedure however, the experiment was 

periodically stopped and both qualitative and semi-quantative x-ray 

dispersive analysis carried out on the cam and follower surfaces. 

This procedure was adopted in order to obtain information on 

additive film depletion under these stop/start boundary conditions, 

and its effect on the removal of these surface films. 

iv) The use of E. P. additives to assist the 'running in' of surfaces 

works essentially by a mechanism of asperity fracture and plastic 

deformation without the formation, particularly in ferrous 

materials of scuffing and white layer production which could cause 

catastrophic failure by a spalling mechanism. 
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In this test procedure it was thought possible that a surface 

could be artificially formed so as to eliminate the 'running in' 

process during testing. Diamond lapping proved to be the most 

satisfactory method of producing the artificially run in surface. 

The cam and follower specimens were then tested in a base oil 

to analyse the behaviour of these materials and to ascertain the 

necessity of E. P. additives in such systems when surfaces can be 

artificially formed. 

3.6.3 Objective 3 

This experimental work involved the use of new materials for 

cam follower applications. The materials were in insert form 17 x 12 x 

3 mm in size and epoxy bonded into a standard mild steel follower. The 

materials consisted of toughened zirconia, silicon carbide and sialon 

ceramics, oxyacetylene deposited nickel and cobalt rich hard facing 

alloys and a ceramic fibre reinforced aluminium silicon alloy, the 

chemical and physical properties of which can be seen in Tables 5,6 and 

7. The tests were conducted using an additive free base oil, the full 

test conditions can be seen in Table 8. 
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4. RESULTS 

4.1 INTRODUCTION 

The results accumulated during the experimental work and subsequently 

reported in this section consist of at least three experiments per 

individual test sequence. This was carried out to ensure reproducability 

under the particular test conditions, thus eliminating any spurious 

individual results that could affect the final analysis. The number of 

results accumulated during the experimental work was considerable, 

and only those most relevant are presented. 

The use of the weight loss measurement technique for the detection of 

wear rates was found to give unsatisfactory results, i. e. a lack of 

correlation with other wear diagnostic techniques. Reasons for this are 

varied, but are due mainly to the large effective surface area of the 

cam specimen, material transfer phenomena and the effect of a hot oil 

medium on epoxy resins used for the bonding of insert materials into 

follower specimen recesses. 

The wear direction on the majority of photographs used in the results 

section, both optical and scanning electron, are left to right and top to 

bottom respectively, unless otherwise stated. 

All specimens used for metallographic taper-sectioning were etched in 

2% Nital for 15 seconds unless otherwise stated. 
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4.2 Results - Objective One; Tests IA-1D 

Material combination: - Cam - Case hardened steel 

Follower - White cast iron 

Test 1A - Fully formulated oil, 80 Kg peak load. 

Test 1B - Base stock oil, 80 Kg peak load. 

Test 1C - Fully formulated oil, 120 Kg peak load. 

Test 1D - Base stock oil, 120 Kg peak load. 

4.2.1 Friction Measurements 

Coefficient of friction measurements versus test time are shown in Fig. 

25, and it can be seen that the increase in friction coefficient is 

dependent upon the severity of the test conditions. Test 1A, with a 

load of 80 kg and the fully formulated oil possesses the lowest 

coefficient of friction, levelling off after 10 hours to a typical value 

of p of around 0.16. This is in complete contrast to test 1D, with ,a 

load of 120 kg and the mineral base oil where the coefficient of friction 

rises continuously with test time up to the end of test at around 40 hours 

to a value of p of 0.42. It is interesting to note that the tests with the 

fully formulated oil all initially have a high coefficient of friction which 

appear to level off after 6 to 10 hours testing, this was considered to be 

the 'running in' process and thus illustrates, the effectiveness of 

additives in the oil, especially those of the extreme " pressure 'EP' 

type. 

4.2.2 Spectrometric Oil Analysis S. O. A. P. 

Iron wear debris p. p. m. concentrations versus test time are shown In 

Fig. 26, and again shows a similar trend to the coefficient of friction 

results. At low loads using a fully formulated oil, test 1A, a maximum 
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concentration of 10 p. p. m. was found, this being typical of a normal 

wear rate and is in complete contrast to test 1D, where concentrations 

in excess of 50 p. p. m. were apparent after only 10-12 hours testing. An 

interesting feature was found for test 1B, using the mineral base stock 

at low loads which shows a high initial wear debris concentration upto 4 

hours testing, of 30 p. p. m., followed by a gradual steady-state increase 

to the end of test, giving a maximum ferrous debris concentration after 

40 hours of around 34 p. p. m. This appears to show that the majority of wear 

damage occurred in the early stages of operation and thus can be 

construed as a 'running in' problem. Test 1C, using a high load and fully 

formulated oil shows a high but steady increase in wear debris 

concentration with time, but appears to level off after about 25 hours 

testing. 

4.2.3 Optical Examination 

Optical examination of the wear surfaces of the low load tests, tests 1A 

and 1B can be seen in Figs. 27b, 28 and 34-36. In test 1A using the fully 

formulated oil the cam surface appears to have become smoother when 

compared with the 'as ground' cam surface shown in Fig. 27A. The 

manganese sulphide inclusions are still clearly present with evidence of 

slight abrasive wear running in the wear direction. Examination of 

follower surface at the worn/unworn interface shows what appears to be 

a corrosion/etching effect on the follower surface of a 

intercarbidic nature, where the pearlitic/bainitic matrix has been 

attacked. 

The cam surface of test 1B using the mineral base stock oil can be seen 

in Figs. 34 and 35. After initial examination, the surface was etched in 

2% nital for 10 seconds to observe any etch-resistant phases. The 
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general appearance of the, cam specimen . shows a typically 'scuffed' 

surface ie. extensive plastic deformation and successive layers of 

delaminated material. Fig. 34', -shows small white etch 

resistant areas, which were considered unlikely to be 'white layer'. 

Fig. 35 shows the general morphology of white layered areas, which are 

banded following the circumference of the cam specimen, stopping 

only at inclusions. These - small rounded etch resistant phase were 

considered to be due to carbide fracture. from the chilled white iron 

follower causing transfer and embeddment into the cam surface. 

Examination of the follower surface, however, shows no immediate signs 

of carbide detachment. Fig. 36 shows the worn/unworn interface of the 

follower wear surface, with only evidence of slight staining of the wear 

surface caused by oxidation products from the oil during the test. 
.., 

Optical examination of the wear surfaces of one of the high load tests, 

1C can be seen in Figs. 44 and 45. The cam wear surface shows no 

obvious severe wear damage, shown again by the ease of which the 

manganese sulphide inclusions can be seen, running at 90°'to the wear 

direction. What is evident however, is the chemical attack of the cam 

surface by the additives present in the oil, Fig. 44. Examination of the 

follower surface shows heavy pitting, with the detachment. of -large 

spalled areas. The remaining adjacent material is extensively 'craze 

cracked' to form small islands of material on the surface, and again the 

microstructure of the white cast iron is clearly visible, due to additive 

etching effect, Fig. 45. Optical examination of wear surfaces. in Test 

1D, showed extensive damage and staining,, to such an extent that no 

clear wear features could be readily identified. 
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4.2.4 Scanning Electron Microscopic Examination (S. E. M. ) 

S. E. M. examination of the wear surfaces of the low load tests, test 1A 

and. 113 can be seen in Figs 29,30 and 37,38. In test 1A both the cam 

and follower surfaces show the same wear 'damage' as optical 

examination. The cam wear surface, Fig. 29 shows. a smoother surface 

than the original 'as ground' surface as shown in Fig. 155A, with 

manganese sulphide inclusions clearly visible. The follower surface at 

the worn/unworn interface again shows the corrosive nature of the 

additive package, where intercarbidic attack of matrix microstructure 

is clearly seen leaving carbide in relief (Fig. 30). In test 1B, 

examination of the cam surface shows the heavily plastically deformed 

features typically associated with a scuffed surface (Fig. 37). The 

follower surface however, shows no evidence of any extensive wear 

damage, Fig. 38, which confirms the information gathered from optical 

examination. 

S. E. M. examination of the high load tests, test 1C and 1D can be seen in 

Figs. 46,47 and 51,52. In Test 1C, the cam wear surface shows 

isolated areas of plastic, deformation, similar to that found in scuffing 

(Fig. 46). The follower wear surface, Fig. 
, 
47, shows the extent of the 

surface pitting and the adjacent 'unspalled' areas with associated 

chemical attack of the matrix microstructure leaving carbide networks 

in relief. S. E. M. examination of the wear surfaces of Test 1D can be 

seen in Figs. 51 and 52. The cam wear surface shows extensive plastic 

deformation and severe delamination, typical of a scuffed surface (Fig. 

51). The follower wear surface however, shows no sign of the 'pitting' 

wear shown in test 1C, Fig. 47, instead areas of what appears to 

be plastic deformation of the follower surface can be seen in Fig. 52. 

This is not frequently encountered with white cast irons due to the high 
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carbide content and their low ductility and was thus considered to be 

due to material transfer and 'smearing' from the cam surface. 

4.2.5 Metallographic Examination 

Taper microsections taken through both cam and follower specimens in 

the test series 1A to 1D can be seen in Figs. 31,32,39-42,48,49,53 

and 54. Under low load conditions with a fully formulated oil, test 1A, 

the cam specimen showed no deliterious surface/subsurface effects 

(Fig. 31). This is also the case with the follower specimen even though 

under optical examination the chemical attack of the surface appeared 

to be severe enough, it was not resolvable by standard optical 

techniques (Fig. 32). The cam specimen from test 1B, using low load 

conditions and the mineral base oil, however, showed different effects. 

Fig. 39, shows considerable white-layer production across the whole 

surface of the cam, with some areas of surface spalling and the band of 

tempered material progressing and gradually fading into the parent 

microstructure. Higher magnifications of the surface, Fig. 40, again 

shows this white layer and the associated carbide particles in the 

surface, and by focussing further into the epoxy resin surface in the same 

position, more areas of transferred carbide can be seen, (Fig. 41). The 

follower specimen showed no surface/subsurface damage (Fig. 42). 

Under high load conditions with a fully formulated oil, test 1C, the 

cam specimen showed only isolated areas of white layer, 

(Fig. 48) the darker area in the sub surface being the higher carbon rich 

case. Examination of the, follower specimen, Fig. 49, shows the extent 

of the surface/subsurface cracking. Cracking occurs throughout the 

section, the point of initiation being unkown, whether surface or 

subsurface initiated. Closer examination shows the cracking and 
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fracture to be of an inter-carbidic nature, with evidence also of some 

corrosive attack just below, the surface. Test. 1D, using a mineral base 

oil shows extensive damage to both the cam and follower specimens. 

The cam specimen, Fig. 53 shows again that without the presence of 

additives, scuffing and extensive white layer production occurs. This is 

again reflected by the examination of the follower, specimen, which 

shows surface roughening. and fracture and also the 
. 
transfer and 

subsequent 'white layer' transformation of material from the cam (Fig. 

54). 

4.2.6 Wear Debris Examination 
- 

S. E. M. examination of the wear debris from the tests 1A to 1D can be 

seen in Figs. 33,43,50 and 55. The size, morphology and concentration 

of the debris again shows a similar trend to the coefficient of friction 

and spectrometric oil analysis results ie. the increase and concentration 

of debris is related to the severity of the test. The morphology and 

sizes range, from small- platelet type wear debris of typical size 2-3 

microns from test 1A, low load and fully formulated oil, Fig. 33, to 

large 'chunky' type debris of typical size 25-30 microns from test 1D, 

high load and the mineral base stock oil (Fig. 55). 

4.3 Results - Objective One, Tests 1E-1H 

Material combination - Cam - Grey flake iron, induction hardened. 

Follower - Case hardened steel. 

Test 1E -. Fully formulated oil, 80 Kg peak load. 

Test 1F - Base stock oil, 80 Kg peak load. 

Test 1G - Fully formulated oil, 120 Kg peak load. 

Test 1H - Base stock oil, 120 Kg peak load. 
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4.3.1 Friction Measurements 

Coefficient of friction measurements versus test time are shown in Fig. 

56 and it appears that the final results for the coefficients of friction 

are independent of the severity of the test conditions. The 

corresponding values however are an order of magnitude lower than for 

tests 1A to 1D and appear to be due to the presence of free graphite in 

the cam microstructure acting as an addition to the E. P. additive. This 

is confirmed by the form of the friction curves under low load 

conditions, test 1E and 1F. Both curves exhibit the same high initial 

coefficient of friction followed by levelling off to lower steady state 

values of p of 0.07 and 0.17 respectively. Tests under high load 

conditions, test 1G and 1H show a gradually increasing coefficient of 

friction for both tests up to '10' hours, then gradually decreasing to 

values of 0.1 and 0.15 respectively, an important point being that both 

of these values are below that of Test 1F under low load conditions. 

4.3.2 Spectrometric Oil Analysis S. O. A. P. 

Iron wear debris p. p. m. concentration versus test time are shown in Fig. 

57, the results showing no correlation with coefficient of friction values 

p. The curves produced, appear to follow the same trends as those 

obtained from test 1A to test 1B, the increases in debris concentration 

are dependent upon the increase in test severity, this ranges from 8 

p. p. m. iron concentration after 40 hours for test 1E to 50 p. p. m. iron 

concentration 'off scale' after 9 hours for test 1H. 

4.3.3 Optical Examination 

Optical examination of the wear surface of the low load tests, tests 1E 

and 1F can be seen in Figs. 58,59 and 65-67. In test 1E using the fully 

formulated oil the cam surface again appears to have become smoother 
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than the original ground surface, Fig. 58, clearly visible on the cam 

surface are the graphite flakes present in the microstructures and areas 

of slight abrasive, wear. The follower 
-surface 

has also become 

smoother, Fig. 59, although some chemical 
, 
attack has occurred at the 

grain boundaries.. Optical examination of the cam surface of Test IF 

can be seen in Figs. 65 and 66, and shows a dark colouration covering 

the whole cam surface. It is important to note that this smearing 

effect only occurred with materials having free graphite in the 

microstructure, and therefore provided circumstantial evidence linking 

this effect to graphite smearing. Confirmation of this came on removal 

of the specimen for microscopic examination when the smeared coating 

was partly removed by passing a finger across the surface, the 

remainder of the coating removed by cleaning with a solvent 

immediately prior to S. E. M. examination. Also evident are areas of 

phosphide eutectic present in the microstructure and shown by small 

isolated white areas. The case hardened steel follower of test 1F can be 

seen in Fig. 67, and again shows graphite smearing over the surface, 

transferred from the free graphite present in. the cam microstructure. 

Visual examination of the cam wear surfaces from the high load tests, 

tests 1G and 1H 
-showed, 

extensive wear damage, removal of the 

induction hardened layer and the 'machining' away of the effective cam 

profile. The follower surface also showed extensive wear damage with 

deep recesses evident in the surfaces. The combination of the two 

forms of wear damage effectively resulted in two samples not acting as 

a cam and follower but a cylinder on a static block, hence the 

comparatively 'low' friction, coefficient, found for test 1G and 1H when 

compared with, test 1F, Fig. 56. The extent of the wear damage on 

closer examination was so great as to become unresolvable using 

80. 



standard optical techniques. 
ý_ 

4.3.4 Scanning Electron Microscopic Examination (S. E. M. ) 

S. E. M. examination of the wear surfaces of the low load tests, tests 1E 

and 1F can be seen in Figs. 60,61,68 and 69. S. E. M. examination of the 

wear surfaces of test 1E, using the fully formulated oil shows the same 
-'S, " 

features as those evident from optical examination, the graphite 

structure and abrasive wear of the cam surface, Fig. 60, and the grain 

boundaries, caused by the chemical attack of additives on the follower 

surfaces (Fig. 61). Examination of the wear surfaces from Test 1F, using 

the mineral base oil can be seen in Figs. 68 and 69. Both the cam and 

follower surfaces show evidence of slight abrasive wear with the 

absence of any significant plastic deformation. 

S. E. M. examination of the wear surface of the high load tests, test 1G 

and 1H can be seen in Figs. 73,74,78 and 79. Examination of the wear 

surfaces from test 1G, using the fully formulated oil shows extensive 

deformation of both the cam and follower surfaces (Figs. 73 and 74). 

Closer examination of the cam wear surface, Fig. 73, shows what 

appears to be pitting of the surface, the bottom of individual pits having 

morphologies similar to the matrixes of the graphite networks present 

in the microstructure. Examination of the wear surfaces of test 1H, 

using the mineral base oil shows extensive plastic deformation and 

what appears to be material transfer from both cam and follower 

surfaces (Fig. 78 and 79). 

4.3.5 Metallographic Examination 

Taper microsections taken through both cam and follower specimens in 

the test series 1E to 1H can be seen in Figs. 62,63,70,71,75,76,80 

and 81. Under low load conditions using both fully formulated and 
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mineral base oil, tests 1E and 1F, no sub-surface damage or 'white layer' 

was present in either the cam or follower specimen samples, due to 

presence of free graphite in the cam microstructure, Figs. 62,63,70 and 

71. 

Under high load conditions with the fully formulated oil, test 1G, an 

important feature is the lack of any extensive white-layer production, 

although there is considerable wear damage. Examination of the cam 

specimen, Fig. 75, shows extensive material removal, the size and shape 

of the particles becoming detached from the surface are dependent 

upon the intergraphitic spacing of the microstructure. Examination of 

the follower surface shows considerable material transfer from the cam 

nose effectively building up the thickness of the surface with 

extensively transformed and plastically deformed material. Test 1H, 

using the mineral base oil shows, on the cam surface, evidence of 

extensive white layer running the whole length of the contact width, 

Fig. 80. The follower surface, Fig. 81, shows considerable sub-surface 

damage, running up to 2mm below the surface. This damage consists of 

both white layer and plastically deformed material, It is 

difficult to detect whether this material has been transferred from the 

cam, however, information gathered from test 1G, Fig. 76, concerning 

the follower specimen would suggest that this material is in fact, 

transferred and subsequently transformed material from the grey cast 
iron cam after the induction hardened layer had been removed. 

4.3.6 Wear Debris Examination 

S. E. M. examination of wear debris from the tests 1E-1H can be seen in 

Figs. 64,72,77 and 82. The wear debris from tests carried out under 

low load conditions, tests 1E and iF, show sizes in both cases of Sim 

max, Figs. 64 and 72, this being typical of steady state normal wear 

conditions. Tests 1G and 1H under high load conditions however, show 
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conflicting results to those normally expected. The general debris size 

from test 1G, using the fully formulated oil, Fig. 77, is in fact larger, 

with a chunkier morphology than the debris from test 1H, Fig. 82, using 

the mineral base oil. 

4.4 Results - Objective One, Test 11-IL 

Material combination - Cam - Grey flake iron, carbonitrided. 

Follower - Nodular cast iron, hardened and 

tempered. 

Test 1I - Fully formulated oil, 80 Kg peak load. 

Test 1J - Base stock oil, 80 Kg peak load. 

Test 1K - ''Fully formulated oil, 120 Kg peak load. 

Test 1L - Base stock oil, 120 Kg peak load. 

4.4.1 Friction Measurements 

Coefficient of friction measurements versus test time are shown in 

Fig. 83, and it can again be seen that the increase in friction 

coefficient is dependent upon the severity of the test conditions. 

Friction coefficients after 40 hours testing range from 0.1 for Test 11 to 

0.45 for test I. L. It is important to note the 'running in' effects for, 

tests 11 to 1K i. e. initially high but decreasing to lower -steady state 

values. This shows in the case of tests 11 and 1K, the use of E. P. 

additive formulations in fully formulated oil to assist 'running in', but 

also in the case of test 1J, low load and a mineral base oil the possible 

effects of free graphite in the microstructure which appears to assist 

'running in'. Test 1L, however shows a steady increase in the 

coefficient of friction to the end of the test at 40 hours to a value of p 

of 0.45. 
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4.4.2 Spectrometric Oil Anaylsis S. O. A. P. 

Iron wear debris p. p. m. concentration versus test time are shown in Fig. 

84, and shows a similar trend to the coefficient of friction results. At 

low loads using a fully formulated oil, test 119 a maximum concentration 

of 13 p. p. m. iron concentration was found, being typical of a normal 

wear 'rate is in complete contrast to test 1L where concentrations in 

excess of 50 p. p. m. were apparent after only 15 hours testing. Tests 

using the mineral base oil at low loads, test 1J and the fully formulated 

oil at high loads, test 1K gave iron concentrations after 40 hours of 16 

and 41 p. p. m. respectively. 

4.4.3 Optical Examination 

Optical examination of the camkwear surfaces'of the low load tests, 

tests 1I and 1J can be seen in Figs. 85 and 91. In test 11 using the fully 

formulated oil, the cam surface has become smoother with the graphite 

structure clearly visible. Also apparent is evidence of slight abrasive 

wear, and etched areas caused by additives in the oil. 

The cam surface of test 1J using the" mineral base oil shows the 

graphite structure of the, cast iron, however, there are areas of what 

appear to be spalling or pitting of the cam surface characterised by the 

dark areas randomly distributed across the surface (Fig. 91). 

Optical examination of the {cam wear surfaces of the high load tests, 

tests 1K and 1L can be seen in Figs. 97 -and 103. Using the fully 

formulated oil, test 1K, the cam surface again clearly shows the 

graphite network and the chemical attack of the surface by the additive 

formulation, (Fig. 97). The extent of this attack however is of a more 

severe nature than the corresponding test using a low load, test 11, 

(Fig. 85). Optical examination of the cam surface of test 1L, using the 

mineral base oil shows severe wear damage of the whole cam surface. 

Extensive plastic deformation is clearly evident with no microstructural 
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features visible. Cracks running at 90° to the wear direction can also 

be seen (Fig. 103). 

4.4.4. Scanning Electron Microscopic Examination (S. E. M. ) 

S. E. M. examination of the wear surfaces of the low loads tests, test 11 

and 1J can be seen in Figs. 86,87,92 and 93. Examination of the cam 

wear surface of test 11, using the fully formulated oil shows again the 

graphite network apparent across the whole surface (Fig. 86). There is 

evident of slight plastic deformation, but this can be attributed to the 

initial grinding operation during the production of the cam specimens. 

Examination of the corresponding follower surface, Fig. 87, shows 

smoothing of the surface, with the graphite nodules, present in the 

microstructure, clearly evident. Close examination shows the removal 

of some of the graphite from the nodule cavities shown by smearing of 

the surface by the graphite. Examination of the cam surface of test 

1J, using the mineral base oil, shows the graphite network present on 

the surface and a series of pits, the size and initial failure of which 

appears to be controlled by the spacing of these graphite networks, 

(Fig. 92). Examination of the corresponding follower surface, Fig. 93, 

again shows graphite smearing and the presence of the nodule cavities. 

It can be seen however, that plastic deformation has in fact occurred 

around these cavities when compared to the follower surface of test 11, 

Fig. 87, giving some idea of the plastic deformation over the whole 

wear surface not shown by the affect of these surface discontinuities. 

Examination of the wear surfaces of the high load tests, test 1K and 

1L can be seen in Figs, 98,99,104 and 105. Examination of the cam 

surface of test 1K, using the fully formulated oil, shows the general 
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smoothing of the surface with the graphite structure clearly present, 

Fig. 98. Also evident are the surface films formed by additive 

interactions, shown by the grey areas on the wear surface. 

Examination of the follower surface from test 1K, again shows the 

general smoothing of the cam surface. The graphite present in the 

nodule cavities has been totally extracted leaving the empty 

cavities and it can be seen under closer examination, the dendritic 

nature of the graphite nodule clearly evident at the bottom of these 

cavities. Examination of both the cam and follower wear surfaces, 

using the mineral base oil, test 1L, show extensive plastic deformation, 

delamination and general severe wear damage associated with scuffed 

surfaces. 

4.4.5 Metallographic Examination 

Taper microsections taken through both cam and follower specimens in 

the test series 11 to 1L can be seen in Figs. 88,89,94,95,100,101,106 

and 107. Examination of the cam and follower wear surfaces of the low 

load tests, tests 1I and 1J using the fully formulated and mineral base 

oils showed no significant surface or subsurface wear damage (Figs. 88, 

89,94 and 95). This lack of damage is also evident in test 1K, at high 

loads and the fully formulated oil in both the cam and follower 

specimens, Figs. 100 and 101. Examination of the surfaces from test 

1L, using the mineral base oil however, shows extensive surface and 

subsurface wear damage and white layer production, running the whole 

width of the contacting surfaces, (Figs. 106 and 107). 

4.4.6 Wear Debris Examination 

S. E. M. examination of the wear debris from test 11 to 1L can be seen in 

Figs. 90,96,102 and 108. The size and morphology of the wear debris 
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again appears to be dependent. upon the severity of the test conditions. 

The size and morphology ranges, start with the small platelet type 

debris, 2-3 microns in size from test 11, to the large, angular debris, 20- 

25 microns in size from test 1K. 

4.5 Surface Roughness Measurements 

The use of, surface profilometry as a wear diagnostic 'tool' is very well 

established, one of the most popular techniques and machine used is the 

Rank Taylor Hobson Talysurf which supplies a range of surface 

information in a two dimensional array. A relatively new technique 

has been developed however, which allows a three-dimensional surface 

topographical 'map' of a particular surface produced by the interfacing 

of a microprocessor system controlling a multi-trace talysurf needle 

movement. 

This area of the results section is devoted to the comparison of these 

two techniques, and their relative advantages and disadvantages. With 

the range of wear failures and phenomena produced during the test 

series 1A to 1L, wear surfaces were selected and the surfaces analysed 

using both techniques, these surfaces were as follows: - 

Characterization of Test No. Figure No. 

Surface 

a) 'As Ground' 109 

b) Scuffing Wear Test 1B (Base Oil, 80Kg Load) 110 

c) Pitting Wear Test 1C (F. F. Oil, 120Kg Load) 111 

d) Severe Wear Test 1H (Base Oil, 120Kg Load) 112, 

e) Polishing Wear Test 1A (F. F. Oil, 80Kg Load) 113 
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From the results obtained the relative advantages and disadvantages of 

both techniques are clearly evident. For instance, it can be seen that 

the use of a single talysurf trace does not allow the general, overall 

morphology and distribution of wear features to be clearly observed. An 

example of this is shown by reference to Fig. 109 of the 'as ground' 

surface. Using the '3D' talysurf technique the undulations in the 

surface, running at 90° to the wear direction and produced by the 

grinding operation can be clearly seen. This is caused by the abrasive 

ploughing nature of the grinding process and it can be seen that 

phenomena is not shown by the use of the conventional single talysurf 

trace. This is further highlighted with reference to the severe wear 

surface shown in Fig. 112. Using the 30 multi-trace technique the 

surface damage can be seen to be almost entirely of an abrasive nature, 

shown again by this ploughing effect giving an almost identical surface 

morphology along the wear direction. However, these wear features are 

in complete contrast to the pitting failure shown in Fig. 111, where the 

pitting is randomly distributed and orientated across the surface of the 

white cast iron specimen. The use of the 3D multi-trace technique 

obscures and hinders the calculation of the depth and the form of 

individual pits and thus relies on the conventional single talysurf trace 

to give us this additional information, and this is true for all of the 

surfaces analysed using both techniques. 

4.6 Results - Objective Two, Tests 2A and 2B 

4.6.1 Introduction 

Material combination - Cam - Case hardened steel 

Follower- White cast iron 

Test 2A - Fully formulated oil, 80 Kg peak load. 

Test 2B - Base stock oil, 80 Kg peak load. 

as. 



The tests lasted for a duration of 80 hours ° in total. At ' periodic 

intervals oil samples were taken, and the test was immediately stopped 

and allowed to cool down. The cam surface 'was then cleaned and 

acetate replicas taken of the surface to monitor the change in surface 

topography with test time. 

4.6.2 Friction Measurements 

Coefficient of friction measurements versus test time are shown in Fig. 

114, and it can be seen that for test 2A, using the fully formulated oil 

after an initial high coefficient of friction p of 0.2, friction 

gradually decreased to a lower steady value of around 0.11 after 20 

hours testing, 'and remained at this level 'to 'the end of the test at 80 

hours. Test 2B; using the mineral base oil however, showed completely 

different -results. After an initial large increase in the friction 

coefficient p, the friction continued to rise to a` value of 0.37 after 80 

hours. ' 

4.6.3 Spectrometric Oil Analysis (S. O. A. P. ) 

Iron wear debris p. p. m. concentrations versus 'test time can be seen in 

Fig. 115, and show a gradual increase in wear debris concentration for 

test 2A from 8 p. p. m. after°4 hours to `a' total of 11, p. p. m. after 

80 hours testing, this being typical of a low or 'normal' wear rate. ` Test 

2B using the mineral base oil however shows a very high initial In wear 

debris concentration, of around 30 p. p. m. after 5 `hours, suggesting 

a high wear rate in the early stages of testing. ' This large increase in 

wear debris concentration tends to level off after 15 hours from there 

it increases gradually to a total of around 42 p. p. m. ' after 80 hours. 
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4.6.4 Semi-Quantitative Wear Debris Analysis (P. Q. Index) 

The graph of wear particle index (PQ) versus test time can be seen in 

Fig. 116, and shows a similar trend to the curves obtained from 

spectrometric oil analysis. Test 2A shows a gradual increase in wear 

debris concentration with test-time, giving a maximum index valueof around 

20 after 80 hours of test. Test 2B however, again shows a large initial 

increase to around 200 after 10-12 hours, the increase then levelling off 

to around 220 after 80 hours again indicating a high wear rate 

during the early stages of testing. 

4.6.5 Surface Replication 

Cam surface replicas of both tests, test 2A and 2B with time can be 

seen in Figs. 117 to 121. Test 2A using the fully formulated oil, shows 

the cam surface becoming gradually smoother with test time. After 30 

minutes it can be seen that slight abrasive wear starts to appear, Fig. 

117e, typical of normal wear and it is apparent that 

after 2 hours, any reminants of the as ground surface had disappeared 

(Fig. 118e). The, surface became increasingly smoother until at 70 hours 

a surface not dissimilar to a metallographically prepared surface had 

been produced (Fig. 
, 
121e). This is in complete contrast to test, 2B, using 

the, mineral base oil where after only 15 minutes extensive surface 

damage had occurred., Closer examination of the replica after 15 

minutes testing, Fig. 117d, shows actual wear debris attached to the 

replica itself, thus illustrating the amount of wear debris being produced 

during the early stages of testing. It can then be seen that the surface 

becomes progressively damaged with test time, with the depth of wear 

damage increasing,, characterized by the, darker, contrast of the wear 

features in the photographs, and this is illustrated by comparing for instance 

Fig. 117d, after 15 minutes with Fig. 121, at 70 hours. 
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4.6.6 Optical Examination 

Examination of the cam surface of test 2A, using the fully formulated 

oil, showed the surface to have become increasingly smoother, similar 

in fact to a surface that had become metallographically polished. A 

standard unworn cam was then prepared metallographically to a 1µm 

diamond finish for comparison with the cam of test 2A, and showed in 

the 'as polished' conditions, considerable similarities between the two. 

Both surfaces were subsequently etched in 2% Nital for 10 seconds, the 

'as polished' cam surface can be seen in in Fig. 122, clearly showing the 

martensitic microstructure. The cam surface from test 2A after 

subsequent etching is not dissimilar and a martensitic transformed type 

of structure can be seen, Fig. 123. although it is not as clear as Fig. 

122. 

4.6.7 Wear Debris Examination 

S. E. M. examination of the wear debris from both tests and from 

different times during testing can be seen in Fig. 124. Wear debris 

obtained from the tests after 5 minutes duration can be seen in Figs. 

124a and 124b. Debris from the fully formulated oil, test 2a, Fig. 124a, 

show thin platelets in the size region of 5 microns, with some evidence 

of spheroidal debris commonly found during 'running in'. This is in 

complete constrast to the wear debris from the mineral base oil, test 

2B, Fig. 124b, after 15 minutes, where platelet debris sizes ranging 

up to 40 microns, illustrating the initial severe wear damage during the 

early stages of testing. The size of wear debris from test 2A after 50 

hours, has in fact decreased to an average platelet size of around 2-3 

microns, Fig. 124c, typical of a low wear rate. It can be seen however, 

that the wear debris from test 2B after 50 hours has become more 

angular and 'chunky' in morphology with particles of up to 50 microns In 
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size clearly evident, Fig. 124d, suggesting, a spalling type of wear 

mechanism. 

4.6.8 Metallographic Examination 

Taper microsections taken through the cam surfaces of both test 2A 

and 2B, can be seen in Fig. 125. A section taken through test 2A, using 

the fully formulated oil after 75 hours shows no surface or sub-surface 

damage, the microstructure is unaffected. A cam tapersection taken 

through test 2B, using the mineral base oil, after only 1 hour testing 

shows considerable white layer formation and the associated tempered 

layer. Fig. 125b, also shows evidence of cracking of this white layer, 

which leads to the spalling of particles in excess of 50 microns, after 75 

hours as shown in Fig. 125c. These observations confirm the wear 

debris results. 

4.7 Results - Objective Two, Tests 2C to 2E 

4.7.1 Introduction 

Material combination - Cam - Case hardened steel. 

Follower - White cast iron. 

Test 2C - 0-40 Hrs, fully formulated oil, 40-80 Hrs, Base stock 

oil. 

Test 2D - 0-40 Hrs, fully formulated oil, 40-80 Hrs, Base stock 

oil. 

Test 2E - 0-80 Hrs, Base stock oil. 

Test 2C The test lasted 80 hrs in total and comprised of running the 

test for 40 hrs in a fully formulated oil, stopping the test, 

draining the oil and replacing with the mineral base oil for the 

duration of test. 
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Test 2D, The test lasted 80 hrs in total and comprised of running the 

test 40 hrs in a fully formulated oil, stopping the test, 

draining the draining the oil and analysing the cam surface 

by EDAX X-Ray dispersive' techniques for the presence of 

additive-film formation on the cam surface. The ' fully 

formulated oil was then replaced with the mineral base oil 

and the test recommenced. At periodic intervals the test 

was stopped, and EDAX analysis carried out on the cam 

surface to observe any depletion ° in the surface films, with 

test time. 

Test 2E The test lasted 80 hrs in total and comprised of artificially 

'running in' both the cam and follower specimen by diamond 

lapping the surface to a 1µm finish, and testing in a mineral 

base oil. 

4.7.2 Results, Test 2C 

4.7.2.1 Friction Measurements 

Coefficient of friction measurements versus test time are shown in Fig. 

126. In test 2C, the high initial friction coefficient is again present, 

which is typical of the use of fully formulated oils and 'decreases to a 

lower steady state value of around 0.1, up to 40 hours. 'After replacing 

the fully formulated with the mineral base oil the friction increases 

very slightly for the remaining 40 hours to' a maximum p value of 

around 0.13. 

4.7.2.2 Spectrometric Oil Analysis S. O. A. P. 

Iron wear debris p. p. m. concentrations versus test time can be seen in 
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Fig. 127, and shows a wear debris concentration of 10 p. p. m. after 2 

hours, reaching around 11 p. p. m. at 40 hours when the oil was changed. 

From there the concentration increases from 1 to 3 p. p. m. after 10 

hours testing in the mineral base oil (50 hours in total) and rises to a 

maximum of around 4 p. p. m. after 80 hours testing, indicating no 

significant wear damage occurring after the substitution of the mineral 

base oil. 

4.7.2.3 Semi-Quantitative Wear Debris Analysis (P. Q. Index) 

The graph of wear particle index (PQ), versus test time can be seen in 

Fig. 128, and shows for test 2C, the same general trend as the 

spectrometric oil analysis. A gradual increase from an index of around 

12 at 2 hours to an index of 15 at 40 hours testing. The fall and then 

gradual increase in index number can be seen between 40 and 50 hours 

testing from 2 to 10 PQ index rising to a maximum index number of 

around 11 after 80 hours testing. 

4.7.2.4 Scanning Electron and X-Ray Dispersive Surface Analysis (EDAX) 

S. E. M. examination of the cam and follower surfaces can be seen in 

Figs. 129a and 129b. Both wear surfaces show no appreciable wear damage, 

with the cam surface becoming smoother than the original ground finish 

(Fig. 144). The follower surface shows some signs of the chemical etch 

attack from the fully formulated oil, Fig. 145, and in both samples 

surface films are still evident even after solvent cleaning. EDAX 

analysis of the cam surface confirms the presence of these films. Fig. 

129c shows x-ray energy spectra for phosphorus, sulphur, zinc and 

calcium, these elements being present in zinc dialkyldithiophosphate 

(Z. D. D. P), the extreme pressure additive, and calcium sulphonate the 

dispersant. 
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4.7.2.5 Metallographic Examination 

Taper-microsections of both the cam and follower surfaces from Test 

2C can be seen in Figs 130 and 131. These surfaces show no evidence of 

any surface/subsurface damage or in the case of the cam surface, white 

layer formation. 

4.7.2.6 Wear Debris Examination 

S. E. M. examination of the 
. wear debris from 

, test 2C can be seen in 

Fig. 132. The debris has a platelet morphology in the size range 3-10 

microns. 

4.7.3 Results, Test 2D 

4.7.3.1 Friction Measurements 

Coefficient of friction measurements versus test time are shown In Fig. 

126. Test 2D shows the same general trend as test 2C, a high Initial 

coefficient of friction, levelling off to a lower steady state value of p of 

0.12. This value increases after the addition of the mineral base oil at 

40 hours to a maximum value of 0.14 µ after 80 hours testing. 

4.7.3.2 Spectrometric Oil Analysis S. O. A. P. 

Iron_ wear debris p. p. m. concentration versus test time can be seen in 

Fig. 127, and again shows, a similar trend to test 2C. After 2 hours 

the iron concentration is 12 p. p. m, slowly increasing to around 

14 p. p. m. after 40 hours. After the addition of the mineral base oil and 

the stopping of the test after, 50,60 and 70 hours for cam surface 

elemental 'analysis a decrease and increase can be seen, at 

each of the points of test stoppage and is probably, caused by the 

lubricant not mixing and or the gravitational movement of the wear debris 

through the oil. , 
Extrapolation of the curve further would show that the 

wear debris content increases gradually and appears to be independent of 

the form or rheology of the lubricant, and reaches a maximum of 

around 16 p. p. m. after 80 hours. 
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4.7.3.3 Semi-Quantitative Wear Debris Analysis (P. Q. Index) 

The graph of wear particle index (PQ) versus test time can be seen in 

Fig. 128, and again shows the same trend as spectrometric oil analysis 

with a gradual increase with test time and the decrease or increase 

effects due to test stoppage. After an initial increase in the wear 

particle index -to around 18 after 2 hours the increase then 

becomes less pronounced, reaching around 20 after 40 hours and a 

maximum of 30 after 80 hours. 

4.7.3.4 Scanning Electron Microscopic Examination (S. E. M. ) 

S. E. M. examination of the follower surface after 40,50,60 and 70 hours 

testing can be seen in Figs. 133,135,137, and . 
139 

,, respectively. 

Immediately prior to surface examination, and analysis, the follower 

specimen was degreased by immersion in a petroleum ether solution for 

10 seconds, thus removing the oil and leaving any additive films present 

on the surface. Examination of all the surfaces shows the general 

chemical attack caused by the additives present in the fully formulated 

oil. Also present on all of the follower surfaces is the presence of 

additive film formation shown by the dark colouration of the surface. 

Closer examination of the surfaces show these additive films to be less 

apparent with test time, suggesting the gradual removal of these films 

with test time. - 

4.7.3.5 X-Ray Dispersive Surface Analysis (EDAX) 

The EDAX energy spectra for the follower surfaces after 40,50,60 and 

70 hours can be seen in Figs. 134,138 and 140 respectively. The scan 

for each follower surface shows the characteristic spectra for additive 

films ie. the presence of elements such as phosphorus, sulphur, zinc and 

calcium.... Closer examination shows the qualitative decrease in A he 

amount of these elements present on the surface with test time, and is 
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confirmed by the semi-quantitative analysis shown in Tables 9 to 12. 

This shows' generally a decrease in elements such as P, S, Zn and Ca 

with a corresponding increase in Fe content, although the accuracy of EDAX 

analysis can be a the subject of some debate due to the effect of variables 

affecting operation. 

4.7.3.6 Metallographic Examination 'r 

The micro-sections of both the cam and follower surfaces from Test 2D 

can be seen-in Figs 141 and 142. Although the follower surface, Fig. 

142, shows no apparent surface/subsurface wear damage, the cam 

surface shows evidence of white layer formation, (Fig. 141). This is only 

slight however, with a very thin band of associated tempered material. 

The white layer was present in only isolated areas on the cam surface 

with no evidence of cracking or spalling of this white layer. 

4.7.3.7 Wear Debris Examination 

S. E. M. examination of the wear debris shows small platelets, 3-4 

microns in size, Fig. 143. 

4.7.4 Results, Test 2E 

4.7.4.1 Friction Measurements 

Coefficient of friction measurements versus test time can be seen in 

Fig. 126, and shows a gradual increase in the coefficient of friction to 

40 hours testing to a value of around 0.18v. After 40 hours and up 

to the end of test the friction coefficient rises slowly to a maximum of 

0.19 at 80 hours. 

4.7.4.2 Spectrometric Oil Analysis S. O. A. P. 

Iron wear debris p. p. m. concentration versus test time can be seen in 
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Fig. 127, and shows "a gradual increase, high initially, to a maximum of 

25 p. p. m. after 80 hours of tests. 

4.7.4.3 Semi-Quantitative Wear Debris Analysis (P. Q. Index) 

The graph of wear particle index (PQ) versus test time can be seen in 

Fig. 128, and shows the same general trend as the results from 

spectrometric oil analysis, a high initial increase up to an index number 

of 70 after 15 hours, then gradually increasing up to a maximum index 

number of 80 after 80 hours of tests. 

4.7.4.4 Scanning Electron and X-Ray Dispersive Surface Analysis (EDAX) 

S. E. M. examination of the cam and follower surfaces can be seen 

in Figs. 144 and 145 respectively. Wear surfaces show no appreciable 

wear damage, the' polished nature of the artifically formed surface is 

still clearly evident. EDAX analysis of the cam surface shows no 

evidence of any film formation, 'the scan showing energy spectra for 

iron, manganese and sulphur only. 

4.7.4.5 Metallographic Examination 

Taper microsections taken through - the cam and follower 

surfaces can be seen' in Figs. '147 and 148 respectively, and show no 

signs of surface/subsurface damage or white layer formation. 

4.7.4.6 Wear Debris Examination 

S. E. M. examination of the wear debris from test 2E can be seen in Fig. 

149, and shows debris in a platelet form In the size range 2-10 

microns. 
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4.8 Results - Objective Three, Test 3A-3D 

Material combination - Cam - Case hardened steel 

Follower - Test 3A - White cast iron 

Test 3B - Toughened zirconia 

Test 3C - Silicon carbide 

Test 3D - Sialon 

Test 3A - Base stock oil, 80 Kg, peak load. 

Test 3B - Base stock oil, 80 Kg, peak load. 

Test 3C - Base stock oil, 80 Kg, peak load. 

Test 3D - Base stock oil, 80 Kg, peak load. 

4.8.1 Introduction 

The tests lasted for a duration of 20 hours, and were designed to test 

the suitable of ceramics in the form of inserts for use in finger follower 

applications, run against a standard case hardened steel cam. The test 

conditions, eg. the use of a mineral base oil, were delibertately chosen 

so as to produce a high wear condition with the metallic combination, 

and this formed a standard to which the ceramics could be compared. 

The wear direction for both optical photographs . and scanning 

electron micrographs in this result section is from top to bottom. 

4.8.2 Friction Measurements 

Coefficient of friction measurements versus test time can be seen in 

Fig. 150, and it can be seen that after an initial high peak the three 

ceramics settled to a lower steady state value after about 3 hours 

testing. For both the silicon carbide and sialon follower combinations, 

the friction decreases considerably to values of i of 0.12 and 0.08 

respectively. The toughened zirconia follower high frictional value, 

being 0.32 at the end of test. The chilled cast iron follower however 

rose further than the initial high peak value and continued to rise to a 
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maximum of 0.43 at the end of test, indicating a particularly severe 

form of wear. 

4.8.3 Surface Roughness Measurements 

Talysurf traces of both the cam and follower specimen from tests 3A to 

3D can be seen in Fig. 151. The chilled white iron combination showed 

extensive roughening and damage to the surfaces shown 

numerically by comparing the centre line average values (CLA) for the 

'as ground' and worn conditions. The silicon carbide and sialon 

combinations however produced smoother surface finishes in the worn 

than in the 'as ground' conditions. The cam surface worn against the 

toughened zirconia follower also showed extensive roughening of the 

surface, however, the zirconia follower surface itself did not exhibit 

the same extent of surface damage. The silicon carbide and sialon 

combinations produced smoother surface finishes in the worn than in 

the 'as ground' conditions. 

4.8.4 Optical Examination 

Optical examination of the cam and follower surfaces can be seen in 

Figs. 152-154. Examination of the cam nose surfaces confirms the 

results obtained from surface roughness measurements, the cams from 

both the white cast iron and toughened zirconia follower combinations have 

become badly worn. Fig. 152b shows the cam surface 

from the white cast iron follower combination, Test 3A, and it 'can'be 

seen that the surface has become severly scuffed and delaminated. The 

cam surface from the toughened zirconia follower combination, test 3D, 

shows wear damage of an abrasive nature with some plastic 

deformation shown by the plastic flow of the material over the 

manganese sulphide inclusions running at '90° to the wear direction, (Fig. 

152c). However both the cam nose surfaces from the silicon carbide and 

sialon follower combinations, tests 3C and 3D, Fig. 152d and 152e have 
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become smoother than the original ground surface as shown in Fig. 

152a. Optical examination of the follower surfaces can be seen in Figs. 

154 and 155. The white iron and toughened zirconia followers can be 

seen in Fig. ` 154 and show the extent of the wear damage. The wear 

damage on the white iron follower, test 2A, Fig. 154b is partly disguised 

by the products of oil oxidation staining the surface, but is confirmed 

by the results from surface roughness measurements. Fig. 154d of the 

toughened zirconia wear surface test 3b shows what appears to be a 

micro-pitting type mechanism on the surface with, what appears to be 

material transfer, from the cam nose. Optical examination of the 

silicon carbide = and sialon follower surfaces can be seen Fig. 154 and 

show in both cases smoothing of the surfaces and minimal material 

removal shown by the existance of the original grinding marks running 

at 90° to the wear direction. Also evident on both surfaces are the 

presence of free silica particles in the matrix (light), that should 

theoretically have reacted during the sintering process. 

. uý" 
4.8.5 Scanning Electron Microscopic Examination (S. E. M. ) ' 

S. E. M. examination of the cam and follower surfaces from tests 3A to 

3D can be seen -in Figs. ' 155-157. Examination of the cam surfaces 

confirms the results gathered from optical examination, and show the 

extent' of cam nose wear damage from the white cast iron and toughened 

zirconia followers, test 3A and 3B. Fig. 155b shows the extensive 

plastic deformation and delamination of the cam nose from test 3A, 

this being typical of a scuffing failure. Examination of the cam nose 

from the toughened zirconia follower combination, test 3B is shown in 

Fig. 155c and shows the abrasive nature of the 

wear damage running circumferentially around the cam nose which 

would appear to be caused by the impingement of loose abrasive 

particles. Examination of the cam noses from the silicon carbide and 
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sialon follower combinations, test 3C and 3D, show the extent of the 

effective polishing of the cam noses, Figs. 155d and 155e, with the 

manganese sulphide inclusions clearly evident. This being in complete 

contrast to the as-ground surface shown in Fig. 155a. 

S. E. M. examination of. the follower surfaces can be seen in Figs. 156 

and 157. Fig. 156 shows both the white cast iron and toughened zirconia 

surfaces, the true extent of the wear damage occurring on the white 

cast iron follower, test 3A, obscured somewhat by the products of oil 

oxidation, (Fig. 156b). The toughened zirconia follower from 3B however, 

shows the extensive micro-pitting of large areas over the surface, Fig. 

156d. Examination of both the silicon carbide and silicon followers, 

tests 3C and 3D, again shows polishing with minimal 

material removal from the surface shown by the existence of original 

grinding marks, Figs. 157b and 157d. 

4.8.6 Metalographic Examination 

Taper microsections taken through the cam nose from test 3A to 3D 

can be seen in Fig. 158. Examination of the cam from test 3A shows 

extensive white layer and an associated tempered region, 

Fig. 158a. White layer formation is less pronounced on the cam surface 

from test 3B worn against the toughened zirconia follower combination 

and is confined to isolated areas of the cam surface, Fig. 158b. The 

cam nose surfaces from tests 3C and 3D worn against the silicon 

carbide and sialon follower combinations can be seen in Figs. 158c and 

158d, and show no associated sub-surface damage. 

4.8.7 X-Ray Dispersive Surface Analysis 

X-ray dispersive analysis of the toughened zirconia follower was carried 

out to confirm whether material transfer had occurred from the cam 

surface as suggested during optical examination, (Fig. 154d). Fig. 159, 
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shows an iron line scan across the follower and clearly shows peaks 

indicating variable iron content across the surface, thus confirming that 

material transfer occurred. 

4.9 Results - Objective Three, Tests 3E-3G 

Material combination - Cam - Case hardened steel. 

Follower - Test 3E - Ceramic Fibre reinforced 

Al/Si alloy. 

Test 3F - Cobalt iron, hard facing 

alloy. 

Test 3G - Nickel rich, harding facing 

alloy. 

Test 3E - Base stock oil, 80 Kg, peak load. 

Test 3F - Base stock oil, 80 Kg, peak load. 

Test 3G - Base stock oil, 80 Kg, peak load. 

4.9.1 Introduction 

The tests lasted for a duration of 20 hours, and were designed to test 

the suitability of these 'advanced' materials for use in finger follower 

applications, run against a standard case hardened steel cam. 

4.9.2 Friction Measurements 

Coefficient of friction measurements versus test time are shown in Fig. 

160, and show that after high initial peak values of friction, the 

coefficients for all three tests decreased to lower steady state values, 

although the two hard facing alloy follower test combinations were 

considered to be high under such lubricated condition. Test 3E, the 

ceramic fibre reinforced aluminium/silicon alloy exhibited the lowest 

coefficient of friction, levelling out to a steady state value of around 

103. 



0.13 after 10 hours testing.. The two hard facing alloys, test 3F the 

cobalt rich alloy and test 3G the nickel rich alloy had friction 

coefficients decreasing to steady state values of p after 3 hours testing, 

of 0.24 and 0.27 respectively., 

4.9.3 Optical Examination 

Optical examination of the cam and selected follower surfaces can be 

seen in Figs. 161, 
. 
162, 

, 
169 

, 
and 176. Examination: of the cam and 

follower surfaces from test 3E, Figs 161 and 162, shows some plastic 

deformation of the cam surface which is exaggerated by the 

staining of some areas (Fig. 161). The follower surface is also stained 

somewhat, however there is clear evidence of material transfer over 

the whole follower surface, (Fig. 162). Examination of the cam surface 

from test 3F, using the cobalt hard facing alloy shows extensive plastic 

deformation and some areas of material transfer (Fig. 169). The cam nose 

surface from test 3G, the nickel hard facing alloy shows extensive 

staining of the surface, obscuring what little plastic deformation had 

occurred, however, there is clear evidence of material transfer from the 

follower. 

4.9.4 Scanning Electron Microscopic Examination, S. E. M. 

S. E. M. examination of both cam and follower surfaces from test 3E to 

3G can be seen in Figs. 163,164, 
. 170,171,177 and 178. The cam and 

follower surfaces from test 3E show a general lack of wear damage on 

the surfaces, Figs., 163 and 164, however material transfer is evident on 

both surfaces and is especially extensive on the follower surface, 

(Fig. 164). Examination of the cam and follower surfaces from test 3F 

can be seen in Figs. 170 and 171 respectively. The cam surface shows 

plastic deformation and a general scuffed appearance with evidence of 

material transfer. The follower surface however, shows no material 

transfer, but what is clearly evident is the wear of the solid solution 
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matrix of the cobalt surface, leaving the carbide networks clearly 

discernable and in some areas are in relief, (Fig. 171). Examination of 

the cam surface from test 3G shows again a general lack of plastic 

deformation, but extensive material transfer as seen in Fig. 177. 

The follower however, shows no immediate signs of material transfer 

but extensive wear by delamination (Fig. 178). 

4.9.5 X-Ray Energy Dispersive Analysis Of Wear Surfaces E. D. A. X. 

X-ray -energy dispersive analysis was carried out on the follower wear 

surface from test 3E, the ceramic fibre reinforced Al/Si follower to 

identify the nature of the transferred material. The results of the 

analysis was in the form of x-ray dot image scans, the density of the 

image dependent upon the elemental composition of the material. The 

results can be seen in Fig. 165. Fig. 165a shows the general area 

viewed in the S. E. M. with the x-ray image for iron (Fig. 165b) and 

aluminium (Fig. 165c). This evidence clearly shows iron transfer from 

the case hardened steel cam nose to the follower surface. 

4.9.6 Metallographic Examination 

Taper microsections through both cam and follower surfaces from tests 

3E to 3G can be seen in Figs. 166,167,172,173,179 and 180. 

Examination of the cam and follower surfaces from test 3E, Figs. 166 

and 167 show no signs of any surface/subsurface damage although under 

closer examination some deformation of the ceramic fibres in the 

follower subsurface has' occurred, (Fig. 167). 

Examination of the cam surface from test 3F, shows white layer 

formation over the whole width of the cam nose, Fig. 172. The cobalt 

follower surface after etching in 2% nital showed evidence of material 

impingement into its surface, transferred from the cam nose, (Fig. 173). 
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Examination of the cam and follower surfaces from test 3G can be seen 

in Figs. 179 and 180. The cam surface on first examination appears to 

have transformed to white layer but on closer examination this is seen 

as nickel material transferred from the follower which 'builds up' on the 

cam surface, (Fig. 179). The adjacent tempered areas are then 

produced by the frictional heating caused by interaction of chemically 

similar species. The follower surface after etching in 2% nital again 

shows what appears to be ferrous material impingement into it's 

surface, Fig. 180, and under closer examination this material appears to 

have become mixed or alloyed into the nickel matrix. 

4.9.7 X-Ray Energy Dispersive Analysis Of Follower Taper Microsections 

X-ray energy dispersive analysis was carried out on the follower taper 

sections from test 3F and 3G with the cobalt and nickel alloys to 

identify the nature of the transferred material. Examination of the 

cobalt follower, test 3F, can be seen in Fig. 175, and clearly shows the 

impingement of iron debris into and on the surface of the follower, (Fig. 

175b). This is not as obvious for the nickel follower, test 3G, and only 

under closer examination can the local concentrations of iron be seen, 

(Fig. 182). This effect is due to the mixing or alloying of the steel 

debris and the nickel matrix previously shown under optical examination 

(Fig. 180). 

4.9.8 Wear Debris Examination 

S. E. M. examination of the wear debris from test 3E to 3G can be seen 

in Figs. 168,174, and 181. Examination of the debris from test 3E 

shows debris in the range of 15 to 20 microns, the thickness of debris 

particles in some cases being up to 2-3 microns (Fig. 168). Debris 

accumulated from tests 3F and 3G can be seen in Figs. 174 and 181 and 

are of the same size and morphology, very thin platelets 5-10 microns 

maximum size. 
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CHAPTER 5r 

5. DISCUSSION 

5.1 OBJECTIVE ONE - SERVICE REPRODUCABILITY TESTS - 

"THE EFFECTS OF THE MINERAL BASE OIL AND ADDITIVE 

PACKAGES ON THE WEAR BEHAVIOUR OF CONVENTIONAL CAM 

AND FOLLOWER MATERIALS. 

5.1.1 Introduction 

As mentioned previously, the objective of the experimental work 

described here is to reproduce cam and follower wear failures similar 

to those encountered in service. This would enable the test rig to be 

used as a cheaper and faster method of material and oil evaluation, 

thus complimenting the more expensive and time consuming test 

engine and dynomometer test methods. 

The wear mechanisms commonly encountered in cam and follower 

arrangements in service were reproduced during this test procedure. 

A more simplistic and fundamental analysis of these, failures under 

controlled test variables was thus possible, effectively eliminating 

the uncontrolled variables encountered, in engine and dynomometer 

test methods. 

The author does not attempt to form any new theories about such 

cam and follower failures but instead attempts to provide 

information to aid further discussion of such failures and their 

solutions. 
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5.1.2 Case Hardened Steel Cam/White Cast Iron Follower Combination 

Test 1A using the fully formulated oil under low load conditions 

produced a low wear rate shown by spectrometric oil analysis and 

complimented by the friction result (Figs 25-26). Surface analysis 

using both optical and scanning electron microscopy techniques show 

the cam surface at the end of test to be smoother than the original 

ground surface. The surface is polished and manganese sulphide 

inclusions (MnS) can clearly be seen orientated at. 90° to the wear 

direction. The reasons for no significant wear damage, is the 

formation of surface films from additives in the oil produced under 

the predominatly boundary lubrication conditions at the start of test. 

Polishing wear of the cam surface is commonly found in such 

systems, the literature states that this polishing wear becomes 

progressively more severe, resulting in considerable material removal 

with time. The amount of wear occurring within the test duration 

used in this investigation however, suggests polishing wear to be in 

the early stages of initiation. The actual mechanism of polishing 

wear is discussed in more detail later in this chapter, but it appears 

to be affected by additives in automotive oils. Chemical effects 

produced by these additives however are clearly evident on the white 

iron follower surface. Both optical and S. E. M. examination of the 

follower surface shows preferential attack in the wear scar region. 

This appears to be chemical attack of an Intercarbidic nature 
`e., 

whereby the pearlitic/martensitic matrix is 'ffectively corroded 

away leaving the carbide networks in relief. Prolonged attack by the 

additives can lead to carbide fracture with surface interaction and 
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cause further wear by abrasion. The short time duration and the test 

parameters have prevented this form of wear reaching an advanced 

stage, and this is confirmed by examination of the tapersections and 

wear debris after 40 hours (Figs 31-33). 

Under the same general test conditions but using the mineral base oil, 

test 1B, the wear behaviour of this material combination differed 

significantly. In this test the cam surface became scuffed with 

extensive plastic deformation of the surface. Subsequent etching of 

the cam wear surface in 2% nital showed small white etch resistant 

areas distributed within isolated bands across the surface (Fig. 34). 

These areas were considered to be carbides that had broken away 

from the surface of the chilled white iron follower surface and 

became embedded in the cam surface, probably during the very early 

stages of the test, under the boundary conditions that prevailed at 

the start of testing. General Motors in an S. A. E. communique(87) 

have attributed this phenomenon to a momentary breakdown in the 

lubricating oil during the early stages of testing. This permitted 

metal contact, with the attendant heat generated leading to localised 

softening of the martensitic chilled white iron matrix phase. This in 

turn allowed the removal of the carbide present in the structure and 

it's subsequent transfer. It can be seen however that the presence of 

these carbide particles are in relatively smooth undamaged areas and 

could improve the wear resistance of these areas by acting as an 

'tffective bearing surface. The scuffed morphology of the cam 

surface can be seen more clearly in Fig. 35 and shows, apart from the 

plastic deformation, evidence of white layer formation in the form of 

thin bands running in some cases, around the circumference of the 
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cam specimen. There is no significant wear damage on the follower 

surface with only a slight etching effect of the surface caused by 

products of oil oxidation. There is however a random distribution of 

small black areas on the surface but these were difficult to resolve 

even by S. E. M. examination. 

The failure of the cam by a scuffing mechanism was further 

confirmed by tapersection examination. Fig. 39 shows extensive 

white-layer formation and the associated tempered regions within the 

cam sub-surface. Examination at a higher magnification shows the 

carbide transfer phenomenon and thermally cracked regions. By 

further focussing into the epoxy resin protecting the surface this 

random distribution of embedded carbide can be seen (Figs. 40-41). 

The follower sub-surface confirms that the majority of the wear 

damage occurred on the cam nose and the platelet morphology of the 

wear debris produced (Fig. 43) also confirms this observation. 

A change to boundary lubrication conditions using the fully 

formulated oil showed significantly different wear behaviour using 

this same material combination. With test 1C, excessive wear of the 

chilled iron follower occurred whereas the cam was less worn. 

Friction measurements appeared relatively high although there is a 

decrease from the start of test indicating some form of 'running in' to 

have occurred. Spectrometric oil analysis however, indicates a 

severe form of wear during the whole test sequence when compared 

to the wear debris concentration for Test 1A at lower loads. 

Examination of the cam showed the only significant wear feature to 

be isolated areas of plastic deformation. This was confirmed by 
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examination of the tapersection which showed no white layer 

formation and hence eliminates the possibility of scuffing. This 

confirms the effect of anti wear additives such as Z. D. D. P. in the oil 

preventing scuffing. 

Examination of the follower shows failure by the classic pitting 

mechanism. Using optical techniques the pitting can be seen to be 

randomly distributed across the surface in a crazed pattern, with the 

microstructure of the white cast iron clearly visible on the unpitted 

surfaces (Fig. 45). Fig. 47 is a view of a pitted/unpitted region and 

again shows the chemical attack of the microstructure revealing the 

carbide networks. The extent and depth of the pitting is also shown. 

Taper-sectioning of the follower surface shows some, interesting 

features. Fig. 49 shows cracks running both parallel and at 90° to the 

surface and there is also evidence of corrosion shown by the circular 

nature of some of the areas of the pitting failure. It is these 

different wear features that make the analysis of this form of pit 

formation in white cast iron extremely difficult. Available literature 

is conflicting, some scientists suggest cracks form by a surface 

initiation process, caused by the corrosive nature of E. P. additives 

which cause cracks by stress corrosion. Oil pressure builds up 

between carbide networks which propogate these cracks. Others have 

determined the cause of failure to be due to subsurface cracks 

parallel to the surface, initiated and controlled by the Hertzian 

stresses present under, by mixed rolling/sliding conditions. , 
Chinese 

workers(88,89) postulate a stress fatigue mechanism of pit, formation 

and the direct application of general fatigue theory to it's solution. 

It can be seen from the literature that these scientific workers 

suggest that the formation of these failures is controlled by the 

individual hypothesises that they attempt to put forward. However it 
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can be seen from the work carried out by the author, that any one or, in 

fact, all of the mechanisms postulated can contribute to pitting 

failure. The author does not attempt to discredit any of these 

postulations , 
but there appears to be a distinct lack of 

research into the chilled white iron itself. In particular for cam and 

follower components prior to the commencement of their operation. 

For example, a hardness survey carried out on 6 commercially 

available automobile tappets (Fig. 183-184) show differences in both 

hardness and chill depth. Chill hardnesses ranging from 540 Hv 5gm 

for a B. L. M. C. 'Mini' tappet, to 795 Hv 5gm for a Ford 'Dover' tappet. 

It is agreed however, that the operating conditions of the two 

vehicles differ. However, a hardness difference of 250 Hv is 

considerable, with the associated strength also expected to differ 

considerably. Indeed a survey of similar components from a single 

production batch, showed hardness differences of up to 70 Hv. There 

appears to be no hardness standards for white iron tappet production, 

yet standards exist for other hardening treatments such as 

carburising and carbonitriding. On sectioning several of the 

components for hardness testing, cracks were observed which 

emminated, from various positions within the chilled area. Some 

cracks emminated at a 90° angle to the surface (Fig., 185a) whilst 

others were more random, (Fig. 185b) These cracks might have 

originated from sectioning on the abrasive wheel due to thermal 

cycles causing mechanical cracks to occur. Close examination of 

some of the cracks however, shows evidence of oxide present within 

the crack which must have formed prior to installation In the valve 

train. The cracks on this occasion probably, arise from solidification 

against graphite chills during casting and the associated thermal 

shock effects, (Fig. 185c). 
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A more thorough and meaningful investigation must be carried out in 

order to understand the pitting mechanism of chilled white iron valve, 

train components. This should commence firstly by, standardising the 

hardnesses of the tappets prior to a full investigation into the pitting 

mechanism and secondly, some form of quality system should be 

established involving non destructive testing techniques, such as, 

ultrasonics and radiography to test for the presence of cracks prior to 

testing. Only when a test sequence. is fully standardised can a 

meaningful investigation into the effect of 
. 
differences in chilled 

hardness and depth be carried out. 

Test 1D using the mineral base oil at high loads, showed typically 

high wear rates (Figs 25-26). The cam surface showed evidence of 

severe plastic deformation and delamination consistent with failure 

by a scuffing mechanism (Fig. 51). This is confirmed by tapersection 

examination showing white layer formation across the width of the 

cam nose (Fig. 53). Preliminary examination of the follower wear 

surface also shows evidence of plastic deformation of the surface 

(Fig. 52), however tapersection examination shows this plastic 

deformation effect to be material transfer from the cam surface, 

shown by the light areas on the follower surface. This smeared 

material, transferred from the cam produce a 'like on like' adhesive 

situation initiating further wear. 

To conclude the results from the test procedures 1A to 1D, it can be 

seen that a variety of wear mechanisms were observed within the 

duration of the test, sequences. Using the material combination of a 

case hardened steel cam and a white cast iron follower, the most 

commonly encountered forms of wear in cam/follower systems were, 
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reproduced. Using the fully formulated oil at low loads a polishing 

form of wear was apparent with the cam, whilst the follower surface 

suffered chemical attack in the wear scar area, contributing to 

pitting commonly found in white cast irons. At higher loads this 

pitting wear fully manifested itself and the surface degenerated. The 

mechanism for this form of pit formation appears to be mainly of a 

three fold nature, with stress corrosion, surface and subsurface crack 

initiation being the dominant catalysts. Analysis of these failures 

becomes extremely difficult however when considering the hardness 

differences between cast iron tappets, and also the presence of 

cracks in tappets prior to installation. 

Using the mineral base oil at both low and high loads, the classic 

scuffing form of wear occurred with the cam. Associated with the 

typical plastic deformation and delamination at low loads, was 

carbide transfer from the follower surface and circumferential white 

layer band formation. At high loads scuffing again occurred with the 

cam, which caused material transfer to the follower surface. This 

produced a 'like on like' adhesive situation contributing to frictional 

heating and further increases in wear rate. 

5.1.3 Induction Hardened Grey Flake Iron Cam /Case Hardened Steel 

Follower Combination 

Test 1E using the fully formulated oil under mixed 

lubrication conditions show with reference to the coefficient of 

friction and spectrometric oil analysis (Figs 56-57) low wear rates 

typically associated with satisfactorily operating systems. This is 

confirmed by surface examination, which show the worn areas to be 

114. 



smoother than the as ground surfaces, (Figs 58-61), this being 

beneficial to the production of elastohydrodynamic oil films which 

eliminate surface asperity interaction. This surface smoothing is 

best illustrated in Fig. 58 which clearly shows the graphite flake 

structure on the cast iron cam surface. This effect is similar to the 

'bore polishing' phenomena found in the cylinder liners of highly rated 

diesel engines. This is detrimental in such applications as too smooth 

a surface results in oil breakdown and scuffing. However, as already 

mentioned smoother surfaces in cam/follower applications are 

considered advantageous and thus show the importance of additive 

packages in automotive oils. There are some detrimental aspects 

associated with the use of such additives however, one of these being 

their corrosive nature. Examination of the follower surface (Figs 59 

and 61) shows the corrosive nature of the additive package 

preferentially attacking the grain boundaries. However this attack 

was again considered negligible over the relatively short test 

duration, with examination of the tapersections and the wear debris 

confirming the low wear rate and the satisfactory running of the 

system. 

Test 1F using the mineral base oil exhibited much lower wear rates 

when compared to testing under similar conditions using the case 

hardened steel cam and white cast iron follower combination. This is 

shown by reference to the coefficient of friction and spectrometric 

oil analysis results (Figs 56 and 57). Further confirmation of these 

low wear rates is shown by optical and S. E. M. examination of both 

the cam and follower surfaces (Figs 65-69). The surfaces show no 

evidence of any significant wear damage, instead there is present on 

both the cam and follower surfaces evidence of graphite smearing. 
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Also present on the cam surface was evidence of phosphide eutectic 

shown by the, small white areas distributed over the surface, (Figs. 65 

and 66). 

The possible reasons for the general resistance to plastic deformation 

and scuffing using this, material combination, under conditions where 

the, previous material combination failed by scuffing are, two fold: - 

i) The 
_ 
use of graphite as an 4anti-seizure' lubricant, is well 

established. For example,, a graphite suspension in rape oil is a 

common, lubricant used in the, hot,, working and, forging of 

carbon steels, and has been used successfully for many years. It 

appears therefore, that the free graphite present in the form, of 

graphite networks in the cast iron cam matrix again, -acts as 
,. 
an 

anti-seizure� additive, thus preventing surface interaction and 

metal to, metal contact.. Indeed Sugishita and Fujiyoshi(90), have 

shown under rolling, sliding conditions that cast irons with free 

graphite present in the microstructures have, favourable wear 

properties compared to those without free graphite. The 

principle works on a squeeze/smear action caused by contacts 

between the, surfaces. 
, 

The higher the percentage of free 

graphite in. the microstructure the lower the wear rate. 

, 
ii) 

, 
The presence of hard phosphide,, eutectic ., 

in cast irons 
, 

can 

according to Eyre, and Williams(91), act, as bearing surfaces 

minimising metal to metal contact. It is 
.. 
likely that the 

phosphide 
, eutectic evident at the cam surface, found by optical 

examination, (Figs 65-66) acts, in such a way. Tapersectioning of 

the cam surface shows this effect,, (Fig., 70). 
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The use of the induction hardened grey cast iron cam and case 

hardened steel follower combination under high load conditions, 

resulted in excessive wear rates using both the fully formulated and 

mineral base oils. The extent of the wear damage was such that the 

wear , 
features were unresolvable using conventional optical 

techniques. Visual examination however, showed that a form of 

accelerated wear had 
. occurred resulting.. -in the, removal of the 

induction hardened layers of the cam specimens. The extent of wear 

damage became apparent under S. E. M., examination, where the cam 

and follower surfaces from both tests 1G and 1H showed extensive 

plastic deformation and scuffing (Figs 73-74 and 78-79). Further 

examination of the wear surfaces from test 1H using the mineral base 

oil showed in addition extensive material transfer and smearing (Figs 

78 and 79). This is important when considering the rate and mode of 

wear using the two different oils. Visual examaintion of the cam 

surfaces showed that although in general the wear features were 

similar the rates of material removal differed significantly, the wear 

couple tested in the mineral base oil showing the highest material 

removal rate. 

The reason for the difference in material removal rates becomes 

clear on tapersection examination, and shows these dissimilar 

removal rates to, be due to differences in the actual mechanism of 

material removal. Figs 75 and 76 show the cam and follower 

tapersections from 1G . using the fully formulated oil and it can be 

seen that although there is considerable wear damage 

and material transfer and build up, there is no evidence of any 

significant white layer formation on either surface. This evidence 

indicates a different mechanism of wear occurring than the scuffing 
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type of wear typically found under these conditions. This, suggests 

that the additive package present in the oil has prevented asperity 

welding and the generation of temperatures associated with white 

layer formation. The failure-of the cam specimen in the fully 

formulated oil appears to have been caused by a fatigue mechanism 

controlled by sub-surface stresses. Close examination of the cam 

subsurface (Fig. 75) shows a network of cracks eminating from the 

ends of graphite flakes. These graphite, flakes acts as stress raisers 

within 
_the 

matrix, thus increasing the. likelyhood. of failure by a 

pitting mechanism. Eyre and Zhu(92) have reported that crack 

propogation and the morphology of the wear debris subsequently 

produced under reciprocating wear conditions, is dependant upon the 

size and distribution of the graphite networks present in the 

microstructure. 
, 
This form of pitting can be clearly seen on the cam 

surface from test 1G (Fig. 73) and would appear to show that the 

predominant cam nose failure using the fully formulated oil is by 

fatigue. This fatigue mechanism is brought about by an affective, 

failure in the 'damping' capacity of the grey flake iron under repeated 

and heavily loaded rolling/sliding conditions. 

Examination of the cam and follower tapersections from tests 1H 

using the mineral base oil (Figs 80 and 81) confirmed the evidence 

gathered from S. E. M. examination of the wear surfaces. The 

tapersections again showed extensive plastic deformation of both the 

cam and follower subsurfaces and extensive white layer formation on 

both surfaces. It was considered therefore that failure in the mineral 

base oil was, due to the classic- 'scuffing' mechanism, with additional 

wear occurring by the spalling of the brittle white layer under fatigue 

conditions. 
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5.1.4 Carbonitrided Flake Iron Cam/Hardened And Tempered Nodular Iron 

Follower Combination 

Test 11, using the fully formulated oil at low loads showed this 

material combination to have excellent wear properties shown by the 

low wear rates indicated by coefficient of friction and spectrometric 

oil analysis (Fig 83-84). This was confirmed by both optical and 

S. E. M. examination of the cam and follower surfaces which showed 

the wear surfaces to be smoother than the original ground finish. The 

cam surface was smoothed to such an extent that graphite networks 

were clearly visible on the surface (Fig. 86). The lack of any 

subsurface wear damage and a wear debris size range of -1-5 microns 

confirms _a satisfactorily running system being established with the 

aid of the anti-wear additives present in the oil formulation. 

Analysis of the cam surface used in the mineral base oil (Test 1J) again 

shows a general smoothing of the cam surface, however, there is an 

irregular distribution of pits across the surface as shown inFig. 91. 

S. E. M. examination of the surface shows the pitting to be of a 

shallow form (Fig. 92), the-actual size of which, appears to, be 

dependant upon the size of the graphite networks themselves. The 

wear debris comprises of small platelets of up to. 10 microns in size, 

suggesting this shallow pit formation to be an accumulation of these 

small platelets, the sizes being governed by, the intergraphitic 

spacings of the networks, . because closer examination of Fig. 92 

shows no pit formation in areas of low flake network concentration. 

The follower surface from test 1J agains shows no significant bulk 

wear damage, however, Fig. 93 shows a general ripping out of the 

graphite nodules from the surface of the nodular iron. These nodules 
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constituted the graphite films which were still present after solvent 

cleaning. These are shown by the remnants of dark areas present 

around empty nodule cavities. Examination of the tapersections 

showed no deliterious subsurface white layer transformations or 

plastic deformation. However, some plastic deformation did occur on 

the surface, mainly around the nodule cavities of the follower surface 

(Fig. 93). 

Under high loads, using the fully formulated oil, the carbonitrided 

flake iron cam and hardened and tempered nodular iron follower 

combination, exhibited superior wear characteristics to any of the 

other material combinations tested under the same experimental 

conditions. Examination of both the cam and follower surfaces from 

test 1K show no significant wear damage. What is evident however is 

the presence of surface films remaining on the surface after thorough 

solvent cleaning. This illustrates the tenacity of these anti-wear 

films under extreme load conditions. These surface films together 

with the effect of graphite film formation enabled this material 

combination to run satisfactorily under these arduous conditions. this 

is further confirmed by examination of the tapersections of both the 

cam and follower, showing no subsurface damage or white layer 

formation. 

In the mineral base oil the results were predictable and showed high 

wear rates that were confirmed by an unsatisfactory coefficient of 

friction and spectrometric oil analysis results. Plastic deformation 

and scuffing was found on examination of both the cam and follower 

surfaces along with extensive white layer (Figs 103-105). Although 

the wear rates were high they were of a lower magnitude than those 

obtained using the other material combinations. The results 
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therefore illustrate the superior wear properties of carbonitrided 

grey flake iron and hardened and tempered nodular iron over the 

other material combinations used in this test program. 

5.1.5 Surface Roughness Measurements 

It can be seen from the results of surface profilmetry the relative 

advantages and disadvantages of both the conventional single trace 

talysurf machine and the 3D computorised multi-trace system. The 

use of the multi-trace system is advantageous when analysing the 

general morphology and distribution of wear features on particular 

surfaces. This became extremely useful in the characterisation of 

surfaces produced in this first test objective. The general 

morphologies of the scuffing, pitting and severly worn surfaces were 

clearly distinguishable and -showed for instance, the random 

distribution of pits from the pitted follower surface (Fig. 111), whilst 

the severely worn , surface showed = an abrasive form of wear 

mechanism occurring. This was shown by the reproduction of similar 

surface characteristics along the wear direction, likened to 

furrows in a 'ploughed' field. The use of the 3D multitrace system 

however appears to hinder the calculation of the depth and form of 

individual wear 'valleys' and 'peaks', an important factor in the 

analysis of single point abrasive wear tests for instance. This form of 

surface profilometry analysis therefore relies on the single trace 

talysurf technique. It becomes generally apparent therefore, that 

both of these methods of surface profilometry are invaluable in the 

monitoring of wear surfaces, and both systems should be employed to 

ensure maximum information is obtained. 
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To conclude this part of the discussion section, it can be seen that 

the cam/follower rig has proven to be a useful test apparatus for both 

material and lubricant appraisal. The test rig can act as a cheaper 

and faster alternative to the more expensive and time consuming 

dynomometer and test engine systems. The test rig discriminated 

between the fully formulated and mineral base oil by reproducing the 

most commonly encountered cam follower wear problems of scuffing, 

pitting and polishing wear. No new theories have been put forward 

regarding the mechanism of these failures, instead the author has 

presented information which he hopes will aid further discussion 

regarding- these failures and hopefully contribute to their eventual 

elimination from service. This information has included such areas as 

chilled white iron pitting failure, where the hardness ranges of 

commercially available automobile tappets differ considerably, and 

also the presence of cracks evidence In components prior to 

operation. Other work has included the role of free graphite in cast 

iron microstructures preventing the onset of scuffing under low load, 

mineral base oil conditions, and the superior wear properties of 

carbonitrided grey flake iron. 
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5.2 OBJECTIVE 2 

5.2.1 The 'Running In' Of Cam Surfaces Using The Replication Technique 

The use of acetate replicas during the test procedures 2A and 2B 

shows the versatility and 'distinct advantages of using this simple but 

effective surface analysis technique. Using a fully formulated oil and 

it's base stock it was possible to produce a surface topographical 

'story' of how cam surfaces 'run-in'. Replicas of the cam surfaces 

show in the. case of the fully formulated oil (Fig. 117 to 121) a 

gradual smoothing of the surface with test time. From the start of 

test, ie. the 'as ground' surface (Fig. 117a) to the surface after 1 hour 

of testing (Fig. 118C) show the grinding marks to have been all but 

removed, with evidence of abrasion becoming the predominant wear 

feature. This abrasive wear, like the original grinding marks, then 

became less evident as the test was concluded. After 70 

hours the surface had become highly polished with very little evidence 

of abrasive wear apparent on the cam surface. In contrast, the 

replicas of the cam surface using the mineral base oil showed 

instantaneous surface roughening as shown in Fig. 117d, after 15 

minutes testing. Closer examination shows small light areas on the 

replica surface, 'these'' were small wear particles that had become 

detached from the surface with relative ease and had become 

embedded in the acetate sheet after removal from the surface. 

Damage of the surface then became increasingly severe with test 

time shown by the darker, constrasting areas of the replica indicating 

deeper sub-surface wear of the cam (Fig. 121F). It was therefore 

evident that scuffing had occurred and was a 'running in' problem. 

123. 



The sequence of surface events leading to the formation and in the 

case of the mineral base oil the scuffing of the surface are best 

described with reference to the coefficient of friction and condition 

monitoring graphs (Figs 114-116) and metallographic and wear debris 

examination (Figs 122-125). Using the fully formulated oil the 

surfaces of the cam in conjunction with the white cast iron follower 

surface begin to 'run in' immediately. In this process the asperities or 

'high spots' are removed from the mating surfaces with the Z. D. D. P. 

additives present in the oil causing instantaneous reaction film 

formation and the subsequent prevention of welding of these 

asperities and thus the prevention of scuffing. The high spots on the 

surface are removed by a process of adhesive wear and plastic 

deformation and cause an initially higher wear rate than would be 

expected during normal running, shown by an initially high coefficient 

of friction (Fig. 114). The iron concentration, and wear particle 

index obtained from spectrometric oil and semi-quantative debris 

analysis Figs 115 and 116 respectively, show a steady state increase 

in wear debris concentration with immediately high concentrations in 

oil samples taken after 2 minutes testing, showing material removal 

to haved occurred almost immediately. The gradual decrease in 

friction with time is due to the continuing process of plastic 

deformation of the asperities, thus lowering the real area of contact 

towards the design contact area. This higher rate of material 

removal during the very early stages of 'running in' can be seen with 

reference to Fig. 124a, and shows the relative wear debris size 

increase during 'running in' when compared to the debris size range 

under normal wear conditions, as seen in Fig. 124C. Also evident 

during 'running in' is the occurrence of spherical debris commonly 

associated with rolling contact fatigue. The formation of this 

spherical wear debris morphology is open to much discussion. 
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The sequence of surface events leading, to the formation and, in"the 

case of the mineral base oil the scuffing of the surface are best 

described with reference to the coefficient of friction and condition 

monitoring graphs (Figs 114-116) and metallographic and wear debris-, 

examination (Figs 122-125). Using the fully formulated oil the 

surfaces of the cam in conjunction, with the white cast iron follower 

surface. begin to 'run in' immediately. In this process the asperities or 

'high spots' are removed from-the mating surfaces with the Z. D. D. P. 

additives present in the oil causing instantaneous reaction film 

formation and -the subsequent prevention of welding of these 

asperities and thus the prevention of scuffing. The high spots on the 

surface are removed by a process of, adhesive wear and; plastic 

deformation- and cause an initially higher wear rate than would be 

expected during normal running, shown by an initially high coefficient 

of friction (Fig. 114). The iron concentration, and wear particle 

index = obtained from spectrometric, oil and semi-quantative debris 

analysis Figs 115 and 116 respectively, show a steady state increase 

in wear debris concentration with immediately high concentrations in 

oil samples taken after 2 minutes: testing, showing material removal 

to hayed occurred almost immediately. The gradual decrease in 

friction with time is - due to the continuing process of plastic 

deformation of the asperities, thus lowering the real area of contact 

towards the 
., 
design- contact area. This higher rate of material 

removal during the very early stages, of 'running in' can be seen with 

reference to. Fig. 124a, and shows the relative -wear debris size 

increase during, 'running in' when compared to the debris size range 

under normal wear conditions, as seen in Fig. 124C. Also evident 

during 'running in' is the occurrence of spherical debris commonly 

associated with rolling contact fatigue. The formation of this 

spherical wear debris morphology is open to much discussion. 
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There are a number of basic hypotheses that have been advanced to 

account for the occurrence of these spherical particles. The first is 

that they result in some way from the interaction of, the lubricant 

and surface cracks that continually open and close(93). A second 

theory associates them with melting as a resulting of high 

instantaneous surface temperature during sliding followed by 

subsequent freezing in the oil(94,95) a third theory is that they result 

from the rolling up of flat wear particles(96); whilst a fourth theory 

states that they are formed by a subsurface mechanism associated 

with fatigue crack development(97). The fifth and in this particular 

case the most tangeable explanation is that in order to produce 

spherical particles, chunky particles must be formed as a result of an 

adhesive wear process ie. "running in", and then become rounded and 

polished as a result of a form of burnishing process(98). Close 

examination of the spherical debris shown in Fig. 124a illustrates this 

burnished effect at one end showing an apparent axis of revolution 

around which the debris formed. 

Once the surface had become satisfactorily run-in, the size range of 

the wear debris decreased to an average platelet size of around 1-2 

microns as shown in Fig. 124C. Examination of the cam tapersection 

in Fig. 125a shows no subsurface damage and this again illustrates 

satisfactory 'running in'. The extent of cam surface smoothing was 

such that there were strong similarities between the cam surface test 

and a metallographically prepared surface. A cam surface in the 

initial 'as ground' condition" was diamond lapped to a metallographic 

fpm finish and etched in 2% Nital. The worn cam surface was then also 

etched under the same conditions and the two compared. Fig. 122 

shows the 'as ground', polished and etched cam specimen and 
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the martensitic structure and the grain boundaries present in the 

hardened steel case can be clearly seen. The surface of the worn 

cam surface although not showing the grain boundaries in the 

structure, does show a martensitically transformed microstructure 

not dissimilar to the metallographically prepared surface. It appears 

therefore that the 'running in' using the fully formulated oil is a two 

stage phenomena. Firstly, during the early stages of testing, plastic 

deformation and fracture of the asperities occurs, which, under the 

influence of the anti-wear additive (Z. D. D. P. ), prevents any welding 

and rupture of the asperities under the initial high contact stress 

conditions operating in a mixed elastohydrodynamic lubrication 

regime. Further plastic deformation of the surface moves towards 

the ideal contact area from the real area of contact, thus lowering 

the contact stress towards the ideal design stress. This gradual 

smoothing of the surface then allows full elastohydrodynamic 

conditions to exist governed by the surface roughness factor in the 

formation of elastohydrodynamic films - postulated by Wellaner(99) 

and Barwell(100). No mention has been made in this series of tests 

into microscopic elastohydrodynamics whereby analysis of individual 

asperities is carried out. Further smoothing of the surface after the 

elastohydrodynamic film is formed occurs by a chemical polishing 

mechanism by the additive package in the oil, whether antiwear, 

dispersant, detergent or any other of the many additives added to 

produce the full oil formulation. Further evidence of the chemical 

polishing is already shown in Fig. 61. A case hardened finger follower 

processed under exactly the same heat treatment conditions and run 

under identical test conditions, Test 1E, again shows the same form 

of polishing on the surface. Although in this case attack of the 
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ferrite grain boundaries had occurred thus further showing the 

reactivity of certain additives in contact with ferrous materials. The 

lack of any sub-surface damage present, shown by the tapersection 

from the cam surface in Fig. 125a again shows satisfactory 'running 

in'. Much work has been carried out on the polishing of cam and 

tappets which has generally been considered beneficial. Few 

investigators have suggested that the polishing of Internal combustion 

engine components is a chemical process, and have mainly attributed 

this form of polishing to a fine abrasive action caused by the products 

of combustion, ie. hard carbon and airborne particles such as silica 

ingressing into the valve train arrangements and ultimately to the 

piston rings and cyclinder liners, leading to bore polishing of turbo- 

charged diesel engines(101). The presence of this polishing is 

considered to be detrimental due to possible oil film thickness 

reductions leading to surface interaction, scuffing and blow-by of 

exhaust gases. Polishing of valve train components however, as 

mentioned previously, is considered to be beneficial due to the ease 

of elastohydrodynamic film formation with 'smooth' surfaces. 

Evidence of this is shown by reference to Fig. 58, showing the 

graphite flake structure on the surface of the cam from test 1E using 

a fully formulated oil. The mechanism of this type of polishing 

however appears not to be of a fine abrasive nature as the 

test rig is completely enclosed and is therefore 'airborne' 

contaminant free and since the apparatus is not 'fired' unlike an 

engine, there are no products of combustion such as hard carbon to 

assist in the polishing operation. The mechanism of polishing 

therefore appears to be of a chemical nature confirmed somewhat by 

examination of the surface of the case hardened follower from test 

1E, (Fig. 59) which shows not only general polishing of the surface, 
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but also chemical attack of the ferrite grain boundaries shown more 

clearly by S. E. M. examination, (Fig. 61). This mechanism of 

polishing appears to be in part agreement with Onion(102) who found 

highly polished areas on components of diesel fuel injection systems, 

and postulated that surface films are produced by reaction between 

additives in the oil and steel surfaces. These films prevent wear, 

but also cause chemical polishing of the surface. 

The use of the mineral base oil in test 2B, showed completely 

different effects in the forming of a cam surface. Examination of 

the cam replica, as seen in Fig. 117d, shows surface roughening 

occurring during the very early stages of testing, this damage is 

considered to be instantaneously produced, of test and is 

confirmed by an initially high friction coefficient shown in Fig. 114. 

The actual friction after 5 seconds testing, as measured and recorded 

by the microprocessor system was 0.2911. Close examination of the 

replica surfaces in Fig. 117d and 117F, show the damage to be of a 

very shallow surface nature shown by the lack of any sharp contrast 

that would differentiate between surface and severe subsurface wear. 

The detachment of the material from the cam surface up to 30 

minutes testing is predominantly of a thin-platelet form as shown in 

Fig. 124b, after only 5 minutes testing. The size in some cases 

however is up to 50 microns in width although some particles are in 

the size range of 2-5 microns. Re-examination of the replica surface 

in Fig. 117F shows wear debris particles embedded in the replica 

itself, shown by the very bright areas. It can be seen therefore that 

surface damage occurs during the early stages of operation and this is 

confirmed by S. O. A. P. analysis and the PQ index shown in Figs 115 
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and 116 respectively. Both graphs show high, initial debris levels, 

suggesting the majority of damage occurring in the first 10 hours of 

testing, this however is not strictly correct., Examination of the 

replicas from 119F (7 hours) to 121F (70 hours) show a steadily 

increasing depth of wear shown by the darker areas . on the replica 

surfaces, and a subsequent increase in debris size and morphology. 

This is confirmed by examination of the wear debris after 50 hours, 

Fig. 124d. This shows particle sizes of the same length as those 

obtained after 5 minutes testing, however the morphology of the 

debris has changed to a large 'chunky' type morphology, consistent 

with a pitting/spalling failure mechanism. This effect was not 

clearly evident by S. O. A. P. analysis or the PQ index. They show 

only a gradual increase in debris concentration from around 7 to, 10 

hours to the end of test after 80 hours. The reasons for this are two- 

fold. Firstly spectrometric oil analysis has a normal particle size 

limit of around 10 microns, any particles above this size are 

incapable of being detected. The formation of these large spalled 

debris would go undetected, hence the apparent decrease in wear 

debris production after around 10 hours testing as shown in Fig. 115. 

Secondly, the Particle Quantifying Technique (PQ Index), relies on 

changes in magnetic field intensity caused by the debris deposited on 

the RPD slide. The PQ machine cannot differentiate debris 

morphologies, hence. a change over to fewer, but much chunker wear 

debris production by a fatigue type mechanism is shown as an 

apparent decrease in wear debris production as shown in Fig. 116, 

however SEM examination of the wear debris suggests that the wear 

has increased. The wear pattern adopted by the cam using a mineral 

base oil appears to be basically a two stage process, and is confirmed 

by examination of the tapersections shown in Figs. 125B and C. 
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i) At the start of the test, instantaneous asperity 

interaction occurs, leading to welding, rupture, and 

material transfer. The temperatures generated at 

the contacting surfaces ie. the hot spots, are 

sufficiently high to cause white-layer and 

associated adjacent tempered areas (Fig. 125b. 

The mechanical properties of the white layer 

produced are of a very hard, brittle nature thus the 

susceptability to cracking of both a mechanical and 

thermal nature are high. 
, 

ii) The mechanical/thermal cracking that occurs, 

under continued cyclic fatigue stressing under the 

rolling/sliding conditions, will cause detachment of 

large spalled particles, the size controlled to a 

certain extent by the hertzian stress patterns 

created under such contact conditions. This results 

in a pitted surface, shown in Fig. 125C, leading to 

the commonly encountered increases in cam-tappet 

clearance and operating noise commonly associated 

with a scuffing failure. 

5.2.2 The Effect of Surface Film Formation 

The results obtained from test 2A and 2b formed the basis of the test 

procedure in test 2c. It was shown with tests 2a and 2b the effects of 

the two oils on the 'running in' and formation of hardened steel cam 

surfaces and showed the gradual smoothing of the surface using 
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the fully formulated oil (test 2a) whilst the mineral base oil caused 

instantaneous scuffing and subsequent spalling of the cam surface. 

It was then thought that if a cam system was 'run in' satisfactorily 

with a fully formulated oil, the lubricant could be replaced with it's 

mineral base oil and the system could continue to 'run successfully. 

Test 2c was based on this idea and the test was run for an 80 hour 

duration, 40 hours 'running in' with the fully formulated oil, the test 

then stopped and the fully formulated oil replaced with the mineral 

oil and the test restarted for the remaining 40 hours to observe and 

examine the effectiveness of 'running in' and surface film formation. 

`f 

The friction results from test 2c can be seen in Fig. 126 and show' 

only a slight and gradual increase from 0.11 to 0.14 at the moment of 

test stoppage' after 40 hours and replacing the fully formulated oil 

with the mineral oil. 'Spectrometric analysis however showed a 

slow steady state increase in ferrous debris content from a concentration 

of 10 ppm after 1 hour test to a maximum of around 11-12 ppm after 

40 hour testing. Changing the fully formulated oil with the mineral 

base and the recommencement of the test up tosthe 80 hours total` 

test duration met with minimal increase in ferrous debris 

concentration, 4 ppm to the end of test, thus emphasising the lack of 

wear damage and material removal. This was also the case using the 

particle quantifying technique, the PQ index rose very slightly over the 

test period 40 to 80 hours to a maximum pof 8. SEM examination of 

both the" cam and 'follower surface showed no significant wear 

damage, the cam surface, (Fig. 129a) shows evidence of slight 

abrasive wear, which is consistent with 'satisfactorily 'operating 
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systems and the follower surfaces exhibit the corrosion effect of the 

fully formulated oil etching the white cast iron surface partly 

revealing the microstructure (Fig. 129b). Edax analysis of the cam 

surface shows evidence of film formation remaining on the surface, 

shown by elemental concentration peaks of S, P, Ca, Zn, these being 

consistent with work carried out by Watkins on the composition of 

these surface films. -Tapersectioning of { the cam and follower 

surfaces showed no evidence of surface or subsurface wear damage 

(Fig 130 and 131). SEM examination of the wear debris shows 

particle sizes in the range of 3-5 microns (Fig. 132).. 

To conclude, it can be seen during this experimental procedure that 

the cam and follower ran satisfactory in base oil conditions where 

previously these conditions would result in incipient -scuffing and 

spalling of the cam surface as shown by results from test 2B. 
, 

The 

reason for the satisfactory operation of the cam/follower couple was 

the previously. satisfactory 'running in' of the surface using the fully 

formulated oil, and the EP additive Z. D. D. P. present - in the oil 

formulation. This allowed fracture and plastic deformation to occur 

without the welding and rupture of asperities, and enabled a smoother 

surface to form thus enabling - elastohydrodynamic > lubrication 

conditions to prevail. , The lack , of - metallic contact is 

shown by-the continued presence of the additive film at, the end of 

the test (Fig. 129c). To conclude, the ability of cam/tappet systems, 

once satisfactorily 'run in' to operate with a mineral base oil with no 

significant additive additions, is due to two main reasons: - 

1) The formation of surface films from Z. D. D. P. additives in 
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the fully formulated oil restricted surface interactions that 

might occur during operation. 

2) The general smoothing of the surface during 'running in' 

with the fully formulated oil illustrated the relevance of 

the surface roughness safety factor, which is extremely 

important in elastohydrodynamic lubrication. 

This test ran however from at least the 40 hours period at which the 

fully formulated oil was changed with the mineral base to the end of 

test at 80 hours 'non stop' under predominantly elastohydrodynamic 

conditions with negligble surface interaction. This was considered 

unrealistic when comparing with service conditions in the Internal 

combustion engine where 'stop/start' conditions are frequently 

encountered in general motoring, with substantial boundary 

lubrication periods during an operating cycle. This lead to a test 

sequence - adopting stop/start conditions commonly encountered 

during operation, and became the basis of test 2D, where again the 

surfaces were 'run in' satisfactorily with a fully formulated oil for 40 

hours. The oil was then drained and replaced with a mineral base oil 

and the test recommenced and stopped at 10 hourly intervals and the 

surfaces analysed. This was to observe the effect of stop/start 

boundary conditions on surface films produced on cam surfaces by the 

fully formulated oil whilst running in a mineral base oil. 
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5.2.3 Surface Film Depletion Under Stop/Start Conditions 

The friction results from test 2D'(Fig. 126) show the same general 

trend as test 2C, ie. a high initial friction coefficient, decreasing to a 

lower steady state value of 0.12 up to 40 hours testing, then a 

gradual increase to the end of test of 0.14. This' was again apparent 

with spectrometric oil analysis and PQ index. A slow gradual 

increase in debris concentration is apparent after an initial steep rise 

in the first few hours of testing and 'this is consistent with a 

satisfactorily running system. After changing the two oils, 'the 

results for both SOAP and PQ index show another slow increase in 

wear debris concentration up to the end of test, S. O. A. P analysis 

rising from around 6 ppm at 41 hours testing immediately after 

changing of the oil up to a maximum of 9 ppm at the end of test, 

whilst the PQ index rose from 10 to 20 after 80 hours. The reason for 

the presence of wear debris concentrations at the start of the second 

half of the test commencing at 40 hours using the clean mineral base 

oil is due to the gravitational movement of the wear debris in the 

fully formulated oil sinking to the sump of the oil bath, and 

subsequently disturbed by the addition of the mineral base oil causing 

turbulence, thus agitating the debris in the bulk oil, and giving again 

the high initial increase. 

The increase in wear debris concentration In test 2D between 40 and 

80 hours testing shown by S. O. A. P. and PQ analysis (Fig. 127-128) Is 

higher than the wear debris concentrations of test 2C Incurred during 

the same test period. This is confirmed by SEM and Edax analysis 

of the surfaces with test time. Figs 133 to 140 and Tables 9 to 12 

show a gradual depletion in the distribution and concentration of 
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surface films on the follower surface. This can be seen with 

reference to the electron micrograph of the follower surface. After 

40 hours testing in the fully formulated oil, the surface films are 

clearly evident, shown by the dark smeared areas. These become 

progressively less apparent under the repeated stop/start boundary 

conditions, until after 70 hours testing the surface films'are bearly 

visible and are replaced with evidence of abrasive wear (Fig. 139). 

This is further confirmed by examination of the concentration peaks 

from EDAX analysis (Fig. 134,136,138 and'140), and show a gradual 

and general decrease in the concentration of the elements In the 

surface constituting the anti-wear film, these elements being P, S, 

and Zn. Quantitative analysis of these films can be seen in Tables 9- 

12 and these again show a decrease in the elemental concentration of 

the relevant elements in the surface films. The actual quantitative 

results fluctuate slightly due to the scanning span of the electron 

beam used in EDAX analysis not exactly analysing the same area 

during each analysis. There is also a variation in film concentration 

traversing across the follower surface itself. There appears to be 

however a surface film depletion or removal mechanism occurring 

under these stop/start conditions where boundary lubrication occurs 

at regular intervals during the second half of the test-sequence. The 

mechanism of this surface film removal appears to be of a 

predominatly mechanical nature and is best shown "by the cam 

specimen tapersection (Fig. 141). Present on, 'and within the 

subsurface is evidence of white layer formation and associated 

tempered regions. The white layer however is intermittently spread 

across the surface with no sharp boundaries between white layered 

areas and the adjacent tempered and parent microstructures. Also 

evident is the lack of any deliterious crack formation or spalling of 
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the surface. This white layer has formed under boundary lubrication 

conditions where surface interaction has occurred immediately after 

the combination of mechanical removal and/or thermal 

decomposition of the surface films at asperity contacts, due to the 

intense pressures and temperatures generated at these surfaces. The 

relative 'smoothness' of the surface after 'running in' makes the real 

contact stress as near to or equal to the design stress. This reduces 

the likelyhood of plastic deformation, welding and rupture of the 

surface using the mineral base oil. The production of this crack free 

white layer and the lack of any associated plastic deformation and 

wear damage of the surfaces, along with the generally small wear 

debris in the size range 2-5 microns, shows the actual wear occurring 

in this system, under these test conditions to be negligble. Although 

it is known that the production of white layer is detrimental to 

fatigue(103) and stress corrosion(104)the surface hardening that 

occurs can in fact improve the wear resistance(105,106). Griffiths 

and Furze(107) have carried out wear tests on surfaces where white 

layer had been deliberately produced and found a superior wear 

resistance of these white layered surfaces. However, in the authors 

view further running of this system would inevitably result in 

extensive wear damage under stop/start conditions if the test 

procedure was allowed to progress for long operating periods due to 

the removal of these surface films. The Z. D. D. P. additives in the 

system appeared to be of a sacrificial nature, replenishment of these 

films would need to occur by the addition of further anti-wear 

additives for the system to continue to run satisfactorily. 
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5.2.4 The Effect of Artificially 'Run In' Surfaces 

The 'ability' of successfully 'run in' cam and follower surfaces to 

operate under a mineral base oil conditions rely on satisfactory 

thin-film lubrication to prevent surface contact, assuming 

continuous, non-deviating operating conditions le. not 

'stop/start' conditions with lubrication regimes fluctuating between 

elastohydrodynamic and boundary. It was thought that if surfaces 

could be artificially 'run in' it might be possible to eliminate the use 

of E. P. additives and their deliterious effects on cam/follower 

systems such as pitting. This idea formed the basis of test 2E In 

which both cam and follower surfaces were artificially 'run In' prior to 

testing. The 'running in, process consisted of diamond lapping both 

the cam and follower surface to produce a metallographically smooth 

surface. Friction results for test 2E can be seen in Fig. 126 and show 

a gradual increase in the coefficient of friction to 0.18 after 30 hours 

which remained at this constant value up to the end of test. 

Spectrometric oil analysis and PQ index also showed this same general 

trend. The wear rates of the diamond lapped surfaces were overall 

slightly higher than the tests run in the fully formulated oil. The 

initial wear rates of these diamond lapped surfaces were not as 

severe as the as-ground surfaces used with the fully formulated oil, 

this is due to the artificial 'running in' process produced by this 

diamond lapping operation. The overall wear rates are higher however 

with the diamond lapped surfaces. These higher wear rates are shown 

by reference to Figs 127 and 128 and indicate that although the 

surfaces are metallographically smooth, they are still triboligically 
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rough and a considerable amount of microscopic plastic 

deformation and material removal has to occur to complete the 

'running in' cycle. The majority of wear of the diamond lapped 

surfaces occurred within the first 20 hours of testing and this was of 

a gradual nature, and is best indicated by the coefficient friction 

results in Fig. 126. The amount of visible wear damage however was 

negligible and appeared to be confined to areas of abrasive wear as 

shown in Figs 144 and 145, with no evidence of surface film 

formation. The extent of the initial surface lapping operation is still' 

evident, in the case of the cam surface where the manganese sulphide 

inclusions present these can still 'be seen (Fig. 144). Edax analysis of 

the cam surface shows no characteristic peaks which would provide 

evidence of surface film formation. The only significant concentrations 

on the surface apart from the typical iron peak were peaks for manganese 

and sulphur, however, the lack of any surface films showed that both 

the manganese and sulphur concentrations were due to the inclusions 

present in the steel. Tapersections taken from both the cam and 

follower wear specimens showed no evidence of any subsurface wear 

damage (Figs. 147 and 148) and SEM examination of the wear debris 

showed morphologies and sizes of the debris of a platelet form in the 

size range 1-8 microns. The results obtained from test 2E must not 

be allowed to mislead readers into thinking that diamond lapping of 

cam follower surfaces can be a commercial proposition in the motor 

industry. Test conditions again were undeviating and thus meant the 

system ran under predominantly elastohydrodynamic lubrication 

conditions throughout the test period. Under service operation, 
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stop/start conditions would prevail, leading to boundary lubrication 

which in the absence of additives and associated surface films would 

lead to catastrophic wear damage if run through a typical operating 

cycle. 

To conclude this part of the dicussion section, the author has 

illustrated the importance of satisfactory 'running in' of surfaces, 

with surface film formation of cam and follower systems. Using the 

relatively simple technique of acetate replication a surface 

topographical 'history' showing the sequences of 'running in' and 

'scuffing' using a fully formulated oil and it's mineral base equivalent 

has been established. Results show satisfactory 'running in' using a 

fully formulated oil occurs by a process of plastic deformation and 

fracture of asperities gradually resulting in smoother surfaces and 

satisfactory operation of the cam/follower system. However surface 

interaction, asperity welding and scuffing occurs using the mineral 

base oil, leading ultimately to catastrophic wear by a spelling 

mechanism. Other results show the importance of surface film 

formation during 'running in' in fully formulated oils leading 

ultimately to satisfactory operation in the mineral base oil under 

continuous, non-stop test conditions. Intermittent testing under 

stop/start conditions in the mineral base oil after surface film 

formation leads however, to gradual surface. film depletion by a 

mechanical and/or thermal mechanism. This leads to sporadic 

white layer formation and eventual failure by scuffing. Satisfactory 

running was also possible in a mineral base oil by artificially 'running 

in' the surface by a diamond lapping process. However, satisfactory 

operation was only possible under continuous running conditions, with 
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scuffing likely to occur under stop/start boundary conditions if these 

conditions were to predominate. 

5.3 OBJECTIVE THREE 

5.3.1 New Materials 

5.3.1.1 Ceramics 

This work only arose very late in the research- period and very little 

time was available and only preliminary results are reported here. 

The test procedure selected for this piece of work was deliberately 

chosen therefore to produce an unacceptable wear condition for the 

metallic couple and this was achieved by the use of mineral base oil with 

no significant 'anti-wear additives present and 'a mixed 

lubrication regime. 

In the case of the metallic couple, test 3A, Fig. 150 shows the very 

high coefficient of friction generated through the test duration and 

this is supported by the rough cam wear surfaces shown in Fig. 151, 

152b and 155b which are associated with scuffing shown by the 'white 

layer' present in Fig. 158a. These results were completely predictable 

and therefore formed the basis for the examination of the ceramics. 

In the case of Silicon Carbide and Sialon, the surfaces generated were 

smoother than the 'as produced' surfaces and this is very well illustrated 

by the visual examination of the ceramic surfaces themselves. Figs. 

154b and d show the Silicon Carbide and Sialon surfaces respectively 

and in both cases particles of silicon can be seen in the matrix shown 

by the small white areas. The presence of this unfused silicon is due 

to unsatisfactorily fabrication techniques and although thought to be 

deliterious to the bulk mechanical properties of the ceramics the 
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presence of these particles highlights clearly the extent of the 

polishing of the ceramic surfaces. The polished morphology of both 

the cam and follower surfaces from tests 3C and 3D is reflected by 

the very low frictional resistance, again suggesting a change to 

elastohydrodynamic lubrication from the initially mixed lubrication 

regime conditions at the start of test. 

As far as test 3B is concerned using the toughened zirconia the 

frictional resistance was higher than the other two ceramic tests but 

lower than for, the metallic couple (Fig. 150). The cam surface showed 

only slight evidence of scuffing (Fig. 155b) although it showed 

significant evidence of wear of an abrasive nature. The reason for 

this becomes apparent when Fig. 156d is examined, which shows 

general grooving of the zirconia surface suggesting a loose abrasive 

wear debris being produced which subsequently wears the cam 

surface by a three body wear mechanism. The mechanism of the micro 

- pitting on the zirconia follower surface shown in Fig. 156d, can best be 

explained by reference to zirconia/yttrium phase diagram shown in 

Fig. 191. The transformation toughening mechanism of zirconias are 

only possible by the addition of stablising elements, in this case 

yttrium in molecular percentages of around 2-3, shown by the broken, 

line on the left hand side of the phase diagram. On cooling Zr02 

from above 1200°C to room temperature the tetragonal - 

monoclinic transformation occurs. If however the Zr02 is finely 

divided, or a constraining pressure is exerted, on it by the matrix, 

then the zirconia particles can be retained in the metastable 

tetragonal form. The mechanism of toughening is considered to be a 

stress induced transformation of the metastable tetragonal particles 
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to the monoclinic form. If a crack is made to extend under stress, 

large tensile stresses are generated around the crack, 

especially ahead of the crack tip. These stresses release the matrix 

constraint on the tetragonal zirconia particle and if sufficiently large 

results in a net tensile stress on the particle, which under the new 

conditions will transform to a monoclinic symmetry. The volume 

expansion (> 3%) and shear strain ( 1.7%) developed in the particle 

causes the martensitic reaction, with a resultant compressive strain 

being generated in the matrix. Since this occurs in the vicinity of the 

crack, extra work would be required to move the crack through the 

ceramic, thus accounts for the increase in toughness and hence 

strength (Fig. 186). This toughening mechanism however assumes 

fracture initiation temperatures ranging from 0°C to a maximum 

temperature of around 500°C to ensure a satisfactory 

transformation, whereas hot spot temperatures at asperity points on 

contacting surfaces have been, in some cases calculated to be in 

excess of 1000°C. Reference to the phase diagram, (Fig. 187) shows 

these temperature dependent transformations to, be reversible, 

including the phases with yttrium contents in the 0-4% region. It is 

postulated therefore that the micro pitting which is apparent on the 

zirconia surfaces is due to the hot spot temperatures of the zirconia 

asperities when in contact with the steel cam which may be high 

enough to reverse the tetragonal/monoclinic transformation. 

This places the ceramic surface in the fully tetragonal phase form, 

thus completely, eliminating the possibilities of a stress induced 

strengthening transformation occurring. 

Another significant feature associated with the zirconia surface are 

the bright areas shown in Fig. 154d which appear to be metallic 
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transfer particles orientated in the direction of rubbing. Microprobe 

analysis shown in Fig. 159 clearly indicates the presence of iron 

transferred to it's surface, thus stimulating a like on like adhesive 

wear situation contributing to a higher friction resistance, Fig. 150. 

To summarize, this work shows the possible advantages of using 

certain ceramics for the use in finger follower applications in 

overhead camshaft systems. The results show the increased wear 

performance of the silicon carbide and sialon ceramics when 

compared with a standard steel and cast iron combination and the 

zirconia ceramic. This also further illustrates the importance of 

surface roughness criteria in determining the predominant lubrication 

regime during operation, ie the decreasing surface roughness of the 

silicon carbide and sialon/steel combinations leading to 

elastohydrodynamic lubrication and 'zero' wear and the increasing 

surface roughness of the white cast iron and zirconia/steel 

combinations leading to boundary lubrication and high wear scuffing 

conditions. These were based on predominatly mixed lubrication 

conditions at the commencement of testing, with the absence of any 

significant additives in the test oil. The hypothesis postulated by the 

author regarding the failure mechanism for the zirconia ceramic 

should be given serious consideration in the early design stages when 

considering these forms of ceramics for wear applications in such 

areas as the internal combustion engine where the possibility of oil 

starvation and surface interaction with ferrous materials is all too 

likely to occur. 

144. 



5.3.1.2 Ceramic Fibre Reinforced Aluminium Silicon Alloy 

The use of the ceramic fibre reinforced Al/Si alloy gave a lower 

friction coefficient than the hard faced alloys, reducing to a steady 

state value of around 0.13 after 10 hours which is consistent with a. - 

low overall wear rate. The wear that did occur was mainly from the 

cam nose as shown in Figs. 161 and 163 where evidence of slight 

delamination and material removal was clearly visible. Examination 

of the follower surfaces (Figs 162 and 164) shows the wear features 

of a material transfer nature. This was confirmed by EDAX and dot 

image analysis, Fig 165 a to c shows cam material impingement into 

the surface, producing a like on like adhesive wear situation which. 

would inevitably lead to an to increase in the frictional resistance. 

Wear debris produced from contacting surfaces shows the size and 

morphology of these large ferrous wear platelets contributing to this 

transfer and impingement phenomena. Examination of, the 

tapersections, from both the cam and follower, Fig. 166 and 167 

respectively show in the case of the cam no white layer production or 

sub surface deformation and cracking. The follower subsurface 

however showed a small amount of deformation indicated by 

the of individual ceramic fibres. Examination of a specimen 

in the 'as ground' condition however showed this deformation to be 

due to the original grinding operation. 

Donomoto and his fellow workers(38) have worked on these composite 

alloys for piston crown applications in high performance diesel 

engines and found such materials to have excellent seizure resistance 

against cast iron, good thermal conductivity and high strength 

i 
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at elevated temperatures when compared to many other candidate 

fibres such as carbon and titanate. The processing of such materials 

is carried out by casting the aluminium piston such that the ceramic 

fibres are impregnated in and around the piston crown and ring 

groove. The fibre reinforced section of the alloy however, does not, 

during a general operating cycle have any direct interaction with any 

other surface and appears only to strengthen the piston ring groove. 

This indirectly increases the rigidity of the piston ring, giving high 

overall strengths at the elevated temperatures clearly apparent in 

the combustion zone of the cylinder block. Its low bulk hardness 

however, when compared to other standard wear resistant materials 

and surface treatments means it's resistance to wear by modes such 

as abrasion, commonly encountered during the interaction of surfaces 

such as cam and follower systems in fired engines to be generally 

low. It was not possible however to simulate exactly such conditions 

in the test rig, but the ease with which ferrous debris became 

embedded in the surface and the subsequent Watering' left in the 

composite surface after detachment of the transferred material (Fig. 

164) shows the disadvantages of using such materials even though the 

materials themselves did not contribute directly to the general 

mechanism of wear. 

5.3.1.3 Hard Faced Cobalt and Nickel Alloys 

After an initial increase, 'a lower steady state friction coefficient of 

around 0.25 after 20 hours was obtained (Fig. 160). The surfaces of 

both the cam and cobalt alloy follower specimens showed extensive 

wear damage with material transfer onto both surfaces. The cam 

surface examined by both optical and scanning electron techniques 
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showed extensive plastic deformation, consistent with a scuffing type 

failure. Also apparent is evidence of the transfer of cobalt matrix 

from the follower in a thin platelet form, (Fig. 169 and 170). 

Examination of the follower surface also shows evidence of material 

transfer shown by the small white areas shown in Fig. 171. However, 

by far the most prominent wear feature is the attack of the cobalt 

alloy surface leaving what appears 
, 
to be evidence of the 

microstructure itself, caused by the removal of the solid solution 

matrix, leaving in some areas the carbide networks in relief. The 

majority of the published literature on the wear of these cobalt based 

alloys has concentrated on the excellent abrasive wear resistance of 

such alloys. This is due to the morphology and volume fraction of the 

carbide (Cr7C3) present in the, microstructure. Adhesive wear of 

such alloys has been mainly concerned with wear under dry 

conditions, ranging from mild, oxidative wear at low loads, to severe 

metallic wear at higher loads(31). There is however, no readily 

available literature of the wear of such materials under lubricated 

conditions, in particular for use in cam and tappet applications. 

Examination of the tapersections from both the cam and follower 

specimens shows, extensive white-layer production on the cam 

surface, (Fig. 172), indicating hot-spot temperatures in excess of 

1000°C being produced. The follower specimen tapersection shows 

extensive ferrous material transfer and embeddment, (Fig. 173), and 

this is confirmed by x-ray dot image analysis, (Fig. 175 a to c). The 

evidence of ferrous particle embeddment into the surface is shown by 

the overetched pitted areas on the surface caused by the reaction of 

the ferrous particle during the electrolytic etching of the cobalt 

matrix in 10% oxalic acid. Also evident is the smearing of ferrous 
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material over the cobalt surface shown by the x-ray image plot for 

iron in Fig. 175b. The morphology of the ferrous wear debris shown 

in Fig 174, having a thickness of up to 4 microns confirms this 

material transfer phenomena. 

The use of the hard-faced Nickel based alloy gave the overall highest 

friction coefficient, this being 0.28 after 20 hours testing, and again 

gave the same deliterious wear characteristic as the cobalt based 

alloy. Material transfer occurred on both the cam and follower surface 

Fig. 176-178. The nickel follower surface also showed a dela m ination type 

of wear occuring (Fig. 178). Tapersections taken through both the 

cam and follower surfaces confirmed this material transfer 

phenomena, shown by the brilliant white area on the cam surface, 

(Fig. 179), this being the smearing of the softer nickel matrix onto 

the cam surface. This would consequently cause a 'like on like' 

adhesive situation, resulting in the higher frictional resistance, 

increased temperatures and the characteristic darker tempered band 

evident within the cam sub-surface, (Fig. 179). Examination of the 

follower subsurface shows ferrous material impingement and 

embeddment into the nickel follower surface, (Fig. 180). Closer 

examination however shows the ferrous material present in the 

follower surface has started to diffuse into the nickel matrix forming 

in effect an iron/nickel alloy and this is confirmed by the faintness of the 

traces obtained from x-ray dot image analysis of the follower surface 

as shown in Fig. 182 a to c. 

The excessive wear rates that are apparent using both the cobalt and 

nickel hard faced alloys may be explained by reference to Table 13, of 
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the compatability of metal pairs to form alloys with each other. The 

higher the relative number the easier it is to achieve alloying between 

the two metals and it can be seen that for both the cobalt and nickel 

alloys that alloying with iron appears to be easy, both 

registering 4 on the chart. Reference to figs 188 and 189, the 

iron/cobalt and iron/nickel phase diagram again shows the ease at 

which solid solutions between the metals can occur, especially when 

considering temperatures of 1000°C being generated at the asperity 

hot spots. 

These results show that for the range of new materials tested for the 

applications of finger followers in valve train systems, the use of 

ceramics proved the most satisfactory. With the exception of the 

toughened zirconia the ceramics gave, under mineral base oil 

conditions, a lower frictional resistance, and smoother surfaces thus 

enabling elastohydrodynamic lubrication conditions to develop after 

the predominatly mixed lubrication conditions at the start of test. 

Test on the metallic combinations resulted in plastic 

deformation, material transfer and phase transformations and clearly 

showed a necessity for additive additions to be made if these systems 

were to run satisfactorily. However, the tests were carried out under 

non-deviating test conditions, changes in these conditions could have 

resulted in different wear behaviours of the materials. The materials 

used were obtained from commercial source and were not 

characterised prior to wear evaluation. This factor combined with 

the standard test conditions used and time constraints meant that 

these results constituted an exploratory investigation only providing a 

stimulus for further work involving the characterization of such 

materials. 
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CHAPTER SIX 

6. CONCLUSIONS 

6.1 The cam/follower test apparatus has proven to be a satisfactory 

and inexpensive complimentary technique to both dynomometer and 

fired test engine methods, for the appraisal of both materials and 

lubricants. 

6.2 Scuffing, pitting and polishing, which are the commonly encountered 

cam and follower wear failures were reproduced. 

i) Scuffing - The general scuffing form of wear with associated 

white layer formation, predominated in the mineral base oil 

under high load, boundary lubrication conditions. Scuffing 

occurred at low load, mixed lubrication conditions using the case 

hardened steel cam and chilled white iron follower combination. 

Subsequent tests using material combinations with free graphite 

present in the microstructure did not fail under similar test 

conditions. The fully formulated oil generally suppressed the 

onset of scuffing at both high and low loads, due to the presence 

of anti-wear additives such as zincdialkyldithiophosphate 

(Z. D. D. P. ) present in the oil. 

ii) Pitting - This form of failure was associated with the chilled 

white iron follower, using the fully formulated oil at high loads. 

Evidence showed the failure could have been initiated by either a 

surface, sub-surface or a stress corrosion mechanism. 
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iii) Polishing - This form of wear is associated with the fully 

formulated oil at low loads. The mechanism appeared to be 

associated with a chemical reaction between the contacting 

surfaces and the additives present in the oil. 

6.3 The test rig differentiated between the mineral base and the fully 

formulated oil. 

6.4 The use of the acetate replica technique proved a satisfactory 

method of analysing the dynamic change in surface topography of 

contacting surfaces. 

i) Using the fully formulated oil, the surfaces 'ran-in'satisfactorily 

by a process of plastic deformation and fracture. The surfaces 

became gradually smoother, allowing elastohydrodynamic oil 

films to form, thus eliminating surface contact. 

ii) Using the mineral base oil, the surfaces scuffed instantaneously. 

The mechanism of failure occurred by a two stage process. 

6.5 Results have shown that surfaces that have 'run-in' with a fully 

formulated oil can continue to run satisfactorily without scuffing 
failure, in a mineral base oil under continuous, non-stop conditions. 

6.6. Artificially 'run-in' surfaces, produced by a diamond lapping operation 

prior to testing, operate satisfactorily in a mineral base oil under 

continuous, non-stop conditions. 

6.7 Surfaces that have 'run in' satisfactorily with a fully formulated oil 
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and subsequently tested in, a mineral base oil under stop/start 

boundary lubrication conditions, will ultimately fail by a scuffing 

mechanism. 

6.8 From the range of new materials tested, the ceramics, with ° the 

exception of toughened zirconia, °proved the most satisfactory 

materials under mineral base oil conditions. 
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7. SUGGESTIONS FOR FURTHER WORK 

1. Areas of this research work have dealt with materials which are not 

yet fully characterised with particular reference to 

structure/property relationships and their effect on wear behaviour. 

This becomes evident with reference to the work carried out on the 

pitting of chilled white iron. No unified solution to this particularly 

serious wear problem can be sought whilst large differences in 

hardness and chilled depth, and the presence of cracks in components 

prior to testing exist. It is because of this that standardisation of 

chilled white irons becomes extremely important. Much more 

characterisation work also needs to be carried out on ceramics. The 

work carried out in the experimental section showed the possible 

advantages on using certain ceramics for components in the internal 

combustion engine. The work was however, considered only to be a 

preliminary study and further work, in particular the characterisation 

of these ceramics needs to be carried out before ceramics can 

become economically viable for commercial automobile usage. 

2. Further work should be carried out in the area of 'running in', with 

particular reference to the effect of different surface finishes 

applied to cams and follower, and observe their effect on producing a 

successfully running cam/follower, thus optimizing the surface 

characteristics of such components. 

3. Much interest has been shown recently on the continuous condition 

monitoring of machinery, especially in the light of a helicopter gear box 

failure resulting in loss of life. The use of this form of 

monitoring can also be an advantage in the cam/follower rig where a 

153. 



reliance on . wear debris analysis is made for the detection and 

monitoring of wear rates, as no direct method of wear rate 

monitoring is readily available. Recent advances in continuous 

monitoring techniques such as improved magnetic plug detectors and 

on-line wear debris monitors could lead to a better understanding of 

the wear rates occurring in such simulative, rig applications. It is 

envisaged that experimental work could be carried out whereby such 

monitoring aids could be attached to the rig during operation and 

compared with existing off-line techniques. Advice from this work 

would be invaluable to engineers concerned with selecting the most 

appropriate technique for their particular requirement. 
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Table 1. Materials and Treatments Commonly Used for Camshaft and 
Cam Follower Components 

CAMSHAFT CAM FOLLOWER 

Alloy Flake Cast Iron Induction Chilled Nodular Cast Iron 
Hardened 

Chilled Cast Iron Chilled Cast Iron 

Spheroidal Graphite Cast Iron Spheroidal Graphite Cast Iron 
Induction Hardened Induction Hardened and Tufftrided 

Pearlitic Malleable Cast Iron Hard Chromium Plating 
Induction Hardened 

0.1% Steel Case Carburised Carbo-nitrided 11% Manganese 
Molybdenum Steel 

0.35% C Steel Induction Hardened 0.1% C Steel Case Carburised 

0.7% Phosphorus Flake Cast Iron Alloy Flake Cast Iron Induction 
Induction Hardened Hardened 

Carbo-Nitrided Grey Flake Cast Hardened and Tempered Chilled 
Iron Cast Iron 

Carbo-Nitrided Spheroidal 
Graphite Cast Iron 
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MATERIAL DENSITY GRAIN ELASTIC HARDNESS FRACTURE POISSON'S 
SIZE MODULUS (GP&) TOUGHNESS RATIO 
(pm) (GPa) (pa)ms 

SILICON 3.40 5-10 410 33 4.1 0.16 
CARBIDE 

SIALON 3.20 1-5 300 20 5.4 0.26 

TOUGHENED 5.7 40-50 200 14 10 0.29 
ZIRCONIA 

WHITE CAS 7.7 - 207 435-550 - - 
IRON (DPN) 

TABLE 5. FOLLOWER MATERIAL PROPERTIES 

MATERIAL Ni Co Cr B Si C Fe w 

NICKEL BALANCE - 11.5 2.5 3.75 0.65 4.25 
'RICH' 

COBALT 
_ 

BALANCE 29 1.25 1.0 
- 

4.5 

'RICH' 

TABLE 6. CHEMICAL COMPOSITION OF HARD FACED COATINGS 

IBRE COMPOSITION DIAZETER DENSITY STRENGTH MODULUS 

Wm) (4/ßm3) (MPa) (! Pa) 

A12032 51% 

Aluminia 2.8 2.6 1,300 120,000 
Silica S102a 49% 

TABLE 7. PHYSICAL PROPERTIES OF REINFORCED FIBRE IN Al/Si ALLOY 
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17-1 

FIG. 12. COMPARISON OF TEST RIG AND EUROPEAN FORD FINGER 

FOLLOWER SYSTEM. 
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SECTION A-A 

CAM SPECIMEN DIMENSIONS IN MM 

FIG. 13A. CAM SPECIMEN DIMENSIONS. 
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FIG. 13B. FOLLOWER SPECIMEN DIMENSIONS. 
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FIG. 14. TEST RIG CONFIGURATION. 
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FIG. 15. DATA LOGGING SYSTEM. 

FIG. 16. DATA LOGGING AND TESTING LAYOUT. 
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FIG. 17. EMISSION SPECTROMETRY 
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FIG. 18. DIRECT READING FERROGRAPH. 
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FIG. 19. ANALYTICAL FERROGRAPH. 
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FIG. 20. ROTARY PARTICLE DEPOSITOR (R. P. D. ) 

FIG. 21. PARTICLE QUANTIFIER (PQ) 



REPLICATION TECHNIQUE. 

WEAR SURFACE. 

CELLULOSE ACETATE. 

FL000 SURFACE WITH 

ACETONE. 

ACETONE SOFTENS & 

ADOPTS CONTOUR OF 

WEAR SURFACE. 

ALLOW TO DRY, PEEL 

OFF. 8 INVERT THROUGH 

CIIDZLE21ý 1801, 

FIG. 22. REPLICATION TECHNIQUE 
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Y S 

kAi WEAR SURFACE REPLICA 
( OPTICAL) 

wY 

, tat` 
ý'ni ,x 

WEAK SUR, SFM. 

FIG. 23. COMPARISON OF REPLICATED AND S. V1. WEAR SURFACES. 
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FIG 24. PREPARATION OF A TAPER SECTION THROUGH A WEAR SURFACE FOR BOTH 
OPTICAL MICROSCOPY AND SEN EXAMINATION. 

a. Epoxy resin applied to the wear surface. 

b. Preparation of a block of uncured bakelite. 

c. Eleven degree angle ram. 

d. Final mounting of the wear specimen. 

e. Mounted specimen removed from the pressure cylinder. 
f. Specimen inverted through 180°, "top surface ground, polished 

and etched. At this stage optical metallographic examination 
is carried out. 

g. Wear specimen removed from the bakelite and epoxy coating is 
then removed. 

h. Wear surface topography and metallurgical substrate ready for 
simultaneous viewing in the SEM. 
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FiG. 27a. CAM SURFACE, 'AS (; ROUND' OP'! '.. 
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FIG. 27b. Cf: S'l I \, i_: A .I 11I AE, SUH1ýAý'I: ý_ý11I'1(': AL. 
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FIG. 28. ýl ,, r)LI, V11'Ek V EAR SURFACE, WORN/ 
UNWORN INTERFACE, OPTICAL. 



FIG. 29. TEST IA, CAM WEAR SURFACE, 

ELECTRON MICROGRAPH 

Aj% 

2ON 

FIG. 30. TEST IA, FOLLOWER WEAR SURFACE, 

WORN/UNWORN INTERFACE, ELECTRON MICROGRAPH. 
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FIG. 32, TEST IA, FOLLOWER SPECIMEN TAPERSECTION. 

r 

FIG. 33, TEST 1A, WEAR DEBRIS, ELECTRON MICROGRAPIH. 
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FIG. 36, TEST 1B, FOLLOWER WEAR SUKrt\U1 wUKIf 

UNWORN INTERFACE, OPTICAL. 
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FIG. 37. TEST 113, CA. v1 WEAR SURFACE, ELECTRON MICROGRAPH. 
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FIG. 38. TEST 1B, FOLLOWER WEAR SURFAJL, I: Lt; (. "I KON , Ai1CRu(iRAPH. 
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FIG. fOWVING 

CARBIDE TRANSFER AND EMBEDDMENT ON WEAR SURFACE. 
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FIG. 43, lL. i iii, i% I.. At: i ;, LC I Iýý_)ý II, iiOUKAVH. 
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FIG. 44. TEST IC, CAM WEAR SURFACE, OPTICAL. 
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FIG. 45, TEST IC, FOLLO \ LIZ I%EAR SURFACE, OPTICAL. 
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FIG. 46. TEST IC, C, -. M WEAR SURFACE, , ruv : A1ICROGRAPH. 

loop 

\R SURFACE ELECTRON MICROGRAPH. 
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FIG. 50, TEST IC, WEAR ULBRIS, ELECTRON MICROGRAPH. 



& 
20p 

FIG. 51. TESL IU, CAM WEAR SUKiýACL, LLEC1'KUN MICRO RAPH. 

20N 

FIG. 52. TEST 1D, FOLLOWER WEAR SURFACE, ELECTRON MICROGRAPH. 
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FIG. 53. TEST 1D, CAM SPECIMEN TAFLIUSL ,I LULN. 
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FIG. 54. TEST 1D, FOLLOWER SPECIMEN TAPERSECTION. 
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FIG. 58. TEST 1E, CAM WEAK SURFACE, UPI'ICAL. 
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FIG. 59. TEST IL, I- LL. I)«ER I\LAIt SLRF \''I:, 1)P1 WAL. 
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FIG. 60. TEST 1E, CAM WEAR SURFACE, ELECTRON MICROGRAPH. 
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FIG. 61. TEST IE, FOLLOWER WEAR SURFALL, LLL( I RUN MICROGRAPH. 
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FIG. 62. TEST IE, CAM SPECIMEN TAPERSECTION. 
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FIG. 63. TEST IE, FOLLOWER SPECIMEN TAPERSECTION. 
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FIG. 64. TEST 1E, WEAR DEBRIS, ELECTRON MICROGRAPH. 
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FIG. 65. TEST IF, CAM WEAR SURFACE, OPTICAL. 
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FIG. 68.1 LSI IF, CAM WEAK SUKEALL, tLrý- nviý . ýiýaýýý. «ý" """ 
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FIG. 69. TEST IF, FOLLOWER WEAR SURFACE, ELECTRON MICROGRAPH. 
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FIG. 71. TEST 1F, FOLLOWER SPECIMEN TAPERSECTION. 
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-z. 72. TEST IF, WEAR DEBRIS, ELECTRON MICROGRAPH. 
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FIG. 73.11: 51' 1k,, LL ý. l WEAR SURFACE, ELEC'I'RUN MICROGRAPH. 
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FIG. 74. TEST Ri, FOLLOWER WEAR SURFACE, LLECTRON iMIICROGRAPII. 
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FIG. 78. TEST 1H, CAM WEAR SURFACE, ELECTRON MICROGRAPH. 
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FIG. 79. TES[' III, FOLLOWER WEAR SURFACE, ELECTRON MICROGRAPH. 
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FIG. 87. TEST' 11, FULLS ýý UK ýý "ý tý ,ý ýý C L, ELECTRON 

MICROGRAPH. 
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FIG. 88. TEST 11, CAM SPECIMEN TAPEItSECTION. 
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FIG. 91. TEST IJ, CAM WEAR SURFACE, OPTICAL. 

FIG. 92. 
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TEST iJ, CAM WEAR SURFACE, ELECTRON 

MICROGRAPH. 
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FIG. 94. TI: _- :, (' \ \1 SPECIMEN I'ArhxbLU I1UN. 
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FIG. 95. TEST 1J, FOLLOWER Sl'Li_; i. v1L; v i \f'LHSECTION. 
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FIv. 98. TEST IN, CAM WEAR SURFACE, ELECTRON 

MICROGRAPH. 
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FIG. 99. TEST 1K, FOLLOWER WEAR SURFACE, ELECTRON 

MICROGRAPH. 
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FIG. 100. TEST 1K, CAM SPECIMEN, 'rAPLRSEC'I'ION. 

200 
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FIG. 101. TEST 1K, FOLLOWER SPECIMEN TAPERSEU'FIUN. 

20p p 
-1 

FIG. 102. TEST 1I , WEAR DEBRIS, ELGC'l'RON MICROGRAPH. 
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FIG. 107. TEST 1L, FOLLOWER SPECIMEN TAPERSECTION. 
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Fly. 108. 'I'LS[ 1L, ALA R 1)LBMS, LLE(-"l'KON MICROGRAPH. 
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FIG. 109. COMPARISON OF SURFACE ROUGHNESS TRACES USING A 
CONVENTIONAL SINGLE TALYSURF TRACE. a) WITH A'3D' COMPUTORISED 
MULTI TRACE. b) "AS GROUND SURFACE" (NOT TO SCALE). 
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FIG. 110. COMPARISON OF SURFACE ROUGHNESS TRACES USING A 
CONVENTIONAL SINGLE TALYSURF TRACE. a) WITH A '3D' COMPUTORISED 
MULTI-TRACE. b) "SCUFFED SURFACE". (NOT TO SCALE). 

SCUFFED 140PNCLA 
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FIG. 111. COMPARISON OF SURFACE ROUGHNESS TRACES 
. 
USING A.. 

CONVENTIONAL 'SINGLE' TALYSURF TRACE. a) WITH A '3D' COMPUTORISED 
MULTI-TRACE. b) "PITTING WEAR" (NOT TO SCALE). 

PITTED 340{fCLA 
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FIG. 112. COMPARISON OF SURFACE ROUGHNESS TRACES USING A 
CONVENTIONAL 'SINGLE TALYSURF TRACE. a) WITH A'3D' COMPUTORISED 
MULTI-TRACE b) "SEVERE WEAR". (NOT TO SCALE). 
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FIG. 113. COMPARISON OF SURFACE ROUGHNESS TRACES USING A 
CONVENTIONAL 'SINGLE TALYSURF TRACE a) WITH A '3D' COMPUTORISED 
MULTI-TRACE b) "POLISHING WEAR". (NOT TO SCALE). 
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FIG. 117. OPTICAL EXAMINATION OF REPLICATED CAM 
SURFACES. 

A) TEST 2A -'AS GROUND' b) TEST 2B -'AS GROUND' 
c) TEST 2A - 15 MINUTES d) TEST 2B - 15 MINUTES 
e) TEST 2A - 30 MINUTES F) TEST 2B - 30. MINUTES 
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FIG. 118. OPTICAL EXAMINATION OF REPLICATED CAM 
SURFACES. 
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c) d) 

a) TEST 2A - 45 MINUTES b) TEST 2B - 45 MINUTES 
c) TEST 2A -1 HOUR d) TEST 2B -1 HOUR 
e) TEST 2A -2 HOURS f) TEST 2B -2 HOURS 
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FIG. 119. OPTICAL EXAMINATION OF REPLICATED CAM 
SURFACES. 

a) TEST 2A -3 HOURS b) TEST 2B -3 HOURS 

c) TEST 2A -4 HOURS d) TEST 2B -4 HOURS 

e) TEST 2A -7 HOURS f) TEST 2B -7 HOURS 
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FIG. 120. OPTICAL EXAMINATION OF REPLICATED CAM 
SURFACES. 

a) TEST 2A - 11 HOURS b) TEST 2B - 11 HOURS 
c) TEST 2A - 19 HOURS d) TEST 2B - 19 HOURS 
e) TEST 2A - 24 HOURS f) TEST 2B - 24 HOURS 
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FIG. 121. OPTICAL EXAMINATION OF REPLICATED CAM 
SURFACES. 

a) TEST 2A - 30 HOURS b) TEST 2B - 30 I-IOU RS 
c) TEST 2A - 45 HOURS d) TEST 2B - 45 HOURS 
c) TEST 2A - 70 HOURS f) TEST 2B - 70 HOURS 
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FIG. 122. CAM SURFACE, AS POLISHED AND ETCHED 2% 
NITAL. 

11-p 

FIG. 123. TEST 2A, CAM SURFACE, FULLY F ORMULATED 
OIL. 75 HOURS, ETCHED 2% NITAL. 
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FIG. 124. WEAR DEBRIS - ELECTRON MICROGRAPHS. 

a) TEST 2A -5 MINUTES b) TEST 2B -5 MINUTES 
c) TEST 2A - 50 HOURS d) TEST 2B - 50 HOURS 

a) IVEAn, JLbiyi5, FUbL1 rORJIULATED 
5 MINUTES 

b) WEAR DEBRIS, BASE OIL 
5 MINUTES. 

c) WEAR DEBRIS, FULLY FORMULATED 
50 HOURS 

d) WEAR DEBRIS, BASE OIL 
50 HOURS 



2 

FIG. 125. OPTICAL EXAMINATION OF CAM SPECIMEN TAPERSECTIONS. 

a) TEST 2A - CAM TAPERSECTION 75 HOURS b) TEST 2B - CAM TAPER- 
SECTION 1 HOUR 

c)TEST 2B - CAM TAPER- 
SECTION 75 HOURS. 

b) CAM TAPERSECTION, 
BASE OIL. 1 HOUR. 

a) CAM TAPERSECTION, FULLY 
FORMULATED OIL. 75 HOURS 

c) CAM TAPERSECTION, 
BASE OIL. 75 HOURS. 
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FIG. 129A. TEST 2 : EL' b1ICROGRAPH 

Ilk' 
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loop 

FIG. 129B. TEST 2C - FOLLOV ER WEAR SURFACE ELECTRON MICROGRAPH. 

a_a CMr 'I K Ff "w 
alf" tV !" tV/CMAH 

Link $1 t e* W -i. nr 27-Jul-M 

ýI 

FIG. 129C. TEST 2C - CAM WEAR SURFACE X-RAY ENERGY SPECTRA. 
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FIG. 130. TEST 2C - CAM SPILCt, A1EN TAPERSECTION. 

2ý 

FIG. 131. 'I EST 2C - FOLLOýtiEIt SPI; (=1, blt N1 

20p 
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FIG. 132. 'T'EST 2C - WEAK DEBRIS, ELECTRON MICROGRAPH. 



40N 

FIG. 133. I ,.. ,,. il l1, 
FOLLOWER WEAR SURFACE, 40 HOURS. 

''IG. 134. 'LEST 21) - X-RAY ENERGY SPECTRA, 
FOLLOWER WEAR SURFACE, 40 HOURS. 

WINDOW WINDCJ FIRST LAST NET EFF %AGE 
LABEL CENTR: CHAN CHAN INTEGRAL FACTOR TOTAL 

P 2060 1980 2160 222 1.00 0.17 
S 2320 2220 2440 1724 1.00 1.30 
CA 3700 3600 3800 1188 1.00 0.90 
FE 6380 6140 6640 128220 1.00 96.77 
ZN 8600 8480 8740 1143 1.00 0.86 

TABLE 9. SEMI-QUANTITATIVE ELEMENTAL ANALYSIS, 
FOLLOWER WEAR SURFACE, 40 HOURS. 



40p 

FIG. 135. TES 1, '3u , lJ`, 'fRON N11CROGRAPH FOLLOWER 
WEAR SURFACE, 50 HOURS. 

FIG. 136. 

WINDOW WINDOW FIRST LAST NET EFF. XAGE 
LABEL CENTRE CHAN CHAN INTEGRAL FACTOR TOTAL 

F 2040 1960 2140 291 1.00 0.24 
S 2300 2200 2420 681 1.00 0.57 
CA 3680 3580 3780 864 1.00 0.72 
FE 6360 6120 6620 117354 1.00 98.21 
ZN 8580 8460 8720 301 1.00 0.25 

TABLE 10. SEMI-QUANTITATIVE ELEMENTAL ANALYSIS FOLLOWER 
WEAR SURFACE, 50 HOURS. 

TEST 20 - X-RAY ENERGY SPECTRA, 
FOLLOWER WEAR SURFACE, 50 HOURS. 



40p 

FIG. 137. TEST 20 - ELECTRON MICR( ! Lii'I1, FOLLOWER 
WEAR SURFACE, 60 HOURS. 

FIG. 138. LOWER 

WINDOW WINDOW FIRST LAST NET EFF. XAOE 
LABEL CENTRE CHAN CHAN INTEGRAL FACTOR TOTAL 

P 2040 1960 2140 3.12 1.00 0.24 
S 2300 2200 2420 561 1.00 0.44 
CA 3680 3580 3780 992 1.00 0.78 
FE 6360 6120 6620 125593 1.00 98.44 
ZN 8580 8460 8720 123 1 . 00 0 10 

TABLE 11. SEMI-QUANTITATIVE ELEMENTAL ANALYSIS, FOLLOWER 
WEAR SURFACE, 60 HOURS. 

WEAR SURFACE, 60 HOURS. 



4ý 

FIG. 139. TEST 2ll - ELECTRON MICROGItAAPII FOLLOWER 
WEAR SURFACE, 70 HOURS. 

FIG. 140. TEST 2D - X-RAY ENERGY SPECTRA FOLLOWER 
WEAR SURFACE, 70 HOURS. 

WINDOW WINDOW FIRST LAST NET EFF. XAGE 
LABEL CENTRE CHAN CHAN INTEGRAL FACTOR TOTAL 

F 2040 1960 2140 770 1.00 0.16 
S 2300 2200 2420 940 1.00 0.19 
CA 3680 3580 3780 2856 1.00 0.59 
FE 6360 6120 6620 481740 1.00 98.82 
ZN 8580 8460 8720 1211 1.00 0.25 

TABLE 12. SEMI-QUANTITATIVE ELEMENTAL ANALYSIS FOLLOWER 
SURFACE, 70 HOURS. 
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FIG. 142. [ Est' ?U-i vi. L0ýý i. i, ý. 'TION. 
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FIG. 143. IL, '! -, i) - ý%!:. ýi: l)I. I ], f-ý_ Iii: ii Oy '. 11, i; (_)GRAPH. 

TEST ZU - CAM SYECIMEN TAPERSECTION. 



FIG. 144. TEST 2E - ELECTRON 
SURFACE. 

MICROGRAPH CAM WEAR 

i 
loop 

loop--, 

FIG. 145. 

FIG. 146. 

ER 

'AM WEAR 

WEAR SURFACE. 

SURFACE. 
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FIG. 147. 

200 P 

FIG. 148. TEST 2E - FOLLOWER SPECIMEN TAPERSECTION. 

40N 
I 

FIG. 149. 'J'EST 2E - ý\ EAK L)L: BRIS LLLý- H ON ; ý11L {OGRAPH 

TEST 2E - CAM SPECIMEN TAPERSECTION. 
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FIG. 152. CAM SURFACES, OPTICAL 
EXAMINATION. I 

a) 'AS GROUND' 

b) 

c) 

d) 

e) 

TEST 3A - WORN AGAINST A ". "`, 
CHILLED IRON FOLLOWER 

TEST 3B - WORN AGAINST A 
TOUGHENED ZIRCONIA 
FOLLOWER ýtý( } 

TEST 3C - WORN AGAINST A 
SILICON CARBIDE FOLLOWER 

TEST 3D - WORN AGAINST A 
SIALON FOLLOWER 

200 
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FIG. 153. FOLLOWER SURFACES, OPTICAL EXAMINATION. 

a) TEST 3A - CHILLED WHITE IRON, 'AS GROUND'. 

b) TEST 3A - CHILLED WHITE IRON, 'WORN'. 

c) TEST 3B - TOUGHENED ZIRCONIA, 'AS FINISHED'. 

d) TEST 3B - TOUGHENED ZIRCONIA, 'WORN'. 
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FIG. 154. FOLLOWER SURFACES, OPTICAL EXAMINATION. 

a) TEST 3C - SILICON CARBIDE, 'AS FINISHED'. 

b) TEST 3C - SILICON CARBIDE, 'WORN'. 

c) TEST 3D - SIALON, 'AS FINISHED'. 

d) TEST 3D - SIALON, 'WORN'. 
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FIG. 155. CAM SURFACES, S. E. M. 
EXAMINATION. 

a) 'AS GROUND' 

b) TEST 3A - WORN AGAINST A 
CHILLED WHITE IRON 
FOLLOWER t 

Y 
li`3p 

t 

c) TEST 3B - WORN AGAINST A 
TOUGHENED ZIRCONIA 
FOLLOWER " ` 

d) TEST 3C - WORN AGAINST A 
SILICON CARBIDE FOLLOWER 

e) TEST 3D - WORN AGAINST A 
MINE@ " 

SIALON FOLLOWER 
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d) 

e) 
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FIG. 156. FOLLOWER SURFACES, S. E. M. EXAMINATION. 

a) TEST 3A - CHILLED WHITE IRON, 'AS GROUND'. 

b) TEST 3A - CHILLED WHITE IRON, 'WORN'. 

c) TEST 3B - TOUGHENED ZIRCONIA, 'AS FINISHED'. 

d) TEST 3B - TOUGHENED ZIRCONIA, 'WORN'. 
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FIG. 157. FOLLOWER SURFACES, S. E. M. 

a) TEST 3C - SILICON CARBIDE, 'AS FINISHED'. 

b) TEST 3C - SILICON CARBIDE, 'WORN'. 

c) TEST 3D - SIALON, 'AS FINISHED'. 

d) TEST 3D - SIALON, 'WORN'. 



a) 

FIG. 158. CAM SPECIMEN '1 APERSECTIONS. 

d) 100N 

f 

a) TEST 3A - WORN AGAINST A CHILLED WHITE IRON FOLLOWER. 

b) TEST 3B - WORN AGAINST A TOUGHENED ZIRCONIA FOLLOWER. 

c) TEST 3C - WORN AGAINST A SILICON CARBIDE FOLLOWER. 

d) TEST 3D - WORN AGAINST A SIALON FOLLOWER. 

FIG. 159. 

40 p 

TEST 313. TOUGHENED ZIRCONIA FOLLOWER WEAit SURFACE. 

Fe LINE SCAN SHOWING MATERIAL TRANSFER. 
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FIG. 161. TEST 3E, CAM WEAR SURFACE, OPTICAL. 
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FIG. 162. TEST 3E, FOLLOWER 4 EAK SUuPIIU: AL. 
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FIG. 163. TEST 3E, CAM WEAR SURFACE ELECTRON MICROGRAPH. 
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FIG. 164. TEST 3E, FOLLOWER WEAR SURFACE ELECTRON MICROGRAPH. 
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FIG. 165. TEST 3E, FOLLOWER WEAR SURFACE MICROGRAPH, AND 
X-RAY DOT IMAGE. 

a) ELECTRON MICROGRAPH 

b) X-RAY DOT IMAGE FOR IRON (Fe) 

C) X-RAY DOT I"IAGE FOR ALUMINIUM 



FIG. 166. TEST 3E, CAM SPECIMEN TAPERSECTION. 

FIG. 167. TEST 3E, FOLLOWER SPECIMEN, TAPERSECTION. 
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FIG. 168. TEST 3E, WEAR DEBRIS, ELECTRON MICROGRAPH. 
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FIG. 170. 

FIG. 171. 
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TEST 3F, CAM 
MICROGRAPH. 
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Fig. 172. Test 3F, Cam Specimen Tapersection. 
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Fig. 173. Test 3F, Follower Specimen Tapersection. 
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Fig. 1 74. Test :; F, Wear Debris, Electron Micrograph 
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FIG. 175. TEST 3F, FOLLOWER ý LAli s)UUP CL, LLi* I ION 
MICROGRAPH AND X-RAY DOT IMAGE. 

a) ELECTRON MICROGRAPH 
b) X-RAY DOT IMAGE FOR IRON 

c) X-RAY DOT IMAGE FOR COBALT 



loop 

FIG. 176. TEST 3G, CAM WEAR SURFACE, OPTICAL. 

4- 

FIG. 177. TEST 3G, CAM WEAR SURFACE, ELECTRON MICROGRAPH. 

20p 

FIG. 178. 'ILb1 3u, I i.: ýt . i� -hr-ý, ., . -. i t, uN 
MICROGRAPH. 



2Hýý 

FIG. 179. TEST 3G, CAM SPECIMEN TAPERSECTION. 

loop 
, 

FIG. 180. TEST 3G, FOLLOWER SPECIMEN TAPERSECTION. 
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FIG. 181. l'ESI' 3(.;, ýtiEAiC Dhbi-, IS, l1l; (; 1'R0N AIICR061(APH. 
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FIG. 182. TEST 3G, FOLLOWER WEAR SURFACE, ELECTRON 
MICROGRAPH AND X-RAY DOT IMAGE. 

a) ELECTRON MICROGRAPH 

b) X-RAY DOT IMAGE FOR IRON 

c) X-RAY DOT IMAGE FOR NICKEL 
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FIG. 183. a) 

b) 

c) 

B. L. B. L. M. C. 
ROVER 

b) 

B. L. B. L. M. C. 

TRIUMPH 
c) 

4 mm 

B. L. M. C. 'MINI' TAPPET HARDNESS SURVEY 

B. L. 11. C. 'ROVER' TAPPET HARDNESS SURVEY 

B. L. M. C. TRIUMPH TAPPET HARDNESS SURVEY 
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FIG. 184. a) 
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VAUXHALL 
VICTOR 

a) 

FORD 

DOVER 
b) 

B. L. M. C. 
MAXI 

4 mm 

VAUXHALL 'VICTOR' TAPPET HARDNESS 
SURVEY 

FORD 'DOVER' TAPPET HARDNESS SURVEY 

c) B. L. M. C. 'MAXI' TAPPET HARDNESS SURVEY 
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FIG. 185. SHOWING CRACKS IN 'AS RECEIVED' CHILLED IRON 
TAPPET 

a) CRACKS RUNNING AT 90° TO SURFACE 

b) RANDOM ORIENTATION OF CRACK PATH 

c) OXIDE FILLED CRACK 
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FIG. 188. IRON/COBALT PHASE DIAGRAM. 

Fe-Ni Iron-Nickel 
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FIG. 189. IRON/NICKEL PHASE DIAGRAM. 



>LIST 
232 MODE2 t 016 0 

1010 DIN 6RAPHI(N) i DIM 6RAPHY(250) a ARRAY'0 I MC" ' 
1020 PROCSTART 
1030 PRINT t PRINT ' CALL VARIABLES' 
1040 TEST   GET t IF TEST0>32 THEN 1040 
1050 MODE? 
1060 PRINT 'Press RETURN after each entry' 
1070 VDU2 t PRINT i VDUI, 27,64 
1080 INPUT 'Date 'V 
1090 INPUT *Test number 'V 
1100 INPUT 'Ca. Material 'V 
1110 INPUT 'Follower Materiel 'V 
1120 INPUT 'Oil Type 'V 
1130 INPUT 'Oil Tamp 'V 
1140 INPUT 'Tact speed 'V 
1150 INPUT 'Test Duration 'V 
1160 VDU3 t PRINT 'Any additional information? ' iVDU2 t INPUT IN 
1170 PRINT t PRINT ' Time Oil C Fir C Friction u' 
1180 VDUI, 27,65, B PRINT 
1190 VDU3 
1200 MODE2 
1210 PROCSTART 
1220 PRINT t PRINT START LOBBING' 
1230 PRINT PRINT s PRINT ' tE TO END' 
1240 PRINT t PRINT ' eM FOR MARKER' 
1250 TEST ' GET t IF TEST032 THEN 1250 
1260 MODE1 
1270 VDU23IS2O2 0a OJ 
1280 VDU23 240,255,253,255,255,0,0,0,0 
1290 TM TIAE 
1300 

VDU19,3 144 10601011 COLOUR 129 t COLOUR 3 
10 T 

1320 PRINT ' Tribology of Overhead Cis Shafts 
1330 PRINT' 
1340 COLOUR 2 
1350 PRINT " Friction u'I 
1360 COLOUR 0 
1370 PRINT " Oil Tamp Follower te. p 'l 
1380 COLOUR 130 t COLOUR It GCOL 0,129 
1390 FOR I. 0 TO 11 t VDU240 t NEXT 
14000 

COLOR 
0i31ý11,5 aV U24,385I0I12791895; 

1420 REPEAT 
1430 TIME 
1440 PROCINPUT I PROCGRAPH t PROCPRINT t PROCOPTIONS 
1450 IF TIME-T(1000 THEN 1450 
1460 UNTIL TIME-TM)90000 
1470 REPEAT 
1480 TIME 
1490 PROCINPUT t PROCBRAPH t PROCPRINT t PROCOPTIONS 
1500 IF TINE-T(3000 THEN 1500 
1310 UNTIL TIME-TM)180000 
1520 REPEAT 
1530 T"TIME 
1540 PROCINPUT a PROCBRAPH t PROCPRINT I PROCOPTIONS 
1550 TI'TIME 
1560 IF TIME-TI(3000 THEN 1560 
1570 PROC8RAPH I PROMPTING 
1580 IF TIME-T<90000 THEN 1350 
1590 UNTIL FALSE 
1600 END 
1620 DEF PROCSTART 
1630 COLOUR 130 1 CLS 
16 
160 50 

PRINTj82PRIN1OMINT 

1660 COLOUR 5 
1670 PRINT " TRIBOLO6Y GROUP' 
1680 PRINT t PRINT 
1690 COLOUR 1 
1700 PRINT ' Ces and Follower' 
1710 PRINT ' Rig Data logger' 

APPENDIX 1. DATA LOGGING SYSTEM COMPUTER PROGRAM. 



1720 PRINT i PRINT 
1730 COLOUR 4 
1740 PRINT ' Version 1.0 1984' 
1750 PRINT 
1760 COLOUR 15 
1770 

COLOR 
0 131 

1790 PRINT i PRINT i PRINT i PRINT 
1800 PRINT ' Press Space Bar To' 
1810 ENDPROC 
1820 DEF PROCINPUT 
1830 FOR CHI. 1 TO 4 
1840 ACC 0 
1850 FOR LOOP"1 TO 100 
1860 ACC"ACC+ADVAL(CHI) 
1870 NEXT 
1880 ACC"ACC/1600 
1890 IF CHI. 1 THEN CH1"((ACC-1000)+0.025)118 
1900 IF CHI. 2 THEN CH24CC+0.04+2.5 
1910 IF CHI93 THEN CH3"ACC+0.04+6.5 ELSE CH4"ACC+0.04 
1920 NEXT 
1930 ARRAY"ARRAY+1 
1940 BRAPHY(ARRAY)"CHit600+200 
1950 BRAPHX(ARRAY)"(L08(1TIME-TM)/6000))+180+460 
1960 IF BRAPHX(ARRAY) (460 THEN BRAPHX(ARRAY) 460 
1970 li420405 iCOLOUR 3tPRINT TAB(3)CHI 
1980 ENDPROC 
1990 DEF PROCBRAPH 
2000 HR"((TIME-TM) DIV 360000) MOD 24 
2010 MIN (ITINE-TM) DIV 6000) MOD 60 
2020 SEC. ((TIME-TM) DIV 100) MOD 60 
2030 VDU5 i SCOL 00i CL8 
2040 1X"620105 i MOVE 480 980 
2050 PRINT CH2l' C 1; CH31' C' 
2060 11420002 * SCOL 00 
2070 MOVE 450,100 f PRIAT 'Run Time '1HRIMINISECI 
2060 
2090 

DRAM 
1100 

ý800Vu 
DRA81200,200 1 DRAW 450 200 DRAW 450,800 

2100 MOVE 450,180 s PRINT '1 10 Log Mint 1E3 1E4' 
2110 6COL 02 
2120 MOVE 400,790 ý PRINT '1' 
2130 MOVE 400,530 1 PRINT 'u' 
2140 MOVE 400,230 1 PRINT '0' 
2150 MOVE 460 BRAPHY(1) 
2160 FOR DIBPIY"1 TO ARRAY 
2170 DRAW BRAPHX(DISPLY), SRAPHYIDISPLY) 
2150 NEXT 
2190 VDU4 
2200 ENDPROC 
2210 DEF PROCPRINT 
2220 VDU2 
2230 COLOUR 2 
2240 DOT"CHIIS75 
2250 11420000 (PRINT HR MIN SEC 1 2260 11420108 iPRINT CA2 CA3,11 
2270 VDU1227,1 76R163t111Äf1 
2290 FOR l"0'Tb W, oo 0D01,0 I NEXT 
2300 YDUI 16 1,56,1 16 
2310 FOR I-DOT TO 5ý3 i VDU1,0 i NEXT 
2320 PRINT i 
2330 FOR 1.1 TO 36 1 VDU127 i NEXT 
2340 VDU3 
2350 ENDPROC 
2360 DEF PROCOPTIONS 
2370 Mf"' ' 
2380 TEST"INKEY(IO) 
2390 IF TEST 0> 42 THEN 2430 
2400 TEST"INKEY(IO) 
2410 IF TEST " 77 THEN M$"'. ' 
2420 IF TEST   69 THEN PROCEND 
2430 ENDPROC 
2440 DEF PROCEND 
2450 VDU2 I PRINT 'END' i VDU3 
2460 END 

APPENDIX 1. DATA LOGGING SYSTEM COMPUTER PROGRAM. 


