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Abstract A numerical analysis of silicon DC open channel EOPs is presented to show which parameters 
should be taken into account in the design of these devices. Particular attention is paid to the influence 
of the channel cross-section geometry on pump behavior, especially in relation to the electrical 
properties of the fluid. Rectangular and trapezoidal, micro and nano channels chemically etched on 
silicon wafers are considered and a broad range of operative conditions are analyzed. In order to make 
all the results available, two user-friendly correlations that predict the characteristic curves of the pumps 
are given as functions of the relevant parameters. The EOP model used to obtain the results is explained 
extensively, as well as the method used to solve it. A brief discussion on the domain in which it applies 
is also presented. 
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1. Introduction 
 
 Electro-osmotic pumps (EOPs) move 
fluids inside micro channels by means of an 
externally imposed electric field. The flow 
obtained by electro-osmosis is caused by the 
motion of a ionized liquid near to a stationary 
charged surface when an electric field is 
applied (Probstein, 1994). Most surfaces 
spontaneously acquire a finite charge density 
when in contact with an aqueous solution, 
inducing an uneven distribution of charges in 
the liquid bulk (Hunter, 1981). This happens in 
the fluid layer near the wall, called Electrical 
Double Layer (EDL), whose extension varies 
significantly with the channel dimensions and 
the electrolyte concentration. 
 EOPs have been developed in the last few 
decades along with the diffusion and advance 
of microfluidics in several fields (Manz et al., 
1990; Chen and Santiago, 2002; Laser and 
Santiago, 2004). More recently their use has 
been further spurred by the development of 
nanofluidics and biomedicine where 
mechanical pumps are at a disadvantage 
because of the presence of high pressure drops, 
the manufacturing of micro or even nano scale 
moving components and possible fluid 

contamination (Karniadakis et al., 2005). 
Several configurations have been considered, 
namely DC and AC pumps, both of the open 
channel type, i.e. made of straight single or 
multiple parallel channels (Lazar and Karger, 
2002), and of packed column as well as porous 
monolith and porous membrane type, in which 
a porous medium is used to extend the contact 
area between the fluid and the wall (Yao and 
Santiago, 2003; Yao et al., 2003; Litster et al., 
2010, Wang et al., 2009).  
 Most open channel EOPs fabricated on 
silicon substrates have channels whose cross-
section is either rectangular or trapezoidal 
(Morini, 2004). In particular, channels 
obtained from chemical etching on wafers of 
<100> silicon have a trapezoidal cross-section, 
whose apex angle is θ=54.74°, while those 
produced with <110> silicon have a 
rectangular cross-section, with θ=90° (Fig. 1). 
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 Fig. 1. Typical cross sections of silicon micro 

channels made by chemical etching. 
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A large part of the theoretical studies on EOPs 
published up to now have focused on channel 
shapes such as cylindrical and planar 
(Burgreen and Nakache, 1964; Rice and 
Whitehead, 1965; Hildreth, 1970; Masliyah 
and Bhattacharjee, 2006; Bruus, 2007), for 
which a significant simplification of the 
governing equations allows to find close 
analytical solutions. Sometimes these solutions 
have been employed to analyze complex 
geometries to predict the pump behavior (Chen 
and Santiago, 2002), especially for very 
narrow channels which are widely used at 
nano scales. When a simplified analytical 
solution is not available, numerical solutions 
can always be found to characterize these 
components and several numerical 
investigations have already been presented in 
the literature for specific configurations 
(Arulanandam and Li, 2000), although their 
results are not readily available for practical 
use. In any case, not many studies consider 
realistic geometries for the cross-section of the 
channels, like those shown in Fig. 1, and a 
systematic study of the impact of geometry on 
the pump behavior has not been carried out till 
now. From the above considerations it follows 
that it is still of great importance to perform a 
thorough analysis of the influence of the 
channel geometry on the pump behavior, 
especially in relation to the electrical 
properties of the fluid. The results can be used 
to determine some user-friendly correlations to 
design EOPs in a broad range of operative 
conditions. The aim of this work is therefore to 
provide an insight into the operational 
behavior of EOPs, focusing on the generalized 
scaling analysis in the case of channels with a 
finite cross-section, both for a very thin and a 
finite EDL. Also, a practical purpose of the 
present study is the determination of easy to 
use correlations to predict the pump 
performance for all the operative conditions 
here considered. 
 
2. Modeling 
 
 In this section, the mathematical model of 
an EOP and the numerical scheme used to 
solve it are discussed. In addition, some 

remarks on the limits of validity of this 
theoretical framework are presented in order to 
justify the numerical results. 
 
2.1 Governing equations 
 A DC open channel EOP can be modeled 
considering an induced electro-osmotic flow 
inside a channel, acting against a constant back 
pressure. For an incompressible fluid with 
constant properties and a fully developed flow, 
the momentum equation can be written as: 


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d

dp
Eu ext
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where u(η) is the only non-zero component 
of the velocity field, that is, the component 
along the channel axis , and  is the dynamic 
viscosity of the fluid. On the RHS, the first 
term is the electric force acting on diffusive 
ions at the solid/liquid interface, where ρe

eq is 
the net charge distribution over the channel 
cross-section, which is assumed not to be 
affected by the local velocity field, while Eext 
is the applied electric field, supposed to be 
uniform; the last term is the pressure gradient 
along the channel. No-slip boundary 
conditions are applied at the wall. Since the 
electric force is assumed not to be influenced 
by the velocity field, neither in the charge 
distribution nor in the electric field, the 
equation is linear and can be solved with the 
superposition principle once the charge 
distribution is known. Assuming that ions are 
displaced as for the static case, when the liquid 
does not flow, and that no overlap of the EDLs 
occurs, the charge distribution can be 
determined by means of the Poisson equation 
of electrostatics (Burgreen and Nakache, 
1964): 
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where a flat-wall Boltzmann distribution of 
ions can be considered: 
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In Eq. (2) and (3),  is the unknown 
electric potential, ε is the permittivity of the 
liquid electrolyte, e is the magnitude of the 
elementary charge, zi is the ith-ionic species 
valence with the appropriate sign, ni∞ is the 
ionic number concentration at the neutral state 



3rd Micro and Nano Flows Conference 
Thessaloniki, Greece, 22-24 August 2011 

- 3 - 

(=0), k is the Boltzmann constant and T is the 
thermodynamic temperature. The summation 
comprises all the N ionic species. Boundary 
conditions for Eq. (2) assume that the electric 
potential equals the so called zeta-potential (ζ) 
at the wall. Substituting Eq. (3) into Eqs. (1) 
and (2) yields a set of two uncoupled PDEs 
that are the governing equations for an open 
channel EOP. The energy equation is not 
needed because the model refers to isothermal 
flows. While the momentum equation is linear, 
the Poisson–Boltzmann equation is strongly 
non-linear, but a linearization can be 
performed if the Debye-Hückel approximation 
holds, i.e. if ions mainly act under the 
influence of their thermal energy (Rice and 
Whitehead, 1965). 
 In order to obtain a general solution of the 
model, it is convenient to have all the variables 
and the equations in a non-dimensional form. 
A proper non-dimensional reference system 
can be obtained dividing each coordinate of 
the dimensional frame by the hydraulic 
diameter Dh: 

hD
x


:

   hD
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
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   hD
z


:     (4) 

while, for the electric potential and the zeta-
potential suitable non-dimensional expressions 
are: 
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For the local velocity field, it is more 
expedient to use the following quantity: 
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where uEO is the Helmholtz – Smoluchowski 
velocity (Probstein, 1994). Invoking the 
Debye-Hückel approximation and substituting 
all the non-dimensional quantities into Eqs. (1) 
and (2), it is easy to get the non-dimensional 
form of the governing equations, that is: 
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where κ is the Debye-Hückel parameter: 
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while the product κDh defines a quantity 
known as the electrokinetic diameter (De), 
which accounts for both the electrical 
properties of the fluid and the geometrical 
characteristics of the channel, showing that 
their influence on the electro-osmotic flow is 
strictly correlated. In Eq. (7) an operational, 
non-dimensional number has been introduced, 

EOG , whose definition is: 
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where P is the difference between the fluid 
pressure p and a reference pressure p0. This 
new non-dimensional group is the ratio 
between the pressure body forces and the 
electrical body forces acting on the fluid. It is 
therefore related to the electrical work that the 
pump can transfer to the fluid to move it 
against a fixed pressure gradient. At the same 
time, it can be seen as the pressure head that 
the pump can handle for a given electrolyte 
composition and a fixed electric field. The set 
of two linear uncoupled PDEs (7), with the 
following non-dimensional boundary 
conditions: 
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can be easily managed to obtain a semi-
analytical solution over a 2D regular domain 
by means of the Integral Transform Technique 
(ITT). In the present work, micro and nano 
channels with a cross-section geometry typical 
of chemically etched channels are considered 
(see Fig. 1). As a consequence, the 2D domain 
can be either a trapezoid, with an apex angle of 
θ=54.74°, or a rectangle (θ=90°). The key 
idea of ITT, originally introduced by Özişik 
and Murray (1974) and widely used ever since 
in heat and mass transfer problems (Özişik, 
1980; Cotta, 1993), relies on the possibility of 
writing any function as a linear combination of 
simple orthonormal functions that represent a 
basis for the considered domain of definition. 
In this sense, the transformation is equivalent 
to a projection of the function along each 
element of the basis which, for this reason, is 
also called kernel of the transformation. As 
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shown by Aparecido and Cotta (1990), for 
both rectangular and trapezoidal geometry it is 
always possible to perform a transformation, at 
least in one direction of the 2D cross-sectional 
domain. Projecting the governing equations 
along one direction yields a set of M coupled 
ODEs that depend only on one variable, M 
being the number of orthogonal bases used to 
represent all the functions. 
 Applying the ITT to Eq. (9) is then 
equivalent to the assumption that the unknown 
functions can be approximated by means of a 
finite set of orthonormal functions, namely 
 

 ,,1
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By means of Eqs. (11) it is possible to perform 
a transformation of Eq. (7) getting a set of 
coupled ODEs that can be numerically solved 
with a specific code written in MATLAB® 
using the solver for boundary value problems. 
This code first solves the differential problem 
and then applies the inverse transform (11) to 
its solution to compute the unknown functions 
over the entire cross-section. The solver for the 
ODEs system is a difference scheme that 
implements the 3-stage Lobatto IIIA formula, 
with a relative tolerance of %01.0 , both for 
the electric potential and the velocity field. 
Since the required accuracy is not achievable 
whenever the EDL is very thin even providing 
the analytical Jacobian of the system, in this 
work the investigation is limited to 
electrokinetic diameters smaller than 330. This 
way, an accuracy of 0.1% could be achieved 
for almost all the considered cases with a 
number of terms M of the series defined in 
Eq.(11) in between 80 and 100. 
 
2.2 Model limitations 
 The proposed model for electro-osmotic 
pumping is based on a series of assumptions, 
most of them implicitly stated. A discussion on 
their validity is mandatory in order to 
understand when they no longer hold, 
especially at the nano scale. 

 The strongest hypothesis of the model is 
that of continuum medium. This well-known 
assumption determines the description of the 
fluid which is further assumed Newtonian. A 
comprehensive review on the validity of the 
continuum hypothesis was proposed by Koplik 
and Banavar (1995), who highlighted that the 
velocity and stress fields, for both Couette and 
Poiseuille flows, completely agree with the 
solution of the Navier-Stokes equations, when 
no-slip boundary conditions apply, for any 
channel of width larger than about 10 fluid 
molecular diameters. The Authors also 
confirmed the fluid’s Newtonian behavior. 
These conclusions have been recently restated 
in a review on the nanofluidic transport theory 
by Sparreboom et al. (2010). Strictly related to 
the validity of continuum equations, it is the 
validity of their boundary conditions. This is 
why care has been taken to verify the validity 
of no-slip boundary conditions for all the cases 
here analyzed (Cheng and Santiago, 2002; Joly 
et al., 2006). 
 Concerning the Poisson equation (Eq. (2)), 
a flat-wall Boltzmann distribution (Eq. (3)) for 
all the N ionic-species can be considered valid 
only if EDLs do not overlap. If they do, ion 
enrichment and exclusion effects are 
particularly strong and, as pointed out by Qu 
and Li (2000) and Baldessari and Santiago 
(2008), a different EDL model is necessary. 
However, the same Authors have shown that 
overlap does not occur if De is above 16. For 
an electrolyte concentration of 10-1 M, 10-2 M 
and 10-3 M this means that the Dh has to be 
greater than about, respectively: 17 nm, 50 nm 
and 150 nm. 
 In the EOP model previously presented, the 
Debye-Hückel approximation has been used to 
linearize the Poisson-Boltzmann equation. 
This assumption is very often invoked when 
dealing with electro-osmotic flows, even if its 
consistency is seldom checked. Since the very 
first extensive work on the zeta-potential by 
Hunter (1981), it is known that the fluid 
composition has a strong influence on the 
value of the electric potential at the 
solid/liquid interface, thus a limit on ζ most 
certainly limits the bulk concentration too. 
Many experimental data are available in the 
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literature for both silica and polymeric 
substrates and a collection of them is reported 
in the review of Kirby and Hasselbrink (2004). 
Data show that to have a zeta-potential below 
25 mV the bulk concentration must be in 
between 10-1 M and 10-2 M, with a pH 
generally smaller than 6. Only for highly acid 
solutions concentrations around 10-3 M can be 
considered as well. 
 This short discussion sets the bounds 
within which the model can be used properly 
to characterize open channel EOPs, namely: 
1) hydraulic diameters larger than 10 nm so 

that the continuum assumption holds; 
2) molar concentrations of the solution in 

between 10-1 M and 10-2 M, so that the 
Debye-Hückel approximation holds; 

3) electrokinetic diameters larger than 16 to 
avoid the overlap of the EDLs. 

 
3. Numerical characterization 
 
 In this section some of the results obtained 
for open channel EOPs are presented in order 
to show how the cross-section geometry can 
influence their performance. As mentioned in 
section 2.1, chemically etched channels with 
rectangular and trapezoidal cross-sections are 
studied varying the aspect ratio (β=h/a), i.e. 
the ratio of the height (h) to the smaller base 
(a) of the channel (Fig. 1).  
 
3.1 Cross-section effects 
 The behavior of a pump is described by its 
characteristic curve, which shows the relation 
between the volumetric flow rate (V) and the 
pressure head (∆P). In terms of non-
dimensional quantities, the volumetric flow 
rate can be computed from its definition as: 

 yxyxUV d d ),(*        (12) 

while the pressure head is equivalent to the 
non-dimensional number GEO for a fixed bulk 
composition and a given applied electric field. 
Some non-dimensional characteristic curves 
for a rectangular channel (no markers) and a 
trapezoidal channel (triangular markers) for 
two different values of the aspect ratio are 
shown in Fig. 2a, where the non-dimensional 
zeta-potential is equal to 1 and De=164.41. 

The figure shows that curves greatly hinge on 
the geometry of the cross-section. Comparing 
the behavior for the same θ, it is evident that a 
reduction of the aspect ratio leads to a better 
performance both in terms of volumetric flow 
rate and of GEO. On the other hand, rectangular 
and trapezoidal cross-sections at the same 
aspect ratio show a significant difference in 
the behavior only for low values of GEO. To 
better understand the dependence of V* on 
GEO, in Fig. 2b the trend of the dimensionless 
velocity field along the centerline of the cross-
section of the square channel (θ=90º, β=1) is 
shown for points A, B and C of Figure 2a. 

 
   (a) 

 
   (b) 

 
 

 
 
The effect of the imposed back pressure is 
evident: when GEO increases, the velocity 
profile is no longer flat, but an inflection starts 
from the core of the channel decreasing the net 
flow rate. The value of GEO for which the net 
flow rate vanishes (point C in Fig. 2a) has 
been called critical GEO (GEO,c). An operating  
condition corresponding to the point C in Fig. 

Fig. 2. Characterization of a single open 
channel EOP for θ=90° () and θ=54.74° (Δ) 
at Z=1 and De=164.41: (a) characteristic 
curves; (b) velocity profiles. 
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2a should be avoided and is presented here as 
a limiting case. Fig. 2b suggests to limit the 
operative values of GEO from 0 to about 0.5 
times the critical value, thus the point B of Fig. 
2a can still be a possible working point, while 
the stretch between B and C represents 
conditions to be avoided because of a flow 
reversal. Moreover, whenever a choice is 
possible, it is better to work at the highest 
value of GEO that can be achieved without the 
occurrence of a backflow, mainly because of 
two reasons. First of all, for a given bulk 
composition and an imposed electric field, a 
large operative GEO corresponds to a large 
pressure head. Conversely, fixing the pressure 
head and the fluid, a high GEO is equivalent to 
a low applied electric voltage, and therefore to 
a small power consumption. This improves the 
efficiency of the EOP. 
 Characteristic curves of EOPs are linear, so 
they are completely defined by two operating 
conditions. In particular it is of interest to 
consider those representing the two limiting 
conditions, i.e. the maximum flow rate (point 
A) and the maximum pressure head (point C). 
Analyzing these specific quantities is 
equivalent to studying and comparing the 
whole characteristic curves. 
 In Fig. 3 trends of the maximum non-
dimensional volumetric flow rate (V*max), 
which corresponds to GEO=0, as a function of 
De are plotted for a single open channel EOP 
with a trapezoidal cross-section and Ζ=1 for 
several βs. The trends show that higher values 
of De and lower values of β provide larger 
volumetric flow rates for any value of the zeta-
potential. However, while V*

max increases by 
20% if De increases by one order of 
magnitude, it becomes about three times 
greater if  decreases from 0.5 to 0.1. Fig. 3 
also shows that the same maximum volumetric 
flow rate is achievable with different 
combinations of the aspect ratio and of the 
electrokinetic diameter. This means that if 
some kind of constraint bounds one of the two 
parameter, the other one can be chosen in 
order to get the desired flow rate. 
 In Fig. 4 trends of the critical GEO (GEO,c), 
which corresponds to V*=0, as a function of β 
are plotted for three values of De for the case 

described in Fig. 3. Higher values of the 
critical GEO can be attained reducing the value 
both of De and of . These results show that 
the ability to handle a back pressure inside any 
channel is enhanced by a more homogeneous 
distribution of the electric forces over the 
cross-section. Pressure body forces are 
uniformly distributed on each section, while 
electrical body forces exist only in the EDL, 
where charges are: whenever the EDLs occupy 
a significant portion of the channel, electrical 
body forces can handle the back pressure more 
easily and this happens when De or β decrease. 

 
 
 
 
 

 
 
 
 
 
 
 Figs. 3 and 4 show also that, while the 
aspect ratio has the greatest influence on the 
flow rate, the electrokinetic diameter affects 
the critical GEO the most, especially if De is 
between 16 and 50. An increase by almost one 

Fig. 4. Critical GEO (V*=0) of a single open 
channel EOP for θ=54.74° and Z=1 as a 
function of the electrokinetic diameter and of 
the aspect ratio.

Fig. 3. Maximum volumetric flow rate (GEO=0) 
of a single open channel EOP for θ=54.74° and 
Z=1 as functions of the electrokinetic diameter 
and of the aspect ratio. 
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order of magnitude can occur scaling down De 
within this range, while a variation of about 
30% is achieved if  varies from 0.5 to 0.1. 
 Similar conclusions hold both for the 
maximum flow rate and for GEO,c also if the 
channel has a rectangular cross-section. 
 
3.2 Correlations for EOPs performance 
 Results presented so far can help in the 
design of open channel EOPs with single or 
multiple micro channels. However, to study 
the behavior of a particular EOP a specific 
code, like the one implemented for the present 
work, should be employed. A way to make the 
model and its results easily available is the 
determination of simple correlations for the 
prediction of the pump performance, that is, 
the determination of simple expressions for the 
maximum flow rate and for the critical GEO. If 
these quantities are known, designers can 
easily draw the characteristic curve of any 
open channel silicon EOP. 
 The main parameters affecting the EOP 
behavior are the following: 
1) the dimensionless zeta-potential Ζ,  
2) the apex angle θ of the cross section, 
3) the aspect ratio β of the cross section, 
4) the electrokinetic diameter De. 
Concerning the dependence of the volumetric 
flow rate and of the pump pressure head on the 
dimensionless zeta-potential, comparing all the 
simulations it is possible to conclude that the 
maximum non-dimensional flow rate is 
completely unaffected by Ζ, while the critical 
GEO is directly proportional to it. This is due to 
the linearization introduced with the Debye-
Hückel approximation and means that: 
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at least until this assumption holds. In Eq. (13) 
the dependence of both the reference quantities 
on the other three parameters (, De) is not 
explicit. To obtain this dependence an 
interesting approach is related to the 
application of the known analytical 
expressions for parallel plates to finite cross-
section channels.  
 Considering the work of Chen and 
Santiago (2002) and the non-dimensional 

quantities introduced in section 2.1, it follows 
that the maximum flow rate for a rectangular 
channel can be written as: 
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where A is the area of the cross-section, while 
for the critical GEO , at Ζ=1, the expression is: 
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A comprehensive analysis of the results shows 
that the reference quantities in Eq. (13) can be 
determined referring to Eqs. (14) and (15) as 
follows (Geri et al., 2011): 
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where the function g(β) has a double 
exponential dependence on the aspect ratio: 

)exp()exp()(   dcbag    (17) 
and its coefficients (a, b, c, d), that can be 
obtained fitting the numerical results presented 
in section 3.1, are listed in Table 1. 
 
   Table 1 
   Fitting coefficients for the function g(β). 

a b c D 

0.815452 ‐3.75009 1.18041 2.06422·10-2 

 
Equations (16) and (17) hold for Ζ=1, for both 
rectangular and trapezoidal cross-sections with 
an electrokinetic diameter between 16 and 330 
and an aspect ratio down to 0.001. The upper 
limit for the aspect ratio is 1 and 2 for 
rectangular (=90°) and trapezoidal cross-
sections (=54.74°) respectively. It is worth 
noting that Eq. (16) is the result of theoretical 
considerations regarding the effect of the 
channel walls on the pump behavior. In 
particular, the effect of the electrokinetic 
diameter can be taken into account considering 
each pair of opposite walls of the finite cross-
section as two parallel plates. Only the 
dependence on the aspect ratio for the critical 
GEO needs to be introduced and numerically 
computed, since a simple correlation with the 
area of the cross-section is not possible. Using 
Eqs. (13)-(17) with the coefficients of Table 1 
all the characteristic curves for pumps with the 
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aforementioned geometrical and electrical 
features can be obtained. The relative error 
between numerical results and the results 
obtained by this correlation in the specified 
ranges is always smaller than 2%. 
 
4. Conclusions 
 
 In this work a numerical investigation of 
the behavior of silicon DC open channel 
electro-osmotic pumps has been performed to 
evidence the influence of the cross-sectional 
geometry and of the fluid electrical properties 
on the pump behavior. Micro and nano 
channels with trapezoidal (θ=54.74°) and 
rectangular (θ=90°) cross-sections have been 
analyzed for several values of the aspect ratio 
and of the electrokinetic diameter. 
 Dimensionless characteristic curves 
(volumetric flow rate vs. head pressure) have 
been obtained to evaluate the performance of 
the pump. It has been shown that the aspect 
ratio strongly influences the maximum flow 
rate, while the electrokinetic diameter mostly 
affects the maximum pressure head. 
Decreasing β increases both the non-
dimensional volumetric flow rate and the 
pump pressure head, while an increase of De 
increases the flow rate but at the same time 
decreases the pressure head.  
 With the aim of giving a useful tool to the 
EOPs designers, two correlations have been 
developed for both rectangular and trapezoidal 
geometries. These correlations take into 
account all the parameters that affect the pump 
behavior and allow to draw the characteristic 
curve of any silicon open channel EOP within 
the constraints of the presented model. 
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