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Abstract Extensive work in the field of micro-channel and micro-capillary flows using the extended Navier-
Stokes equations are carried out in this paper by taking the diffusive mass transport into account and
provided the basis for analytical treatments of these flows. The results are compared with experimental
results for micro-channels and showed good agreement. It is found that a characteristic pressure is useful to
explain the comparisons. In addition, the work on micro-channel flows is extended to micro-capillary flows,
to provide analytical treatments of this class of flows. The analytical results show similar behavior to that of
micro-channel flows. Comparisons between the analytical results and experimental findings are also
presented and discussed by introducing the characteristic pressure.
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1. Introduction

It is widely reported that in gaseous flows
through micro-channel and micro-capillary,
the measured mass flow rates can be higher
than those obtained from the classical theory
by solving the Navier-Stokes equations with
no-slip boundary conditions at the wall for
some given inlet and outlet pressure conditions.
This increase of mass flow rate is one of the
many strange phenomena which puzzles fluid
flow researchers (Arkilic et al. (1997), Colin et
al. (2004), Maurer et al. (2003) and Yang and
Garimella (2009)). In order to bridge the gap
between the experimental results and the
theoretical predictions, micro-channel and
micro-capillary flows are treated by
introducing the assumptions that Maxwell slip
velocities occur at the channel and capillary
walls. Namely, the first or second order
Maxwellian slip velocity models have been
used at the wall as boundary conditions. A
good summary of the work exists in the book
of Karniadakis et al. (2005).
The assumptions of the Maxwell type of slip

velocities at the walls of micro-channel and
micro-capillary flows, however, are questioned
in this study and it is argued that the difference
between experimentally and theoretically
obtained results of flow rates occurred due to

imperfections of the Navier-Stokes equations.
Therefore, the modified equations called the
extended Navier-Stokes ones are used in this
study, where the extended Navier-Stokes
equations should be written in terms of total
velocity, refer Sambasivam and Durst (2010),
made up of the convective velocity and the
diffusive velocity terms. In addition, a
different type of slip boundary conditions
which is not the Maxwellian slip one but
derived analytically from the physical insight
is used for the diffusive velocity at the wall.
In this study, we have derived Stokes

equations from the extended Navier-Stokes
ones by applying the boundary-layer
approximation for micro-channel and micro
capillary, and obtained the analytical solutions
for the velocities. By using the analytical
solutions, we try to explain the difference
between the experimental results and the
theoretical predictions both for micro-channel
and micro-capillary flows.

2. Mathematical treatment

2.1 Basic Equations
In this research of micro-channel and micro-

capillary flows, we use the set of extended
Navier-Stokes equations, which are written for
the total velocity as suggested by Sambasivam
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and Durst (2010). Assuming the flow to be
two-dimensional in a rectangular co-ordinate
system and axis symmetric in a cylindrical co-
ordinate system, with no fluid flows in the
tangential direction in the cylindrical co-
ordinate, we obtain the equations as given
bellow. Using the simple notations of (U, V) in
the (x, r)-directions as the total velocities (see
Figure 1), the set of extended, but two-
dimensional Navier-Stokes equations can be
written as follows:

(1) (1)

(2)

(3)

where the viscosity μ is a constant, because
only ideal gaseous flows are considered in this
study, and the fluid flow is assumed to be
isothermal. It should be noted that for the case
of rectangular co-ordinates holds: r = 1 and
∂/∂r = ∂/∂y.

2.2 Order estimates
In order to derive the reduced form of the

extended Navier-Stokes equations, we will
apply order estimates as commonly used in
boundary layer theory. These take into account
that the length scale of the flow in the
streamwise direction is much larger than that
perpendicular to the wall. First, we can assume
for all micro-conduit flows, considered in this
paper that the flow field is steady and fully
developed, and the non-linear terms are
negligible because they are very small in
micro-channel and micro-capillary flows.

Introducing these assumptions, Eqs. (1)-(3)
can be rewritten as follows:

(4)

(5)

(6)

As representative length scale quantities, to
perform order estimates, we can adopt L as a
length scale in the streamwise direction and h
as a length scale in direction perpendicular to
the wall, where h ≪ L. With U being the
representative velocity in the streamwise
direction, the velocity component V normal to
the wall must be small. This can be deduced
from the continuity Eq. (4), yielding:

(7)

because h ≪ L, as stated above for micro-
conduit flows.
Next, we can perform order estimates for

the viscous terms in Eq. (5) to yield:

(8)

(9)

We can see that the order of magnitude of the
term in Eq. (8) is much larger than all the other
terms of Eq. (9). Therefore, we must accept
the fact, without further arguments, that the

Fig.1 Sketch of velocity profiles for the
extended Navier-Stokes equations.
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term of Eq. (8) cannot be neglected. For this
reason, the order of the pressure gradient term
in Eq. (5) must be comparable with the term of
Eq. (8) and can be estimated to be:

(10)

Estimating the order of magnitude of Eq. (10)
with respect to the term in Eq. (8), the order of
magnitude of the pressure is obtained as:

(11)

On the other hand, we can estimate the order
of the pressure gradient term in Eq. (6) as:

(12)

As for the viscous terms in Eq. (6), we can
estimate the order of magnitude of the
following terms as:

(13)

(14)

The order of the terms (13) and (14) are
smaller than the pressure gradient term of Eq.
(12). Therefore, we can neglect the viscous
terms in equation (6) compared with the
pressure gradient term obtaining:

(15)

It should be noted that the pressure depends
only on the x-direction so that P = P(x) and it
means that the density also depends only on x-
direction as ρ=ρ (x). Finally we obtain the
following approximated equation for micro-
channel and micro-capillary flows:

(16)

where r = 1 and d/dr = d/dy yields the equation
for micro-channel flows.

3. Theoretical solutions for each case
3.1 Micro-channel flows
To obtain an analytical solution for fully

developed micro-channel flows, we will solve
Eq. (16), expressed in rectangular co-ordinates,
with the boundary condition (Sambasivam and
Durst (2010) ) at the wall as

(17)

Then the analytical solution in a micro-channel
can be written as:

(18)

It should be noted that the second term of the
right hand side terms arises from the diffusion
influence, and the diffusive part of the mass
flow rate will only make strong contributions
to the velocity for low pressures P.
From Eq. (18) we can derive the relation

between the total mass flow rate MT, the
diffusive mass flow rate MD and the pressure.
Therefore, by integrating Eq. (18), first in the
cross flow and second in the flow directions,
we can derive the relation for the total mass
flow rate:

(19)

where w is a width of the micro-channel.
Integrating Eq. (19) from the inlet (x = 0) to
the outlet (x = L), we can obtain:

(20)
Therefore, the total mass flow rate MT can be
expressed as a function of the pressure ratio
Pin/Pout. Furthermore, we will proceed to
obtain an universal relationship between the
total mass flow rate and pressure. Therefore,
Eq. (19) can be rewritten as

(21)

Since the pressure P is constant in the y-
direction, the diffusive mass flow rate MD can
be expressed by integrating Eq. (17) over a
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cross sectional area to obtain:

(22)

Substituting Eq. (22) into Eq. (21) yields:

(23)

Defining the characteristic pressure as Pc
=μ√3RT/h, we can rewrite Eq. (23) as follows:

(24)

The above final equation is an universal
relation between the local mass flow rate and
the normalized local pressure.

3.2 Results for micro-channel

Using the above equations, we can calculate
the total mass flow rates of a Helium gas flow
in a micro-channel with the same conditions
corresponding to the experiments of Maurer et
al. (2003) whose conditions are summarized in
Tab.1. The total mass flow rates MT for the
outlet pressure Pout changing from 0.012 to 0.1
MPa are shown in Fig. 2 together with
experimental results of Maurer et al. (2003),
where the axis of abscissas is taken as 0.5(P2in
−P2out) according to the notation of Maurer et
al. (2003).
Figure 2 shows that the choice of the outlet

pressure conditions is relevant to obtain the
typical micro-channel effects on the gas flow.
It can be seen that, as the outlet pressure is
decreased, the deviation of the total mass flow
rate, obtained from the extended Navier-
Stokes equations, increases with respect to the
convective mass flow rate obtained from the
compressible Navier-Stokes equations with
no-slip boundary conditions. The total mass
flow rate especially for Pout = 0.012 MPa
shows considerable deviation from predictions
based on the Navier-Stokes equations with no-
slip conditions. The present analytical result of
Pout = 0.012 MPa yields good agreement with
experimental results of Maurer et al. (2003)
and the analytical deduced solution follows the
micro-channel effect that occurred in the
experiment. This finding is a good proof that

Fig.2 Total mass flow rate vs. the difference of
squares of pressure of Pin and Pout

Table 1 Experimental conditions of [1]
Maurer et al. (2003) and [2] Arkilic et al.
(1997).

the order estimate, carried out in this study,
yields the equation which describes physically
well the flow in micro-channels.
Using the derived analytical solutions, we

can understand why the deviation between the
mass flow rates obtained from the extended
Navier-Stokes equations and the classical
theory is decreased as (P2in − P2out) is
increased. This means that the increase of the
pressure ratio Pin/Pout reduces the deviation
between the mass flow rates. This behavior
can be explained by equation (20). Namely, a
significant deviation from the classical theory
appears at lower pressure ratios for a given
outlet pressure Pout, because the diffusion
effect is proportional to the term of ln(Pin /Pout)
and the order of ln(Pin /Pout) is comparable
with one of (Pin /Pout)2 only for the smaller
pressure ratio. This implies that the diffusion is
effective for the micro-channel flow only
when the pressure range P is absolutely small
and the pressure ratio (Pin /Pout) between the
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inlet and outlet is also small. In addition, we
calculate the mass flow rates for the different
pressure conditions, corresponding to Arkilic
et al. (1997) and Colin et al. (2004) whose
conditions are summarized in Table 1 and 2.
These comparisons of the analytical results
with the experimental ones are shown in Figs.
3 and 4, where the horizontal axes are taken as
the pressure ratio. In the figures, the results
obtained from the extended Navier-Stokes
equations are shown by solid lines, while the
ones by the classical compressible Navier-
Stokes equations with no-slip boundary
conditions are shown by dashed lines. We can
see that the diffusion effects are presented but
they are quite small. This is mainly because
the pressures in the experiments of Arkilic et
al. (1997) and Colin et al. (2004) are larger
and we, therefore, do not get the micro-
channel effect.
In order to explain why the diffusion effect

is small, the relation between the mass flow
rate and the characteristic pressure defined by
equation (24) is shown in Fig. 5. We can see,
that the diffusive mass flow rate reaches 50 %
of the total mass flow rate for the case of P/Pc
= 1. This means that the convective and the
diffusive mass flow rates are of the same order
in the total mass flow rate. The characteristic
pressure ratio of P/Pc ranges as Pin/Pc > P/Pc
> Pout/Pc. With the decrease of the pressure
from Pin to Pout, the diffusive effect starts to
grow in importance, since the characteristic
pressure ratio P/Pc is decreased. If the inlet
and outlet pressures are chosen to lie close to
the characteristic pressure, the total mass flow
rate increases due to the strong effect of the
self-diffusion and this yield the considerable
deviation from the predictions based on the
classical Navier-Stokes equations.
In Fig. 5, the pressure ranges of the

experimental data of (I) - Maurer et al. (2003),
(II) - Arkilic et al. (1997) and (III) Colin et al.
(2004) are presented. As previously mentioned,
the strong diffusion effect was analytically
obtained for the experimental conditions of
Maurer et al.(2003). Their strong micro-
channel effects can be explained now with the
help of the characteristic pressure, since the
pressure ratios are quite small and the pressure

range is close to the characteristic pressure Pc
of the experimental setup. On the other hand,
in the experimental conditions of Arkilic et al.
(1997) and Colin et al. (2004), the chosen
pressures in the experiments are larger
compared with their characteristic pressures.
Therefore, only small diffusion effects are
present. Knowing that the diffusive effect is
significant for low pressures (or for high
temperatures), the outlet pressure at the exit of
the micro-channel should be taken very small
to experimentally show the typical micro-
channel effect at room temperatures.

Fig.3: Total mass flow rate vs. pressure ratio
for experiments of Arkilic et al. (1997)
Table 2: Experimental conditions of Colin et
al. (2004).

Although the choice of the pressure range for
the experiments has been shown to be the
reason why the diffusion effect is small under
the conditions of Arkilic et al. (1997) and
Colin et al. (2004), a considerable discrepancy
between the present analytical predictions and
the corresponding experimental results still
exists.
The discrepancy can be attributed either to
incorrect pressure distributions or to the
measurement errors of the flow rate in the
mentioned experiments. As shown previously,
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Fig.4: Total mass flow rate vs. pressure ratio
for experiments of Colin et al. (2004)

Fig.5: Fraction of mass flow rate vs. pressure.

the experiments conducted by Arkilic et al.
(1997) and Colin et al. (2004) lay in the
convection-dominated region, i.e. in the
pressure region where the diffusion effect is
small. Therefore, the main reason for the
discrepancy may be measurement errors
during their experiments. Colin et al. (2004)
reported an uncertainty of about 10% for the
measurement of the channel height. Such an
uncertainty of the measurement of the channel
height can cause the discrepancy between the
experimental data and theoretical predictions.
In order to examine the possibility of the
uncertainty effect on the discrepancy between
the present analytical solution and the
corresponding experimental results, we
attempted to calculate the mass flow rate for
the slightly different conditions of the
experiments of Arkilic et al. (1997) and Colin
et al. (2004). Using a 10% greater channel
height to calculate the total mass flow rates in
case of Arkilic et al. (1997) and a 3 - 10%
greater channel height in the four cases of
Colin et al. (2004) (see Table 2), one can
obtain very good agreement between the
present analytical results and the mentioned
experimental data, as shown in Figures 3 and 4.
The adapted channel height for each case of
Colin et al. (2004) is also reported in Table 2.
Concluding this section, we point out that the
measurement accuracy can be seen as one of
the prime factors of the discrepancy between
the present analytical results and the
experimental data. It should be noted that there
was no difference in the experimental
conditions of Arkilic et al. (1997) and Colin et
al. (2004) between the mass flow rates
obtained by the extended Navier-Stokes
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equations (ENSE) and the classical Navier-
Stokes equations (CNSE) with no-slip
conditions, because the pressures chosen in
their experiments were in the convection-
dominated range.

3.3Micro-capillary flows

To obtain an analytical solution for fully
developed micro-capillary flows, we will solve
Eq. (16) of the cylindrical co-ordinates in a
similar way. Then the analytical solution for
the total velocity in micro-capillary flows can
be written as:

(25)

In addition, we can obtain the relations
between the total mass flow rate MT, its
diffusive part MD and the pressure as

(26)

(27)

where a characteristic pressure Pc is Pc =
μ√8RT/h. The above final equation (27)
describes an universal relation between the
local mass flow rate and the local normalized
pressure in micro-capillary flows.

3.4 Results for micro-capillary

In this section, we want to prove our
analytical solution for micro-capillary flows
by comparison of the results with
corresponding experimental data, available in
the literature. In this context, Figure 6 shows
the total mass flow rates obtained by Yang and
Garimella (2009) as a function of pressure
ratio Pin/Pout. The experimental conditions of
Yang and Garimella (2009) are reported in
Table 3. The present results obtained from the
extended Navier-Stokes equations (solid lines)
and ones obtained from the classical
compressible Navier-Stokes equations (dashed
lines) with no-slip boundary conditions are
also shown in Fig. 6. The analytical results

Fig.6: Total mass flow rate vs. pressure ratio
for experiments of Yang and Garimella (2009)
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Table 3: Experimental conditions of Yang and
Garimella (2009).

show no difference between the solution of the
classical and the extended Navier-Stokes
equation for all considered cases of Yang and
Garimella (2009) and also a good agreement
with the experimental data.
As already explained for micro-channel

flows, we can only obtain typical micro-
capillary effects when the inlet and outlet
pressures are both chosen to lie close to the
characteristic pressure of the experimental
setup so that the fraction of the diffusive mass
flow rate on the total mass flow rate is
significant. In this context, Fig. 7 shows the
ratio of MD/MT as a function of the
characteristic pressure ratio P/Pc together with
the experimental pressure ranges of Yang and
Garimella (2009). In cases (a) and (b) almost
no influence of the diffusive mass flow rate on
the total mass flow rate is expected, since both
inlet and outlet pressure are chosen much
higher than the characteristic pressure of
considered experiments. In cases (c) and (d)
the outlet pressure is chosen to lie close to the
characteristic pressure Pc, so that the diffusive
mass flow rate dominates the flow at least in
the part of the micro-capillary which is closer
to the outlet. With increase of the pressure
ratio for a constant outlet pressure, i.e. increase
of the inlet pressure, the influence of the
diffusive mass flux on the total mass flow rate
reduces. This can be explained with equation
(26). The term containing ln(Pin/Pout) in this
equation describes the diffusive part of the
total mass flow rate and the other term
containing (Pin/Pout)2 of its convective part. For
higher pressure ratio the diffusive part of the
total mass flow rate becomes negligible and
the difference between the extended and
classical solution of the Navier-Stokes
equation disappears.

Fig.7: fraction of the mass flow rate vs.
pressure ratio

5. Summary

Using the extended Navier-Stokes equations,
we can explain the physics behind the typical
“micro-channel effects”. It is shown that for
certain experimental conditions the diffusive
effects in the micro-conduit flows become
significant and the total mass flow rate shows
considerable deviations from the classical
theory.
A characteristic pressure for micro-channel

and micro-capillary flows is introduced in this
work. At such a characteristic pressure the
flow in micro-conduit starts to behave
differently. Namely, for pressure values less
than the characteristic pressure the flow is
dominated by diffusion. In case that the local
pressure is higher than the characteristic one,
the flow is dominated by convection. As
already mentioned the diffusive mass flow
causes the difference between the classical and
the extended Navier-Stokes equations and is
also the reason for the deviations of the
experimental results from predictions of the
classical theory. To show the typical ”micro-
conduit effect” in experiment the inlet and
outlet pressure should be chosen to lie close to
the characteristic pressure of the experimental
setup.
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