
Are Developers Fixing Their Own Bugs?
Tracing Bug-fixing and Bug-seeding Committers

Daniel Izquierdo-Cortazar,
Andrea Capiluppi, Jesus M. Gonzalez-Barahona

Universidad Rey Juan Carlos, University of East London
{dizquierdo, jgb}@gsyc.es, a.capiluppi@uel.ac.uk

November 30, 2012

Abstract

The process of fixing software bugs plays a key role in the maintenance activities of a soft-
ware project. Ideally, code ownership and responsibility should be enforced among developers
working on the same artifacts, so that those introducing buggy code could also contribute to
its fix. However, especially in FLOSS projects, this mechanism is not clearly understood: in
particular, it is not known whether those contributors fixing a bug are the sameintroducingand
seedingit in the first place.

This paper aims to study this issue, by analysing thecomm-centralFLOSS project, which
hosts part of the Thunderbird, SeaMonkey, Lightning extensions and Sunbird projects from
the Mozilla community. The analysis is focused at the level of lines of code andit uses the
information stored in the source code management system.

The results of this study show, at first, that in 80% of the cases, the bug-fixing activity
involves source code modified by at most two developers. It also emergesthat the developers
fixing the bug are only responsible for 3.5% of the previous modifications to the lines affected;
this implies that the other developers making changes to those lines could have made that fix.
We conclude by stating that, in most of the cases the bug fixing process incomm-centralis not
carried out by the same developers than those whoseededthe buggy code.

1 Introduction

One of the most recognised advantages of the Free/Libre/Open Source Software (FLOSS) de-
velopment model is its reliance on an open process: anyone iswelcome to contribute; the ma-
jority of developers can focus on modularised, limited sections within a very large and complex
system; and few core developers are generally experts in several areas of the source code, in a
well accepted layered model (the “onion model” [Mockus et al., 2002]). These layers have been
connected to actual responsibilities; core developers should focus on the main, more important

features, while experimental versions should be implemented and tested by contributors on the de-
velopment fringes [Goldman and Gabriel, 2004]. Also, the layers of such model have been related
to a shift in productivity: a recurring finding within FLOSS empirical research has shown that
most of the development work is achieved by a small amount of developers, in a typical Pareto
distribution [Koch, 2009].

The combinations of all the findings above have various, and not completely understood, ef-
fects. In some cases, a strongterritoriality will emerge among developers “owning” certain parts
of the code, and becoming more and more proficient in those [German, 2004, Robles et al., 2006].
In other cases, the very nature of the FLOSS development implies that contributors join and then
leave without necessarily halting the project [Robles and González-Barahona, 2006], but resulting
in abandoned code and orphaned lines [Izquierdo-Cortazar etal., 2009].

Finally, certain developers will need to be active in maintenance activities:correctivemainte-
nance fixing bugs in various parts of the code, for instance when source code is first introduced by
developers with a low knowledge of the project (junior developers);perfectivemaintenance, for
instance when new improved features are needed but the original developers have left the project
and abandoned their contributions [Adams et al., 2009];adaptivemaintenance, for instance when
adaptations are needed, but the source code has been contributed in a programming language dif-
ferent from the main one supported by the project, so the current developers do not have enough
skills in that language. Although in specific FLOSS communities there is the shared expectation
that the original contributor will support his/her modules(especially in highly modular FLOSS
projects, as Moodle or Drupal [Capiluppi et al., 2010]), the volatility of contributors and the pro-
cess of bug-fixing need to be clarified with respect of who introduced a certain bug, and who
contributed the code to fix it. Examining and determining theproportion of errors that are fixed
by different developers than those who introduced the errorcould provide a first approach to better
understand the bug-fixing process in the specific FLOSS communities being studied.

In order to tackle this problem, the present study analyses the code base contained within
thecomm-centralproject1, a Mercurial Software Configuration Management (SCM) repository of
Mozilla components (Thunderbird, SeaMonkey, the Lightning extension and Sunbird). Given the
number and ID of each fixed bug, this research evaluates whichchanges have been performed,
and by who, in the process of fixing the specific bug. The objective of this research is to evaluate
patterns of bug-fixing activities within this FLOSS community, in order to detect, if any, the most
recurrent and relevant scenarios among developers fixing bugs and those seeding the problem in
the first place.

This paper makes two main contributions:

1. Identifying bug-fixing and bug-seeding committers: the detection of those commits that have
fixed a bug is crucial to determine the previous changes that took place toseedthat bug.
Using the source code lines that were handled by committers and tracing their history back
make possible to know who previously handled those lines. Thus, it is possible to trace the
changes in the SCM that made possible the birth of a potential bug. In addition, it has been
detected the existence of exceptional large movements of lines in just one commit what may
provoke distortions in the results and were left as open research questions.

1 http://hg.mozilla.org/comm-central

2. Characterization of bug-seeding activity: once the bug-seeding commits have been detected,
it is also interesting to know how many developers have been involved in those commits that
later has been raised as a bug. With this approach, we are ableto know the number of
people that added or modified a piece of source code before it was detected as an issue by
the community.

The paper is organized in the following sections: section 2 analyzes the related work and the
background for the study; section 3 and 4 introduce the technique used to extract data from the
Mercurial SCM based on thehg diff tool. Section 5 presents the main results found after using the
proposed methodcomm-central, while section 6 raises a set of threats to validity. Finallysection 7
concludes the paper with pointers towards further work.

2 Background and Related Work

This section reports on the related work and the existing tool-sets: it is reported here in order to
show how this research builds on, compares to or complementsexisting approaches and results.

This paper uses thediff tool to identify changes between revisions:diff is provided by several
source code management systems, and its basic algorithm hasbeen theoretically and extensively
explained ([Ukkonen, 1985, Miller and Myers, 1985, Myers, 1986]). This tool basically collects
two revisions of a file (or revisions of the same directory) and it returns the differences found
between them. Its main goal is to look for “plain” differences between two files: however, its
implementation contains both a way to identify the “actual”differences between two files, and
a facility to ignore “apparent” differences (e.g., spaces,indentations, newlines, etc). The GNU
implementation of this algorithm is explained in [MacKenzie et al., 2002]: this paper uses the
“unified” format of thediff algorithm to retrieve all the differences between each two revisions of
the source code found at the Mercurial repository of thecomm-centralproject. Other researchers
used thediff tool in their approach when retrieving data from FLOSS repositories (specifically
CVS and Subversion [Canfora et al., 2007, Zimmermann et al., 2006]).

Previous studies have made use both of SCM repositories and log messages left by develop-
ers, as a way to determine whether an observed activity is a bug-fixing process or not. Focus has
been given to how developers should know precisely how this is being carried out (i.e., the pro-
cess) and by whom (i.e., the responsibilities [Guo et al., 2010]). Some authors [Kim et al., 2008,
Sliwerski et al., 2005] have worked at this level; however, it has to become clear that some FLOSS
communities are more effective than others in documenting whether a commit is fixing an existing
bug, or if it is a more generic maintenance activity. The present study is only based on the Mozilla
Community, since within this community, it is relatively simple (compared to other communities)
to determine if one of its commits is related to a bug in the Bug Tracking Systems. In this commu-
nity, and within the SCM recorded activities, most of the commits dealing with bug fixes (or related
to an open bug report) are tagged with an initial word ”bug” or”Bug”. In some rare occasions,
these have been detected to be generic features and not real bugs. A cross-validation is performed
below, in order to visualise the precision and recall of thisapproximation, and it is shown that the
above mismatch represents a minor number of occurrences.

A

Life of a set of lines

A

previously
participated

A

NOT previously
participated

Fixing a Bug (t)

Previous Change (t-1)

Figure 1: Scenarios of committers and lines changed. Lines that are introduced in a given fix time
(t-1) are later (t) detected as being part of a bug-fixing commit. Thus, the set of lines that are
being handled in (t) could have been previously introduced by the same developer (A), partially
introduced by the same developer or introduced by a different developer.

Similarly to previous studies [Kim et al., 2008,Śliwerski et al., 2005], this research is per-
formed at the granularity level of source lines, which provides a way of handling the ambiguity of
working with commits. When considering the committer A who fixes a certain bug, and the lines
she modifies, some of these lines could have been introduced fully or partially by the same com-
mitter, or introduced by different committers without the participation of A (pictured in Figure 1).
Extending these two basic scenarios, we could find further scenarios:

• the same set of lines was modified in a previous commit by the same developer A (only);

• the same set of lines was modified in a previous commit by a different developer B (only);

• the same set of lines was modified by more than one developer (A+B+C+...), including the
same developer A fixing the bug;

• the same set of lines was modified by more than one developer (B+C+D+...), but excluding
the developer fixing the bug;

In terms of relating the bug-fixing process and its responsibilities, some authors have dealt
with the idea of who should be fixing a certain bug [Kagdi et al., 2008, Ma et al., 2009] based on
previous changes of the same file, or at least slices of the changes introduced in a file. Another
approach used to deal with the same problem has been adopted at the level of the bug tracking
system. In a study based on the development of Microsoft Windows Vista and Windows 7, it has
been found that the number of reports “opened” by one developer and initially “assigned” to her
development team tend to be fixed more quickly than bugs that are assigned to another development
team [Guo et al., 2010]. Finally, it has also been reported that specific FLOSS communities try
and reinforce a per-contributor sense of responsibility: in highly modular projects (as for instance

Moodle or Drupal), for example, it is a shared expectation within the community that the original
contributor will support his/her modules [Capiluppi et al.,2010] and keep them in sync with the
evolution of the core system [Hao-Yun Huang and Panchal, 2010]. Finally, other authors have
dealt with the idea of looking for bug-fixing patterns in the source code [Pan et al., 2009] analyzing
the different revisions provided by a given SCM system, but focusing on the semantics of the
source code. In other words, they are aware of several commonfix patterns such as ”addition of
precondition check” or ”different method call to a class instance”. However, at the level of the
source code, and to the best of our knowledge, no studies aiming to determine if developers that
fixed the bug are the same than those who introduced the bug have been undertaken.

3 Assumptions and Definitions

3.1 Assumptions – SZZ algorithm

This paper makes use of the SZZ algorithm [Śliwerski et al., 2005], whose main goal is to de-
termine the origin of a bug, by identifying the bug-fixing commits, and by using adiff tool. The
authors of this algorithm assume that the lines that have been removedof modifiedin the bug-fixing
commit are the ones where the bug was located. Thus, tracing back the origins of those lines (by
means of theannotatecommand in the SCM), the authors could reach the origins of those lines,
and admittedly, the origins of the bug. Generally speaking,the first modification or the addition of
thosemodifiedor removedlines can be accounted as the origin of that bug. The operationalization
of the algorithm used in this paper is slightly different, but based on the same assumption: the lines
affected in the process of fixing a bug are the same one that originated orseededthat bug.

3.2 Definitions

This study is based on (and could be extended to other) projects which make use of a distributed
SCM system calledMercurial. For each of the analyzed projects, the log provided by each of the
named SCMs was analysed. For this purpose, the definitions used in this empirical case study are
the following:

• Commit(or revision): change to the source code submitted to the SCM system. This up-
dates the current version of the tree directory with a new setof changes. Such changes are
generally summarized in apatchwhich is a set of lines with specific information about the
affected files, but also about the affected lines.

• Committer: person who has rights to commit to a specific SCM repository, hence allowed to
make changes. The Mercurial case presents some peculiarities: the developers working as
maintainers and uploading changes to the main branch of the repository are not registered
by the Mercurial SCM. Thus, all of the changes are initially considered as uploaded by the
original author2. Thus, through this paper, the concept of developer, committer or author

2 For more information regarding this issue, the Mercurial website offers a set of third part extensions where this
issue could be solved:http://mercurial.selenic.com/wiki/UsingExtensions

will be considered as synonyms. Nevertheless, depending onthe SCM, those concepts are
slightly different.

• Bug-fixing commit: this is a special type of commit where issues reported by other developers
have been fixed. In the comm-central repository this is generally reported in the title of a
commit by referencing a “bug” or a “Bug”.

• Line: this is the basic piece of information of this study and theyare generally handled by
committers. These lines could beadded- new line,modified- modification of some part of
that line andremoved- there is a deletion of that line.

• Bug seeding-commit: given a commit, and the output of thehg diff command, it is pos-
sible to obtain a complete picture of the lines that were added, modified or removed, but
also about the committer, the date and which files were handled. This is necessary both to
track which lines have been changed for fixing a bug, and to track which committers have
provided changes to the same set of lines in previous commits. Figure 2 shows how the
latter identification has been achieved. In the example file (far right), three sets of lines can
be recognised (“set of lines 1”, “set of lines 2” and “set of lines 3”): the first two sets are
affected by changes, the third has been unchanged throughout.

SET OF LINES 1

0 2 4 6 8
FILE CURRENTLY AFFECTED

COMMITS AFFECTING LINES

SET OF LINES 2

ADDITION

ADDITION

MODIFICATION

MODIFICATION

SET OF LINES 3
SECTION
STUDIED
CODE

Committer A Committer C

Figure 2: Identifying previous changes and committers

Tracking back the history of each set in the database, we are able to know that “set of lines
1” was added in commit number 1 and then modified in commit number 5. With respect to
“set of lines 2”, they were added in commit number 5 and later modified in commit number
7. With respect to the authorship, we know that the “set of lines 1” was added by a developer
named A. The modification of “set of lines 1” and the addition of the “set of lines 2” was

done by the same committer, named C and finally, in commit 7 changes were made on the
”set of lines 2” by developer C. In this specific figure, other commits might have happened,
but they have not modified or removed the set of lines we are interested in. Specifically,
commit number 2, 3, 4 and 6 took place, but none of them modifiedthe studied sets of lines.

4 Empirical Approach and Operationalization

As the main goal of this research, this paper aims to identifyand characterise the bug-fixing and
bug-seeding activities in FLOSS communities. From a managerial perspective, the bug-seeding
activity could be useful to clarify how and when the buggy source code has been introduced into
the repository, how developers deal with this, and which effort needs to be applied and by who. In
addition, specific sub-questions were formulated to achieve the main goal of the paper:

1. How are the bugs incomm-centralrecorded and referred to by developers? What is the
accuracy and consistency of recording such bug-fixing information?

Rationale: from the maintenance point of view, it is necessary to studyhow the community
records which issues have being fixed. The empirical approach used in this paper is based on
the information provided by the log message left by the developers when fixing a bug. This
information depends on the analysed community (i.e., Mozilla), and it could be recorded
differently in other communities.

2. How can one define thebug-fixingandbug-seedingactivities when tracking the same set of
lines?

Rationale: this question is related to the detection of bug-seeding commits that later were
classified as “buggy” by the community. And more specifically, how they are detected by
means of the differences found between each pair of revisions in the source code.

3. Are there specific events in the activity log that could impede the correct tracking of such set
of lines? How to avoid that such events interfere with the tracking of a given set of lines?

Rationale: Some events in the community could force to move huge quantities of source
code to another repository (e.g., in case of migrations), refactoring (e.g., when changing
loads of methods names), license requirements (e.g., when migrating to another license) or
others. These factors can cause large peaks to be visualisedin the evolutionary trends, that
could artificially skew the results.

4. Are there recurring patterns of bug-fixing among the developers of thecomm-centralcom-
munity?

Rationale: this questions aims to study the behaviour of developers when fixing bugs and
try to look for specific patterns of bug-seeding activity. Itis still not well understood how
bugs are being introduced in the source code and if those developers that usually introduce
issues are the same ones in charge of fixing them. Another interesting question is the one
related to how many people are usually introducing changes to the same piece of source code
that later is found to be “buggy”.

4.1 Understanding thediff output

Past research studies have focused on source code lines in two ways, either by using the source
code management system (SCM) hosting the project, or by first downloading the source code
from the repository, and then using thediff tool provided by the operating systems. In the first
case, it is necessary to download the SCM and later use the difftool provided within, but most
researchers avoid that mostly due to the bottleneck represented by the network. In the latter, one
has to download the source code for all the revisions of all the files contained in a software system.
Using a distributed SCM such as Git or Mercurial (instead of a traditional SCM, as CVS or SVN),
the bottleneck of the network is removed and the corresponding analysis becomes much faster. As
documented in section 6, this approach still holds some limitations, that have to be addressed in
the threats to validity.

A diff is a summary of the changes undertaken between two files, and stored in a SCM system.
The diff command compares the files line by line and summarizes the differences in a specific
format. Below, the partial output of a unified diff format between two commits (12 and 13) in the
comm-centralrepository is shown. This example is not specific from the source code since this is
a special file to build the project, however it is simple enough to be easily understood.

diff -r f1...1d -r 0b...f7 suite/build.mk
--- a/suite/build.mk Fri Jul 25 11:32:27 2008
+++ b/suite/build.mk Fri Jul 25 11:51:57 2008
@@ -43,6 +43,10 @@

TIERS += app

+ifdef MOZ_COMPOSER
+tier_app_dirs += editor/ui
+endif
+
ifdef MOZ_CALENDAR
MOZ_EXTENSIONS += webdav
endif

Thehg diff command, by default, shows the diff between two revisions using the unified for-
mat: the diff format starts with two-lines header where the original file name is preceded by−−−
and the new file is preceded by+ + +. After this, there are one or more change hunks (usually
named aschunks) which contain information related to the differences in the file. Those lines
which were added starts with a+ character, those removed starts with a− character and those
which were neither added, nor removed starts with a space character “ ”. Finally, if a line is modi-
fied, this is represented as added and removed, so this changes will appear adjacent to one another.
Thus, if a set of adjacent lines are modified, the old revisionof the lines will show several lines

beginning with−, adjacent to the new revision of the lines, and beginning with+. In the previous
example, four lines have been added in a file called “build.mk”. The values between “@@” repre-
sents the position of those lines in that file before and afterthe change). For more information it is
recommended to read the reference [MacKenzie et al., 2002].

4.2 Retrieving Information from diff Files

A freely available tool has been used to retrieve information from consists of several steps that are
specified in the following list:

1. Downloading the SCM: the BlameMe tool is specifically designed to work with Git or Mer-
curial repositories. These are distributed SCM and provide all of the change history locally.
This is an advantage if compared to other centralized SCMs such as CVS or SVN since there
is an actual and huge difference in terms of time (avoiding the bottleneck represented by the
network access).

2. Collecting Commits: as seen above, the veryhg command provides a special command to
check differences between two revisions:hg diff. This has been used to interact between the
program and their Mercurial repository.

3. Parsing the revisions: the tool is launched using the previously downloaded repository and
storing all the differences in a MySQL database. For this purpose, each of the lines is stored
together with its reference to its file and the position in that file (specifically, there is a list
per file, and each node is the position in that file for a given line). If a new set of lines are
detected to be added or removed, those are directly added in the specified position (explained
in section 4.1.

4.3 Case Study

The proposed method has been applied to describe the bug-fixing process at the level of source
lines using thecomm-centralproject and its Mercurial repository. As mentioned, this repository
contains the source code of Thunderbird, SeaMonkey, Lightning extension and Sunbird3.

The use of the Mercurial repository (after the migration from CVS) started on the 22th of July,
2008 and it has been studied till the 20th of July, 2010 (i.e.,two years of source code history).
Considering the whole life of the project until the start of this study, 5,982 commits were studied
and the differences between revisions have been stored in a MySQL database. In this database, we
have stored information of 4,973,038 changes to the source code regarding added, modified and
removed lines.

The case studies presented in this paper are based on the differences between two revisions
of the source code, and specifically focused on the bug-fixingcommits. The commits studied are
2,969 out of an overall 5,982 commits; the total amount of lines considered are 2,912,866.

3However, as addressed inhttps://developer.mozilla.org/en/comm-central, this only includes
a subset of the code required to build those projects.

5 Results

This section provides the results of the empirical study performed on the comm-central repository,
in three parts: first, the study of how to properly detect bug-fixing commits is reported, detailing
on the precision and recall in such process. Second, the issue of dealing with large commits is
presented and addressed. Third, the approach of detecting bug-fixing and bug-seeding committers
is clustered in several scenarios, and finally the results oneach scenarios are proposed.

5.1 Identifying bug-fixing commits

This first part of the research aims to validate the log messages provided by thecomm-central
community, and to understand the consistency and reliability of their records with regards to bug-
fixing activities. To achieve this purpose, we developed an empirical approach and then checked
how many false positives and false negatives we obtained from applying it. The approach used is
as follows:

1. Given 3,000 bug-fixing commits, and a confidence level of 95%, the random sample was
sized in 100 commits. From each of those, the log message was retrieved and the log message
inspected.

2. A simple heuristic, based on the observation of the log message and used by another pa-
per analyzing the Mozilla community [Kim et al., 2008] was used. This heuristic consists
of the selection, as commits fixing an issue, those fitting thefollowing regular expression:
“(b|B)ug.∗′′ .. This regular expression will filter all of the commit messages which start with
the key word “Bug” or “bug”.

3. The log message of those random selection of commits was manually inspected to evaluate
whether they refer to real bugs, either checking the underlying source code or by parsing the
relative Bug Tracking System.

In order to evaluate the precision and recall of such approximation, the constituent parts are as
follows:

(TP) True positive: 78
(FP) False positive: 7
(TN) True negatives: 6
(FN) False negatives: 9
Total commits: 100
Therefore we evaluated:

• Positive predictive value:TP/(TP + FP) = 78/(78 + 7) = 91, 7%

• Negative predictive value:TN/(FN + TN) = 40%

• Sensitivity =TP/(TP + FN) = 78/78 + 9 = 89, 65%

• Specificity =TN/(FP + TN) = 6/7 + 6 = 46, 15%

Since thePrecisionactually coincides with the positive predictive, and theRecallcoincides
with the sensitivity, we conclude thatprecision = 91, 7% andrecall = 89, 65%. One further
aspect to notice is that out of 100 random commits, 85 have theword “Bug” or “bug” in their title,
and 76 out of 100 are actually containing code that deals witha bug. The implications of this initial
finding are discussed later.

5.2 Dealing with very large commits

As reported in previous studies, software systems, and mostnoticeably FLOSS systems, display
at times high (and isolated) peaks of activity. In some specific cases, it has been possible to
detect a very large amount of source lines (e.g., more of 80% of the overall system) being moved
within FLOSS projects [Canfora et al., 2007, Fernández-Ramil et al., 2009, MacLean et al., 2010,
Hindle et al., 2008]. This means that in some changes, one candetect huge changes reaching
million of lines. From a maintenance or evolutionary point of view, this is hardly accountable as a
maintenance activity. However, this problem has not been taken into account by [Kim et al., 2008],
whose analysis is one of the pillars for this study.

Also in the study of thecomm-centralrepository, it has been found that a small number of
commits (no more than 10% of the total set) handles several thousands (in some cases hundreds
of thousands) of lines in just one commit. Apart from exceptional cases where developers indeed
modified a vast amount of source lines, the peaks could also becaused by automatic bots, changes
in the licenses, or by accidental removal and addition of source code. As an example of such
distortions, figure 3 shows the number of aggregated number of removed lines4. The figure depicts
a situation of common removal of lines, but in some specific commits, we can see how suddenly a
large set of lines is removed (for example, close to id 723 or 4,200).

In order to deal with such distortions, the commits fully or partially affected by those changes
were removed from the sample: given an overall number of 2,912,866 lines and 2,969 commits
detected in the bug-fixing process, the sample was thereforereduced to 731,941 lines and 1,747
commits. In summary, the four largest commits (IDs 0; 1,002;817; 5,213 and 5,3835), and the
lines affected, were removed from the sample.

5.3 Identifying bug-fixing and bug-seedingcommitters

In order to detect the bug-fixing committers, and the developers dealing in the past with the same
section of code (as per the scenarios in Figure 1), this paperuses the same assumption formulated
in [Kim et al., 2008]: in a bug-fixing commit, one has to consider only the “set of lines” removed
or modified in that commit (see Figure 2), instead of the wholefile, or set of files, committed in
the transaction.

4This figure only shows those commits where at least one line was removed.
5It should be noticed that the commits listed here are real commits, while the aforementioned, 723 or 4,200 are ids

and they do not correspond to real revision numbers in the SCM.

0 1000 2000 3000 4000 5000 6000
Commits

0

500000

1000000

1500000

2000000

Nu
m

. A
gg

re
ga

te
d

Re
m

ov
ed

 L
in

es

Comm Central

Figure 3: Aggregated number of removed lines detected in bug-fixing commits

This algorithm is named as the “SZZalgorithm” and fully detailed in [́Sliwerski et al., 2005]:
considering the set of lines modified in a bug-fixing commit, the algorithm focuses on the previous
commit in time (i.e., “one step back”) where all the lines in such set were modified: in this way,
it is possible to obtain the latest commit where each line waspreviously modified (Figure 2), and
correlating it with their actual committer (Figure 1). The assumption of the algorithm, also used in
this paper, is that the bug was actually introduced in that previous commit.

Using this approach, the total number of developers dealingwith either bug-fixing commits
or bug-seeding commits were evaluated. Overall, 450 different committers have committed once
to the Mercurial repository: of those, 287 are authors of at least one bug-fixing commit, and 383
are authors of at least one bug-seeding commit. This seems tonegate that specific developers are
dedicated to fix bugs: in addition, it is worth to mention thatthe Mozilla community has identified
the Thunderbird project as “core” project, in which senior developers will peer review the commits
made by others. This may distort the dataset used in this paper and open another set of questions,
for instance linking those policies with the outcomes of theproject.

In order to visualise at first the summary of results, Figure 4shows the density chart of the
bug-seeding developers: since most of the values are located to the left-side of the chart, only
1 or 2 developers are involved in 80% of the cases (1,392 out of1,747 commits overall). More
specifically, 1,035 bug-fixing commits (60% of the overall sample) involve just one developer
previously seeding the lines, but only 7% of the total seededlines (50k out of 747k lines).

Based on this initial set of results, the two scenarios shown in figure 1 were further divided
into three more scenarios: one previous developer (covering a 60% of the sample), two previous
developers (covering an additional 20% of the sample) and the rest of them (covering the rest of
the 20% of the sample). This provides a final list of six scenarios:

S1 – bug-fixing and bug-seeding commits made by committer A;

S2 – bug-fixing commit made by A, bug-seeding commit made by B;

S3 – bug-fixing commit made by A, bug-seeding commit made by A andB only;

0.0 0.5 1.0 1.5 2.0 2.5
Num. Previous Developers (log10)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
ta

ge

Comm Central

Figure 4: Density chart of number of committers involved in changes at (t-1) to lines bug-fixed at t

Overall Same Comm. Diff. Comm.

Commits 1,035 62 973
Lines 50,078 973 49,348

Table 1: One previous committer

S4 – bug-fixing commit made by A, bug-seeding commit made by B andC only;

S5 – bug-fixing commit made by A, bug-seeding commit made by A, B and others;

S6 – bug-fixing commit made by A, bug-seeding commit made by B, C and others;

5.4 Analysis of Scenarios

Scenarios S1 and S2 Table 1 focuses the analysis on the bug-seeding commits by atmost one
committer, which correspond for some 60% of all the bug-fixing commits. The summary in the ta-
ble distinguishes whether the author of the bug-fixing commit is the same committer (Same Comm.
column, e.g., scenario S1) or a different one (Diff. Dev. column, e.g., scenario S2) who seeded
those buggy lines. Results show that, in terms of developers involved, the bug-fixing process is
performed by different committers from those seedind the bug: for only 6% of these commits (62
out of 1,035) the bug-fixer is the same and the only one involved in the bug-seeding activity (e.g.,
scenario S1). In all the other cases, a different committer Ais involved in the fixing of lines that
were seeded by B (e.g., scenario S2).

written down in the method part

Overall S3 (A+B) S4 (B+C)

Commits 357 43 314
Lines 15,581 7,052 (6,834 + 218) 8,529

Table 2: Commits: two previous committers

Scenarios S3 and S4 When considering a maximum of two bug-seeding committers, itwas
found that only 357 commits comply with the requirements of Scenarios S3 and S4. Table 2 shows
the results differentiated for S3 and S4: 43 out of 357 commits were seeded fully or partially
by the same committer who finally fixed the bug. In terms of lines handled, 6,834 lines were
co-changed with another committer and submitted by the samecommitter A, while 218 were co-
changed with A but committed by another committer B. These results provide another point of
view of the community: generally speaking, it seems that most of the commits where two people
have previously participated were mostly handled by peopledifferent from those who fixed the
bug. However, in 43 commits, the same committer was found to participate in the changes. This
raises another question related to the quantity of source code handled by other committers than the
one who fixed the bug. In that case, we realized that just a 3% ofthat source code (218 lines) was
really handled by someone different: this shows similar results to the S1 and S2 scenarios, where
just one committer was found.

As visible in the same table, most of the bug-seeding commitsare by other two developers
(B+C), but only half of the source code is handled in the process.

Scenarios S5 and S6 The last two scenarios comprise the commits with up to10 previous com-
mitters handling the source code. Table 3 shows the number ofcommitters found for each commit.
For instance, for the first row, the values show that there are27 commits where the same committer
fixes and seeds the bug together with others (Scenario 5), while there are 128 commits where that
committer did not participate at all (and different people seeded those lines). Albeit more commit-
ters could be possible, the threshold of10 committers reaches 98% of the total sample of commits
analyzed (1,717 out of 1,747 commits). Figures 5 (left and right) show the absolute and relative
number of commits for the values presented in table 3. In Figure 5 left, the x-axis are divided
by the number of previous developers involved in the set of lines that in the current commit were
modified or removed. The y-axis represents the number of absolute commits detected. We can see
how figure 5 (left) shows that most of the commits were previously handled by people totally dif-
ferent from the ones who were later dealing with the bug-fixing commit. Figure 5 (right) adds extra
information in order to check the relative percentages of such values, and to conclude that, in all
of the cases, more than a 60% of the total bug-seeding commitshad a different committer than the
one who made the bug-fixing commit. Using relative numbers, in eight out of ten combinations,
the second set of data (commits fixed by A, but not seeded by A) is the most general.

Num. Previous Committers S5 (A+B+...) S6 (B+C+...)

3 27 (773 + 3,011) 128 (29,246)
4 11 (85 + 441) 59 (5,010)
5 9 (148 + 696) 24 (1,840)
6 3 (9 + 253) 21 (2,126)
7 3 (30 + 13,089) 12 (2,844)
8 3 (79 + 5,207) 4 (141)
9 5 (30 + 1,328) 8 (3,575)
10 2 (11 + 183) 6 (1,422)

Table 3: Rest of the cases: from 3 to 10 previous committers

3 4 5 6 7 8 9 10
Num. Previous Committers

0

20

40

60

80

100

120

140

Nu
m

be
r o

f C
om

m
its

Comm Central

S6 (B+C+...)
S5 (A+B+...)

3 4 5 6 7 8 9 10
Num. Previous Committers

0

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
s

Comm Central

S6 (B+C+...)
S5 (A+B+...)

Figure 5: Scenarios and their relevance: S5 refers to those commits where the same committer
who is fixing the issue, previously participated. S6 refers to those commits where that committer
did not previously participate.

5.5 Finer granularity – Lines affected

In order to study the results at a finer granularity, figure 6 uses the lines to complement the above
results. Depending on the number of bug-seeding committers, this figure shows the number of
lines seeded in the various scenarios: for each number of previous committers detected (x-axis),
the number of seeded lines by the same committer who fixed thatbug is shown.

The notation “Same Commmit and Same Committers”, represents the relative number of lines
that were also previously handled by the same committer who fixed the issue (Scenarios S1, S3 and
S5 - A also previously participated). With the notation ”Same Commit and Diff Committers“ the
figure shows the Scenarios S1, S3 and S5, but discarding the lines previously modified by the bug-
fixing committer. Finally, the notation ”Rest of them“, is theaggregation of the rest of Scenarios
(S2, S4 and S6), where the committer who fixed the bug did not previously participate at all.

As a results from this figure, it can be seen how for all of the cases (except in two previous

1 2 3 4 5 6 7 8 9 10
Num. Previous Committers

0

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
s

Comm Central

Same Commit and Same Committers
Same Commit and Diff Committers
Rest of them

Figure 6: Scenarios and their relevance – Lines affected

developers), the committer who has fixed a bug has not participated at all in seeding that bug.

5.6 Discussion

The analysis of the Mozilla community, and of thecomm-centralproject, has shown few interest-
ing insights: given the specificity of this community, and the process that was put in place at the
maintenance level, generalising such findings could be problematic. Nonetheless, these observa-
tions provide an initial set of results to characterise the bug-fixing and bug-seeding activities in the
Mozilla community, to be used as a baseline to be compared against other FLOSS projects.

Overall bug-fixing activity:it has been found that some 50% of all the commits are detected
as fixing bugs: considering that the precision of detecting bug-fixing commits proved substantially
high, this is an impressive amount. Nonetheless, this valueis largely dependent on the policy
applied by the Mozilla community when submitting changes tothe source code: this policy alone
could lead to an overrating or underrating of the results.

Bug-fixing and territoriality: the main result found, that bug-seeding committers are rarely
also bug-fixing committers, somehow conflicts with what is found in the FLOSS literature: strong
“territorial” developers, and specific responsibilities of the developers over their source code have
been observed from previous works [German, 2004], [Capiluppi et al., 2010]. However, it seems
that the concepts of “source code territoriality”6 and “bug-fixing territoriality” are based on dif-
ferent assumptions: for the vast majority, bugs are fixed by other developers than the ones who
introduced or seeded such bugs.

Bug-fixing and individual roles:regarding the bug-seeding activity, it was found that each piece
of source code modified in a bug-fixing commit is previously modified mostly by one developer.
From a system perspective, this reflects the result that manyfrequency distributions in software are
power-law (e.g., many changes are handled only once, and by one developer, while few changes are
handled more often and by several developers); from a managerial perspective, this result shows

6 Pieces of source code (i.e.: methods or files) managed by onlyone developer.

that developers usually fix bugs that were introduced by other developers. This could either reflect
the presence of specific bug-fixing developers, or a more shared activity of bug-fixing, where
newcomers tend to fix bugs left open by other developers [Ye etal., 2004]. Furthermore, focusing
on Scenarios 3 or 4, there is a 80% of probability that a selected bug-fixing commit was introduced
by at most two developers. This again shows that in most of thecases, pieces of source code are
by definition a valuable piece of knowledge. Some authors have dealt with the idea ofconcepts
when developing software, and it seems that working at the level of methods or functions is the
best way to understand previous changes made by others. A possibility here is to match pieces of
source code and methods to check this hypothesis.

Bug-seeding and movement of code:at the granularity of commits, Scenarios 5 and 6 have
shown that bug-seeding commits were handled by several (even dozens of) committers. A possible
explanation could be related to the observed huge movementsof lines in bug-fixing commits: it
could be found that for a given commit, several people previously participated in such a bug-
seeding commit.

6 Threats to Validity

Generally speaking, any empirical study like this is bound to many threats to their validity. It has
been claimed that studying FLOSS projects from an empiricalpoint of view could raise several
threats that should be considered [Fernandez-Ramil et al., 2008]. Among them, we can find those
related to the data extraction, the granularity of the studyor how mature is the selected projects.

Construct Validity At first, the heuristic used to obtain bugs from the SCM log messages is far
from be perfect. As seen in [Kim et al., 2008], the selection of bugs (even for those projects studied
in the Mozilla community) are based in a corpus and some othersemantic data which improve the
data obtained. Also, as addressed by [Chen et al., 2004], analyzing the SCM logs could be error
prone. However, after manually checking 100 commits with the heuristic used, the percentages of
error were very low. This is due to the selection of a project from the Mozilla community which
generally shows good practices by precisely pointing to thebug tracking system for almost each
change in the source code.

Second, most of the work is based on the analysis by thediff tool provided by the Mercu-
rial SCM. Although this is a reliable tool, we have detected some limitations in the use ofdiff
to retrieve the authorship and other related data. As addressed by [Canfora et al., 2007] and
[Zimmermann et al., 2006], we could obtain wrong indications in the number of actual changes
in the source code after a commit. One of the main reasons for those changes could be some move-
ments of data from one directory to another, or some merges from different branches. In order to
deal with them, most of the big spikes, as aforementioned, were removed.

Finally, it is worth to mention that the large additions of lines are an issue which has not been
resolved in this paper. Future revisions following a commitaffecting thousands of lines may lead
to the wrong conclusions, by showing that most of the work wasdone by just one committer,
although this could be just a distortion of few commits.

Internal Validity The tools and script used could present some minor bugs that may affect the
results. However, they have followed a validation process what makes the results reliable enough.
After the initial development and after several tests, a final manual study of several commits was
carried out and in all of the cases the comparison between theinformation in the database and the
SCM matched in a 100% of the cases. However, the tools used could raise some errors in the future
that could not have been taken into account yet .

External Validity The selected project is not large enough to represent the overall number of
FLOSS projects. However, we present a first initial step to describe the bug-fixing process based
on the Mercurial SCM. As further work, the authors want to extend the analysis at least to the
whole Mozilla community.

7 Conclusion and Further Work

This paper has presented an empirical analysis of thecomm-centralFLOSS community, in order to
detect whether the bug-fixing activity among developers could be modeled into patterns and recur-
ring scenarios. This community was selected for the consistency and reliability of their messages
into the SCM repository, in particular the messages dealing with the bug-fixing activities. With
these characteristics, this community and their data can beleveraged to shed important hints on
how FLOSS developers proceed to the very needed corrective maintenance, and more importantly,
whether the bug-fixing committers are the same who contributed to introduce and seed the bug in
the first place.

As a first result, we could confirm the reliability and consistency in referencing the bug-fixing
commits within thecomm-centralcommunity, with a precision larger than90%: this produces
very accurate results in terms of tracking the actual bug-fixing committers, and the lines that were
modified in the process. It also forms a basis of good practices that will be leveraged in future
works when studying the larger Mozilla community (an order of magnitude larger in terms of
activity and committers).

Secondly, we proposed a method to define and track both the bug-fixing and the bug-seeding
committers: given the set of lines affected by the bug-fixingcommit, the set of previous revi-
sions was studied in order to detect which committers were actually “seeding” such bug without
contributing to its removal or fixing.

Thirdly, we proposed an approach to avoid the distortion of spurious data: it was observed that
thecomm-centralcommunity produces high peaks of activity [MacLean et al., 2010, Canfora et al., 2007,
Fernandez-Ramil et al., 2008]. This problem was been raised by [Kim et al., 2008]: what we did
to tackle the issue was to remove the five largest commits, which alone were responsible of over
2M lines modified, added or removed. We proposed that researchers should remove at least three
main cases: 1- Initial import of commits, 2- Huge removal followed by addition of lines of code,
3- Huge addition followed by removal of lines. In all of thosecases, the results could be directly
influenced.

Furthermore, we proposed to use thediff provided by the SCM as a way to let us know author-
ship at the granularity of a line: other works such as [Canforaet al., 2007, Zimmermann et al., 2006,

Kim et al., 2008] have used another different approach to deal with the idea of following the life
of a line. Several difficulties emerge when trying to track the whole lifecycle of these lines, but not
at the level of going a step back in their history. Thus, usingthis tool could be a faster and more
effective way of determining the authorship of each line.

Finally, with respect to the results, it was shown how the corrective maintenance is being carried
out by people on thecomm-centralcommunity. We have detected that less than 5% of the bug-
fixing commits were handled by who first introduced the changes or “seeded” the bug. With
respect to these results, in most of the cases the committersinvolved in the bug-fixing process are
not the same as those initially seeding the bug. These results are vastly different and unexpected if
compared with corporate software development, where developers “opening” a bug are most likely
to also be responsible for its fixing and closure.

As further work, the authors would like to address two open questions (related to the GQM
approach) that could be easily answered using the same dataset. First of all, the central idea of ths
paper is related to the fixing process and if the committers are fixing their own bugs. However,
we have not studied if those committers are aware that in somecases they have been introducing
errors in the source code, or at least the seed of a future bug.Checking how many of them have
been working in a given time-window after the detection of a bug could provide another insight of
the bug-fixing process.

Another similar idea is related to the seed of the bug. We haveseen how given a commit fixing
a bug we could trace when the involved source code was previously added or modified and, thus,
who was the “bug-seeder”. However we do not fully understandthe causes. For instance, we
could trace if that developer modified a piece of source whereshe usually does not work, if the
commit modified a file that was lately several times modified, if a committer submitted a change
in a programming language not usual to her or some other possibilities.

Acknowledgment

The authors would like to thank Prof Cornelia Boldyreff for theextensive comments on the paper.
In addition, this work has been partially funded by the European Commission, under the ALERT
project (ICT-258098).

References

[Adams et al., 2009] Adams, P. J., Capiluppi, A., and Boldyreff, C. (2009). Coordination and
productivity issues in free software: The role of brooks’ law. In ICSM, pages 319–328. IEEE.

[Canfora et al., 2007] Canfora, G., Cerulo, L., and Penta, M. D. (2007). Identifying changed
source code lines from version repositories. InMSR ’07: Proceedings of the Fourth Inter-
national Workshop on Mining Software Repositories, page 14, Washington, DC, USA. IEEE
Computer Society.

[Capiluppi et al., 2010] Capiluppi, A., Baravalle, A., and Heap, N. (2010). Open standards and
e-learning: the role of open source software. InProc. of the 6th International Conference on
Open Source Systems (OSS 2010), Notre Dame, IN, USA.

[Chen et al., 2004] Chen, K., Schach, S. R., Yu, L., Offutt, J., and Heller, G. Z. (2004). Open-
source change logs.Empirical Software Engineering, 9:197–210.

[Ferńandez-Ramil et al., 2009] Fernández-Ramil, J., Izquierdo-Cortazar, D., and Mens, T. (2009).
What does it take to develop a million lines of open source code? InOSS, pages 170–184.

[Fernandez-Ramil et al., 2008] Fernandez-Ramil, J., Lozano,A., Wermelinger, M., and
Capiluppi, A. (2008). Empirical studies of open source evolution. In Mens, T. and Demeyer,
S., editors,Software Evolution: State-of-the-art and research advances, chapter 11, pages 263–
288. Springer Verlag.

[German, 2004] German, D. M. (2004). Using software trails to reconstruct the evolution of soft-
ware: Research articles.J. Softw. Maint. Evol., 16(6):367–384.

[Goldman and Gabriel, 2004] Goldman, R. and Gabriel, R. (2004). Innovation Happens Else-
where: How and Why a Company Should Participate in Open Source. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[Guo et al., 2010] Guo, P. J., Zimmermann, T., Nagappan, N., and Murphy, B. (2010). Character-
izing and predicting which bugs get fixed: an empirical studyof microsoft windows. InICSE
(1), pages 495–504.

[Hao-Yun Huang and Panchal, 2010] Hao-Yun Huang, Q. L. and Panchal, J. H. (2010). Analysis
of the structure and evolution of an open-source community.In Proceedings of the ASME
2010 International Design Engineering Technical Conferences & Computers and Information
in Engineering Conference IDETC/CIE 2010.

[Hindle et al., 2008] Hindle, A., German, D. M., and Holt, R. (2008). What do large commits
tell us?: a taxonomical study of large commits. InMSR ’08: Proceedings of the 2008 inter-
national working conference on Mining software repositories, pages 99–108, New York, NY,
USA. ACM.

[Izquierdo-Cortazar et al., 2009] Izquierdo-Cortazar, D., Robles, G., Ortega, F., and Gonzalez-
Barahona, J. M. (2009). Using software archaeology to measure knowledge loss in software
projects due to developer turnover.Hawaii International Conference on System Sciences, 0:1–
10.

[Kagdi et al., 2008] Kagdi, H. H., Hammad, M., and Maletic, J.I. (2008). Who can help me with
this source code change? InICSM, pages 157–166.

[Kim et al., 2008] Kim, S., E. James Whitehead, J., and Zhang, Y. (2008). Classifying software
changes: Clean or buggy?IEEE Transactions on Software Engineering, 34(2):181–196.

[Koch, 2009] Koch, S. (2009). Exploring the effects of sourceforge.net coordination and com-
munication tools on the efficiency of open source projects using data envelopment analysis.
Empirical Softw. Engg., 14(4):397–417.

[Ma et al., 2009] Ma, D., Schuler, D., Zimmermann, T., and Sillito, J. (2009). Expert recommen-
dation with usage expertise. InICSM, pages 535–538.

[MacKenzie et al., 2002] MacKenzie, D., Eggert, P., and Stallman, R. (2002). Comparing and
Merging Files with GNU diff and patch. Network Theory Ltd.

[MacLean et al., 2010] MacLean, A. C., Pratt, L. J., Krein, J. L., and Knutson, C. D. (2010).
Trends that affect temporal analysis using sourceforge data. InProceedings of the 5th Interna-
tional Workshop on Public Data about Software Development (WoPDaSD ’10), page 6.

[Miller and Myers, 1985] Miller, W. and Myers, E. W. (1985). Afile comparison program.Soft-
ware - Practice and Experience, 15(11):1025–1040.

[Mockus et al., 2002] Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies
of open source software development: Apache and mozilla.ACM Trans. Softw. Eng. Methodol.,
11(3):309–346.

[Myers, 1986] Myers, E. W. (1986). An o(nd) difference algorithm and its variations.Algorith-
mica, 1:251–266.

[Pan et al., 2009] Pan, K., Kim, S., and Whitehead, Jr., E. J. (2009). Toward an understanding of
bug fix patterns.Empirical Softw. Engg., 14(3):286–315.

[Robles and Gonźalez-Barahona, 2006] Robles, G. and González-Barahona, J. M. (2006). Con-
tributor turnover in libre software projects. In Damiani, E., Fitzgerald, B., Scacchi, W., Scotto,
M., and Succi, G., editors,OSS, volume 203 ofIFIP, pages 273–286. Springer.

[Robles et al., 2006] Robles, G., González-Barahona, J. M., and Guervós, J. J. M. (2006). Beyond
source code: The importance of other artifacts in software development (a case study).Journal
of Systems and Software, 79(9):1233–1248.

[Sliwerski et al., 2005] Sliwerski, J., Zimmermann, T., andZeller, A. (2005). When do changes
induce fixes? InMSR.

[Śliwerski et al., 2005]Śliwerski, J., Zimmermann, T., and Zeller, A. (2005). When dochanges
induce fixes? InMSR ’05: Proceedings of the 2005 international workshop on Mining software
repositories, pages 1–5, New York, NY, USA. ACM.

[Ukkonen, 1985] Ukkonen, E. (1985). Algorithms for approximate string matching.Inf. Control,
64(1-3):100–118.

[Ye et al., 2004] Ye, Y., Nakakoji, K., Yamamoto, Y., and Kishida, K. (2004). The co-evolution
of systems and communities in Free and Open Source software development. In Koch, S.,
editor,Free/Open Source Software Development, pages 59–82. Idea Group Publishing, Hershey,
Pennsylvania, USA.

[Zimmermann et al., 2006] Zimmermann, T., Kim, S., Zeller, A., and Whitehead, Jr., E. J. (2006).
Mining version archives for co-changed lines. InMSR ’06: Proceedings of the 2006 interna-
tional workshop on Mining software repositories, pages 72–75, New York, NY, USA. ACM.

