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Abstract: Rainbow refractometry is a non-intrusive technology for determining the refractive index and 
diameter of droplet simultaneously. Most of the present schemes for the refractive index and diameter of 
droplet are based on empirical formulas with Airy theory. However, the anti-noise capability and the 
generality of the empirical method are weak. In the paper, an objective function was designed to quantify the 
deviation between the low frequency component of the captured rainbow and the simulated rainbow with 
Debye (p=2) theory. Further, a novel inversion scheme for single droplet based on Debye (p=2) theory and 
the objective function was proposed. Experiments were carried out to evaluate the performance of the 
scheme. Results indicate that the relative error of the radius is less than 8%, the absolute error of the 
refractive index is better than 5×10-4. 
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1 Introduction 
 
The parameters (diameter, temperature, 

concentration .etc) of the droplet play an 
important role in the quality of many industrial 
processes such as combustion, cooling, drying 
and humidifying. The real-time and accurate 
measurement of the parameters is helpful to 
improve their production efficiency, optimize 
product quality and control pollutant emission. 
Optical technology is widely used for droplet 
measurement at present because of its non-
invasion, high precision, high resolution in 
time and space and real-time performance. 
Rainbow refractometry is one of light 
scattering detection technologies, which can 
measure the diameter and refractive index 
simultaneously with the intensity distribution 
in specific angular range. As a result the 
parameters (temperature, concentration .etc) 
related to the refractive index can be 
calculated by certain functions indirectly [1-5]. 
The scattering angles of the rays experiencing 
one internal reflection in the droplet have a 
minimum value named the first-order 
geometric predicted rainbow angle. Rainbow 
refractometry can be used to detect the 
refractive index and the diameter of the droplet 

through the intensity distribution near the first-
order geometric predicted rainbow angle. 
Compared with the scattering light in other 
angular ranges, the first-order rainbow has the 
following advantages: 
(1)  Its structure is stable. Limited distortions 
of the droplet parameter do not destroy the 
rainbow, but change its position only. 
(2)  Its resolution is high. The first-order 
rainbow changes obviously when the 
refractive index and the diameter of the 
droplets changes a little.  
(3)  Its scattering intensity is big. The intensity 
of the ray becomes weaker as the increase of 
internal reflections in the droplet.  
(4)  Its information content is rich. 
Fluctuations of various frequencies can be 
seen from the first-order rainbow.  
(5)  The optical path of the ray experiencing 
one internal reflection is so simple that other 
mature theory (such as geometric optics) can 
be combined.  

Measurement technologies based on the 
first-order rainbow are investigated and 
applied widely due to its unique advantages. 
Roth placed two CCD cameras in the forward 
area around 30° and the background area 
around 140° to capture the scattering intensity. 
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Then the refractive index was determined by 
the forward scattering intensity and the 
diameter was determined by the background 
scattering intensity according to the Airy 
theory [2-4]. Van Beeck placed only one CCD 
camera in the background area to simplify the 
measurement system. Then refractive index 
was determined by the location of the peak 
intensity and diameter was determined by the 
supernumerary bows [5]. Wu presented an 
empirical formula for the droplet diameter and 
refractive index based on the supernumerary 
bows and the ripple bows [6]. However, most 
of the present methods are based on empirical 
formula. Their accuracy is low and the anti-
noise capability is low on the premise that the 
diameter and refractive index are changed in a 
broad range. Additionally, measurement error 
transfer occurs due to the coupling among the 
parameters [7]. 

To solve the problems above, the paper 
presents an improved scheme for the 
parameters of singe droplet based on Debye 
theory. The calculation results of the empirical 
formula are taken as the initial parameters. 
Then the intensity distribution of the first 
rainbow is simulated by Debye theory (p=2) 
according to the initial parameters. An 
objective function is designed to quantify the 
deviation between the low frequency 
component of the captured rainbow and the 
simulated rainbow. Finally the initial 
parameters are optimized continuously for the 
purpose of decreasing the objective function 
value. Experiments are also carried out to 
investigate the performance of the reversion 
scheme. 

 
2 Measurement theory 
 
2.1 Thoery of rainbow refractometry 

If a homogeneous droplet is illuminated by 
a monochrome laser, the first-order rainbow 
can be produced by the rays experiencing 
several internal reflections, the externally 
reflected rays on the droplet and surface wave. 
Fig.1 shows the optical path of the ray 
experiencing one internal reflection at the 
section of the droplet. As shown in Fig.1, the 
scattering light is denoted by Iout, the incident 

light by Iin, the incident angle by , the 
refraction angle by , the scattering angle by 
� , the radius of the section by R and the 
ratio of the refractive index of the droplet and 
one of the surrounding medium by m . 

Iin

R





m

 Iout

 
Fig.1 Optical path at the section of the column 

 
According to the geometrical optics and 

Fig. 1, equation (1) can be obtained 
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From equation (1), there is a minimum 

scattering angle defined as the geometrical 
predicted rainbow angle rg, where the 
scattering light is dense. rg can be calculated 
as  
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From equation (2), the refractive index m 
can be determined by measuring rg. Actually 
the angular location of the peak intensity 
deviates from the geometrical predicted 
rainbow angle, so rg cannot be directly 
detected. 

Geometric optics can analyze each ray 
independently, and yet the interference among 
all the rays cannot be depicted. The Airy 
theory can compute the intensities around the 
geometrical predicted rainbow angle through 
the use of the Fresnel theory combined with 
the rainbow method [8-9]. The Lorenz-Mie 
theory is used to accurately compute the 
scattering intensity of an illuminated sphere 
after the birth of Maxwell electromagnetic 
theory [10]. Fig.2 illustrates the simulated first-
order rainbow based on Mie theory and the 
Airy theory respectively. The droplet radius is 
250 m, the refractive index is 1.3326 and the 
wavelength is 532nm. From Fig.2, it can be 
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seen that the location of each supernumerary 
bow in a certain curve deviates from the 
corresponding maximum in the other curve. 
The frequency spectrums corresponding to 
Fig.2 are shown in Fig.3. It can be seen from 
the curve simulated by Mie theory that there 
are several obvious frequency peaks, mainly 
including the frequency of supernumerary 
bows, frequency of ripple bows superimposed 
on the supernumerary bows and frequency of 
higher frequency structure caused by the 
interference between the diffraction rays and 
reflection rays (internal and external). On the 
contrary, the Airy theory can only simulate the 
supernumerary bows of the rainbow and the 
frequency of the supernumerary bows is 
smaller than that simulated by Mie theory. The 
rainbow pattern will be moved and stretched 
when the parameters of the droplet change. 
Therefore, the droplet parameters can be 
determined by the intensity distribution 
captured by a CCD camera. 
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Fig.2 First-order rainbow simulated by Mie theory 

and the Airy theory (m=1.3326，R=250 m，

=532nm) 
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Fig.3 Frequency spectrum of rainbow corresponding 

to Fig. 2 

 
2.2 Scattering analysis base on Debye 
theory 

Mie coefficient can be decomposed by 
Debye theory. Consequently the contribution 
of each ray can be obtained [11]. Debye 
coefficient is expressed as:  
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where n is the index of the infinite series, 
212
nR and 121

nR  are reflection coefficients, 21
nT  

and 12
nT  are transmission coefficients, the 

first term on the right of equation (3) 
corresponds to the diffraction rays, the second 
term corresponds to the external reflection rays 
and the third term corresponds to the rays 
experiencing p-1 internal reflections. Mie 
coefficients can be obtained by adding each 
term on the right of the equal sign in equation 
(3) when p varies from 1 to a number large 
enough. The supernumerary bows of the first-
order rainbow is formed by the interference of 
the p=2 rays, so the Debye coefficient 
is 1212121

nnn TRT . Fig.4 illustrates the low 

frequency component of the rainbow 
simulated by Mie theory and the 
supernumerary bows simulated by Debye 
theory (p=2), respectively. The cutoff 
frequency of the low frequency component of 
the rainbow simulated by Mie theory is its 
supernumerary frequency. So is the cutoff 
frequency in the text below. From Fig.4, it is 
obvious that the angular locations of 
corresponding maxima in the three curves are 
almost equal. 
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Fig.4 Comparison of low frequency component of the 
rainbow simulated by Mie theory and by Debye 

theory (p=2) (m=1.3326，R=250 m，=532nm) 
 

2.3 Objective function 
The predicted parameters are considered to 

be the true values of the droplet if the intensity 
distribution simulated by Mie theory according 
to the predicted parameters coincides with the 
captured rainbow well. To quantify the 
deviation between the captured light intensity 
and the simulated rainbow, an objective 
function is designed.  
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where f is objective function value, Imea is the 
rainbow captured by the CCD camera, Isim is 
the simulated rainbow, k is the serial number 
of the discrete angular positions selected and n 
is the total number of the discrete points. The 
objective function is based on Mie theory if 
Isim in equation (4) is simulated by Mie theory. 
Otherwise it is based on Debye theory if Isim is 
simulated by Debye theory (p=2) and Imea is 
the low frequency component of the captured 
rainbow. There are several maxima in the 
rainbow simulated by Mie theory due to the 
high frequency component. So the change in 
the value of the objective function based on 
Mie theory is complex. On the contrary, the 
rainbow simulated by Debye theory has 
simpler structure. Considering the good 
coincidence between curves simulated by the 
two theories, the objective function based on 
Debye theory is used to ensure the efficiency 
and accuracy of the scheme. Discrete points 
used in the objective function are expressed as.  

14,,2,0,14/)()( 111  kk llr  （5） 

8,,2,0,8/)()( 222  kk llr  （6） 

Equation (5) describes the points in the 
first supernumerary bow, and equation (6) 
describes the points in the second 
supernumerary bow. At l1 the intensity firstly 
equals to 40% of the peak amplitude of the 
first supernumerary bow when searching 
leftward from the peak. r1,l2 and r2 have 
the similar definitions. The four angles are 
schematically shown in Fig.5. Three main 
reasons should be considered when selecting 

the discrete points:  
(1)  The computation of Mie theory and Debye 
theory is complex. So that only a few discrete 
points are used is helpful to induce time-
consumption.  
(2)  Concerning the first supernumerary bow, 
the curve simulated by Debye theory (p=2) 
deviates form the low frequency component 
curve slightly, as is shown in Fig.4, while the 
second supernumerary bow has the better 
coincidence. 
(3)  The first two supernumerary bows have 
bigger signal to noise ratio due to their bigger 
amplitude. 
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Fig.5 Schematic diagram of l1,,l2, r1and r2 

 
3 Reversion scheme 

 
Reversion scheme is put forward to 

determine the refractive index and radius 
based on Mie theory, Debye theory and the 
objective function. Reversion scheme consists 
of three steps: first the initial radius and 
refractive index of the droplet are determined 
by an empirical formula; then the initial values 
are optimized continuously by decreasing the 
value of the objective function based on Debye 
theory; finally the final result is determined by 
further searching parameter-pairs around the 
optimization result based on Mie theory.  

 
3.1 Empirical formula for initial parameters 

Accurate initial parameters are helpful for 
decreasing the computational complexity of 
the second step of the scheme. Frequencies of 
the supernumerary bows and ripple bows are 
both related to the droplet radius. 
Relationships between the radius and the 
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frequency are shown in Fig.6. It can be seen 
that the two curves are both almost linear. 
However, the curve corresponding to the 
supernumerary bows has a larger slope. As a 
result, the frequency offset caused by noises 
leads to the larger measurement error. Fig.7 
illustrates the relationship between the 
frequency of the ripple bows and radius under 
different refractive indexes. It seems that the 
slope increases with increasing refractive 
index. According to the curve corresponding 
to the ripple bows in Fig.6, the empirical 
formula for the radius is obtained: 

427.189.23  FR      （7） 
where R is the droplet radius and F is the 
frequency of the ripple bows. 
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Fig.6 Frequency of the ripple bows and 

supernumerary bows vs. radius (m=1.3326, 
=532nm) 
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Fig.7 Frequency of the ripple bows vs. radius with 

different refractive index (=532nm) 
  

Refractive index can be iterated with the 
geometrical predicted rainbow angle according 
to equation (2). Fig.8 illustrates the 
relationship between the radius and the ratio of 
the true refractive index to the iterative result 
under different refractive indexes. It can be 

seen that the two curves increase nonlinearly. 
There is a large deviation between the two 
curves when the radius is less than 150m. A 
fourth-order correction polynomial is proposed 
according to the curve corresponding to 
m=1.3326 in Fig.8: 
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where m is the correction value and mrg is the 
iterative result. 
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Fig.8 Ratio of the true refractive index to the iterative 

value vs. radius 
 

3.2 Optimization process 
The performance of the empirical formula 

is weak when the droplet parameters change in 
a broad range. Therefore the results from the 
empirical formula should be optimized. Fig.9 
shows the values of the objective function 
based on Mie theory around the true 
parameters (m=1.333, R=80 m). It can be 
seen that the function value for the true droplet 
parameters is minimum in the global area. 
However, there are many local minima around 
the true parameters due to the high frequency 
structure of the rainbow. Curve at the section 
of m=1.333 in Fig.9 is shown in Fig.10. It can 
be seen that the monotonicity of the curve is so 
poor that it is difficult to establish a simple 
optimization path. Thus the droplet parameters 
should be determined by optimization 
algorithm or ergodic process. 
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Fig.9 Values of objective function based on Mie 

theory (m=1.333, R=80 m) 

70 75 80 85 90
0.0

0.5

1.0

V
al

ue
 o

f 
ob

je
ct

iv
e 

fu
nc

ti
on

Radius(mm)

 
Fig.10 Relationship between function value and 

radius at the section of m=1.333 in Fig.9 
 
Fig.11 illustrates the values of the 

objective function based on Debye theory 
(p=2) around the true parameters (m=1.333, 
R=80 m). Curve at the section of m=1.333 in 
Fig.11 is shown in Fig.12 (a), and curve at the 
section of R=80m in Fig.11 is shown in 
Fig.12 (b). It can be seen that the surface 
shown in Fig.11 is approximately an elliptic 
paraboloid. At a certain section z=z0, the long 
axis parallel to the R-axis is far longer than the 
short axis parallel to the m-axis. And the 
surface has good monotonicity on any side of 
the lowest point. Thus it is helpful to estimate 
the optimization direction. Nevertheless, the 
lowest point in Fig.12 (a) does not correspond 
to the true parameters because of angular 
deviate between the low frequency component 
of the rainbow simulated with Mie theory and 
the supernumerary bows simulated with Debye 
theory (p=2). Therefore measurement error 
occurs. 
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Fig.11 Values of objective function based on Debye 
theory (m=1.333, R=80 m) 
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(a) The section of m=1.333 
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(b) The section of R=80m 

Fig.12 Two typical sections of the surface in Fig.11 
 

Optimization process starts from the 
calculation results of the empirical formula （
m0, R0）. Then （m0，R1） is obtained by an 
offset to the radius R0. Therefore the 
optimization direction can be estimated by 
comparing the objective function values of the 
two points. Thus optimal parameters at the 
section m =m0 can be found. Then m0 is 
adjusted with an offset. Similarly the optimal 
parameters at the section m =m1 can be found. 
Finally the global optimal parameters can be 
found by repeating the process above. 
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Considering local minimum in the area of m 
<1.321 in Fig.12 (b), the parameter offset 
decreases gradually from a initial value which 
is large enough to ensure that optimization 
path can jump out of the area after entering. So 
the local minimum would not be selected as 
the global optimal points. 

 
3.3 Further searching parameters based on 
Mie theory 

Measurement errors exist in the 
optimization parameters. So they should be 
corrected with objective function based on Mie 
theory. Considering the weak regularity in 
Fig.9, the objective function values of several 
discrete points (shown as equation (9)) around 
the optimization one are computed in order to 
find the minimum corresponding to the final 
measurement results. It is confirmed that more 
discrete points means larger search range and 
more time-consuming. So the number of the 
discrete points should be designed according 
to the two factors above.  
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where (mn, Rn) is the optimization parameters 
of Step 2, 2k+1 is the number of the discrete 
points and Rn\100 is the integer part of Rn (m) 
divided by 100 ( if Rn<100 then we define that 
Rn\100 equals 1). 
 
4 Experimental 

 
The nonspheric effect of free falling 

droplet causes large measurement error of the 
droplet based on rainbow technique [5]. 
Therefore the stable liquid column at the 
capillary export is achieved to avoid the 
nonspheric effect during the experiment in this 
paper, because its circle cross-section is 
similar to ideal sphere. Because of the viscous 
force between the column and the capillary, 
the diameter of the column below the capillary 
export becomes smaller when falling down, as 
is shown in Fig.13. Consequently liquid 
column 1mm below the capillary export is 
taken for experiment, so that the column 
diameter almost equals to the internal diameter 
of the capillary. 

Fig.14 shows the schematic diagram of an 
experimental system, which consists of the 
capillary object and an optical system. Two 
kinds of the capillary with internal diameters 
of 0.5mm and 1mm are used to change the 
diameter of the liquid column. NaCl solution 
with the concentration of 0-50g/L is used to 
change the refractive index. The optical 
system consists of an optical platform, a laser 
(100mW, 532nm), a mirror, two convex lenses 
and a CCD camera (2048 pixels, 40MHz). The 
environment temperature is 12 � during the 
experiments. The laser beam illuminates the 
liquid column after the mirror’s reflection. 
Then the convex lens (1) and (2) converges the 
scattering light from the column onto the CCD 
camera. Fig.15 shows a typical first-order 
rainbow captured by the CCD camera. The 
intensity distribution corresponding to Fig.15 
is illustrated in Fig.16. The abscissa in Fig.16 
is the serial number of pixel, which can be 
transformed to the scattering angle by 
calibration.  

 

 
Fig.13 Photo of liquid column at the capillary export 

 

 
Fig.14 Experimental system 
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Fig.15 First-order rainbow captured by CCD camera 
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Fig.16 Rainbow intensity distribution 

 
5 Results and discussion 

 
According to James Hom’s research in 

2002, the refractive index of the pure water is 
1.336 at 12� [12]. Thus 1.336 is taken as the 
true the true refractive index, and the internal 
diameters of the capillaries are taken as the 
true diameters of columns. The intensity 
distribution of the rainbow produced by the 
water column at the export of 0.5 mm capillary 
is shown in Fig.17. The low frequency 
component of the detected signal and the curve 
simulated with Debye theory (p=2) (250m, 
1.336) are also illustrated in Fig.17. It can be 
seen that the angular locations of the 
corresponding maxima in the simulation curve 
and low frequency component curve are 
almost equal. Compared the rainbow simulated 
by Mie theory in Fig.4 with the captured 
rainbow in Fig.17, it can be seen that the ripple 
bows of the captured rainbow are polluted by 
the noises due to system vibration, pulsating 
flow and circuit interference. Fig.18 illustrates 
the frequency spectrum of the captured 
rainbow and the rainbow simulated by Mie 
theory (250m, 1.336). It can be seen that 
there are several local maxima around the 
ripple frequency in the frequency spectrum of 

the captured rainbow. The rainbow produced 
by the water column at the export of 0.5 mm 
capillary is captured 10 times continuously for 
repeatability research. The measurement 
results of the refractive index are shown in 
Fig.19 (a), and the radius results are shown in 
Fig.19 (b). It can be seen that the radius results 
from the empirical formula have large 
measurement errors and the repeatability is 
weak. The reason is that the amplitudes of the 
maxima around the ripple frequency in the 
frequency spectrum are changed due to noises. 
The measurement results of the refractive 
index also have large errors, and the maximum 
error is 1.7×10-3. The reason is that radius 
result is the variable of the empirical formula 
for refractive index, so the error transfer 
occurs. However the results of Step 2 and Step 
3 have smaller errors and the respectabilities 
are better. The absolute errors of the refractive 
index results are below 5×10-4, and the relative 
errors of the radius results are below 8%. The 
high accuracy of the measurement results is 
due to the good coincidence between the low 
frequency component of the captured rainbow 
and the simulated rainbow by Debye theory 
(p=2) when the true radius is big enough.  
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Fig.17 Low frequency component of the captured 
rainbow and supernumerary bows simulated by 

Debye theory (p=2) 
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Fig.18 Frequency spectrum of the captured rainbow 
and the rainbow simulated by Mie theory (250m, 

1.336) 
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(a) Measurement errors of the refractive index results 
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(b) Radius measurement results 

Fig.19 Inversion results of the rainbow produced by 
water column at the export of 0.5mm capillary 
 
Reversion parameters of the rainbow 

produced by NaCl solution column at the 
export of 0.5 mm capillary are shown in 
Fig.20. Fig.20 (a) illustrates the refractive 
index measurement results, and Fig.20 (b) 
illustrates the radius measurement results. 
Reversion results of the rainbow produced by 

NaCl solution column at the export of 1 mm 
capillary are shown in Fig.21. Fig.21 (a) 
illustrates the refractive index measurement 
results, and Fig.21 (b) illustrates the radius 
measurement results. The radius measurement 
results from empirical formula have large 
errors because of the noise, and the maximum 
relative error is 33%. While the relative errors 
of the radius results of Step 2 and Step 3 are 
below 7.5%. And the repeatability is satisfied. 
Compared with the refractive index 
measurement results of Step 1 and Step 3, the 
curve corresponding to Step 1 fluctuates 
around the curve corresponding to Step 3 in 
Fig.20 (a) and Fig.21 (a). The refractive index 
results of NaCl solution with the fixed 
concentration are almost equal when the 
diameters of the columns are different. Fig.22 
shows the linear fitting curve of the mean 
refractive index under two column diameters. 
It can be seen that there is an approximately 
linear relationship between the refractive index 
and the concentration of NaCl solution. This 
conclusion also validates the feasibility of the 
concentration measurement based on rainbow 
refractometry.  
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(a) Refractive index results 
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(b) Radius results 

Fig.20 Inversion parameters of the rainbow produced 
by NaCl solution column at the export of 0.5mm 
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capillary 
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(a) Refractive index results 
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(b) Radius results 

Fig.21 Inversion parameters of the rainbow produced 
by NaCl solution column at the export of 1mm 

capillary 
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Fig.22 Linear fitting of the refractive index 

measurement results 
 

The captured rainbow is polluted by the 
noise. Take the second supernumerary bow of 
the captured rainbow in Fig.17 for example, 
the amplitudes of the first half are bigger than 
those of the second half. Therefore low 
frequency component of the second 
supernumerary bow in the captured rainbow 
moves forward. As a result the inversion 
radius is bigger than the true value. If the same 
situation occurs in the first supernumerary 
bow, there would be measurement errors in 

both parameters. In addition, large time-
consumption is the disadvantage of the 
scheme. The reason is that the computational 
complexity of Mie theory and Debye theory is 
proportional to the radius. When capillary with 
the internal diameter of 0.5mm is used, time-
consumption of Step 2 is about 10s and time-
consumption of Step 3 is about 15s (if the 
number of discrete points is 49). When 
capillary with the internal diameter of 1mm is 
used, time-consumption of Step 2 is about 28s 
and time-consumption of Step 3 is about 40s 
(if the number of discrete points is 49). It can 
be seen from Fig.19, Fig.20 and Fig.21 that the 
second step still has good performance 
although its accuracy is rarely lower than that 
of Step 3. So the third step of the scheme can 
be omitted to improve the real-time 
performance of the scheme.  

 
6 Conclusion 

An objective function is designed to 
quantify the deviation between the captured 
rainbow and the simulated rainbow, and 
further an inversion scheme for the radius and 
refractive index of a single droplet is proposed 
based on Debye theory (p=2) and the objective 
function. The experimental result shows that 
the relative error of the radius is better than 
8%, and the absolute error of the refractive 
index is less than 5×10-4. Compared with the 
method based on the empirical formula, the 
proposed inversion scheme has higher 
accuracy. Nevertheless, the inversion scheme 
needs large time-consumption. If the third step 
of the scheme is omitted to improve the real-
time performance, the modified scheme still 
has high measurement accuracy.  
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