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Abstract: Two numerical methods are presented for simulating a micro-stroke: a discretised model and a 
continuum model, both developed for simulating coupled flow and oxygen transport to the microvasculature. 
The discrete model treats the microvasculature and the tissue perfusion as two coupled sub-systems governed 
by Poiseulle flow and mass transport equation respectively. The continuum model regards the blood passage 
as a porous media flow and deals with mass transport in terms of a two phase flow system. In our simulations, 
it has been shown that the microvascular structure has a strong influence on the localized oxygen transport 
behaviour, contributing to more complex patterns in the tissue oxygen concentration than those found by 
assuming continuum behaviour. 
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1. Introduction 
Dementia, a common brain disease, is believed 
to be attributed to flow-metabolism 
imbalances in the local microvasculature-
tissue network. When a supplying artery 
becomes blocked, tissue rapidly suffers from a 
lack of oxygen, a condition termed hypoxia. 
Smaller infarcts, caused by local damage at the 
microvessel level, may evolve into large 
infarcts and cause functional brain damage.  
 
An improved understanding of how the brain 
responds to micro-infarcts and thus how 
vascular dementia develops and evolves would 
be highly beneficial to the improvement of its 
diagnosis and testament. The study of how the 
cerebral microcirculation behaves can provide 
a detailed picture of the flow and mass 
transport patterns, which can be used to assess 
localised cell viability. However, our 
understanding of how such ‘micro-strokes’ 
occur is still far from complete, partly due to 
the limited availability of experimental data 
concerning the microvasculature properties. 

 

At such length scales, it is unclear whether 
oxygen transport can be considered as being 
governed by a continuum flow field or 
whether the local network properties are 
important, which is the subject that we address 
here. 
 
Some researchers believe that the 
microvasculature plays an important role in 
oxygen transport in the coupled vessel-tissue 
system and have tried to investigate the 
microcirculation based on its morphology and 
to couple it into tissue oxygen transport. In this 
category, the classical work in modelling the 
microcirculatory network was performed by 
Krogh [1], who suggested that the 
haemodynamic unit of the microvascular bed 
is like a bundle of tissue cylinders with the 
same spatial arrangement. Each cylinder has a 
capillary located in the centre that supplies 
oxygen to the nearby concentric tissue area by 
diffusion as the blood is transported from the 
arteriole end to the venule end. This model is 
most likely to apply to tissue where the 
capillaries pass in nearly the same alignment, 
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but may not be suitable for tissues perfused by 
curved vessels with irregular arrangement, as 
found in the cerebral microvasculature. 
 
Secomb and Hsu [2] considered the tissue as a 
whole in their analysis of oxygen transport in 
the skeletal muscle with nearly parallel spaced 
capillaries and transverse arterioles passing by. 
The governing equations for oxygen transport 
were solved using the Green function method 
and a full three dimensional simulation for 
tissue oxygen transport was performed. The 
effects of setting boundary conditions as well 
as the line source expression on the system 
oxygen transport were also discussed in later 
work focusing on oxygen delivery in tissue [3].  
 
A more realistic morphometric model with 
parallel evenly spaced capillaries having 
interconnections at random locations was 
proposed by Beard and Bassingthwaighte [4] 
for analysis of cardiac tissue. An extension to 
this model was later proposed by Beard et al. 
[5] to interpret the experimental data of 
myocardial oxygen transport in pig heart tissue.  
 
Compared with other tissues, oxygen transport 
in cerebral tissue has been little investigated 
through theoretical models. This is partially 
due to the complexity of the network 
morphometry. In the cerebral cortex, the 
microvascular architecture in tissue varies 
from region to region, which affects the spatial 
distribution of blood supply. In addition, the 
regionally varying pattern of neuronal 
activities affects the consumption rate of 
oxygen. All these factors are coupled together 
to contribute to the heterogeneity of oxygen 
levels in brain tissues, adding extra complexity 
to any investigations, whether theoretical or 
experimental. 
 
On the basis of scanning electron micrographs 
of corrosion casts in rat brain, Secomb et al. [6] 
reproduced a network with 50 segments. The 
Green function method was used to predict the 
oxygen level in the tissues surrounding the 
network, and the tissue perfusion consumption 
correlation was also examined. They found 
that tissue hypoxia coming from perfusion 

shortage could be alleviated if the oxygen 
consumption rate in tissue was only 
moderately decreased.  
 
Considering the flow paths passing through 
brain tissue to be like voids or small channels, 
due to their low flow rate condition, we can 
then describe blood flow motion in the vessel-
tissue coupled system by Darcy’s Law, which 
relates linearly the pressure drop across the 
media to flow velocity [7]. More complicated 
theoretical models have also been proposed to 
describe the flow motion in porous media. The 
patterns of mass diffusion within biological 
tissue are very different between permeable 
and impermeable regions due to the influence 
of blood flow. A comprehensive review of 
diffusion and other relevant mechanisms in 
brain tissue was introduced by Nicholson [8], 
but only the factors affecting the effective 
diffusivity have been sufficiently addressed. 
To model the interactions between the 
haemodynamics and oxygen diffusion in brain 
tissue, the two phase treatment inspired by Lee 
and Vafai [9] is thus adopted here for our 
continuum model, on the basis of classical 
mass transport equations. 
 
In summary, there are thus two different 
approaches to the coupled flow-tissue 
transport problem for brain tissue. The 
influence of the network sub-model on the 
mass transport in brain tissue so far remains 
unclear and the aim of this paper is to uncover 
the interaction of the blood/tissue coupled 
system by comparing these two methods 
modelling the blood delivery accordingly. 
 
2. Method 
 
2.1 Discrete model 
 
2.1.1 Network creation 
The first part of our discrete model is the 
accurate creation of networks to mimic the 
cerebral microvasculature. The network 
topology and geometry both highly affect the 
blood flow circulating in the vessels and hence 
the oxygen transport to tissue. Since there are 
very limited topological data available in the 
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literature relating to the cerebral 
microvasculature, the experimental study by 
Cassot et al. [10] is a crucial source of data.  
 
The first step of the network creation is to 
randomly cluster many nodes in a volume, 
attempting to reflect the heterogeneity of the 
branching point distribution in real cerebral 
networks. Then the connections between nodes 
are added or removed through different 
network generating methods by consideration 
of a range of different factors, such as the node 
to node distance, the connectivity, or the 
vessel space density. Several methods 
including the Shortest Arcs, Gamma 
Distribution, Spanning Tree and the Modified 
Spanning Tree Method have been proposed to 
generate accurate networks whose length 
distribution and statistical characteristics are 
close to the experimental results. The network 
generated by the Modified Spanning Tree 
Method is found to be the best match to 
experimental data, as shown in Fig.1 and is 
adopted here to analyse the influence of 
network morphology in oxygen transport in 
the vessel-tissue system as accurately as 
possible. Full details about the different 
algorithms and the comparisons between these 
different network creation methods can be 
found in a parallel paper [11]. 

2.1.2 Blood flow in network 
The next step is to calculate the blood flow in 
the network and hence the oxygen transport to 
and within the surrounding tissue. Due to the 
low velocity of the blood flow in the 
microcirculation, the dynamics of the flow are 
dominated by viscous effects. Thus, for the 
steady state behaviour, Poiseuille’s equation is 
applied to model the blood flow passing 
through each vessel, neglecting any possible 
vessel deformation.  
 
Each vessel in the network is regarded as a 
solid long uniform tube with constant cross 
section. Poiseuille’s equation implies that the 
flow is balanced between the pressure drop 
along the tube and the viscous force:  
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where Q is volume flow rate (m3/s ), ∆P is the 
pressure drop across the vessel segment, r is 
the vessel radius, µ  is the dynamic viscosity 
of the fluid and L is the vessel length. This 
relationship can be easily extended to model a 
blood flow network. Eq.1 describes how the 
pressure drop varies between two nodes, thus 
for a system with n nodes we can build up a 
linear system with n unknowns and n 
equations [12]: 
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2.1.3 Oxygen transport in network 
For a given vessel, considering the steady state 
only, the modified cross section averaged mass 
transport equation based on [13] becomes:  
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where Q is the volume flow rate of the vessel, 

vC  and tC  are the oxygen concentration in 

the vessel and tissue respectively (in mM) and 

wD  is the oxygen permeability. Since the 

vessel is generally short compared to the 
dimension of the tissue, we assume tC  to 

vary linearly along the vessel: 
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We can then obtain the following solution: 
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where toti CCC −=∆ , and QrDw / 2πλ = . 

Note that the decay constant λ  characterizes 
the oxygen concentration profile along the 
vessel. 
 
The convection mixing process at a node can 
be regarded as a weighted combination of the 
values of all incoming vessels, where j is the 
index of the starting node in parent vessels 
converging at node i: 

∑∑=
j

ij
j

ijji QQCC / .                (6) 

2.1.4 Oxygen transport in tissue 
Oxygen transport in brain tissue can be 
assumed to be governed by the following 
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equation: 
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where tC is the spatially and temporally 

varying concentration in tissue (mM),tD is the 

oxygen diffusivity in tissue (m2/s), VG  is the 

net oxygen generation term (mM/s) andM is 
the tissue consumption associated with brain 
function (mM/s). 
 
Oxygen diffuses to the tissue from the vessel 
through the vessel walls, and mass transport in 
the tissue is thus directly linked with the mass 
transport in the nearby vessels. Since the 
oxygen distribution along each vessel can be 
calculated first, the oxygen extracted from 
vessels in a given voxel is easily obtained by 
multiplying the flow rate and the concentration 
drop between the terminal points at the 
surfaces. VG is then determined by calculating 

the total oxygen flux from vessels in every 
voxel. On the other hand, the sink term M  
reflects the tissue oxygen consumption and is 
set to be constant according to the assumption 
made by Beard [13].   

2.2 Continuum model 

2.2.1 Flow in network/tissue 
If the network is not modelled directly, the 
brain tissue can be treated as a porous medium 
with many tortuous flow channels or voids. 
Due to the low flow velocity in the real 
network, the steady state blood flow motion in 
tissue can be taken to be governed by Darcy’s 
flow equations [7]: 

ϕµ
VK

q =∇−= P                     (8) 

where q and P∇  are the Darcy velocity and 
the pressure gradient respectively.V is the 
flow field and ϕ  is the porosity. The Darcy 
velocity is divided by porosity to incorporate 
the fact that only a fraction of the total 
formation volume is available for flow. 
Although, the permeability K  is a second 
order symmetric tensor, representing the 
directional transport variations, here we 
assume that it is constant under the assumption 

of an isotropic medium. 

2.2.2 Oxygen transport in blood/tissue 
Since the flow is passing through the tissue, 
the oxygen transport in blood and tissue must 
be coupled properly. Here we consider the 
vessel tissue system as a two phase flow 
system, Lee and Vafai [9], including the blood 
flow perfusion through all areas occupied at a 
volume fraction of bφ and the tissue 

represented by a static fluid with volume 
fraction tφ ( 1=+ tb φφ ) as shown in the 

following equations: 
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The oxygen concentrations in blood and tissue 
are represented by the bC and tC  respectively. 

All other terms are the same with those 
introduced in discrete model except for er , 

representing the effective vessel radius. The 
blood and tissue oxygen transport equations 
are thus coupled together. 
 
Apart from calculation of flow patterns in 
discrete model, flow and mass transport 
equations for both models are all discretised 
by the finite volume method, which has been 
widely used in solving heat and mass transfer 
equations [14]. 

3. Result and discussion 
In both flow simulations considered here, two 
flow sources and two flow sinks are put in a 
(0.5mm)3 cube at the following locations 
((0.1,0.1,0.1); (0.4,0.1,0.4); (0.1,0.1,0.1); 
(0.4,0.1,0.4)) to mimic the arteriolar inlets and 
venous outlets in the microvascular bed with 
flow input and output. For the discrete model, 
the blood pressure at inlet and outlet in the 
vascular network is set to be 3000Pa and 
1000Pa respectively, resulting in a total inlet 
flow rate of 2.49×10−13 m3/s, which is also set 
to be the flow source strength for solving 
Darcy’s equation in the continuum model. 
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For both models, the boundary conditions for 
oxygen concentration in the tissue are the 
same: in the y and z directions there is no flux 
whilst in the x direction concentration is set to 
be a constant: 
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The oxygen concentration at the sources for 
solving the blood delivery equations in both 
cases is taken as 10mM and the initial 
concentration for the oxygen concentration in 
both blood and tissue is set at 0.1mM. The 
boundary conditions for the porous flow are 
set to be zero flux at all walls. To simulate a 
mini-infarct caused by blood flow shortage, a 
vascular blockage is mimicked by disabling 
one flow source at 200s. Eight symmetrically 
arranged points are chosen in this model to 
monitor the temporal behaviour of tissue 
oxygenation in response to this reduction. 
 
In Fig.1, an artificial network created 
according to the Modified Spanning Tree 
Method [11] shows the considerable 
heterogeneity in vessel distribution. The 
network architecture is not well organized with 
an order that parent and children vessels can 
be easily defined. Instead, it shows a web-like 
structure shared with the real microvascular 
network observed recently [10]. 
 
From the oxygenation time course comparison 
between the two models as shown in Fig.2, the 
spatially averaged oxygenation can be seen to 
be higher in the discrete model. Both curves 
rise up rapidly to reach an equilibrium state, 
dropping sharply as the flow blockage occurs, 
finally settling down to a new steady state and 
interestingly they all have a drop around 0.1 
after one flow source is removed. 
 
The tissue concentration contours for discrete 
and continuum models are shown in Fig.3 and 
Fig.4 respectively. The concentration 
distributions for both cases share similar 
geometric features, and their oxygen levels 

decay gradually with the distance from the 
sources to the two sinks. Oxygen is transported 
further in the discrete model since its contours 
cover a larger area than do those in the 
continuum model. In addition, for the discrete 
model, a higher oxygen level can be found in 
the region closed to sources. In all, the oxygen 
level is higher in discrete model, which is in 
coherent with curves showing the time course 
comparison between two models. 
 
Unlike the geometric symmetry of contours 
found in the continuum model, due to the 
irregular mass transport in vessel network, 
there is very weak symmetry seen in the 
oxygen contour in the discrete model. This 
flow induced asymmetry may result from the 
unevenness in the network distribution, 
indicating that the network affects a great deal 
on the mass transport pattern in tissue. 
 
For both cases, after one flow source is 
disabled, oxygen in the surrounding area 
cannot be sustained at a high level, declining 
dramatically to the baseline value (0.1mM), as 
shown by the shrinkage of the oxygen contour 
in Fig. 3 and 4. In Fig. 3, the concentration 
contour supplied by the one remaining source 
seems simply to be split from the double 
contour pattern existing before source removal, 
but this is not a feature that is shared with the 
discrete model. The resulting contour, shown 
in Fig.4, has a larger region at high oxygen 
levels than the previous one, due to the flow 
redistribution after one source is removed. 
This implies that there is some local 
concentration increase in specific regions that 
benefit from the flow path rearrangement in 
the vessel network even if the net oxygen input 
is reduced. 
 
Fig.5 and Fig.6 show the time course of the 
averaged tissue oxygenation levels for both 
discrete and continuum models at eight 
symmetric arranged points C1-C8 (note that 
C1-C4 are in the plane spanned by the two 
source and sinks while C5-C8 are 
perpendicular to the source sink plane). 
 
As shown in Fig.5, the oxygen levels at these 
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monitoring points do not always undergo a 
decrease after the source removal. For 
example, the oxygen levels at C1 and C3 have 
an increase rather than a decrease. This could 
be attributed to the change in the oxygenation 
induced by flow pattern changes in response to 
the source removal at 200s. Since oxygen 
exchange at the vessel wall is proportional to 
the vessel-tissue concentration difference, the 
increase in wall exchange can be achieved by 
flow rearrangement. In particular, when flow 
reversal occurs, the pressure drop between the 
vessel and the tissue becomes larger or the 
flow rate along a vessel increases. All these 
effects can contribute to a higher wall 
exchange in local areas even when the total 
system influx is greatly reduced. 
 
In Fig.6, before the source removal, two pairs 
of curves coincide with their counterparts due 
to the symmetric arrangement. After one of the 
sources is removed, the coinciding curve pairs 
(C5-C6; C7-C8) no longer exhibit the spatially 
symmetric field found previously. The point 
near the removed source has a larger drop than 
that of its symmetric counterpart. Comparison 
between the curves for C5 and C7 also 
indicates that the closer the point is to the 
removal source, the larger concentration drop 
it will have after a flow reduction. 

4. Conclusion 
A discrete model and continuum model are 
presented here to simulate the flow and 
oxygen transport in brain tissue. The time 
history for averaged oxygenation for both 
models reveals synchronized system states 
while that for tissue oxygenation at different 
locations share the similar state transition 
patterns. The continuum model can capture 
basic mass transport patterns as does the 
discrete model. In addition, as the flow 
blockage occurs, the region near the removed 
source is unable to maintain sufficient oxygen 
supply, leading to a significant decrease in 
oxygen level. 
 
However, the discrete model considers the 
detailed network information, capturing the 
spatially-varying flow patterns which lead to 

inhomogenous oxygen flux to the tissue. Some 
oxygen transport features, such as unexpected 
local oxygen level increases induced by flow 
redistribution can only be shown in this model.  
 
The significance of the flow source can be 
found in the mass transport to brain tissue. The 
convective transport is not sufficient to bring 
oxygen to sites remote from the supply, even 
at this length scale, leading to a significant 
oxygen shortage. This implies that the density 
of the flow sources must be well set to meet 
the physiological demand. 
 
The influence of changes of flow distribution 
on the oxygen transport in tissue indicate the 
strong influence of the local microvascular 
structure, leading to the more complex patterns 
in oxygenation found in the discrete model 
than in the continuum model. Therefore, 
detailed morphometric analysis for vascular 
network is a very valuable requirement for 
future simulations, such as those conducted by 
Su et al. [11]. 
 
At this stage, due to the lack of information 
concerning the flow rate and locations of the 
artery-capillary and vein-capillary junctions, 
we cannot thus interpret the exact nature of 
this flow yet. In addition, the permeability, 
porosity and oxygen diffusivity in tissue need 
to be considered in more detail in the light of 
physiological measurements to yield a more 
detailed and accurate understanding of the real 
system. 
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TABLE I 
UNITS FOR PROPERTIES 

Symbol Quantity Unit 

µ Blood dynamic viscosity  3 × 10−3 kg s/m  

Dw Wall oxygen permeability 5.5 × 10−6 m/s 

Dt Tissue oxygen diffusivity 1 × 10−9 m2/s 

K Permeability 1 × 10−9 m2 

M Oxygen consumption 0.005 mM/s 

φ Porosity 0.03 

Φb Blood volume fraction 0.03 

   

 
 
Fig. 1 Artificial network created by Modified Spanning Tree Method 
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Fig. 2 Time course of spatial averaged tissue oxygenation (in mM) for 
the discrete and continuum model 
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Fig. 3 Oxygen contours (in mM) in the discrete model: above 
is the contour at 200s; below the contour at 400s  
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Fig. 5 Time course of tissue oxygenation (in mM) for discrete model 
at monitored points  
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Fig. 4 Oxygen contours (in mM) in the continuum model: 
above is the contour at 200s; below the contour at 400s 
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Fig. 6 Time course of tissue oxygenation (in mM) for continuum 
model at monitored points  
 


