Energy Considerations in a Two Machine Flowshop Scheduling Problem with Sequence Dependent Setups

A. Mansouri¹ E. Aktas¹ U. Besikci²

¹Brunel Business School, Brunel University London, UK ²Faculty of Engineering and Natural Sciences, Sabanci University, Turkey

INFORMS ANNUAL MEETING 2012 - Phoenix, AZ October 14-17

- 4 同 ト 4 回 ト 4 回 ト

Outline

- Sustainable manufacturing
- Flowshop problem with total energy consumption
- Previous work
- 2 Methodology
 - Mathematical formulation
 - Multiobjective genetic algorithm
 - Data
- 3 Work in progress
 - Main results and contribution
 - Future work

· < 프 > < 프 >

Sustainable manufacturing Flowshop problem with total energy consumption Previous work

Outline

- Motivation
 - Sustainable manufacturing
 - Flowshop problem with total energy consumption
 - Previous work
- 2 Methodology
 - Mathematical formulation
 - Multiobjective genetic algorithm
 - Data
- 3 Work in progress
 - Main results and contribution
 - Future work

Summary

Sustainable manufacturing Flowshop problem with total energy consumption Previous work

Sustainability concerns in manufacturing

- Challenges
 - Increasing costs
 - Scarcity of energy, resources, and material
- Manufacturing sector major contributor to the UK economy
 - The third largest sector
 - Over 11% of the national economy
 - Over 8% of total UK employment
- Transition to a low-carbon economy
- Energy considerations for resource efficient manufacturing

Sustainable manufacturing Flowshop problem with total energy consumption Previous work

Outline

Motivation

• Sustainable manufacturing

• Flowshop problem with total energy consumption

Previous work

2 Methodology

- Mathematical formulation
- Multiobjective genetic algorithm
- Data

3 Work in progress

- Main results and contribution
- Future work

Summary

Sustainable manufacturing Flowshop problem with total energy consumption Previous work

Background

- $F2|ST_{sd}|C_{max}$, Energy
- Multiple products
- Different running speeds
- Two machine sequence dependent permutation flowshop problem
- Conflicting criteria: C_{max} and total energy consumption (TEC)

→ Ξ → → Ξ

Pareto Front

Sustainable manufacturing Flowshop problem with total energy consumption Previous work

Outline

Motivation

- Sustainable manufacturing
- Flowshop problem with total energy consumption

Previous work

Methodology

- Mathematical formulation
- Multiobjective genetic algorithm
- Data

3 Work in progress

- Main results and contribution
- Future work

Summary

Sustainable manufacturing Flowshop problem with total energy consumption Previous work

Flowshop scheduling with sequence dependent setups

- Two machine sequence dependent flowshop problem
 - A variation of TSP
 - Can be solved for *C_{max}* with Johnson's algorithm if the setup times are not sequence dependent
- Survey on scheduling problems with setup times / costs [1]

Sustainable manufacturing Flowshop problem with total energy consumption Previous work

Energy consumption

- Minimizing Total Energy Consumption and Total Completion Time [2]
- Energy consumption characteristics driven by task flow in machining [3]
- Energy consumption model and energy optimization in manufacturing [4]

ヘロト 人間 ト ヘヨト ヘヨト

Sustainable manufacturing Flowshop problem with total energy consumption Previous work

Multiobjective Genetic Algorithms

- Multicriteria scheduling [5]
- Application of GA on scheduling problems with multiple objectives [6, 7, 8]
- Multi-objective optimization by means of GAs [9, 10]

Mathematical formulation Multiobjective genetic algorithm Data

Outline

Motivation

- Sustainable manufacturing
- Flowshop problem with total energy consumption
- Previous work

2 Methodology

Mathematical formulation

- Multiobjective genetic algorithm
- Data

3 Work in progress

- Main results and contribution
- Future work

Summary

(4回) (1日) (日)

Mathematical formulation Multiobjective genetic algorithm Data

Parameters

Ν	=	number of jobs; $j = 1, \ldots, N$
Μ	=	number of machines; $i = 1, \ldots, M$
p_{ij}	=	processing time of job <i>j</i> on machine <i>i</i>
VI	=	processing speed factor (same for all machines:
		slow, normal, fast)
S _{ijk}	=	sequence dependent setup time of changing
		over from job <i>j</i> to job <i>k</i> on machine <i>i</i>
π	=	a very large number
conv _l	=	conversion factor for processing speed (con-
		verts time to energy unit depending on speed)
idleconv _i	=	conversion factor for idle time on machine <i>i</i>
r	=	iteration controller

<ロト <回 > < 注 > < 注 > 、

æ

Mathematical formulation Multiobjective genetic algorithm Data

Positive variables

C _{ii}	=	latest completion time of job j on machine <i>i</i>
<i>c</i> .		and the second second states the second state of the second states of th

fc_j = setup and completion time correction for the first job on second machine

TEC = total energy consumption

イロト イポト イヨト イヨト

ъ

Mathematical formulation Multiobjective genetic algorithm Data

Binary variables

 $f_j = \begin{cases} 1 & \text{if job } j \text{ is the first job,} \\ 0 & \text{otherwise.} \end{cases}$ $x_{jk} = \begin{cases} 1 & \text{if job } j \text{ is scheduled any time before job } k, \\ 0 & \text{otherwise.} \end{cases}$ $t_{jk} = \begin{cases} 1 & \text{if job } j \text{ is scheduled immediately before job } k, \\ 0 & \text{otherwise.} \end{cases}$ $y_{ijl} = \begin{cases} 1 & \text{if job } j \text{ is processed at speed } l \text{ on machine } i, \\ 0 & \text{otherwise.} \end{cases}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Mathematical formulation Multiobjective genetic algorithm Data

Objective function and timing constraints

$$\min C_{max} \tag{1}$$

$$c_{1j} \ge p_{1j}/v_l \times y_{1jl} + s_{1jj} \times f_j \qquad \forall j \qquad \forall l \qquad (2)$$

$$\pi imes (1 - f_j) + fc_j \ge s_{2jj} - c_{1j} \quad \forall j$$
 (3)

$$c_{2j} \ge c_{1j} + fc_j + p_{2j}/v_l \times y_{2jl} \qquad \forall j \qquad \forall l \qquad (4)$$

∀i

$$\pi \times f_k + \pi \times (1 - t_{jk}) + c_{ik} \ge c_{ij} + p_{ik}/v_l \times y_{ikl} + s_{ijk} \times t_{jk}$$

$$\forall i \quad \forall j \quad \forall k \quad \forall l \quad j \ne k \quad (5)$$

 $C_{max} > C_{2i}$

(6)

Mathematical formulation Multiobjective genetic algorithm Data

Balance constraints

$$\sum_{j} f_{j} = 1$$

$$\sum_{j} y_{ijl} = 1 \quad \forall i \quad \forall j$$

$$\sum_{k} t_{jk} = 1 \quad \forall j \quad j \neq k$$

$$\sum_{j} t_{jk} = 1 \quad \forall k \quad j \neq k$$
(10)

Mansouri, Aktas, Besikci Energy Consideration with Sequence Dependent Setups

ヘロト 人間 とくほとくほとう

æ

Mathematical formulation Multiobjective genetic algorithm Data

Energy constraints

$$idle_i = c_{max} - \sum_j \sum_l p_{ij} / v_l \times y_{ijl}$$
 (11)

$$TEC_r = \sum_{i,j,l} conv_l \times p_{ij} / v_l \times y_{ijl} + \sum_i idle_i \times idleconv_i$$
 (12)

$$TEC_r \le TEC_{r-1} - \epsilon \tag{13}$$

<ロト <回 > < 注 > < 注 > 、

æ

Mathematical formulation Multiobjective genetic algorithm Data

Outline

Motivation

- Sustainable manufacturing
- Flowshop problem with total energy consumption
- Previous work

2 Methodology

- Mathematical formulation
- Multiobjective genetic algorithm
- Data

3 Work in progress

- Main results and contribution
- Future work

Summary

・ 回 ト ・ ヨ ト ・ ヨ ト

Mathematical formulation Multiobjective genetic algorithm Data

• Chromosome structure: 2D [11]

Job string:	J1	J2	 Jn
Speed on Machine 1:	y 11/	y 12/	 y 1nl
Speed on Machine 2:	y 21/	y 221	 y 2nl

- Based on non-dominated sorting [10]
- Elitist strategy
- Genetic operators
 - Order cross-over for recombination
 - Inversion, insertion, and swap operators for diversification

Mathematical formulation Multiobjective genetic algorithm Data

```
input : Search parameters output: A nondominated set
```

```
Let time counter t = 0:
Initialize search parameters;
Let {Elite Set} = \emptyset;
while t < t_{max} do
    Perform nondominated sorting and niching;
    Select individuals for mating pool;
    From mating pool, generate new generation using genetic operators;
    Let current generation = new generation;
    Identify F^1 = nondominated frontier of current generation;
    Let {Elite Set} = {Elite Set} \cup F<sup>1</sup>:
    Refine { Elite Set };
    Let t = t + 1:
end
Report {Elite Set};
```

Mathematical formulation Multiobjective genetic algorithm Data

- Population size = $4 \times N$
- Maximum execution time = 5 × N seconds
- Crossover rate = 0.7
- Inversion rate = 0.10
- Mutation rate = 0.10
 - Insertion rate = 0.80
 - Swap rate = 0.20
- Initial population is generated randomly
- Approach for fine tuning: Compare the result of MOGA with CPLEX frontier

Mathematical formulation Multiobjective genetic algorithm Data

Outline

Motivation

- Sustainable manufacturing
- Flowshop problem with total energy consumption
- Previous work

2 Methodology

- Mathematical formulation
- Multiobjective genetic algorithm
- Data

Work in progress

- Main results and contribution
- Future work

Summary

(4回) (1日) (日)

Mathematical formulation Multiobjective genetic algorithm Data

Data example

Mansouri, Aktas, Besikci Energy Consideration with Sequence Dependent Setups

イロト イポト イヨト イヨト

ъ

Main results and contribution Future work

Outline

Motivation

- Sustainable manufacturing
- Flowshop problem with total energy consumption
- Previous work

2 Methodology

- Mathematical formulation
- Multiobjective genetic algorithm
- Data

3 Work in progress

- Main results and contribution
- Future work

Summary

・ 回 ト ・ ヨ ト ・ ヨ ト

Main results and contribution Future work

Initial runs: MOGA (35 sec); MIP (2610 sec)

Pareto Front for 7 jobs

Total Energy Consumption

Mansouri, Aktas, Besikci Energy Consideration with Sequence Dependent Setups

(A) (E) (A) (E)

э

Main results and contribution Future work

Contribution

- Mathematical formulation for inclusion of energy consumption in the F2|ST_{sd}|C_{max}
- Lower bound on C_{max}

$$\mathbf{p}_{ij}^{C_{max}^{LB}} = \mathbf{p}_{ij}/\mathbf{v}_1 + \max(\mathbf{s}_{ijk} \in \mathbf{S})$$

- **2** Run Johnson's algorithm to find C_{max}^{LB}
- Lower bound on TEC

2 Run Johnson's algorithm to find C^{UB}_{max}

3
$$idle_i^{C_{max}^{UB}} = C_{max}^{UB} - \sum_i \sum_j p_{ij} / v_3$$

• $TEC_{LB} = \sum_{i,j} conv_3 \times p_{ij} / v_3 + \sum_i idle_i^{C_{max}^{UB}} \times idleconv_i$

ヘロン 人間 とくほ とくほ とう

3

Main results and contribution Future work

Outline

Motivation

- Sustainable manufacturing
- Flowshop problem with total energy consumption
- Previous work

2 Methodology

- Mathematical formulation
- Multiobjective genetic algorithm
- Data

3 Work in progress

- Main results and contribution
- Future work

Summary

・ 回 ト ・ ヨ ト ・ ヨ ト

Main results and contribution Future work

Test with real problem: Biscuit Manufacturer

- Core markets: United Kingdom, Netherlands, France, Belgium, Ireland
- Size: >5K employees
- Strategy: minimize impact on the environment

Main results and contribution Future work

Test with real problem: Biscuit Manufacturer

Baking oven: a traveling conveyor belt 18 biscuit wide, 80m long Energy to bake one tonne of biscuits may change by up to 25%

- Line process rate which may be driven by pack size
- Changeovers (ie milk to plain chocolate) pause the process
- Level of waste

ヘロト ヘアト ヘビト ヘビト

э.

- C_{max} a measure of service
- TEC a measure of sustainability
- Facilitation of trade-off analysis
- Outlook
 - Comparison of MOGA with CPLEX on various problems
 - Lower Bounds on C_{max} and TEC
 - MOGA as a decision support tool for trade-off analysis

- 4 同 ト 4 回 ト 4 回 ト

References I

- [1] Ali Allahverdi, C.T. Ng, T.C.E. Cheng, and Mikhail Y. Kovalyov. A survey of scheduling problems with setup times or costs. *European Journal of Operational Research*, 187(3):985 – 1032, 2008. ISSN 0377-2217. doi: 10.1016/j.ejor.2006.06.060. URL http://www.sciencedirect.com/science/ article/pii/S0377221706008174.
- [2] M. B. Yildirim and G. Mouzon. Single-machine sustainable production planning to minimize total energy consumption and total completion time using a multiple objective genetic algorithm. *Engineering Management, IEEE Transactions on*, PP (99):1–13, 2011. ISSN 0018-9391. doi: 10.1109/TEM.2011.2171055.
- [3] Yan He, Bo Liu, Xiaodong Zhang, Huai Gao, and Xuehui Liu. A modeling method of task-oriented energy consumption for machining manufacturing system. *Journal of Cleaner Production*, 23(1):167 – 174, 2012. ISSN 0959-6526. doi: 10.1016/j.jclepro.2011.10.033. URL http://www.sciencedirect.com/ science/article/pii/S0959652611004197.
- [4] A. Dietmair and A. Verl. A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing. *International Journal of Sustainable Engineering*, 2(2):123–133, 2009.

References II

- [5] V. T'kindt and J.C. Billaut. *Multicriteria scheduling: theory, models and algorithms.* Springer, 2006.
- [6] SG Ponnambalam, H. Jagannathan, M. Kataria, and A. Gadicherla. A tsp-ga multi-objective algorithm for flow-shop scheduling. *The International Journal of Advanced Manufacturing Technology*, 23(11):909–915, 2004.
- [7] T. Pasupathy, C. Rajendran, and RK Suresh. A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs. *The International Journal of Advanced Manufacturing Technology*, 27(7): 804–815, 2006.
- [8] S. Deva Prasad, OV Krishnaiah Chetty, and C. Rajendran. A genetic algorithmic approach to multi-objective scheduling in a kanban-controlled flowshop with intermediate buffer and transport constraints. *The International Journal of Advanced Manufacturing Technology*, 29(5):564–576, 2006.
- [9] C.A.C. Coello, G.B. Lamont, and D.A. Van Veldhuisen. Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation Series. Springer, 2007. ISBN 9780387367972. URL http://books.google.co.uk/books?id=rXIuAMw3IGAC.

References III

- [10] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley-Interscience series in systems and optimization. John Wiley & Sons, 2009. ISBN 9780470743614. URL http://books.google.co.uk/books?id=U0dnPwAACAAJ.
- [11] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Artificial intelligence. Springer, 1998. ISBN 9783540606765. URL http://books.google.co.uk/books?id=vlhLAobsK68C.

Mansouri, Aktas, Besikci Energy Consideration with Sequence Dependent Setups

イロト イポト イヨト イヨト

1