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Abstract

The SIR (Susceptible/Infectious/Recovered) whooping cough model involving non-

linear ordinary differential equations is studied and extended to incorporate (i) dif-
fusion (ii) convection and (iil) diffusion-convection in one-space dimension. First-
and second-order finite-difference methods are developed to obtained the numerical
solutions of the ordinary differential equations. Though implicit in nature, with the
resulting improvements in stability, the methods are applied explicitly. The proposed
methods are economical and reliable in comparison to classical numerical methods.
When extended to the numerical solutions of the partial differential equations, the
solutions are found by solving a system of linear algebraic equations at each time

step, as opposed to solving a non-linear system, which often happens when solving

non-linear partial differential equations.
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Chapter 1

Introduction

The study of epidemics has a long history with a large variety of models and explana-
tions for the spread and cause of epidemic outbreaks. The study of disease occurrence

is called epidemiology. An epidemic is an unusually large, short-term outbreak of a

disease. A disease is called endemic if it persists in a population. Mathematical mod-
els of the population dynamics of disease can contribute to a betfer understanding

of epidemiological patterns and disease control. Much of the theoretical discussion

of the dynamics of epidemics of childhood diseases has been modelled mathemati-
cally using the SIR (Susceptible-Infective-Recovered) model (Anderson & May [3}).
This model is a simple model of epidemic spread in which disease is transmitted by
direct contact between hosts who become immune after a single infection, and are

thus ideally suited to the testing of the mathematical model and numerical methods

developed for the solution of the model equations.

Chaotic behaviour can be found in many areas of the chemical, physical and
biological sciences and in many areas of engineering. Epidemiology is one of the
areas of the bio-medical sciences in which chaotic behaviour is believed to be possible
(Schaffer & Kot [26}); it is one of the profusion of examples given in the popular
book by Gleick [11].

The examples given above are of dynamic behaviour, though it must be empha-
sized that not all dynamic systems in bio-medical system exhibits chaos. In recent
times the phenomenon of chaos has brought about beneficial collaboration between

bio-medical researchers and mathematicians. Such collaboration has often resulted
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in the mathematical modelling of a bio-medical system by a non-linear ordinary or
partial equations or by a system of such equations. Often, the intention in com-

piling such a model is to reproduce observations before using the model to make

predictions.

Careful analysis, therefore, must be carried out to ensure that the mathematical
model does not predict chaos in the system under investigation, when chaos is not
a feature of that system. Further care must be taken to ensure that a numerical

method chosen to solve the model equations does not predict chaos when chaos

1s not a teature of either the bio-medical system or the theoretical solution of the

associated model equations. Such chaos was described as conirived chaos in the

article by Twizell et al. [30].
In this thesis, the SIR model of whooping cough dynamics is studied. The model
equation will be a system of ordinary differential equations (ODEs) which is extended

to three types of system of partial differential equations (PDEs), namely reaction-
diffusion, reaction-convection and reaction-convection-diffusion types. The aim of
the thesis 1s to develop finite-difference schemes for the numerical solution of the
ordinary and partial differential equations in which chaotic behaviour is not inherent.

The efficient numerical integration of systems of non-linear differential equé,tions
over long time intervals necessitates the use of time steps which are the largest
possible, bearing in mind accuracy aﬁd stability. Explicit methods, sﬁt;h as the

Fuler method or Runge-Kutta methods, are extensively used in solving systems of
ODEs. These methods, however, may lead to chaotic or spurious solutions which
are not a feature of the differential equation nor of the physical processes being
modelled, see Ablowitz & Herbst [1] and Corless et al. [6]. Explicit methods are also
well known to be inexpensive to implement when used to compute the solutions of
non-linear PDEs but they have poor numerical-stability properties (see, for instance,
Lambert [15] and Twizell [28]). To avoid contrived chaos, while retaining efficiency
and stability, the user may need to discard explicit numerical methods and turn

instead to implicit methods. The numerical schemes to be developed are implicit

in nature but are applied explicitly; therefore they are convenlent, appropriate and
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easy to implement for the solution of various problems of non-linear PDEs.

Solving systems of non-linear ODEs and PDEs requires the solution of a non-

linear algebraic system using, say, the well-known Newton-Raphson method for a

system. In order to obviate the need to use a relatively expensive, non-linear, alge-
braic solver such as the Newton-Raphson method for a system, while continuing to
benefit from the superior stability properties of implicit methods, Twizell et al. [30]

proposed numerical methods for the solution of differential equations of the forms
dw/dt = f(w)
and
Ou/Ot = 8*u/0z* + g(u)

in which w = w(t) and u = u(z,t) are real-valued functions, z € R 1s a space
variable and t € Rt represents time. Twizell et al. [30] approximated the non-linear

functions f(w) and g(u) by splitting them and evaluating terms in the splitting at
different time levels. This idea will be employed in subsequent chapters of this thesis

in ways with permit the solutions of ODEs to be determined ezplicitly from what

appear to be implicit numerical methods and the solution of non-linear PDls to be
obtain by solving a linear algebraic system at each time step.

The numerical methods developed in this thesis can be applied by using several

processors working in parallel. This is an important feature in terms of efficiency
and speed in computing. Programs are designed and written in the FORTRAN 77
programming language. The software package Matlab v5.2 is used to plot all figures

in this thesis.

In Chapter 2 various preliminary definitions and theorems needed in the devel-

opment and analyses of the numerical methods in later chapters are given.

Chapter 3 deals with the SIR whooping cough model. This model consists of
a system of non-linear ordinary differential equations which is studied qualitatively
and numerically by using first- and second-order finite-difference schemes. Four

numerical methods are developed, analysed and tested to solve the SIR whooping
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cough model. The first method is the well-known first-order explicit Euler method.
The others are first-order numerical methods and a second-order numerical method.
The introduction of seasonal variation into the SIR whooping cough model leading
to periodic and chaotic dynamics is presented by numerical simulations.

In Chapters 4, 5, 6, the SIR whooping cough model is extended to the three
types of one-space dimension partial differential equation models, which are reaction-
diffusion equations, reaction-convection equations and reaction-diffusion-convection
equations, respectively.

Chapter 4 has added a space dimension into the SIR whooping cough model
and considered the corresponding reaction-difiusion equations. A family of finite-
difference schemes are analysed and used to solve the reaction-diffusion equations.
The numerical results will be investigated for different values of the diffusion rate
using two experiments.

Chapter 5 introduces a one-dimensional whooping cough model of reaction-
convection type. Two numerical methods are analysed and tested to approximate
the equations of the model. The von Neumann method is used to examine stabil-
ity of the proposed methods and numerical solutions are given for the numbers of

susceptible and infectious individuals.

Chapter 6 will study the whooping cough dynamics in the case where reaction,
diffusion and convection terms are present. A family of methods are analysed for
the solution of the reaction-convection-diffusion equations. The maximum principle
analysis 1s used to prove convergence of the proposed method. The numerical results
for different values of diffusion and convection rates are obtained and discussed.

Part of the contents of Chapter 3 have been contained in a technical report by

Piyawong and Twizell [21].



Chapter 2

Mathematical Preliminaries

2.1 The Mean Value Theorem and Taylor’s The-
orem

The following theorems are of fundamental importance in deriving methods for error

estimation that will be needed in later chapters.

Theorem 2.1 (Mean Value Theorem) If f(z) is a continuous function on |a, b]

and differentiable on (a,b), then a number c in (a,b) exits with

f(b) = f(a) = f(c)(b—a). (2.1.1)

Theorem 2.2 (Mean Value Theorem in two variables) If f(z,y) is differen-

tiable, then there exists a point (:bg,yg) on the line connecting the points (z1,y;)

and (zq,y2) such that

0
Flonyss) = f(o12) = Glon W)@ = 22) + (oo, )z — ). (212

The proofs of these theorems can be found in any standard text (see, for example,

Sandefur [25]). One of the most important tools of numerical analysis is Taylor’s

theorem and the associated Taylor series and may be founded in Burden & Faires

5],

Theorem 2.3 (Taylor, one-dimensional) Assume that f has continuous deriva-

tives of order n+1 in an interval (a,b) containing z. Then, for every = € [a, b] there
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exists a number ¢ between x¢ and = with

£(z) = Pa(z) + Ba(2), 2.1.3)
where
(") (4
Po(z) = f(=o)+ f'(zo)(z — o) + %f”(%)(fﬂ — o) + ... + J n(! )(117 — Zo)"
n Ff*) (g, )
= Y / k(' )(:E-CE()) , (2.1.4)
- !
and
f(n+1)(€) n-+1
Rn(:c) = —(?’L + 1)"(113 — 3;0) + . (215)

Here P,(z) is called the nth Taylor polynomial for f about o and R,(z) is called
the remainder term (or truncation error) associated with P,(z). The size of
the remainder depends on how close zg i1s to z, the order of the Taylor polynomial,

and on the size of f(™*Y) on (a,b). The infinite series obtained by taking the limit of

P,(z) as n — oo is called the Taylor series for f about zo.

Theorem 2.4 (Taylor, two-dimensional) Suppose f(z,y) and all its partial
derivatives of order less than or equal to n 4+ 1 are continuous on D = {(z,y)|

a <z<bc<y<d}, and let (zo,y0) € D. For every (z,y) € D, there ex-

ists £ between ¢ and zo and n between y and y, with

f(way) =Pn($:y)+Rn(fC;y)g (216)
where
0
Pﬂ($:y) = f(moz yO) T {(:B ""' 330)}%(370,3!0) + (y — yo)%‘i—(:co, yo)

1 0 f o
37| 90 G o, ) + 2o = ) 30) 10

2
+(y — yo)g-%fz—(wo, yo)] + ...

1 & [ n "
(b ) e - s ) @1
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and
1 n-+l n _l_ 1 1k L 6n+1f
Rn(xay) — (n+1)|}§) ( L ) (3:'“3:0) (y'—yo) 6ww(5aﬁ)

(2.1.8)

The function P,(z,y) is called the nth Taylor polynomial in two variables for

f about (zg,¥0), and R, (z,y) is the remainder term associated with P,(z,y).

2.2 Finite-Difference Methods

The mathematical modelling of many problem in physics, engineéring, chemistry,
biology etc. are formulated in terms of differential equations. Much of the analysis
of the solution behaviour of a given differential equation is done by constructing
numerical solutions. The finite-difference method is a numerical method for solving

differential equations. The idea of the method is to replace the derivative in the

equation using finite-difference approximations. Applying Taylor’s theorem 2.3, the

function-value u(z) is expressed as series

u(z + h) = u(z) + hu'(z) + %;u"(:n) + ... (2.2.1)
and
’ h2 ' "
u(z — h) = u(z) — hu'(z) + o u'(z) — ..., (2.2.2)

where h > 0 is called an increment in ¢ and taking the first two term of the right-

hand side of (2.2.1) and (2.2.2) gives

u(z + k) = u(z) + hu'(z) + O(h?) (2.2.3)
and

u(z — h) = u(z) — hu'(z) + O(h?) (2.2.4)

where the expression O(h*) indicates that the error Ry(z) has principle part propor-

tion to h* as h — 0. The first and second derivative replacements of a function u(x),

then, can be derived as follows (k > 0):
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First-order backward-difference replacement, u € C*[z — h, z]

91-{ = E{(ﬁ) —y(_a:_—_—_—_i)_ + O(h), as h —0. (2.2.5)
dz h

First-order forward-difference replacement, u € C*[z, z + A

du u(z + h) — u(z)

5= = n + O(h), as h — 0. (2.2.6)

Second-order central-difference replacement, u € C°[z — h,z + A

du u(z+h)—u(z—h)

du _ 2
gy o7 + O(h*), as h—0. (2.2.7)

Second-order central-difference replacement, u € C*[z — h, x 4 h]

d*u u(z — h) — 2u(z) + u(z + h)

de? A2

+ O(h*), as h— 0. (2.2.8)

Depending on which approximations for first and second derivatives are chosen,

 a differential equation can be transformed into an m-step discrete dynamical system

of the form (Herges [13])
LThtm = F(mk+m_1,wk+m_2, v ey :z:k), k = D, 1, 2, c v (2.2.9)

with F': R™" — R"™ and initial values zq,21,...,2Z,-1 € R™

When solving numerically an initial-value problem of the form

da
5 = (t,z), a <t < b, z(a) = zo, (2.2.10)
with z : [@,b] = R™ and f: [a,b] X R® — R", the approximating discrete dynamical

system is often only a one-step difference equation of the form

Tk+1 — Tk = hG(t, zk; ) (2.2.11)

with A > 0 the step length of the equidistant grid points ¢; = a4-1h ( = 1,2,..., N),
N = (b—a)/h. The solution z(t) of equation (2.2.10) at ¢t = ¢; (: = 1,2,..., N)
is approximated by the numerical solution z; € R* (: =1,2,...,N ) obtained by
iterating the difference equation (2.2.11), where G : [a,b] x R* — R" and z, € R”
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is the initial value. Scheme (2.2.11) is a special case of the general one-step discrete
dynamical system.

The local truncation error at a specified grid point measures the amount by which
the exact solution of the differential equation (2.2.10) fails to satisfy the difference
equation. Hence, the local truncation error L|z(¢;); k] at t; = a +1th, ¢ = 1, Q,f. ., N

for scheme (2.2.11) is defined by
Llx(t;); h] = z(t;) — z(ti—1) — hG(t,z(t;—1);h), 1=1,2,...,N (2.2.12)

and gives the accuracy of the numerical method at grid point ¢;, 2 = 1,2,..., N

assuming the method was exact the previous step.

Definition 2.5 (Order of a one-step difference method) Let the solution z(t)
of equation (2.2.10) be (p+1)-times continuously differentiable, p € N, then the local

truncation error L[z(%;); h],2 =1,2,..., N can be expressed in term of a finite Taylor

series of the form

p+1 k ,
Llz(t;); h] = Z cph” Mt;:—l)
—~ d¢

L i=1,2,...,N. (2.2.13)

The local truncation errors and with them the associated one-step difference method

18 S&idtObeOfDl‘del‘pifCU=Cl:...ﬂCp—_-O&Hd Cp+1§-'l'0.

Definition 2.6 (Consistency of a one-step difference method) A one-step

difference method with local truncation error L[z(%;); A, ¢ = 1,,‘;2, ..., N is said to

consistent with the differential equation it approximates if

lim max LEEC); A
h—0 1<i<N h

_ 0. (2.2.14)

A one-step difference method is consistent precisely when the function G(t,z;h) in
(2.2.11) approaches f(t,z), the right-hand side of the differential equation (2.2.10),
as the step size h goes to zero; that is, the local truncation error approaches zero as

the step size approaches zero. Clearly, a one-step difference method is consistent if

it is of order p > 1 and dP*) z/d¢tP*Y is bounded on [a, ).
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Definition 2.7 (Convergence of a one-step difference method) A one-step
difference method 1s said to be convergent with respect to the differential equation

it approximates ii

lim max ||lz; — z(%;)]| =0

h—0 1Si<N = (2.2.15)

where z(%;) is the value of the solution of the differential equation at ¢; = a +:h and

z; 1s the approximation obtained from the difference method at the ith step.

A one-step difference method is convergent precisely when the solution to the differ-

ence equations approaches the solution to the differential equation as the step size

go to zero.

Another type of error, known as round-off error, is introduced to the solution
obtained when implementing a numerical scheme on a computer. As computers can
store only a finite number of digits to represent each number, round-off errors can

occur at each step of the computation. For a practical computation, the cumulative

growth of the round-off errors must not swamp the true difference equation. If
the growth of these errors is reasonable or controlled, the computation is stable.
Thus, a numerical model with consistent equations, convergent solution, and stable
error propagation yields a computationally stable scheme whose results can closely

approximate the exact solution to the mathematical model. The following theorem

(see Burden & Faires [5]) connects the notations of consistency, convergence and

stability of a one-step difference method and states an error bound of the numerical

solution.

Theorem 2.8 Suppose the initial-value problem (2.2.10) is approximated by the
one-step difference method (2.2.11). Suppose also 3¢ > 0, Ihy > 0 such that
G(t, ; h) is continuous and satisfies a Lipschitz condition with respect to z € R™ with

Lipschutz constant L on the set D = {(t,z,h)la <1 < b, ||z — 20| < ¢, 0 < h < ho).
Then

(1) the one-step difference method depends continuously on the initial value;
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(1) the one-step difference method is convergent if and only if it is consistent; that

is, if and only 1t
G(t,z;0) = f(t,z), Vi € [a, b]; (2.2.16)

(iii) if a function ¢ : [0, ko] — R, and for each ¢ = 1,2,..., N, the local truncation
error L[xz(t;); h] satisfies ||L[z(%:); 2]|| < g(h) for 0 < h < hg, then

g(h)

Jo(t) — =il < £

exp(L(t; — a)). (2.2.17)

2.3 First-Order Systems of Ordinary Differential
Equations

Consider the initial-value problem for a first-order system of the form

dx

E{ — f(t,x), T > to, }C(tg) = Xy € R" (231)

where X = [21,%2,...,%,]" and f = [f1, fay. .., fu]? and f is a sufficiently well-
behaved function that maps R xR™ to R". Equation (2.3.1) is said to be autonomous

if f 1s independent of {, and to be non-autonomous otherwise.

The analytical solution of (2.3.1) is usually so complicated that it is more efficient
to solve it numerically for ¢ > 1. Before attempting to approximate the solution

numerically, however, 1t 1s assunied that the hypotheses of the following theorem are

satisfied (Lambert [15]).

Theorem 2.9 Let f(¢,x), where f : R x R® — R”, be defined and continuous for
all (¢,x) in the region D defined by a <t < b, —00 < z; < 00, 1= 1,2,....n, where

a and b are finite, and let there exit a constant I such that
£(t,x) — £(¢,x")| < L|x — x*| (2.3.2)

holds for every (t,x),(t,x*) € D (L is called the Lipschitz constant). Then for any

Xo € R, there exists a unique solution x(t) of (2.3.1), where x(¢) is continuous and

differentiable for all (¢,x) € D.
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The use of either differential or difference equations to represent dynamical be-
haviour corresponds, respectively, to whether the behaviour is viewed as occurring in
continuous or discrete time. The following definitions and theorems are the necessary

tools to study the qualitative analysis of experimental dynamical systems.

Definition 2.10 A vector X 1s an equilibrium point or critical point of a dynamic

system 1f it has the property that once the system state vector is equal to X it remains

equal to X for all future time.

In particular, if a system is described by a set of differential equations (continuous-

time system) as in (2.3.1), a critical point is a state X satisfying
f(t,x) =0

for all £. If the vector tunction f does not depend explicitly on time, the system is

said to be time-invariant, in which case the critical point is a point ¥ such that
f(x) = 0.

Definition 2.11 (Stable critical point) A critical point X is said to be asymp-
totically stable if there exists a number ¢ > 0 such that V xo € R™ satisfying

“ X — Xo“ < €&, then

lim x(t) = X.

t—+ 00

In order to determine the stability of X it is necessary to understand the nature of

solution near X. Let

X(t) =X+ y(t). (2.3.3)

Substituting (2.3.3) into (2.3.1) expanding as a Taylor series about X gives

dx dy . 0f(xX) .
= = (%) + I y(t) + higher order terms. (2.3.4)

Since f(X) = 0, equation (2.3.4) becomes

dy Oof(X
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of .

which is a constant coeflicient, linear system for y(%). The matrix J = o S referred
X
to as the Jacobian of f. The long-term behaviour of (2.3.1) is determined by the

eigenvalues of the Jacobian as in the following theorem (Luenberger [17]).

Theorem 2.12 A necessary and sufficient condition for a critical point X of (2.3.1)
to be asymptotically stable is that the eigenvalues of matrix J evaluated at X all

have negative real part. I at least one elgenvalue has positive real part, the point is

unstable.

The difference equation

Xk+1 = F(Xk)j k = 0, 1, 2, . v (2.36)

is a one-step discrete dynamical system with F : R®* — R™ and the initial value
xo € R™ The notation of stable fixed point 1s similar to those of continuous systems.
Here, the definition of a fixed point of a one-step discrete dynamical system and the

criteria to test whether a fixed point of a one-step discrete dynamical system is stable

or not, will be given (Luenberger [17] and Sandefur [25]).

Definition 2.13 (Fixed point) If X € R" satisfies F(X) = X then X is called a
fixed point of the dynamical system (2.3.6).

Theorem 2.14 Let X be a fixed point of the one-step discrete dynamical system,

J = 9E be the Jacobian of F at X with eigenvalues Aj, Ay, ..., Ay € C, and the

spectral radius p of J is defined by p(J) = max 1Ail. Then a fixed point X is said to

be asymptotically stable if p(J) < 1 and unstable if p(J) > 1.

2.4 Numerical Solutions to Partial Differential
Equations

Many problem in the bio-medical sciences requiring numerical solution involve special

cases of the linear parabolic differential equation

ou 0O Ou 0
J(:B,t)-gz = == (a(a:, t)f);) + b(z, t)g—z- —¢(z,1)u, (2.4.1)
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which holds within some described region R of the (z,t) space. Within this region,
the functions o, a are strictly positive and c is non-negative (Twizell [29]).

The most common method of solution of partial differential equations is the finite-
difference method. The partial derivatives in the equation are replaced by difference
quotients, converting the differential equation to a difference equation. The difference
equation and the given data are used to determine the function values at a grid of
discrete mesh points that cover the original domain of the mathematical model.
There is no best method for obtaining approximating difference formulae. The only
requirement is that the formulae, having been obtained, must pass certain tests of

the adequacy of the difference equations, namely, the consistency, convergence, and

stability of the numerical model.

The concept of stability 1s concerned with boundedness of the solution of the

finite-difference equations and is examined by finding conditions under which the

difference between the theoretical and numerical solution of the difference equation

given at the mesh point (mh,nf) by

Zn:Un___('}n

m m m

remains bounded as n increases, for fixed » and £. The following methods are used
in this thesis for examining the stability of finite-difference schemes in Chapters 4, 5

and 6 (see, for full det*ail, Mitchell and Griffiths [19], Douglas [8], Lees [16] and Rose
24))

The von Nuemann method is the most widely-used method for determining
the stability (or instability) of a finite difference approximation. Here, a harmonic

decomposition is made of the error Z at the grid points on a given time level, leading

to the error function
Be) = Y 4,85
J

where |f;| is the frequency of the error, j are arbitrary and i is the complex number

v —1. It 1s necessary to consider only the single term ¢*#* where 8 is any real number.

For convenience, suppose that the time level being considered corresponds to ¢ = 0.
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To investigate the error propagation as ¢ increases, it 1s necessary to find a solution

of the finite-difference equation which reduces to e*** when t = 0. Let such a solution

be
E(t,z) ~ ¥ eP?

where o = «(f) is, in general, complex. The original error component €**® will not

grow with time if
Iea'-el S 1

for all . This is von Neumann’s criterion for stability, sometimes called the von Neu-

mann necessary condition for stability. In order to allow for exponentially growing

solutions of the partial differential equation itself, a more general form is
e < 14 0(D).

The following important points should be noted concerning the von Neumann

method of examining stability, Mitchell and Griffiths [19].

(i) The method which is based on Fourier series applies only if the coefficients

of the linear difference equation are constant. If the difference equation has

variable coeflicients, the method can still be applied locally and it might be

expected that a method will be stable if the von Neumann condition, derived

as though the coeflicients were constant, is satisfied at every point of the field.

There is much numerical evidence to support this contention.

(ii) For two level difference schemes with one dependent variable and any number

of independent variables, the von Neumann condition is sufficient as well as

necessary for stability. Otherwise, the condition is necessary only.

(iii) Boundary conditions are neglected by the von Neumann method which applies
in theory only to pure initial-value problems with periodic initial data. It

does, however, provide necessary conditions for stability of constant coefficient

problems regardless of the type of boundary condition.
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The von Neumann method is applied to prove the stabilities of numerical methods

which are developed in Chapters 4 and 3.

The maximum principle is one of the most useful and best known tools em-
ployed in the study of partial differential equations. This principleis a generalization
of the elementary fact of calculus that any function f(z) which satisfies the inequal-

ity 7 > 0 on an interval [a, ] achieves its maximum value at one of the endpoints

of the interval. The solutions of the inequality f” > 0 are said to satisfy a mazi-

mam principle. More generally, functions which satisty a differential inequality 1n a
domain D and, because of it, achieve their maxima on the boundary of D are said
to possess a maximum principle (Protter and Weinberger [22]). The maximum prin-
ciple enables information about the solutions of differential equations without any
explicit knowledge of the solutions themselves. In particular, the maximum principle
is a useful tool in the approximation of solutions, a subject of great interest to many

scientists.

In the following, convergence of solutions of mixed initial/boundary-value prob-
lems for a certain class of non-linear parabolic equations will be estimated using the
maximum principle analysis. Similar estimations will be used to analyse the stabil-

ities of numerical methods developed in Chapters 4 and 6. Consider the non-linear

parabolic differential equation

O*u ou Ou
'-5-;5 = F (m,t,u, 5‘;, "5?) . (2.4.2)
in the strip 0 <t < 1, 0 < 2 < L, with the initial condition
—Po(z)u(z,0) = fo(z) (2.4.3)
and the boundary conditions
Ou
on(t) 75-(0,) = () u(0,t) = fi(2) (2.4.4)
ou
—on(t) 5-(Lt) = Ba(t) u(L,t) = foft), (2.4.5)

assuming that the solution u(z,t) is unique and exists with suitable regularity prop-

erties 1n the strip.
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The non-linear parabolic operator of (2.4.2) is of the form

2
Liu] = -g—{-;— — F(z,t,u, ug, Ut), (2.4.6)

where F(z,t,u, tg, u;) denotes a fixed continuous function of its variables for (z,1) in

a region {) in the (z,t)-plane and for all u, ug, u;. Assume that the partial derivative

F,, F, , F, exist, are continuous, and satisfy the inequalities

0 < ag £ Fy, < ay <00, | (2.4.7)
|1Fu,| < b < o, (2.4.8)
0<¢ <F, < <00, (2.4.9)

where ao, a1, b, co and c; are fixed constants. Let 2 be a domain bounded by the

coordinate lines £ = 0, ¢ = 0 and the lines x = L, t = T'; the closure of (? will

be denoted by . The set composed of the segments 90 (0 < z < L, t = 0),

oh(z=0,0<1t< T,) and 0Qs (2 = L, 0 < t < T) will be denoted by 0€) and
called the boundary of ).

The boundary operators, Ag, A1, As, are defined by

Aolu] = —PBou(z,0) on I,
Mu] = a(2) %(O,t) — B1(t) u(0,t) on 0y, (2.4.10)
Aslu] = —aqft) -g—;f-(L, t) — Ba(t)u(L,t) on 0Qs;

here, B, 1, B2 are continuous positive functions and «y, oy are continuous non-

negative functions on {o, 1, 2. Let fo, f1, f2 be fixed functions defined on {2, {14,

(,, respectively.

A mixed initial/boundary-value problem P may be formulated as follows: for

fixed T, determine a function u(z,?) defined in  with certain regularity properties

satisfying the equation
Liul]=0 onQ
and the initial and boundary conditions (see (2.4.10))

Aiflul=f; on 0, 1=0,1,2.
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It is assumed that this problem has at most one solution which exists with suitable
regularity properties under appropriate regularity conditions on the operators L, A

and on the initial and boundary data. Specifically, it is assumed that vzprg, Uzt Ut

and lower-order mixed partial derivatives exist and are continuous in .

Let O} be the rectangular lattice covering ) given by lines

mh, m=0,1,..., M,

I

£

l

nt, n=01,...,N,

where h = L/M and £ = T/N. The boundary of the lattice 5, denoted by 08, is

the union of three set
0Qy; = 08 N -Q_h, 1 =10,1, 2.

The interior of the lattice is the set ), = Q, —9Qy,. Then the mixed initial-boundary

value problem P} consists in finding a function u”* defined on ,, which satisfies the

equation
Lh[uh] =0 on Qh
and the initial and boundary conditions (see (2.4.10))

Ah,g[uh] — fh;g OIl 39}“;,

where fr; is a given function on 0§ ;.

Rose [24] approximated the differential equation (2.4.6) by the family of implicit

difference equations

077 e(z,t)+ (1—-0) Vi o(e,t — L) = Flz,t,0(z,t),0 7, o(z, )
+(1 — 0) Ve p(T,t — £), Vip(z, )], (2.4.11)

where 0 < 0 <1 and 72, V4, V: are defined by

Vie(e,t) = —lo(e 1) = 2(2,8) + oo + b, 1),
Vep(a,t) = orlplatht)—p(a - 1)
Vt‘f?(w)t) — %[@(:L‘,t) — (,0(11?,75 e k)]
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Rose showed that
lu — ¢llc = O(£ + 17)
for any value of the mesh ratio A = £/h* provided that

0 S 2(1 —-9))\ < ag.

The following convergence theorem which can be found in Rose [24] and Lee [16]

will be used in the analyses in Chapter 4 and Chapter 6.

Theorem 2.15 Let problem P be approximated by problems 7P}, in the sense that

) e®O(h) if o #0,
mia,x IQ&X Ift fh:‘tl "" { O(hz) lf o = 0’ (2‘4'12)
where o = max max ;| (1 =1,2). Then, if h, £ — 0 in such a way that

{ do

the solutions u" of P}, approximates the solution v of problem P uniformly in §;

that is,

u —u”| = *O(R) + O(R?) + O(¥). (2.4.14)



Chapter 3

Oscillatory Dynamics of Whooping
Cough

3.1 Introduction

Whooping cough is mainly a childhood disease, although it may affect people of all
ages. This disease is most severe and the incidence of mortality 1s highest 1n young

children, most fatal cases being in infants in their first year of life. The dynamics of
whooping cough is described by the SIR model and is studied in this chapter. The
long-term dynamics of the model are analysed to determine a thréshold condition in
which the critical points are stable. Periodicity and other oscillatory behaviours can
be sustained in the model if the contact rate is allowed to vary seasonally. When
the model is seasonally forced, a wide range of the complex dynamic behaviour is
seen, including chaos and co-existing cycles of different periods (London & Yorke

18], Dietz [7] and Duncan et al. |10}).

This chapter is organized as follows. In §3.2, the compartmental model is de-

scribed. The mathematical model of the transmission of whooping cough and its
dynamics are given in §3.3 and §3.4, respectively. The SIR model with seasonal
forcing is discussed in §3.5. A linearized model of the dynamics of epidemics shows
that the inter-epidemic interval is determined by the product of population (V) and
susceptibility (J) and that the system will settle at its steady-state unless triggered

by external factors. Many mathematical models involving non-linear differential

equations usually cannot be solved analytically and thus one has to rely on numeri-

20
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Figure 3.1: The compartmental diagram for the SIE model of whooping cough.

cal methods. First- and second-order methods for solving the differential equations

will be developed and analysed in §3.6 and §3.7. The dynamics of the SIR model

and SIR with seasonal forcing using the proposed method are tested in numerical

simulations and will be reported in §3.8.

3.2 Compartmental Models

The impact of parasitic infection on the dynamics of host population growth can
be described using compartmental models (see for example Anderson & May [3]).

The population in the epidemic model of this study is divided into three classes:

susceptible, infectious and recovered, with sizes §, I and R, respectively. In this
deterministic model the rate of transition from susceptible to infectious is assumed

to be proportional to S and I with rate constant 5. The rate of transition from

infectious to recovered 1s proportional to / with rate constant v. A latent period

after becoming infected, but before becoming infectious, is ignored. New susceptibles

are introduced at a constant rate, g, by birth and all classes experience the same

constant death rate, u. A diagram of the model is shown in figure 3.1. It is assumed
that nobody dies of whooping cough: therefore, the infected hosts do not experience

a higher mortality rate. Recovered individuals do not flow back into the susceptible
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compartment, as lifelong immunity 1s supposed.

3.3 The SIR Whooping Cough Model

The SIR (susceptible-infective-recovered) whooping cough model is obtained by

translating the compartmental model proposed above into mathematical terms. It

consists of three coupled, non-linear ordinary differential equations

dS
d/
dR

with ¢t > 0, subject to the initial conditions

S(U) — SQ, I(O) — Io, R(O) — Ro, (334)

in the domain
D={(5I,R)eRL|S+I+R< N},

in which S(t), I(t) and E(?) represent the number of susceptible, infective and recov-
ered individuals at time ¢, respectively. The model assumes a population of constant

size, so that S(¢)+1(¢)+ R(t) = N. The parameters y, v and 8 denote the death rate

(life expectancy= 1/p), the rate of recovery from disease (infectious period= 1/v)
and the transmission coeflicient (susceptibility to disease), respectively. All model

parameters are assumed to be positive.

Without loss of generality, equations (3.3.1)-(3.3.3) may be written in terms of

the fraction of the population in each class by defining three new variables

S 1 R
— N’ y —_— N’ 2 == N. (3.3.5)

Incorporation of these changes reduces the differential equations to

dz

7 = k—pe—-NBzy,  2(0) =z, (3.3.6)

dy

w7 = NBzy—(utv)y; y(0) =y, (3.3.7)

dz

..d.E. = VY y — M z; Z(O) s zo. (3.3.8)
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The population has a constant size, which is normalized to unity: z(t)+y(t)+2(t) =
1. Note that it is necessary to solve only two equations because z(t) can always be
found from z(t) and y(¢) by using z(t) = 1 —z(t) — y(¢). It is sufficient, theretore, to
consider the IVP {(3.3.6),(3.3.7)} in the z-y phase plane. The dynamical behaviour
of {(3.3.6),(8.3.7)} will be studied in the region

——

D={(z,y)|220,y2>20, z+y <1}, (3.3.9)

3.4 Qualitative Analysis

3.4.1 Critical points

The first thing to investigate when analysing a dynamical system is the existence ot

critical points. The steady state of (3.3.6) and (3.3.7) is determined when the time

derivatives vanish giving the critical points

r=1,y=0 (3.4.1)

and

ptv H g+ v
:I:S:_ --, 3= 1_- . 314:2
NG Y u+v( Np ) (3.4.2)

The first is trivial in the sense that it corresponds to the case of the existence of

no infectious individuals. The second, non-trivial, critical point is equivalent to

1 1
(533, ys) — (-730'7 P'f:‘ y (]- " ','7'2";))

which varies significantly with Rp. Here, Ry is the basic reproductive rate of the

infection, defined, as in Anderson & May (3], to be

Ro = NP ,
T

since it 1s the average number of secondary infections that occur when one infective

is introduced into a completely susceptible host population.
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3.4.2 Stability analysis

The pair of equations (3.3.6) and (3.3.7) can be written in the form

dzx
- = f(z,y), (3.4.3)
dy
e : ‘4-.
where
f(x:y) = /"’—ﬂm“Nﬁwy:

g(z,y) = NBzy—(p+v)y.

The local stabilities of the critical points are determined by the eigenvalues of

the Jacobian which correspond to each of the two critical points. The Jacobian

associated with {(3.4.3),(3.4.4)} is the matrix

—p — NPy —Npz
J = : (3.4.5)
Npy — —(p+v)+ Npz
the determinant of which vanishes when
_ Np
Ro = P 1. (3.4.6)

This unique value of Ry will be regarded as a bifurcation parameter of the model

equations.

At the trivial critical point £ = 1 and y = 0 and the eigenvalues, A1, Az, of the

assoclated Jacobian are

A= —p, Az=—(p+r)(1—Ro) (3.4.7)

from which it follows that the eigenvalues are real and negative whenever Ry < 1. On

the other hand the eigenvalues are real and of opposite sign if Ry > 1. Therefore,

the trivial critical point is asymptotically stable whenever Ry < 1 and unstable

whenever Rg > 1.

Similarly, the eigenvalues of the Jacobian at the non-trivial critical point given

in (3.4.2) are the roots of the characteristic equation P(A) = (), where

PO =X+ AN+ B (3.4.8)
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Table 3.1: Stability properties of critical points

| critical points
trivial non-trivial

| Ro <1 stable unstable

Ro > 1 | unstable |  stable

Ro =1 | saddle-node bifurcation
I

e sl

and

A= MR(), B = p,([.!, + V)(Rg — 1).

It follows from the Routh-Hurwitz criterion (Lambert [15], p.14) that all eigenvalues
have negative real part if A > 0 and B > 0. This holds if Ro > 1 and all model

parameters are assumed to be positive. The non-trivial critical point, therefore, is

asymptotically stable whenever Ry > 1 and unstable for Ry < 1.

For Ry = 1, there is only one critical point since the non-trivial critical point
coincides with the trivial critical point (see equations (3.4.1) and (3.4..2)). This crit-
ical point is non-hyperbolic (Wiggins [31]) as one of the eigenvalues of the Jacobian
becomes zero while the other (—pu) is real and negative. This presents the point
at which a node (stable or unstable depending on the sign of u) is just changing
to a saddle point or wvice versa. The parameter u, however, is non-negative and
this critical point is a stable node, and Ry will be called a saddle-node bifurcation
(Gray & Scott [12]). Furthermore, both critical points of the system {(3.3.6),(3.3.7)}
exchange their stability properties as Ro passes through unity (see table 3.1).

The asymptotic behaviours of solution paths in the 2-y phase plane are described

in the following theorem (Hethcote [14]).
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Theorem 3.1 If Ro < 1, then the triangle D defined by (3.3.9) is an asymptotic
stability region for the critical point (1,0). If Ro > 1, then D — {(z,0)| 0 <z <1}

is an asymptotic stability region for the critical point given in (3.4.2).

3.5 The Seasonal SIR Model

The dynamics of the SIR model are determined by the model’s two steady states (see
83.4). In the absence of external perturbation, all variables 2, y and z eventually
reach a constant steady-state. The epidemiological data on whooping cough (Duncan
et al. [9]), however, often demonstrate periodic or irregular outbreaks of the epidemic
dynamics which the SIR model fails to capture. Then, more realistic dynamics may
be achieved by taking into account the seasonal nature of the epidemic. London &
Yorke (18], for example, showed the importance of considering the contact rate, 5,
as a periodic (annual) function of time. Sources of seasonal variation in the contact
rate have been attributed to social behaviour, such as the timing of the school year,
and seasonal changes in the weather conditions (Bolker & Grenfell [4], Duncan et al.
9],[10], London & Yorke [18]).

In this section, the seasonal SIR model is studied by adding a forcing term £(t)
to equations (3.3.6) and (3.3.7) to give the initial-value problem

dz
T = HF e NBQR)zy, 2(0) = 2o, (3.5.1)
dy
3 = Wty +NB(ey, y(0) =y, (3.5.2)

in which 3(t) is given by (Duncan et al. [9])

B(t) = Bo(l + §sin(wt)), (3.5.3)

where the parameter 0 is the force of the infection (equivalent to fractional varia-

tion in susceptibility) and w is the angular frequency of oscillation in susceptibility

(w=27 [period of oscillation). It will be assumed that § is a real number between

zero and unity.
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The critical points of the system {(3.5.1),(3.5.2)} are obtained as in (3.4.1) and
(3.4.2), respectively, but the infection rate 8 is replaced by So(1 + ésin(wt)), giving

Cr=(1,0) and  CF = (zs,ys), (3.5.4)

where

— _______M_;l-__lf____ M B
= Nl +osm@r)) 4 v= (o)

Ls

It is found that the trivial critical point C} coincides with the trivial critical point
of the SIR whooping cough model while the non-trivial critical point (5 1s now time
dependent. Thus, the oscillation-behaviour can be expected whenever the non-trivial
critical point is attracting. The non-trivial critical point should be aéymptotically
stable if Ro(t) = NB(t)/(p+v) > 1.

When 6 > 0 is small, equations (3.5.1) and (3.5.2) can be approximated by a

linearized model by defining

T = Zs+7, (3.5.5)

=
|
=
<]
4
A

(3.5.6)

where n and ¢ represent the variations in ¢ and y from their steady-state values.

Substituting equations (3.5.5) and (3.5.6) into equations (3.5.1) and (3.5.2) and

ignoring higher-order terms gives

d
"a"g' ~ _(Nﬂﬁ Ys T ﬂ)"? — (/-‘ T V)§ — (ﬂ T V)yﬂ‘s Sin(""t)a (3'5‘7)
d
-(—15- ~ NBoysn + (k4 v)ysé sin(wt). (3.5.8)

These equations describe a forced second-order linear system where the forcing func-
tion is the periodic driving term (u + v)y,6 sin(wt): that is, oscillations in suscepti-
bility, ¢, can act as a dniver for the system (Olsen & Schaffer [20], Rand & Wilson

[23), Tidd et al. [27]). In the absence of seasonal oscillations, § = 0, eliminating 7
from (3.5.7) and (3.5.8) gives

d*¢ NBo d¢
E;EWL#HJFU“&;'W(N%“#“V)&‘——*O (3.5.9)
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which 1s a form representing the equation of motion of an unforced, damped linear

oscillator. For the disease under consideration the human life expectancy, 1/u, is

much longer than the infectious period, 1/v, so that under this situation there exist

damped oscillations around the equilibrium for Rg > 1. The oscillation has a period

(T') defined as

Pe— (3.5.10)

MNP — p—v)

Thus, the inter-epidemic interval (Duncan et al. [10], [9]), T, is determined by Nf,.

Therefore, the dynamics of the seasonal SIR model are then dependent on the
amplitude of the variation in susceptibility, §. When § = 0, equations (3.3.6) and
(3.3.7) are considered as a non-linear system that is driven by variations in N§.
For small amplitudes of the variation, 6, the response is approximately linear: thus

the output is sinusoidal for a sinuscidal variation in § at the same frequency but
with different amplitude and phase. As § is increased, the non-linear effects come to

dominate and the response becomes non-sinusoidal, as will be shown in §3.8.2.

3.6 Numerical methods

The numerical methods are based on the replacement of dz/dt and dy/d¢ in (3.3.6)
and (337) by the first-order approximations

dz(:) = w +0(¢) as £ —0 (3.6.1)

and

.d..%%). = ________________y(t T 2 —y() +O0(f) as £—0, (3.6.2)

where £ > 0 1s an increment in ¢ (time step), associated with the discretization of

the interval ¢ > 0 at the points ¢, = nf, with t,11 — 1, = £, n = 0,1,2,.... The
theoretical solutions of the initial-value problem (3.3.6) and (3.3.7) al any typical

point ¢ = 1, are denoted by z(?,), y(¢,), while the solution of an approximating

numerical method will be denoted by X" and Y™, respectively, at the same point %,,.
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3.6.1 First-order methods
Euler’s method

Replacing dz/dt and dy/dt in (3.3.6) and (3.3.7) by (3.6.1) and (3.6.2), respectively,
and evaluating all terms on the right-hand sides of (3.3.6) and (3.3.7) at time ¢,

grves

Method M1

X = X" 4 f{p— pX" — NBX"Y™}, (3.6.3)

Yn+1

Y* +2{—(p + v)Y™ + NBX"Y"}, (3.6.4)
n=0,1,2,..., which is the familiar FEuler explicit method.

Alternative first-order methods

The alternative first-order methods are obtained again by approximating the deriva-

tives in (3.3.6) and (3.3.7) by (3.6.1) and (3.6.2), respectively, and evaluating the
variables on the right-hand sides of (3.3.6) and (3.3.7) at time t,, and t,41 as in the

following two ways

Method Mg
Xn-{-l — X7

p—pX" - NgXMLY™, (3.6.5)

Y'n.+1 _ Y'n.
4

1]

—(p+v) Y™ L NBX Y™, (3.6.6)

After rearranging, these give the explicit formulations

Lu + X"
ynt+l o [ ,,
1+ fu+ INBY™’ (3.6.7)
Yn+1 _ }/ﬂ_{_ENﬁXnYn

1+ &u+ 0y (3.6.8)
torn=0,1,2,....
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MEthOd Ms

Xn+1 _ Xn

7 p—pX"T — NGXTYT, (3.6.9)

1

Y'n+1 —Yn
———— = —(p+ )Y L NEXY™, (3.6.10)

Substituting for X™t! from (3.6.9) into (3.6.10) and rearranging, gives the explicit

formulations
b+ X* —ENBXTYT
n+l __
X = RS (3.6.11)
yntl _(___].__—l_-_lf_f_i + 2uNBYY™ +UINBX"Y™(1 — EN,B_Y’D_ (3.6.12)
(1+2p)(1 + Ly + £Lv) ’ o
forn=20,1,2,....

The local truncation errors

Method M; Thelocal truncation errors (LTEs) of this method may be determined
(see for example, Lambert [15]) from (3.6.3) and (3.6.4) and are given by

Loz (t),y(t); €]

|

2t +£) — 2(t) — &{p — pa(t) — NBa(t)y(d)}

and

L,lz(),y(t); 4]

|

y(t+£) — y(t) + £{(u + v) y(t) — NB=(t) y(t)}.

Using Taylor expansions of x(t + £) and y(¢ 4 £) about ¢ lead to

f?

Lole(®),y()il] = Sa"(t) + O(€°) as £—0 (3.6.13)
and
L,lz(t), y(t); €] = %—y”(t) +O(fP) as £—0, (3.6.14)

at some point t = t,, verifying that this familiar numerical method is first-order

accurate.

Similarly, the local truncation errors L {x(t),y(t); 4] and L, (1), y(t); €] associ-
ated with the family of the methods M, and Mx are seen to be
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(1) for family My

CRyl = {5 +uw’(t)+Nﬁw’(t)y(t)} L Of) as L0,

(3.6.15)
Lilz(t),y(t); €] = 52{%@- + (g + V)y’(t)} +O(f2) as £—0,
(3.6.16)
(ii) for family M3
Lo[z(t),y(t) €] = 32{3;”2@) + #w’(t)Jr} + O(f*) as £—0, (3.6.17)

@ und = 4L 4 o) - Np )} + OF) ws £,
(3.6.18)

at some time t = t,. Hence, the methods My and M3 are first-order accurate.

3.6.2 Second-order method

The second-order method is based on a linear combination of first-order numerical
methods. To achieve second-order accuracy when solving the non-linear ODEs in

(3.3.6) and (3.3.7), the second-order methods for functions z = z(t) and y = y(¢)
will be developed differently. Three first-order methods were mentioned in §3.6.1,
and a new first-order method will be introduced; a linear combination of them will

lead to the second-order numerical method. It will be assumed that z(t) and y(¢),

the solutions of the initial-value problem {(3.3.6),(3.3.7)}, are twice continuously
differentiable for all ¢ > 0.

Second-order Method for X"t

To obtain second-order accuracy for z = z(t), take equation (3.3.6) in the form

z(t) -+ pa(t) + NBa(t)y(t) = 0. (3.6.19)
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Differentiating equation (3.6.19) with respect to time, t, gives

2(8) + pa' () + NB2' (&) y(t) + NBz(t)y'(t) = 0. (3.6.20)

The first-order methods previously discussed are given below along with the new

first-order method,

Xn+1 . _Xn

Mi: = = p—pX" - NAX"Y", (3.6.21)
Maq _)f'ft___{’f_ — p— XM NgXHY™ (3.6.22)
M, ﬁ?—fﬂ — u— X" NBX"YT (3.6.23)
My —}g—?ii—l;f = p—pX"tt - NgXTY"H (3.6.24)

and their associated LTEs
L) y(0il] = S +O0(E) as €0, (3.6.25

Lalz(t),y(2); 4]

32{:3”2@) + p2'(t) + NB2'(t) y(t)} +O0(%) as £—0,
(3.6.26)
fz{mﬂz(t) + p,:z:’(t)} + OU°) as £—0, (3.6.27)

|

22(t), u(2); 4

Lalz(t),y(2); 4]

]
¢y
NG
"
8"‘-
Py
g o8
o

5 T pz'(t) +ENS z(t) y’(t)} +0(°) as £—0.

(3.6.28)

Using equations (3.6.25)-(3.6.28) leads to the local truncation error of a second-

order numerical method for = z(¢), denoted by L£2[z(t),y(?);£], as being defined
by

Ly = L,+L—L+L (3.6.29)

It 1s easy to see that

L = ¢ (a:"(t) +pa'(t) + NBa'(t) y(t) + Nﬁfv(t)y’(t))

+0(£%) as £ —0, (3.6.30)
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so that, using (3.6.20),
L = OU) as £—0. (3.6.31)

To construct the associated second-order method for ¢ = z(¢), it follows from

(3.6.29) that equations (3.6.21)-(3.6.24) must be arranged to give

Miz: X" —X"—flp+LpX™ +ANBX Y™ =0,
Moz XM X" —fu 4+ Lu X" L UINBX Y™ =0,
Mzg: X" - X"~y + LpX™ HUNBXY™ =0,
Myg: X" — X" —fp + Lu X" L UINBXY ™ = 0,

following which the second-order method for = z(¢) is seen to be

Second-order Method for Y"t!

To determine the second-order method for y = y(t), consider equation (3.3.7) which

can be written as

y'(8) + (1 +v)y(t) — NBa(t)y(t) = 0. (3.6.33)
Then, differentiating equation (3.6.33) with respect to ¢ gives
y"(t) + (k+v)y'(t) — NBa(t)y'(t) — NB2'(t)y(t) = 0. (3.6.34)

The first-order approximations to equation (3.3.7) with their LTEs can be given by
Yn-}-l — Y™

My, - 7 = —(p+v)Y"+NBX"Y™, (3.6.35)
1 82 I
L,lz(t),y(t) €] = =Y (t) +O0(£°) as £—0, (3.6.36)
Yn+1 —Y"n
My : ———— = —(p+1) Y™ L NEX Y™, (3.6.37)
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e = /L4 ny)]
+0(£°) as £ —0, (3.6.38)
M, Yn+1£__ yr —(u + )Y 4 NBX Y™, (3.6.39)
Gleard = #{ED 4 4y - Moo
+ O0() as £—0, (3.6.40)
My Zi}"ﬂ = —(p+ )Y 4 NgX"Y ", (3.6.41)

Ly [=(t),y(t); 4

e L0+ () - Noa()v 1)
+0(£%) as £ — 0. (3.6.42)

It follows from equations (3.6.36), (3.6.38), (3.6.40) and (3.6.42) that L} [z(1),y(t); ]

defined by
L2 = L,—L24+ L5+ L8

£ (y"(t) +(p+v)y(t) — NBa'(t)y(t) — N ﬁfc(t)y’(i))
+0(£°%) as £—0 (3.6.43)

and, using (3.6.34), yields
Ly, = 0&) as £—0. (3.6.44)

Thus, the second-order method for y = y(¢) may be constructed in the same way

as described for z = z(t) in the previous section and is easily shown to be

[2 + U +v) — é’NﬁX“’E Y" = 2V 4+ f{—(p +v) + NBX™ Y™ (3.6.45)

To solve the linear algebraic system (3.6.32) and (3.6.45) for X! and Y"1, {he

system may be written for simplicity in the forms

AX™H — (2= Ip) X" +ENBX"Y™ oy = o, (3.6.46)
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BY™t! — (2 —4py — )Y" —INBX™TY" = 0 (3.6.47)

where
A = 24Lp+LINBYT, (3.6.48)
B = 24+2%u+4lv—E¢NBXT. (3.6.49)

Solving the equations (3.6.46) and (3.6.47), give

(2 — u)BX™ 4 2udB — £(2 — Ly — Lv)NLXTY™

nt+l UL A V— —_— 3.6.50
X > , (3.6.50)
— — n 2 n _ ny n
oyl (2 — €y — Lv)AY™ + 2ul JZﬂY + £(2 — Lp)NBX"Y'™ (3.6.51)
where A, B are as in (3.6.48) and (3.6.49) and
C = AB+ ({NB)*X"Y™, | (3.6.52)

Therefore, a second-order solution to the first-order IVP system {(3.3.6),(3.3.7)}
may be computed using (3.6.50) and (3.6.51) withn =0,1,2,....

3.7 Analyses of the methods

Finding the fixed points of the finite-difference methods is equivalent to finding the

critical points of the initial-value problem {(3.3.6),(3.3.7)}, see for example Luen-

berger [17]. It can be shown that the fixed points of each finite-difference method,
as n — 00, are the same as the critical points of the ODE system.

All the numerical methods which were mentioned in §3.6 are of the form of the

two one-point iteration functions given by

X" = g1(Xa,Y,) and Y™ = g,(X,.Y;) (3.7.1)

and all have steady-state solutions (fixed points), which will be denoted by

= (X,%)=(1,0)  and  uwp=(X3,Y7) (3.7.2)
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where

prv ‘ K
Yo = — XJ). .
N and Y, p-l—v(l X3) (3.7.3)

To analyse the stability of these fixed points, it is necessary to consider the associated

*-—l—-
Xo =

functions

X = g1(X, Y) and Y = gg(X,Y) (374)

where, for {(3.6.3),(3.6.4)},

a(X,)Y) = X+lu—-4{u+ NPY}X, (3.7.5)
g2(X,Y) = Y +£{—(u+v)+ NBXYY, (3.7.6)
for {(3.6.5),(3.6.6)},
B Lu+ X

aXY) = 3 +Lu + ENBY’ (3.7

Y +INBXY

X,Y) = ———————
92( : ) 1 + ‘eﬂ "I" EV ) (3'7'8)

for {(3.6.9),(3.6.10)},

o+ X —ENPXY

@(X,Y) = 1+ 25 \ (3.7.9)
g2 X,Y) = W+W (3.7.10)
and for {(3.6.50),(3.6.51)},
a(X,Y) = QW____%WMV)XK, (3.7.11)
uxy) = QU WAYSBENGY 4 INGQ - INXY (g
where
A = 24 pl+ NLFY,
B = 2+{(p+v)—ENBX, (3.7.13)

C = 24 pl)2+Lp+Lv) — (24 Lp)NBX + (2 + Ly + Lv)INBY.
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A sequence generated by the numerical method converges to a fixed point if and

only if the spectral radius, p(J), at the fixed point of the Jacobian, J, given by

0g1/0x 0Og:1/0y
J = (3.7.14)
0go/0z Ogq /0y
satisfies the condition (see theorem 2.14)
p(J) < 1. (3.7.15)

3.7.1 Stability of the fixed points of Method M;

To analyse the stability of this method, the Jacobian appropriate to equations (3.7.5)
and (3.7.6) is

| 1—-4(p+NBY) —LINBX
J=\ ingy 1+ L{NBX —(u+v)} | (3.7.16)

At the trivial critical point, u} = (1,0), the characteristic polynomial of the

Jacobian J from (3.7.16) is given by

N = {2 Lp+L(p +v)(Ro— 1IN+ (1= Lu){1 +£(p + v)(Ro — 1)} = 0.

(3.7.17)
The eigenvalues are
2 —Lp 4+ L(p+ V) (Ro — 1) £ 1/02{p + (u + v)(Ro — 1)}2
Mg = ———— o — 1) . VOl + (p+ 1) (Ro — 1)} (3.7.18)
so that
A= 1+p+v)(Ro—1), da=1-fu if Ry>1 (3.7.19)
and
Moo= 1=lp+v)(1-Ro), Ae=1—-4pu if Ro<l. (3.7.20)

From (3.7.19) and (3.7.20), it is clear that, for Ry > 1, the spectral radius is strictly
greater than unity for all £. For Ry < 1, the spectral radius is strictly less than unity
if

2
(1 +v)(1 = Ro) and £<2/p. (3.7.21)

L <
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Therefore, the trivial fixed point is conditionally stable for Ro < 1 and unstable for
Ko > 1.

At the non-trivial fixed point in (3.7.3), the characteristic polynomial of the
Jacobian J is given by

A —(2=LuRIN+1—LuRo+ Lu(p+v)(Ro—1)=0 (3.7.22)

and the associated eigenvalues are

/\112 = 1 — é‘{ﬂﬂo - \/ (#RO):Z — 4#(# + U)(Ro — 1)} (3723)

If Ro <1, A1 are real and positive since the discriminant is always positive. More-

over,

pRo < 4/(4Ro)? — 4p(p + v)(Ro — 1)

so that one of the roots of equation (3.7.23) is greater than unity. This shows that

the spectral radius is strictly greater than unity for all values of 2.

For R > 1, the spectral radius will be considered as follows:

Case i Suppose that (uRo)* —4u(pu+v)(Ro—1) < 0, the eigenvalues are complex

numbers with

Arel? = 1= £uRo + Cp(p + v)(Ro — 1)

and the spectral radius is strictly less than unity if 0 < |A1,2|% < 1 so that

1 —Zu
0 <flpu(Ro—1) < oo .
#(Ro — 1) - (3.7.24)

Case 11 Suppose that (4Ro)* —4p(p+v)(Ro—1) = 0 then A1 g = (2 = LuRo) and

2
the spectral radius is strictly less than unity if -1 < Ay, < 1 so that

0 <Lu(Ro—1) < 4—Lp. (3.7.25)
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Case iii Suppose that (uRo)* — 4p(p + v)(Ro — 1) > 0 then the two eigenvalues

are real and are given by

A1 1~ -;i{ Ro + 1/ (uRo)? — 4;L(ﬂ 1/)‘(7?,0 — 1)}, (3.7.26)

N = 1 ;{H’Ro — /(BRo)? — 4p(p + v)(Ro — 1)}. (3.7.27)

[

The spectral radius is, therefore, strictly less than unity if
LuRog <2 or Lu(Ro—1)<2—4Lpu. (3.7.28)

From cases i-iii, it is found that equations (3.7.24), (3.7.25) and (3.7.28) are the

conditions under which the numerical method M, will converge to the non-trivial

fixed point (3.7.3) whenever Ro > 1.

3.7.2 Stability of the fixed points of Method M,

The Jacobian, for {(3.7.7),(3.7.8)}, is the matrix

1 —LINB(Lp + X)
L+Lp +INBY (1 +4u+LINBY)?
J = . (3.7.29)
 INBY 1 +¢NBX
1+ £u + Ly 14+ Lu + Ly

The stability of the trivial fixed point is determined by the eigenvalues of the

matrix J, given by

1 —LN [
—_— ) e
1+ Lp 14 2u
14-4Np |
| 0 — )|
14+ 4p + Ly |
so that
1 1 +4Nf
A —_— T A T e —e—
T 77 RN (3.7.31)

Clearly, the spectral radius is strictly less than unity for all £ if Ry < 1. Condi-
tion (3.7.15), therefore, is satisfied and the numerical method {(3.6.7),(3.6.8)} will
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converge unconditionally from any starting values zy, yo to the trivial fixed point
r =1, y= 0 whenever Ry < 1.

For the non-trivial fixed point given in (3.4.2), the Jacobian is the matrix

__ktr _—Aptv)
U+v+ ulNp p+v+ ulNp
J = . (3.7.32)
pb(NB — p—v) |
(p+ v)(1 + Ly + Lv)

The eigenvalﬁes of matrix J, Ay and Aq, are the roots of the equation

(A=A —al+b=0 (3.7.33)
where
2
s = 2tv)+uNE
p+v+ ulNp
and

(1 +v) (1 +Llp+ Ly + Cu(p + v)(Ro — 1))

b = —— _— S0
(p+v+ peNBY(1 + Ly + Lv)

whenever Rq > 1.

The eigenvalues, A; and Az, of matrix J are complex conjugates if a* — 4b < 0,

and it is then easy to show that |A;| < 1 (2 = 1,2) for all £ because
b—1=—luNB —Lu(p+v)? <0 forallf>0.

The eigenvalues A; and Ag are real if a® — 4b > 0. The properties of a quadratic

function can be employed to show that A; ; € (—1,1). The function ¢()) is evaluated
at A =—1,0,1, giving

d(-1)=a+b+1>0, ¢(0)=5>0and ¢(1) = @%;EFJNV;;E%'

Because ¢(—1) > ¢(0) > 0, the function ¢ has a minimum value at some point

A = Anin Detween 0 and 1 since

F(A) =22 —a=0 if ,\:%
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and

‘#’”(A) — ‘?f’”()\min) >0, when Apip= %-

Clearly Apin > 0 and Apin < 1 when a — 2 < 0. It is easy to show that

a— 2

so that Apin < 1. Overall, ¢(A) has two real positive zeros which are less than unity

in modulus, irrespective of the size of £, when Ry > 1.

It can be concluded, therefore, that the non-trivial fixed point is unconditionally

stable (with respect to £), whenever Rq > 1.

3.7.3 Stability of the fixed points of Method Mj;

The elements of the Jacobian associated with the method, from {(3.7.9),(3.7.10)},

are given by

0X 1+4y
dg1 _ —ENBX
oY 144u’
(3.7.34)
dg2 _  ANPY(1—-LENPY)
0X — (14+4Lu)(Q+Lu+4Lv)
092 _ 1 +ENﬁ(€ﬂ+X—2€NﬁXY)
oY 1+ 4y + Ly (L +Llp)(X+Lu+Lv)
The Jacobian, at the trivial fixed point, X} = 1, ¥;* = 0, is the matrix
1 —INf
14+ 4u 1 4 Lp
J = , (3.7.35)
) 1+ 4INS

144y + Ly
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and so

1, 14N
144’ TP T 14+ lu+

A

are as in (3.7.31). Therefore, the trivial fixed point is unconditionally stable for

Ro < 1 and unstable for Ry > 1.

The Jacobian evaluated at the non-trivial fixed point given in (3.7.3) is given by

ptv+lp(ptv—NQ) )
(1+£Lp) (p+v) 144y
J = . (3.7.36)
Cp(NB—p—v)(ptvt-eu(ptv—NB))  14+20u+Lv4£2 pu(2pu+2v—-NG)
(r+v)? (14-Lu) (14+-Lu+t-Ev) (14+2p)(1+Lu+Lv)

The eigenvalues of matrix J, A; and ), are the roots of the equation

M —Q2=p—q@)A+1—-¢g=0 (3.7.37)
so that
1 .
Aro= 1 “"“2"{(P+‘I)+\/(P+Q)2 —-413}-.. (3.7.38)
1 —_— .
Ay = 1- "2-{(10 +9)—\/(p+q)2 — 4p } (3.7.39)
Cu(p +v)(Ro — 1) LuRo
where p = (1+fﬂ)(1+fﬂ"|'-€1’)- > 0torall Rg > 1 and ¢ = y > 0.

Case i Suppose that (p+¢)? —4p < 0 then |A; 4] = 1 — g and the spectfa,l radius
is strictly less than umty whenever 0 <1 — g < 1, that is

Lu(Ro — 1) < 1. (3.7.40)

Case i1 Suppose that (p + ¢)* — 4p = 0 then A1g = 2—(p+q)

> and the spectral

radius 1s strictly less than unity if

0<p+g<4
that 1s

4+ T+ v + 3G u(p + v)
0 <lu(Rp—1) <
#(Ro — 1) 1+ 204 1 2y . (3.7.41)
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Case iii If (p + ¢)? — 4p > 0 then the two eigenvalues are real and are given by

A2 =1-— %{(P-F q) £ +/(p+q)% - 4}9}-

It 1s clear that the spectral radius 1s strictly less than unity whenever a + b < 2 or

2+ 30p + 28y + Lu(p + v)

1
0 < u(Ro = 1) < 1+ 20 + 247

. (3.7.42)

These, therefore, are the conditions under which the numerical method Mg will

converge to the non-trivial fixed point (3.7.3).

3.7.4 Stability of the fixed points of the second-order
method

The stability of the fixed point 1s again determined by the Jacobian, J, which for
{(8.7.11), (3.7.12)}, is

J = (3.7.43)
0g92/0X 0Bg2/0Y
where
091 (22— pl)(—ANBX + B) —2uNpPL* —INB(2 — Ly — v)Y
0X C
(2 + pb)INBg: (X,Y)
+—",
C
dgr _ —ENBQ2 - Ly — )X — (24 pl+ vL)INBg (X,Y)
Y B C }
(3.7.44)

9 INB(2 — £p)Y + (2 + pl)dN Bga(X,Y')
0X C ’

09 _ (2= pl— v)(NBY + A) + 20 NB + INS(2 — )X
oY C

|

(24w +vl)ENBg(X,Y)
C
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and A, B and C are as in (3.7.13).
Substituting the trivial fixed point, X7 = 1, ¥* = 0, into (3.7.43), the matrix J

becomes
2 — ul —4/N [
24+Lu (24 Lp)(2 —ENB + Ly + vi)
) —2+4(—=NB + p +v)
—2+4(NB — p—v)
which has eigenvalues
2 — by 2 —&(p +v)(1 —Ro)
A1 = d M=Fr7—7>7—"7-—JJ——< 3.7.46
ot ™ T ) R 140)

Obviously, [A1 2] < 1, if Ry < 1 for every value of £, and the trivial fixed point is

unconditionally stable for Ry < 1 and unstable for all £ if Rq > 1.
The elements of matrix J in (3.7.44), at the non-trivial fixed point in (3.7.3), are

Og1 _ 4(p+v)—2uNp —Lp(p+v)(NB — p—v)
0X — 4p+v)+2uNB+Lpu(p+v)(NB—p—v)’

|

dg1 —4L(p + v)*
oY Ap+v)+20uNB + Lp(p 4+ v)(NB — p —v)’

I

09; 4eu(NB — p — v)
X Ap +v) +20uNB + Lu(p +v) (NS — p — v)’

O0ga _ Hp+v)+2uNB — LCu(p+v)(NB—p —v)
oY  Mp+v)+2uNB+ Epu(u+v)(N—p—v)

The matrix J has eigenvalues A given by

|

dA) =X — QA+ Qy =0 (3.7.47)
where
Q1 = 2(a—b),
Qs = a+b—ec,
with
4(p + v)

4(p+v) + 2UpNB + Lu(p + v)2(Ry — 1)’
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v o Lt v)(Re-1)
4(p+v) +20uNB + LCp(p + v)*(Ro — 1)

20uN B
dp+v)+2uNB + Cu(p+ v)2(Ro — 1)

so that a, b, ¢ are positiveif Ry > 1. Necessary and sufficient conditions for stability

are [A\;| < 1, 2 = 1,2. Since the eigenvalues are the roots of a quadratic equation,

they can be real or complex numbers depending on the sign of the discriminant

Qi —4Qs.

e The inequality Q7 — 4Q2 < 0 here means that the eigenvalues \; and X, are
complex numbers. For stability, then, |A;15]* < 1 implies0 < a+ b — ¢ < 1.

Hence, the time step £ must be chosen, for given values of N, 8, 1 and v, to

satisfy the condition |X\;| < 1,1 =1,2.

e For Q7 —4Q, > 0, Ay and ), are real numbers. Then, the property of a

quadratic function 1s considered as follows:

Now, ¢(—1) = 4a and ¢(1) = 4b are positive for all Ry > 1. Next, d¢(1)/d) =
2\ —2(a —b) and d*@(A)/dA* =2 > 0 so that ¢(A\) has a minimum value at

/\=)\min=a—b.

It 1s found that A,y > —1 and A\ < 1 when

a—b+1 = 8(u+u)+2£pNﬁ>O and
a—b—1

—2LpuNB — 20 u(p + v)*(Ro — 1) < 0

then —1 < Anin < 1 when Rp < 1. Finally the minimum value at \ = )

min 15

o TAOHNB) —4p(p+vP(Re - 1)}
‘#’(/\mln) {4(/-5 "I" V) _I_ QEMN)B +£2u(ﬂ +- 1/)2(Ro _ 1)}2 < 0

whenever Ko > 1 and (uNS)* > 4p(u +v)3(Ro — 1), irrespective of the size of
the time step 2.
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These, therefore, are the conditions under which the numerical method (3.6.50),
(3.6.51) will converge to the non-trivial fixed point in (3.7.3).

In the case when Ry = 1 the non-trivial fixed point coincides with the trivial fixed
point and the elements of the matrix J take the values given in (3.7.16), (3.7.29),
(3.7.34) and (3.7.44) with X = X =1 and Y = Y* = 0. All numerical methods

will, therefore, converge to the trivial fixed point, using an appropriate time step,

when Hy = 1.

3.8 Numerical Experiments

The initial-value problem given by equations {(3.3.6),(3.3.7)} and {(3.5.1),(3.5.2),
(3.5.3)} are solved numerically by using the developed methods in § 3.6. All exper-

iments are carried out with the parameter values

1

K (3.8.1)

?

u=10.04 years™
v =240 years”

which are considered by Duncan et al. [9]; these values of 4 and v refer to an
average life expectancy of 25 years and an infectious period of approximately 15

days (approximately), respectively.
In the case of the SIR model in {(3.3.6),(3.3.7)}, the reproductive rate Ry will

be serve as a bifurcation parameter. The product of population and susceptibility,
Np, was chosen to be N3 = 23 (Ro = 0.96) first and then NS = 123 (Ro = 5),
hence testing values of Rp smaller and larger than unity. Therefore, for the first

the trivial critical point should be attracting and for the other the system should

converge to the non-trivial critical point. In the case of the seasonal SIR model given

in equations (3.5.1)-(3.5.3), the infection rate is time dependent depending upon 8,

§ and w. Following Duncan et al. [10], § will be serve as the bifurcation parameter

and the behaviour of this system will be reported in §3.8.2.



Chapter 3: Oscillatory Dynamics of Whooping Cough 47

3.8.1 Numerical solutions of SIR model

The numerical experiments are performed for various values of ¢ to observe the

behaviour of the numerical methods. All experiments are carried out with the pa-

rameter (3.8.1) and N8 =23 (Ro < 1) and N =123 (Rg > 1) and the initial data
given by

X, = 0.25,
Y, = 0.0006. (38.2)

MEthOd M1

Since restricting conditions on £ for asymptotic stability were found, convergence
cannot be expected for every step length. For Ry > 1, the method was seen to give
oscillatory convergence to the non-trivial fixed point until £ reached 0.0515. Steady

oscillations appeared in the numerical solution: oscillatory, very slow convergence
occurred for £ € (0.04,0.0515), and the method produced overflow for £ > 0.0515.
These findings are illustrated in figure 3.2 (a)-(c). Taking R < 1 the method gave

monotonic convergence to the trivial fixed point when a time step £ < 0.125 was

used but overflow was produced for £ > 0.125.
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Figure 3.2: Time series using method My with N3 = 123 (Ry > 1) and (a) £ = 0.01,
(b) ¢ = 0.05, (c) £ = 0.0515.
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Method Mz

This method never produced overflow and always converged to fixed points for all
positive time steps. This was expected since the method was shown to be uncon-
ditionally convergent in §3.7.2. The method simulates the behaviour of the model
correctly, converging to the non-trivial fixed point for Ry > 1 and to the trivial fixed

point for Rg < 1. Convergence is seen to be slower for larger time steps (figure 3.3

(a)-(c)):
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MEthOd M3

When Ry < 1, this method gave monotonic convergence to the trivial fixed point for
all £ > 0. When Rq > 1, the method gave oscillatory convergence to the non-trivial

fixed point for £ < 6. Monotonic convergence took place whenever £ € [6,9.66). That

is, the higher the value of £, the quicker the non-trivial fixed point is reached, see
figure 3.4. When £ € (9.66, 16|, the method produced periodic limit cycles around
the non-trivial fixed point and chaos was observed. The method produced overflow
for £ > 16. Figure 3.5 shows the bifurcation diagram for this method as £ increases.
In this diagram, it is seen that the period-1 originates from a single point, period-2,
where there are two points and so on. Chaos occurs in the bands where the dots

seem to be smeared at random. Such dynamic behaviour is usually very interesting

but it 1s contrived.
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Figure 3.5: Bifurcation diagram of method Mg

Second-order Method

This method is seen to be very restrictive on time step, £; for Ro > 1 it produced
overflow when £ > 0.394. It gave oscillatory convergence to the non-trivial fixed
point for £ < 0.292. For 0.292 < £ < 0.394, oscillations appeared and some meaning-
less negative values were observed for the infective proportion before the solutions
converged to the non-trivial fixed point. When Ry < 1, this method did not produce

overflow but converged to the correct fixed point for £ < 1 x 10° with monotonic

convergence for £ < 0.12. For 0.12 < £ < 100, oscillations appeared in the infective
proportion while for 100 < £ < 1 X 10°, oscillatory convergence occured in both the
fraction of population susceptibles and infectives. When £ > 1 x 10°, convergence

did not take place; instead, this method produces periodic cycles around the fixed

point. These findings are shown in figure 3.6 (a)-(c).

Overall, it was observed that using an appropriate time step £, all methods

converge to their theoretically-predicted fixed points in all cases.
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(Ro < 1) and (a) £ =90, (b) £ =200, (c) £=1 x 10°.



Chapter 3: Oscillatory Dynamics of Whooping Cough 55

3.8.2 Numerical solutions of the seasonal SIR model

In order to test the behaviour of the developed methods for solving the seasonal SIR
model when the contract rate g is replacing by A(t) as defined in (3.5.3), a second-
order method is first chosen to illustrate some numerical results. The model will be
considered with NfBg = 123, w = 27 and NSy = 270, w = 27, while § will serve as

3

a bifurcation parameter, as in Duncan et al. [10]. For all parameter values chosen,

the model is run for 250 years and all figures show the results for the last 20 years.

The numerical solutions of the seasonal SIKE model is shown in Figures 3.7-3.12.

For NGy = 123 and 6 = 0.1, the numerical results of modelling. are shown in
Figures 3.7 (a)-(c). It is seen that the response is non-sinusoidal (Figures 3.7 (a),(b)).
The infective fraction falls to zero in the inter-epidemic period (Figure 3.7 (a)),
which means that the disease was not endemic, A corresponding simulation for the
susceptible fraction shows a progressive build-up by new births during the inter-
epidemic period and a dramatic fall during the epidemic, see figure 3.7 (b). The
phase diagram of the susceptible fraction versus the infective fraction versus N B is
shown in figure 3.7 (c). Here, N B is the ratio (NB(t) — NBy)/N Bo which is obtained
from (3.5.3).

Repeating the calculations using the same parameters but with NGy = 270 and

= 27 yields a very different result. Specifically, qualitatively different dynamics

are obtained for different values of 6. As § increases, the solution passes from a

period-1-year cycle to a 2-year cycle and to chaotic behaviour via a sequence of the
period-doubling bifurcations, see Figure 3.8 (a)-(f). The period-doubling sequence
of the seasonal SIR model is shown in Figure 3.8 (¢)-(f). The behaviour-solutions

appear to be almost coincident with Duncan et al. [10] in their Table 1, showing
that a second-order method gives a reliable representation of the numerical solutions

associated with {(3.5.1),(8.5.2),(3.5.3)}. The fraction of the population infected does

not drop to zero, indicating that the disease is epidemic.

The numerical experiment leading to Figure 3.8 (a) is repeated using Methods

My, Mz, M3 and a second-order method with different time steps (see Figures
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3.9-3.12). Figures 3.9 (a)-(c) show time series of infective fraction using method
My; these figures correspond to figure 2 (a) in Duncan et al. [10] but the profile of
the infective fraction is lower. The numerical results using Methods Mg, and M3
are very sensitive to the time step chosen so that different time steps give different
cycles. It is seen that both methods give a biennial cycle for £ < 0.003 and the profile
of the infective fraction increases as the time step decreases, see figures 3.10 (b),(c)

and 3.11 (b),(c), respectively. Figures 3.12 (a)-(c) are produced by a second-order
method, the plots agree with Duncan et al. [10].
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3.9 Conclusions

Three first-order schemes and a second-order finite-difference scheme have been de-
veloped for the numerical integration of the S/R whooping cough model given by the
non-linear system of equations (3.3.6) and (3.3.7). The stability properties of the
methods showed good agreement with the qualitative analysis of the ODE system.
Numerical experiments showed that the first-order methods, M4, M3 and a second-

order method gave the correct behaviour for larger value of a time step, £, than Euler

method (M1). Moreover, the first-order method, M, shows superior stability prop-
erties in the sense that the method never produces overflow and convergence takes
place for all Z.

The seasonal SIRE model implies the modelling of periodic behaviour and even
chaos. This model is also solved numerically using three first-order and a second-
order methods. The second-order method showed more accuracy and produced so-
lutions to the seasonal SIR model which were similar to those reported in Duncan

et al. [10]. The first-order methods are sensitive to the step length used and using

a very small time step seems to be necessary to obtain the correct cycles.



Chapter 4

The dynamics of one-dimensional
whooping cough model

4.1 Introduction

The SIR whooping cough model which consists of two non-linear ordinary differential
equations (ODEs) was considered in the previous chapter. It is assumed that the

population is mixing thoroughly, so that there is no distinction between individuals

in one place and those in another. When this is not so, the disease may spread faster
in some part than in others and it is necessary to allow the variables to depend on
space as well as time. It would thus seem natural to extend the model by including

diffusional effects, allowing for investigation of the spatial spread of whooping cough
epidemic. In this chapter a spatially-stfuctured (reaction-diffusion) equation will

be studied and three numerical methods developed for the numerical solution of the
spatial spread of whooping cough in one space dimension. The population considered
here consists of two parts, susceptibles and infectives. Let S(z,t) and I(z,t) denote
the numbers of infected and susceptible individuals, where z and ¢t denote the position
in space and the time, respectively. In order to proceed, the epidemic is assumed to
diffuse through space. As described in chapter 3, the transmission from susceptibles

to infectives 1s assumed to be 851 where § is the transmissibility coefficient. This
form means that 85 is the number of susceptibles who catch the disease from each

infective. Also, 1t 1s assumed that all births are into the susceptible class, and that

births exactly balance deaths so that the total population size, NV, is constant. With

65
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these assumptions the whooping cough model with diffusion can be written as

oS 0*5
o1 2]
& = —(k+V)I+BSI+ ag—; (4.1.2)

where the parameters u, v and a denote the death rate, the rate of recovery irom

disease and the diffusivity of the population (which is assumed to be a non-negative

constant and the same for both groups), respectively. Equations (4.1.1) and (4.1.2)

are subject to the initial conditions

S(z,0) =S, I(2,0)=1I; —-L<z2<0L - (4.1.3)
and the boundary conditions are assumed to be
0S(xL,t) OI(xL,t) -
=T, 0; t>0. (4.1.4)

It will be assumed that the system {(4.1.1),(4.1.2)} is defined for —L < z < L,
t > 0 and so, for this ranges, the initial/boundary-value problem {(4.1.1)-(4.1.4)}
is symmetric about the line z = 0. Because of the symmetry it is enough to solve

equations (4.1.1) and (4.1.2) which satisfy the initial conditions

S(z,0) =Sy, I(z,0)=1I; 0<z<IL (4.1.5)

and the boundary conditions,

05(0,t) _ 0I(0,t)

az - az — 0: t > 0) (4.1.6)
0S(L,t) O0I(L,t) 0 £50

az T az — Y > U. (417)

The discussion begins by analysing three numerical methods in §4.2, §4.3 and
§4.4, respectively. In §4.5 the von Neumann method and maximum principle analysis
will be used to analyse the stability of the methods and their implementations are

given in §4.6. It 1s seen that the three methods are not expensive to implement, as

the solution vector is obtained explicitly. The dynamics of whooping cough using

two sets of initial conditions will be described in §4.7.
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4.2 Discretization and Notations

A solution of the system of partial differential equations {(4.1.1),(4.1.2)} may be
computed by finite-difference methods by discretizing the space interval [0, L] into
M sub-intervals each of width A > 0, and the time interval ¢ > 0 i1s discretized in
steps each of length £ > 0. The open region Q = [0, L] x [t > 0] and its boundary
00 consisting of the lines z = 0, 2 = L and t = 0 are thus covered by a rectangular

mesh, the mesh points having coordinates of the form (z,,t,) = (mh,nl);n =

0,1,2,...; m=0,1,2,..., M. The solutions of {(4.1.1),(4.1.2)} at the typical mesh
point (zm,ts) are, of course, S(zm,ts) and I(2p,,t,) which will be denoted by S*
and I", respectively. The theoretical solution of an approximating finite-difference

method at the mesh point (2,,%,) will be denoted by X7, Y, while the values
actually obtained which may, for example, be subject to round-off errors at this

mesh point will be denoted by X* and Y*, respectively.

4.3 Numerical Methods

A family of numerical methods will be developed by approximating the time deriva-

tive in (4.1.1) and (4.1.2) by the first-order forward difference replacement

Ou(z,t) u(z,t+£) — u(z,1)
pra Y, — 4 0(£) as £ — 0, (4.3.1)

and the space derivatives in (4.1.1) and (4.1.2) by the weighted approximant

*u(z,1 _
15(; )~ 2{9{U(z~h,t+f)—2u(z»t+f)+“(z+h’t”)}

+(1 — 0){u(z — h,t) = 2u(z,t) + u(z + A, t)}} (4.3.2)

in which u(z,?) = 5(z,1) or I(2,), 2 = 2 (m = 0,1,..., M), t =1, (n = 0,1,2,...)
and 8,0 < 6 <1, 1s a parameter. When 6 = (, (4.3.2) is O(h*) as h,£ — 0 and is
O(h% 4 £) as h,£ — 0 otherwise.

The non-derivative terms in the right hand sides of (4.1.1) and (4.1.2) may be

replaced in the following three ways

(a) —uXp = BXLYE  and - (u4v)Y2 4 BXRYE  (43.3)
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(b) — pX™ — BXPMHY™ and  — (p+»)Y 4 BXTY™  (4.3.4)

Xn 4 Xt Xy 4 Xryntl
() _p( _T__l_ﬁg_w____é____w_l and
(Yo +Ya™) | (X5FYE + XDV

(ptv)yem e g (4.3.5)

2

These approximations, together with the replacement for the time and space deriva-

tives of S and I, give rise to three numerical methods, Method A;(6¢), Method A;(6)
and Method As(f) for the numerical solution of {(4.1.1)-(4.1.4)}. These methods

are as follows:

Method A;(8), 0<60<L1:

xntl _ X7 nt+l n-+1 +1
—m T m 7 == uN — pu X — X Y "+ 0 X-—_____..___m-l 2}273 + X1
Xn . —9oXn 4 Xn
+(1 —0) —---1—---}-;5---—-—-& (4.3.6)
ynrt+l _ yn n+l n+1 n+1
VYR e rg +axgrg + 0 R S 2R 20
Yn  —2Yr 4 YT
+(1—0) A _m ol (43.7)
Method A3(6), 0<0<1:
Xﬂ.+1 — X" X'n+1 _ 2Xﬂ+1 n+1
m m o N — X _ g yntlyn Am—1 — &l + X
, N — pXE = XTIV 46 AR
X - 92X 4 X7
+(1 = 6) —== S, (4.3.8)
Y£+1 - Yﬂ? Yﬂr+1 2y n+1 4 Yn-—l—l

= ()Y 4 XY 4 g e T T
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Yo =2Y  + Y]
+(1 — 9) _.”:l__z_z_i___m’ (4.3.9)

Method As(f), 6 =1/2:

XpH - Xn (X + X5t 5 (XmRYe 4+ Xnvat)

7 N ) 2 ]
I Xty — 2*2:?1 + Xt (1 — 6) _X_:.:l:}___z:____z__:'fl_ At , (4.3.10)
WX () GREEET) g GEYR 4 Xare)
2
Lo &%—nw +(1—g) T a T e (g 3))

It follows that equations (4.3.6)-(4.3.11) can be rewritten, equivalently, as

Method A;(8), 0<0<1:

—pOX7HL 4 (1 4+ 2p0) X — p0X7HS = p(1 — 6) X7 _,
H{1—Llp —£0Y —2p(1 - 0)} X +p(1 — 0) X2 ., +4uN, (4.3.12)

—pQY;"ﬂ + (1 + 2p9)Y£+1 - pQYﬂ?ﬂ = p(1 — OyY:. .
+{l - (p+v)l+LBXT — 2p(1 — HY "+ p(l — Q)YQH, (4.3.13)

Method A;(0), 0<0<1:

—pOX5Ey + (L + pl + £BY 4 2p0) X7 — pd X2 = p(1 — 6) X7 _,
+11 —2p(1 — 0)} X7 + p(1 - 0) X1 +LuN, (4.3.14)

—pOY oty + (14 (u+ )L+ 2p0)Y 0+ — pY,H = p(1 — g)Y_,

HL+ X0 —2p(1 — O)Y7 +p(1 — 02, (4.3.15)
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Method A3(6), 0 =1/2:

1 1
5 pXIEL (L gl SR + p) X5 — S pXEL 4 SLAXRY
1 1 1
2pX“’___1 + {1 — éﬁp —~p} X! + — 5 pXn 1 +LuN, (4.3.16)
1 +1 1 1 n n+1 1 n-+1 1 n yvn+l
—é—pYﬁ_l + (1 + 5(# + V)L — EEﬁXm +p)Y — 5 pPYrnii — 'Z"EﬂYme
L n ! n 1 um
= §PYm-1 +{1- 5(# + v —piYo + -2-me+1, (4.3.17)

where p = af/h*, m =0,1,2,...,M and n = 0,1,2,....

4.4 Local Truncation Errors

Consider again the use of (4.3.1) and (4.3.2) in (4.1.1) and (4.1.2). The local trun-
cation errors associated with (4.3.12), (4.3.14) and (4.3.16) may be obtained from
(4.3.6), (4.3.8) and (4.3.10) and are given by

L5[S(2,1),1(2,1) : b, &) = £7[S(z,t + £) — 5(z,1)]
—abh™*{S(z — h,t + £) — 25(2,t + £) + S(z + h,t + £))
~(1 = 0)ah™?{S(z — h,t) — 25(z,t) + S(z + h, 1)}
—pN + aip + BI(z, 1+ pl)}S(z,t + ¢f)
+oip + BI(2,8)}5(z,1 + £)

[PZEY N 4 (e, t) + S (e, 0)1(2, ) -

825’]

O 832_ (4.4.1)

where
(a) for family A;1(0), a=1, b=p=¢=0,
(b) for family As(f), a=¢=1, b=p =0,
(c) for family As(f), a=b=05,p=1, ¢g=0.

The local truncation errors associated with (4.3.13), (4.3.15) and (4.3.17) may
be written down from (4.3.7), (4.3.9) and (4.3.11) and are given by
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L1[S(z, 1), I(2,t): by €] = £7[I(2,t + £) — I(z,1)]
—abh~{I(z — h,t +£) = 2I(z,t + £) + I(z + h,t + £)}
—(1 = 0)ah™*{I(z — h,t) — 2I(z,t) + I(z + h, 1)}
t+e{(p + v)I(z,t +18) — BS(z,t + s0)I(z,1)}
+d{(p +v) — BS(2, 1)} (2,1 + )

D | g )1, ) - B0 8) - ]

(4.4.2)

in which
(a) for family A1(0), ¢ =1, d=r=s=0,
(b) for family A3(f), c=r=1,d=s=0,
(¢) for family As(f), c=d =103, r=0, s =1.

Using Taylor’s series, the local truncation errors for the three methods, as

h,l — 0, are given by

(i) for family A;(8):
_ 1 ,0%S 1 0%S 0°S
,{:S[S(Z,t),f(z,t),h,f] = —12ah “824 +£["2"5¥§- — a98226t} + e, (443)
| o1 , 01 1041 031
E[[S(Z,t),f(z,t),h,f] — -—12{1;’& "5;:1' 'I‘fi:'é"g't"é' — a@azzat] + v ev (444)
(ii) for family Az(0):
1 0*S 1 0%8S 0S 0S 0°S
S(z,t),1(z,t); h, b} = —— L - . e
Ls[S(z,t),I(2,1) ] 12ah > -Hflz 572 -+ 5 -l-ﬁfat a@azza
T ey (4.4.5)
1 LT [16%] o1 5°1 |
S at}I 7t:h:£ — T 4 — — —
LilS(= 1) 1t A = = ggeh a&”[z R T Tl
|

Lo (4.4.6)
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(iii) for family As(6):

1, ,0%
LS[S(Zat):rI(zat); h:'g] “__ahz 824
178%S as 0°S5
T3 [(’%2 TG ot ’BI ,8.5'-——— B 2a93z23t]£
1835 1 025 8%S 1 9T 1 . 89S
T [E?ﬂ_ﬁ "1t “ﬂ o+ 1779 ~ 3% 5% 2]£
L (4.4.7)
1 0*I
L1[S (=, t), I(z,1); h, 4] = __ah28z4
11921 o1 81 oS 0°1
2 { o TV 0 I"? 2l azzailf
183 1 I 821 0°S 1 0T 1,
+[6 TG T "’8 o --ﬁI-—-—-- " 35,0 2]E
+o. (4.4.8)

Equations (4.4.3), (4.4.4), (4.4.5) and (4.4.6) verify that both families A,(#) and
A,(0) are O(h* 4+ £) as h, £ — 0. Nevertheless, differentiating (4.1.1) and (4.1.2)
with respect to ¢ shows that when 6 = £ the term in £ vanishes in (4.4.7) and (4.4.8),

leaving

ah® 645
Ls[S(z,t),1(z,1); h, €] = 12 Bz"‘

+[1 0°S 1 825 0*S 1 _ 0% 1 048

s o T 1 'BI ot2

T 17958 T 195250

]ﬂ‘*’ + ... (4.4.9)

ah? 0%

ﬁI[S(z,t),I(Z,t),h,E] — 19 _8_2;1.
11 1 1 1, P 1 9% 1 9
53w 10t 5m ~ 1855w ~ 1815 — 1o g

]£2 + ...
(4.4.10)

which are O(h* +£%) as h, £ — 0. It may be concluded that the family As(f) is a

second-order method provided 6 = .
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4.5 Stability Analyses

The von Neumann or Fourier series method of analysing stability will be used to
gain some insight into the stability of the families A;(#) and A3(6). These methods

seek the condition(s) under which small errors of the forms

Z;",m = X — XH; = Y gtomh (4.5.1)
and
Zr, =Y =Y = e¥ileitmh (4.5.2)

where «, 1, 6 and ¢ are real, 2 = v/—1 and f;, 2,”{* are perturbed numerical solutions,

necessary conditions for the errors not to grow as n — oo are (see Smith [10])
| <14+ ML and |e¥| <14+ ML (4.5.3)

where M, and M, are non-negative constants independent of h,£. The conditions

in (4.5.3) make no allowance for growing solutions if M, = 0 and M, = 0.

MEthOd Al(ﬁ)
Substituting Z, into (4.3.12) leads to the (local) stability equation

5 0
{1 + 4p0 sin ——}ﬁw =1—4p(1l — ) sin _§ — ul — LBY" (4.5.4)

where {; = €”* and Y}, is treated as a (local) constant. The von Neumann necessary

condition for stability is |£;| < 1, that is, the stability restrictions are

2 —L(u+ Y )
0<8<1/2, < ST T P Om)
0=1/2, Lp+BY") <2 (4.5.5)
£p + BY ) — 2
1/2<0<L1 > =
[2<0sl, p2 120 -1)

Substituting Z, into (4.3.13) gives the (local) stability equation

(1 +ap0sin? 236, =1 - 41~ 0)sin £ (i nye s poxn, (a5
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where £, = e¥* and X is treated as a (local) constant. The von Neumann necessary

condition for stability is |£,| < 1, that is, the stability restrictions are
2 —fpu+v—PBX7) —(p+v = BX2)

0<6<1/2, P S and p >

4(1 — 26) A :
0=1/2, BLX5 > (p+v}f—2 and p > :""(“p+y; P,
—24+ (p+v—BX, ) —(p+v—BX )
> —_— > A\
1/2 < 0 <1, P2 4(20 — 1) and p> .

(4.5.7)

Method A,(f) : Substituting Z; into (4.3.14) leads to the stability equation

, 6h , &R
{14+ £Lu+LBY," + 4pfsin —-—-}fm =1 —4p(1 — ) sin” 5 (4.5.8)

from which it may be deduced that, for stability,

24 Llu +LBY
< 0<1/2 < M
0=1/2,  BLY; = —2— pL, (4.5.9)
—(2+ pl+ LY )
1/2<0<1 2+ pt + £5Y,7)

Substituting Z, into (4.3.15) gives to the stability equation

{1+ (g +v)l+4p0 sin® 5“1'-5-2-’3}53, =1—4p(1 —0) 0) sin® — d)h +£B8X (4.5.10)

with the consequent stability restrictions

24 (p+v)l+LBXT —(u+v)l+L8X7
< — N ) TR m
0<6<1/2, p < 1(1 - 20) and p > . ,
=1/2,  BIXE < —2—(u+v) and p > :@_ﬂ%ﬁ__tﬂﬁ}‘%,
| —(2+4 (i + V)L +2BX™) ~(p+ V)l + LBXT
> S T R T m) AV P i e
1/2<0<1, p2 1020 — 1) and p > 7 ,
(4.5.11)

For the second-order method, Az(8 = -12-), the von Neumann method fails to give
a criterion for stability since 1t 1s not possible to find £, = € and ¢, = e¥* explicitly
(see for example Al-Showaikh [2]). Therefore, the maximum principle may be used

instead to discuss the stability of the second-order method.
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In order to investigate the convergence of the method A3(f = ) equations (4.1.1)

and (4.1.2) may be written as

1 (0*S  0°S\ = 0S 1 1
561(“5;7 “3;) = E—#N+§(M+ﬁf)5+§(#+ﬁf)5
0S5
o~ —5—t-—[.LN+G1(Z,t, S, I)+G2(Z,t,S,I), (4.512)
1 (8% 0°I oI 1 1
o S5+ 55) = Gt gllat =S+ ) - 5L
01
— “5?+G3(Z,t,S,I)+G4(Z,t, SaI): (4513)
with initial and boundary conditions
5(2,0) =8, I(z,0)=1I; 0<z<L (4.5.14)
05(z,t) 0l(z,t)
—, =5, = 0; atz=0andz=L, t>0. (4.5.15)

Assume that a solution of {(4.5.12),(4.5.13), (4.5.14), (4.5.15)} exists in the closed

, 0*S 0*I 0°*S 0*1
region (: 0 <2< L, 0 <t <T] such that 351 50 B2 and 2 exist and are

bounded in 2. Moreover, assume that functions Gy, G, Gz and G4 are boundedly

differentiable with respect to S and I.

The difference equation to be studied as an approximation to (4.5.12) is (0 = 1/2)

1
SOVAXER 4 X5) = ViXP~ uN 4 2 (4 BYIH)X,
1

+5 1+ YD) XS, n 20, (4.5.16)
where .
Xr o —=2Xn 4 X7
2vn _ I~ m ™m
ViXp = — =2, (4.5.17)
n X'r?z—l-l o Xw?l
VtXm — __T__ (4518)

It is easy to see that
85'::'1‘*‘1 gn+l . gn

1 §2Gntt
— m _Easm
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1 27 an+l n - _]; _@_?_E;-i-l .]_.. 625;_1 _];- 5 Qﬁ%’i"l— 848:711
'2' Vz(Sm _I_ Sm) T ) 822 + 9 62,"2 "l" 24}1 8z4 + 624 :
(4.5.20)
n+1 n+1 n aG;
Gl(zm: tﬂ"}"l‘} m 9 I ) — Gl (zm;tn—i—l; 3 m) -1- (I — [ ) 8I
= L(u e BID)SE + (I — ) S (4.5.21)
2 m Yk 0.
GZ(zm7 n+1’5"ﬂ+1 In) — Gz(zm, ”+1’S§UI:1) (Sn-’rl _ Sn 38(‘;5:2
L 3G,
—_ - J* Y 7 nt+l  on\“ 2 5
5 (1 BIL) S + (S5 — Sh) 5o (4.5.22)

where the barred derivatives are evaluated at intermediate argument values as called

for by the mean value theorem.

Substituting (4.5.19), (4.5.20), (4.5.21), (4.5.22) into (4.5.12) gives

1
%aVﬁ(S;“ +55) = ViSp — uN + o (u+ BIZT) ST, + ;(p + BI%) S
1, [ 04Sntl  (§48n 1 §28n+T G,
_— m m n+-1 ny “-1
+{ 24. ak ( 0z1 T 0z4 ) T3 2 ¢ Ot2 - " = I, oI
. -\ 0G
—(Sm+1 S ) 882 } (4523)

The assumptions on .S and I above require the boundedness of all the derivatives
appearing inside the bracket along with (55,7 — S%) and (I*** — ) in the region
0<2< L, 0<t<T. Hence, in this region,

! . "
_aV§(ST?1+1 -{—Sm) = VtS ——#N_l_ (M+ﬂ1n+1)gn ;(ﬂ ’*‘ﬁ )Sn—{-l

2
+Ym (4.5.24)

with

gm = O(F* + £). (4.5.25)
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Let

Zn = St X", (4.5.26)
om = dm — Yo, (4.5.27)

then, subtracting (4.5.16) from (4.5.24) yields

1
_Q_QV.E (Z?T;Il_l"}'zilm) zvtzn T 3 (ﬂ+/81n+1) —_(ﬂ'}'ﬁyn-!—l) m
1 1
by (u ok BIR)SE = (k4 BYDXE +ah (45.28)
with Z}+!, Z%  vanishing on the boundary. As
FTen
Gl(zma ﬂ+1as:uI:z 1) = Gl(zmv n+17X::uY12+1) T (S:;z T X::z) %
0G,
In+1 _ Yn+1 YL 5
n+l 7n _ n+1 n+1 rn-1 an
G2 (Zmy tnr1; 9 5 Im) = Ga(Zmy toa, X070, Y0 ) + (S0 — X0 — e
'n 5G2
thus
1 9 1 7n n 1 8G1 1 G 1 G
— Zn+ + 4 = V Z Z” T~ 'ﬂ-+1 - YM1 ondel
2aV ( + Z17) t L1y T 5 5 59 + 5 5o Z +2 7 A
1 56, n
t5 37 Z2m t Im- (4.5.31)

Assume that Z2 , Z2+* are bounded. Then equation (4.5.31) may be written in

the form

n ‘ n ]' n n 1

Q-CE V2 (Z T + -Z]_m) S Vt Z + 2 M (Zlﬂhl;l + Zlm) + § M]-I ( 27?1 + 43{11)
tn (4.5.32)
where
0G1 090G, 0G, 0G
Mo = - L — L =
15 max 85 ) aS ) MII IIaX 8] 2 B] ‘

It is known that gz, i1s bounded and Z7 and Z}* vanish on the boundary.

Hence, by Theorem 2.15, X[} and X7:*' converge uniformly to S" and Gt
m '
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The difference equation to be studied as an approximation to (4.5.13) is (8 = 1/2)

1
SaVIYIR YY) = Ve S(utv) - AXEPIY

1
+-2-[(u +v) = BXEIYM >0 (4.5.33)

where V2 and V; are defined as in (4.5.17).
It 1s seen that
oI+t -1 1, 02InH

- — T 7 Tatgp (4.5.34)
L g2 gnt 1 O2I%Y 1 0%I7 TL | O
—_— n In — m - . LY.
2 Vz(Im + m) 2 622 + 2 832 + 24h az‘l 824
(4.5.35)
G (zm’ “+1’Sn i In) — GB(zma n+138n In) (Sn+1 — Sn)aacx;a
1 T n n SG
= slptv)=B5L1L + (S5 - S:;)-—-—S;‘-a-, (4.5.36)
G4(zm? n+1s S;:I::a—l-l — G4(zm,tn+1,5::“];) + (I::{"l — [ Qégf‘i
= L) g4 - (s
2 T mlTm m (9.5' ) ( 0, )

where the barred derivatives are evaluated at intermediate argument values as called

for by the mean value theorem.

Substituting (4.5.34), (4.5.35), (4.5.36), (4.5.37) into (4.5.13) gives

] o
SaVH(IE 4+ 1) = VAIn + S{(u 4 v) = SIS + (4 v) — ST

11

_}_ , [ O oIz 1 PepniT Inl ) EIen
+{24 o ( 5zt az4') tol S — " =50 5%

oG
In+1 L In 4
- Gt

The assumptions on o5 and [ above require the boundedness of all the derivatives

(4.5.38)

appearing inside the bracket along with (Spt — %) and (17! — I) in the region
(i m
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0<2<IL,0<£t<T. Hence, in this region,

Lo V(I AT = VeIt 5l v) - BSEPII + 5+ ) - BSHIIEY
+9m (4.5.39)
with
g* = O(h% 4 0). (4.5.40)
Subtracting (4.5.33) from (4.5.39) and using (4.5.26), gives
L O VE (B + Z3n) = Ve g + (a4 ¥) = BSEPI — (4 v) — AXEPIY
+%‘[(# +v) — BS™) I %‘[(ﬂ + v) — ﬁX;]YQH +gr - (4.5.41)
with Z2+1 77  vanishing on the boundary. As
G3(Zmy tnt1, S 5 Im) = Galzm, taga, X5, Y0 ) + (ST -—-X&“)%"@g
I - Y0 52, (4.5.42)
Ca(Zm tog1, ST I = Gal2Zmy tog, X2, V) 4 (S — X;)%g_;
+(In = Ya) 8{;’*, (4.5.43)
thus equation (4.5.41) becomes
%avﬁ (Zgn" + Z3m) = ViZg, + %%—-—-C?Z{‘Jl + %%@—;Z{"m + %%_%Ezgm
+% ggf Zim’ + G (4.5.44)

0Gs 0G 0Gs 0G
Let Mys = max "'5“5?-, *3—5,?- and Mz; = max *-5%, -5-}:1- } Then equation

(4.5.45) can be written in the form

1 . n no 1 " noy o L
50 Ve (o + Zam) S Vil + 5 Mas(Z337 + Z3) + 5 Mot (25, + Z357)

m 2m
+ 9m (4.5.45)

Assume that Z7 , Z{‘;‘l are bounded. Since Z¢  and Z{l,,;‘;l vanish on the boundary,

it follows, by Theorem 2.15, that Y and Y3 converge to I and I+ uniformly.
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4.6 Implementation

Because of symmetry, it is enough to treat only the region z > 0. This provides

considerable saving in storage and CPU time. This imposes the conditions

05(0,1) B 01(0,1) -
0z U and 0z

0; >0 (4.6.1)

on the new boundary z = 0. The derivative 05/0z in (4.1.4) may be approximated

by the second-order, central-difference replacement

05(z,1) _ S(z+h,t) — 5(z — h,t)

02 2h

- O(h?) (4.6.2)

with a similar replacement being made to 01 /0z. The implementation of the bound-

ary conditions (4.1.4), yields,on z =0 and z = [

Xr =X, VP =YY and XP,, =XI_ YR =Y (n=0,1,2,...) (4.6.3)

to second order thus introducing the exterior grid points (2-1,14) = (=h,nl) and
(Zar415 tn) = (M + 1)h, nf).

i n+1 . rn+1 rn+1 ra+17T 1 _ Mondl 1 , oL

T denotes transpose. ‘I'he modification to the {ormulae of the three families of

numerical methods, and their implications, are as follows.

Method A;(0) :
Taking m = 0, M in (4.3.12) and (4.3.13) and using (4.6.3) gives

m = 0,

(1+2p0) X5™" = 2p0XT™ = {1 = Ly — LAY — 2p(1 — 0)} X
+2p(1 — )X + LuN, (4.6.4)
(1+200)¥5™ = 200%™+ = {1 = (1)L + L85 — 2p(1 — 0)}Y;

+2p(1 = 0)YY", (4.6.5)
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and m = M,

——2p6’X;}ﬂ + (1 + QPQ)X;ZH = —2p(1 — 0)X},_,

+{1 — Ly — £BY" — 2p(1 — 0)}X™ + LuN, (4.6.6)
—2pfY Y 4 (1 + 2p0)YMT = 2p(1 — B)Y 2 _

1= (p+ v)0 4+ 68T — 2p(1 — O)}YE.  (4.6.7)

The solution vectors X"t! and Y™™ may be obtained using the following parallel

algorithm:

Processor 1: Solve EX""' = F3X"4q for X", (4.6.8)

Processor 2: Solve E, Y™ =Gi;Y" {for Y*t (4.6.9)

where E; is a constant, tridiagonal matrix of order M 4 1 given by

14+2p8 —2pb 0 0 ]

B, = 0 , (4.6.10)
0 —p0 142p0  —pd
L0 0 —2p0 14 2p0

and q = [LuN,...,LuN ]T 1s a constant vector of order M + 1. The square matrices

Iy and G are also of order M -+ 1 and are given by

oo 2p(1-=0) O 0

p(1 — 6) fi p(1 —0)

0 , (4.6.11)

- 0 o 0 2p(1 - 0) Im
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where f* =1 — Ly —£B8Y" —2p(1 —0),:=0,1,2,..., M,

g% 2p(1-0) 0 0

Gy = 0 0 : (4.6.12)

where ¢; =1 — (p + )L+ LBX —2p(1 —6),1=10,1,2,..., M.

Method AQ(G) .
Taking m = 0, M in (4.3.14) and (4.3.15) and using (4.6.3) gives

m = 0,

(14 pl + LY, + QPQ)XS’H - QPOX{LH — {1 — 213(1 _ 9)}}(61

+2p(1 — 0) XY + LuN, (4.6.13)
(14 (44 V)l +2p0) YT = 2p0Y"™ = {1+ LBXG — 2p(1 — 6)} Y
+2p(1 — 0))7", (4.6.14)

and m = M,

—2p0 X3 + (14 pl + LBY; + 2p0) X3 = 2p(1 — 0) X

M—1
+{1 — 2p(1 — )} X7 4 LuN (4.6.15)

—2p0Y T+ (14 (p+ v)L + 2p0)Y 2T = 2p(1 — 0)Y.:_,
{1+ LBXY, — 2p(1 — 0)} Y™ (4.6.16)
In this method the solution vectors X"t+! and Y»+! may be obtained

using the
parallel algorithm:

Processor 1: Solve O:X"™ = PX" 4+ q {or b G (4.6.17)

Processor 2: Solve QY™ = R, Y" {or Yt (4.6.18)
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where P, and (); are constant, tridiagonal matrices of order M + 1 given by

[« 2p(1 — 6) (0 0

p(1 — 6) a p(1 — 6)

P = 5 0 (4.6.19)
0 p(l —0) a M1~®|
| 0 0 2p(1 — 0) a |
wne [ g —2p0 0 0
-pd ¢ —pb
Qr=| 0 (4.6.20)
0 — b q —nl
L0 e 0 =20 g

with e =1—2p(1 —0) and ¢ = 1 + (u + »)€ + 2pb, respectively. The matrix Oy is a

tridiagonal matrix of order M + 1 given by

by —2pf O e 0
—pf b, —pb
O, = 5 0 | (4.6.21)
0 —pl by, —pl
0 e 0 —=2p0 b,

where b; = 1 4+ ul + LBY™ +2p0, ¢+ = 0,1,..., M. The matrix
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ro 2p(1 — 6) 0 0
p(l — 6) Ty P(l — 9)
Rl — 0 s (46 22)
0 p(l —0) Tr—1 p(1 —0)
0 vt O 22)(]. — 0) T.M

with 7 = 1 +£8X> —2p(1 —0),: = 0,1,2,..., M, is also a tridiagonal maitrix of
order M + 1.

Method As(0 =1/2)
Taking m = 0, M in (4.3.16) and (4.3.17) and using (4.6.3) gives,
m = 0

I 1 . 1
(1+ spub+ 5ENBY + p) X3 — p X7 4 -Q_EJ\T,@XSI»}/;J?Wl

1 ,
= {1 — -Q-fp, — p}X§ + pXT + LuN, (4.6.23)

1 1 &l ' n ]_ , .
(]_ "I' 5(/1' + V)g - 53,8)&0 —|- p)}/b +1 2)}/1 +1 3£ﬁ}/0nX61+]
1
=1 =5+ v}l = p}¥§ +pYy, (4.6.24)

and, for m = M,

—p X2 4+ (1 + pr + -—-fﬂl + p) X 4 E,BX“ Yl

- 1
= pXy  +{1 - ——f ~p} Xy, +LuN  (4.6.25)

1 1
—pYyh + (L4 5(n+ )= SLBXT + )Y+t — fﬁ)"}f;_X'““
l

=Py H = S(p+ )= pYyy, (4.6.20)

As described above, the linear algebraic systems given by {(4.6.8),(4.6.9)} and
{(4.6.17),(4.6.18) } which represent the first-order methods Ay (0) and A,(0), respec-
tively, can be solved using parallel computation (using a computer with two proces-
sor). In parallel computation, the vectors X1 and Y™ can be obtained simul-

taneously and thus the time taken to solve the PDEs will be reduced significantly
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For the algebraic systems {(4.3.16),(4.3.17),(4.6.23),(4.6.25),(4.6.24),(4.6.26) } which
represents the second-order method As(8) with 8 = 2, the implementation is differ-
ent because of the appearance of the elements of Y™** in {(4.3.16),(4.6.23),(4.6.25)}
and the elements of X"t in {(4.3.17),(4.6.24),(4.6.26) }; the vectors X"**! and Y"»*!
will be obtained simultaneously by solving a linear algebraic system of order 2M + 2
at each time step.

Let Unt! = [(X™1)T, (Y"1)I]L and U = [(X")T, (Y™)1]?, where T denotes
transpose, then it is seen that the system {(4.3.16),(4.3.17),(4.6.23),(4.6.25),(4.6.24),

(4.6.26)} may be written in matrix-vector form as

WU =MU” + b (4.6.27)
in which
A" i B E : o |
W= | ... ... ... and M =
c* . D" ] 0 : F

The vector b is a columm-vector of order 2M + 2 and is given by

T

o 1
b= Hqu?.'

where q; = [{uN,...,luN| is a constant vector of order M + 1 and (2 1S a ZEro
vector of order M + 1. The matrices W™ and M are both of order 2M + 2 and their

sub-matrices of order M + 1 are given by

Al —p 0 0
—3p Al —3p
A" = 0 0 E (4.().28)

where AF =1+ 2l + LAY +p, i =0,1,2,... .M

}
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[ Dt —p 0 0
—3p D —3p
D" = I 0 0 |
—3p Dy, —gp
o0 .-« 0 —-p DY,

where D?-:l | ;(M‘FV)Q %f,@X?’—l—p,Z‘:O,l,Q,...,M,

L op 0 - 0
30 E o 3p
K = 0 |
0 :p E 1p
f__ 0 0 p K
where £ =1 + %#f — P,
- op 0 0
:» F3p
F=10 0 |>
%p I %p |
0 0 p» F J

where F'=1— 2(p +v){ — p,
a P
B" = dmg{—z-fﬁ)xi },1=0,1,2,.... M

and

o .
" — dzag{—-é-f,@y;n}, 7 = 0, 1,2, ‘e ,.ZW

80

(4.6.29)

(4.6.30)

(4.6.31)

(4.6.32)

(4.6.33)
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Further research reveals that it is possible to compute X**! and Y**! in parallel
on an architecture with two processor; that is made possible because B* and C* are
diagonal matrices so that it is easy to find the inverse matrices of B® and C", so

equation (4.6.27) may be split to give

A™X™ 4 BPY"H = EX" 4 q, (4.6.34)

FY” (4.6.35)

Cnxn—l—l 1 DRY?’L-I-l

which can be solved simultaneously for X"*t! and Y"*! using the following parallel

algorithm:

Processor 1 : bolve

(D*(B")"*A" — C")X* =D*(B")T'EX" -FY" + D*(B") ! q
for X" (4.6.36)
Processor 2 : Holve

(A"(C")T'D" —B"MY" = —EX" + A*(C")'FY" — q;

for Y™ (4.6.37)

Equations (4.6.36) and (4.6.37) again can be solved using parallel computation, each

processor solving a linear algebraic system of order N + 1 at each time step.

4.7 Numerical experiments

To test the behaviour of the three methods, the solution of (4‘1.1)*-*(4.1.4-) Was Conl-
puted for suscepiible and infectious individuals, respectively. Throughout the numer-
ical experiments, the set of parameters given in (2.8.1) for 4 and v with N = 25 x 108
and the iniection rate, 5, chosen to be 8 = 5 x 10~%. In the following numerical
experiments, Experiments A and B, two sets of initial conditions are distributed over

the interval 0 < z < 1 given the functions S(z,0) and I (2,0).
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Experiment A

In this experiment, the space step was given the value A = 0.025 so that M = 39.

Hat-shaped initial distributions are used for S and I and are given by

81250 ,OSiSMz-I-l
S(2;,0) =

R1250(M + 1 — ) ,Mg_lgisM—i—l,

187.51 ,ogigM;rl
I(z;,0) =

875N +1—4) AT i,

T2
In this case, the maximum value of each class of individuals is concentrated at the
middle of the interval 0 < z < 1 and the numbers decrease linearly to zero at the
boundaries z = 0 and z = 1, see Figures 4.1.

For this experiment, numerical simulations were carried out to see the behaviour
of the three suggested methods, A;(0), Az(0) with 0 =0, £, 1 and Az(f) with 6 = Z,
for the different values of the diffusion rate, a. The stability intervals of the numerical

methods are obtained for a = 0.001, 0.01, 0.04 and are summarized in Table 4.1, In

the case of method A;(0) with 6 = 0, negative values of susceptible individuals, S,
and infectious individuals, I, occurred for £ > 0.0334 with o = 0.001 while contrived

oscillations were exhibited in the numerical solution as £ was increased beyond the
value 0.0245 with o = 0.01 and the value 0.0065 with @ = 0.04. The method
produced overflow for ¢ > 0.0467 with o = 0.001, for £ > 0.0257 with o = 0.01 and
for £ > 0.0077 with o = 0.04. Using 6 = 3 and 6 = 1 negative values of susceptible
and infectious individuals began as £ was increased above the values in the stability
interval (see Table 4.1) with overflow occurring as £ was increased further.

Using Method A(6) with § = 0 negative values did not arise in the numerical
solution. It is seen that the method gave the qualitatively correct behaviour for
¢ < 0.3250 with = 0.001, for £ < 0.0319 with o = 0.01 and for £ < 0.0076 with

a = 0.04 after which oscillations and overflow occurred as £ was increased Turther.

Using 6 = 7 with o = 0.001 the method never produced overflow and always converge
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Interval of Sta,blhty
o 0 d Az(6) |
0 | (0,0 0334)
0.001 | 1 (0, 0.0334)
| 1 |  (0,0.0280)
0 (0, 0.0245)
0.01 > (0, 0.0326) . (0, 0.0387)
1 (0,0.0317) | (0, o0)
0 (0, 0.0065) | (0, 0.0076) |
| 0.04 | % (0, 0.0339) (0, 2.8) (0, 0.0420)
1 | (0,0.0445) (0, oo) |

Table 4.1: Stability intervals of the methods

to the correct steady-state for all £ > 0. For o = 0.01 and a = 0.04 the method did
not produce overflow but negative values of infectious occurred before approaching
to the correct behaviour as-f was increased beyond the value 7.5 with o = 0.01 and
the value 2.8 with = 0.04. Using 6 = 1 with « = 0.001, ¢ = 0.01 and o = 0.04,
the qualitatively correct behaviour was observed for an arbitrarily large time step <.

Using Method A3(f) with § = 2 contrived oscillations did not arise in the nu-
merical solution but negative values of susceptible and infectious individuals were
observed as £ was increased above the value 0.0358 with a = 0.001, the value 0.0387
with ¢ = 0.01 and the value 0.0420 with « 0.04 with overflow occurring for

{ = 0.0579 (o = 0.001), for £ = 0.0895 (« = 0.01) and for £ > 0.2507 (@ = 0.04),

respectively.

The method A3(f) (6 = Z) was chosen to compute further numerical results. ‘I'he
space and time steps were given the value h = 0.025, £ = 0.001 and the diffusive
rate was given the values o = 0.005, 0.01, 0.03, 0.04, 0.06, 0.09. The numerical

results are depicted 1n Figures 4.2-4.7. These show that the dynamic behaviour of

whooping cough changes as « is increased. It is found that the number of susceptibles

are less than the number of infectious individuals near the middle of the interval for
o = 0.005, o = 0.01 and a = 0.03 (Figures 4.2-4.4). As o is increased, the number of

susceptibles becomes larger than the number of infectious individuals and the number
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of infectious individuals spreads on the z-axis, see Figures 4.5-4.7. Figure 4.8 (a)

and (b) give the three-dimensional plots of susceptible and infectious individuals for

0<2<1.
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Infectives
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o
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Space

Figure 4.1: Experiment A, initial distributions of susceptibles and infectives.
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Population
™

Figure 4.2: Experiment A, dynamics of whooping cough using As(f = 3) at time
t = 0.15, a = 0.005, £ = 0.001 and » = 0.025; susceptibles (—) and mfectwes
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Figure 4.3: Experiment A, dynamics of whooping cough using As(0 = =) at time

— ).

t =0.15, « =0.01, £ = 0. 001 and h = 0.023; susceptibles (—) and mfectwes (

91
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Figure 4.4: Experiment A, dynamics of whooping cough using A3(f = %) at time
t = 0.15, « = 0.03, £ = 0.001 and h = 0.025; susceptibles (—) and infectives
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Figure 4.5: Experiment A, dynamics of whooping cough using Az(0 = 1

5) ab time
t = 0.15, a = 0.04, £ = 0.001 and h = 0.025; susceptibles (—) and infectives
-
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O 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1
Space

Figure 4.6: Experiment A, dynamics of whooping cough using A3( = 3) at time
t = 0.15, a = 0.06, £ = 0.001 and h = 0.025; susceptibles (—) and infectives
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Figure 4.7: Experiment A, dynamics of whooping cough using As(0 = 32-) at 1ime
t = 0.15, « = 0.09, £ = 0.001 and A = 0.025; susceptibles (—) and infectives
=)
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Figure 4.8: Experiment A, three-dimensional distribution of susceptibles and infec-
tives for @ = 0.001 using Az(0 = 1) with A = 0.025 and ¢ = 0.015: (a) profiles for
susceptibles and (b) profiles for infectives.
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Experiment B

In this experiment, the space step was given the value h = 0.05 so that M = 19, the

initial conditions are of the form

1390480 ,i:ﬂ/‘%}-
O M-—-3 M—1 M+3 M+5
S(2,0) = 1590480 L=T05T T 0 T 0 T g
M — M
1690480 , 0 <i < — ° & ;5535M+1
l0s000 |, i= 2!
: >
. M—-1 M
I(z,0) = { 23000 ,i= M
2 2
M —
0 0<i< 21 ¢ M3 oM

where the infectious individuals are concentrated in the middle of the interval

0 < z < 1 and the susceptible individuals are distributed along the whole interval

such that the number of susceptible individuals in the middle of the interval i1s less

than the other parts of the interval, see Figure 4.9.

The numerical results are shown in Figures 4.10-4.14, where the profiles of sus-
ceptible and infectious individuals are given at time ¢ = 0.10 using method A3(0)
(6 = %) with A = 0.05 and £ = 0.001 for o = 0.01, 0.04, 0.06, 0.08, 0.10. These
show that the number of susceptible individuals 1s less than the number of infectious
individuals near the middle of the interval and the number of infectious individu-
als becomes more spread-out as « increases. The three-dimensional distributions of
susceptible individuals and infectious individuals produced by methods A;(0 = 1),
Ao(f = 1) and As(f = 1/2) are shown in Figures 4.15-4.20.

From experiments A and B, 1t can be seen that the dynamics of whooping cough

depends on the initial distribution and the diffusion rate.
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Figure 4.9: Experiment B, initial distributions of susceptibles and infectives.
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Figure 4.10: Experiment B, dynamics of whooping cough using As(0 = %) at ime
t =0.1, « = 0.01, £ = 0.001 and h = 0.05; susceptibles (—) and infectives (+— ).
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Figure 4.11: Experiment B, dynamics of whooping cough using A3(0 = ) at time
t =0.1, = 0.04, £ = 0.001 and ~» = 0.05; susceptibles (—) and infectives (- — ).
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