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Abstract A new method for modeling micro flows is presented in this research. The basis of this method is 
the development of governing continuum equations on fluid dynamics using perturbation expansion of the 
velocity, pressure, density and temperature fields in dependence of Knudsen number. In the present work, we 
use three-term perturbation expansions and reach three order of equations O(1), O(Kn), O(Kn2). Required 
boundary conditions (BC) for solving each order of these equations are obtained by substitution of the 
perturbation expansions into the general boundary conditions for the velocity slip and temperature jump. 
This set of equations is discretized in two-dimensional state on a staggered grid using the finite volume 
method. A three-part computer program has been produced for solving the set of discretized equations. Each 
part of this code, solve one order of the equations with the SIMPLE algorithm. Incompressible slip micro 
Poiseuille and micro Couette flows are solved either analytically or numerically using the perturbation 
method (PM). Good agreement is found between analytical and numerical results in the low Knudsen 
numbers, whereas numerical results deviate from analytical results by increasing the Knudsen number. The 
results of perturbation method are also compared with the results obtained from different slip models.  
 
Keywords: Micro Flow, Perturbation Method, Slip Flow, Micro Poiseuille, Micro Couette 
 
 

1. Introduction 
 
 Based on the Knudsen number, the flow 
regime is divided into four categories: the 
continuum regime (Kn < 0.001), the slip flow 
regime (0.001 < Kn < 0.1), the transition 
regime (0.1 < Kn < 10) and the free molecular 
regime (Kn > 10). 
 Micro-Electro-Mechanical-Systems (MEMS) 
refer to devices that have characteristic length 
between 1mm and 1μm. MEMS devices 
operate in a wide range of flow regimes 
covering the continuum, slip, and transition 
flow. Application of these systems is rapidly 
increased in the industry and medicine. 
Because the obvious difficulties associated 
with testing and validating these devices 
experimentally, numerical analysis is an 
alternative for investigating the flow inside a 
micro channel or a more complex geometry.  
The use of molecular modeling is more 
efficient going from the continuum regime to 
the free molecular regime. Inversely, the use 
of continuous modeling is useful and easier 
going from the free molecular regime to the 

continuum regime (Karniadakis et al., 2005; 
Gad-el-Hak, 2006). 
 Over the last two decades, many 
investigations have been performed about 
continuum simulation of micro flows. In most 
of them, first and second order slip models 
have been used for the velocity slip and 
temperature jump on the wall. For example, 
Chen et al, (1998) have investigated gas flow in 
micro channels in the slip regime using the 
Navier-Stokes equations and first order 
boundary conditions. Dongari et al, (2007) have 
investigated gas flow in micro channels using 
the Navier-Stokes equations and second order 
boundary conditions. An important challenge 
which exists in this type of simulations is the 
type and accuracy of applied slip model.  
 In the present work, micro flows are 
simulated using perturbation method which is 
a continuum method. Required boundary 
conditions are obtained by substitution of 
perturbation expansion of the velocity and 
temperature fields into the general and high 
order slip boundary condition formula 
(Karniadakis et al., 2005). Therefore, if 
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perturbation expansions with sufficient terms 
are used, it will be expected to more accurate 
results in comparison with other continuum 
methods. We start with the isothermal 
incompressible flows and use three-term 
perturbation expansions of the velocity and 
pressure fields in the perturbation method. 
 
2. Governing Equations and the Slip BC 
 
   In the slip flow regime, the Navier-Stokes 
equations with slip boundary conditions 
govern the flow. The Navier-Stokes equations 
consist of continuity equation, momentum 
equations and energy equation. 
 Based on kinetic theory of gases, first order 
boundary conditions for the velocity slip and 
temperature jump have been proposed by 
Maxwell and Smoluchowski (Kennard, 1938).  
Based on this theory, high-order boundary 
conditions can be derived by an approximate 
analysis of the gas motion in the isothermal 
conditions (Karniadakis et al., 2005). These 
boundary conditions for two-dimensional flows 
in the nondimensional form have the form: 
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where n and s are the normal and tangential 
direction to the wall. General second-order slip 
condition has the nondimensional form: 
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where C1 and C2 are the slip coefficients. 
Typical values of the slip coefficients 
developed by different investigators are shown 
in Table 1 (Karniadakis et al., 2005; Gad-el-
Hak, 2006). 
 
3. Perturbation Method 
 
   Every macroscopic properties φ of the flow 
can be written with an asymptotic expansion as 

a function of the Knudsen number (Karniadakis 
et al., 2005; Qin et al., 2007): 
 
Table 1 
Coefficients for first and second-order slip models.

C2 C1 Author 

-0.5 1.0 General 

0.0 1.0 Maxwell(1879) 

5π/12 1.0 Schamberg(1947) 

0.0 1.1466 Albertoni et al.(1963) 

9/8 1.0 Deissler(1964) 

0.9756 1.1466 Cercignani(1964) 

0.14 1.1466 Sreekanth(1969) 

0.5 1.0 Hisa and Domoto(1983) 

0.647 1.1466 Cercignani(2003) 
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where φ0 corresponds to the no-slip flow, φ1 is 
the first order correction, φ2 is the second 
order correction, φ3 is the third order 
correction of the φ, and so on. Increasing the 
Knudsen number, i.e., going from transition to 
free molecular flow regime, higher corrections 
of the φ become important. 
 We consider three-term perturbation 
expansions, i.e., two-correction perturbation 
expansions of the velocity and pressure fields: 
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Now, we substitute these expansions into the 
2D incompressible Navier–Stokes equations 
and also into the high-order boundary 
conditions for the velocity slip, e.g., equation 
(1). Next, we rearrange the terms as a function 
of their Knudsen number order and obtain 
different orders of Kn dependence equations 
and boundary conditions. 
 Conservation equations of mass, momentum 
and slip boundary conditions of order O(1) 
yield: 
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Conservation equations of mass, momentum 
and slip boundary conditions of order O(Kn) 
yield: 
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Conservation equations of mass, momentum 
and slip boundary conditions of order O(Kn2) 
yield: 
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where Lc is the characteristic length and S is 

the source term. Equation (10), (14) and (18) 
are written for the horizontal wall and for the 
vertical wall, the v component of velocity is 
used in these equations. 
 
4. Discretization and Solution Algorithm 
 
   Different orders of produced equations are 
discretized in two-dimensional state on a 
staggered grid using the finite volume method. 
In the micro and nano flows the cell Reynolds 
is small due to the small length scales of the 
micro device rather than very small velocities. 
Therefore, diffusion has an important role. The 
diffusion terms are discretized with a central 
difference scheme. Different order of 
velocities is needed on the cell faces to 
discretize the convective terms. These 
velocities are also interpolated centrally. 
 Overall algorithm of the solution includes 
three steps: the first step is the solution of the 
O(1) equations with the O(1) boundary 
conditions. The second step is the solution of 
the O(Kn) equations with the O(Kn) boundary 
conditions. This step’s boundary conditions 
are obtained by fitting the first step’s fields on 
the walls. The third step is the solution of the 
O(Kn2) equations with the O(Kn2) boundary 
conditions. This step’s boundary conditions 
are also obtained by fitting the first and second 
step’s fields on the walls. 
 A three-part computer program has been 
produced for solving this set of equations. 
Each part of this code solves one order of the 
equations with the SIMPLE algorithm. The velocity 
and pressure fields of the slip flow are obtained 
by corresponding perturbation expansions. 
 
5. Micro Poiseuille Flow 
 
5.1 Flow specifications 
   An incompressible slip micro Poiseuille 
flow is considered in isothermal conditions for 
Nitrogen gas at T=298K and P=1atm. The 
channel has a length of L=5µm and a height of 
H=1µm. The flow at the inlet is assumed to be 
a uniform flow with Uin=0.1 m/s (Fig. 1). Hence, 
the Knudsen number is Kn=0.06 and the 
Reynolds number is Re=0.007. We also assume 
συ=1 for the present study. 
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Fig. 1. Channel geometry for micro Poiseuille flow. 

 
5.2 Analytical solution using the PM 
 
   For the fully developed flow, v=0, u=u(y) 
and P=P(x). Therfore: 

0210  vvv                  (19)

 ),(),(),( 221100 yuuyuuyuu    (20)

 ),(),(),( 221100 xPPxPPxPP    (21) 

Hence, different orders of tangential 
momentum eguations are simplified and can 
be easily solved with their velocity slip 
boundary condition. In the incompressible 
flow, the slip does not change the flowrate. In 
other words, 
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As a result, the velocity corrections in terms of 
the average velocity are: 
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The final slip velocity profile is produced by 
substituting these velocities into the perturbation 
expansion of the velocity: 
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5.3 Numerical solution using PM 
5.3 Numerical solution using the PM 
 
   A three-part computer program has been 
produced for solving the set of discretized 
equations. Each part of this code solves one 
order of the equations with the SIMPLE 
algorithm. A uniform 75×30 staggered grid is 

employed for the present study. The boundary 
conditions at the channel inlet are: 
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In figs. 2, 3 and 4, nondimensional and fully 
developed form of the no-slip velocity and the 
velocity corrections are compared with those 
analytical in the middle section of the channel 
(x=L/2). 
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Fig. 2. The no-slip velocity or u0. 
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Good agreement is found between the analytical 
and numerical results of the perturbation 
method. In fig. 5, the nondimensional u0, u1 
and u2 velocities are compared together at the 
middle section. Also in fig. 6, the slip 
velocity, no-slip velocity and correctional 
velocities are compared at the middle section 
of the channel. 
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Fig. 5. Comparison of u0, u1 and u2 at middle section. 
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Fig. 6. The nondimensional slip velocity, no-slip velocity 
and correctional velocities at middle section for Kn=0.06. 
 
5.4 Comparison with other slip models 
 
 If we use the boundary condition of equation 
(3) in the analytical perturbation method, an 
analytical solution is obtained as follows: 
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where C1 and C2 are the slip coefficients. In 
fig. 7, the slip and no-slip velocities obtained by 
the perturbation method (PM) and slip 

velocities obtained by the equation (28) are 
compared together at the middle section. Good 
agreement is still found between the results. 
For a better comparison between the PM 
results and the results produced by different 
slip models, in fig. 8, normalized slip 
velocities at the channel walls are shown 
versus the Knudsen number. If we use one 
correction, or first order perturbation 
expansions (φ= φ0+Knφ1), the slip velocity is 
overpredicted than its real limit by increasing 
the Knudsen number. Also, If we use two 
correction, or second order perturbation 
expansions (φ= φ0+Knφ1+Kn2φ2), the slip 
velocity is underpredicted as compared to its 
real limit by increasing the Knudsen number. 
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Fig. 7. Slip and no-slip velocities at the middle section 
of the channel for Kn=0.06. 
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Fig. 8. Normalized slip velocity with the average velocity 
versus Kn for the micro Poiseuille flow. 
    
 However, numerical results of the PM 
deviate from its analytical results by increasing 
the Knudsen number. This reveals that more 
corrections are needed in the perturbation 
method by increasing the Knudsen number.   
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6. Micro Couette Flow 
 
6.1 Flow specifications 
   An incompressible shear-driven slip flow 
is considered between two parallel plates in 
isothermal conditions. The fluid is Nitrogen 
gas at T=298K and P=1atm. The channel has a 
length of L=5µm and a height of H=1µm. The 
top surface moves with Uin=0.1 m/s (Fig. 9). 
Hence, the Knudsen number is Kn=0.06 and the 
Reynolds number is Re=0.007. We also assume 
συ=1 for the present study. 
 

 
Fig. 9. Channel geometry for micro Couette flow. 

 
6.2 Analytical and Numerical solution using PM 
 
   In this problem, v=0, u=u(y) and P is 
constant. Similar to the previous problem, the 
velocity corrections can be written in terms of 
the Uw as following: 
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The final slip velocity profile is obtained by 
substituting these velocities into the 
perturbation expansion of velocity: 
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 For numerical solution of this problem 
with the PM, we employ the previous uniform 
75×30 staggered grid. In fig. 10, the slip 
velocity, no-slip velocity and correctional 
velocities are compared in nondimensional 
form. Very good agreement is found between 
the analytical and numerical results. 
 Considering the skin friction coefficient  
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Fig. 10. The slip velocity, no-slip velocity and correctional 
velocities of the micro Couette flow for Kn=0.06. 
  
Cf = τw/(0.5×ρUw

2), there can be written the 
below relations: 
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In fig. 11, analytical and numerical results of 
the PM for the skin friction coefficient are 
compared. 
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Fig. 11. Variation of skin friction coefficient as a 
function of Kn for the micro Couette flow. 
 
In the shear-driven micro flows, the 
compressibility effects become important for 
large temperature fluctuations or at high 
speeds. So, the two-correction perturbation 
method is adequate for isothermal micro 
Couette flow in the slip flow regime.   
 
7. Conclusions 
 
 In the present paper, micro flows are simulated 
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using the perturbation method. At the 
beginning of this work, two dimensional 
incompressible flows are investigated. We 
used three-term perturbation expansions of the 
velocity and pressure fields in order to obtain 
three order of equations O(1), O(Kn), O(Kn2) 
and their boundary conditions. 
 This set of equations is discretized in two-
dimensional state on a staggered grid using the 
finite volume method. A three-part computer 
program has been produced for solving the set 
of discretized equations. Each part of this code 
solves one order of the equations with the 
SIMPLE algorithm.  
 Incompressible slip micro Poiseuille and 
micro Couette flows are solved either 
analytically or numerically using the 
Perturbation Method (PM). Good agreement is 
found between analytical and numerical 
results. These results are also compared with 
the results obtained from different slip models. 
In micro Poiseuille flow, numerical results 
agree with analytical results almost for (Kn < 0.03). 
In micro Couette flow, numerical results agree 
with analytical results almost for (Kn < 0.15). 
In both case, numerical results of the 
perturbation method deviate from analytical 
results by increasing the Knudsen number. 
This reveals that more corrections are needed 
in the perturbation method by increasing the 
Knudsen number. 
 Additional considerable studies on the 
micro flows using the perturbation method will 
be published in the near future. For example, 
the Karniadakis and Beskok’s slip model 
(Karniadakis et al. 2005) is developed both 
analytically and numerically. We also have 
studies on the rarefaction, compressibility and 
thermal creep. 
  
8. Nomenclature 
 

boundary conditions BC 
skin friction coefficient Cf

 

first slip coefficient  C1
 

second slip coefficient C2
 

channel height, mH 
Knudsen number (= λ/H) Kn 
characteristic length, m Lc

 
order O 

pressure, PaP
Prandtl number Pr
Perturbation Method PM 
Reynolds number Re
source termS
temperature, oK T
velocity components, m/s  u, v, w
nondimensional velocity U
velocity vector, m/s u

Mass flow rate, kg/s m
Greek 
ratio of specific heats γ
mean free path of gas molecules, mλ 
first coefficients of viscosity, kg/(m.s)μ
density, kg/m3ρ
energy accommodation coefficientσT

momentum accommodation coefficientσv

wall shear stress, N/m2 τw
Subscript 
Constant part of source C
channel inletin
averagem
indicates slope of source P
slip and streamwise direction s
wallw
corresponding to no-slip  0
first-order correction 1
second-order correction 2
nth-order correction and normal directionn
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