
Non-commercial object-base scene description
Stephen Gulliver, Gheorghita Ghinea, Kulveer Kaur

Brunel University, UK

Introduction

This paper investigates the development of a non-commercial object-based scene
description language, for the effective capture of two- and three-dimensional scenes.
Design science research techniques were applied to determine the factors involved in
effective scene capture. The solution facilitates the description of 2D and 3D
environments via interpretation of object relationships; the implementation of the
inheritance, functionality, interactions and behaviour.

There have been a number of languages developed to create 2D and 3D scenes and
virtual environments. Sadly the languages possess problems of interoperability, reliability
and performance; the inability to incorporate effectively dynamic or interactive scenes
(Walczak, 2003); as well as limited or conflicting commercial support of rendering within
web browsers (Macdonald, et al., 2005). Modifications to previous standards have been
made, yet many of these problems still exist.

The main technique used for describing 3D environments is via hierarchical scene
graphs (Nadeau, 1999). Scene graphs are a hierarchy of groups and shapes arranged
in a tree structure. Each of the parents and children within a scene graph are called
nodes. These nodes are used to construct 3D shapes. Figure 1 shows the making of an
aeroplane using a scene graph where all the parts are assembled one by one in order to
make the final design (Nadeau, 1999).

(a) Airplane parts, (b) wing and tall assembles (c) the completed airplane and (d) The airplane scene

graph Figure 1 Building a toy airplane using a scene graph [Nadeau, R. D. (1999), 19]

Our work emphasises upon describing both scene hierarchy, yet also how scene objects
link together – interactivity both physical and functional. An office, for example, is defined
by the effective placement of objects, such as a keyboard, a CPU, a mouse, a table /
desk and chair. The table may be made up of other objects: drawers, legs, etc. This

table is physically linked in some way to other objects in the environment, such as the
floor, the keyboard, the monitor, etc. In addition, certain objects have definable
functionality allowing interaction (both with the user, but also with other objects). Each
object has a physical appearance, location and orientation, it may have considerable
functional potential (often similar in nature to other instances of its type).

The design science approach was used in our work (see figure 2 for Design Science
Approach flow diagram). Simple real world examples were used to establish the
important factors involved in the effective capture of 2D and 3D scenes. Four iterations
were performed to check all concepts, however all iterations were checked against test
examples in order to ensure effective object capture. Abduction processing defined the
following requirements.

1. The final solution should be able to define both 2- and 3-Dimensional scenes
using a XML- based description.

2. An object should be able to inherit the properties of other objects.
3. The design should be able to add functionality to an object.
4. The design is needed to define the behaviour on the basis of properties.
5. The concept of interaction should be clearly defined.

Figure 2 Design Science Approach flow diagram

Describing scenes and Objects

A scene is fundamentally the relationship that exists amongst objects. Every relationship
has a meaning and it can be used to aid interactivity. Although the list of link definitions
is unlimited, the set of relationships used to describe a scene in our example is limited

to: On the top of (ObjA, ObjB); Opposite to (ObjA, ObjB); In the RHS (ObjA, ObjB); In the
LHS (ObjA, ObjB); Next to the (ObjA, ObjB); Touches (ObjA, ObjB). The distance
between objects can be defined at instantiation, for example: On the top of (ObjA, ObjB,
Distance).

When implementing the office example, our solution considers both hierarchy of objects
(see figure 3), but also the interaction capabilities and relative placement of objects (see
figure 4). Inclusion of functional inheritance was added, via the launching of
programming interfaces, to facilitate single and multiple inheritance.

Scene

Chair

Shape
Size
Material
Transformation
Orientation

Move()

Table

Shape
Size
Material
Transformation
Orientation

Move()

Drawer

Shape
Size
Material
Transformation
Orientation

Move()
AddItem()
RemoveItem()

Book

Shape
Size
Material
Transformation
Orientation

Move()

Desktop

Shape
Size
Material
Transformation
Orientation

Move()

Keyboard

Shape
Size
Material
Transformation
Orientation

Move()

Shelf

Shape
Size
Material
Transformation
Orientation

0..*

1

0..*

Cup

Shape
Size
Material
Transformation
Orientation

Move()
1..*

0..*

1..*

0..*

0..*

0..*

1..*

1..*

1..*

1..*

1..*

0..*

0..*

Book1

Shape
Size
Material
Transformation
Orientation

Move()

Book2

Shape
Size
Material
Transformation
Orientation

Move()

Shelf2

Shape
Size
Material
Transformation
Orientation

Shelf1

Shape
Size
Material
Transformation
Orientation

Chair1

Shape
Size
Material
Transformation
Orientation

Move()

Chair2

Shape
Size
Material
Transformation
Orientation

Move()

Drawer2

Shape
Size
Material
Transformation
Orientation

AddItem()
RemoveItem()
Drag()

Drawer1

Shape
Size
Material
Transformation
Orientation

AddItem()
RemoveItem()
Drag()

Figure 3 Office objects defined within the scene heirarchy

Chair

Shape
Size
Material
Transformation
Orientation

Move()

Table

Shape
Size
Material
Transformation
Orientation

Move() Drawer

Shape
Size
Material
Transformation
Orientation

Move()
AddItem()
RemoveItem()

Book

Shape
Size
Material
Transformation
Orientation

Move()

Desktop

Shape
Size
Material
Transformation
Orientation

Move()

Keyboard

Shape
Size
Material
Transformation
Orientation

Move()

Shelf

Shape
Size
Material
Transformation
Orientation

Cup

Shape
Size
Material
Transformation
Orientation

Move()

opposite to the

On the top

on the top of

Opposite to

On the top

On the top

On the RHS

Drawer2

Shape
Size
Material
Transformation
Orientation

Move()
AddItem()
RemoveItem()

Drawer1

Shape
Size
Material
Transformation
Orientation

Move()
AddItem()
RemoveItem()

Book2

Shape
Size
Material
Transformation
Orientation

Move()

Book1

Shape
Size
Material
Transformation
Orientation

Move()

on the top of

on the top of

Chair2

Shape
Size
Material
Transformation
Orientation

Move()

Chair1

Shape
Size
Material
Transformation
Orientation

Move()

Shelf2

Shape
Size
Material
Transformation
Orientation

Shelf1

Shape
Size
Material
Transformation
Orientation

Next to

in the RHS of

on the top of

Next to

Touches

Touches

in the LHS

Touches

have

Figure 4 Office objects and their interactive relationships

Each relationship was given an identity so that it could be used by each of the objects

(see figure 5). All information about relationships and locations of objects was described.

A file link was used to describe the image appearance.

Shape / appearance of objects was described using current standardised modelling

languages; size / scale, orientation and object material / texture was manipulated in

object parameters. Documentation of functionality and inheritance was achieved by

launching a java-based programming environments and using inherent java inheritance.

An XML extension is being considered.

Object 2 is defined Reference to object 3

Figure 5 Reference made to access relationships and objects through their Ids

Conclusion

The work describes the steps taken to implement a solution for scene description

on the basis of relationships that exist amongst objects. The solution, via inclusion

of other technologies, implements inheritance, addition of functionality. Moveover,

manipulated properties are capable of defining interaction and behaviour of objects

in a very well manner.

References

1. Macdonald, J.A., Brailsford,F.D.,Bagley,R.S.(2005) Encapsulating and
manipulating Component object graphics (COGs) using SVG, ACM

2. Nadeau, R. D. (1999) Building Virtual Worlds with VRML, IEEE Computer
Graphics and Applications

3. Walczak, K., Cellary, W. (2002) Building database Applications of Virtual Reality
with X-VRML, ACM, Web 3D’02, Tempe, Arizona, USA, February 24-28

