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Abstract 
 

The reliability of computational models of physical processes has received much 
attention and involves issues such as the validity of the mathematical models being 
used, the error in any data that the models need, and the accuracy of the numerical 
schemes being used.  These issues are considered in the context of elastic, viscoelastic 
and hyperelastic deformation, when finite element approximations are applied.  Goal 
oriented techniques using specific quantities of interest (QoI) are described for 
estimating discretisation and modelling errors in the hyperelastic case. 
 
The computational modelling of the rapid large inflation of hyperelastic circular sheets 
modelled as axisymmetric membranes is then treated, with the aim of estimating 
engineering QoI and their errors.  Fine (involving inertia terms) and coarse (quasi-
static) models of the inflation are considered.  The techniques are applied to 
thermoforming processes where sheets are inflated into moulds to form thin-walled 
structures.   
 
Key words: elasticity, viscoelasticity, hyperelasticity, finite element modelling, goal 
oriented methods, thermoforming 
 
1. Introduction 
 
The process of computational modelling for problems of continuum mechanics 
consists of two main phases.  The mathematical model of the physics (reality) has first 
to be defined, after which a numerical approximation of the model has to be derived 
and solved to give a numerical solution in terms of quantities of interest (QoI).  As 
each of these phases introduces error, in addition to any error in the data of the 
problem, the reliability of the process is acknowledged to be of great importance.  The 
process of assessment of the error in the mathematical model, modelling error, is called 
validation, whilst that of the error in the numerical approximation is verification.  
Reliability is directly related to validation and verification (V & V) and is increasingly 
being studied; see e.g. Babuška et al. [1] and Babuška et al. [2]. 
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In this short review paper we consider computational modelling of problems of 
elasticity, viscoelasticity and hyperelasticity using finite element methods.  Thinking 
first of verification we present various a priori error analyses and a posteriori error 
estimators in the contexts of elasticity and viscoelasticity, with references to papers 
where these have been derived.  These are followed by brief descriptions of a 
hyperelastic application.  The validation of the models in this context is then addressed 
using goal oriented techniques as proposed by Oden and Prudhomme [3] and applied 
by Shaw et al. in [4]. 
 
In order to lead up to computational models for these problems, in the next section we 
proceed first with a framework for describing deformation and defining our  notation, 
then address small displacement elasticity and viscoelasticity, and finally progress to 
hyperelastic (large) deformation.  The last section of the paper deals with the 
computational modelling of thermoforming processes. 
 
 
2. Mathematical models, weak formulations and finite element methods 
 
2.1  Solid Mechanics Framework (Small Displacement Case) 
 
Let  be a compressible solid body with mass density ρ which in its undeformed state 
occupies the open bounded domain  with polygonal/polyhedral 
boundary   A point in Ω ≡ Ω ∂Ω  is denoted by ( )3

1
,i i

x
=

≡x  when n=3. The 
boundary ∂Ω is partitioned into disjoint subsets ΓD and ΓN such that 

,D N D N∂Ω ≡ Γ Γ Γ ∩Γ = ∅ and meas ( ) 0DΓ > .  Suppose that, for time  

( ]0 0, , ,t I T T∈ ≡ >  the body 𝒢 is acted upon by body forces
 

( ) ( )( )3

1
, , ,i i

x t t
=

≡f f x  

for ∈Ωx and surface tractions 
 
( ) ( )( )3

1
, , ,i i
t g t

=
≡g x x

 
for ∈ΓNx . The displacement at a point x under the action of the forces f and g is  

( )( )3

1
, , ,i i

u x t t I
=

≡ ∈Ω ∈u x , and with a small displacement assumption 

,+ ≈x u x so that we do not need to distinguish between the deformed and 

undeformed domains in most terms.  Let ( ) ( )( )3 3

1 1, ,
,ij iji j i j
tσ σ

= =
≡ ≡σ x denote the 

stress resulting from the deformation.                                                    
 
Applying Newton’s second law of motion, relating force to the rate of change of linear 
momentum, to this configuration we obtain the momentum equations 

( ) ( ) ( ) ( )
1 2 3 in 

,, , , ,
, ,

i ij j iu t t f t
i I

ρ σ− =

= Ω×

x x x x

                               
(1) 

and these together with the boundary and initial conditions 

 ( ) 0 in ,i Du t I= Γ ×x                                                   (2)  

 ( )  in ˆ , ,ij j i Nn g t Iσ = Γ ×x                                           (3)  

 ( ) ( )00, , ,i iu u= ∈Ωx x x                                           (4) 
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 ( ) ( )10, , ,i iu u= ∈Ωx x x                                            (5) 

define the dynamic deformation problem, where ( ) 1
ˆ ˆ n

i i
n

=
≡n  is the unit outward normal 

to ,NΓ  the Einstein convention has been used, and , .j jv v / x≡ ∂ ∂  
 
If the inertia terms can be neglected in the deformation and assuming that 
( ) 0 0.t t= ∀ <u x,  we obtain the quasistatic problem, where 1 2 3, , , ,i j =  

 ( ) ( )  in , , , ,ij j it f t Iσ− = Ω×x x                                (6) 

 ( ) 0  in , ,i Du I= Γ ×x t                                             (7) 

 ( )  in ˆ , , ,ij j i Nn g t Iσ = Γ ×x                                      (8) 
 
In order to complete the definitions of the dynamic and quasistatic problems it is 
necessary to have a constitutive relationship connecting the stress to the displacement 
and its derivatives.  The constitutive relationship reflects the behaviour of the material 
of the body 𝒢. 
 
2.2 Linear elasticity and weak formulation 
 
In the case of small displacement gradients the strain is described by the infinitesimal 

strain tensor ( ) ( )( )
1,

n

ij i j
ε

=
≡ε u u  as 

 
( ) 1 1 2 3

2
, , , , .ji

ij
j i

uu i j
x x

ε
 ∂∂

= + =  ∂ ∂ 
u                       (9) 

For an isotropic linear elastic material Hooke’s law connects stress to strain (i.e. to the 
derivatives of the displacement) and we have  

 ( ). ,ij ij ijσ λ δ µε= ∇ +u u                                           (10) 

where ijδ  is the Kronecker delta, and λ and µ  are the Lamé coefficients of the 
material.  More generally the relation for a linear elastic material can be written in the 
form 

 =σ Dε.                                                                    (11) 
We note that elasticity is a time independent phenomenon, so that the mathematical 
model for linear elasticity is based on equations (6), (7), (8) and (10) with 
( ),tu x depending only on quantities at time t. 

 
In order to obtain a weak form from these equations we introduce  the usual Sobolev 
spaces ( ) 0 1, , ,...,rH rΩ =  and for ( )1 2, ,..., r

nV V V H⊂ Ω we define the space V, 
such that  

 
( )( ){ }

1 2

1 0 on 

...

: .

n

n

D

V V V V

H

≡ × × ×

≡ ∈ Ω = Γv v
                       (12) 

Multiplying (6) by a test function ,V∈v  and integrating by parts over Ω  we obtain 

 ( ) ( ) ( ) ( ), , ,
N

ij ij dσ ε
Ω ΓΩ

Ω = +∫ u v f v g v                (13) 
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where the (.,.) are inner products.  Applying Hooke’s law (10) we obtain the weak form 
of the isotropic linear elasticity problem: find V∈u  such that  
 

where                            

( ) ( )
( ) ( ) ( )

( ) 1 2 3

, ,

, . . ,

, , , , .
N

ij ij

i i i i

a L V

a d

L f v g v d i j

λ µε ε
Ω

Ω Γ

= ∀ ∈

≡ ∇ ∇ + Ω

≡ ∂Ω + Γ =

∫

∫ ∫

u v v v

v w v w v w

v

      (14) 

 
In order to apply the finite element method to problem (14), we first partition Ω  into a 

set of elements { }
1
,ENh

i i=
Ω  where h h

i iΩ ⊂ Ω = Ω  and ,h∂Ω ≡ ∂Ω  each with 

diameter ih  and define
1 E

i
i N

h max h
≤ ≤

≡ We construct finite dimensional spaces 

h
iV ≡ span ( ){ } 1

  for 1,NN
i ii

V i n
=

Φ ⊂ ≤ ≤x
 
 with each iΦ ∈ℙ r a piecewise 

polynomial of degree r over the partition, where the ( )iΦ x are basis functions 

associated with the NN  nodes of the partition.  Finally we define 

1 2 ...h h h h
nV V V V V≡ × × × ⊂  

The finite element problem is: find hV∈hu such that 

 ( ) ( ), .h
h h h ha L V= ∀ ∈u v v v      (15) 

There is a vast literature associated with the derivation of a priori estimates for the 
error ( )h h≡ −e u u of the form 

 ,h α Ω
≤e 𝒞 ( ),

, ,r
r

hβ α
Ω

u       (16)
                                                                                     

where 
,q Ω

is the norm on ( );qH Ω  see e.g. Ciarlet [5], Oden and Reddy [6] and 

Whiteman [7]. In (16) the function ( ),rβ α  depends on the regularity of the solution 
uof (14) and  𝒞 is a constant that depends on α  but is independent of u and the mesh.  
Estimates of this type provide rates of convergence of  to hu u with decreasing mesh 
size .h  
 
Similarly many a posteriori error estimators, (i.e. calculable error estimators involving 
the calculated solution hu ) and based for example on residuals ( )R v of the type 

 
( ) ( ) ( )

1
, ,

EN

h h h h
i

R L a
=

= −∑v u u v           (17) 

have now been derived, see e.g. Oden and Ainsworth [1] and Babuska et al [2], and 
again the performance of these depends on the regularity of .u  The process of 
verification is made possible by the use of estimates of the type of (16) and (17). 
 
3.   Viscoelasticity 
 
The formation and use of non-metallic materials has been one of the great advances of 
science, engineering, medicine and manufacturing of recent years.  A feature of the 
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deformation of polymeric solid materials is that when they are subjected to sustained 
loading, in addition to an elastic response, they can exhibit time dependent creep.  For 
example a polymer test specimen subjected to an instantaneously applied and sustained 
tensile loading will undergo an initial elastic (solid) deformation, followed over time 
by creep during which the specimen will continue to stretch.  Creep is a viscous fluid 
effect and, due to the dual elastic and viscous responses, materials that exhibit this type 
of behaviour are said to be viscoelastic.  If the loading is removed from the solid it will 
experience an instantaneous elastic recovery followed by a reverse time dependent 
recovery in which the solid returns asymptotically to its original state.  For this reason 
viscoelastic solids are said to possess memory.   
 
Continuing with the case of small displacements and small strains, we recall that in the 
case of linear elasticity the constitutive relation was =σ Dε as in (11).  Turning now 
to viscoelastic deformation of the body 𝒢, and assuming this to be both quasistatic and 
small, the deformation ( ),tu x is governed by (6) – (8) for ( ),t I∈Ω×x and the 
strain ε is as in (9).  For linear elasticity the constitutive relation was Hooke’s law 
(11), but in the case of linear viscoelasticity where the materials possess memory, i.e. 
the current stress depends on the history of the deformation, it is necessary to introduce 
time dependence and to augment Hooke’s law with a memory term.  In this way the 
stress can now be expressed as a linear functional of the strain, so that 

       ( ) ( ) ( )( ) ( ) ( )( )
0

, , , , ,
t

t t t s u s ds
s

σ ∂
= − −

∂∫
Dx D x ε u x x ε x                         (18) 

where ( )( )
1, , ,

n

ijkl i j k l
D

=
≡D x  is a fourth order tensor of relaxation functions with 

components which are assumed to be ( )1C I  functions of t.  At 0t = it is assumed that 
0.=ε  

 
In order to define a weak formulation of this quasistatic problem we need a test space 
of admissible functions on IΩ× and for this we proceed in two stages.  We first 
multiply by a space only test function and integrate over Ω and then extend the test 
space and integrate over I.  Multiplication of (6) by a (space only) function ,V∈v see 
(12), produces (13) for any ,t I∈ which on use of (18) leads to the problem: find 

( );L I V∞∈u such that 

 ( )( ) ( ) ( )( )
0

, ; , ; , ,
t

a t L t b t s s ds V= + ∀ ∈∫u v v u v v


  (19) 

where 
 ( ) ( ) ( ) ( )0, ,ijkl kl ija D dε ε

Ω
≡ Ω∫w v w v      (20) 

 ( ) ( ) ( ) ( ); ; , ijkl
kl ij

D
b t s t s d

s
ε ε

Ω

∂
≡ − Ω

∂∫w v w v ,   (21) 

for all  and , :V L I V∈ × →w v 

 is a time dependent linear form as in (14).  As (19) 
contains no time derivative we seek the solution ( );L I V∞∈u by solving the “fully 

weak” problem: find ( );L I V∞∈u such that       

 ( ) ( ) ( )1, ; ,a L v v L I V= ∀ ∈u v     (22) 
where                          



6 
 

 

( ) ( ) ( )( ) ( ) ( )( )
0 0 0

, , , ; , ,
T T t

a a t t dt b t s u s v t dsdt= −∫ ∫ ∫u v u v 

                             (23) 

  ( ) ( )( )
0

; .
t

L L t v t dt= ∫v          (24) 

In order to apply the finite element method to (22) we first split the prismatic domain 

IΩ× into M time slabs ( ){ }1 1
 where , M

i i i i i i
I I t t− =

Ω ≡ Ω× = and partition each of 

these into iM elements ijΩ and define for each iΩ the space  

( )( ){ } where  is linear on  for each 1, ,...
n

i ij iH V C v j M≡ ∈ ∩ Ω Ω =v  

and hence the space-time finite element spaces , ,r hV where 

                ( ) ( ){ }1 2 3, ; : ; , ,
i

r h
I i iV L I V v I H i∞≡ ∈ ∈ ∀ =v  .              (25) 

Functions in ,r hV are continuous in space but usually discontinuous in time. 
Many a priori error estimates have been derived for this type of finite element 
discretisation and take the form 

     ( );h L I V∞
− ≤u U 𝒞 ( )

( )( )
( )

2

1 1
2

1;
;

,
r r

h k rL I L
L I V

kT hD
t∞

∞

+ +

+Ω

 ∂ Π + Π
 ∂ 

uu             (26) 

where hU denotes the finite element approximation, 𝒞(T) is a stability constant, the 
Π ’s are positive constants and h and k are maximum values of the space and time 
mesh lengths respectively.  Note that the right hand side of (26) contains, as might be 
expected, a space and a time term.  Further details can be found in Shaw and Whiteman 
[9] and [10] and Riviére et al. [11].   

 
As viscoelastic materials display characteristics of both elastic solids and viscous 
fluids, many models involving combinations of springs and dashpots have been 
proposed, for example the Maxwell solid model, see e.g. Ferry [13].  For these cases 
the stress relaxation functions are represented using Prony series of decaying 
exponential functions so that the stress in (18) can be expressed in terms of internal 
variables of the model, for example internal stresses.  These internal variables each 
satisfy ordinary differential equations in time; it is by integrating these ODE’s that (18) 
can be obtained.  Thus an alternative approach to the above history integral formulation 
of the linear viscoelastic problem is to solve a coupled system of PDE’s consisting at 
each time step of an elastic problem of the type as in (14), but with internal variables 
contained in the right  hand side, together with a system of ordinary differential 
equations in time for the internal variables; see e.g. Shaw et al. [12] where finite 
element models and error estimates are presented. 
 
4. Large Deformation Elasticity for Thin Sheets  
 
Motivated by the problem of the large deformation of a thin polymer sheet that will be 
considered later, we now describe the large elastic deformation under the action of 
applied pressure loading for the case of an elastic sheet, ℬ, using a Lagrangian 
description.  Again x denotes a point in the body which in the deformation undergoes 
a displacement u  so that  → + ≡x x u w.  In the large deformation case uand the 
displacement gradient are no longer small so that care is needed to distinguish between 
the undeformed and the deformed states.  An outcome of this in the description of the 
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deformation is to introduce the nominal stress ( ) 1det ,−Π ≡ F F σ where 

( ) 1 2 3, , ,i jw / x i j≡ ∂ ∂ =F  is the deformation gradient and, as before, σ is the 
Cauchy stress.  
  
 
The equations of equilibrium of a body undergoing large elastic deformation, 
corresponding to (6) for small deformation, can for the three-dimensional case be 
written as 

 
3

1
1 2 3, , .ij

i
j j

f i
x=

∂Π
− = =

∂∑      (27) 

The problem that we shall consider involves the large deformation of a thin sheet, with 
mid-surface ,Ω which is clamped on the boundary  of Γ Ω and which in its 
undeformed state has thickness 0.h   The sheet occupies the region 

                       ℬ ( ) ( ){ }1 2 3 1 2 3 0 2, , : , , .Tx x x x x x h /≡ = ∈Ω <x                     (28) 

 
Now 3 0x =  on the mid-surface ,Ω which deforms as  

( ) ( )1 2 1 1 2 2 30, , , , ,x x x u x u u→ + +  
 and, assuming that normals to Ω  remain normal, we obtain a two-dimensional 
description of the sheet with ( ).=u u x   The sheet is modelled as a membrane, thus 
being unable to support bending so that 0. ,=σ n  where n  is the unit normal to the 
deformed mid-surface .Ω  
 
In this context of a membrane approximation to the general three-dimensional case, the 
two-dimensional equations for the problem, when there is a pressure loading P and 
assuming that the body forces f are zero, lead to the weak form of (27): find V∈u  
such that 
                ( ) ( ) ( ) ( )1 20  with   ; , ; ; ; ,a V a a Pa= ∀ ∈ = −u v v u v u v u v           (29) 

             
where  
 ( ) ( )1 0 : ,Ta h d

Ω
≡ Π ∇ Ω∫u;v v     (30) 

 ( )2
1 2

; . ,a d
x x

 ∂ ∂
≡ × Ω ∂ ∂ 
∫

w wv w v     (31) 

and now the space 1 2V V V≡ ×   is such that  

 ( )( ){ }21 0 on : .V H≡ ∈ Ω = Γv v                          (32) 

The finite element method is applied to obtain an approximation  to hu u the solution 
of (29) for the case of incremental loading of the sheet.  As we have a Lagrangean 
description of the deformation, the spatial mesh is defined on the reference  
configuration 2Ω ⊂   and, for each load increment jP , the nonlinear system 

 ( ) ( )1 2 0; ; ,h
h h j h h ha P a V− = ∀ ∈u v u v v    (33) 
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is solved for h
h V∈u  using Newton’s method, where 1 2

h h hV V V V≡ × ⊂  and the 

1 2, ,h
iV i =  are spaces of piecewise polynomial functions defined over the partition of 
Ω , see e.g. Karamanou et al. [8]. 
 
For the problem (29), noting that ( )a u;v is a semilinear form (i.e. linear in arguments 
to the right of the semi-colon), we suppose that we wish to approximate the quantity of 
interest ( ) ( ) with , , .h

h hJ V J V∈ ∈u u u u  
 
If ( ) ( ) and  . ; . . ; .a J′ ′ are Gateaux derivatives of ( ) ( )and . ; . . ; .a J  respectively 

then, if ,h h= −e u u  

 ( ) ( ) ( )
1

0
;h h h hJ J J s ds′− = +∫u u u e e      (34) 

and 

 
( ) ( ) ( )

( )
1

0

;

; , .

h h

h h h

a a a

a s ds

− = −

′= ∫

u ; z u; z u z

u + e e z
     (35) 

If we now consider the (dual) linear problem find hV∈z  such that 
    

( ) ( )
1 1

0 0
            ; , ; ,h

h h h h h h ha s ds J s ds V′ ′= + ∀ ∈∫ ∫u + e v z u e v v                 (36) 

           
then we have a representation of the error as 
 ( ) ( ) ( ).h hJ J a− = −u u u ; z       (37) 

 
But z depends on u  so that (36) cannot be solved as it stands and some form of 
approximation has to be adopted.  One strategy for this is to apply the left hand rule for 
the integration giving 
 ( ) ( )ˆ; , ; , ,h

h h h h ha J V′ ′= ∀ ∈u v z u v v      (38) 

where ˆ ,h hV V⊂  giving the estimate 
 ( ) ( ) ( )ˆ, .h hJ J a− ≈ −u u u z      (39) 
This “machinery” for estimating the discretisation error will be referenced for a 
problem of free inflation of a thin polymer sheet in a later section. 
 
We have so far treated only discretisation error.  In order to consider modelling error 
we introduce the concept of fine and coarse problems in the context of the deformation 
of the sheet.  For example the problem (29) which is quasi-static could be taken as a 
coarse problem and the fine problem could be similar, but with the inclusion of inertia 
terms in (27).  In many practical situations it is not clear whether inertia terms are 
important to the modelling.  Suppose therefore that the fine problem has the weak form 
 ( ) 0 ,A v V= ∀ ∈U;v       (40) 

where the semilinear form ( ). ; .A  contains the ( ) ( )1 2 and . ; . . ; .a a of (29) and the 
inertia terms.  The dual approximating problem corresponding to (38) is now 
 ( ) ( )ˆ; , ; ,h

h h h h hA J V′ ′= ∀ ∈u v z u v v      (41) 
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where the hu  is the solution of the coarse problem and now hV V⊂ is an appropriate 
finite dimensional space.  We now have the estimate 

( ) ( ) ( )ˆjh hJ J A− ≈ −U u u z  

for the combined modelling and discretisation errors.  More details of these goal 
oriented techniques can be found in Shaw et al. [4], where the technique has been 
applied to the free inflation under pressure loading of a circular thin sheet clamped at 
its boundary with the assumption of axi-symmetry.  In [4] first the deformation for a 
quasi-static problem is calculated for various loadings and results for this are presented 
together with error estimates for the finite element approximations to various quantities 
of interest.  This is the verification.  Proceeding to the fine/coarse context, taking a 
dynamic model with inertia terms as the fine problem and the quasi-static model as the 
coarse problem, error estimates for the approximation to several quantities of interest 
are obtained.  Even though these last estimates also contain discretisation errors, they 
give indications of the modelling errors inherent between the coarse and fine models.  
This is the validation, and together verification and validation contribute to the 
assessment of reliability.  The results of [4] demonstrate that the method is robust for 
this free inflation problem under the given conditions. 
 
We have of course made no mention of the accuracy of the data of the problem; 
another important contributor to reliability. 
 
5.  Thermoforming Processes for Thin Polymer Sheets 
 
Thermoforming is the process whereby thin walled structures are produced from thin 
sheets.  In the process the sheet is heated, clamped around its boundary and inflated 
under pressure into or onto a (cold) mould, thus taking the shape of the mould, and 
then cooled.  The process has two stages; the first is the free inflation as in Section 4 
prior to contact with the mould, the second is inflation after part of the sheet has made 
contact with the mould. 
 
Work on the computational modelling for both phases of the thermoforming process 
for thin polymer sheets was undertaken by de-Lorenzi and his co-workers in the 
1980s/1990s, see [14], [15], who used membrane models with elastic constitutive 
equations and finite element discretisation techniques.  Clearly these models made 
assumptions on the form of the deformation.  Warby and Whiteman [16], [17] and co-
workers extended the techniques to test these assumptions on the deformation, 
including elasto-plastic and viscoelastic effects and various contact conditions between 
the sheets and the moulds, whilst predominantly retaining the membranes models.  
Numerical results for the combined simulation of both phases can be found in [16] and 
[17]. 
 
All the simulations described above have been undertaken for sheets of oil-based 
polymers.  Manufacturers of thin-walled thermoformed structures, particularly in the 
food container industry, are increasingly turning to the use of bioplastics because of 
their biodegrading properties which lead overall to lower long term waste.  Much less 
is known of the properties of these biopolymers than those of the traditional oil based 
polymers.  A first attempt at the computational modelling of thermoforming processes 
was made by Szegda et.al [17] for thermoplastic starch, involving various deformation 
models and comparing the results obtained with these. 
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6.  Comments 
 
The purpose of this review has been to consider the estimation of error in quantities of 
interest for various problems of solid deformation approximated using finite element 
methods.  Machinery, based on the use of dual formulations, has been described for 
treating both discretisation and modelling errors.  Our initial attempt to apply this to 
the problem of free inflation of thin sheets, and hence to part of the process of 
thermoforming has also been presented. 
 
We seek constantly to obtain well founded models and approximations in the context 
of (real) thermoforming processes.  These demand that assumptions are made on 
effects in the processes which can only be justified experimentally.  We feel that the 
interplay between theoretical error analysis and practical computation is an important 
contributor to the understanding of the behaviour of the approximations and of the 
processes themselves. 
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