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Abstract. We shall consider the problem of determining the scattered far wave field
produced when a plane E-polarized wave is incident on an imperfectly conducting
rectangular cylinder. By using the uniform asymptotic solution for the problem of
the diffraction of a plane wave by a right-angled impedance wedge, in conjunction
with Keller’s method, and multiple diffraction then a high frequency far field solution
to the problem is given for two edge diffractions.
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1. Introduction

The electromagnetic wave propagation of radio, television, and mobile
phone signals in cities depends on the effect of building corners and
their surface cladding. In particular the effect of these building corners
is of paramount importance for the signal strength of the phones, see
references in Nechayev[1] and Bertoni[2]. Modern buildings can be clad
with solar cells and other esoteric Metamaterials that have a degree
of conductivity in there makeup Driessen|[3]. Skyscrapers have metal
reinforcement structures imbedded into concrete, and to produce even
greater height and strength it is proposed to build them with carbon
fibre materials, this again introduces an amount of conductivity. In-
creasingly important today is the need to provide electric shielding for
electronic equipment from stray electromagnetic waves; a metal lined
room surrounded by a dielectric building material is one way to pro-
vide such protection Ando[4]. In stealth technology some buildings and
structures are designed to absorb as much incident radiation as possible
to avoid detection; such surfaces should ideally be perfect absorbers
Driessen[3],Chen|[5],Rawlins[6], Tretyakov|[7]. The radiation signature of
such dielectric buildings with a degree of conductivity, and hence a
complex refractive index, is of practical importance for many purposes.
Experimental determination of such complex refractive indices have
been carried out by a number of researchers for some common building
materials by Sato[8], Li[9], and see references in Bertoni[2]; and for
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thin film suitable for cladding by Siqueiros[10] and Driessen and de
Dood[3]. A building of rectangular cross-section can be modelled by
four of these corners. There has been some work on modelling such
absorbent corners and it has been shown that with appropriate po-
larization buildings can be effectively modelled for diffraction effects
by a rectangular impedance wedge in two dimensions see Zhao[11],El-
Sallabi[12],Demetrescu[13][14]. To obtain quantitative and qualitative
results for the signal strength far from the building when there are
multiple diffraction from such corners an effective approach is to use
the Keller method of the geometrical theory of diffraction(GTD). This
method requires information about the ”diffraction coefficient” which
are obtained from the solution of canonical impedance wedge problems.
These coefficients need to be uniformly valid in the angular variables
in order that the method can be used successfully when considering
multiple diffractions at different corners. In a previous work Rawlins[15]
this aspect was addressed by using a simple, analytically convenient,
exact solution to the specific problem of the diffraction of a plane wave
by a right-angled impedance wedge obtained by Rawlins[16]. In this
work, Rawlins[15], useful asymptotic results were obtained for the far-
field across singular ray directions where the usual diffraction coefficient
used in high frequency methods breaks down. In this work we shall use
these results to apply to the practical situation of the scattering by an
absorbing rectangular building. The determination of the far field when
a high-frequency E-polarized electromagnetic plane-wave is obliquely
incident on an imperfectly conducting rectangular cylinder is obtained
by applying Keller’s method of geometrical diffraction. Oblique inci-
dence corresponds to the situation where incident plane wave ray is
not running parallel along any of the faces of the rectangular cylinder.
To achieve this the uniform results of Rawlins[15] for the diffraction
coefficient for a right-angled impedance wedge is used in conjunction
with the multiple diffraction that arises from waves travelling from
corner to corner of the rectangle.

There are a number of works on the diffraction of electromagnetic
waves by perfectly conducting rectangular cylinders, in particular Morse[17],
van Bladel[18],Mei and van Bladel[19],Mei[20],Hinata[21],Cheung[22].
The only theoretical work, known to the author, to have dealt with the
diffraction of electromagnetic waves by imperfectly conducting rectan-
gular cylinders is by Topsakal[23].This work uses the modified Wiener-
Hopf technique to produce integral equations that are asymptotically
approximated for high frequency when the impedance parameter is
purely imaginary. Thus this solution represents high frequency diffrac-
tion by an ideal rectangular cylinder whose surfaces support surface
waves without the cylinder being absorbent.
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In section 2 we shall formulate the mathematical boundary value
problem that describes the physical problem of the diffraction of an E-
polarized plane wave by an absorbing rectangular cylinder. In section
3 we shall introduce the Keller method of geometric theory of diffrac-
tion(GTD) and its extensions to deal with multiple diffraction. We shall
derive results for the diffraction coefficient for the canonical problem
of diffraction by an impedance corner.We shall introduce appropriate
coordinate systems. These results will be used in combination with
Keller’s method of GTD to cope with the effect of multiple diffraction
by the corners of the rectangle. In section 4 we shall derive the diffracted
far field for when the incident plane wave is obliquely incident upon the
rectangular cylinder and the observation point is not on the specular or
shadow boundaries created by the plane wave incident upon the rectan-
gular cylinder. In section 5 the special situations where the observation
point is on these specular and shadow boundaries is calculated. The
results of sections 4 and 5 are combined to produce the complete far-
field expressions. These are used together with Mathematica to produce
graphical plots of the modulus of the scattered far field in section 6. In
the next section 7 the scattering cross section for a highly conducting
but absorbing rectangular cylinder for oblique incidence is derived.
This important quantity, is a measure of the electromagnetic shadow
cast by the diffracting object, and is used in scattering applications
and is derived for oblique incidence by carrying out some asymptotic
approximations on the complicated expression for the forward far field.
Finally the work ends with conclusions which discuss certain aspects
of the work and further work and generalizations.

2. Formulation of the boundary value problem

An electrically-polarized incident plane wave E; = u;(r, 0)e~ 2

’LLZ'(T', 9) _ e—ikrsin(@—l—@g), (1)
is incident on an imperfectly conducting rectangular cylinder: |z| < a,
and |y| < b,—oo < z < oo; see Figure 1, where the polar coordi-
nates (r,0) are defined by x = rcosf,y = rsinf, and z is the usual
unit vector in the positive z-direction. The permeability, permittivity,
and conductivity of the cylinder are u, €, and o respectively; and the
complex refractive index of the cylinder material is given by

N = \/ﬁ (L4,
Mo \€0  We€p
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Figure 1. Diffraction of a plane wave by an absorbing rectangular cylinder.

We can formulate the problem mathematically as follows:

If the total field is denoted by E = E; +E; where E; is the scattered
field then if E = u(r, 0)e *!2 denotes the total electric field parallel to
the z-axis then Maxwell’s equations give,

(A+K)u=0, |z|>a,lyl >b —0co <z < oo,
where e o
oy " ox
with k% = eguow?. For a unique solution u, must satisfy edge conditions

at the corners and a radiation condition at infinity. The boundary
conditions appropriate to the present problem are given by

ou
oy itkcostu =0, (|z|<a, y=0b),
@—Fikcosﬁu—o (lyl <b, z=—a)
8:1; - ) y — ) - 7
ou

3y +ikcosvu =0, (Jz|<a, y=-b),
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ou

ox
where cos ¥ = —%N , and for absorbing surfaces 7 < R < 37/2, 39 <
0, so that ¥ = 27 — arccos|—£2N]. The details of the derivation and
the validity of the impedance boundary condition are given in Se-
nior![24],van Bladel[18], Tretyakov[7]. An exact closed form solution
of such a boundary problem is not so far possible. However for prac-
tical purposes we may make some realistic practical assumptions that
can lead to useful computational results. The sides of the cylinder are
assumed to be large compared to the incident wavelength (i.e. kb > 1).
The problem under consideration is that of finding the field u(P) at the
point P(r,0), 0 < 6§ < 27w, where r is large compared to the dimensions
of the cylinder, r > v/a? + b?, and hence the scattered far field us(P).
Clearly from the symmetry of the problem we need only consider an
angle of incidence within the range 7/2 < 6y < m. To achieve this
objective we shall need to use the results for the uniform, and nonuni-
form, asymptotics of the solution to the problem of the diffraction of
an electrically-polarized plane wave by a right-angled impedance wedge
given in Rawlins[15]; in conjunction with Keller’s theory of geometrical
diffraction (GTD) Keller[25]. Since the scatterer has more than one
corner the effect of multiple diffractions will have to be considered, and
thus an outline of Keller’s theory will be given with relevance to the
problem under consideration.

—ikcosvu =0, (Jy <b, z=a).

3. Keller’s geometrical theory of diffraction and multiple
diffraction

According to Keller’s GTD the diffracted field u4(P) at a point P is
equal to the sum of the fields on all rays through P:

ua(P) = uj(P). (2)

rays

Here u;(P) is the diffracted field on the ;% such ray, and if this is an
m-fold diffracted ray then

iks; OO
e in(P)
wlP) = S 3 T ®)

where k(= 2m/\) is the propagation constant, s; the arc length along
the ray, and the function Aj, depends on the geometry and material

1 The harmonic time variation in this work is incorrect, it should be e~
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of the diffracting object. For a rectangular cylinder all the diffracted
rays are produced by wedges of 90° angle. Hence the inclusion of
higher A;,(n = 1,2,...) in the expansion (3) involves the use of more
terms in the asymptotic solution of the wedge diffraction problem. The
calculation of the diffraction coefficient corresponding to these higher-
order terms necessitates the solution of the wedge diffraction problem
for non-plane-wave incidence. However, as is shown in the works of
Zitron[26],and Martin[27], the relevant non-plane waves are expressible
in terms of linear combinations of plane waves and their derivatives.
Thus the diffraction coefficients are easily found; and therefore it is
possible to calculate the off shadow far fields corresponding to wedge
excitations which are not shadow boundary fields. In order to calcu-
late diffraction coefficients corresponding to shadow boundary fields we
show that these fields too are expressible in terms of plane waves and
their derivatives. As far as the solution to the canonical problem of the
diffraction of a plane wave by an impedance wedge is concerned the
complete solution to this problem has already been derived in detail by
Rawlins[15]. In particular the far field expression is given by

ezkr

\/F

where the ”diffraction coefficient” D(6,6y) is given by Rawlins[15] as

ua(r,8,60) = D(6,00)— + O((kr) %), (4)

2¢'7 (cos 0 — cos ) (sin 6 4 cos ¥)(cos % — cos 4(7?79))

D(0,6y) =
V 67k (cos Oy + cos ) (sin y — cos ¥)(cos M +3)
(2 cos % cos % + % —cos 4(7?19) ) sin % sin % (5)
4(0+7+9) 2(60—0p) 2(6+60)

(cos =5 + %)(COS ==+ %)(COS S+ %)
An important property of the diffraction coefficient (5) is that

D(eveo):D(3_7T_073_7T

2 2 90)7 (6)
which means that the angle of incidence 6y and the angle of observation
f can be measured from either face of the corner wedge provided they
are both measured from the same datum face. Other useful properties
of D(6,0y) which we will require later in an application of the Keller
method is the Karp-Karal lemma:

D(0,6y) = D(6,0) = 0; (7)
and if we use the notation

lim 22000 _ Dy(0,6), lim 9D(9,60)

—D
-0 00 do—0 06 00(0,0),
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then

4e'1 (1 — cos ) (cos 43& — cos 4(”;19))

3V 67k (cos Oy + cos ) (sin Oy — cos )
(2 cos % + % — cos M)SiH%COS’ﬂ

4(m+9) 1\2 . 26, ?I 2 ’ (8)
(cos =5 + 5)%(cos 52 + 3)

Dy(0,60y) =

—4e"% (cos § — cos ¥)(sin @ + cos 9)(1 — cos 4(7?79))

3V6mk(1 + cos V) cos ¥(cos M +3)

(2cos 2 + 1 — COSM)Sin 20

3 3
(cos 4(9+7§r+79) + 3)(cos @ + 12

Dy, (6,0) =

9)

By applying a formula due to Zitron[26], to the expression (4) we obtain
the field on and near to the ray determined by the point P;(rq,61).
More precisely, we obtain the asymptotic expansion of the diffracted
field, uq(B1; E1), at any point By = Bi(£,n) in the neighbourhood of
the point P;, see Figure 2.

Figure 2. The coordinate system set up at an edge.
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ikry
ua(By; By) = eﬁwwl,em)pm)
+[D(917901)P”(0) _ Dy(61,001)p'(0)
2ik ik
+ DO, 00)pO))-- + O((kr) ), (10)

where

DD (8, 00,) = (2ik)_1[iD(91, 6o1) + Dgs(61,601)], (11)
and

p(w) — eik({ cos ¢p—nsin ) )

It will be noticed that (10) is expressed in terms of p(0) and deriva-
tives of p(0), where p(1)) is a plane wave expression. Since (10), which
may be continued asymptotically to any desired order of (rik)™!, is
linear in p(¢) and its derivatives the fields resulting from successive
interactions are readily derived. Thus the expression for the diffracted
field when an incident plane wave first illuminates £ and the resulting
diffracted field, given by (10), is then incident on the second wedge
E», see Figure 3, is given by

eikrl
uq(Br; Er) = \/E[D(91,901)ud(32;E2)
D(6h,001)ug(Ba; Ea)  Dyg(6h, 001)uy(Ba; Es)
2ik ik
1 _
+ D(l)(91,901)ud(32§E2)]H + O((kr1)~2)]. (12)

+

In the expression (12), (r12,612) are the polar coordinates of Ey with
respect to Fj, see Figure 3; ug(Bs; E2) is given by (10) with the
subscript 2 in place of 1, and the primes on this function indicates
derivatives with respect to 6y depending respectively on whether or
not 1 and fge have the same orientation.

Equation (10) is obtained assuming oblique incidence. whenever
the incident rays are parallel to a side (i.e. when 6; = %) the value of
the field given by (10) must be divided by two. This normalization is
due to the coalescing of the incident and reflected field at this angle of
incidence. The expressions (10) and (13) have been obtained under
the assumption that the poles of the integrand do not reside near to
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Figure 8. The angles 1 and 62 are measured from the same face F1F2 and have
therefore the same orientation.

the saddle point in the integral (9) of Rawlins[15]. As a result these
expressions are not valid near to the shadow or specular boundaries,
see Figure 4, indeed the expressions (10) and (12) become infinitely
large near these boundaries.

&

9=3ﬂ/2-90
Specular boundaries
Shadow bondaries ;
e=eo-ﬂ/2
.
;
E, E,
E E
1 2 eo

K
Specular boundaries

9:90+Tr/ 2

!
Figure 4. The ray geometry of the shadow and specular boundaries.
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To determine the field near to the above mentioned boundaries it is
necessary to use the asymptotic expansions (49) to (52)? of Rawlins[15];
and in order to account for the effects of multiple diffraction these re-
sults must be expressed in terms of the plane wave p()) = gtk (€ cosp—nsing)
and its derivatives. Thus introducing the coordinate system

. n _ 2 211
5—arctanr+n, o=1[(r+&“+n72, (13)

P(&n)

Figure 5. The (§,n) coordinate system.

where 0 is defined as being positive for the situation shown in Fig-
ure 5, the asymptotic expressions (49) to(52) of Rawlins[15] become

NG
17D(0, ) kne O Btk OHiT gy
216+/27 (kr) 2 12 (kr)

- 1 e 'T (K| | —3v2k%n| + iV |y|®
1(6) = D(6, ;) |sgndex+) {— — < +
©) (6. 60) [ V/2kr 12(kr)2

+ 0 [(k‘r)_%} ,

(14)

s = Bt l 3¢'T 3 {ﬁe%w KPP } ) 36%2'(—1@2772—2'1@775)]
VT [4V2kr 2 ar (2kr)? 8v/2(kr)>
—iZ B/ 1 B/ )
—— 3 (3 2 17 O)elk(’*ﬁ)—kO{(sz)_%}’
22 (kr)2 \ 8 144

% Tn section 8 of Rawlins[15] § = t + 6'(§’ > 0) so that the right hand side of
equation (52) should be J(3 & §").
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(ikn® —&) g]
3

D(G, eo)eik(r+5)+i% ¥ n
I(yp£6) = cot —
W+9) 3V 2rkr 37 3r(sin £)2 2r
: ik(r+&)+i 7 ;ik(r4+6)+i T 5
D(0,0q)e f [1 + = (csc ﬂy] 4 B22€—3 ot (4 +0 [(/w)—g} _
24/ 2wkrkr 3 9 3 12v/27 (kr)2 3
(16)
B/ ik(r+§)—i % 5
: (csc %)2 + 0 [(k‘r)_i} .
5 3
(17)

JW=0) = 12v/27 (kr)

The various quantities that appear in the above expressions are defined

in the work of Rawlins [15], in particular
(cosy — cos¥)(siny + cos V)
D(.6) = 18
(. 60) (cos By + cos ) (sin Oy — cos V) (18)
(cos 73 3 — cos 4(7T+19) )(2 cos 290 cos 2 3 + 1+ —cos 4(7?79))
(oos =72 1 T oon 5] 1 1)

Expressing the above formulae in terms of the plane wave function p(v)

gives for n > 0

_ e ¢t [ip'(0) | V2[P'(0) + p(0)]
1(6) = D(8,6o) [ 9 p(0) — NG {\/ﬁ + 12(1(:7")% }‘|
_17D(9’90)eikr+z i Bzeikr—l—i% i . _g

i (0) 4 s )+ 0 |(kr)
(19)

216+v/27 (kr)2

)

}

Blelkr [ 3eT VT [17p(0) — 108p" (m)]e "%
{ p(0) - o #(0) + 288v/2(kr)? }

10 == e

54B/ eik?‘—i% s
— =2 p(0) + O |(kr) 3],
288+/2(kr) 3
(20)
; 11:35; p.11
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B zk‘rz ¢

N )%(CSC—) + 0{(1@74) 5},

I+ 6) = - -

( ) ikr+i1

Tw+0)= 3V 2kr
o oot @ 8ip'(0)  cot %(1 + g(csc %)2)1'])(0) + 4 cot %z’p”(O)
37 24kr(s n%) 8kr
B ikr+i % 5
21 ——— cot i + 0 {(kr)_E} ,
12¢2rn(kr)z 3

|

(22)

where p(0) = e*¢, p/(0) = —ikne'™S, p" (0) = —(k2n? + ikn)eks,

p'(m) = (—k®n? + ikn)e*s p"(0) = (—3k%n¢ + ikn + ik>n®)e™s. The
expressions (19) to (22) will be required in the next chapter and the
dominant terms of (14) to (17) will be required when dealing with the
field near the shadow or specular boundaries.

4. Diffracted field for oblique incidence

We now derive the far field expression for the diffracted field in all
regions around the cylinder for oblique incidence except in specified
directions. To obtain the result in terms of the coordinates (r, 6) of the
observation point P we use asymptotic approximations to the length
and the angles of various rays from the edges of the rectangle to the
observation point P(r,f). From Figure 6 on applying the cosine rule
we get for large r

7"2-:r—lcosﬁcosﬁ—lsinﬁsinﬁ+0[7"_2}, (23)

but x; = [ cos § and y; = [sin 8, where z; and y; are the coordinates of
the point on the cylinder. Hence

r; =1 — x;cosf —y;sinf.

The diffracted rays being dealt with are those from the corners of the
rectangle E(=ry), Ey(= 12), E3(= r3), and E4(= r4) so that

ri=r+acosf + bsinf + 0{7‘_2} ,
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