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Abstract Simulation of blood presents a very complex haemodynamics problem especially in relation to the 

understanding of atherogenesis. In many simulations, blood has been treated as a single-phase homogeneous 

fluid, a classical approach that does not account for the presence of red blood cells (RBCs). Although this 

approach provides satisfactory tools to describe certain aspects of blood flow in large arteries, it fails to give 

an adequate representation of the flow field in the vessels of smaller diameter where the size of the RBC 

becomes significant relative to vessel diameter. So, this article is concerned with the study of non-Newtonian 

blood flow in microvascular networks with the intention of developing a new cell depletion layer model to 

represent the behaviour of RBCs through bifurcating networks. The model is tested in a microvascular 

network constructed possessing realistic bifurcation features, with controlled dimensions and angles. The 

RBC depletion model treats blood as two continuum layers, with a central, non-Newtonian core region of 

concentrated red cell suspension that is surrounded by a layer of plasma (Newtonian fluid) adjacent to the 

vessel wall. In the central core region, blood is described by Quemada's non-Newtonian rheological model. 

Geometry differences are shown to significantly affect flow rates, haematocrit distributions and the 

corresponding cell depletion layers. 
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1. Introduction 

 

In microvessels (20-500 microns in diameter), 

there are two key processes influencing the 

flow of blood. The first concerns the 

aggregation of RBCs resulting from shear rates 

that are small enough to enable red blood cells 

to form aggregate structures of varying sizes 

and morphology. This aggregation may be 

formed when the cells come into close 

proximity. One explanation often advanced for 

aggregation is the bridging hypothesis, which 

postulates that long-chain macromolecules such 

as fibrinogen or dextrans of high molecular 

weight may be adsorbed onto the surface of 

more than one cell, leading to a bridging effect 

between cells. It has been proposed by other 

investigators that the reduced concentration of 

macromolecules in the vicinity of red cells 

lowers the osmotic forces in the vicinity, 

causing fluid to move away and increasing the 

tendency for adjacent red cells to come 

together. According to both the bridging and 

the depletion theories, the total adherent force 

between two cells is maximal when the cells 

are oriented en face, thus it is not uncommon to 

observe cells arranged in rouleaux, Bishop et 

al. (2001). 

The second process results from shear rate 

gradients, which create a force that counteracts 

dispersion forces and tends to move red cells 

and aggregates away from the vessel wall, 

Bishop et al. (2001). This radial migration of 

red blood cells leads to the formation of a cell-

depleted layer at the vessel wall.  

The aggregation of red blood cells in blood 

flowing through small tubes leads to the two-

layer flow of an inner core of rouleaux 

surrounded by a cell-depleted peripheral layer, 

[Bagchi (2007), Srivastava (2007), Das et al. 

(2000), Das et al. (1997), Sharan & Popel 

(2001), Cokelet & Goldsmith (1991), Chen et 

al. (2006) and Kim et al. (2007)]. The 

formation of this layer is known to be 

accompanied by a decrease in hydrodynamic 

resistance to flow. 
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Furthermore, the size and distribution of 

the aggregates affect the flow impedance in a 

way that may be characterized by an "apparent 

viscosity". Effectively, when aggregates 

migrate to the centre of the vessel, particle size 

is greater in the centre than near the wall, and 

so the effective viscosity is greater in the centre 

as well. Thus, the net effect of aggregation on 

effective blood viscosity creates two opposing 

tendencies, increased viscosity in the centre 

due to increased particle size and decreased 

viscosity near the wall due to reduced 

haematocrit. 

In microvessel networks, the processes 

described above are superimposed on the flow 

produced by bifurcations. Typically, a 

disproportionate fraction of red blood cells 

generally flows into the branch that receives a 

higher total flow leading to a higher 

haematocrit (the proportion of blood volume 

that is occupied by red blood cells) in that 

branch than in the other. In particular, if the 

flow into the low flow branch is sufficiently 

small, RBCs do not enter that branch. 

Effectively, the low flow branch skims plasma 

from the peripheral layer of the flow. Such 

behavior reflects axial migration of RBCs 

upstream of the bifurcation, producing a phase 

separation in the parent vessel, and this 

physiological phenomenon, which causes 

heterogeneity in the microcirculation, is caused 

by a cell-depleted wall layer. The fluid forces at 

a bifurcation can also affect phase separation. 

Since blood cells are finite size particles, a 

certain fraction of them will always be found 

along the dividing stream surface. Only at the 

branch point the balance of fluid forces will 

determine which way such cells go, leading to 

a partial separation of the solid and fluid phase. 

This process does not require an uneven 

distribution of the haematocrit in the parent 

vessel, and is called red cell screening, 

Shibeshi and Collins (2005).  

In the presence of red blood cell 

aggregation, velocity profiles become blunted 

as pseudo-shear rate (= mean fluid 

velocity/vessel diameter) is decreased from ~ 

100 s
−1

 to 5 s
−1

. Also, there is in vivo evidence 

that the short distance between channel 

junctions in venules does not appear to permit 

significant radial migration and red cell 

depletion of the peripheral fluid layer between 

bifurcations, and that the formation of a cell-

depletion plasma layer at the vessel wall only 

occurs at very low pseudo-shear, Bishop et al. 

(2001). 

 Whilst the lattice-Boltzmann method has 

been successfully used to model individual 

RBCs flowing through relatively simple blood 

vessels, it is likely that application to more 

complex geometry would be prohibitively 

expensive. Thus, a mathematical model is 

described here to capture the affects described 

above and which can be sensibly applied to 

microvascular networks. Cell depletion effects 

are simulated by a two-layer model in which 

the haematocrit and viscosity are tightly 

coupled. 
 

2 Quemada model for two-layer blood flow 
 

A number of constitutive models have been 

proposed to describe the bulk rheological 

behavior of blood. Among these, the Casson 

model has been most widely used. Quemada 

extended the Casson model using first physical 

principles and explicitly described the kinetics 

of RBC aggregation; this model includes a 

structural parameter, which is related to the size 

of RBC aggregates. As a result, the viscosity is 

not infinite at zero shear rates in the Quemada 

model making it attractive for modeling blood 

flow in microvessels. Also, the Quemada model 

accurately fits experimental viscometric data 

for small diameter vessels (above 12 µm 

diameter),   Das et al. (1997). The viscosity 

results for this model lie between the in vitro 

and in vivo values. The Quemada model is thus 

used to model the central core of RBC 

suspensions whilst the peripheral plasma layer 

is modeled as a Newtonian fluid.  
 

3 Mathematical model 
 

Consider a RBC depletion model for blood 

flow within a cylindrical tube of radius R 

consisting of a central core of radius rc and 

effective viscosity 
�

c, which contains a 

suspension of plasma and red blood cells, and a 

cell-depleted layer outside the core containing 

plasma with an effective viscosity, 
�

p. This 

model is also called a two-layer model because 

the flow consists of two layers of different 
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fluids. Fig. (1) is an idealized representation of 

the cell-depletion model when the cell 

depletion layer is fully developed.   

 

 

 

 

 

 

 

 

 

Fig. (1) Blood flow in a cylindrical tube 

modeled by a RBC depletion model 
 

3.1 Governing equations 
 

     The mass and momentum conservation 

equations for an incompressible fluid can be 

written as 

0V. =∇                                                      (1) 
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where, �, V, p, � denote the density, the velocity 

field, the pressure and the deviatoric stress 

tensor, respectively. This tensor is related to the 

viscosity and the shear rate tensor according to 

the relation 
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The shear rate is, therefore, calculated in 

Cartesian coordinates as                                                      

( ) ( ) ( ){ }[ 222
x/wx/vx/u2 ∂∂+∂∂+∂∂=γ

•
                            

   ( ) ( )22
x/vy/ux/wz/u ∂∂+∂∂+∂∂+∂∂+                                                                                                                 

   ( ) ] 2/12
y/wz/v ∂∂+∂∂+              (6)  

The viscosity is related to the structural 

parameter (k) and the blood local haematocrit 

H, according to the Quemada model in the 

form 

( )2pc
kH5.01

1

−
µ=µ                   (7) 

The rheological model proposed by Quemada 

considers blood as a structured fluid, wherein 

the state of RBC aggregation is described by 

the structural parameter k, which characterizes 

the average number of RBCs in an aggregate. 

c

c0

/1

/kk
k

γγ+

γγ+
=

•

•

∞
                    (8) 

where, k0 and k� are the intrinsic viscosities at 

zero and infinity shear rates, respectively, of the 

flow particles which predominate at those shear 

rates. �c signfies the critical shear rate, which 

can be considered to be the inverse of the 

relaxation time for the dominant structural unit 

causing the suspension to be non-Newtonian. 

Here, k0, k� and �c are functions of H, Cokelet 

(1987). 

   

k0 = exp(3.8740 + H(-10.41 + H(13.8 – 

6.738H)))                                                        (9) 

 

k� = exp(1.3435 + H(-2.803 + H(2.711 - 

0.6479H)))                          (10) 

 �c = exp(-6.1508 + H(27.923 + H(-25.6 + 

3.697H)))                           (11) 

 

     The distribution of haematocrit is simulated 

by a conservation equation describing the 

transport of haematocrit and encapsulating the 

behaviour of RBCs in blood flowing through 

bifurcating networks. The conservation 

equation employs convection and diffusion 

terms according to 

( ) ( ) 0HH.VRBC =∇Γ∇−∇ρ            (12) 

where �, VRBC, H and � are the density, RBC 

Cell-depletion 

layer 

rc  
rc 
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velocity field, haematocrit and the diffusion 

coefficient, respectively.  

 

Following Rudman (1997), VR is computed 

from 

( ) σ∇
ρ
ρ−ρ−−= .
K

)(
H55.61VV RBC

bulkRBC   (13) 

Vbulk, K, �RBC and σ  denote, respectively, the 

bulk velocity of the flow, the coefficient that 

represents the drag force between red blood 

cells, the density of a red blood cell and the 

stress tensor.  

( )
( )2a2

9
K

µ=                       (14) 

where a is the red blood cell radius and is equal 

to 3.5 �m. The stress tensor is evaluated from 

τ∇+−∇=σ∆ .p.                       (15) 

The haematocrit diffusion coefficient, �, can be 

calculated, Scott (2005), by adding a 

fluctuating term arising from collisions with 

solvent molecules and with other particles to 

the Einstein-Stokes diffusion constant, �0,   

( )Ha1 10 ε−Γ=Γ                      (16) �
 is a Peclet  number, and measures the ratio of 

the magnitude of the convective flux to the 

magnitude of the diffusive flux. 
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Alternatively, the parameter 
�
 can be thought of 

as a measure of the inhomogeneity of the 

particle distribution, since 
�
 = 0 corresponds to 

the diffusion dominated regime, and therefore 

to a homogeneous particle distribution. � is the 

interfacial tension and equal to 1.24 ×10
−4

 N 

m
−1

. Also, a1 is determined from experiments, 

Scott (2005). It has a constant value of 3.77. 

The results of Eqn. (16) were compared with 

previous experimental results by Scott (2005) 

as shown in Fig. (5.7) in his thesis and the 

results obtained were in good agreement with 

others. It is important to note that the shear-

induced diffusion is a function of the shear rate 

and the viscosity, which are exist in the 

definition of the parameter (ε). So, the effect of 

the shear-induced migration is concluded in ε.  
 

4 Numerical procedure 
 

A theoretical model has been developed to 

simulate blood flow through microcirculatory 

networks with vessel diameters in the range of 

20-500�m. The model takes into account the 

dependence of apparent viscosity of blood on 

shear rate, haematocrit and structural parameter 

(k), the reduction of intravascular haematocrit 

relative to the inflow haematocrit of a vessel, 

and the disproportionate distribution of red 

blood cells and plasma at arteriolar bifurcations 

(phase separation). The cell depletion model is 

used to simulate flow in a microvascular 

network, constructed from experimental data 

(length, diameter, and blood velocity) obtained 

from Scott (2005) and Gentile et al. (2008). 

Haematocrit and velocity distributions in all 

vessel segments of this network are calculated.  

The algorithm described above is coded as 

a set of user defined functions in Fluent 

(Ansys), which are applied in three stages in 

order to obtain convergence. At first, initial 

values for the velocity field, haematocrit and 

the viscosity are applied. The viscosity and the 

diffusion coefficient of the scalar transport 

equation are set constant, and VR is set equal to 

the flow velocity field. Then, the continuity and 

momentum equations are solved followed by 

the scalar conservation equation for H to yield 

new values of the velocity field and H. These 

are used again to calculate more accurate 

values of V and H. This procedure is repeated 

for 200 iterations since it was found that, 

without this step, µ could not be suitably 

initialised. In the second step of the solution, 

the viscosity is kept constant whilst the 

diffusion coefficient and the RBC velocity are 

calculated as described above. Finally, in the 

third step of the solution, the viscosity is 

evaluated from k and H, first by calculating k 

from Eq. 8. This iterative procedure is repeated 

until convergence is achieved (when the mean 
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residuals of the continuity, momentum and 

haematocrit equations reach stable constant 

values). 

The setup in Fluent comprises the implicit 

pressure based solver with second order 

velocity and pressure interpolation, and the 

Green-Gauss cell based method for gradients.   
 

5 Network construction 
 

The network used in this study (c.f. Figure 2) 

was constructed using a new technique in 

which an in-house C-code was used to generate 

an VBS format input file for CATAIA V5 

(Dassault Systemes) containing appropriate 

sectional information based on the required 

geometry of the network. 

 

  
 

Fig. (2) The geometry of the network 

 

Whilst it is recognized that there is often a 

desire to perform simulations through realistic 

arteriole networks, the approach developed 

here provides a flexible automated method for 

 

Table (1). The dimensions of the first 

bifurcation of the microvascular network. 

 

generating a range of representative networks 

possessing realistic geometric features. These 

particularly include the different ways that 

segments bifurcate. In this method, the first 

bifurcation is defined, as shown in Table 1, and 

then the network is effectively grown in a 

quasi-random way such that the diameter and 

angle of each bifurcation are selected by 

random numbers varying between appropriate 

ranges: the diameter values vary between 50 

and 100 �m and the outlet angle values range 

between 10º and 60º.   

 

6 Boundary conditions 
 

To simulate blood flow through the 

microvascular network of this study, it is 

necessary to specify flow rates or pressures 

both at the inlet and outlets of the network. 

Information to specify the flow rate at the 

outlet branches of the network could not be 

found in the literature and so the pressure is 

fixed at the inlet to 300 Pa and to 0 Pa at the 

eight outlets. These values yield mean axial 

velocities in these branches with values similar 

to those available in the literature. Also, the 

blood haematocrit at the inlet has a constant 

value of 0.4. At the outlet, the haematocrit 

gradient is zero. Finally, at the wall, all the 

values of the velocity and the haematocrit are 

equal to zero. 

 

7 Mesh study 
 

A mesh dependence study was performed on 

the network to determine a suitable grid 

resolution. The velocity distributions were 

observed at the inlet, and the outlets of the 

network for three different cell sizes: 2, 3 and 

4µm. These resolutions were selected since it 

was found that convergence could not be 

obtained on coarser grids. The effect of the cell 

size is small at the inlet but it is greater at the 

outlet.  It is to be noted that the velocities at 

the outlets of the 2 and 3 micron grids differ by 

up to 3 %. Nonetheless, with a view towards 

future studies, it was decided to limit the cell 

count to less than five million cells, and so a 

cell size of 3 microns (and 4445624 cells) was 

deemed to be suitable for the network. 
 

 

 

Parent branch diameter 100 �m 

First daughter branch diameter 80 �m 

First daughter branch outlet angle 30º 

second daughter branch diameter 90 �m 

second daughter branch outlet angle -20º 
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8 Results 
 

Blood flow simulations were performed on the 

network using the red blood cell depletion 

model with a pressure difference of 300 Pa as 

described above. Fig. 3 depicts the haematocrit 

on the symmetry plane. A cell depletion layer 

develops downstream from the inlet and 

persists on the outer walls through to outlets 1 

and 8. This characteristic is evident at all 

 
 

Fig. (3) The haematocrit contour at the 

symmetry plane of the network  

 

bifurcations whereby the cell depletion layer 

that develops in the upstream segment persists 

on the outer wall. Furthermore, the core fluid 

that impinges on the flow divider (with 

relatively high haematocrit) also develops a 

depletion layer, but this is thinner than on the 

corresponding outer wall. Ultimately, 

successive bifurcations then lead to the 

asymmetric haematocrit distributions at the 

outlets shown in Figs. (4-9). The three outlets 

considered are labeled in Fig. (3).  

  
 

Fig. (4) Haematocrit distribution (outlet 1).  

 

In Fig. (4), the haematocrit shows strong 

asymmetry along line L1, aligned with the 

symmetry plane. This is in agreement with 

findings elsewhere, Carr and Wickham (1990), 

and is further emphasized in Fig. (5) in which 

the haematocrit profiles along lines L1, L2, L3 

and L4 are depicted. 
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Fig. (5) Haematocrit profiles (outlet 1). 

 

 Less asymmetry is evident in the central 

vessels, as shown by way of example for outlet 

5 in Figs. (6) and (7). Indeed, this outlet lies at 

the end of the straightest path through the 

network and, as a result, it has a haematocrit 

distribution with a distinct, relatively constant, 

core region (c.f. Fig. (7)). 

 
 

Fig. (6) Haematocrit distribution (outlet 5). 
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Fig. (7) Haematocrit profiles (outlet 5). 

 

Finally, the haematocrit distribution and 

corresponding profiles are shown in Figs. (8) 

and (9), respectively. Due to outlets 1 and 8 

Outlet1 

Outlet8 

Outlet5 

L1 

L4 

L3 

L2 
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lying on the outermost paths through the 

network, it would seem that similar asymmetry 

is evident in both outlets. However, the 

diameter of outlet 8 is smaller (50 microns) 

than that of outlet 1 (80 microns). Also, the 

upstream bifurcations for each outlet are 

different; in particular, the second bifurcation 

upstream of outlet 8 represents more of a side 

branch compared to the equivalent bifurcation  

 
 

Fig. (8) Haematocrit distribution (outlet 8). 
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Fig. (9) Haematocrit profiles (outlet 8). 

 

for outlet 1. These geometric differences 

produce different flow rates in each branch (the 

flow rate is approximately five times higher 

through outlet 1 than outlet 8), and hence the 

magnitude of the haematocrit is less in outlet 8 

than that in outlet 1. Jafari et al. (2006) found a 

similar correlation between flow rate and 

haematocrit. 

 It is clear from the results above that there 

is significant variation between haematocrit 

profiles both within a single branch and in 

different branches. Consequently, it is difficult 

to define the cell depletion layer in all outlets. 

Indeed, of the outlets considered here, a cell 

depletion layer thickness can only be 

meaningfully defined for the haematocrit 

distribution in outlet 5. Here, it is assumed that 

the cell depletion layer thickness, 
�
, is defined 

as the width of the flow when the value of the 

haematocrit reaches 99% of the maximum 

haematocrit at that section. If 
�
 is computed 

along lines L1, L2, L3 and L4, the average cell-

depletion layer thickness is found to equal 

0.578R.  

Evidently, repeated bifurcations 

dramatically influence haematocrit 

distributions, profiles and the corresponding 

cell depletion layer. For a straight vessel (with 

the same radius as outlet 5) Bagchi (2007) 

calculated the value of the cell-depletion layer 

thickness to be 0.1R.  
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Fig. (10) Velocity profiles (outlet 1). 
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Fig. (11) Velocity profiles (outlet 8). 

 

The velocity profiles for outlets 1 and 8, 

shown in Figs. (10) and (11), are relatively 

blunt (a feature that is associated with 

accumulation of blood cells along the axis of 

the vessel). Also, greater asymmetry in the flow 

is observed for the eighth outlet due to the 

bifurcating effect discussed above. 

 

9 Conclusions 
 

A theoretical cell depletion model has been 

developed to simulate blood flow through 

arteriole networks. The model takes into 

account the dependence of the viscosity of the 

blood on the structure parameter and the 

haematocrit. A new expression for calculating 

the diffusion coefficient as a function of the 

flow conditions and red blood cell properties is  

introduced to take into account the forces 

L1 

L4 

L3 

L2 
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acting on a deformable particle in tube flow. 

The migration velocity of the RBCs is 

computed and applied to this haematocrit 

conservation equation to develop the core 

region. The model was used to simulate blood 

flow in a representative microvascular network. 

The reduction of intravascular haematocrit 

relative to the inflow haematocrit of a vessel, 

and a representation of the disproportionate 

distribution of red blood cells and plasma at 

arteriolar bifurcations (phase separation) are 

observed. It is clear that the geometry of 

repeatedly bifurcating arteriole segments 

dramatically affects the distribution of 

haematocrit. A blunt haematocrit distribution is 

only observed in outlet branches lying at the 

end of a relatively straight path through the 

network, and it is only in such locations that a 

meaningful cell depletion layer thickness can 

be defined. Even so, the thickness is 

significantly larger than that in straight vessels. 

Also, the geometry influences flow rates which, 

in turn, affect haematocrit magnitude. 

Finallly, the results also show that the 

velocity profile for the red blood cell depletion 

model is not parabolic but takes a blunted 

shape. This is due to modeling of the 

accumulation of blood cells along the axis of 

the vessels.  
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