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Abstract 

A number of diffraction problems which have practical applications are examined 

using the Wiener-Hopf-Hilbert technique. Each problem is formulated as a matrix 

Wiener-Hopf equation, the solution of which requires the factor~sation of a matrix 

kernel. Since the determinant of the matrix kernel has poles in the cut plane, the 

Wiener-H~pf-Hilbert technique is modified to allow the usual arguments to follow 

through. In each case an explicit matrix factorisation is carried out and asymptotic 

expressions for the field scattered to infinity are obtained. 

The first problem solved is that of diffraction by a semi-infinite plane with different 

face impedances. The solution includes the case of an incident surface wave as well 

as an incident plane wave for an arbitrary angle of incidence. Graphs of the far-field 

are provided for various values of the half-plane impedance parameters. The second 

problem examined is diffraction by a half-plane in a moving fluid. This is solved 

without restriction on the impedance parameters of the half-plane and includes both 

the leading edge and trailing edge situations. The final problem is of radiation from 

an inductive wave-guide. Expressions are obtained for the field radiated at the wave­

guide mouth and the field reflected in the duct region. 
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Chapter 1 

Introd uction 

1.1 The Wiener-Hopf Technique 

This work concerns the scattering of acoustic and electromagnetic waves for impedance 

half-plane type boundary value problems. There are two basic analytical methods used 

for the solution of diffraction problems of this type. The Maliuzhinets [20] method 

introduced in 1958 was used to obtain a complete solution to the problem of diffraction 

of a plane wave by an impedance wedge. On setting the wedge angle to be zero this 

gives a solution to the problem of the diffraction of a plane wave by a half-plane with 

different face impedances. 

The matrix Wiener-Hopf method employed in this work is a generalization of 

the Wiener-Hopf [33] technique introduced in 1931. This method is useful for solving 

boundary value problems on semi-infinite geometries; Noble [27] gives a comprehensive 

guide to the technique. The matrix method involves the solution of a matrix Wiener­

Hopf equation which is defined in a strip (or on aline) T of the complex a-plane and 

takes the form 

G(a)l(a) = u(a) + P(a), (1.1 ) 

1 



Cbapter 1: Introduction 

where G(o:) is a known square matrix and P(a) is a known vector. The unknowns 

u(a) and l(o:) have elements that are analytic in an upper (7+) and lower (7_) halves 

of the complex plane respectively. G( 0:) and P( 0:) are analytic in the strip (or on the 

line) 7 = 7+ n 7_. The solution of such an equation requires the factorisation of the 

matrix kernel G ( a) such that 

(1.2) 

where G+ and G_ and their inverses are regular and analytic in 7+ and 7_ respectively, 

and their elements have algebraic behaviour at infinity. In the scalar case this can . 
be done by taking logarithms and sum splitting the kernel using Cauchy's theorem. 

However, in the case of matrices this does not apply due to the non-commutativity of 

the matrices involved, or the exponential behaviour of the matrix elements at infinity. 

This is the main obstacle in solving matrix Wiener-Hopf problems and three main 

methods of factorisation have been developed. Following is a summary to these three 

techniques, a comprehensive guide with worked examples can be found in [7]. 

The weak factorisation method was developed independently by Idemen and Abra-

hams. Although this method does not require the non-singularity of G+ and G_ it does 

require the solution of an infinite system of linear algebraic equations. This method 

has been applied to several half-plane problems, including scattering of acoustic waves 

by Abrahams and Wickham [1], [2] and [3]. 

The Daniele/Khrapkov method is based on a basic idea by Heins [10]. It was 

developed independently by Khrapkov [17] and later by Daniele [5] who overcame the 

problems with exponential growth of the split matrices. More recently, work has been 
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carried out by Meister and Speck [22] based on factorizations of this form. Formulating 

the problems in a Sobolev space setting, their work includes the impedance problem 

and a general problem involving second order boundary conditions. 

The method adopted in this work is the Wiener-Hopf-Hilbert method introduced 

by Hurd in 1976 [11]. A criterion for the range of applicability of this method was 

given by Hurd and includes that of Rawlins and Williams [30]. Examples of problems 

solved using the Wiener-Hopf-Hilbert method include Hurd and Przeidziecki [13], 

[14] and Liineburg and Hurd [18]. The gist of this method is to reduce the matrix 

Wiener-H'opf equation to a pair of coupled Hilbert equations. The matrix in this case 

is considerably simpler and can be solved using Muskhelishvili's theory [26]. It will 

be seen that the determinants of the matrices in the problems considered have poles 

in the cut plane. The Wiener-Hopf-Hilbert technique is therefore modified to allow 

the usual arguments to follow through. 

1.2 Structure of the Thesis 

The structure of each of the following chapters follows the same basic pattern. In 

each case the boundary value problem is set up and from this a matrix Wiener-Hopf 

equation is derived. The matrix kernel is then factorised and an expression for the 

far-field is established. A discussion is then given of any graphical results obtained. 

In Chapter 2 the problem of the diffraction of a plane acoustic wave incident on 

a semi-infinite plane is solved. The upper and lower surfaces of the half-plane are 

lined with materials with different absorbing properties and the solution given is valid 
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for an arbitrary angle of incidence. Expressions are obtained for the reflected and 

diffracted fields as well as arising surface waves. Graphs of the far-field are given for 

a range of values of the angle of incidence and specific admittance of the half-plane 

surfaces. It is shown that this solution is valid for an incident surface wave. Graphs 

of a diffracted 'lobe' are obtained and the reflected and transmitted surface waves are 

examined. This problem generalizes that solved by Trenev [32] for an electromagnetic 

application. 

A more general boundary condition is considered in Chapter 3. This is equivalent 

to the problem of the diffraction of sound by a half-plane in a moving fluid and the 

solution reduces, in a special situation, to that given by Rawlins [29]. The solution 

given includes both the leading edge and trailing edge situation, where a Kutta­

Joukowski edge condition is imposed. Graphs of the far-field are plotted for both 

absorbent and wave-bearing half-planes. It can be seen that special cases of this 

solution agree with results from Chapter 2. 

In Chapter 4 the problem of electromagnetic radiation from an inductive wave­

guide is solved. An exact closed form solution is obtained for the problem of a radi­

ating parallel plate waveguide when the inside walls are inductively loaded and the 

outside walls are capacitively loaded. This mathematical problem serves as a model 

for an inductively loaded horn antenna. Expressions are computed for the reflection 

coefficient at the waveguide mouth and the radiation diagrams of the far-field. 

At the end of each chapter, conclusions are drawn from the results obtained in 

solving these problems. Suggestions are also made as to possible further developments 
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in the use of the Wiener-Hopf-Hilbert technique to solve diffraction problems. 

Appendix A gives an alternative expression for the diffracted field to give uniform 

asympotics across the geometrical optics boundaries. Appendix B gives an analysis 

of the incident field used in the wave-guide problem (Chapter 4). A selection of the 

Mathematica programs used to obtain the graphical plots are given in Appendix C. 

Finally, in Appendices D and E, contour integrations are carried out that are required 

in Chapters 2-4. 



Chapter 2 

Diffraction by a Half-Plane with 
Different Face Illlpedances 

2.1 Introduction 

The problem of diffraction of a plane wave by a semi-infinite plane with different 

impedance boundary conditions on each face was first solved by Maliuzhinets [20] 

using a Sommerfeld integral representation for the field. It is also possible to formulate 

the problem as a pair of simultaneous Wiener-Hopf equations that were thought to 

be insoluble until Hurd [11] introduced the powerful Wiener-Hopf-Hilbert technique. 

This method involves transforming the Wiener-Hopf equations into pair of coupled 

Hilbert equations, which can be solved using Muskhelishvili's theory [26]. The crux of 

this method requires that the determinant of the Wiener-Hopf kernel does not vanish 

in the cut plane. In the case where the impedance parameters are such that the 

half-plane is absorbent, the determinant of the matrix kernel is non-zero. Rawlins 

[31] obtained explicit expressions for the diffracted and geometrical acoustic field for 

the diffraction of waves from a line source by an impedance half-plane. However, 

for wave bearing surfaces, where the impedance parameter can be purely imaginary, 

6 
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( 

the determinant of the matrix kernel has zeros in the cut plane. Here the Wiener-

Hopf-Hilbert approach is generalised to deal with both wave-bearing and absorbent 

surfaces. 

The present work has applications in acoustics and electromagnetics. The half-

plane problem with absorbing boundary conditions forms a mathematical model for 

a noise barrier lined with different materials on its upper and lower surfaces. Such 

barriers can be used to reduce noise levels from airports or motorways. Only the field 

radiated from the edge of the barrier affects a receiver in the shadow region of such a 

barrier. This can be reduced by lining the barrier with different acoustically absorbent 

materials. In the case where the impedance parameters are purely imaginary, the 

half-plane can be considered as a directional wave launcher. The present work also 

has applications in electromagnetism where a thin dielectric layer above a perfectly 

conducting half-plane acts as a waveguide launcher. 

In Section 2.2 the mathematical boundary value problem is formulated. The prob-

lem is then solved in Section 2.3 by an application of complex Fourier transforms, this 

results in a pair of Wiener-Hopf equations. The important step in any Wiener-Hopf 

problem is the factorisation of the Wiener-Hopf matrix kernel, this is carried out in 

Section 2.4. Although the determinant of the matrix kernel contains singularities, 

by performing the factorisation on a matrix K(a) with a constant determinant, the 

problem of factorisation of the matrix kernel can be reduced to pair of coupled Hilbert 

equations in the usual way. In Section 2.5 asymptotic approximations for the far-field 

are obtained. Explicit expressions are given for the diffracted and geometrical acous-
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tic field and graphs of the far-field are plotted. Graphical results for various angles of 

incidence and impedance values are given in Section 2.6. These results are followed 

by an examination of some special cases that are of particular interest. The special 

case of a rigid half-plane is examined in detail in Section 2.7. The expressions for the 

far-field simplify considerably in this case and are clearly in agreement with earlier 

work done on this problem. Section 2.8 looks at the case of a semi-rigid half-plane, 

that is a half-plane with one zero and one none zero impedance parameter. How 

such a barrier could be best used to reduce the sound intensity between a source and 

recei ver is discussed. 

Surface waves are examined in Section 2.9. In the particular case where the specific 

admittance of the half-plane surfaces is wholly imaginary, it is shown that surface 

waves arise. Moreover, the solution given in Section 2.5 is valid for complex values 

of the incident wave angle (i.e. the problem of an incident surface wave). Diffracted 

lobes are obtained and the reflected and transmitted surface waves are examined. Two 

special cases are then examined for the case of a surface wave incident upon a half­

plane. In Section 2.10 an inductive half-plane with the same impedance parameters 

on its upper and lower surfaces is considered. In Section 2.11 is examined a half-plane 

whose impedance parameters vary only in sign. It will be seen that the radiated lobes 

are identical in these two cases, though the reflected and transmitted surface waves 

are not. Conclusions are drawn and further work discussed in Section 2.12. 
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2.2 Formulation of the Boundary Value Problem 

To begin with, the basic equations governing propagation through a homogeneous 

medium are introduced. The density field, p and velocity field, u satisfy the continuity 

equation 

ap at + V.(pu) = o. (2.1 ) 

An ~quation of state, which describes the compressibility properties of the medium, 

is also required. It will be assumed that the pressure, p depends only on the local 

density 

p = p(p). (2.2) 

When the medium is inviscid and in the absence of external forces, the N avier-Stokes 

equation of motion reduces to Euler's equation 

au 1 -a + (u.V)u = --Vp. 
t P 

(2.3) 

These three equations are linearised by regarding as small all perturbations from a 

state in which the medium is at rest and has uniform density po and pressure p. By 

retaining only first order terms the following linearised equations are formed 

(2.4) 

au 1 
- = --Vp, at Po 

(2.5) 

ap 2ap 
-=c-
at at' 

(2.6) 

where c is the speed of sound. By taking the curl of equation (2.5) it can be seen that 

the vorticity n = V !\ u is independent of time. Thus, for an initially irrotational 
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flow, n = 0 for all time and there exists a velocity potential 'IjJ(x, t) such that 

u = \l'IjJ. (2.7) 

Eliminating p and p from equations (2.4)-(2.6) gives the wave equation 

8
2

'IjJ = 2r72~/, 
8t2 C v ¥". (2.8) 

Writing 'IjJ(x, y, t) =Re{ 'IjJ(x, y)e-iwt } and suppressing the time factor e-iwt throughout 

results in the Helmholtz equation 

(2.9) 

The acoustic wave number k is related to the angular frequency w by the identity 

w = kc. 

y 

, , 
, , 

"" eo 

, 
, , , 

, , , 

, , , 

, , , , 

~ 
.LX: 

, , 

____ ~' ......................... x 

Figure 2.1: A plane wave incident on a half-plane. 

It is assumed that the half-plane occupies the region x > 0, y = 0 (see Figure 2.1) 

and the surfaces are lined with materials such that /31 and /32 are the complex specific 
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admittances of the upper and lower surfaces of the half-plane respectively. It is noted 

that for Re (31,2 > 0 the surface is absorbent. For Re (31,2 = 0 the surface no longer 

absorbs energy and can support surface waves provided (31,2 = -iX1 ,2, X 1 ,2 > O. The 

problem is one of solving the Helmholtz equation 

subject to the boundary conditions (see [24]) 

~~ (x, 0+) + ik{3,,p(X, 0+) = 0, x > 0, 

~~ (x, 0-) - ik{32,p(X, 0-) = 0, x > O. 

The potential 'lj; must also satisfy the continuity conditions 

B'lj; + B'lj; _ 
By (x, 0 ) = By (x, 0 ), x < 0, 

'lj;(x, 0+) = 'lj;(x,O-), x < 0, 

and the edge condition 

'lj; = 0(1), 
B'lj; - = 0(X-1

/
2

), as x --t O. 
By 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Combined with the condition that the diffracted field is outgoing at infinity, these 

conditions ensure that the boundary value problem has a unique solution. 

2.3 Reduction to a Matrix Wiener-Hopf Equation 

Define the complex Fourier transform ~(CY., y) by 

A 1 100 
. 'lj;( CY., y) = - 'lj;( x, y)e -tcXX dx. 

27r -00 

(2.16) 
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Applying this transform to the Helmholtz equation (2.10) gives 

d2~ 2 A 

dy2 + K, 'ljJ = O. (2.17) 

The branch of K, = (k2 - a2)1/2 is chosen such that K, = +k for a = O. It can now be 

seen that a solution to the boundary value problem is given by 

(2.18) 

y < O. (2.19) 

For convenience it is assumed that 'ljJgo consists of the incident plane wave and a 

reflected wave thus 

(2.20) 

where 

(
sin Bo - /31) 

R = . B f.l ' 0 < Bo < 7r. 
sIn 0 + fJl 

(2.21 ) 

Applying the continuity conditions (2.13) and (2.14) leads to 

sin B 0 

A(a)-B(a)=h(a)- '(f.l . B)( k)' 
7rZ fJl + SIn 0 a + 0 

(2.22) 

k/31 sin Bo 
K,(A(a)+B(a))=12(a)+ '(f.l . B)( k)' 

7rZ fJl + SIn 0 a + 0 

(2.23) 

where a = -ko = -kcosBo lies in the lower half of the a-plane (7_ =Im(a) < 0) and 

11(a) and l2(a) are analytic in this region. The capture of the pole at a = -ko in the 

lower half plane is shown in Figure 2.2. The boundary conditions (2.11) and (2.12) 

lead to 

(2.24) 

(2.25) 
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where u1(a) and u2(a) are analytic in the upper half of the a-plane (7+ =Im(a) > 

-r-------Je'----t-------,-_ 
-k o 

Figure 2.2: The complex plane. 

Eliminating the unknowns A(a), B(a) gives 

(k/3 ) 1 (z Z2) _ sin ()o( ~ + k(31)(1 - k/3d ~) 
1 + ~ - 1 + - - U1 + .( . ())( k)' 2 ~ 27rZ /31 + SIn 0 a + 0 

which leads to the matrix Wiener-Hopf equation 

where 

Define D( a) such that 

p 
G(a)l(a) = u(a) + G(a) (a + k

o
)' 

(2.26) 

(2.27) 

(2.28) 
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and define I{(a) by 

G(a) = D(a)I{(a). (2.31 ) 

Then 

(2.32) 

and 

det I{( a) = 1. 

The factorisation of G(a) now follows directly from the factorisation of J{(a) and 

D(a). 

2.4 Factorisation of the Matrix Kernel 

Factorisation of }«(o;) 

The required factorisation is I{(a) = U(a)L- 1 (a) where L(a) is analytic everywhere 

except k < a < 00, Im(a) = 0 and U(a) is analytic everywhere except -00 < a < -k, 

Im( a) = O. Then it can be seen that 

(2.33) 

since L is continuous across this region. Eliminating L-1 (0 gives 

(2.34) 

where F+ denotes values of F on the upper side of the cut and F- denotes values of 

F on the lower side of the cut. From equation (2.32) it follows that 

'1 I k(3 ilKI + k(31 
'I, K + 1 ilKI 

_(., I k(3) ilKI + k(32 ' 
'I, K + 2 ilKI 

(2.:3.5) 
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This simplifies to 

u+ _ ( 0 -i (~~~}!:::~)1/2) _ 
(~) - _ . (k2 .ei +IKI2) 1/2 U (~). (2.37) 

'l k2.e?+IKI2 0 

It is apparent that the above equation necessitates the solution of the following coupled 

Hilbert problems 

(2.38) 

(2.39) 

The substitutions V(tl = U,(t)U,(t) and W(tl = U'n, upon multiplying and di­
U2 ~ 

vi ding the Hilbert equations, produce 

v+(~)/v-(~) = -1, (2.40) 

+ _ [IKI2 + k2f3i] 
[logW(~)] +[logW(~)] =log IKI2+k2 f3i . (2.41 ) 

By inspection, it can be seen that equation (2.40) has a particular solution 

(2.42) 

By using the result [y'k+~]± = ±ilk+~I~, equation (2.41) can be written in the 

form 
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This standard Hilbert problem has a solution (see Appendix E) 

(2.44) 

By manipulating the integrand, this reduces to 

[
v'k + a (X! { 

W(a)=exp 27r Jo 10g[t+kB1(+)]+10g[t+kB1(-)] 

-log[t + kB2 ( +)] -log[t + kB2 ( -)] } 1 dt 1, 
t2"(t+k+a) 

where B1,2(±) = 1 ± VI - i3?,2' Using the result (see Appendix D) 

roo 101g(t + 8) dt = ~ 10 ( r,:;; + 18) I I I Jq t"2(t + ,) fi g v' v 0, arg, < 7r, arg81 < 7r, (2.45) 

enables a solution of (2.41) to be written as 

W(a) = (Vk + a + y'kB,( +) )( vk+ a + y'kB1 { -) ). (2.46) 

(v'k + a + VkB2 ( +) ) (v'k + a + VkB2 ( -) ) 

Particular solutions of (2.38) and (2.39) are now given by 

A general solution can be obtained by following the method given by Rawlins [31]. 

This is done by imposing further conditions on the functions U1 ( a) and U2 ( a). First 

it is required that 

for some n, m > -l. Secondly it is required that U1(a) and U2(a) have finite degree 

at infinity. These conditions lead to 

U(a) = U(O)(a)P(a), 
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where Pij(i, j = 1,2) are arbitrary polynomials and 

To ensure that U is non-singular in the cut plane det U and hence det P must be 

non-zero for all a. Since det P is a polynomial, it follows that det P= constant. For 

simplicity, P is chosen to be the identity matrix. This gives a final expression of 

(2.4 7) 

The matrix L( a) can be found from the expression 

L(a) = ]{-l(a) U(a). 

Factorisation of D( a) 

The function D(a) can be written as 

D(a) = 
(~ + k(31)(~ + k(32) 

Consider factorising the function dn (a) given by 

(2.48) 

Using calculations given in Rawlins [29] it is noted that 

where 

l
arCCOS(IJ/k) u - (1 - V2)-1/2 arccos v sin u du 

F(v)--v . 
- 1r /2 (V - cos u) 

(2.49) 
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It now follows that 

{ ~ }1/2 
D+(a) = V ~ d~(a) d!(a) . 

This completes the factorisation of D(a). 

2.5 Asymptotic Expressions for the Far-Field 

It is noted that 
G(a) = D(a)K(a) 

= D+(a)D_(a)U(a)L-1(a) 
= D+(a)U(a)D_(a)L-l(a) 
= G+(a)G_(a). 

With the factorisation of G( a) complete, proceeding from equation (2.28) gives . 
p 

G(a)l(a) = u(a) + G(a) (a + k
o
)' 

p 
G+(a)G_(a)l(a) = u(a) + G+(a)G_(a) (a + k

o
)' 

18 

(2.50) 

G_(a)l(a) = G+'(a)u(a) + G-(a) (a: k
o
)' 

G_(a)l(a) - [G_(a) - G_( -ko) 1 (a: k
o
) = G+'(a)u(a) + G_( -ko) (a: k

o
) .(2.51) 

The left hand side of this expression is analytic in lm( a) < 0 and the right hand side 

is analytic in 1m ( a) > 0, a =f:. - ko • Hence both sides of equation (2.51) are equal to 

an entire function Q(a). From equations (2.42) and (2.46) it follows that 

1 

V(a) = O(a-2"), W(a) = 0(1), lal---t 00. 

This implies that 

Combining the edge condition (2.15) with (2.24) it can be shown that the terms of 

u( a) are O( a-1/ 2 ) at worst. Using Liouville's theorem it now follows that Q( a) = O. 



Chapter 2: Diffraction by a half-plane 19 

Thus 

(2.52) 

(2.53) 

Combining (2.53) with (2.24) and (2.18) gives 

~s(x,y) = 100 

Ul(a) ei(QX+KY)dex, y> O. 
-00 (~ + k(31) 

(2.54) 

From (2.25) and (2.19) it can be seen that 

(2.55) 

The path of integration is indented below at a = k and above at a = -k, -ko, for 

real k and 0 < f) 0 < 7r. These integrals are of the type examined in Noble [27] and the 

method described there is adopted by considering a shift of contour in the a-plane 

given by 

ex = kcos(f) + it), (-00 < t < 00). (2.56) 

Expression (2.56) represents one half of a hyperbola. For 0 < f) < 7r /2, this represents 

the half of the hyperbola in the right-hand half-plane (Figure 2.3), and for 7r /2 < B < 

7r, the half in the left-hand half-plane (Figure 2.4). It can be seen that the pole at 

a = -ko is captured for B > 7r - Bo. Noting that ul(a) is given by expression (2.53) 

and P is defined by (2.30), the contribution from the pole at ex = -ko is 

nl. (B) 2' l' ( k) Ul ( ex) eiQx+iKY 
-!f-'r r, = 7r'l 1m ex + 0 ( k(3 ) , 

Q->-ko ~ + 1 

sinBo {((3 + . B) (31((31+ sinBo)} -ik(xcos()o-ysin()o) = - 1 SIn - e , 
(/31 + sin Bo)2 0 sin Bo 

= _ (sin Bo - (31) e-ikr cos(()+()o), B > 7r - Bo. (2.57) 
sin Bo + (31 
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Figure 2.4: The pole at -ko is captured for () > 7r - ()o. 
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This cancels the reflected wave in the region B > 7r - Bo. As expected, the reflected 

wave exists only in the region B < 7r - Bo. On applying (2.56) to equation (2.54), the 

scattered field becomes 

100 -i sin(B + it) . 
'l/Js(r,B) = .. u1[kcos(B + it)]e~krcoshtdt, 

-00 /31 + sln(B + zt) o < B < 7r, (2.58) 

Joo i sin(B + it) . 
= .. u2[kcos(B + it)]e~krcoshtdt, 

-00 /32 - sln( B + zt) -7r < B < O. (2.59) 

'l/Js is now of the form examined by Copson [4] u~ing the method of stationary phase. 

Following this method gives 

Similarly, in the lower half-plane 

Applying (2.56) to the incident plane wave gives 

(2.62) 

Combining these expressions for the incident plane wave, the wave reflected from the 

half-plane and the scattered field, the final expression for the far-field is 

'l/J(r, B) = 'l/Ji(r, B) + 'l/Jr(r, B) + 'l/Jd+(r, B), o < B < 7r - Bo, (2.63) 

= 'l/Ji(r, B) + 'l/Jd+(r, B), 7r - Bo < B < 7r, (2.64) 

='l/Ji(r,B) + 'l/Jd_(r,B), -7r < B < Bo - 7r, (2.65) 

= 'l/Jd-(r, B), Bo - 7r < B < 0, (2.66) 
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where 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

Reflected Wave y Incident Wave 

+-~~--~-+----------x 

Diffracted Wave 

Figure 2.5: Diffraction of waves by a half-plane. 

Expression (2.67) represents the incident plane wave. Along with (2.68), the re-

flected wave, this makes up the geometrical acoustic field. Terms (2.69) and (2.70) 

represent the diffracted wave in the upper and lower halves of the plane respectively. 

This wave radiates from the edge of the half-plane to all points in space. These three 

waves are shown in Figure 2.5. 
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2.6 Graphical Results 

This section contains graphs of the far-field for various values of 80 , /31 and /32, These 

were obtained by using the expressions given for the far-field in the mathematics 

software package Mathematica. In fact, the diffracted field given in expressions (2.69) 

and (2.70) becomes infinite on the boundaries 8 = 7r-80 and 8 = 7r+80 so an alternate 

expression has been used to give uniform asymptotics across these boundaries. These 

expressions can be found in Appendix A by putting M = O. 

Figures 2.6-2.8 show the modulus of the total far-field for a wave-bearing half-plane 

(/31 = /32 = -i) and Figures 2.9-2.11 show the far-field for an absorbing half-plane 

(/31 = /32 = 1/2 - i). In both cases the angle of incidence is taken to be 7r /2, 7r /3 

and 7r /4. There are apparent differences between the two sets of graphs in the region 

o < 8 < 7r /2. The modulus of the reflection coefficient is given by expression (2.68), 

when /31 = /32 = -i, I~r 1=1 and when /31 = /32 . 1/2 - i, l~rl=0.62. It can be seen 

that in the region 0 < 8 < 7r /2 the oscillations about the incident wave magnitude 

of unity are of the order I~r I. The field in this region is due primarily to interference 

between the incident plane wave and the wave reflected from the half-plane. When 

/31 =1 the reflection coefficient is zero thus minimising the intensity of sound in this 

region. In Figure 2.12 (/31 = /32 = 1) and Figure 2.13 (/31 = 1,/32 = -i) it can be 

seen that there is only a slight deviation about the incident field magnitude of unity 

in this region (this deviation is due to the diffracted field). These are equivalent to 

half-planes that absorb all of the sound energy and reflect none. 
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2 -

Figure 2.6: ()o = 7r /2, /31 = /32 = -i. 

2 

Figure 2.7: ()o = 7r /3, /31 = /32 = -i. 
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Figure 2.8: ()o = 1r /4, /31 = (32 = -i. 

(3 1 . 
Figure 2.9: ()o = 1r /2, /31 = 2 = 2' - 2. 
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Figure 2.10: ()o = 1[' /3, /31 = /32 = ~ - i. 

Figure 2.11: () 0 = 1[' /4, /31 = /32 = ~ - i. 
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Figure 2.12: (}o = 7r /2, /31 = /32 = 1. 

Figure 2.13: (}o = 7r /2, /31 = 1, /32 = -i. 
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2.7 A Rigid Half-Plane. 

In this section the results from Section 2.5 are used to look at the special case of a 

rigid half-plane ({31 = (32 = 0). As well as being of physical interest, this will also 

provide a useful check for the results to the general problem. For the problem of 

a plane wave incident on a rigid half-plane the expressions for the far-field simplify 

considerably. The matrix kernel reduces to 

1 ( t\, G(a) = -2 -t\, 
(2.71 ) 

The split functions can be written as 

(
-1 (k + a )1/2 ) 1 ( 0 -1) 

G+(a) = -l-(k + a)1/2 , G_(a) = 2: (k - a)1/2 0 ' (2.72) 

and equations (2.54) and (2.55) for the scattered field are 

-100 U2(a) i(aX-KY)d - e a, 
-00 t\, 

y < O. 

U sing the kernel split functions given above this simplifies to 

y> 0, (2.73) 

y < O. (2.74) 

This is clearly consistent with Equation 2.32a in Noble [27] obtained by Jones' method. 
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The far-field components are 

7/Ji (r, e) = e -ikr cos( 8-80 ) , (2.75) 

n/, (r e) - e -ikr cos( 8+80 ) 
lj/r , - , (2.76) 

(2.77) 

(2.78) 

Figure 2.14 shows the far-field for a plane wave incident on a rigid half-plane with 

eo = 7r /2. The numerical results in the previous section tend to this result as /31,2 --+ o. 

It can be 'seen that the field in the region 0 < e < 7r /2 varies between 0 and 2 since 

l7/Jrl = 1, thus all of the energy is reflected and none is absorbed. A large amount of 

energy is diffracted into the shadow region in this case. It can be seen that the field 

does not tend to zero as e --+ 0 from below. 

2 

Figure 2.14: eo = 7r /2, /31 = /32 = o. 
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2.8 A Semi-Rigid Half-Plane. 

In this section the problem of a fixed source and a receiver separated by a semi-rigid 

half-plane (a half-plane with one rigid and one absorbent surface) is examined. The 

receiver is assumed to be in the shadow region so that the half-plane acts as a noise 

barrier. It is to be ascertained whether the barrier is more effective with the rigid 

surface facing the source (Case 1) or facing the receiver (Case 2). These two situations 

are shown in Figure 2.15. 

Figure 2.17 shows the far-field for a plane wave incident at an angle ()o = 7r /4 on 

a half-plane with /31 = 0 and /32 = 1.5 (Case 1). Figure 2.18 shows the far-field for a 

half-plane with the admittances reversed, that is /31 = 1.5 and /32 = 0 (Case 2). The 

diffracted field in the shadow region (-37r /4 < () < 0) is shown in Figure 2.16. 

The amount of energy radiated from the edge into the shadow region is the same 

in both cases when () = -7r /4 due to the symmetry of the problems and from the reci­

procity theorem, which states that the ratio of pressure amplitude to source strength 

remains the same if the locations of the source and receiver are interchanged. For a 

receiver in the region -37r/4 < () < -7r/4 it can be seen from Figure 2.16 that Case 2 

produces the least amount of noise. However a half-plane with admittances as defined 

in Case 1 is preferable if the receiver is situated in the region -7r /4 < () < O. In both 

cases the noise level is reduced as the receiver moves closer to the barrier. 
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Figure 2.15: A source and receiver separated by a semi-rigid half-plane. 
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Figure 2.16: Modulus of the diffracted field in the shadow region. 
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Figure 2.17: eo = 7r /4, /31 = 0, /32 = 1.5 (Case 1). 

Figure 2.18: eo = 7r/4, (31 = 1.5,(32 = 0 (Case 2). 
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2.9 An Incident Surface Wave 

Let (31 = -iXl and (32 = -iX2' where the parameters Xl, X 2 > O. In this case the 

poles at 0: = k)1 + Xl and 0: = k)1 + Xi are captured in the integrals (2.54) and 

(2.55), giving 

(2.79) 

,p,u, f( x, 0-) = J27r X2 U2[ky'1+Xi ]e;ky'l+xix+kX,y, -x> O. 
1 +Xi 

(2.80) 

These represent surface waves on the upper and lower surfaces of the half-plane re-

spectively. 

N ow consider an incident wave of the form 

(2.81 ) 

This is equivalent to an angle of incidence satisfying cos Bo = )1 + Xl and sin Bo = 

-iXl . Substituting these into the expressions for the total far-field gives 

.~ ( sinB ) 'k +11"i <pD(r, B) = 2z -k (3 . B ul[k cos B]et r 4", 
2 r 1 + sm 

o < B < ~, (2.82) 

_ -2' / ~ ( sin B ) [k B] ikr+ ~i - Z k (3 . B U2 cos e , 2 r 2 - sIn 
-~ < B < O. (2.83) 

The arising surface waves are given by 

x> 0, (2.84) 

x < O. (2.85 ) 

In the case of an incident surface wave the far-field consists only of a wave diffracted 

from the edge of the half-plane (2.82) and (2.83). Expression (2.84) represents the 
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Figure 2.19: A surface wave incident on a half-plane. 

reflected wave and takes the form of a surface wave on the upper face of the half-plane. 

The transmitted wave (2.85) is a surface wave on the lower face of the half-plane 

(Figure 2.19). 

Expressions (2.82)-(2.85) were used to obtain a selection of graphs representing the 

radiated field and the refleCted arid transmitted surface waves. Figures 2.20-2.22 were 

obtained by plotting the function krl¢D(r, B)1 2 and have been normalised for clarity. 

These graphs represent the energy radiated by the diffracted field for a surface wave 

incident on the upper face of the half-plane with Xl = 1 and X 2 varying. These have 

the form of a lobe oriented toward B = 7r. When X 2 > Xl (Xl> X 2 ) the size of the 

lobe in the region 0 < B < 7r /2 is greater than (less than) the size of the lobe in the 

region -7r /2 < B < O. 

In applying the problem to act as a waveguide launcher it is of interest to maximise 
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the magnitude of the diffracted field when a surface wave is incident on the half­

plane. Figures 2.23, 2.24 and 2.25 show the magnitude of the reflection coefficient, 

transmission coefficient and the diffracted field for a range of values of X 2 with Xl = 1 

(thus fixing the incident surface wave). I<PRI and I<PTI were obtained from expressions 

(2.84) and (2.85), with I<PDI calculated using the fact that I<PRI2 + I<PTI2 + I<PDI2 = 1. 

It can be seen that the magnitude of the diffracted field is greatest when X 2 = o. 

Intuitively, this comes from the fact that there is no transmitted- wave on the lower 

face of the half-plane (I<PTI = 0) and therefore more energy is diffracted from the 

edge. It can also be seen that when X 2 = Xl the reflection coefficient is minimised 

and is equal to the transmission coefficient. It is also noted that as X 2 ---+ 00: I<PTI ---+ 

0, I<PRI ---+ RV2 and I<PDI ---+ D where Rand D are the values of I<PRI and I<PDI when 

X 2 = Xl. 

Figures 2.26, 2.27 and 2.28 show the magnitude of the reflection coefficient, trans-

mission coefficient and the diffracted field for a range of values of Xl (thus varying 

the incident surface wave) with X 2 = 1. 
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0.4 

-0.4 

Figure 2.20: Radiation diagram for an incident surface wave, Xl = 1, X 2 = ~. 

-0.4 

Figure 2.21: Radiation diagram for an incident surface wave, Xl = 1, X 2 = 3. 

-0.4 

Figure 2.22: Radiation diagram for an incident surface wave, Xl = 1. X 2 = 10. 
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Figure 2.23: Coefficient of reflection for an incident surface wave )(1 = 1. 

I<PTI 

Figure 2.24: Transmission coefficient for an incident surface wave )(1 = 1. 

l<Pnl 

Figure 2.25: Diffracted field for an incident surface wave )(1 = 1. 
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Figure 2.26: Coefficient of reflection of an incident surface wave X 2 = 1. 

I<PTI 

Figure 2.27: Transmission coefficient for an incident surface wave X 2 = 1. 

l<Pvl 
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Figure 2.28: Diffracted field for an incident surface wave X 2 = 1. 
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2.10 A Surface Wave Incident on an Inductive Half­
Plane. 

In this section, the specific case of a surface wave incident on a half-plane with the 

same impedance on its upper and lower surfaces (Figure 2.29) is considered. The 

results that follow agree with those of Trenev [32]. 

y 

X E 

----4--------------------------- x 
X 

Figure 2.29: A surface wave incident on a half-plane with equal impedance parameters. 

In the particular case Xl = X 2 = X, the split functions U(o:) and L-1 (0:) simplify 

considerably to 

(
-(k + 0:)-1/4 (k + 0:)1/4 ) 

U(o:)= _(k+0:)-1/4 -(k+0:)1/4 , 

-1 1 ( 0 _(k+0:)-1/4) 
L (0:) = y'2 (k+a)1/4 0 . 

Upon making the substitution h = VI + X2 then, after much algebra (2.84) and 

(2.85) simplify to give 

~ 
I<PRI = I<PTI = V 2h. 
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Figures 2.30 and 2.31 shows the dependence of the coefficients of reflection and 

transmission on impedance for an incident surface wave. With the same impedance 

on the upper and lower surfaces of the half-plane, the reflection coefficient is equal to 

the transmission coefficient and approaches 1/-12 as X increases. This implies that 

I¢>DI ---+ 0 as X ---+ 00 which is in agreement with Figure 2.32 which shows the modulus 

of the diffracted field. 

Figures 2.35-2.33 show the djffracted field for various values of X. It can be seen 

that the radiated lobes for this problem are symmetrical and that the lobes narrow as 

the impedance decreases. However, it can be seen from Figure 2.32 that the modulus 

of the diffracted field increases as X decreases. Thus, for a waveguide launcher with 

equal impedance parameters on its upper and lower surfaces the amount of energy 

diffracted is maximised by minimising the impedance, moreover the diffracted lobe is 

stretched in the forward direction. 
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Figure 2.30: Dependence of the reflection coefficient on impedance Xl = X 2 = X. 
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Figure 2.31: Dependence of the transmission coefficient on impedance Xl = X 2 = X. 
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Figure 2.32: Dependence of the diffracted field on impedance Xl = X 2 = X. 
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-0.4 

Figure 2.33: Radiation diagram for an incident surface wave, Xl = X 2 = 3. 

-0.4 

Figure 2.34: Radiation diagram for an incident surface wave, Xl = X 2 = 1. 

-0.6 -0.4 

Figure 2.35: Radiation diagram for an incident surface wave, Xl = X 2 = ~. 
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2.11 An Inductive/Reactive Half-Plane. 

Although this special case is difficult to resolve from our previous solution it is readily 

solved as a scalar problem. Upon making the substitutions /31 = -iX and /32 = iX, 

equations (2.26) and (2.27) read 

(2.86) 

(2.87) 

Adding these equations gives . 

(2.88) 

The left hand side of equation (2.88) is analytic in the lower half plane and the right 

hand side is analytic in the lower half plane thus both are equal to a constant. Since 

U1(a) and u2(a) are O(a-1/2) at worst it follows that this constant must be zero. It 

now follows that 

(2.89) 

Substituting back into (2.86) gives 

This can be written as 
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Using the usual vViener-Hopf argument, both sides of this equation must be equal to 

zero glvlng 

-ko 
Ul = -=-27r---:i:-y'"""F.k=+=a-y';::;:k=+=k:;::=o' 

The scattered field can now be written as 

y > 0, (2.91 ) 

}J < O. (2.92) 

U sing the method of stationary phase as before, the diffracted field becomes 

A- _ J 7r ( ko ) Vk - k cos f} ikr+i1r/4 
If/D - 2kr 7rVk + ko ksinf} _ ikX e ,0 < f} < 7r, 

(2.93) 

_ -J 7r ( ko ) Vk - k cos f} ikr+i1r/4 -7r < f} < O. 
- 2kr 7rVk + ko ksinf} + ikX

e 
, 

(2.94) 

There are also pole contributions from expression (2.91). When a = ko the contribu-

tion is 

A- _ kX ikox 0 
If/R - k + ko e , x > . (2.95) 

This represents t'he reflected surface wave on the upper side of the half-plane. The 

contribution from the pole at a = -ko is 

(2.96) 

This term cancels the incident surface wave in the region x < 0, y = 0+. There are 

no pole contributions from the integral (2.92) thus no transmitted wave exists on the 

lower surface of the half-plane. 
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Figure 2.36 shows the magnitude of the reflection coefficient as a function of _\. 

It can be seen that I<PRI ---* 1 as X increases. The diffracted lobes (Figures 2.40-2.38) 

are identical to those in the case of equal impedance parameters. 
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Figure 2.36: Dependence of the reflection coefficient on impedance Xl = -X2 = X. 
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Figure 2.37: Dependence of the diffracted field on impedance Xl = -X2 = X. 
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-0.4 

Figure 2.38: Radiation diagram for an incident surface wave, Xl = -X2 = 3. 

-0.4 

Figure 2.39: Radiation diagram for an incident surface wave, Xl = - X 2 = 1. 
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Figure 2.40: Radiation diagram for an incident surface wave, Xl = -X2 = ~. 
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2.12 Conclusions and Further Work 

The problem of a plane wave incident on a half-plane with different impedance bound­

ary conditions on each face was examined using the Wiener-Hopf-Hilbert technique. 

This was done without restriction on the absorbing properties of the faces of the 

half-plane, thus the solution is valid for both wave-bearing and absorbent half-planes. 

Explicit expressions were obtained for the total far-field and arising surface waves for 

an arbitrary angle of incidence. It was shown that the solution given was valid for an 

incident surface wave in which case the diffracted field takes the form of a lobe. This 

solution generalises the problem solved by Trenev [32]. 

An obvious source of further work would be a study of further values of the admit­

tance parameters on either side of the half-plane. Since the problem has been solved 

without restriction on (31 and /32 many cases of physical interest can be examined. The 

methods employed here can also be extended for more complicated boundary value 

problems. For example, the problem of the diffraction of sound from a line source 

by an absorbent half-plane considered by Rawlins [31] can be solved with arbitrary 

impedance parameter values. 

The situation where a finite region near the end of the half-plane was lined with 

absorbent material could also be considered. This has the advantage of being easier 

and cheaper to construct than a half-plane with faces entirely coated in absorbent 

materials. Since the half-plane problem is governed by the conditions at the diffracting 

edge, it is only necessary to consider an absorbent coating in the vicinity of the edge. 

The work of the present chapter would act as a first order approximation when the 
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length of the absorbent tip is large. 

More complicated first order boundary conditions on the half-plane can also be 

dealt with. Such problems arise in acoustics with flow where the Sommerfeld integral 

method [20] is no longer suitable because of the anisotropic nature of the boundary 

value problem. This problem is solved in the following chapter. 



Chapter 3 

Diffraction by a half-plane 
llloving fl uid 

3.1 ~ntroduction 

• In a 

The problem examined in this chapter is more complex than that solved in Chapter 2 

in that the half-plane is emersed in a moving fluid. Expressions for the total far-field 

are derived for both the leading edge and trailing edge situations. In the trailing edge 

situation (M > 0) the problem has the added complication of a trailing vortex sheet 

or wake. Hence a Kutta-Joukowski edge condition is imposed to ensure that the fluid 

velocity is finite at the edge and to obtain a unique solution to the problem. 

As in the previous problem, in the case where the impedance parameters are such 

that the half-plane is absorbent, the determinant of the matrix kernel is non-zero. 

Rawlins [29] obtained explicit expressions for the diffracted and geometrical acoustic 

field for the diffraction of cylindrical waves from a line source by an absorbing half-

plane in the presence of a subsonic flow. However, for wave bearing surfaces, where 

the impedance parameter can be purely imaginary, the determinant of the matrix 

kernel has zeros in the cut plane. The solution given here generalises the Wiener-

50 
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Hopf-Hilbert approach to deal with both wave-bearing and non-wave-bearing surfaces 

in the presence of fluid flow and allows different impedance parameters on the upper 

and lower surfaces of the half-plane. 

In Section 3.2 the mathematical boundary value problem is formulated using a 

generalised boundary condition that arises from the combination of fluid flow and 

absorbent surfaces. The problem is then reduced to a pair of simultaneous Wiener-

Hopf equations in Section 3.3. An explicit factorisation of the Wiener-Hopf kernel is 

carried out in Section 3.4. In Section 3.5 asymptotic approximations for the far-field 

are obtaiI1ed and graphical plots of the modulus of the far-field for various values of 

the impedance and fluid flow parameters are given in Section 3.7. In the particular 

case of a still fluid (M = 0) and the case where the admittances of the upper and 

lower faces of the half-plane are equal, it is shown that the results agree with Rawlins 

[29]. Conclusions are drawn in Section 3.8. 

3.2 Formulation of the Boundary Value Problem 

To begin with, an introduction is given to the basic equations governing propagation 

through a homogeneous medium. The density field, p, and velocity field, u, satisfy 

the continuity equation 

Dp 
Dt + V.(pu) = o. (3.1 ) 

When the medium is inviscid and in the absence of external forces, the Navier-Stokes 

equation of motion reduces to Euler's equation 

Du 1 
- = --Vp. 
Dt P 

(:3.2) 
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An equation of state that describes the incompressibility properties of the medium 

is also required. It is to be assumed that the pressure, p depends only on the local 

density 

p = p(p). (3.3) 

These three equations are linearised by regarding as small all perturbations from a 

state in which the medium has uniform velocity U in the x direction and has uniform 

density Po. Retaining only first order terms forms the linearised equations 

(:t -u!)p=-po\!,U, (3.4) 

(~ -U~) u = -~\7p, 
at ax po 

(3.5) 

ap 2ap 
at = c at' (3.6) 

In the current context, c is the speed of sound. Upon eliminating u it can be seen 

that 

a a 2 2 

( )

2 

at - U ax p = c \7 p. (3.7) 

Taking the curl of equation (3.5) shows that the vorticity n = \7 /\ u is independent 

of time. Thus, for an initially irrotational flow, n = 0 for all time and there exists a 

velocity potential 'IjJ(x, t) such that u = \7'IjJ. The velocity potential therefore satisfies 

(3.8) 

where the Mach number M = U / c and the wave number k = w / c. If a time har-

monic variation 'IjJ(x,y,t) =Re{'IjJ(x,y)e- iwt } is assumed and suppressed henceforth 



Chapter 3: Diffraction by a half-plane in a moving fluid .53 

the convective wave equation is formed 

In Chapter 2 the field in the region y = 0, x < 0 was subject to the continuity 

conditions 

o'ljJ + o'ljJ _ 
a(x,O )=a(x,O), x<O, 

y . y (3.9) 

'ljJ(x,O+) = 'ljJ(x,O-), x < o. (3.10) 

However,,in the case where a wake exists (3.10) does not hold. The continuity condi-

tion in this situation is derived as follows. Assuming x < 0 throughout: 

p(x, 0+) = p(x, 0-), 

(iW + U !) ,p(x, 0+) = (iW + U !) ,p(x, 0-), 

(iw + U :x) (,p(x,O+) - ,p(x, 0-)) = 0, 
• 

( 
0 iW) + _ 

ox + U ('ljJ(x,O ) - 'ljJ(x, 0 )) = 0, 

! (eiwX/U('ljJ(x, 0+) - 'ljJ(x, 0-))) = 0, 

'ljJ(x, 0+) - 'ljJ(x, 0-) = Ce-iwx/U, 

The problem to be considered is of a plane wave incident on a half-plane in a moving 

fluid occupying the region x > 0, y = 0 (see Figure 3.1). The surfaces are lined 

with materials such that /31 and /32 are the complex specific admittances of the upper 

and lower surfaces of the half-plane respectively. It is noted that for Re /31,2 > 0 the 
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Figure 3.1: A plane wave incident on a half-plane. 

.j-l 

surface is absorbent. For Re /31,2 = 0 the surface no longer absorbs energy and can 

support surface waves provided f31,2 = -iX1,2, X 1,2 > O. The problem is one of solving 

the convective wave equation 

subject to the boundary conditions 

(:y + (3iM ! + ik(3i) ,p(x, 0+) = 0, X > 0, 

(~ - (32 M :x - ik(32) ,p(x, 0-) = 0, x > 0, 

7jJ(x,O+) -7jJ(x,O-) = 27riCexp(-ikx/M), x < 0, 

B7jJ + _ B7jJ _ 
By (x, 0 ) - By (x, 0 ), x < O. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

A factor of 27ri has been introduced to equation (3.14) for convenience later on in 

the solution. The constant C in this formula will be determined by the requirement 
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that the velocity at the trailing edge should be finite. This requires the imposition of 

the Kutta-Joukowski edge condition. Combined with the condition that the field be 

outgoing at infinity, these conditions ensure that the boundary value problem has a 

unique solution. 

3.3 Solution of the Boundary Value Problem 

In the pr~sence of subsonic flow (-1 < M < 1) the following rea) su bsti tu tions can 

be made 

'x=V1-M2X, y=Y, k=VI-M2K, P=V1-M2B; 

which together with 

'ljJ(x,y) = \lI(X, Y)eiKMX , (3.16) 

reduces the problem to 

(3.17) 

subject to the boundary conditions 

c~~ + ElM a~ + iKE1) w(X, 0+) = 0, X > 0, (3.18) 

(~ - B2M ~ - iKB2) \lI(X 0-) = 0, X> 0, ay ax ' 
(3.19) 

\lI(X, 0+) - \lI(X, 0-) = 27riC exp( -iKXjM), X < 0, (3.20) 

~:(X,o+) - ~:(X,O-) = 0, X < O. (3.21) 

The complex Fourier transform W( a, Y) is defined by 

W(a, Y) = ~ Joo \lI(X, Y)e-iaXdX. 
27r -00 

(3. :2:2) 
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Applying this transform to the wave equation (3.17) gives 

d2~ 2 A 

dY2 + K W = O. (3.23) 

The branch of K = (K2 - 0'.2)1/2 is chosen such that K = +K for a = O. A solution of 

the boundary value problem can now be written as 

W = Wgo + I: A(O'.)ei(aX+KY) dO'., Y > 0, (3.24) 

= 1: B(O'.)ei(aX-KY) dO'., Y < O. (3.25) 

For convenience it shall be assumed that W go consists of the incident plane wave and 

a reflected wave thus 

where 

Applying the conditions (3.20) and (3.21) leads to 

sin 8 0 C 
A(O'.) - B(a) = 11(a) - 7ri(O'. + Ko)(sin 8

0 
_ B1M cos 8

0 
+ Bd + (a + KIM)' 

KB1 sin 8 0(1 - M cos 8 0) 
K(A(O'.) + B(a)) = 12(a) +.( v )(. 8 B M 8 + B )' 7rZ a + /\"0 SIn ~ 0 - 1 cos ~ 0 1 

where a = -KIM and a = -Ko = -K cos 8 0 lie in the lower half of the complex 

plane (T _ = 1m a < 0) and 11 (a) and 12(0'.) are analytic in this region. The capture 

of the poles at a = -Ko and a = -KIM is shown in Figure 3.2. By adding and 

subtracting these equations it can be seen that 

Aa =~{l a +12(a)_ .sin80{KB~(1-Mcos80)IK-1} + C.}l 
() 2 1() K 7rz(a + Ko)(sm 8 0 - B}i'\lJ cos 8 0 + Bd (a + KIJI) 

(3.27) 
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Figure 3.2: The complex plane. 

B ( a) = ~ {-ll ( a) + l2 ( a) _ sin 8 0 { K 8 1 (1 - M cos 8 0 ) / K + I} _ C } 
2, K 7ri(a + Ko)(sin 8 0 - 8 1M cos 8 0 + 8d (a + KIM) . 

(3.28) 

Applying the boundary conditions (3.18) and (3.19) leads to 

(3.29) 

(3.30) 

where u1(a) and u2(a) are analytic in the upper half-plane, T+: 1m a > 0, a =I 

-Ko, a =J -K / M. Substituting (3.27) and (3.28) into these equations eliminates the 

unknowns A( a), B ( a) and leads to the matrix Wiener-Hopf equation 

P G(a) (C) 
G(a) l(a) = u(a) + G(a) (a + Ko) - (a + KIM) 0 ' (3.31 ) 

where 

(3.32) 
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The problem of factorising the matrix G( a) is addressed in a manner similar to that 

in Chapter 2. Firstly, define D( a) such that 

and define ]{ ( a) by 

Then 

]{(a) = ~ 

and 

G(a) = D(a)]{(a). 

, . 

~ ('" + B1M a + KB1) 1/2 
'" '" + B2Ma + KB2 
~ ('" + B2M a + KB2)1/2 , 
'" '" + B1Ma + KB1 

det K(a) = 1. 

(3.33) 

(3.34) 

The factorisation of G ( a) now follows directly from the factorisation of ]{ ( a) and 

D(a). 

3.4 Factorisation of the Wiener-Hopf Kernel 

Factorisation of [( (0:) 

It is required that ]((a) = U(a)L-1(a) where L(a) is analytic everywhere except 

along the line K < a < 00, Im(a) = 0 and U(a) is analytic everywhere except along 

-00 < a < -K, Im( a) = O. Then it can be written that 

(3.35) 

since L is continuous across this region. Eliminating L -1 (~) gives 

(:3.:36) 
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where F+ denotes values of F on the upper side of the cut and F- denotes values of 

F on the lower side of the cut. From equation (3.34) it follows that 

-1 (-iIKI- B2MI~1 + KB2)1/2 1 (-iIKI- BIMI~I + KB1)1/2 
[K-l(~)r- ~ *I -iIKI- BIMI~I + KBl iN -ilKI - B2MI~1 + KB2 

-y 2 (-iIKI- B2MI~1 + KB2)1/2 (-iIKI- BiMI~1 + KB1)1/2 
-iIKI- BIMI~I + KBl -ilKI - B2MI~1 + KB2 

Substituting these into equation (3.36) gives 

(3.37) 

(3.38) 

(3.39) 

equations produces 

V+(OIV-(~) = -1, (3.40) 

_ [IKI2 + (KBl - BIMI~1)2l 
[log W(O]+ + [log W(O] = log IKI2 + (KB2 _ B2MI~I)2' (3.41) 

By inspection, it can be seen that equation (3.40) has a particular solution 

(3.42 ) 

..... 
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Equation (3.41) can be written as 

(3.43) 

The solution of this equation (see Appendix E) is given by 

Now, 

where 

(3.45) 

U sing the following results (see Appendix D) 

(3.46) 

Particular solutions of (3.38) and (3.39) are now given by 
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A general solution can be obtained by following the method given by Rawlins [31]. 

This is done by imposing further conditions on the functions U1 (a) and U2 (a). First 

it is required that 

for some n, m > -1. The second requirement is that U1 (a) and U2 (a) have finite 

degree at infinity. These conditions lead to 

U(a) = U(O)(a)P(a), 

where Pij(i,j = 1,2) are arbitrary polynomials and 

U(O\a) = ( -[V(a)l~[W(a)]~l 
-[V( a)] 2" [W( a)]-2" 

1 1 1) [V(a)]2"[W(a)]2"[k + a] 2" 

-[V(a)]~[W(a)t~[k + a]~ . 

To ensure that U is non-singular in the cut plane det U and hence det P must be 

non-zero for all a. The fact that det P is a polynomial implies that det P= constant. 

For simplicity, P is chosen to be the identity matrix. This gives a final expression of 

11) [k + a]4"[W(a)]2" 
-[k + a]t[W(a)]-t . 

(3.48) 

The matrix L( a) can be found from the expression 

L(a) = ](-l(a)U(a). 

Factorisation of D ( a) 
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Consider the factorisation of the function dn(a) given by 

dn(a) = K + EnMa + KEn. 
K 

(3.49) 

This function has been factorised explicitly in Rawlins [29]. The upper split function 

IS 

(3.50) 

where 

e u - arccosv sin udu 
F(v) = -(M + v) 1 v'1-v

2 
, 

7rJ2 (v - cos u) 
(3.51 ) 

and 

-ME~ +)1 - E~ + M2E~ -ME~ -)1 - E~ + M2E~ 
VI = 1 + E~M2 ' V2 = 1 + E~M2 . (3.52) 

The upper split function, D+ (a), can now be written as 

(3.53) 

3.5 Asymptotic Expressions for the Far-Field 

With the factorisation of G( a) complete, the procedure from equation (3.31) is as 

follows 
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This can be written in the form 

The left hand side of this expression is analytic in T _ and the right hand side is 

analytic in T+. Hence both sides of equation (3.54) are equal to an entire function 

Q(a). From equations (3.42) and (3.47) it follows that 

1 

V(a) = O(a-2"), W(a) = 0(1), lal--+ 00. 

Therefore 

(3.55) 

Combining the edge condition (2.15) with (2.24) it can be shown that the terms of 

u(a) are O(a-1
/

2
) at worst. Using an extension of Liouville's theorem it now follows 

that Q( a) = o. Thus 

I(a) = [G=l(a) G_( -KIM) - r] (C) _ [G=l(a)G_( -Ko) _ r] p. ,(3.56) 
(a + KIM) 0 (a + Ko) 

u(a) = G+(a) G_( -KIM) (C) _ G (a)G_( -Ko) p. (3.57) 
(a + KIM) 0 + (a + Ko) 

Combining (3.57) with (3.24) and (3.29) gives 

As was seen in Chapter 2, the procedure from here is to consider a shift of contour in 

the a-plane given by 

a = K cos (e + it), ( - 00 < t < (0). (3 . .39 ) 
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On applying this to equation (3.58), the scattered field becomes 

W s(R, 8) = 100 

-i sin(8 + it) u1[K cos(8 + it)] eiICRcoshtdt 
-00 B1 + B1M cos(8 + it) + sin(8 + it) , 0 < 8 < 7r. 

(3.60) 

On applying the method of stationary phase, the final expression for the far-field is 

W(R, 8) = Wi(R, 8) + Wr(R, 8) + Wd+(R, 8), o < 8 < Jr - 8 0 ,(3.61) 

= Wi(R, 8) + Wd+(R, 8), Jr - 8 0 < 8 < Jr, (3.62) 

= Wi(R, 8) + Wd-(R, 8), -Jr < 8 < 8 0 - Jr ,(3.63) 

8 0 - Jr < 8 < 0, (3.64) 

where 

(3.65) 

(3.66) 

and 

cos () _ (1 -M2 sin2 ()) 1/2 
cos 8 = (1 _ M2 sin2 ())1/2' R - r 1 _ M2 

3.6 The Kutta-Joukowski Condition 

In the trailing edge situation (M > 0) the unknown C is calculated by applying 

the Kutta-Joukowski edge condition. In the absence of a wake C = O. The Kutta-

Joukowski condition requires that the velocity be finite at the origin which means that 
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the terms in W that are 0(r-l/2) must vanish. This in turn implies that the terms of 

O( a-1/2) in Ul (a) and U2( a) must also vanish. From expression (3.57) it can be seen 

that 

where 

From (3.55) it can be seen that G1 and G3 are 0(1) whilst G2 and G4 are O( a 1/ 2 ) as 

/a/-t 00. Setting the term that is 0(0:-1/2) to zero in ul(a) gives 

CPl + dP2 - gC = 0, 

C = (cP1 + dP2 ) • 

g 

3.7 Graphical Results 

(3.69) 

The diffracted field given by expressions (3.67) and (3.68) becomes infinite on the 

boundaries e = 7r - eo and e = 7r + eo so an alternate expression has been used to 

give the graphical plots of the modulus of the far-field. See Appendix A for further 

details. 

Figures 3.4-3.7 show the modulus of the far-field for a half-plane with impedance 

parameters /31 = /32 = 2/3 (fibrous sheet), the angle of incidence is taken to be 7r /2 

and the Mach number, M, takes the values -0.9, 0 and 0.9. As explained in the 

previous chapter, the field in the region 0 < () < 7r /2 is due primarily to interference 
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between the incident and reflected waves. The modulus of the reflection coefficient is 

given by expression (3.66) and IW T 1=1. It can be seen that in the region 0 < () < 7r /2 

the oscillations about the incident wave magnitude of unity are of the order I W T I. In 

the trailing edge situation graphs have been obtained in the case where a wake is 

present (Figure 3.6) and by putting C = 0 the case where no wake is present (Figure 

3.7). These graphs differ significantly in the region 7r /2 < () < 37r /2. When no wake 

is,present the oscillations about the incident field magnitude of unity are greater in 

the region 7r /2 < () < 7r but less in the region 7r < () < 37r /4 compared to the case 

where a wake is present. The diffracted field in the shadow region -7r /2 < () < 0 

varies according to the Mach number. This field is larger in the leading edge situation 

(Figure 3.4) than in the trailing edge situation, where the fluid flow carries the sound 

away from the shadow region. 

Figures 3.8-3.11 were obtained using {Jl = (J2 = 1/(0.5 + i) (perforated steel). The 

trends are the same as those given above and the graphs shown are identical to those 

in Rawlins [29] (except the half-plane in that work occupies y = 0, x < 0). It is also 

noted that Figures 2 and 4 in Rawlins [29] have been transposed. 

Figures 3.12-3.15 show the far-field when ()o = 7r /2 and {Jl = /32 = 0.5 - i. Figure 

3.13 is identical to Figure 2.9 as expected. The modulus of the diffracted field in the 

shadow region in this case is shown in Figure 3.3. It can be seen that the noise in 

this region is reduced by the presence of a fluid flow. This is due to the fact that the 

effective admittance of the half-plane B = /3(1 - M2)-1/2 increases as IMI increases. 

In effect, the half-plane becomes softer as INII increases. The equivalent graphs for 



Chapter 3: Diffraction by a half-plane in a moving fluid 67 

other values of (31,2 are omitted due to there similarity to Figure 3.3. 

Figures 3.16- 3.19 show the far-field when ()o = 7r /2 for a surface wave bearing 

half-plane (31 = (32 = -i. Figure 3.17 is for the case of a still fluid and is identical to 

Figure 2.6 . In the trailing edge situation there is no apparent difference between the 

case where a wake is present (Figure 3.18) and the case where no wake is assumed 

(Figure 3.19). This is due to the fact that for these parameter values the value of C 

is small. '. 

The semi-rigid half-plane problem is re-examined in Figures 3.20-3.27, this time 

in the pre'sence of fluid flow. Figures 3.20-3.23 are for an angle of incidence ()o = 7r /2 

and in Figures 3.24-3.27 it has been assumed that ()o = 7r /4. For these latter graphs 

the interference between the incident wave and the reflected wave is extended to the 

region 0 < () < 37r /4. It is also noted that for given values of (31, (32 and ()o the 

magnitude of the oscillations in this region of interference have until now shown little 

dependence on M. However, in Figures 3.24 and 3.25 this is clearly not the case. 

These oscillations about the incident wave magnitude of unity are of the order I W r I 

which is given by (3.66). Therefore, the reason for this behaviour is that in Figure 

3.24, IWrl = 0.20 but in Figure 3.25, IWrl = 0.88. 

It is of interest to consider the half-plane as a noise barrier and thus to examine the 

effects of flow to the sound in the shadow region. It can be seen that the magnitude 

of the sound diffracted into the shadow region is reduced by the presence of flow in 

comparison to Figures 2.17 and 2.18. Again, the trailing edge situation is the most 

efficient at minimising the noise in this region. 



Chapter 3: Diffraction by a half-plane in a moving fluid 68 
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M=O 
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-1.5 -1.25 -1 -0.75 -0.5 -0.25 

Figure 3.3: The shadow region of a half-plane in a moving fluid, /31 = /32 = 0.5 - i. 
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Figure 3.4: eo = 7r /2, /31 = /32 = 2/3, M = -0.9. 

-0.5 0.5 1 

Figure 3.5: eo = 7r /2, (31 = /32 = 2/3, M = o. 
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Figure 3.6: ()o = 7r /2, f31 = f32 = 2/3, M = 0.9. 

Figure 3.7: ()o = 7r /2, f31 = f32 = 2/3, M = 0.9, C = o. 
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Figure 3.8: eo = 1r /2, /31 = /32 = 1/(0.5 + i), M = -0.9. 

1.5 

-0.5 1 1.5 

Figure 3.9: eo = 1r /2, /31 = /32 = 1/(0.5 + i), M = O. 
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Figure 3.10: 80 = 7r /2, {31 = (32 = 1/(0.5 + i), M = 0.9. 

Figure 3.11: 80 = 7r /2, {31 = (32 = 1/(0.5 + i) , NI = 0.9, C = o. 
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Figure 3.12: ()o = 7r /2, /31 = /32 = 0.5 - i, M = -0.9. 

Figure 3.13: ()o = 7r /2, /31 = /32 = 0.5 - i, .!VI = O. 
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, . 

Figure 3.14: ()o = 7r /2, /31 = /32 = 0.5 - i, M = 0.9 . 

Figure 3.15: ()o = 7r /2, /31 = /32 = 0.5 - i , M = 0.9, C = O. 
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2 

Figure 3.16: ()o = 7r /2 , /31 = /32 = -i , M = -0.9. 

Figure 3.17: ()o = 7r /2, /31 = /32 = -i , M = O. 
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2 

2 

Figure 3.18: 80 = 7r /2, /31 = /32 = - .i, M = 0.9. 

2 

2 

Figure 3.19: 80 = 7r /2, /31 = /32 = -i, M = 0.9, C = O. 
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Figure 3.20: eo = 7r /2, /31 = 1.5, /32 = 0, M = 0.9, C = O. 

Figure 3.21: eo = 7r /2, /31 = 1.5, /32 = 0, M = -0.9. 
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Figure 3.22: 80 = 7r /2, f31 = 0, f32 = 1.5, M = 0.9, C = o. 

Figure 3.23: 80 = 7r /2, f31 = 0, f32 = 1.5, M = -0.9. 
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Figure 3.24: ()o = 7r / 4, f31 = 1.5, f32 = 0, M = 0.9, C = 0. 

Figure 3.25: ()o = 7r /4, f31 = 1.5, fJ2 = 0, M = -0.9. 



Cbapter 3: Diffraction by a balf-plane in a moving fluid 80 

Figure 3.26: ()o = 7r /4, /31 = 0, /32 = 1.5, M = 0.9, C = o. 

Figure 3.27: ()o = 7r /4, /31 = 0, /32 = 1.5, M = -0.9. 
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3.8 Conclusions 

The problem of a plane wave incident on a half-plane in a moving fluid has been solved 

without restriction on the impedance parameters of the half-plane. In particular, both 

absorbent and inductive half-planes can be considered with incident plane or surface 

waves. Moreover, the solution is valid for subsonic values of the Mach number M , 

and taking M = 0 reduces the solution to that of a half-plane in a still fluid. 

The solution contains an explicit factorisation of the matrix kernel using the 

Wiener-Hopf-Hilbert technique. Asymptotic expressions for the far-field were ob-. 
tained leading to graphical results, which agree with Rawlins [29], and results from 

Chapter 2. 

The half-plane in a moving fluid problem has been solved without restriction on /31 

and /32' Further work could be done therefore on an inductive half-plane in a moving 

fluid. An examination could be carried out on the surface waves arising on the upper 

and lower surfaces of the half-plane similar to those in Chapter 2. Moreover, results 

for an incident surface wave can be obtained from the work in Chapter 3. A more 

complicated fluid problem is one where the fluid speed differs in the different halves of 

the plane. This problem is not solvable by the Maliuzhinets method, which assumes 

a Sommerfeld integral representation of the field throughout the entire plane. 

A problem with more practical applications is one of a strip with an absorbent tip 

in a moving fluid. This would be a model for an aeroplane wing and has the advantage 

of being cheaper to construct than a strip with faces entirely coated in absorbent 

materials. Since the problem is governed by the conditions at the diffracting edge, 
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one needs only to consider an absorbent coating in the vicinity of the edge. The work 

of the present chapter would act as a first order approximation when the length of 

the absorbent tip is large. 

The results obtained here could also be applied to the problem of the radiation of 

high frequency sound from a circular cylinder in a moving fluid (see Munt [25]). This 

is of practical importance as a model of a jet engine in motion. One could investigate 

noise shielding by examining the effects of lining the cylinder with absorbent materials. 

To high frequency sound, the edge of the cylinder is locally plane and an application 

of Keller"s geometrical theory of diffraction would give an approximate answer to a 

mathematically insoluble problem. 



Chapter 4 

Radiation frolll an ind uctive 
wave~guide 

" . 

4.1 Introduction 

The problem considered here is of an electromagnetically radiating parallel plate 

waveguide where the inside walls are inductively loaded and the outside walls are 

capacitively loaded. This mathematical problem serves as a model for an inductively 

loaded horn antenna. Expressions are obtained for the reflection coefficient at the 

waveguide mouth and far-field radiation diagrams. 

Useful information about the properties of various radiating structures can often 

be obtained from exact solutions of simple canonical problems. A canonical problem 

for an interesting antenna is the impedance-walled structure shown in Figure 4.l. 

The incident field is taken to be lowest order TM wave, proceeding to the left in the 

waveguide region, with the parameters a, /31, and /32 chosen so that only this TM wave 

propagates. When /31 and /32 are purely inductive, that is /31 and /32 purely imaginary, 

so that a surface wave can propagate along the inside walls of the duct a model for 

an impedance horn is obtained. The imposition of the ±/3 impedance condition on 

83 
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each waveguide half plane means that one surface of each half plane will then support 

a surface wave (inductive condition), whilst the other cannot (capacitive condition). 

Thus the investigation is that of an inductively loaded open waveguide. 

In Section 4.2 the mathematical boundary value problem is formulated. The prob­

lem is then reduced to a matrix Wiener-Hopf equation in Section 4.3. The factorisation 

of the Wiener-Hopf matrix kernel is carried out in Section 4.4 by the Wiener-Hopf­

Hilbert method. It was thought that the Wiener-Hopf-Hilbert method would be 

inapplicable due to the poles contained in the matrix kernel. These poles correspond 

to the modes that propagate in the duct region. However, this problem is overcome 

to obtain an explicit factorisation of the matrix. In Section 4.5 expressions are ob­

tained for the field in the different regions. These are simplified in Section 4.6 where 

the special case of a rigid wave-guide is examined. Conclusions are drawn and future 

work discussed in Section 4.7. 

4.2 Formulation of the Boundary Value Problem 

The configuration to be considered is shown in Figure 4.1. A TM wave is incident 

from x = 00 in the parallel plate region, and the problem is to find the radiated and 

reflected fields. A time dependence of e-iwt is assumed and suppressed henceforth. 

Although it is clear that /31,2 = iX1,2 where X 1 ,2 > 0, so that surface waves can 

propagate on the inner walls of the duct, this notation shall be introduced later on in 

the solution for convenience. 

To begin with, a brief reminder of the equations governing electromagnetic wave 
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y 

a~ ______ _ 

f31 

E 

-----------------4-------------------x 

-a~---------------

Figure 4.1: An impedance loaded wave-guide. 

.;,;­
u·J 

propagation is given. A comprehensive guide can be found in Jones [16]. The magnetic 

intensity H and electric intensity E can be represented by Maxwell's equations 

curlE = i,uowH, curlH = -iEowE, 

where Eo is the dielectric constant and ,uo is the permeability. If a transverse magnetic 

(TM) polarisation is assumed, so that the magnetic field has no component in the 

direction of propagation, then only three field components (Ex, Ey and Hz) are non-

zero. They satisfy 

E -i 8Hz 

y = WEo 8x ' 
(4.1 ) 

k = wy'Eo,uo. 
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At Y = a the fields satisfy the impedance boundary condition 

Using (4.1) this can be written in the form 

where kf31 = WEoZl. At Y = -a the fields satisfy 

Writing kf32 = WEoZ2 and using (4.1) allows this to be written in the form 

The problem can be written as the solution of the Helmholtz equation 

subject to the boundary conditions 

a~z (x, a±) + i kf3t Hz (x, a±) = 0, x > 0, 

aa~z (x, -a±) - ikf32Hz(x, -a±) = 0, x > o. 

The field must also satisfy the continuity conditions 

8~ 8~() 0 8y (x, ±a+) = 8y x, ±a_, x < , 

Hz(x, ±a+) = Hz(x, ±a_), x < 0, 

86 

(4.2) 

( 4.3) 

( 4.4) 

( 4.5) 

( 4.6) 
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and the edge condition 

Hz = 0(1), \7 Hz = 0(r-1
/

2
), as r ~ O. (4.7) 

Combined with the condition that the diffracted field be outgoing at infinity, these 

conditions ensure that the boundary value problem has a unique solution. 

4.3 Reduction to a Matrix Wiener-Hopf Equation 

As before, the Fourier transform is applied to the wave equation (4.2) to give 

(4.8) 

The branch of "- = (k 2 - ( 2 )1/2 is chosen such that "- = +k for a = O. The incident 

field is written as 

H J.. ( ) -iCl!oX 
i = '+'0 y, "-0 e , (4.9) 

where 

( 4.10) 

and a o is chosen so that only the dominant order TM wave propagates. A discussion 

of the incident field is given in Appendix B. A solution of the boundary value problem 

can now be written as 

Hz = L: A(a)eiCl!x+iK(y-a) da, Y > a, ( 4.11) 

= Hi + L: B(a)ei(Cl!X+KY) + C(a)ei(Cl!X-KY) da, -a < Y < a, (4:.12) 

= L: D( a )eiCl!x-iK(y+a) da, Y < -a. (4.1:3) 
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Applying the boundary conditions (4.3) and (4.4) leads to 

(4.14) 

(4.15 ) 

where ul(a) and u2(a) are analytic in the upper half of the a-plane, Im(a) > o. Now, 

from (4.3)-(4.6) it can be seen that 8Hz!8y + kf31Hz and 8Hz! 8y - kf32Hz must be 

continuous across y = a and y = -a respectively for all x. Applying this to the 

scattered field gives 

These can be written as 

A(a) = B(a)eina + (-""++k~l) G(aVina, 

D( a) = (-I'\, + kf32) B( a)e-i~a + C( a)ei~a. 
I'\, + kf32 

Applying the continuity condition (4.6) leads to 

(4.18) 

(4.19) 

( 4.20) 

(4.21 ) 

where h(a) and 12(a) are analytic in the lower half of the complex plane, Im(a) < O. 

It is also noted that a = -ao lies in the lower half plane (Figure 4.2). Eliminating 

A(a) and D(a) from equations (4.18)-(4.21) gives 

( 

I'\, + kf31) , <Po ( a, 1'\,0) 
C(a)e- iM - - C( a)e-t~a = 12( a) + 2 '( + )' 

I'\, + k /31 7r'l a a o 
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-,--_---.1. ____ ---+-____ -----,. __ 
-ao 

Figure 4.2: The complex plane. 

These can be written in the form 

( 4.22) 

( 4.23) 

Combining these with (4.14) and (4.15) and writing 7/J = e iKa leads to the matrix 

Wiener-Hopi equation 

p 
G(a)l(a) = u(a) + G(a) ( )' 

a+ a o 

(4.24) 

where 

Define D( a) such that 
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and define ]{ ( a) by 

G(a) = D(a)K(a). ( 4.26) 

Then 

and 

det ]((a) = 1. 

The factorisation of G(a) now follows directly from the factorisation of K(a) and 

D(a). 

4.4 Factorisation of the Matrix Kernel 

Factorisation of J((a) 

The requirement is that K(a) = U(0:)L-1(0:) where L(o:) is analytic everywhere 

except k < a < 00, Im(a) = 0 and U(a) is analytic everywhere except -00 < a < -k, 

Im( a) = O. Then it is not difficult to see that 

( 4.28) 

since L is continuous across this region. Eliminating L -1 (e) gives 

( 4.29) 

where F+ denotes values of F on the upper side of the cut and F- denotes values of 

F on the lower side of the cut. From equation (4.27) it follows that 

(-i.30) 
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Equation (4.29) then becomes 

U+ (0 = (k2i3i+;2J~~i3i+~2) 

( 
0 (Z~~~:::l) e21~la - (Z~~~~:::) e-21~la) _ 

( ki32-~I~I) e21~la _ (k.B2+~I~I) e-21~la 0 U (~). 
k.Bl +~I~I ki31 -~I~I 

Simplifying leads to 

This further simplifies to give 

( 4.32) 

This equation was solved in Chapter 2 and has the following solution. 

( 4.33) 

where 

(y'k + a + jkB1 ( +) ) (y'k + a + jkB1 ( -) ) 

W(a) = ). 
(v'k + a + jkB2 ( +) ) (y'k + a + !kB2 ( -) 

(4.34) 

and B1,2(±) = 1 ± )1 - f3i,2' The matrix L(a) can be found from the expression 

L(a) = ]{-l(a)U(a). 

Factorisation of D( a) 

The function D( a) can be written as 

(4.:35) 
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Now, in Chapter 2 a factorisation was given for the function dn(a) given by 

( 4.36) 

Thus it remains only to factorise 

( 4.37) 

Now, D.-(a) ~ 1 as lal ~ 00. Applying Theorem C from Noble [27] produces 

( 4.38) 

It now follows that the upper split function can be written in the form 

( 4.39) 

This completes the factorisation of D ( a). 

4.5 The Field in Different Regions 

Having factorised the matrix kernel, the usual Wiener-Hopf arguments lead to 

(4.40 ) 

(4.41 ) 

The scattered field now reduces to 
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As in Chapters 2 and 3, the method of stationary phase is applied to the above 

integrals. The total far-field can now be written as 

( 4.45) 

( 4.46) 

The field in the duct region is now considered. Using (4.18) and (4.19), the field in 

this region can be expressed in terms of the functions Ul and U2 t,hus 

In the above expression it has been assumed that 

For x > 0 the contour of integration is closed in the upper half of the complex 

plane. The singularities in this region come from the zeros of f(a) which are denoted 

as an, n = 0,1,2 ... The residues at these poles give the waveguide modes that can 

propagate in the duct region. 

R = 211"; ~ fl(~n) { - u,(an),pn(k{32 + "n) + u2(an),p;;'(k{3, - "n) 

+ul(an)'l/;;;1(kf32 - "'n) - u2(an)'l/Jn(k{31 + "'n)}, Iyl < a. (4.48) 

The t'erms in this expression represent the reflected field modes in the waveguide. The 

dominant surface wave reflected mode Ro is given by 

flo = /(:0) { - u, (ao),po( k{32 + "0) + U2( ao),p;;'(k{3, - 1<0)· 

+ul(ao)'I/J;;1(kf32 - "'0) - u2(ao)'l/Jo(kf31 + "'o)}' (-t.49) 
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The dominant mode is of particular interest since this mode transports most of the 

acoustic energy down the wave-guide. The power that is transmitted out of the duct 

will be proportional to l-IRI2 when only the dominant surface wave mode propagates 

in the semi-infinite duct. 

4.6 A Rigid Duct 

y 

Hard 
a~----________ ~ 

Hard 

-ikx e 

--------+---------x 

Hard 

-a~--------------Hard 

Figure 4.3: A rigid wave-guide. 

In this section, the special case of a rigid duct is examined, as shown in Figure 4.3. 

By writing /31 = (32 = 0 the coupled Wiener-Hopf equations simplify to 

U1(a) = ; ('ljJ2l1(a) -l2(a)) + 47ri(: + k) (1 - 'ljJ2), 

u2(a) = ; (-h(a) + 'ljJ2l2(a)) + 47ri(: + k) (1 - 'ljJ2). 
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it becomes clear that U3( a) and U4( a) are analytic in the upper half plane whilst 13( Q) 

and 14( a) are analytic in the lower half plane. Adding and subtracting the above 

equations yields 

( 4.50) 

(4.51 ) 

Applying Liouville's theorem to (4.51) gives 

This implies that U1 = U2 and 11 = [2. Substituting back into (4.50) produces 

where 

/'\:('lj12_1) 1 
G(a) = 2 ,P(a) = 21l"i(a + k) 

This equation is now rearranged in the usual manner and Liouville's theorem is ap-

plied. The functions U1 (a) and h (a) can be written as 

In the case of a rigid wave-guide, the far-field takes the form 

) .f!i [k e] ikr+ 7ri > Hz (r e = 2z -U1 cos e 4, Y _ a, 
, 2kr 

( 4 .. 5:2) 

f!i ikr+ 7ri = -2i -U2[k cos e]e 4, Y < a. 
2kr 

(-! . .5:3 ) 
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The field reflected at the wave-guide mouth reduces to 

00 2' 
R = E f~( ~\ { U, ("'n)1/;n"n + U, ("'n) 1/;;;-' "n + U, ("'n )1/;;;-' "n + U, ("'n)1/;n"n }, Iyl < a, 

( 4.54) 

where 

The .terms in this exp~ession represent the reflected field modes in ~he waveguide. The 

dominant reflected wave mode Ro is given by 

( 4.55) 
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4.7 Conclusions 

A new diffraction problem has been solved by means of the Wiener-Hopf-Hilbert 

Technique. The solution generalises that of Rulf and Hurd [12]. It was thought that 

the Wiener-Hopf-Hilbert method was not applicable due to the pole singularities in 

the matrix kernel. However, it has been shown that an explicit factorisation can be 

carried out. 

The wave-guide problem solved here can be extended in several ways. A problem 

involving higher order modes in the wave-guide region provides a natural extension . 
to this work. The situation could also be considered where the inner walls of the duct 

are capacitive and the outer walls inductive. This would simply require a change of 

sign in /31,2 in the current solution. 

A plane wave incident on a wave-guide can be solved using the Wiener-Hopf-

Hilbert method (to be published by Rawlins). The solution to this problem closely 

follows the solution in the current chapter. 

It would be of interest to consider more complicated boundary conditions on the 

faces of the waveguide. In particular, the techniques used in this work could be used in 

the case of a wave-guide in a moving fluid. The problem of a cylindrical semi-infinite 

waveguide with an inductive inner surface and capacitive outer surface might also be 

examined. 



Appendix A 

An Alternative Expression for the 
Diffracted Field 

. 
The diffracted field given by expressions (3.67) and (3.68) becomes infinite on the 

boundaries 8 = 7r - 8 0 and 8 = 7r + 8 0 so an alternate expression has been used to 

give the graphical plots of the modulus of the far-field. It is noted that Noble [27] 

gives the following result 

(
8 ) 100 sin 1.(8 + it)eiJCRcosht 

I = 2i sin _0 (. ) 8 dt = -2iH(8 - 8 0 ) + 2iH(8 + 8 0 ), 

2 -00 cos 8 + 'li + cos ~ 0 

where 

{ 

7rt e- i; F [v'2KR cos( ,\/2)] ,e-iJCRcos,\ cos( ,\/2) > 0, 

H('\) = -7r~ e- i; F [-v'2KR cos('\/2)] e-iJCRcos,\ cos('\/2) < 0, 

and 

1
00 2 

F[v] = v eiu duo 

This result, combined with (3.58) gives the following expression for the diffracted field 
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in the upper half of the plane. 

\lI (R 8) = cos(8/2)udK cos 8]{ cos 8 + cos 8 0 } 

+, (B1 - B1.LVI cos 8 + sin 8) sin(8 0 /2) J1, 
_ cos ( 8 /2) u 1 [K cos 8] { cos 8 + cos 8 0 } 

- (B1 - B1M cos 8 + sin 8) sin(80 /2) J2
, 

7r - 8 0 < e < 71". 

Where 

In the case of Chapter 2, Section 2.6, the alternate expressions are obtained by putting 

M = 0 in the above results. 



Appendix B 

The Incident TM Wave 

Here a discussion is given concerning the derivation of the incident wave (4.9) III 

Chapter 4. The incident wave is required to be the lowest order TM wave. A wave of 

the form 

Hi = (A cos KY + B sin Ky )e-io:x
, 

satisfies (4.2). Applying the boundary conditions (4.3) and (4.4) gives 

and 

A = B (K cos Ka - kXI sin Ka) 

K sin Ka + kXI cos Ka ' 

A = B (kX2 sin Ka - K cos Ka) . 

kX2 cos Ka + K sin Ka 

Eliminating A and B and simplifying gives 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

Equation (B.4) has an infinite number of roots. The only case of interest is where a 

single imaginary root exists, corresponding to the lowest propagating mode. Under 

the restriction a < (Xl + X 2 )/ XI X2 (Rulf and Hurd [12]), (B.4) possesses a single 
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imaginary root K,o given by 

(B.5) 

where 

. (B.6) 

Also, substituting (B.2) into (B.l) allows the incident field to be written as 

H ).. ( ) -io:ox i = 'f'o y, Ko e , 

where 

<Po(Y, K) = cos K(Y - a) + kX
1 

sin K(Y - a). 
K 



Appendix C 

Mathernatica Programs 

The following programs were used in Mathematica to produce the graphical results 

, 
within this work. Whilst Mathematica version 2.2 was used to plot the graphs, the 

programs have been converted to Mathematica version 3 for clarity. 

Program 1 is an example of a program used to plot a radiated lobe for an incident 

surface wave. Program 2 gives the far-field plot for a half-plane in a moving fluid. 

The Kutta-Joukowski condition was used in Program 3, which is used for a half-plane 

in a moving fluid with a trailing vortex sheet. 
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* PROGRAM 1 : Radiated lobe for an incident surface wave * 

the tao : = ArcSin [beta1] 

k := 1 

r : = 10 1f 

beta1 : = -1: 

beta2 : = - • 5 1: 

[ 

-.yv[x] .yw[x] 
u[y_] := ~ 

- "',,[xj 

.yv [x] .yw [x] "I/k + x 1 
_ ...r;[zf~ 

"'.,,[xj 

(~ + ..J k + k "1/ 1 - beta1
2 

) (~ + ..J k - k "1/ 1 - beta1
2 

) 

("I/k + x +..J k + k "1/ 1- beta22 
) ("I/k + x + ..J k - k "1/ 1- beta2

2 
) 

:= [ccoa[i-
l 

_a ___ S_i_Il_[a_~_~_-y2~cc_O_a_[Y_l_ dla 

" y-Cos[a] 
T 

0+ b b (int [x, '" 1 - b 2 
] + int [x, - '" 1 - b

2 
]) ] 

lplus [x_, b_] : = x Exp [- -...:...---=-------=-----=--------
1+- 21f 

k 

lminus [x_, b_l : = raw1 [x, b] j lplus [XI b] 

rawl [x_, b_] : = 1 + (k b / Sqrt [k A 2 - X A 2] ) 

1 
'" kappa [x] 

-.ykappa [X] 

gplus [X_] : = dplus [x] u [x] 

kappa [xl +k betal 
kappa [xj +k beta2 

kappa[xj +kbeta2 

kappa[xj +kbetal 

gminus [x_l : = dminus [x] 1:nverse [U [X]] • matrixk [x] 

kappa(x).lc~tal 

kAppa [xl. k setal 

"'kappa [xl 

kappa(x).lc~tal 
kAppa[xj.ksetal 

"'kappa [xl 

,= ~ ~ k ~ X "'!minus [x. betal] "'!minus [x. beta2] 
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~ 
: = ~ "~-2- .y1plus [x, betal] .y1p1us[x, beta2] 

Sin [thetao] (gp1us [x] • gminus [-k Cos [thetao] ]) . p 
matrixu[x ] := ---~~~~~~--~~~------------------~~--

- (7r J:) (beta1 + Sin [thetao] ) (x + Cos [thetao]) 

u1 [x_] : = matrixu [x] [1] 

u2 [x_] : = matrixu [x] [2] 

2 J: ~ Sin[t] Exp[J: k r + 7] ul [k Cos [t]] 

Sin[t] + betal 

. 2 J: ~ Sin [t] Exp [J: k r + ¥] u2 [k Cos [t] ] 
: = -

-Sin[t] + beta2 

« RGraphics 'Graphics' R 

rS:= po1arP1ot[Abs[psi3[x]2 /psi3[3.14]2], {x, 0, 3.14}] 

r6:= po1arP1ot[Abs[psi4[x]2 /psi4[-3.14]2], {x, -3.14, O}] 

Show[rS, r6] 
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* PROGRAM 2 : Far - field for a plane wave incident on a half - plane in a moving fluid * 
Off[General::nspell"] 

Off[General::nspelll"] 

7r 
the tao : = bt [ - ] 

2 

m:= 0.9 

1 
betal:= -----;::::::===_ 

( • 5 + I:) Y 1 - ml 

1 
beta2 : = -----;::==_ 

( • 5 + I) .y 1 - ml 

[

_'YV[X] .yw[xl 
u [y -] : = ...(vfif 

- ..;;[i"f 

1 
v[x_l := ---

Yk+x 

yv[xl Yw[xl Yk+xj 
- ~...(k;i 

- ",,-[xl 

bplus [b_l : = k-
k blm + k Y 1 + b l m2 - b 2 

1 + b 2 m2 

bminus [b_l : = k -
k b l m - k Y 1 + b 2 m2 _ b 2 

1 +b2 ml 

;. -

1+beta12 • 2 

1+betal2 • 2 

w[x_l :=~~==~--~--------~~-y~==~----~--~~)----­
(~ + bplus [beta21) ( k + x + bminus [beta2] 

( (~ + bplus [betal]) (~ + bminus [betall ) ) 

[

CC08[i l a _ Sin[a] ArcCos[yl 

"" l-y2 ] :=N[-(m+ y )" -------d1a 
y-Cos[a] 

T 

0+ b b (int [x, vl [b]] - int [x, v2 [b]]) ] 
lplus [x_, b_] : = x Exp [ -V l 

1 + k 2 7f 1 - b l + (b m) 

lminus [x_, b_] : = Iplus [-x, b] 
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-rnb2 + -y 1.- b 2 + (rnb) 2 

1. + (b rn) 2 

-mb2 --Y1.-b2 + (mb}2 

1. + (bm) 2 

kappa [x] + beta1. rn x + k beta1. 
matrixk[x_] := (1./Sqrt[2]) {{v'kappa[x] 

kappa [x] + beta2 rn x + k beta2 

kappa [x] +betalllL x+k betal 
kappa [x] +beta2 ill :uk beta2 

kappa [x] + beta2 m x + k beta2 ----;;:======---}, {- v'kappa [x] 
v'kappa[x] kappa [x] + beta1. rn x + k beta1. 

kappa [x] +betalllLx+kbeta2 
kappa [x] +betalllL x+k betal 

---V~k=a=pp=a=[=x]~---}} 

1. [x_l : = :Inverse [u [x]] • matrixk [x] 

gminus [x_] : = dminus [x] 1 [x] 

dminus [x_l : = ~ ~ k; x '" llninus [x, betal1 '" lminus [x, beta21 

I~ 
:= ~"-':--2- v'lp1.us[x, beta1.] v'lplus [x, beta2] 

gplus [x_] : = dplus [x] u [x] 

matrixu [x_] : = (gplUS [x] • gminus [- : ]) • q [x] 

p 
- (gplus [x] • gminus [-k Cos [thetao] ]) • ------­

x + k Cos [thetao] 

Sin[thetao] {1., -k betal. (1. - rnCos [thetao])} 
p:= 

lr:I (Sin [thetao 1 - beta1. rn Cos [thetao] + betal) 

u1. [x_] : = matrixu [x] [1] 
u2 [x_] : = matrixu [x] [2] 

,. . 

, 

, 

~ r :I lr ( t - thetao 
i1.[t_, r_l := :I-Vlr Exp[-4] -Exp[-:IkrCos[t-thetao]] f[-{2k; cos[ 2 ]] 

~~ t + thetao ) 
. + Exp [ -:I k r Cos [t + thetao 1] f [ -V 2 k r Cos [ 2 ] ] 
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psil [t_, r_J : = Exp [- I k r Cos [t - thetao] J 

: = (beta1 m Cos [thetao J + sin [thetao J - beta1) Exp [ - I k r Cos [t + the tao J ] 

-beta1 mCos [thetao] + Sin [thetao] +beta1 

t 
(2Cos["2]) ul[kCos[t]] (Cos[t] + Cos [thetao» il[t, r] 

(betal + Sin [t] + betal m Cos [t]) Sin [ the
2
tao ] 

t (2 Cos ["2]) ul [k Cos [t]] (Cos [t] + Cos [thetao]) 

(il [t, r] - I:rr Exp [-I r k Cos [t + thetao] ] ) 
psi 7 [t_, r_J : = -~-.::..----=~----=--=-----.:...----......::~-­

(betal + Sin [t] + betal m Cos [t]) Sin [ the
2
tao ] 

t (2 Cos ["2]) u2 [k Cos [t]] (Cos [t] + Cos [thetao]) il [t, r] 

(beta2 - Sin [t] + beta2 m Cos [t]) Sin [ the
2
tao ] 

t (2 Cos ["2]) u2 [k Cos [tJ] (Cos [t] + Cos [thetao] ) 

(il[t, r] +I:rrExp[-IrkCos[t-thetao]]) 
psiS-[t_, :t;-] : = - ----------=-------=~----=...:..:.-­

(beta2 - Sin [t] + beta2 m Cos [t]) Sin [ the
2
tao ] 

« "Graphics'Graphics'" 

Cos [x] 
bt [x_] : = ArcCos [ ] 

'" 1- (m Sin [x] ) 2 

1- (mSin[x] )2 

1-m2 

r1 : = Po1arP1ot [Abs [psil [bt [x] , br [x]] + psi2 [bt [x], br [x] ] + psiS [bt [x] , br [x] ] ] ~ 
{x, 0, 3.14 - thetao}, PlotPoints -+ 50] 

r2 : = PolarPlot [Abs [psil [bt [x], br [x]] + psi 7 [bt [x], br [x] ] ] , 
{x, 3.14-thetao, 3.14}, PlotPoints-+50] 

r3 : = PolarP1ot [Abs [psil [-bt [x], br [x}] + psiS [-bt [x], br [x] ] ] , 
{x, -3,14, -3.14 +thetao}, PlotPoints-+50] 

r4 : = PolarPlot [Abs [psi6 [-bt [x], br [x]] J, {x, -3.14 + thetao, O}, PlotPoints -+ 50] 

Show[r1, r2, r3, r4] 
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* PROGRAM 3 : Far - field for a plane wave incident on a half - plane in a moving fluid * 
Off[General::nspell n] 
Off[General:: nspell1"] 

71' 
thetao : = bt [ - ] 

2 
I 

k:= -::===­
-V 1 - m2 

m:=O.9 

betal : = 

beta2 : = 

O.s-X 

-V I - m2 

0.5. - X 

-V I - m2 

bplus [b_] : = k-

bminus [b_] : = k -

k b 2 m + k -V I + b2 m2 - b 2 

I +b2 m2 

k b 2 m - k -V I + b 2 m2 - b 2 

I + b 2 m2 

1+b.tal~ JIl~ 

1+beta2~ JIl~ 
((~ + bplus [betal]) (-Vk + x + bminus [be~al])) 

w[x_] := ~-------------------------===~----------~-----­
(-Vk + x + bplus [beta2]) (-Vk + x + bminus [beta2]) 

.{--VV[X] -Vw[x] -Vv[x] -Vw[x] -Vk+xj 
u [y -] : =...r;r;r Vv1if ...fk;i 

- "';w [z] - "';w [z] 

[

CCOB[-i-] a _ Sin[a] ArCCOB[Y] 

"';1-Y~ ] 
:=N[-(m+ y )" ------da 

y-Cos[a] 
T 

0+ b [ b (int [x, vI [b)) - int [x, v2 [b)]) ] 
lplus [x_, b_] : = z Exp 

. I + k 2 7r ~ I _ b 2 + (b m) 2 

lminus [X_, b_] : = lplus [-X, b] 

-mb2 + ~ 1- b 2 + (mb) 2 

I + (bm) 2 
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-mb2 _ ~ 1- b 2 + (mb) 2 

1 + (bm)2 

matrixk[x_] := (1/Sqrt[2]) {{.ykappa[x] 

kappa [xl +betallll. x+k betal 

kappa [xl +beta2 III. x+k beta2 

----;:::=====---}, {- .ykappa [x] 
.y kappa [x] 

kappa [xl +beta2 III. x+k beta2 

kappa [xl +betallll. x+k betal 

---~~k=a=pp=a=[=x]~--}} 

. kappa [x_] : = .yk2 - x 2 

1 [x_] : = :Inverse [u [x]] • matrixk [x] 

gminus [x_] : = dminus [x] 1 [x] 

kappa [x] + betal m x + k betal 

kappa [x] + beta2 m x + k beta2 ' 

kappa [x] + beta2 m x + k beta2 

kappa [x] + betal m x + k betal ' 

'.~ 
dminus [It.-] : = ~ -V ~-2- .ylminus [x, betal] .y lminus [x, beta2] 

~ : = ~ \j ~-2- .ylplus [x, betal] .ylplus[x, beta2] 

: = dplus [x] u [x] 

matrixu [x_] : = (gplUS [x] • gminus [- : ]) • q [x] 

- (gplus [x] • gminus [-k Cos [thetao]]) • p 
x + k Cos [thetao] 

Sin [thetao] {l, -k betal (1 - m Cos [thetao] ) } 
p • - ---------------------

• - 7T:I (Sin [the tao] - betal m Cos [thetao] + betal) 

ul [x_] : = matrixu [x] [lD 
u2 [x_] : = matrixu [x] [2D 

[ 
gminus [-k Cos [thetao]] [2, lD p[lD + gminus [-k Cos [thetao]] [2, 2D p[2D ] 

cform:= N 
gminus [- : J [2, lD 

cform {l, O} 

k x+-
III. 

_ r= :I 7T ( t - the tao 
il[t_, r_] := :I-Y7T EXP[--,-] -Exp[-:IkrCos[t-thetao]] f[~ cos[ 2 J] 

_ r::-:-- t + thetao ) 
+ Exp [ -:I k r Cos [t + the tao ]] f [ -y 2 k r Cos [ 2 ] ] 

f [t_] : = [ Exp [:I v2 ] d1v 

psil [t_, r_] : =N [Exp [-:I k r Cos [t - thetao]]] 
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: = (betal m Cos [thetao] + Sin [thetao] - betal) Exp [ - J: k r Cos [t + thetao] ] 

-betal m Cos [thetao] + Sin [thetao] + beta1 

: = 2 J: ~ Sin[t] Exp [J: k r + ¥-] ul [k Cos [t]] 

Sin[t] + betal m Cos [t] + beta1 

2 J:~ Sin[t] Exp[J:kr+ -¥-] u2[kCos[t]] 
: = -

- Sin [t] + beta2 m Cos [t] + beta2 

: = (2 Cos [~]) ul [k Cos [t]] (Cos [t] + Cos [thetao]) il [t, r] 

(betal + Sin [t] + betal m Cos [t]) Sin [ the
2
tao ] 

(2 Cos [ ~ ]) ul [k Cos [t]] (Cos [t] + Cos [thetao] ) 

psi 7 [t_, r_] : = __ ( i_l_[~t_,_r..:.] _-_J:_7r_Exp---:....:[:...-_J:_r_k_C_o_s....:[:....t_+_th~e..:.ta.:....o.:..]::..:]::...:):.-._ 
(betal + Sin [t] + betal m Cos [t ~) Sin [ the

2
tao ] 

(2 Cos [~]) u2 [k Cos [t]] (Cos [t] + Cos [thetao]) il [t, r] 

(beta2 - Sin [t] + beta2 m Cos [t]) Sin [ the
2
tao ] 

t (2 Cos [2"] ) u2 [k Cos [t]] (Cos [t] + Cos [thetao]) 

(il [t, r] + J: 7r Exp [-J: r k Cos [t - thetao] ]) 
psiS [t_, r_f : = - -..:..-.-..:....-----.:----=:..-=------=~----::...:....:..-­

(beta2 - Sin [t] + beta2 m Cos [t]) Sin [ the
2
tao ] 

« "Graphics 'Graphics'" 

Cos [x] 
bt [x_l : = ArCCos [ ] 

" 1 - (m Sin [x]) 2 

. 1 - (m Sin [x] ) 2 

1- m2 

rl : = polarPlot [Abs [psi1 [bt [x], br [x]] + psi2 [bt [x], br [x]] + psiS [bt [x] , br [x] ] ] , 
{x, 0, 3.14 - thetao}, PlotPoints -+ 50] 

r2 : = PolarPlot [Abs [psi1 [bt [xl, br [x]] + psi 7 [bt [x], br [x] ] 1 , 
{x, 3.14 - thetao, 3 .14} I plotPoints -+ 50] 

r3 : = Polarplot [Abs [psil [-bt [x], br [x]] + psiS [-bt [x] I br [x] ] ] I 

{x, -3.14, -3.14 + thetao} I PlotPoints-+ 50] 
r4 :=polarPlot[Abs[psi6[-bt[x], br[x]]], {x, -3.14+thetao, O}, PlotPoints-+50] 

Show[rl, r2, r3, r4] 



Appendix D 

Calculation of I ( a) and J ( a ) 

In this appendix a derivation is given for the integral 

If it is assumed that, and 8 are real and positive then 

1(0;) = ('Xl l~g It + 8ldt , 
io b(t+,) 

= 2 {<Xl log lu2 + 81 du 
io u2 +, , 

= 1<Xl log lu 2 + 81d 
2 u, -<Xl U +, 

= 1<Xl log lu +iV81 d 1<Xl log lu - iV81 d 
2 u + 2 u, -<Xl U +, -<Xl U +, 

= 21<Xl log lu + iV8ld = R 1<Xl log(u + iV8)d 
2 u 2 e 2 u. -<Xl U +, -<Xl U +, 

N ow consider the integral 

2 ( log(z + iV8) dz, 
ir Z2 +, 

(D.l) 

where r is shown in Figure D.l. Using the fact that the contribution from the circular 

arc is zero and capturing the simple pole at iylf yields 

21
<Xl log( u + iV8) d . l' log(z + iV8) 

u = 27T'Z 1m . , -<Xl u 2 + , z-+i-n Z + zyIf 

III 



Appendix E 

Throughout this work the following theorem is required. If F(z) is a holomorphic 

function of z in -7r < arg(z + k) < 7r; F(z) = O(Z-E)(t > 0) as JzJ ---+ 00 in -7r < 

arg( z + k) < 7r and F (z) satisfies 

where g(e) is a known function then 

F(z) = ~ l-k 
g(e) de, -7r < arg(z + k) < 7r. 

27rZ -00 e - z 

The proof of this theorem is as follows. For r2 as shown in Figure E.1, Cauchy's 

theorem for z inside r 2 states that 

Since F(z) = O(Z-E) as JzJ ---+ oo(t > 0) the contribution to the above integral from 

the circular arc is zero. The branch cut contribution gives 
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-. 

-k 

Figure E.1: The contour r 2 in the complex plane. 
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2 'iT 
I(a) = y'1log(v,+V8), ,,8>0. (D.2) 

Analytic continuation is now invoked to extend the range of applicability of this result. 

100 log( t + 8) 2 'iT Ic 
1/2( )dt = ;;:;log(v, + v8), larg,l < 'iT, larg81 < 'iT. 

o t t+, v' (D.3) 

r 

-iV8 

Figure D.1: Pole capture in the complex plane. 

In Section 3.4 it is also required that 

J(a) = 10"" tl/2(t:~ + a)' 

1
00 du 

=2 y' 
o u2 + f\., + a 

1 roo { 1 _ 1 } du, 
= y!K + a Jo u + iy!K + a u - iy!K + a 

1 [ (u - ivlf) 1 00 

. iy!K + a log u + ivlf 0' 

'iT 
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