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ABSTRACT 
 

 

 

There is a good deal of uncertainty and sensitivity in the results for wave impact. In a 

practical situation, many parameters such as the wave climate will not be known with 

any accuracy especially the frequency and severity of wave breaking. Even if the wave 

spectrum is known, this is usually recorded offshore, requiring same sort of (linear) 

transfer function to estimate the wave climate at the seawall. What is more, the higher 

spectral moments will generally be unknown. Wave breaking, according to linear wave 

theory, is known to depend on the wave spectrum, see Srokosz (1986) and Greenhow 

(1989). Not only is the wave climate unknown, but the aeration of the water will also be 

subject to uncertainty. This affects rather dramatically the speed of sound in the water/ 

bubble mixture and hence the value of the acoustic pressure that acts as a maximum cut-

off for pressure calculated by any incompressible model. The results are also highly 

sensitive to the angle of alignment of the wave front and seawall. Here we consider the 

worst case scenario of perfect alignment. 

 

Given the above, it seems sensible to exploit the simple pressure impulse model used in 

this thesis. Thus Cooker (1990) proposed using the pressure impulse ),( yxP  that is the 

time integral of the pressure over the duration of the impact. This results in a simplified, 

but much more stable, model of wave impact on the coastal structures, and forms the 

basis of this thesis, as follows: 

 

Chapter 1 is an overview about this topic, a brief summary of the work which will 

follow and a summary of the contribution of this thesis. 

 

Chapter 2 gives a literature review of wave impact, theoretically and experimentally. 

The topics covered include total impulse, moment impulse and overtopping. A summary 

of the present state of the theory and Cooker’s model is also presented in Chapter 2.   
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In Chapter 3 and Chapter 4, we extend the work of Greenhow (2006). He studied the 

berm and ditch problems, see Chapter 3, and the missing block problem in Chapter 4, 

and solved the problems by using a basis function method. I solve these problems in 

nondimensionlised variables by using a hybrid collocation method in Chapter 3 and by 

using the same method as Greenhow (2006) in Chapter 4. The works are extended by 

calculating the total impulse and moment impulse, and the maximum pressure arising 

from the wave impact for each problem. These quantities will be very helpful from a 

practical point of view for engineers and designers of seawalls. The mathematical 

equations governing the fluid motion and its boundary conditions are presented.  

 

The deck problem together with the mathematical formulation and boundary conditions 

for the problem is presented in Chapters 5 and 6 by using a hybrid collocation method. 

For this case, the basis function method fails due to hyperbolic terms in these 

formulations growing exponentially. The formulations also include a secular term, not 

present in Cooker’s formulation. For Chapter 5, the wave hits the wall in a horizontal 

direction and for Chapter 6, the wave hits beneath the deck in a vertical direction. These 

problems are important for offshore structures where providing adequate freeboard for 

decks contributes very significantly to the cost of the structure.  

 

Chapter 7 looks at what happens when we have a vertical baffle. The mathematical 

formulation and the boundary conditions for four cases of baffles which have different 

positions are presented in this chapter. We use a basis function method to solve the 

mathematical formulation, and total impulse and moment impulse are investigated for 

each problem. These problems are not, perhaps, very relevant to coastal structures. 

However, they are pertinent to wave impacts in sloshing tanks where baffles are used to 

detune the natural tank frequencies away from environmental driving frequencies (e.g 

ship roll due to wave action) and to damp the oscillations by shedding vortices. They 

also provide useful information for the design of oscillating water column wave energy 

devices.  

 

Finally, conclusions from the research and recommendations for future work are 

presented in Chapter 8. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 Overview 

 

This thesis studies water wave impact on the vertical structures. This study is divided 

into eight chapters which cover various structures with rectangular geometries including 

the introduction of the pressure impulse theory and discussion. Each chapter has a 

separate literature review, but we will start with a brief summary of what will be 

covered in each chapter and some motivation for carrying out this work. For each type 

of structure, we will examine the pressure impulse on the vertical seawall, including the 

total impulse and overturning moments. In all the problems in this thesis we assume that 

the fluid is inviscid and incompressible. It is worth noting that the model does not 

require irrotationality, but that vorticity is conserved during the impact. Given that the 

impacting wave model before impact is irrotational, the motion afterwards will also be, 

but this is not a requirement of the pressure impulse model used throughout this thesis. 

 

Ocean waves are caused by the wind blowing over the surface of the ocean. As the wind 

blows, it gives energy to the sea surface resulting in a spectrum of waves. When waves 

break onto a vertical structure they can cause a fast spray jet rising into the air. The 

pressure or forces that act on these structures under wave action are divided into two 

categories, pulsating (or quasi-static) and impulsive (or impact) (Allsop et. al, 1995).  

Pulsating pressures change relatively slowly while the impulsive pressures caused by 

breaking waves are large and much higher than pulsating pressures, but of shorter 

duration. We are especially interested in the highest pressures, which often cause 

damage to the vertical structures. 
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Seawalls are constructed to protect beaches and coastlines from being destroyed by 

erosion while breakwaters are constructed to provide a calm lagoon for ships and to 

protect the harbour facilities immediately behind them. For ports open to rough seas, 

breakwaters play a main role in port operations. Since sea waves have enormous power, 

the construction of the structures to eliminate most wave action is not easily 

accomplished. The history of breakwaters therefore can be said to be one of much 

damage and many failures, (Takahashi,1996). 

 

               

       Figure 1.1:  A simple example of a vertical caisson breakwater,  

                       image taken from European Coast, 

                       http://www.kennisbank-waterbouw.nl/EC/CLM01060002.html  

 

It is important to understand the significance of wave impact for the design of seawalls 

and breakwaters. There are large peaks in pressure on the vertical structure, and the 

engineers should design breakwaters which can reduce these impacts as much as 

possible or else they may lead to structural failure. Poor designs also require constant 

maintenance as waves erode the base of the seawall. The first catastrophic failures of a 

series of large rubble mound breakwaters were recorded in the thirties, and reported by 

Oumeraci (1994). Since then, there are many developments which might enhance the 

stability of vertical breakwaters, for instance knowledge of wave breaking and impacts 

on structures has evolved theoretically and experimentally. There are several 

sophisticated facilities for investigating the dynamic, hydraulic and geotechnical aspect 

of waves which are available in model or large scales in the laboratory. The theory of 

pressure impulse for wave impact on vertical structures will be covered in Chapter 2 and 

also a literature review of  experimental works by other researchers will be given. 

 

http://www.kennisbank-waterbouw.nl/EC/CLM01060002.html
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A vertical breakwater is usually a composite breakwater consisting of a rubble 

foundation and a vertical wall. A rubble mound or berm can reduce the loads on a 

vertical wall. Using caissons as the vertical walls provides extremely stable structures in 

rough deep seas, see figure 1.1. We re-examine Greenhow’s (2006) work on the effect 

of having a berm and a ditch on the pressure impulse on the wall and extend this model 

in Chapter 3. Figure 1.2 shows an example of a vertical seawall, having suffered 

damage. 

                                                 

 

Figure 1.2:  Canvey’s seawall in Essex, England is cracked due to high pressure 

arising from wave breaking on the wall. (image taken from 

http://www.echo-news.co.uk/) 

 

The removal of blocks from the front of the seawall can cause further damage to a 

structure in failure mode. We carry out the analysis using pressure-impulse theory by 

consider the missing block region to be filled with fluid and always submerged below 

the impact region in Chapter 4.  

 

In Chapter 5 and Chapter 6 we consider an application of relevance to an oil-rig or a 

pier. We have a small deck on the top of a seawall which is very close to the water 

level. We consider firstly a wave travelling from the right impacting against the wall in 

Chapter 5 and secondly the wave impact upwards on a horizontal surface in Chapter 6. 

We set up the problem in a similar manner to the previous chapters, and solve using 

pressure-impulse theory.  

http://www.echo-news.co.uk/
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For an oscillating water column wave energy device with turbine valve open/closed, or 

sloshing impact in liquid carrier transport, violent wave motion can occur when the 

wave impacts on a vertical baffle. We are interested in studying the effect of having a 

baffle on the pressure impulse, with different baffle locations. A full description of this 

problem is given in Chapter 7.  

 

A simple overtopping model is also covered but not in all chapters. Wave overtopping 

can occur when waves break against seawalls throwing water and spray over the top the 

structure. As a result, wave overtopping is an important parameter for the design of 

many coastal structures. Underestimates for this factor will cause the failure of seawalls 

to function properly.  Functional failure also refers to cases where, for example, waves 

generated by storms run up the inclined  face of a sea defence and cause large 

overtopping discharge, not only leading to flooding, but also building damage, 

disruption of infrastructures and loss of life. An example of the failure of a coastal 

defence during a storm was in the North Sea in 1953 and caused extensive flooding on 

Canvey Island, UK with the loss of 59 lives reported by Offord (2011). This run-up 

mechanism for overtopping is not considered in this thesis. 

 

                   

Figure 1.3 : Wave overtopping definition sketches of run up and impact generated 

overtopping. Images from J. Geeraerts et  al. (2007), figure 1. 

 

Wave overtopping cannot be completely avoided due to the random nature of the waves 

(or extreme events such as tsunami) and due to the high building costs of high seawalls 

and the possible damaging effects on the surrounding environment. For example in 

Japan, the effectiveness of building tsunami walls of up to 4.5 m (13.5 ft) high in front 

of populated coastal areas has been questioned. An earthquake triggered an extremely 

destructive tsunami in March 2011, and the seawalls failed catastrophically, as the 

tsunami was higher than the barrier. Building larger and stronger seawalls to protect 
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large areas would have been too costly. However, for successful protection of any area, 

the capacity to construct seawalls that can withstand the largest wave forces during 

storm conditions and build high enough to prevent overtopping is needed. Recent 

research programmes into wave overtopping of coastal structures include VOWS 

(Violent Overtopping of Waves at Seawalls, http://www.vows.ac.uk/) and CLASH 

(Crest Level Assessment of Coastal Structures By Full Scale Monitoring, Neural 

Network Prediction and Hazard Analysis on Permissible Wave Overtopping, 

http://www.clash-eu.org). The objectives of the VOWS project were to develop new or 

improved prediction formulae for overtopping discharges, while the CLASH project 

measured overtopping discharge at full-scale on a vertical seawall and produced a 

generic prediction method based on experiments at coastal sites such as at Samphire 

Hoe, UK and in the laboratory. The guidelines and prediction method will be used for 

design, safety assessment for coastal structures, risk assessment of coastal areas, and all 

works where crest height of coastal structures play an important role.  

 

                

Figure 1.4 : Violent wave overtopping at the Samphire Hoe seawall, UK, taken from 

CLASH project, http://www.clash-eu.org .      

 

There is also a group called Eurotop Team, who produced an Assessment Manual for 

Wave Overtopping of Sea Defenses and Related Structures (http://www.overtopping-

manual.com/). Their manual gives guidance on analysis and prediction of wave 

overtopping for flood defences attacked by wave action. The main contributions to this 

manual have been derived from many researchers, included VOWS and CLASH.             

 

Oumeraci (1994) has conducted a review and analysis of vertical breakwater failures. 

He suggested that the three main categories of reasons for failures are (a) inherent to the 

http://www.clash-eu.org/
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structure itself, (b) the hydraulic conditions and loads, and (c) the morphology of the 

base of the seawall and the seabed. The major reasons for the failures are recorded as 

being due to the overtopping and, erosion of rubble mound foundations, seabed scour 

and breaking waves. This forms a strong motivation for undertaking the present work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 1.5: Failure modes of vertical breakwaters, images from Oumeraci (1994), 

figure 10. 

 

In the UK, a large proportion of the coast is currently suffering from erosion, as 

reported by Masselink and Russell, in the Marine Climate Change Impacts Partnership 

(MCCIP), Scientific Review, (2007-2008). Of the 17,281 km length of the UK 

coastline, 3,008 km are currently experiencing erosion. The highest coast length eroding 

is reported in Yorkshire and Humber which is 56.2% of its coast length. Erosion is also 

reported on almost two-thirds of the intertidal profiles in England and Wales. Both 

coastal erosion and steepening of the intertidal profiles are expected due to climate 

change, potentially causing sea-level rise and changes to the wave conditions. This will 

provide a significant challenge for coastal engineers to protect the coastlines.  

 

The main objective of this study is to contribute to the understanding of vertical 

breakwaters by theoretical studies that might help engineers to estimate the pressure 

impulse on the wall for certain geometries. Development of simple mathematical 

c) erosion beneath seaward  

    and shoreward edges 

a) sliding b) overturning 

d) seabed scour and toe erosion 
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models for the impact and overtopping, and the development and study of detailed 

numerical models of impulse and overturning moments are undertaken. It is also hoped 

that this study will be considered by engineers and designers to predict the design wave 

load conditions, to help ensure the stability of the structures.  

 

In this study the influence of how different geometries of rectangular structures affect 

the pressure impulses on the wall have been investigated. This has been achieved 

through extending studies from the existing literature, especially the pressure impulse 

theory used by Cooker (1990).  

 

The formulation for each problem is solving by using a basis function integral method 

and a hybrid collocation method. Then we truncate the Fourier series and find the 

Fourier coefficients by solving a matrix system using MATLAB.  

 

 

1.2        Contributions to knowledge 

In this section the contributions of this thesis to knowledge are summarised into 

theoretical and engineering significance as follows: 

●  The pressure impulse has been extended to a range of geometries. 

●  A secular term in pressure impulse solution is needed for some problems. 

●  The work of Wood and Peregrine (1997) is confirmed by using hybrid 

collocation method. 

●  Difficulties with using the Fourier method encountered by Greenhow (2006) 

have been largely resolved by using a collocation method. 

●  The total impulse and moment impulse for berm, ditch and missing block 

problems are given theoretically. 

●  The pressure impulse for vertical structures with a horizontal deck is given 

theoretically for different impact regions. 

●  The calculations of pressure impulse, total impulse and moment impulse for 

several baffle problems are given theoretically. 
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CHAPTER 2    

 

 

 

WAVE IMPACTS ON A VERTICAL SEAWALL 

 

2.1 Introduction –A Literature Review 

The engineering importance and intrinsic interest of wave impact on coastal structures 

has attracted many researchers and experimenters for many years. Among the earliest is 

Bagnold (1939) and his colleagues who formed a committee to investigate the nature of 

the shock pressure exerted on the vertical seawall when a wave strikes it. The research 

in this area then evolved theoretically and experimentally, both at model and full scale 

and generally confirmed Bagnold’s observations.  

 

The results of  laboratory (e.g. Bagnold, 1939; Chan and Melville, 1988; Kirkgöz, 1991; 

Chan, 1994; Hattori et al., 1994; Chiu et al., 2007) and full-scale experiments (e.g. 

Blackmore and Hewson, 1984; Bullock et al., 2001, 2007; Hofland et al., 2010) have 

made further contributions to the knowledge of pressures occurring during wave impact 

and its effects on coastal structures. This is important for improving the design of 

coastal structures such as breakwaters and seawalls. This previous work is divided into 

three categories as described below. 
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2.1.1 Model scale/laboratory tests 

The laboratory and field tests brought new insights into the wave impact phenomenon 

both in terms of pressure magnitudes and durations. The researchers and experimenters 

provided us with new information and improved our understanding of the physics and 

the characteristics of impact pressures. From these studies and experiments, it becomes 

clear that when waves break directly onto a vertical seawall, they are likely to yield high 

shock pressures of very short duration compared with the pressures caused by non-

breaking waves.  

 

Bagnold (1939) investigated the problem of wave pressures on coastal structures using 

wave-tank models. He suggested that a pressure rises to a high peak value, pkp , of very 

short duration, t , which is normally 1-10ms, with the larger pressure peaks having 

shorter duration. He showed that the product pkp t  is a more consistent measure of 

impact and led him to consider the integral of pressure over the impact time, called the 

pressure impulse, P, as used in this thesis.  

 

Chan and Melville (1988) conducted laboratory experiments on the impact pressures 

due to deep-water breaking on a surface-piercing flat plate. They claimed that the 

dynamics of trapped air during impact may contribute to both higher pressures and 

pressure oscillations. The characteristics and distributions of impact pressures depend 

on wave-breaking location. The results are confirmed by Chan (1994) who also 

conducted experiments on deep-water plunging-wave impacts on vertical structures. 

The distribution of peak pressures obtained from his experiments is examined and 

compared with theoretical pressure-impulse used by Cooker and Peregrine (1990) in 

Chan (1994) and good agreement was found.  

 

Breaking wave impact on vertical walls was studied experimentally by Kirkgöz (1982). 

He found that a breaking wave having its front face parallel to the wall produces the 

greatest shock pressures. He further indicates that the maximum impact pressures occur 

when the wave breaks directly on the wall rather than breaking in front of the wall or 

not quite breaking. Based on his experiments Kirkgöz (1991) then claimed that 

backward-sloping walls (inclined up to 045 to the vertical) can experience higher impact 
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pressure than vertical walls. In Hattori et al.’s, (1994) experiments, they observed after 

the peak of the impact pressure, pressure oscillations may be observed due to the air 

pocket trapped between the wall and the water surface. Among such impacts the highest 

impact pressures, of very short duration, occurred when the smallest air pocket was 

trapped between wall and the vertical wave face during impact.  

 

 

2.1.2 Full-scale measurement 

Blackmore and Hewson (1984) carried out full-scale measurements of wave impacts on 

seawalls in the South and West England using modern measuring and recording 

techniques. They investigated four seawalls of different profiles ranging from curved to 

flat to stepped and different types of foreshores, but the report is confined to the data 

from curved seawalls due to limited data from the other three sites. Here relatively small 

impact pressures were measured, compared to those measured by other full-scale 

experiments, mainly due to the high percentage of air entrained in the wave crests.  

 

Bullock et al. (2001) conducted experiments on the influence of air and scale on wave 

impact pressures. The field measurements were performed at the Admiralty Breakwater, 

Alderney. In their study, Bullock et al., (2001) found that the volume fraction of 

aeration is higher in seawater than freshwater. They also found that the peak impact 

pressures tended to be higher with freshwater waves than seawater waves and concluded 

that entrained air reduces the maximum impact pressure. This is broadly compatible 

with Lundgren’s (1969) ideas concerning the sound velocity, sc  decreasing rapidly as a 

function of increasing aeration in bubbly fluid resulting to the decreasing of peak 

pressure for water hammer pressure, swccp  where wc  is wave impact velocity and 

 is the density. sc  can decrease from 1500m/s to 20 m/s with increasing air fraction up 

to 10% by volume.  

 

The characteristics of impacting waves were again investigated by Bullock et al. (2007) 

in their large-scale regular wave tests on vertical and sloping walls. They proposed that 

the wave impacts depend on the breaker conditions. They also suggest that the high 

level of aeration does not always reduce the peak pressure but can also increase both the 
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force and impulse on the structure in some cases. The pressures, forces and impulses on 

the sloping wall were found to be lower than those on the vertical seawall. 

 

Recently Hofland et al., (2010) have conducted large scale measurements of pressure 

fields on a vertical seawall under wave impacts. These measurements were done in 

collaboration with Joint Industry Project Sloshel on sloshing in LNG tanks using high 

spatial and temporal resolution. They found that the ‘flip-through’ impacts created the 

largest peak pressures and peak forces but this occurred very rarely in a random wave 

field. The ‘flip-through’ is caused by violent pressures on the roof of the LNG tank 

which occur without impact of liquid on the wall and is independent of the global 

geometry and dynamics, being a local phenomenon (Peregrine, 2003). A theoretical 

model has been given by Cooker (2010). Large forces created by air pocket impact were 

also observed.  

 

Recent studies have been made by Cuomo et. al., (2010, 2011). Within the VOWS 

(Violent Overtopping by Waves at Seawalls) project (Cuomo, 2010), a series of large 

scale physical model tests have been carried out. A new prediction formula was 

introduced and compared with previous measurements from physical model tests, 

giving satisfactory results. Cuomo et. al., (2011) then presented a new approach to the 

definition of loads for use in performance design of vertical structures subject to 

breaking wave impacts. 

 

 

2.1.3 Theory 

Now, we will look at previous theoretical studies of wave impacts on coastal structures. 

Weggel and Maxwell (1970) and Partenscky and Tounsi (1989) have modelled the 

wave impact on vertical walls by solving the wave equation in a compressible fluid. In 

this thesis, we assume that the fluid is incompressible so we take the fluid velocities to 

be much less than the speed of sound, sc . However compressibility is important in 

wave impacts where air is trapped in the water, see Cooker and Peregrine (1995). 

 

Cooker and Peregrine (1990) modelled the wave as a rectangular region which is filled 

by fluid as in figure 2.4.1. We will discuss this theory more in the next section as we use 
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this theory and compare our results with Cooker and Peregrine (1990) throughout our 

work in this thesis. Their theory has been compared with experimental works such as 

Weggel and Maxwell (1970) and Partenscky and Tounsi (1989) by Cooker and 

Peregrine (1990). The shape distributions of peak pressure have been compared using 

the chosen value of   (see §2.4) by the experimenters in their own mathematical model 

and the agreement has been found. Cooker and Peregrine (1995) use the theory for 

studies of impact of deep water waves, impact in a container, the impact of a water sheet 

on still water and a triangular wave. They concluded that pressure impulse field is 

insensitive to variations of the wave’s shape at distances greater than half the water 

depth from the impact region. 

  

Mamak and Kirkgöz (2004) developed a theoretical approach for the pressure impulse 

on a vertical wall using boundary element methods and the results show good 

agreement with experimental data. They concluded that if the impact pressure rise time 

is known, the pressure impulse model can be used to predict the wave impact pressures 

on vertical seawalls.  

 

Okamura (1993) presented theoretical work on wave impacts on an inclined plane wall. 

He indicated that the largest pressure impulse on a wall occurred when the wall is near 

to vertical, in contrast to the results of Kirkgöz (1991). The application of pressure 

impulse theory has been used to show that the impulsive force due to a wave can move 

a large object near a seawall. Cooker and Peregrine (1992), considered a hemispherical 

boulder on the bed, and Cox and Cooker (1999), considered a spherical boulder. They 

found that the impulse is directly proportional to the boulder volume and indicated that 

the impulse on a long thin body is larger compared to low wide ones and that such 

shapes will move the farthest. Another application on pressure impulse theory was for 

impact in containers by Topliss, (1994) and impacts under a deck by Wood and 

Peregrine, (1996) which we will discuss more in Chapter 6. Wood and Peregrine (1998) 

studied three-dimensional examples for wave impact on a vertical seawall. They 

suggested that the three-dimensional model should be included if waves have a crest 

width less than twice the water depth. 
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Clearly there is a good deal of uncertainty and sensitivity in the results for wave impact. 

In a practical situation, many parameters such as the wave climate will not be known 

with any accuracy. Even if the wave spectrum is known, this is usually recorded 

offshore, requiring same sort of (linear) transfer function to estimate the wave climate at 

the seawall. What is more, the higher spectral moments,  dwwSwm n

n 



0

 where w is 

the radian frequency and  wS  the frequency spectrum, will generally be unknown. 

Wave breaking, according to linear wave theory, is known to depend on 4m  which is 

sensitive to the cut-off frequency of the spectrum, see Srokosz (1986) and Greenhow 

(1989). Not only is the wave climate unknown, but the aeration of the water will also be 

subject to uncertainty. This affects rather dramatically the speed of sound in the water/ 

bubble mixture and hence the value of the acoustic pressure that acts as a maximum cut-

off for pressure calculated by any incompressible model. Given the above, it seems 

sensible to exploit the simple pressure impulse model used in this thesis. Naturally, fully 

non-linear calculations, such as theory of Cooker (1990), give more accurate calculation 

of pressure for a given wave, but, as noted above, waves are far from being “given” in 

the real situation. Ultimately what is need is a balanced reduction of all the 

uncertainties; this would then justify the use of more sophisticated hydrodynamic 

models, to calibrate the pressure impulse model and justify its use. For now we note that 

comparisons between different geometries can be made on a rational basis. Moreover, 

using a typical water depth of say mH 2 , and the corresponding shallow water wave 

speed gH as the impact velocity, and an impact time of 0.1s, the present results for 

pressure impulse P roughly agree with design specification for impact peak pressures of  

25104  Nm  (i.e 4 atmospheric pressure) as calculated by equation 2.2.3 below. 

 

 

2.2 Pressure Impulse Theory 

Cooker and Peregrine (1990, 1995) proposed that the pressure impulse P is defined as 

the integral of pressure with respect to time  

                      dttyxpyxP
a

b

t

t

 ,,,                                  (2.2.1) 
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where tb and ta are the times just before and just after the impact, x, y are Cartesian 

coordinates of position (this could be x, y, z for three-dimensional situations not 

considered here) and p is measured relative to atmospheric pressure. The pressure 

impulse idea removes time from the equations of motions, but pkp (peak pressure) can 

be estimated from a calculated value P by assuming the pressure as a function of time 

during impact is approximately triangular, and ba ttt  is known, see figure 2.2.1 

below. 

 

Figure 2.2.1: The sketch of pressure against time, image taken from Cooker 

(1990) figure 8.1. 

 

Bagnold (1939) and Cooker and Peregrine (1990) pointed out that, despite the wide 

scatter in peak pressure, the product of tp pk  remains approximately constant, thus; 

2

t
pP pk


                                    (2.2.2) 

So that 

t

P
p pk




2
                   (2.2.3) 

Since t is prone to uncertainty, any estimate of pkp  is also uncertain. For extreme 

impact pkp  may be very large and t very small, but the product given in (2.2.2) will 

remain finite and approximately constant for wave impacts from similar waves. From 

comparisons of their result with some experimental measurements, they justified that 

this simple theory using simple boundary conditions gives approximate solutions for 

various wave shapes. Here we refer throughout to the Cooker and Peregrine (1990) 
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model, a two-dimensional model for water wave impact on a vertical wall which is the 

base case used in this thesis. It is assumed that P is insensitive to the shape of the wave 

away from the impact region. This shape is therefore taken to be rectangular throughout. 

On the other hand the maximum impact pressure is sensitive to the alignment of the 

wave front with the impacted part of the wall. We assume a worst case scenario here of 

perfect alignment. However, since the impacts are of shorter duration than those wave 

oblique impacts, the pressure impulse should be less sensitive to the angle of alignment 

than maximum pressure. 

 

 

2.3 Cooker’s Model  

Cooker and Peregrine (1990, 1995) proposed a mathematical model for pressure-

impulse theory for impact between a region of incompressible and inviscid liquid and 

either a rigid surface or a second liquid region. The boundary conditions are defined 

below and the theory gives information on the peak pressure distribution and the 

velocity after impact as well. The use of ‘impact pressure’ as the generic term instead of 

‘shock pressure’ to describe the large brief pressure of wave impact is suggested.  The 

hydrostatic pressure is gH , where   is density of water, g is gravity and H is height of 

the top of the wave above the bed is assumed to be very much smaller than the impact 

pressures. The ‘impact zone’ refers to the rigid surface area which is impacted by the 

moving liquid.  

 

Figure 2.3.1 shows the basic model in the form of two-dimensional vertical cross-

section of the coastline. The dotted line represents the incoming waves, and the full line 

represents wave after the impact. The interval between dotted line and full line on the 

rigid structure shows the area the location of the wave impact along the coastal structure 

and is known as the ‘impact zone’. 
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Figure 2.3.1: The sketch of realistic wave impact, image taken from Cooker (1990), 

figure 8.2. 

 

Cooker (1990) then modelled the wave impact on a rigid structure as a rectangular 

region which is filled by fluid as figure (2.4.1). He assumed the rectangular region 

contained an ideal fluid and neglected any cushion of air. Bagnold (1939) proposed that 

the greatest pressure-impulse occurs due to adiabatic compression over a large area of 

the thin air cushion and the wave front must be almost plane and parallel to the wall at 

the moment of impact. This is not considered here but theoretical models for this have 

been developed by Faltinsen and Timokha (2009). 

 

 

2.4 The Governing Equations 

From the mathematical model proposed by Cooker and Peregrine (1990, 1995), the 

governing equations for the problem can be stated as below. The boundary conditions 

are shown in figure 2.4.2. The fluid is assumed to be incompressible and inviscid. 

However the fluid does not have to be irrotational for the pressure impulse model, see 

equation (2.4.5). 

1. Let 0U , 0L , t , and sp be velocity, length, time and pressure scales for the incident 

wave. Euler’s equations, made dimensionless with respect to these scaling are: 

                               j
U

tg
p

LU

tp
uu

L

tU

t

u
s








 








 








 










0000

0 .


                      (2.4.1) 

                                           G1                          G2                  G3 
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where 


j is a unit vector pointing upwards. Cooker’s (1990) terms G1, G2, and G3 are 

discussed as below: 

For a sudden impact, the impact time is much less than the time scale of the 

evolution of the wave as a whole, i.e. 00 ULt  . So, in (2.4.1), 1
0

0

1 



L

tU
G , 

and so this nonlinear term can be neglected.  Furthermore, 1
0

3 



U

tg
G , so the 

last term in (2.4.1) is also small and can be neglected. If 1~
00

2
LU

tp
G s




 , then we 

have a balance between the first and third term in (2.4.1) and Cooker has a proof this 

is consistent with the statement: 

                     “Impulse exerted on the wall~ Incident wave momentum.” 

By neglecting the small terms in (2.4.1), during the impact we have: 

                                   p
LU

tp

t

u
s 






 







00
                                                   (2.4.2) 

We choose units so that 100  LUtps , i.e. .00

t

LU
ps





 In this cases 

considered here we can choose to non-dimensionalise the problem by the 

characteristic length, time and velocity being the water depth, duration of impact 

and velocity of impact respectively. Then equation (2.4.2) shows that the pressure 

impulse is scaled by .00 LU  Equation (2.4.2) then becomes: 

                                          p
t

u









1
                                       (2.4.3) 

 

2. From equation (2.4.3), integrating this with respect to time through the impact 

interval  ab tt , ,  gives us 

                                           




















a

b

a

b

t

t

t

t

pdtdt
t

u



1
                                            (2.4.4) 

      Using definition (2.2.1) for the pressure impulse P, (2.4.4) reduces to  

,
1

~~
Puu

ba



                          (2.4.5) 



18 

 

where 
b

u
~

and 
a

u
~

are the fluid velocities at times immediately before and after 

impact, respectively. Taking the curl of the equation shows that the vorticity is 

conserved during the impact. For models of water waves we usually assume this 

flow is irrotational before the impact so it will also be irrotational after the impact. 

We assume that the flow is incompressible, by excluding the presence of bubbles in 

the fluids, so that 
b

u
~

.  and 
a

u
~

.  both vanish. Taking divergence of (2.4.5) shows 

that the pressure impulse satisfies Laplace’s equation 

                                                     .0,2  yxP                (2.4.6) 

Note that (2.4.6) does not involve time so we can solve boundary-value problems in 

a fixed domain which is a mean position for the fluid during impact. 

 

3. The boundary conditions to be applied to Laplace’s equation are readily found to be 

as follows: 

 

(a) At a free surface, the pressure is constant and taken to be the zero 

reference pressure. Hence (2.2.1) gives 

0P  on 0y               (2.4.7) 

(b) At a stationary (or even moving) rigid boundary, in contact with the 

liquid before and after the impulse, the normal velocity is unchanged so 

equation (2.4.1) gives 

                                                    0 nP               (2.4.8) 

(c) Where liquid meets a solid boundary during impact, the change in 

normal velocity gives the normal derivative of pressure impulse. For the 

simplest case of a stationary or moving rigid boundary 

,
1

n

P
unb







              (2.4.9) 

where nbu  is the normal component of the approach velocity of the 

liquid. 

(d) Although not considered in this thesis, when liquid meets liquid two 

boundary conditions are needed on the common interface. One is that the 

pressure impulse is continuous: 

21 PP               (2.4.10) 
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Consideration of the change in velocity on each side of the interface 

gives 

                                             ,
11 2

2

1

1

21
n

P

n

P
uu nbnb












           (2.4.11) 

where subscript n denotes the components normal to the boundary and 

subscript b denotes the liquid velocities immediately before the impact. 

In all the above cases, an inelastic impact is assumed. 

 

                                

 

Figure 2.4.1: Governing equation and boundary conditions of theoretical model  

proposed by Cooker (1990), image taken from Cooker (1990) figure 

8.3. 

 

Since P is harmonic it satisfies the maximum principle, see Zauderer (1989). Hence P 

must take its maximum value on the boundary of the fluid region. Since P = 0  on the 

free surface and distant boundary, then its maximum value must occur on one of the 

solid surfaces. This general result is respected by all calculations in this thesis. 

 

A proof of the existence of a solution of boundary-value problems in general are 

difficult; here, however, since we construct a solution, that guarantees existence, 

assuming that the series of eigenfunctions actually converge throughout the fluid region. 

This is known to be the case for the seawall, see section 2.4.1, and is assumed for all 

other problems considered. For an elementary proof of uniqueness of the solution based 

on energy integrals, see for example Wright (2002). Although this proof is set up in 

terms of a Dirichlet condition on the boundary, it works without modification in the 
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present case of Dirichlet condition on part of the boundary and a Neumann condition on 

the rest. This leaves the issue of whether or not the problem is well-posed i.e. does the 

solution depend continuously on the boundary data? This is in fact the case, as follows 

easily from the maximum principle, see Frey (2008).  This is important to underpin any 

numerical solution technique since it asserts that small errors in the boundary conditions 

will only cause small errors in the solution elsewhere in the fluid domain. The matching 

procedures used in this theses can also be justified by noting that, since the same 

boundary conditions are used for the fluid region and its two (or more) matching 

regions, the solution from matching will be the same throughout the fluid because of the 

uniqueness of the problem. 

 

 

2.4.1  Impact on a seawall (Cooker model) 

The solution of Laplace’s equation, 02  P , is given by separating variables, followed 

by imposing the mixed boundary conditions as below: 

a) at free surface, air motion is ignored, hence the atmospheric pressure is constant 

and taken to be the zero reference pressure. This gives the Dirichlet boundary 

condition, P = 0 as in equation (2.4.7). 

b) At a stationary rigid boundary, in contact with the liquid before and after the 

impulse, the normal velocity must be zero before and after impact, so that gives 

the Neumann boundary condition 0 nP , where; 

● ,xn   on the seawall, for  HHy  ,  

● ,yn   on the seabed, for   ,0x  

c)  At the wall, at 0x  and in the impact region we have a Neumann boundary 

condition 

0U
x

P





    0,for Hy                         (2.4.12) 

where:  

  10    :  dimensionless constant indicating how much of the wall is hit 

0H   :  total water depth at time impact, from seabed to top of wave 

0U  : impact speed (taken as negative as it is travelling along the x-       

axis in the negative direction.) 
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  d)  As x , 0P : this is consistent with Cooker’s 0P  statement in  figure 

(2.4.1) since 0P  on the free surface .0y  

 The solution for the boundary-value problem of figure 2.3 which satisfies the bed, free- 

surface and infinity boundary conditions is 

  






 












 H

x

H

y
ayxP nn

n

n


 expsin;,

1

                     (2.4.13) 

where  









2

1
nn  and the constants na are determined by solving the boundary 

conditions with given xP   at 0x , the wall 

 

                                    

ya
x

P
nn

n

n

x

 sin
10










 










HyH

yHU





for  0

0for  0
                             (2.4.14) 

 

Applying       
   

 
   

  

 
 to equation (2.4.14) and using orthogonality of the basis 

functions in the usual way gives 

                    2

0 /1cos2 nnn HUa   .             (2.4.15) 

so that the pressure impulse at 0x  is given by 

     















H

y
HUyP n

n

n

n


 sin1cos2;,0

2

1

0             (2.4.16) 

 

This analytic solution gives quantitative predictions of the pressure impulse on the wall. 

The series in (2.4.16) is rapidly convergent because of squared term in the denominator.  

 

 

2.4.2 Alternative model 

Cooker and Peregrine (1995) modified Cooker’s model by using hyperbolic terms 

instead of exponential terms in the Fourier series. They suggested that the exponential 

decay as x  in Cooker (1990) can be changed to 0P  at a finite boundary Bx   

instead of as x . This change still satisfies the Laplace’s equations 02  P  as the 
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solution for the mixed boundary-value problem and the model can be illustrated as in 

figure 2.4.2.        

 

 

Figure 2.4.2: The boundary-value problem for pressure impulse  

 

 

The solution of Laplace’s equation in the Fourier series form can be written as 

    
  
 HB

HBx

H

y
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nn
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1






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


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



                         (2.4.17)     

with    2

0 /1cos2 nnn HUa    where  









2

1
nn .                               

Here U is a function of y. Cooker (1990) uses several forms for this impact speed 

profile, but the present thesis assumes it is of the form 0U
x

P





 as in the original 

Cooker (1990) model, giving the Fourier coefficients of equations (2.4.15). The 

standard results for Cooker’s model shown as figure 2.4.3 and pressure impulse on the 

wall for Cooker’s model shown as figure 2.4.4 
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0.1   

 

 

 

 

        Figure 2.4.3: Standard result for non-dimensional pressure impulse Cooker’s 

model for varying   with 50,1,2  NHB . Note the vertical 

scales in 3-D plots. 

 

 

For the next chapter, we will use the pressure impulse solution in hyperbolic terms in 

Fourier series for our next problem. The trigonometric and the hyperbolic terms will 

depend on the modelling of the problem. We also will use Cooker and Peregrine (1995) 

solution for comparison with our result. 

 

Peregrine (2003) indicated that the pressures measured from experiment are much 

greater than would be expected. On the other hand the pressure impulse, which is 

pressure integrated with respect to time, shows greater consistency. He also suggested 

that there are a few important parameters that influence the impact of a wave at a wall 

that need to be considered. The parameters are: the mean water depth at the wall, the 

geometry of the wall, the shape of the wave as it meets the wall, and the water depth at 

the wall. The assumptions that we have made to model this theory are that the wall is 

vertical and the seabed is horizontal immediately in front of the wall. 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.023
851

0
.0

7
1
5
5
4

0
.1

4
3

1
1

0
.2

1
4

6
6

0
.3

3
3

9
20

.5
0
0

8
8

0
.6

6
7

8
4



25 

 

 

Figure 2.4.4:   The pressure impulse on the wall,  ,,0 yP  for 2.0 , 0.4, 0.6, 0.8 and 

1.0. The maximum pressure is 0.742 HU 0 when 0.1  and occurs at 

1y . 

 

Whilst the impulse on the wall has obvious engineering significance, the impulse on the 

seabed is also of interest. It can instantaneously liquify any sand by driving water into it. 

This can lead to destablisation of the foundation. Results for the seabed impulse are 

given in figure 2.4.5. 
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   Figure 2.4.5: The pressure impulse on the seabed,  ,1,xP  for 2.0 , 0.4, 0.6,  

                         0.8 and 1.0.  

 

 

2.5 Total impulse and moment impulse 

Other quantities of engineering significance, the total impulse and moment impulse, are 

given by Cooker (1990). These quantities are important to help engineers avoid seawall 

failures due to seabed scour, wave loads on structures, and overturning. A large impulse 

on the seabed can lead to excavation which can contribute to failure, for example the 

failure of Algiers Mustapha Breakwater recorded by Oumeraci (1994). The total 

impulse wI on the wall is the integral of the pressure impulse (2.4.17) at 0x  over the 

wall, that is 
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The same calculation for the total impulse on the seabed is the integral of pressure 

impulse (2.4.17) at 1 Hy  with respect to x. 

             dxHxPI

B

s   ,
0

               (2.5.3) 

We take the left/down direction as positive total impulse as in figure 2.5.1. 

 

 

 

 

 

 

                    

 

              Figure 2.5.1: The direction of the total impulse and moment impulse. 

 

The results for total impulse on the wall and on the seabed for Cooker’s model are given 

in the figure (2.5.2). As more of the seawall is impacted (increasing  ) the total impulse 

also increases. The unit for total impulse is 2

0HU . 

 

 

 

 

 

 

             

 

 

 

Figure 2.5.2: On the left, total impulse on the seawall (from equation (2.5.2)) and on the 

right, total impulse on the seabed (from equation (2.5.3)) for Cooker’s 

model. 
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The pressure impulse acting on the coastal structure generates a moment about the base 

of the wall that can, to a certain extent, move or even topple it. The moment impulse on 

the wall wM , about an axis at its bottom (see figure 2.5.1), due to pressure impulse on 

the wall, is given by 

     dyyPHyM
H

w ,0

0




                (2.5.4) 

This gives us 

        3
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0 //11cos12 nn
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
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                       (2.5.5) 

Mw is negative for forces directed in a clockwise sense about the foot of the wall. The 

same calculation is done for calculating moment impulse on the seabed, sM . 

   dxHxPxM

B

s   ,
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               (2.5.6) 

which gives us 

                      4
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0 /cos12 n
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



                          (2.5.7) 

The following graph shows the variation of the moment impulse on the seawall and the 

seabed for Cooker’s model. The unit for moment impulse is 3

0 HU . 

 

 

 

 

 

 

 

 

 

 Figure 2.5.3: On the left, moment impulse on the wall (from equation (2.5.5)), and on 

the right, moment impulse on the seabed (from equation (2.5.7)) for 

Cooker’s model. 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

mu

M
om

en
t 

im
pu

ls
e

The moment impulse on the wall for Cooker

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

mu

M
om

en
t 

im
pu

ls
e

The moment impulse on the seabed for Cooker



29 

 

2.6 Nondimensionalisation 

We have nondimensionalised our calculations for all problems in this thesis. Taking the 

Cooker’s Model (figure 2.4.2) as example, the boundary conditions have been 

nondimensionalised by choosing a new set of nondimensional variables based on the 

variables that naturally appear in the problem. Dashed variables denote 

nondimensionalised quantities. 

,'Hxx  ,'Hyy  ,'HBB  and
HU

P
P

0

'


                      (2.6.1) 

Derivatives are correspondingly 

        ,'Hxx   ,'Hyy  and 
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P
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
                                 (2.6.2) 

At the wall, substituting the non-dimensional variables into (2.4.17) gives 
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So that 

HU
x

P
0'





 

1
'

'






x

P
                                                                   (2.6.4) 

 

The same steps are done to the other boundary conditions and the solution; rather than 

introduce a new notation for all variables, we drop the prime notation giving us the 

dimensionless boundary-value problem for pressure impulse as figure 2.6.1. The 

dimensionless solution for the Fourier series becomes 
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The dimensionless boundary conditions are given in the figure (2.6.1). 
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Figure 2.6.1: The dimensionless boundary-value problem for pressure impulse, showing 

B,  are the dimensionless parameters. 

 

 

We can find the physical parameters involved in the problems and the quantity units and 

dimensions in the next table. We can show that P  is a dimensionless quantity given that  
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has the same dimensions as 

]][][[]][][][][[ 1113

0
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The scaling pressure for pressure impulse, P total impulse, I and moment impulse, M 

are respectively given as below: 
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Table 2.6.1 below shows the physical parameters involved in this thesis. 

 

Table 2.6.1:  The physical quantities. 

Physical Quantity Symbol for the 

Quantity 

SI Unit Dimensions 

density   3kgm  [M][L
-3

] 

velocity 
0U  1ms  [L][T

-1
] 

depth H m  [L] 

force F N  [M][L][T
-2

] 

Impact time t t  [T] 

area A 2m  [L
2
] 

Pressure Impulse P’ 2Nsm  ]][][[ 11  TLM  

Total Impulse I’ 1Nsm  ]][[ 1TM  

Moment Impulse M’ Ns  ]][][[ 1TLM  

 

 

 

2.7     Overtopping         

Violent wave overtopping occurs when waves break against sea walls throwing water 

and spray over the top, see VOWS. Oumeraci (1994) has reported that observations 

show that all vertical structures were heavily overtopped by the waves. So the volume 

of water per unit length of seawall (here called overtopping) is very important to 

estimate, and the design of coastal structures should include a specification of freeboard 

that allows an acceptable amount of overtopping. Designing structures with sufficient 

freeboard should provide safety for people and vehicles on and behind the structure and 

limit damage to the structure itself as well as damage to properties behind the structure. 

It should include a safety factor to guarantee that economic activities on and behind the 

structures can be assured during bad weather conditions, Geeraerts et al. (2007). 

 

A theoretical study of overtopping of waves at a wall was undertaken by Jervis and 

Peregrine (1996). The results show the overtopping volume per wave is roughly 

exponentially decaying with the height of wall above the still water level i.e. freeboard. 
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They computed the waves with an accurate irrotational flow solver. They also took the 

effects of surface tension into account to study the possibility of errors in scaling 

experimental results to prototype scales. 

 

                       

        Figure 2.7.1: Overtopping at Whitby, UK, image taken from    

http://www.scmdt.mmu.ac.uk/cmmfa/projects/overtopping.html 

 

A prediction tool and hazard analysis of wave overtopping was given by Geeraerts et 

al.(2007). They show that seawalls reduce wave overtopping but do not stop it. Building 

a seawall with no overtopping is extremely expensive, so an acceptable amount of 

overtopping should be specified. They have suggested limits for overtopping mean 

discharges and peak volumes for public safety and agreed with Franco et al. (1994), the 

upper limit for mean discharge of overtopping for unaware pedestrians is 0.03 (litres/s 

per m) and 0.01-0.05 (litres/s per m) for moderate or high speed vehicles. They also 

have established a generic prediction method of wave overtopping using the technique 

of neural network modelling which can be found at http://www.clash-eu.org. 

 

Allsop et al. (2005) presented a summary of prediction methods for wave overtopping 

from a number of UK and European research projects spanning 10 years. The prediction 

methods for overtopping on slopes, vertical walls, battered seawalls, composite walls 

and broken waves are well discussed. They also have highlighted two conditions of 

waves: ‘pulsating’ conditions occur when waves are small with regard to the local water 

http://www.scmdt.mmu.ac.uk/cmmfa/projects/overtopping.html
http://www.clash-eu.org/
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depth, and ‘impulsive’ conditions occur when waves are large with regard to local water 

depth. These two conditions need to use different prediction tools. 

 

Franco et al. (1994) conducted laboratory tests to analyse the overtopping volumes for a 

variety of sloping and vertical structures. They focused on cases where waves do not 

break in pulsating or impulsive conditions. Mean overtopping discharges for functional 

safety (vehicles, pedestrians and buildings) and structural safety (embankment seawall 

and revetment seawalls) were also proposed. However the engulfment mechanism of 

these experiments is different to the impact cases considered in this thesis, so the 

overtopping results of Franco et al. will not apply. 

 

Pullen et al. (2004) conducted a full-scale measurement to identify mean and peak 

overtopping discharge during three storms on a vertical seawall at Samphire Hoe, 

England. They designed and implemented an overtopping hazard warning system based 

on a forecast of wind speed and direction. They observed the overtopping discharged 

hourly, recorded by on-site personnel using field monitoring equipment, see Pullen et 

al. The missing data between the tank compartments are estimated using a trapezoidal 

distribution to approximate the total overtopping discharge. They found that behaviour 

of overtopping was in agreement with predictions by Besley’s (1999) using empirical 

overtopping prediction methods. The mean overtopping discharge for the three storms is 

considered hazardous (compared to the tolerable discharge rate for public safety) when 

it is around 0.031 (litres/s per m) as suggested by Franco et al. (1994). 

 

Pearson et al. (2002) have performed a series of experiments under the VOWS 

collaborative research project. Overtopping measurements results from small-scale and 

large-scale tests of 10:1 battered seawalls are compared with predictions for 

overtopping on vertical walls by Besley (1999), see Allsop et al. (2005). From their 

experiments they concluded that the small-scale and the large-scale experiments give a 

good agreement with the prediction method of Besley (1999), showing that scale effects 

are not significant. Clearly the above is empirical, based on fitting the known data. We 

here give a theoretical, but highly simplified, model. 
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2.7.1 Simplified model of wave overtopping calculation 

This section gives a simplified model of wave overtopping calculation for a vertical 

seawall. Here freeboard refers to vertical distance between still water level and top of 

the seawall. The wave overtopping discharge is defined as overtopping volume [ 3m ] per 

time [s] and structure width [m]. In this section, we use Cooker’s model (see figure 

2.4.2) for calculating the overtopping discharge for the model. This gives an estimate of 

the maximum quantity of water that could possibly move over the seawall, perhaps 

under the action of onshore wind. 

 

 

 

 

 

 

 

 

 

                                            

 

 

 

                                             Figure 2.7.2: Overtopping definition sketch.  

 

The parameters of this situation are: 

bF   =  the height of freeboard from the free surface 

bx    =  distance at which predicted free surface is at bF  

b     =  distant boundary 

maxy   =  the highest vertical height of overtopping of free surface particles.  

    This is a function of .x  
 

 

Given that the jet of fluid is thin and the pressure gradients are low in the jet, we assume 

the jet particles move as free projectiles. Hence the maximum height achieved by the jet 

is given by: 

0y x

y

bF

bx

Free surface 

Particle at top of rise 

mbtt 

0x bx 
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Clearly the maximum height occurs at different times for different particles. Here 

dashed variables are dimensional. Non-dimensionalising gives 
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Since the initial upwards velocity (before impact) is zero the velocity afterwards is 

simply given by equation (2.4.17) 
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So that the initial velocity upward when 0y  gives 
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Hence the maximum vertical height of jet is 
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For freeboard, bF  we have 
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where na  is Fourier coefficient from equation (2.4.17). So we can find bF  in terms of a 

parameter bx , the distance at which bF  is achieved. The series for bF  diverges at 0x  

but for 0x  the series converges, see appendix A.2.1. 
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Calculating the overtopping discharge, V 

                                               dxFyV
bx

b 
0

max  

i.e.                                         bf

x

FxdxyV
b

 
0

max                (2.7.6) 

where maxy  comes from (2.7.4) and bF  from (2.7.5). 

 

Assuming shallow water theory and taking the impact velocity 0U  to be the wave speed 

gH gives .1rF  

 

The integral of maxy  from 0x  to bxx  , can be found numerically by the trapezoidal 

rule: 

   nn

b

a

yyyyy
x

dxxf 


  1210 222
2

              (2.7.7) 

where 
n

ab
x


  which easily calculated by using MATLAB. The result for the 

volume of overtopping subject to the height of freeboard is shown in figure (2.7.2). 

Given the assumption that particles in the jet move as free projectiles, the model will 

not be valid for very low freeboard since the pressure impulse gradients will be 

appreciable for region above bF and away from the wall.  
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Figure 2.7.3: Overtopping discharge for Cooker’s Model for .1.0  Give the units 

here i.e. bF  is the dimensionless freeboard reference to depth H and V is 

volume overtopping per unit length of seawall divided by .2H  

 

From the figure (2.7.3), we can see that increasing the height of the seawall will reduce 

the overtopping discharge.  

 

It is instructive to translate this result for engineering purposes. Firstly we need to 

convert the freeboard and volume of overtopping per unit seawall length to dimensional 

quantities by multiplying by the length scale H and 2H  respectively. 

With, mH 2 , 1.0  and 5.0bF , we have volume of overtopping, 2001.0 HV   

per impact, gives us 

             22 004.0)2(001.0 m  each wave impact.  

             1 impact in 10 waves of 10 sec ~ 100 sec. This gives: 

             135104  smV  per metre frontage. 

 104.0  lsV per metre frontage. 
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 This is comparable with the rules given by Franco et al. (1994). Unfortunately 

comparison with the VOWS model (Allsop et al. (2005)) is not possible because some 

of the necessary parameters were not published.  

 

2.8       Convergence Check 

The sums in the Fourier Series have to be truncated at Nn  , where N is an integer 

large enough for accuracy. The convergence itself can be looked at numerically and 

analytically.  

 

To see that the infinite sum converges analytically, we use the Integral Test to prove the 

series is converges,  (Stewart,2009). 

Take the infinite sum (2.4.10) as example, we have: 
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The most slowly convergent case occurs when Hyx  ,0 and .1  Then the 

summation is 

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This converges by the Integral Test. 

The effects of the truncation of the Fourier series should be considered. To illustrate 

this, computations were performed with truncation of the Fourier series at 10N  to

100N  for 125.0y  which is the position of the pressure maximum when .0.1  

We calculated the percentage of difference (pressure) for each result with results which 

truncate at 100N  assumed to have converged. From table 2.8.1, we can see that the 

Fourier series can be truncated at 50N  as there is only 0.061% difference compare to

100N  in the pressure output. These results show that acceptable accuracy of less than 

0.1% relative error can be obtained even though truncation of the Fourier series is at 50-

100. 
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Table 2.8.1: Pressure changes for values of N. 

N Pressure at 125.0y , 

and 0.1  

% Difference from   

N=100 

10 0.26772 1.56 

20 0.26332 0.11 

30 0.26327 0.125 

40 0.26392 0.12 

50 0.26344 0.061 

60 0.26361 0.0038 

70 0.26367 0.03 

80 0.26352 0.03 

90 0.26365 0.02 

100 0.26360 0 

 

The following graph shows the convergence of the peak pressure impulse numerically 

for different values of N up to 100. The pressure impulse for Cooker model clearly 

converges as the value of N increases. These results provide a guide to the more 

complicated cases considered in this thesis where we generally truncate at .40N  

 

             

Figure 2.8.1: Convergence of series for the maximum of P, equation (2.7.6), at   0x ,

125.0y  and 0.1 . 
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CHAPTER  3 

 

 

BERM AND DITCH  

 

3.1 Introduction 

In this chapter, we will extend the two-dimensional work of Greenhow (2006) who has 

applied Cooker’s model to the: 

i. Berm problem  

ii. Ditch  problem  

These two problems were solved using a basis function method. Here we solve these 

problems again by using hybrid collocation method (a collocation method at the 

matching area and integral method on the wall) to validate that this method can be used 

to solve other problems in this thesis. Comparison of the results has been made and the 

results will be discussed in this chapter. Greenhow’s results are extended by calculating 

the total impulse, moment impulse and overtopping for both problems above. 

 

3.2 Literature Review 

Greenhow (2006) extended Cooker’s model to the berm and ditch problems. These 

models have an unchanged seabed, but the seawall is altered, to incorporate a 

foundation attached to the base of the wall. Greenhow formulated each problem into 

two regions in his model. The inner region labelled as region 1, is the altered seawall 
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geometry and the outer region labelled as region 2, is simply uniform depth, see figure 

3.3.1. He has found that ditches can double the pressure impulse, while having a berm 

in front of the vertical seawall can reduce the wave impact on the wall.  

 

The wave impact on a wall with a berm has also been studied by Wood (1997) and 

further work has been made by Wood and Peregrine (2000). They extended Cooker and 

Peregrine (1990, 1995) model for impact on a wall by including a region of porous 

material in front of the wall. They split the problem into two regions where the top half, 

labelled as region 1, is simply water and the bottom half, labelled as region 2, is a 

rubble berm. They found that having a porous berm can reduce the pressure impulse by 

up to 20%.  

 

 

3.3 Mathematical modelling 

 

3.3.1 Berm Problem 

We take our length scale L to be the depth of water in region 2 and work in 

dimensionless parameters. The origin is taken to be on the wall at the still water level 

with x taken in the direction perpendicular to the wall, and y vertically.  Let 1P  and 2P  

be the solutions in the respective regions. In the inner region we have similar conditions 

to those of impact on the wall, with the exception that the seabed is higher than the 

seabed in the outer region because of the presence of the berm. The boundary conditions 

are as shown in figure 3.3.1, and the parameters of this situation are: 

 

bH  = Distance down seawall from free surface to the top of the berm 

1B   = Width of the berm 

2B  = Total width of fluid domain 

  = parameter of impact region  
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Figure 3.3.1: Boundary conditions for the pressure impulse for wave impact on vertical 

wall with a berm.  

 

The solution for  regions 1 and 2 are given by the following eigenfunction expansions: 
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for the inner region and the outer region is  given by 
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where   )
2

1
(  nn . Here we are free to normalise the coefficients nc  by a different 

factor than in equation (3.3.2). These Fourier series are obtained using separation of 

variables on Laplace’s equation, the exact forms being chosen to satisfy the free surface 

and seabed boundary conditions. The exact sum is from 1n  to  , so we must 

truncate it. For most cases in this thesis inclusion of N = 30 to 50 is sufficient to give an 

accuracy of at least 4 decimal places as described in §2.8. 

 

The equation above satisfies all the boundary conditions for the problem shown in 

figure 3.3.1 except on the wall and the matching line at .1Bx    Along the line 1Bx   

we require the pressure, and hence the pressure impulse to be continuous, so along the 

boundary 1Bx  , for 0 yHb  we require 
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21 PP                 (3.3.3) 

and also we need 
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On the wall at 0x  we have 
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Multiplying (3.3.5) by the basis function 
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for 1l  to N. We need to solve equations (3.3.3) and (3.3.4) together with (3.3.6).  

 

Matching at 1Bx   for 0 yHb  for (3.3.5) gives us:  

 
 

   0sinh
cosh

sin

cosh

sin

21

2111


































BB
B

y
c

H

B

H

y

n

n

n

n

n

b

n

b

n

n

n 








                 (3.3.7) 

 

Matching at 1Bx   for (3.3.4) for 0 yHb gives: 
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and for bHy 1  gives: 
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To solve equations (3.3.6), (3.3.7), (3.3.8) and (3.3.9) we choose different values of  y  

i.e. collocation points, to give the system of equations shown in figure 3.3.2. From here 

we have M3 conditions for the M collocation points and the equations involving three 

Fourier coefficients  nnn c,, . This requires NM 33  so that M = N which is a square 

matrix system that needs to be solved, see figure (3.3.2). More specifically, the 

collocation points for (3.3.7) are chosen to be separated by a distance 
M

H
L b  and 

collocation points for (3.3.8) and (3.3.9) are separated by a distance 
M

L
1

 , i.e. evenly 

spaced out. In accordance with the convergence shown in §2.8, the pressure impulse can 

be calculated by evaluating the Fourier series after truncation at 30N .  Test with 

other values of N  show that 30N  converges to within 1% of the peak pressure 

values. The results for this problem will be discussed in §3.4. 
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Figure 3.3.2: Matrix system of equations for berm problem. The first M rows come from (3.3.6), the next from (3.3.7) and the  

 last from (3.3.8) and (3.3.9).
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3.3.2 Ditch Problem 

Now we look at the ditch problem, which we also split into two regions. The inner 

region is the altered seawall with a ditch. The ditch problem is almost same with the 

berm problem except that the seabed in the inner region is lower than the seabed in the 

outer region. The parameters of this situation are the same as before and the boundary 

conditions are as shown in figure 3.3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.3: Boundary conditions for the pressure impulse for wave impact on a 

vertical wall with a ditch. 

 

For the problem given in the figure 3.3.3, we have the same solution for regions 1 and 2  

as in equations (3.3.1) and (3.3.2) respectively, which satisfy all the boundary 

conditions for the problem shown in figure 3.3.3 except on the wall and the matching 

line at .1Bx   As in the berm problem, we have 3 conditions which need to be solved: 

on the wall we need to solve equation (3.3.5) and matching line at 1Bx   we need to 

solve equation (3.3.3) and for derivatives we need to solve 
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Multiplying (3.3.5) with the same basis function as in berm problem, gives us (3.3.6). 

Matching line at 1Bx   gives us (3.3.7) for 21 PP   and (3.3.8) for derivatives for 
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for 1 yHb . 

 

Greenhow (2006) originally solved this using a Fourier method but this fails due to 

poor-conditioning for some situations. Hence we again apply the collocation method, as 

follows. 

 

From equation (3.3.6), (3.3.7), (3.3.8) and (3.3.11) we can create the system of 

equations as shown in figure 3.3.4. This also gives us NM 33   equations so that 

NM   resulting in a square matrix system that needs to be solved, see figure 3.3.4. 

The collocation points in this problem are also evenly spaced out. Thus pressure 

impulse can be calculated by evaluating the Fourier series after truncation at 50N . 

The results for this problem will be discussed in §3.4 where we will make comparisons 

of results for ditch and berm problems. 
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Figure 3.3.4:  Matrix system of equations for ditch problem. The first M rows come from (3.3.6), the next from (3.3.7) 

                                               and the last from (3.3.8) and (3.3.11).
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3.4  Pressure Impulse 

We compare the pressure impulse result for the present hybrid collocation method with 

the results from the basis function method used by Greenhow (2006). Then we will 

compare the berm and ditch problems with Cooker’s model results. The Fourier 

coefficients  nnn c,,  and the pressure impulse will be calculated using MATLAB. 

The results obtained are given as three-dimensional surface plots. The plots show us 

how the pressure impulse is distributed over the surface of the seawall. The red zone on 

the graph indicates the maximum pressure impulse, and the blue zone indicates 

minimum pressure impulse. The result are made dimensionless by choosing units for 

which 1H  and the pressure impulse is in the form of  
HU

P
0

.  
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3.4.1 Comparison results between hybrid collocation method and basis function 

method used by Greenhow (2006) for berm and ditch problem 

 

 Hybrid collocation method  Basis function method 
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8.0

 

 

 

 

 

 

 

Figure 3.4.1: Comparison pressure impulse results for hybrid collocation method and  

basis function method for berm problem with 8.0bH , 1.01 B ,

,22 B and 30N . 
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Figure 3.4.2: Comparison pressure impulse results for hybrid collocation method and 

basis function method for ditch problem with 2.1bH , 1.01 B , ,22 B

50N . 
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Figure 3.4.1 and 3.4.2 show a comparison of the pressure impulse result by using hybrid 

collocation method and basis function method used in Greenhow (2006). They both 

give the same results except at the highest impact which is different. This is because the 

basis function method cannot include enough terms in the summations without 

encountering the problem of poorly-conditioned matrices discussed in §2.9.3. Hence the 

unexpected non-monotonicity of P with depth is not physical and the results for the 

basis function method are wrong. 

 

 

3.4.2 Pressure impulse on the wall 

0.01 B  

 

1.01 B  

 

3.01 B  

 

 

4.01 B  

 

 

Figure 3.4.3: Pressure impulse for different width of berm with 8.0bH , 8.0

22 B , 30N  using the collocation method. 

 



53 

 

Figure 3.4.3 shows that chosen the different width of the berm do not give much 

difference in maximum pressure impulse. Figure 3.4.4 shows that the greater impact 

region on the wall, the greater pressure impulse is obtained, as expected. 
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Figure 3.4.4: Pressure impulse for berm problem with different impact regions on the 

wall with 8.0bH , 2.02 B , 22 B , 30N  using collocation method. 
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2.0bH  

 

 

4.0bH  

 

6.0bH  

 

8.0bH  

 

 

Figure 3.4.5: Pressure impulse with different depths of berm with 2.01 B , 22 B ,

2.0 , 30N  using the collocation method. 

 

Figure 3.4.5 shows that the pressure impulse for different depths of the berm gives 

almost the same results for the maximum pressure impulse, apart from the 2.0bH  

case. Since the impact occurs near the free surface, the berm geometry for a deeply-

submerged berm has only a small effect, as expected. 
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0.1  

 

2.1  

 

 

Figure 3.4.6: Pressure impulse for ditch problem with different impact regions on the 

wall with 2.1bH , 2.02 B , 22 B , 50N  using the collocation 

method. 

 

Figure 3.4.6 shows pressure impulse for different regions of impact for the ditch 

problem. As expected a greater region of impact will give higher pressure impulses.  
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Figure 3.4.7 shows that the depths of ditch not have much effect on the maximum 

pressure impact result. It is notable that within the ditch the pressure is virtually 

constant. This may have consequences for scour and the stability of the wall’s 

foundation. 
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Figure 3.4.7: Pressure impulse with different depth of ditch with 2.01 B , 22 B ,

2.0 , 50N  using the collocation method. 
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0.1  Not possible. 

 

 

 

 

 

2.1  Not possible.  

 

Not possible. 

                        

                   Figure 3.4.8: Comparison result for berm and ditch problem with Cooker’s Model for pressure impulse on the wall. 
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Figure 3.4.8 shows that for the full impact region on the wall  0.1 , the pressure 

impulse for Cooker’s model is about 0.742 HU 0 . The pressure impulse for berm 

problem is about 0.570 HU 0 while pressure impulse for ditch problem is about 1.400

HU 0 . We can concluded that having a berm can reduce the pressure impulse on the 

wall but having the ditch can make the pressure impulse on the wall double. These 

results show a good agreement with Greenhow (2006). We will extend this work by 

calculating the total impulse, moment impulse and overtopping for both problems in the 

next section. 

 

Figure 3.4.9 shows that for the same moderate value of    5.0 , the cases for berm, 

ditch and simple seawall give almost the same pressure impulse. However, for the 

largest possible impact for all values of  , the ditch case gives the largest pressure 

impulse followed by the simple seawall and berm, as shown in figure 3.4.10. 

Figure 3.4.11 and figure 3.4.12 show the pressure impulse on the wall with berm or 

ditch. Both cases show an increase of pressure impulse with   increasing. 

 

Figure 3.4.9: Pressure impulse on the wall  ,,0 yP  for the berm, ditch and Cooker 

model for 5.0,2,1.0 21  BB .  
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Figure 3.4.10: Maximum pressure impulse for any value of   on the wall for the berm, 

ditch and Cooker model for .2,1.0 21  BB  
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              Figure 3.4.11: Pressure impulse on the wall for berm 8.0bH for varying  . 

               

 

              Figure 3.4.12: Pressure impulse on the wall for ditch 2.1bH  for varying   
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3.5 Total impulse on the wall and seabed 

We now calculate the total impulse generated by the impact on the wall and seabed for 

berm and ditch problems. This is accomplished by integrating the pressure impulse over 

the domain being considered. 

 

 

 

 

 

 

 

 

                            

 

 

                              

                                Figure 3.5.1: Total impulse diagrams for berm and ditch. 

 

 

For the impulse on the wall wI , we need: 
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Solving this equation gives 
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This is the horizontal impulse for the ditch problem, 1wI . For the berm problem, the 

horizontal impulse is a combination of 1wI  and 2wI . So calculating the 2wI  for berm 

problem we need 
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Therefore the total impulse on the wall/berm structure, wI  is 

    21 www III   

while the total impulse on the wall, wI  for the ditch problem is 

 

1ww II  . 

 

The total vertical impulse on the seabed for both problems is given by: 

                        21 BBB III   

where the total impulse is 
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Figure 3.5.2 to 3.5.4 show the total impulse on the wall and seabed for berm and ditch. 

The total impulse on the wall for the berm is greater than total impulse on the seabed 

and the same goes for the ditch case. The total impulse on the wall and seabed for the 

ditch is greater than total impulse on the wall and seabed for berm respectively. These 

cases can be compared with figure 2.5.2 for the Cooker model. 
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   Figure 3.5.2: Total impulse on the wall with berm, with 2,2.0,8.0 21  BBHb . 

 

 

                      

     Figure 3.5.3: Total impulse on the wall with ditch, with 2,2.0,2.1 21  BBHb .       
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           Berm ( 2,2.0,8.0 21  BBHb )         Ditch ( 2,2.0,2.1 21  BBHb ) 

 

 Total impulse = 21 BB II   
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  Total impulse, 2BI  

 

 

Total impulse, 2BI  

                      Figure 3.5.4 : Total impulse on the seabed for berm and ditch.         
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3.6 Moment impulse on the wall and seabed 

The pressure impulse acting on a coastal structure generates moments that could move 

or even topple it. In this section we calculate the moment on the wall and seabed that 

may affect the seawall. For the following work clockwise moment will be considered to 

be positive and will be taken about the foot (●) of the wall, see figure (3.6.1). 

 

 

 

 

 

 

 

                               

 

 

                              Figure 3.6.1: Moment impulse diagrams for berm and ditch. 

 

The moment impulse on the wall given by: 
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This gives the moment impulse on the wall for the ditch, 1ww MM  . For the berm 

problem we need 
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So that the moment impulse on the wall for the berm problem is 21 www MMM   

The moment impulse on the seabed is given by: 
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The following graphs show the moment impulses that act on berm and ditch. From 

figure 3.6.2 and figure 3.6.3 we can see that moment impulse on the wall for ditch is 

greater than for the berm. Figure 3.6.4 shows the moment impulse on seabed for berm 

and ditch problems. We can see that the total moment impulse for the ditch problem is 

greater than for the berm but in the negative direction. Moment impulse in the inner 

region for both cases are in negative direction, and both in the positive direction in the 

outer region with the value for the ditch higher than that of the berm. 
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Figure 3.6.2: Moment impulse on the wall for a berm with 2,2.0,8.0 21  BBHb . 

 

         

    Figure 3.6.3: Moment impulse on the wall for a ditch, with 2,2.0,2.1 21  BBHb . 
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                              Figure 3.6.4: Moment impulse on the seabed for a berm. 

           

 

                           Figure 3.6.5: Moment impulse on the seabed for  a ditch. 
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3.7 Overtopping 

As in §2.6.1, we would like to present a simplified model of wave overtopping for berm 

and ditch problem. The calculation for both problems is the same since they have the 

same solution except for the value of coefficients. 

 

 

 

 

 

 

 

 

                   

 

 

 

 

                      Figure 3.7.1: Overtopping definition sketch for berm and ditch.  

 

The parameters of this situation remain the same as in §2.7.1: 

bF    = the height of freeboard from the free surface 

fx        = distance at which predicted free surface is at bF  

b          = distant boundary 

maxy    = the highest vertical height of overtopping of free surface particles. This is a  

function of .x  

 

We obtained equation (2.7.1) by assuming the jet of fluid is thin and the pressure 

gradients are low in the jet, so the jet particles move as free projectiles. 

 

The upwards velocity (before impact) is zero the initial upward just after impact 

velocity is simply given by  
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Hence the maximum vertical height of the jet is 
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For freeboard, bF  we have as a condition on fx : 
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So we can find bF  in terms of a parameter fx , the distance at which bF  is achieved. 

Calculating the overtopping discharge, V 

                                               dxFyV

fx

bvert 
0

 

gives, 

                                               bf

x

vert FxdxyV

f

 
0

               (3.7.5) 

which is again evaluated numerically. 

 

The result for the volume of overtopping subject to the height of freeboard is shown in 

figure 3.7.2. Given the assumption that particles in the jet move as free projectiles, the 

model will not be valid for very low freeboard since the pressure impulse gradients will 

be finite for region above bF and away from the wall.  

 

Figure 3.7.2 shows the overtopping discharge for a seawall with a berm and a ditch. We 

can see that the discharge of the overtopping for both cases is comparable for 

corresponding freeboard values. Having said that, the freeboard values for the berm are 

substantially higher than for the ditch, meaning that the berm’s jet will reach far higher 

in the air.  

 

Further results (not shown here) show that the ditch overtopping is largely insensitive to 

the ditch width (as expected because the ditch pressure is almost constant). More 

surprisingly, the berm overtopping is also quite insensitive to the berm size if the berm 

is submerged to at least half the water depth. On the other hand if the berm’s top is near 

the bottom of the impact region then there is typically an increase of about 20% to 30% 

compared with a deeply submerged berm for any given freeboard. 
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Berm ( 2,2.0,8.0 21  BBHb ) Ditch ( 2,2.0,2.1 21  BBHb ) 

1.0  

 

1.0  

 

5.0  

 

5.0  

 

8.0  

 

2.1  

 

 

Figure 3.7.2: Overtopping discharge for seawall with a berm and a ditch as before bF  is 

the dimensionless freeboard reference to depth H and V is volume 

overtopping per unit length of seawall divided by .2H  
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3.8   Conclusion 

 

Here we compare the berm and ditch results with Cooker’s model. We compare the 

worst cases i.e. those for the largest possible impact region; 

 

● the seawall with a ditch has a largest maximum pressure impulse which is    

,400.1 0HU with 2.1 , 

●   the basic seawall (Cooker’s model) has pressure impulse ,742.0 0HU with 0.1 , 

● the seawall with a berm has the smallest maximum pressure impulse which is    

,570.0 0HU  with .8.0  

 

 

      Table 3.8.1: Total impulse on the wall and on the seabed for the seawall, berm and  

ditch for the maximum impact. 

 

 Total impulse , 2

0 HU  

Seawall Berm Ditch 

Wall 

 

0.54 0.34 0.90 

Seabed 

 

0.45 0.31 0.70 

 

 

From table 3.8.1, we can see that total impulse on the wall with a ditch is the greatest 

followed by the seawall and then the berm as expected. This is partly because a seawall 

with a ditch has the largest area of impact while the area of impact of seawall with a 

berm is much smaller than Cooker’s model. The same trend occurs for the total impulse 

on the seabed as defined in figure 3.5.1 
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     Table 3.8.2: Models impulse on the wall and on the seabed for the seawall, berm 

and ditch for the maximum impact. 

 

 Moment impulse , 3

0 HU  

Seawall Berm Ditch 

Wall 

 

0.220 0.175 0.240 

Seabed 

 

0.340 0.150 0.345 

 

 

 

Table 3.8.2, shows the moment impulse for the wall and seabed for the seawall, berm 

and ditch models. We can see that seawall with a ditch has a largest value of moment 

impulse on the wall and on the seabed. As expected, the moment impulse for a seawall 

with a berm has the smallest value compared to the other two problems. 

 

We can conclude that a seawall with a berm has a beneficial effect on reducing pressure 

impulse while seawall with a ditch is very detrimental. This means that scour at the base 

of a seawall is likely to be extremely dangerous. 
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CHAPTER  4 

 

 

 

MISSING BLOCK 

 

 

 

4.1        Introduction 

Now we extend the study by Greenhow (2006) who developed and applied a simple 

analytical model for pressure impulse for missing block problem based on Cooker’s 

model. The motivation for this study is to examine the impact on a seawall when at is in 

a damaged condition, especially the pressure impulse in the missing block region which, 

if high, could cause further damage. This problem has been solved by Greenhow (2006) 

by using a basis function method which relies on matching the values and horizontal 

components of eigenfunction expansions in each of the rectangular regions that arise. 

We will use the basis function method in this problem as we will use this method in 

Chapter 7, but here working in dimensionless parameters. We will compare the results 

with Greenhow (2006) and calculate the impulse and moment for this problem. 

 

 

4.2  Literature review 

Greenhow (2006) continued his theoretical work by investigating the missing block 

problem, giving us an understanding into the spatial distribution of the pressure impulse 

in the fluid region, including the block region. The missing block region is assumed to 
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be filled with fluid and submerged below the impact region. He found that this situation 

will allow penetration of unreduced high pressures into the seawall core. 

Cox and Cooker (2001) studied pressure impulse in a fluid saturated crack in a seawall. 

The crack might be the gap between two blocks in a blockwork breakwater, or the space 

opened up after a fracture in the brickwork or natural coastal structures. They also used 

pressure impulse, P, to model the problem in two-dimensions. They suggest that the 

impulse directed normal to the horizontal plane of the crack can lift of the large block 

above it.  

 

Müller (1997) investigated experimentally the pressure propagation into cracks and 

fissures. He measured the impact pressures on a vertical seawall and then in a water-

filled model of a crack inserted into the wall. He found that impact pressures on the wall 

can propagate into the crack, and the pressures in the experiment were higher at the 

back of the crack. This can lead to erosion of structures and seaward removal of blocks 

in the coastal zone. 

 

Müller’s (1997) results have been confirmed by Wolters and Müller (2004) by their 

series of model tests. They concluded that partially-filled cracks are more dangerous for 

the integrity of the structure than fully-filled cracks.  

 

 

 

4.3            Missing Block Problem 

We divide this problem into two regions. Region 1 is the missing block of height 

12 HH   which is filled by water and below the impact region, see figure 4.3.1. 1H  is 

the distance down the wall from the free surface to the roof of the missing block and 

2H  is the distance down the wall from free surface to the base of the missing block. 

The width of the missing block is given by 1B . Notice that the region 2 is nearly 

identical to the Cooker model, and so the solution there is actually almost the same. In 

the region 1, we have two hyperbolic terms and introduce the new parameter,  n .  

The distant boundary away from the seawall is given at 2Bx  .We solved this using a 

basis function method with integral method on the impact wall and matching the 

horizontal components of eigenfunction expansions at 1Bx  . We also work with 
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dimensionless pressure impulse and use P as dimensionless pressure impulse, which 

scales with HU 0 . Under the assumptions stated above, the formulations involve 

equations from region 1 and region 2. 

 

 

 

 

 

 

 

 

 

     

 

 

 

         Figure 4.3.1: The boundary-value problem for the pressure impulse for impact  

over  the upper part of a seawall.  

 

 

We have the solution for the region 1 and region 2 given by the following 

eigenfunctions: 
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Here we see a new constant term, A , not in the previous formulations since there 0P  

on 0y . We call this a secular term. 
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where   )
2

1
(  nn  and  nn   . Equation 4.3.1 above satisfies all the boundary 

conditions for the problem shown in figure 4.3.1. 

 

On 1Bx   we have 21 PP   for 12 HyH   and 

 

 





























23

12
1

31

3

2

for0

for

for0

0for

HyH

HyH
x

P

HyH

yHyU

x

P 



              (4.3.3) 

 

In the matching region, 1Bx   we have 21 PP   for 12 HyH   which gives us 
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Simplify (4.3.4) gives us 
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To find the secular term, A,  we apply dy
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Now, we have N3  unknowns N ,, 21 , N ,, 21  and Nccc ,, 21 . We match 

1P  to 2P  in the block region 12 HyH   at 1Bx   as in equation (4.3.4). To solve 

this we apply: 
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The integrands here are respectively antisymmetric and symmetric about the centreline 

of the missing block i.e. 
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 Solving the integration in (4.3.7) gives us 
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The integrations in (4.3.8) are 
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For the last equations we use (4.3.3) and apply the basis function 
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Solving the integration in (4.3.9) gives us 
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Now we have N3  equations involving three unknown  iii cba ,,  , Ni ,,2,1   which 

gives us a square system of the equations. The impact region provides the right hand 

side of the matrix system. The system of equations is given in figure (4.3.2). 
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      Figure 4.3.2: Matrix system of equations. The first M rows come from (4.3.7), the next from (4.3.8) and the last from (3.3.9). 
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4.4     Pressure Impulse 

               Missing block 

)2,2.0,5.0,4.0( 2121  BBhh  

              Cooker model 

 

 

0.2 
 

 
 

 

 

 

0.3 
 

 
 

 

 

 

0.4 
 

 

 

 
 

Figure 4.4.1: Comparison of pressure impulse results for the missing block with  

Cooker’s model 

 

From the figure 4.4.1 above, we can see that there is not much difference between 

maximum pressure impulse on the wall for missing block problem and the Cooker 

model. The Cooker model gives slightly higher pressure compared to missing block 

problem.
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  Missing block: width=0.1 

)2,1.0,5.0,4.0( 2121  BBHH  

        Missing block: width=0.2 

)2,2.0,5.0,4.0( 2121  BBHH  

        Missing block: width=0.3 

)2,3.0,5.0,4.0( 2121  BBHH  

 

0.2 

 
  

 

0.4 

 
  

                                                        Figure 4.4.2: Missing block with different widths.
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          Missing block: depth=0.1 

)2,2.0,5.0,4.0( 2121  BBHH  

       Missing block: depth=0.2 

)2,2.0,6.0,4.0( 2121  BBHH  

        Missing block: depth=0.3 

)2,2.0,7.0,4.0( 2121  BBHH  

 

0.2 

 

 

 

 

 

 

 

0.4 

 

 

 

 

 

 

                                                            Figure 4.4.3: Missing block with different depths.
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Figure 4.4.2 shows comparison results for different widths ( 1B 0.1, 0.2, 0.3) of block 

with same depth ( 1.012 HH ) of the missing block for varying  . We can see that 

the pressure impulse decreases when the width of missing block increases. The pressure 

in the missing block region looks almost constant. As   increases, the pressure impulse 

in this region also increases. 

 

Figure 4.4.3 shows a comparison of results for different depths (  12 HH 0.1, 0.2, 0.3) 

of block with the same width ( 2.01 B ) for varying  . We can see that the pressure 

impulse for different depths gives no significant difference, except for the pressure 

impulse in the missing block region, which shows slight decrease when the depth is 

increased. We can conclude that the thinner the missing block, the greater the pressure 

impulse on the walls of the missing block region. For the pressure impulse on the wall 

in the outer region, we get an increase when   increases. 

 

We can see that in both figures, the region 1 and 2 there is some matching 

discrepancies, but they are small enough to be ignored. In the next section, we 

investigate the total impulse and moment impulse in the inner and the outer regions. 

 

 

4.5 Total Impulse on the wall and seabed 

We continue the work by calculating the pressure impulse generated by the impact on 

the wall and the seabed for the missing block problem. This is accomplished by 

integrating the pressure impulse over the domain being considered. 

  

 

 

 

 

 

 

 

 

Figure 4.5.1: Total impulse definitions for the missing block problem.
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For the total impulse on the impact region 1I , we need: 
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The total impulse on the wall at the inner region is given by 
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We also need to calculate the total impulse on the bottom of the wall of the outer region 
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For the total impulse on the top of the block region we have, 
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and the total impulse on the bottom of the block region given by 
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The total impulse on the seabed for missing block given by 
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The results for the total impulse on seawall, the total impulse on the inner region (top 

and bottom of the block) and on the seabed can be seen in figure 4.5.2 to 4.5.5. Figure 

4.5.2, figure 4.5.3 and figure 4.5.4 show the total impulse on the wall and on the top and 

bottom of the missing block, with different location of the missing block but the same 

width and depth. We can see that when the location of the missing block is closer to the 

seabed, the total impulse for each face increases. For instances, for total impulse on the 

wall, the first location which near to the free surface )3.0,2.0( 21  HH  has a total 

impulse of 0.0425 2UH , the second location )6.0,5.0( 21  HH  has a total impulse 

of 0.190 2UH  and for the location near to the seabed )9.0,8.0( 21  HH has a total 

impulse of 0.380 2UH .  

 

We also can see there is a total impulse on the vertical wall at the inner region but it is 

small compared to vertical wall at the outer region. However, it can be larger than total 

impulse at the bottom of the vertical wall of the outer region when the location of the 

missing block is near to the seabed. The total impulse on the top and bottom of the inner 

region largely cancel each other. Given the almost constancy of the pressure in the 

missing block region, this is expected. These impulses do not move the wall vertically 

but may tend to open cracks in the missing block region. 

Figure 4.5.5 shows the impulse on the seabed for each location stated above. We can see 

that the total impulse increases when the location of the missing block moves down to 

the seabed. The total impulse on the wall is larger than the impulse on the seabed in all 

cases. 
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Figure 4.5.2: Total impulse for missing block with   

2,2.0,1,3.0,2.0 21321  BBHHH . 
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Figure 4.5.3: Total impulse for missing block with 

2,2.0,1,6.0,5.0 21321  BBHHH . 
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Figure 4.5.4: Total impulse for missing block with 

2,2.0,1,9.0,8.0 21321  BBHHH . 
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Figure 4.5.5: Total impulse on seabed for missing block . 
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4.6           Moment impulse on the wall and seabed 

In this section we need to calculate the moment on the wall and seabed that will affect 

the seawall. For the following work clockwise moment will be considered to be positive 

and will be taken about the foot (●) of the wall. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.1: Moment impulse definitions for the missing block problem. 

 

 

The moment impulse on the wall given by: 
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We need to calculate moment impulse on the wall at the inner region which is given by 
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For the moment impulse on the bottom of wall at outer region, we have 
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The moment impulse on the seabed given by: 
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We need to calculate the moment impulse on the top and bottom of the missing block 

regions, i.e.  4M and 5M  respectively. 
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Solving this gives  
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Figures 4.6.2 to 4.6.4 show the moment impulses for different locations of the missing 

block. We do not plot the graph for moment on the top and bottom of the missing block,

4M and 5M  because they almost cancel each other. We can see that the deeper the 

location of the missing block, the bigger the overturning moment impulse. We also can 

see that the moment impulse on the seabed for each case is lower than the total moment 

impulse on the wall. 
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Figure 4.6.2: Moment impulse for missing block with  

2,2.0,1,3.0,2.0 21321  BBHHH  
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Figure 4.6.3: Moment impulse for missing block with 

2,2.0,1,6.0,5.0 21321  BBHHH
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                   Figure 4.6.4: Moment impulse for missing block with  

2,2.0,1,9.0,8.0 21321  BBHHH  
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Since region 2 is largely unaffected by the missing block, the overtopping calculations 

will be almost the same as for the simple seawall. 

 

 

4.7   Conclusion 

The results of figure 4.4.1 show no noticeable decrease in pressure impulse due to the 

missing block. The total impulse on the wall for the missing block problem is greater 

when the location of the missing block is close to the seabed. However it is still smaller 

than the total impulse on the vertical wall. The same trend happens to the total impulse 

on the seabed. 

 

The moment impulse on the wall and the seabed for the missing block problem is 

greater when the location of the missing block is close to the seabed. The moment 

impulse on the wall for the missing block is greater than the moment impulse on the 

vertical wall. However for the moment impulse on the seabed is smaller when a block is 

missing than when the wall is vertical. 
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CHAPTER 5 

 

 

 

IMPACT ON A WALL WITH A DECK 

 

 

5.1            Introduction 

In this chapter we model a wave travelling from the right impacting against a vertical 

seawall with a small deck on the top located at the wave crest level. This model extends 

the work of Cooker and Peregrine (1990, 1995) who idealized the geometry of the wave 

as a rectangular region which is filled by fluid. We calculate the field of the pressure 

impulse, P, when a rectangular wave hits a vertical wall, and the total impulse and 

moment impulse beneath the deck and on the seawall. The purpose of this chapter is to 

derive P throughout the fluid, theoretically investigate the impulsive fluid force on the 

structures and also present a simplified model of overtopping. The results obtained will 

be compared with Cooker and Peregrine (1990, 1995). 

 

5.2            Literature Review 

Equation (2.2.1) which satisfies Laplace equation, gave Cooker and Peregrine (1990, 

1995) a Fourier series solution of the pressure impulse after the mixed boundary 

conditions had been applied. Then they calculated the impulse (force impulse) and 

moment on the wall and on the seabed. Cooker (1990) showed that his theoretical work 

was in good agreement with the experimental works such as Bagnold (1939) and Nagai 

(1960). He concluded for small  , his model gives the same trend as the empirical rules 

for the maximum value of the pressure on the wall peakp  occurring near the SWL (still 

water level), with the pressure decreasing towards the bed. In the following, since no 

freeboard is involved, no air cushion can form beneath the deck and so this situation can 

be regarded as worst-case, or design, scenario. 
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5.3        Mathematical Model 

Figure 5.1 shows the fluid-structure system and the Cartesian coordinates. The 

horizontal flat deck lies at 0y  from 0x  to 1bx  . The free surface beyond the deck 

is also taken to be flat, from 1bx   to 2bx  . We make the problem dimensionless by 

choosing units for which the water depth, H =1. The seabed is also assumed to be 

horizontal. The wave strikes a fraction µ of the wall. The fluid is assumed to be 

incompressible and inviscid and the domain is defined by  x0 , 01  y . The 

wavefront moves in the negative x direction. 

 

 

 

 

 

 

      

 

 

 

 

Figure 5.3.1: The dimensionless boundary-value problem for the pressure impulse for 

wave impact on a vertical seawall with a deck. 

 

We take U0 to be a uniform horizontal velocity in the impact region and work in 

dimensionless parameters. We continue to use P as dimensionless pressure impulse, 

which scales with HU 0 . Under the assumptions stated above, the formulations involve 

two expressions for regions 1 and 2 and they need to be matched at 1bx  . The 

boundary conditions for this problem are then: 
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 
 

     otherwise

0,for        

0

1
,01










 y
y

x

P
               (5.3.3) 

where  10    

 

In the above equations, we specify two dimensionless regions on the wall; the impact 

zone 0 y , and the lower region on the wall,  y1 . The boundary 

conditions on the impact zone gives the normal derivative of the pressure-impulse. This 

is chosen to be constant with the height up the wall, and models the impacting wave 

face. For the lower region, this is zero corresponding to the zero normal water velocity 

at the wall before and after the impacting wave arrives. 

 

  00,2 xP ,        for  21,bbx                (5.3.4) 

  0,22 ybP ,        for  0,1y                (5.3.5) 

  01,2 



x

y

P
,        for  21,bbx                            (5.3.6) 

 

The pressure impulse equation in both regions satisfies Laplace’s equation: 

0)(2  xP                          (5.3.7) 

 

We now solve using the separation of variables method. For the inner region (region 1 

in figure 5.3.1), the upper and bed boundary conditions are satisfied by the 

eigenfunction expression: 

 

   
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

 1

1

1

1

1

1
sinh

sinh

cosh

cosh
cos,









             (5.3.8)     

where   nn   , ),3,2,1( Nn   

for   ,01  y and 10 bx     

  

The Fourier coefficients nn  ,  and the so-called secular terms, A and C are to be 

found. For the outer region (region 2 in figure 5.3.1), the free surface, far field and bed 

boundary conditions are satisfied by the eigenfunction expression. 
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   
  
 2

2

1

2
cosh
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sin,,

b
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ycyxP
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n

n

n






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



                (5.3.9)           

where    
2

1 nn , Nn ,3,2,1  . 

for   ,01  y and 21 bxb      

  

and nc  are Fourier coefficients to be found. Equation (5.3.9) is identical to the solution 

in Cooker and Peregrine (1995) except that different coefficients need to be found by 

solving the dimensionless boundary conditions. The choices of the denominator term in 

equation (5.3.9) is somewhat arbitrary, other choices simply altering the coefficients nc  

values. 

 

Applying the wall condition (5.3.3), we multiply by the basis functions  ylcos  and 

integrate from 1y   to 0  give: 

 
 
211

sin2
coth)tanh(

n

n

nnnn bb



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                  (5.3.10) 

 

Further, by multiplying by the basis function 1 and integrating from 1y   to 0  we 

obtain: 

A                       (5.3.11) 

 

We now impose the boundary conditions at the boundary between region 1 and region 2 

which is at 1bx   for 01  y . Pressure is continuous across this boundary, so 

21 PP               (5.3.12) 

and this gives us 
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            (5.3.13) 

 

Multiplying (5.3.13) by the same basis functions as used for (5.3.11) and integrating 

gives  

  
 2

21

1

1
cosh

sinh1

b

bb
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n

n

n n

n

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            (5.3.14) 

Substituting (5.3.14) into (5.3.13) gives 
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Matching the horizontal velocities on each side of the interface before and after impact 

gives: 
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and this gives us 
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Thus, the pressure impulse can be calculated by finding the three sets of unknown 

Fourier coefficients   Niciii ,,2,1,,   and evaluating the Fourier series which 

are all truncated at Mn  . This can be done by using MATLAB with 3M conditions 

for the collocation points, and 3N equations (5.3.10), (5.3.15) and (5.3.17) which gives 

us NM 33   so that NM  . The systems of the equations are shown schematically in 

figure 5.3.2.  

 

We now have an expression for the pressure impulse distribution throughout the fluid 

domain.  Using this we can understand what occurs to the pressures and the change in 

the velocity field during impact by calculating the pressure impulse, total impulse and 

moment impulse. The areas of most interest are on the wall, along the seabed and 

beneath the deck. All the results converged at 20N  using the criteria established in 

section §2.8. Hence we can expect the results to be accurate to within in %1.0  general.                               
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        Figure 5.3.2: Matrix system of equations. The first M  rows come from (5.3.10), the next from (5.3.15) and the last from (5.3.17).      
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5.4           Pressure Impulse 

Before we analyse the data, we compare the pressure impulse results for deck problem 

with Cooker’s model, taking 01.01 b  for length of the deck and 22 b  for the free 

surface. In this case we expect that the smaller the size of the deck we chose, the closer 

we get to the Cooker’s model.  The results obtained are given as three dimensional 

surface plots. 

 

The plots show us how the pressure impulse is distributed over the surface of the 

seawall. The result are made dimensionless by choosing units for which 1H  and the 

pressure impulse is in the form of 
HU

P
0

. 
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5.4.1 Comparison results between deck problem and Cooker’s model for 

Pressure Impulse on the wall  

     Deck Problem with 01.01 b  Cooker’s Model 

2.0   

 

 

 

5.0   

 

 

 

1   

 

 

 

 

Figure 5.4.1: Comparison result for deck problem with Cooker’s Model for pressure 

impulse on the wall. 

 

From the figure above, we can see the pressure impulse profile for both cases is 

virtually the same for any given  , as expected.  
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5.4.2   Pressure Impulse on the Wall  

 

Now we look back at our original problem, the effect of a deck on the top of the 

seawall. In this case, the length of the deck, b1 cannot be greater than 0.5 as this will 

give an ill-conditioned matrix. For example, taking 5.01 b  and 6.01 b , MATLAB 

will gives us a sensible graph but with a warning for 6.01 b . For 7.01 b , we will get 

a non-sensical graph and a warning from MATLAB. The matrices for 6.01 b  and 

7.01 b  are badly conditioned. Hence for the accurate results we will take 5.01 b , 

which corresponds to more realistic engineering situations in any case. The reasons for 

poorly conditioned matrices will be discussed in §8.1. 

 

The following contour plots show the pressure impulse for deck problem. We will take 

varying values of  µ and  b1  so that we can see the changes in pressure impulse in each 

case. The distribution of the pressure impulse on the wall will give useful information as 

waves strike coastal structures. 

 

 

 

 

 

 



115 

 

          

Figure 5.4.2 : Plot showing the pressure impulse on the wall generated by deck problem 

formulation with b1 = 0.1, b2 = 2, and  µ = 0.1. The maximum pressure 

impulse is 0.1059 HU 0 and occurs at 0250.0y . 

 

         

Figure 5.4.3 : Plot showing the pressure impulse on the wall generated by deck problem 

formulation with b1 = 0.5, b2 = 2, and  µ = 0.1. The maximum pressure 

impulse is 0.2136 HU 0 and occurs at 0y . 
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Figure 5.4.4: Plot showing the pressure impulse on the wall generated by deck problem 

formulation with b1 = 0.1, b2 = 2, and µ = 0.5. The maximum pressure 

impulse is 0.3153 HU 0  occurs at 35.0y . 

 

           

Figure 5.4.5 : Plot showing the pressure impulse on the wall generated by deck problem 

formulation with b1 = 0.5, b2 = 2, and µ = 0.5. The maximum pressure 

impulse is 0.5897 HU 0  occurs at 025.0y . 
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Figure 5.4.6 : Plot showing the pressure impulse on the wall generated by deck problem 

formulation with b1 = 0.1, b2 = 2, and  µ = 1.0. The maximum pressure 

impulse is 0.7546 HU 0  occurs at 1y . 

 

          

Figure 5.4.7 :Plot showing the pressure impulse on the wall generated by deck problem 

formulation with b1 = 0.5, b2 = 2, and  µ = 1.0. The maximum pressure 

impulse is 0.9909 HU 0  occurs at 1y . 
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From the figure above, we notice that the value of pressure impulse increases when the 

value of   increases for each length of the deck. If we compare the result between the 

different values of length of deck, we can see the pressure impulse also increases when 

the length of the deck increases. The largest value of pressure impulse is when 0.1  

which is 0.7546 HU 0  and 0.9909 HU 0  for b1 = 0.1 and b1 = 0.5 respectively for 

depth 1 below the free surface. The first shows the good agreement with Cooker and 

Peregrine (1995) as they discovered the maximum value of pressure impulse is 0.742

HU 0  when 0.1  for depth 1 below the free surface. Figure 5.4.8 shows 3-D plot 

for pressure impulse on the wall for varying µ and b1. Plots of the pressure impulse on 

the wall for different values of µ for b1 = 0.1 are given in figure 5.4.7.   
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                                b1 = 0.1                       b1 = 0.5 

1.0   

 

 

 

5.0   

 

 

 

1   

 

 

 

 

             Figure 5.4.8: Pressure impulse on the wall for deck problem in 3-D. 

 

 

 

From the observation of the 3-D plot, we can see the peak pressure point of the graphs 

become more rounded for 1  and almost constant with depth when the value of   is 

increased. The area on the seawall affected by the peak pressure also increases. In table 

5.4.1 we will compare our result with Cooker and Peregrine (1990, 1995). 
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Table 5.4.1: Maximum pressure impulse on the wall for 10  UH  , and 5.0  

and .0.1  

 

Author Length of 

deck 

(from wall) 

Free surface 

lengths  

(from deck/ 

wall) 

Pressure Impulse 

for 5.0  

 HU0  

Pressure Impulse 

for 0.1  

 HU0  

Cooker and 

Peregrine 

No deck 1b  0.2826 0.6753 

2b  0.2927 0.7394 

5b  0.2932 0.7424 

Present 

result 

1.01 b  12 b  0.3041 0.6875 

22 b  0.3153 0.7546 

52 b  0.3158 0.7578 

5.01 b  12 b  0.5512 0.8552 

22 b  0.5897 0.9909 

52 b  0.5915 0.9976 
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From table 5.4.1, we can see the two examples of wall with a deck with different 

lengths of deck and lengths of free surface (from the structure to the distant boundary at 

2bx  ). We can see that for each case, with different distance of free surface, the 

maximum pressure impulse is more consistent when 22 b  or higher. The difference 

between 22 b  and 52 b  in pressure impulse is from 0.001 to 0.007 HU 0 . We do 

not choose 12 b , because the difference between 22 b  is quite big (0.01 to 0.06

HU 0 ).   In this study, the free surface 22 Hb  is probably a fair model with a 

length of deck 5.01 Hb  . A good agreement is also shown in Cooker and Peregrine 

(1995), in which the different impact lengths give very similar pressure impulse 

distributions near the impact wall. 

 

We can also see that having a deck on the top of the wall can dramatically increase the 

pressure impulse on the wall. The position of the maximum P can move to the corner 

between the vertical wall and the deck, see figures 5.4.9 and 5.4.10. (The small 

irregularity in the lines for 1.0  are due to truncation of the series expansion.) Hence 

we can conclude that having a deck on the top of the seawall increases the value of the 

maximum pressure impulse and the extent down the seawall of a high pressure impulse 

region. These results show a good agreement with those of Oumeraci (1994), which 

gave a high pressure impulse on the breakwater resulting from wave impact on the deck. 
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    Figure 5.4.9: Plot showing the pressure impulse along the wall for b1 = 0.1 

 

 

 

                Figure 5.4.10: Plot showing the pressure impulse along the wall for b1 = 0.5. 
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5.4.3 Pressure Impulse on the Seabed and the Deck 

It is interesting to examine the pressure impulse, P along the seabed. This may provide 

information about erosion effects occurring at the base of a structure, allowing 

engineers to consider what extra protection is needed there. Poor designs may require 

constant maintenance as waves erode the base of the seawall. Figures 5.4.11 and 5.4.12 

show plots of the pressure impulse along the seabed for different values of   and 1b . 

The highest values for pressure impulse occur at the wall and the region beneath the 

deck. As   increases towards 1 the maximum value increases, as expected, and as we 

can see the pressure impulse also increases as the length of the deck increases.  

 

Figures 5.4.13 and 5.4.14 show the distribution of pressure impulse in the water beneath 

the deck for different values of   and 1b . The highest values of pressure impulse occur 

at the landward end and it increases as   increases toward 1. The values of pressure 

impulse for 5.01 b  are more than 50% greater than those for 1.01 b  for each value of 

 . Overall we can see that pressure impulse beneath the deck is greater than pressure 

impulse along the seabed. 

           

          Figure 5.4.11: Plot showing the pressure impulse along the seabed for 1.01 b . 
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Figure 5.4.12:  Plot showing the pressure impulse along the seabed for 5.01 b . 

 

 

 

    Figure 5.4.13:  Plot showing the pressure impulse beneath the deck for 1.01 b . 
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     Figure 5.4.14:  Plot showing the pressure impulse beneath the deck for 5.01 b . 

 

 

 

5.5      Total Impulse  

As in the previous chapter, we calculate the total impulse for the wall, seabed and 

beneath the deck for this problem. The direction of the total impulse is given as figure 

5.5.1. 

 

 

 

 

 

                                  

                               

 

 

                               Figure 5.5.1: Total impulse definitions for deck. 
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5.5.1 Total impulse on the wall 

To calculate the total impulse exerted by the fluid on the wall, wI  we need the 

expression for the pressure impulse at 0x  given in equation (5.3.8). Integrating over 

the wall gives: 

 dyyPI w ,0

0

1

1


                    (5.5.1) 

Solving this equation gives  
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Substituting (5.3.14) into (5.5.2): 
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cosh

sinh1
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n

n n
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



             (5.5.3) 

 

Equation (5.5.3) is dimensionless and is plotted in figure 5.5.2 as a function in . The 

result for the total impulse in the form 
2

0HU

Iw


. From the figure we can see that as   

increases from 0 to 1, 
2

0HU

Iw


 increases from 0 to the maximum impulse value which 

occurs at 0.1 . The relationship between   and  
2

0HU

Iw


 is almost linear from 

16.0    for length of deck 1.01 b  and even more so for 5.01 b . The maximum 

impulse value for different lengths of deck, 1.01 b , and 5.01 b are approximately 

0.580 2

0 HU , and 0.920 2

0 HU  respectively. We can conclude that the total impulse 

on the wall increases as the length of the deck increases. 
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5.5.2 Total impulse on the seabed    

The total impulse on the seabed, BI  is given from the pressure impulse expression at

1y . Integrating over the seabed gives us: 

   dxxPdxxPI

b

b

b

B 1,1,
2

1

1

2

0

1                  (5.5.4) 

Solving this equation gives  

   

 
  
 

  
 

 
  
 

dx
b

bx
c

CdxAxdx
b

bx

b

bx
I

b

b n

n

n

nn

bb

n

n
n

n

n
n

n

nB















 














2

1

11

2

2

1

00 1

1

1

1

1

cosh

sinh
sin

sinh

sinh

cosh

cosh
cos
















 

giving 

 
 

  
 

  

 
 

  

   
 

 

 
 

  
















































































































21

21

1

2

1
1

1

1

1

2

1 20

2

0

1

10

1

11

cosh
11

cosh

sin

2
coth

1

sinh

1
tanhcos

cosh
1

cosh

sin

2

cosh
1

sinh
sinh

1

cosh
cos

2

1

1

11

bb
b

c

Cb
Ab

b
B

b

bx
b

cCx
Ax

bx
b

bx
b

I

n

nnn

n

n

n

n

nnn

nn

n

n

n

n

b

b

n

nn n

n
n

B

b

n

nn

n

b

n

nn

n

n

nB































                                                                                                                                                                 

         

(5.5.5)      

                

Equation (5.5.5) is plotted in figure 5.5.2 as a function in  . The result for the total 

impulse on the seabed is of the form 
2

0 HU

I B


. From the figure we can see that as   

increases from 0 to 1, 
2

0 HU

I B


 increases from 0 to the maximum impulse value which 

occurs at 0.1 . The maximum total impulse value for different lengths of deck, 

1.01 b , and 5.01 b  are approximately 0.470 2

0 HU , and 0.680 2

0 HU   

respectively. We can conclude that the total impulse on the seabed increases as the 

length of the deck increases. The maximum total impulse on the seabed for each length 

of the deck is smaller than the maximum total impulse on the wall. 
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5.5.3 Total impulse beneath the deck 

The total upward impulse on the deck, DI  is given by the integral of the pressure 

impulse expression at 0y  over the deck. This is 

 dxxPI

b

D 
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0

1 0,                 (5.5.7) 

Thus: 
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Substituting (5.3.11) and (5.3.14) into (5.5.8) and simplifying gives: 
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               (5.5.9) 

 

We plot the equation (5.5.9) in figure 5.5.2 as a function of µ. The result for the total 

impulse beneath the deck is the form 
2

0 HU

I D


. From the figure we can see that as   

increases from 0 to 1, 
2

0 HU

I D


 increases from 0 to its maximum impulse value which 

occurs at 1.0 . The maximum total impulse value for different lengths of deck, 

1.01 b , and 5.01 b  are approximately 0.017 2

0 HU , and 0.270 2

0 HU   

respectively. As expected, the maximum value increases as the length of the deck 

increases. The total impulse beneath the deck is much smaller compared to that on the 

wall and along the seabed, partly because P is much smaller. 
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Total impulse on the wall  

 

Total impulse on the wall 

 

Total impulse on the seabed 
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Total impulse beneath the deck 
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  Figure 5.5.2: Total impulse on the wall, seabed and beneath the deck for 1.01 b  

                        and 5.01 b . 
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5.6      Moment Impulse 

We calculate the moment impulse on the wall, on the seabed and on the deck. We take 

the direction of the moment impulse as in figure 5.6.1. 

 

 

 

 

 

                 

 

 

                          Figure 5.6.1: Moment impulse diagram for the deck. 

 

 

 

5.6.1 Moment Impulse on the Wall 

Cooker (1990) introduced the expression for moment impulse on the wall, wM  about an 

axis at its bottom, due to the pressure impulse on the wall.  

For the deck problem, the expression is again 
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The moment impulse, wM  is positive in the anti-clockwise sense about the base of the 

wall. Evaluating (5.6.1) gives 
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Substituting (5.3.14) into (5.6.2) and simplifying gives: 
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                                           (5.6.3)  

                                                                

We plot equation (5.6.3) in figure 5.6.2 as a function in  . The result for the moment 

impulse on the wall is in the form 
3

0 HU

M w


. From the figure we can see that as   

increases from 0 to 1, 
3

0 HU

M w


 increases from 0 to the maximum moment impulse 

value which occurs at 0.1 . The maximum moment impulse value for different 

lengths of deck, 1.01 b , 3.01 b  and 5.01 b  are approximately 0.245 3

0 HU , 0.345

3

0 HU and 0.451 3

0 HU   respectively. As expected, the maximum values increase as 

the length of the deck increases. The maximum value for deck problem is large 

compared to Cooker (1990), which is about 0.218 3

0 HU . 

 

 

5.6.2 Moment impulse on the seabed and deck 

As in Cooker (1990), the moment impulse on the seabed, BM  about the base of seawall 

is 
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We assume the moment impulse, BM  is positive in the clockwise sense about the base 

of the wall. Evaluating (5.6.4) 
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The moment impulse beneath the deck, DM  is given by: 
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We assume the moment impulse, DM  is positive in the clockwise sense about the base 

of the wall. Evaluating (5.6.6) 
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The moment impulse is positive (clockwise) sense about the base of the wall. Equation 

(5.6.5) is plotted figure 5.6.2. From the figure we can see that as   increases from 0 to 

1, 
3

0 HU

M B


 increases from 0 to the maximum moment impulse value which occurs at 

0.1 . The maximum total moment impulse value for different lengths of deck, 

1.01 b , 3.01 b  and 5.01 b  are approximately 0.243 3

0 HU , 0.296 3

0 HU and 

0.378 3

0 HU   respectively. 
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From figure 5.6.2, we can see that the largest values of wM  and BM   (as well as DM ) 

occurs at 0.1 . The maximum moment impulse on the wall is larger than the 

maximum moment impulses on the seabed or beneath the deck ( 1b  increases 0.1 to 0.5 

DM  increases by factor 20). This is total contrast with Cooker’s model. Results for 

moment impulse on the wall, on the seabed and beneath the deck are given in figure 

5.6.2. This is reasonable given that Cooker’s model has 0P  at 0y  whilst we have 

a large value of P  here and this gives a substantial moment. 
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b1=0.1 b1=0.5 

Moment impulse on the wall  

 

Moment impulse on the wall 

 

Moment impulse on the seabed 

 

Moment impulse on the seabed 

 

Moment impulse beneath the deck 

 

Moment impulse beneath the deck 

 

 

Figure 5.6.2: Moment impulse on the wall, seabed and beneath the deck for 1.01 b    

and 5.01 b . 
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5.7 A Mathematical model for wave overtopping 

 

 

 

 

 

 

 

 

 

 

                  

 

 

 

                          Figure 5.7.1: Overtopping definition sketch for deck. 

 

 

As before in §2.7, we assume a free projectile model for overtopping. Since the initial 

upward velocities (before impact) are zero, the velocity afterwards is simply given by 
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So that the initial velocity upward at 0y  gives 
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Hence the maximum height of jet is 
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For freeboard, BF  we have 
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So we can find BF  in terms of a parameter fx , the distance at which BF  is achieved. 

Calculating the overtopping discharge, V 

 dxFyV

fx

bt 
0

max  

gives, 

                                               bf

x

FxdxyV

f

 
0

max                (5.7.5) 

 

 

Assuming shallow water theory and taking the impact velocity 0U  to be the wave speed 

gH gives .1rF  Plotting equation (5.7.5) by using MATLAB and comparing with 

Cooker’s model, we get results as in figure 5.7.2. Given the assumption that particles in 

the jet move as free projectiles, the model will not be valid for very low freeboard since 

the pressure impulse gradients will be finite for the region above bF  and away from the 

edge of the deck. On the other hand, the pressure impulse gradient increases as we 

approaches the edge of the deck so the very large vertical velocities will give the 

assumed free projectile motion. At the deck edge itself, the velocity is singular, being 

locally similar to the flow around the end of a plate in unbounded fluid. This singularity 

is of square root form and is hence integrable. Of course, the truncated series expansions 

used here model this singular behaviour only rather crudely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



137 

 

 

 

 

01 b  Deck ( 1.01 b ) 

1.0  

 
 

1.0  

 

5.0  

 
 

5.0  

 

0.1  

 
 

0.1  

 

 

Figure 5.7.2: Overtopping discharge. 
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We can see that the larger the region of impact, the more volume of overtopping we 

have for any freeboard.  We note that the seawall with a deck has a much greater 

volume of overtopping compared to a seawall without a deck. For instance, consider the 

case with, mH 2 , 1.0  and 5.0bF . The volume of overtopping, 2002.0 HV   

per impact, gives us 

 

             22 008.0)2(002.0 m  each wave impacts.  

             1 impact in 10 waves of 10 sec ~ 100 sec. This gives: 

             135108  smV  per metre frontage. 

 108.0  lsV per metre frontage. 

 

 which is almost double compared to volume of overtopping when there is no deck i.e. 

.01 b  

 

 

5.8   Conclusions 

 

It is found that the maximum pressure impulse on the wall is greater as the length of the 

deck is increased. For the same length of deck, the pressure impulse is greater when the 

impact region is larger.  

 

The total impulse for a seawall with a deck is greater than the total impulse for a vertical 

wall. When the length of deck increases, the total impulse increases. The total impulse 

on the seabed for a seawall with a deck is greater than that for the vertical wall. When 

the length of deck increases, the total impulse increases. The total impulse beneath the 

deck is greater when the length of the deck is bigger. 

 

The moment impulse on the wall for a seawall with a deck is almost double that for a 

vertical wall. It increases when the length of the deck increases.  

 

The moment impulse beneath the deck becomes larger when the length of the deck is 

bigger. The pressure of a deck increases the overtopping. 
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CHAPTER 6 

 

 

 

IMPACT ON A DECK PROJECTING FROM A SEAWALL 

 

 

6.1 Introduction 

 

In this chapter we consider the same geometry as in the previous chapter, but the wave 

comes from below and impacts against the whole of the underside of a horizontal deck 

projecting from the wall. For this case, the boundary condition and the equations are 

slightly different. This problem of impact on a deck can be traced back to the study of 

wave impact on the underside of projecting surface i.e. the flat deck which is close to 

the mean water level, studied by Wood and Peregrine (1998). We calculate the pressure 

impulse when a rectangular wave hits a horizontal deck and total impulse beneath the 

deck for finite depth. The pressure impulse, P, is used to model the effect of the wave 

impact. The purpose of this chapter is to derive the two-dimensional field for P 

throughout the fluid, solved by the previous mathematical modelling but with a different 

approach, and theoretically investigate the impulsive fluid force on the structures.  
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6.2         Literature review 

 

Wood and Peregrine (1998) presented a theoretical model for the pressure impulse on 

the underside of a projecting surface. They calculated the impact pressures on a vertical 

wall and beneath the horizontal deck by using a pressure impulse approach. 

 

Figure 6.2.1: The boundary-value problem for pressure impulse. Image 

taken  from Wood and Peregrine (1996) figure 1. 

 

The wave is assumed to hit upward under a flat deck, which is at the mean water level 

and jutting out from a wall. The impact region is beneath the whole deck of length L 

with upward velocity V so that the boundary condition beneath the deck is VyP  . 

Wood and Peregrine make the problem dimensionless by choosing units which gives 

1V . The vertical wall of height a for finite depth has boundary condition 0 xP . 

Boundary conditions 0P  are prescribed on the free surface at BA, 0P  as x  

and 0 yP  on the sea floor. They considered two cases of water depth, finite and 

infinite depth and two cases of deck length, a finite and infinitely long deck. They 

solved this problem by considering the direct analogy of velocity potential of 

irrotational flow, see Faltinsen and Timokha (2009). Another solution using conformal 

mapping is also discussed in Wood and Peregrine (1996).  

 

We are interested in finite depth and a finite deck length. By using conformal mapping, 

Wood and Peregrine map the original problem in the z plane in figure 6.2.1 to a 

complex plane  i . They solve Laplace’s equations in the region by separation 

variables. The expression for the pressure impulse is given by: 
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neAP cos



                                     (6.2.1) 

and   
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m


                             (6.2.2) 

 

where n  and M are defined as in Wood and Peregrine (1998). They evaluated (6.2.2) 

by using a NAG numerical routine and the results as shown in figures 6.2.2 and 6.2.3. 

 

 

  

Figure 6.2.2: Pressure-impulse contour with 0.2a . Total pressure impulse on the 

deck and wall respectively are 0.81 and 1.02. Image taken from Wood 

and Peregrine (1998) figure 6. 

 

 

Figure 6.2.3: Pressure-impulse contour with 5.0a . Total pressure impulse on the deck 

and wall respectively are 1.193 and 0.440. Image taken from Wood and 

Peregrine (1998) figure 8. 

 

 

From the numerical solution they found that the impulse on the deck increased as the 

water depth decreased. Wood and Peregrine (1996) reported that the strong pressure 

gradient beneath the deck is near the seaward edge of the impact region and that causes 

a shearing stress on structures. The maximum pressure-impulse is at the landward end 

of the impact zone in the corner between the wall and deck.            
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6.3        Mathematical model 

 

Figure 6.3.1 shows the fluid-structure system and the boundary conditions. The 

horizontal flat deck lies from 0x  to 1bx  . The free surface beyond the deck is also 

taken to be flat, from 1bx  , and 2bx  . We make the problem dimensionless by 

choosing units for which water depth, 1H . The seabed is horizontal. The fluid is 

assumed to be incompressible, inviscid and irrotational and the domain is defined by 

 x0 , 01  y . The wave hits the whole deck in the upward direction. We will 

make comparison of the results with Wood and Peregrine (1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.1: The dimensionless boundary-value problem for the pressure impulse for 

wave impact beneath a deck on the top of a seawall. 

 

 

As in the previous chapter, we also work with dimensionless pressure impulse and we 

continue to use P as dimensionless pressure impulse, that scales with HU 0 . Under the 

assumptions stated above, the formulations involve two equations from region 1 and 

region 2 and need to be matched at 1bx  .  
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The boundary conditions we have in this problem: 

 

  10,1 



x

y

P
               for  1,0 bx                (6.3.1) 

  0,01 



y

x

P
               for  0,1y                (6.3.2) 

  00,2 xP ,         for  21,bbx                (6.3.3) 

  0,22 ybP ,         for  0,1y                (6.3.4) 

  01,1 



x

y

P
,       for  1,0 bx                (6.3.5) 

  01,2 



x

y

P
,             for  21,bbx                (6.3.6) 

   

 The pressure impulse equation in both regions satisfies Laplace’s equation: 

0)(2  xP                          (6.3.7) 

 

We now solve using separation of variables method. For the inner region (region 1 in 

figure 6.3.1), the upper and bed boundary conditions are satisfied by the eigenfunction 

expansions: 
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where   nn   , ),3,2,1( Nn   

and   
2

1 nn , Nn ,3,2,1  . 

for   ,01  y and 10 bx        

  

The Fourier coefficients nn  ,  and secular term, A are to be found. For the outer 

region, the free surface, far field and seabed boundary conditions are satisfied by the 

eigenfunction expansions: 
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where    
2

1 nn , Nn ,3,2,1  . 

for   ,01  y and 21 bxb       

and nc  are Fourier coefficients to be found. 

 

From equation (6.3.1) we have 11 
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P
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At the matching region 1bx   for 01  y , the pressure impulse is continuous across 

this boundary so that 
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and this gives us 
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           (6.3.12)  

 

 

Multiplying (6.3.12) by the basis functions 1 and integrating from 1y  to 0 gives the 

secular term  
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Substituting (6.3.13) into (6.3.12) and simplifying gives  
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                                                                          (6.3.14) 

 

Matching the horizontal derivatives on each side of the interface at 1bx   for 

01  y  gives 
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Differentiating equation (6.3.8) and (6.3.9) gives 
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We solve the truncated forms of equations (6.3.10), (6.3.14) and (6.3.16) by finding the 

three sets of unknown Fourier coefficients   Niciii ,,3,2,1,,   and evaluate the 

truncated series to calculate the pressure impulse. The system of equations can be 

simplified as figure 6.3.2. We now have an expression for the pressure impulse 

distribution throughout the fluid domain. This can be used to understand what occurs to 

the pressures and the change in the velocity field during impact by calculating the 

pressure impulse, impulses and moments. The areas of most interest are on the wall, 

along the seabed and beneath the deck. All these results converge by 40N  using the 

criteria established in §2.8. Hence we can expect the results to be accurate to within 

0.1% in general. 
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    Figure 6.3.2: Matrix system of equations.  The first M  rows come from (6.3.10), the next from (6.3.14) and the last from (6.3.16).       
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6.4        Pressure Impulse  

 

Figures 6.4.1, 6.4.2, and 6.4.3 show in perspective plots the results for pressure impulse 

beneath the deck for different length of deck, 1.01 b , 3.01 b  and 5.01 b  

respectively. From the figures we can see that at the point of peak for pressure, the 

graphs become more rounded as the length of the deck increases. In figure 6.4.4, figure 

6.4.5, and figure 6.4.6 show the contour plot for each profile. We note the differing 

contours intervals, and the increasing pressure impulse on the deck as the length of the 

deck 1b  is increased.  

 

 

 

                                   

                                        Figure 6.4.1:  Pressure impulse profile for  1.01 b . 
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                                      Figure 6.4.2: Pressure impulse profile for  3.01 b . 

 

 

 

                                         Figure 6.4.3: Pressure impulse profile for  5.01 b . 
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Figure 6.4.4 : Plot showing the pressure impulse on the deck generated by deck problem 

formulation with 1.01 b . The maximum pressure impulse is 0.0952

HU 0 and occurs y = 0 and  x = 0. 

 

Figure 6.4.5 : Plot showing the pressure impulse on the deck generated by deck problem 

formulation with b1 = 0.3. The maximum pressure impulse is 0.2997

HU 0  and occurs y = 0 and  x = 0.0075. 
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Figure 6.4.6 : Plot showing the pressure impulse on the deck generated by deck problem 

formulation with b1 = 0.5. The maximum pressure impulse is 0.5175

HU 0  and occurs y = 0 and  x = 0. 

 

 

We can conclude that when the deck’s length to depth ratio is increased, the pressure 

impulse will increase. The same trend was described by Wood and Peregrine (1996). 
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Pressure impulse on the wall, seabed and deck 

 

Figure 6.4.7: Plot showing the pressure impulse on the wall generated by the deck 

problem formulation for varying b1. The maximum pressure impulse is 

0.5175 HU 0 . 

 

 

Figure 6.4.8: Plot showing the pressure impulse on the wall generated by the deck 

problem formulation for varying b1. The maximum pressure impulse is 

0.182 HU 0 . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

y
/H

P/(U
0
H)

Pressure Impulse on the Wall

b
1
=0.1 b

1
=0.3 b

1
=0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x/H

P
/(


U
0
H

)

Pressure Impulse on the Seabed

b
1
=0.1

b
1
=0.3

b
1
=0.5



152 

 

 

 

 

 

 

Figure 6.4.9: Plot showing the pressure impulse on the wall generated by impact under 

the deck for varying b1. The maximum pressure impulse is 0.520 HU 0 . 
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6.5 Total impulse on the wall, seabed and on the deck 

 

 

We take the direction of total impulse as the same as in Chapter 5 as follows 

 

 

 

 

 

                                  

 

 

 

                               Figure 6.5.1: Total impulse definitions for deck. 

 

 

The total impulse on the wall, wI  given by 
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Integrating gives: 
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The total impulse on the seabed, BI  given by 
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Integrating gives: 

 

        








1

1

1

1

tanhsintanhcos bbI nn

n n

n

nn

n n

n

B 








 

 

                                               
 
 

    121

21

cosh1
cosh

sin
Abbb

b

c
n

n

n

n n

n 













         

                                                                                                                                   (6.5.4) 

 

 

Iw 

Deck 

IB 

ID 



154 

 

The total impulse on the deck, DI  given by 

  dxxPI

b

D 0,
1
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1                 (6.5.5) 

Integrating gives: 
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Table 6.5.1:  Total impulse for varying length of deck  

 

Length of the 

deck 

Total impulse on the 

wall 

Total impulse on 

the seabed 

Total impulse 

beneath the deck 

b1 = 0.1 0.0171 0.0063 0.0073 

b1 = 0.3             0.1172 0.0616 0.0698 

b1 = 0.5 0.2742 0.1772 0.2014 

 

 

We can see that the total impulse on the seawall is greater than total impulse on the 

deck. The total impulse increases when length of the deck increases. 

 

 

 

6.6         Moment impulse on the wall, seabed, and on the deck 

 

 

We calculate the moment impulse on the wall, on the seabed and on the deck. We take 

the direction of the moment impulse as in figure 5.6.1 

 

 

 

 

 

 

                  

 

 

                      Figure 6.6.1: Moment impulse diagram for the deck. 
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The moment on the wall given by 

    dyyPyM w ,01
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                (6.6.1) 

 

Integrating gives: 
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The moment on the seabed given by 
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Integrating gives: 
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The moment on the deck given by 

  dxxxPM

b

d 0,
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0

1                                                               (6.6.5) 

 

Integrating gives: 
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Table 6.6.1:  Moment impulse for varying length of deck  

 

Length of the 

deck 

Moment impulse on the 

wall 

Moment impulse 

on the seabed 

Moment impulse 

beneath the deck 

b1=0.1 0.2611 0.0037 0.0003 

b1=0.3 0.4232 0.0364 0.0089 

b1=0.5 0.4938 0.1070 0.0424 

 

 

From table 6.6.1 we can see that the moment impulse on the seawall is much larger than 

moment impulse on the seabed and beneath the deck. 

 

 

 

 

Comparison of results  

 

We now can compare our result with Wood and Peregrine (1997). We consider for deck 

length of deck is 5.0  and water depth is 1.0. 

 

 

                                    Table 6.6.2:  Results comparison.  

 

 Wood and 

Peregrine 

Present results 

Deck length 5.0L  5.01 b  

Water depth 0.1a  0.1H  

Total Impulse on the 

deck  

0.3000 

(approximately) 

0.2014 

Total Impulse on the 

wall 

0.2750 

(approximately) 

0.2742 

Maximum pressure 

impulse 

0.5200 

(approximately) 

0.5175 

Dimensionless unit VH  HU 0  

 

 

We can see that, the results have a good agreement with Wood and Peregrine (1996). 
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6.7     Conclusions 

 

From the numerical solution we found that the pressure impulse on the deck increases 

when the length of deck increases. There is a strong pressure gradient beneath the deck 

is near the seaward edge. Similar results were found in Wood and Peregrine (1996) 

which studied the pressure impulse beneath the deck for different depth of water for the 

same length of deck. We also agree that the maximum pressure impulse is at the 

landward end of the impact zone. 
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CHAPTER 7 

 

 

 

WAVE IMPACTS ON STRUCTURES WITH BAFFLES 

 

 

  

7.1     Introduction 

 

In this chapter we consider another model of violent fluid motion applied to wave 

impact against a vertical structure. Again, we model a rectangular wave but with a 

baffle between the two regions. The purpose of this chapter is to quantify the effect of 

having a baffle between two regions when a wave breaks against the baffle and on the 

wall when we have a vertical baffle on the seabed. The theory of pressure impulse on 

the baffle, to the author knowledge, has not yet been investigated. 

 

We consider four classes of problem: 

(i) A vertical baffle at free surface; (Problem 1) 

(ii) A vertical baffle in front of a wall; (Problem 2) 

(iii) A vertical baffle at a deck in front of a seawall; (Problem 3) 

(iv) A vertical baffle on the seabed in front of a wall. (Problem 4) 
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For this chapter, we solved the problems by using a basis function method. As a 

practical application, (ii) and (iii) could model an oscillating water column wave energy 

device with the turbine valve open/closed respectively, whilst (iii) and (iv) are also 

pertinent to sloshing impacts in liquefied natural gas (LNG) carriers and other liquid-

transport tanks. We will compare our results with basic model by Cooker (1990). The 

total impulse and moment impulses are also calculated for each problem and examples 

for using the results are given at the end of this chapter. 

 

 

7.2         Literature Review 

 

A fluid-structure interaction phenomenon is an important consideration in several 

engineering fields. When a tank truck is braking, turning or in collision, the liquid in the 

partially-filled tank will slosh or even splash due to the oscillating of the unrestrained 

free surface of the liquid. This kind of phenomenon is also important in marine 

transport. For example, during the marine transportation of the liquefied natural gas 

(LNG), sloshing inside the LNG tank is one of the most important concerns of design.  

In such circumstances, an accident may result from wandering, capsize or from 

prolonging the stopping distance. The study of the pressure impulse on the baffles and 

walls can provide data on the impacts acting on the tank and baffles which can be used 

for simulating handling stability, especially for planes, rockets and spacecraft. 

 

Many general and basic problems of liquid sloshing have been studied. Most studies 

involved simple tank structures, but the inner structures of liquefied natural gas tank 

carriers are more complex. Eswaran et al. (2009) analyzed sloshing waves for baffled 

and un-baffled tanks and the study shows that the wave pressures on the walls decrease 

with baffles compare with the one without baffles. Armenio and Rocca (1996) presented 

an analysis of sloshing of water in rectangular open tanks by using two mathematical 

models: the Reynolds Averaged Navier-Stokes Equations (RANSE) and the Shallow 

Water Equations (SWE). They found that the presence of a vertical baffle at the middle 

of the tank dramatically reduced the sloshing-induced wave loads on the vertical wall 

compared to the unbaffled configuration. Liu and Lin (2009) investigated the effect of 

the baffle in three-dimensional (3D) liquid tank by using spatially-averaged Navier-

Stokes equations and solving a numerical model. They found that a vertical baffle is a 
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more effective tool in reducing the impulse pressure compared to a horizontal baffle. 

They first investigated the two-dimensional (2D) liquid sloshing with baffles and 

without baffles. The numerical results were compared with others results in the 

literature and showed favourable agreement. Akyildiz and Ünal (2005) conducted a 

series of experiments to obtain pressure variations on baffled and unbaffled liquid 

sloshing tanks.  

 

All of these studies are concerned with wave generation. This is important because 

conditions can then arise for impacts and extremely high pressures of short duration. 

The difference of our studies from other researchers is that we have distant boundary 

conditions on the right-hand region. In this chapter, mathematical modelling of wave 

impact on a baffle in different conditions is introduced using the pressure impulse 

theory. The influence of the depth of baffle penetration, and the size of the impact 

region is studied. 

 

To investigate these effects, vertical baffles are added to tanks reaching down from the 

ceiling or up from the floor of the tank. Horizontal baffles may also be added to the side 

walls. The idea is also to detune the natural frequencies from the range of forcing 

frequencies, for example the frequencies of ocean waves in a rolling or pitching ship 

(Faltinsen and Timokha, 2009). However, adding baffles does not prevent sloshing or 

the possibility of wave impact on the baffle. This is the subject of this chapter. 

 

 

 

7.3     Mathematical Modelling of problems 1, 2, 3 and 4 

 

We now consider a rectangular model with wave impact on a fraction   of the baffle. 

Note that we have a baffle of height bH , the depth of penetration. On the right hand 

side of the baffle for all four problems we have the free surface at 0y . The pressure 

impulse P  satisfies Laplace’s equation throughout the fluid and is zero on the free 

surface. Since the wave comes from the right, the normal derivative of P at the back of 

the baffle is zero.  
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7.3.1 A vertical baffle at free surface (problem 1) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.1: The dimensionless boundary-value problem for the pressure impulse for 

wave impact on a baffle. 

 

The parameters of this situation are: 

bH = Height of baffle from the free surface 

 1b = size of the first region from the baffle 

 2b =size of the second region from the baffle 

 = parameter of impact region bHy 0  

 

The fluid domain defined by 21 bxb  , with 01 b  and 01  y . The boundary-

value problem for  yxP ,  is then 

 

02  P  everywhere in the fluid                (7.3.1) 

  00,1 xP ,        for  0,1bx               (7.3.2) 

  0,11 ybP ,        for  0,1y               (7.3.3)

   00,2 xP ,        for  2,0 bx                          (7.3.4) 

  0,22 ybP ,        for  0,1y               (7.3.5) 
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  01,2 



x

y

P
,       for  2,0 bx                                                 (7.3.7)

  

 

At 0x  we have to apply matching/ baffle conditions. 

●   0,01 



y
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P
               for  0,bHy               (7.3.8) 
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● 21 PP                 for  bHy ,1            (7.3.10) 

 

 

as shown in figure 7.3.1. The left, upper and bed boundary conditions are satisfied by 

the eigenfunction expansion: 
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where   
2

1 nn  , ),3,2,1( Nn   

for   ,01  y and 01  xb    

  

 

and the solution which satisfies the boundary conditions in region 2 is given by: 
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where   
2

1 nn  , ),3,2,1( Nn   

for   ,01  y and 20 bx     
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Applying   dyym

Hb

sin

0




 , Mm ,,2,1   to equation (7.3.8) and integrating gives: 
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Applying    ,sin

0

1

dyym


  Mm ,,2,1   to equation (7.3.9) and integrating gives: 
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The second integral is simply 
2

,nm
 by orthogonality. 

Applying   ,sin
1
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(7.3.15) 

 

 

These three equations, are truncated at Nn   giving a system of equations NM 23  as 

in figure 7.3.2. We then choose 
2

3M
N  to make the system square. We have two sets 

of unknown Fourier coefficients   Niii ,,3,2,1,   to be found so that we can 

calculate the pressure impulse for this problem. This was done by using MATLAB. 
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Figure 7.3.2 : Matrix system of equations for problem 1. The first M rows come from 

(7.3.14), the next from (7.3.13) and the last from (7.3.15). The functions  

31    are   the  integrals in equations (7.3.13) to (7.3.15). 
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7.3.2 A vertical baffle in front of a wall  (problem 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.3: The dimensionless boundary-value problem for the pressure impulse for 

wave impact on a baffle. 

 

 

For the second problem we have a baffle in front of seawall. The parameters of this 

situation are same with problem 1. The boundary-value problem for  yxP ,  is as in 

(7.3.1) to (7.3.10) but equation (7.3.3) is replaced by 
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and the solution which satisfies the boundary condition in the region 2 as in (7.3.11). 

The conditions at 0x  are as before, equations (7.3.8) to (7.3.10). Applying the same 

procedure as for §7.3.1 for each equation respectively we get: 
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The second integral is simply 
2

,nm
 by orthogonality. 
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These three equations also give us a system of NM 23   equations as shown in figure 

7.3.4 below with 
2

3M
N   again. We have two set of unknown Fourier coefficients 

  Niii ,,3,2,1,,   to find to calculate the pressure impulse for this problem.  
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Figure 7.3.4 : Matrix system of equations for problem 2. The first M  rows come from 

(7.3.19), the next from (7.3.18) and the last from (7.3.20). The functions  

31    are the integrals in equations (7.3.18) to (7.3.20). 
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7.3.3 A vertical baffle and a deck in front of a seawall (problem 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.5: The dimensionless boundary-value problem for the pressure impulse for 

wave impact on a baffle. 

 

The boundary conditions for region 1 are now: 
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P
,       for  0,1y             (7.3.22) 

 

together with equations (7.3.1) and (7.3.4) to (7.3.10) as shown in figure 7.3.5. When 

we have a horizontal deck projecting from the seawall and a vertical baffle at the end of 

the deck, the eigenfuction expansion becomes 
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The solution in region 2 and the conditions at 0x  are as before, i.e., equations 

(7.3.12) and (7.3.8) to (7.3.10) respectively. 
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0

dyym

Hb




 Mm ,,2,1   to equation (7.3.8) and integrating gives: 
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Applying    ,sin
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  Mm ,,2,1   to equation (7.3.9) and integrating gives: 
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The second integral is simply 
2

,nm
 by orthogonality. 
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1
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From these three equations, it also gives us a system of NM 23   equations such in 

figure 7.3.6 with 
2

3M
N  . We have two sets of unknown Fourier coefficients 

  Niii ,,3,2,1,,   to find to calculate the pressure impulse for this problem.  
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Figure 7.3.6 : Matrix system of equations for problem 3. The first M rows come from (7.3.25), the next from (7.3.24) and the last from 

(7.3.26). The functions  2121 ,,,   and 1  are the integrals in equations (7.3.24) to (7.3.26). 
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7.3.4 A vertical baffle on the seabed in front of a seawall (problem 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.7: The dimensionless boundary-value problem for the pressure impulse for  

wave impact on a wall with vertical baffle on seabed. Relative to problems 

1,2 and 3 here 1b changes sign. 

 

For this problem, we put our origin at the wall and we have a vertical baffle on the 

seabed. The parameters of this situation become: 

  

tH = depth of water from free surface to the top of the baffle 

 1b = distance of the baffle from the wall 

 2b =distance of the far boundary from the wall 

 = parameter of impact region  y0  

 

The fluid domain defined by 20 bx  , and 01  y . On the wall we have 

boundary-condition as below: 
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together with equations (7.3.1) to (7.3.10) except (7.3.3) as shown in figure 7.3.4. The 

expression which satisfies the boundary-condition in region 1 is  
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where   
2

1 nn  , ),3,2,1( Nn   

for   ,01  y and 20 bx           

 

The solution in region 2 is as equation (7.3.12) and we have matching/baffle conditions 

at 1bx   as follows: 
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Applying  dyymsin
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  , m = 1, 2, …,M on the wall and integrating, we get 
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At 1bx  , apply   ,sin

0
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

    m = 1, 2, …,M  to equations (7.3.29) to (7.3.32) and 

integrating for each equation gives 4 equations: 
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From equations (7.3.33) to (7.3.37) gives us system of NM 35   equations such as in 

figure 7.3.8 with 
3

5M
N  . We have three sets of unknown Fourier coefficients 

  Niciii ,,3,2,1,,,   to find to calculate the pressure impulse in this problem. 

 

 

 

 

 

 

 

 

 

 

 



174 

 

 

 

   

 
  

 

 

  
 

  

  









































































































































































































0

0

0

0

0

0

0

0

cos1
2

cos1
2

matrix) (full:matrix) (zero:matrix) (zero

cosh

cosh
:0:0

::

::

matrix) (zero:matrix) (zero:matrix) (full

0:0:
cosh

::

::

matrix) (full:matrix) (zero:matrix) (full

cosh

cosh
:0:

cosh

::

::

matrix) (full:matrix) (full:matrix) (zero

cosh

1
:

cosh

1
:0

::

::

matrix) (zero:tanhmatrix) (diagonal:1matrix) (diagonal

0::

:tanh:1

2

12

1

1

1

1

6

2

21

5

1

4

2

21

3

1

2

1

1

1

1

1



















































































M

M

N

N

N

j

jj

j

j

j

jj

j

j

jj

j

j

c

c

b

bb

b

b

bb

b

bb

b

b

  

 

      Figure 7.3.8 : Matrix system of equations for problem 4. The first M  rows come from (7.3.33), and followed by (7.3.34) to (7.3.37). 

The functions 61    are the integrals in equations (7.3.33) to (7.3.37). 
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7.4        Pressure Impulse 

 

The pressure impulse for each problem is given below. We can see that for problem 1 in 

figures 7.4.1 and 7.4.2 the pressure impulse on the baffle increases when    increases. 

For small  , the pressure impulse is almost same for different length of baffle but when 

  is greater, the pressure impulse is higher the greater the length of the baffle. 

 

For problem 2 in figures 7.4.3 and 7.4.4, the behaviour is almost the same as in problem 

1 but we have a wall behind the baffle. The pressure behind the baffle increases when 

   increases but it decreases when the length of baffle increases. 

For problem 3 in figures 7.4.5 and 7.4.6 we can see there is a high pressure behind the 

baffle when we have a closed surface between the wall and baffle. For the same size of 

impact, let say 5.0 , the pressure impulse behind the baffle is greater when the 

length of baffle increases. 

 

We have different case for problem 4 in figures 7.4.7, 7.4.8 and 7.4.9. The baffle is 

located on the seabed in front of the wall. We can see that pressure impulse on the wall 

is greater when   increases and the pressure behind the baffle increases for higher 

lengths of baffle for the same impact. 

 

Figures 7.4.10 to 7.4.12 show the comparison between four problems for the same 

baffle length and  . We can see that the pressure on the baffle for problem 1 to 3 is 

almost the same and they have a small increase when the length of baffle increases. For 

problem 2, the pressure impulse behind the baffle at the bottom is high and it decreases 

when length of baffle increases. For problem 3, the pressure behind the baffle under the 

closed region is higher when the length of baffle is smaller. It contrast with problem 4, 

which we can see the pressure impulse on the wall is greater than on the baffle for 

problem 1, 2 and 3 and the pressure impulse behind the baffle is greater when the baffle 

is higher. 
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Figure 7.4.1: Problem 1 for 5.0bH  ( 21 b , 22 b ) 
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                                                                   Figure 7.4.2: Problem 1 for 8.0bH  ( 21 b , 22 b ) 
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                                                                               Figure 7.4.3: Problem 2 for 5.0bH  ( 3.01 b , 22 b ) 
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                                                                           Figure 7.4.4: Problem 2 for 8.0bH  ( 3.01 b , 22 b ) 
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                                                                       Figure 7.4.5: Problem 3 for 5.0bH  ( 3.01 b , 22 b ) 
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                                                                 Figure 7.4.6: Problem 3 for 8.0bH   ( 3.01 b , 22 b ) 
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                                                                              Figure 7.4.7: Problem 4 for 2.0bH  ( , ) 
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                                                                         Figure 7.4.8: Problem 4 for  ( , ) 
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                                                                         Figure 7.4.9: Problem 4 for  ( , ) 
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 Figure 7.4.10: Comparison between four problems for  and .        

Problem 4 is rotated for clarity. 
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 Figure 7.4.11: Comparison between four problems for  and .   

                        Problem 4 is rotated for clarity. 
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 Figure 7.4.12:   Comparison between four problems for  and  

                          Problem 4 is rotated for clarity.
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7.5     Total Impulse 

 

In this section we will calculate the total impulse on the baffle,   on the wall,  on 

the seabed,  and on the deck,  for each problem. We take the left/down direction as 

positive impulse as follows: 

 

 

 

 

 

 

 

 

Figure 7.5.1: The direction of the force impulse. 

 

 

7.5.1 Total impulse on the baffle 

 

The total impulse on the baffle,   is given by adding the impulse on back of the baffle, 

 and impulse on the front of baffle,  as following equation. 

=  

      

The impulse on the baffle for each problem we can see as below: 
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Problem 1 Problem 2 

 

 

 

 

 

 

 

                         Figure 7.5.2: Impulse on baffle for  and  

 

 

In figure 7.5.2 we can see that the total impulse in front of the baffle for problem 1 and 

2 is higher than the total impulse behind the baffle. The total impulse on the front of the 

baffle and behind the baffle for problem 2 is higher than problem 1 respectively. 

However the total impulse after adding the total impulse on the front and on the back of 

the baffle, shows problem 1 is only slightly higher. The total impulse for both problems 

increases when the length of the baffle increases. 
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Problem 3 Problem 4 

 

 

 

 

 

 
 

                 Figure 7.5.3: Impulse on baffle for  and      

      

In figure 7.5.3 we can see that the total impulse on the front of the baffle for problem 3 

is higher than the total impulse behind the baffle. However we can see that when the 

length of baffle increases, the total impulse at the back is slightly higher than at the 

front. The total impulse after adding the total impulse at the back and in front of baffle 

is smaller than problems 1 and 2. For problem 4 we can see that the total impulse at the 

back is greater than at the front of the baffle. 

 

In figure 7.5.4, we can see that when the baffle length is 1, it is same as the Cooker’s 

model and the total impulse on the baffle is the same as the total impulse on the vertical 

wall. 

 

In figure 7.5.3, the total impulse at the back for problem 3 is higher than total impulse 

on the front of baffle, so it will push the baffle to the seaward. This is a somewhat 

unexpected result and may have engineering significance, see Cooker and Peregrine 

(1992). 
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The total impulse on the baffle when  is the same as Cooker’s model for 

problem 1 and 2: 

                 

                                   Figure 7.5.4: Total impulse on baffle for  

 

The total impulse on the baffle when  for problem 3: 

                  

                                          Figure 7.5.5: Total impulse on baffle for  
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7.5.2   Total impulse on the seabed 

 

Total impulse on the seabed,  is given by the integral of  from  to : 

 

The total impulse on the seabed for each problem we can see as figure 7.5.6.  

 

The total impulse on the baffle when  is the same as Cooker’s model for 

problem 1 and 2, as in figure 7.5.6: 

 

           

 

                         Figure 7.5.6: Total impulse on the seabed for  
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The total impulse on the baffle when  for problem 3, is greater than problem 1 

and 2 as in figure 7.5.7 below. 

 

           

 

                           Figure 7.5.7: Total impulse on the seabed for  

 

 

 

Figure 7.5.8 and 7.5.9 show the comparison of the total impulse on seabed for the four 

problems. We can see that the highest total impulse on the seabed for problem 3 (for 
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. All problems have higher total impulse on seabed when the length of baffle 

increases. When ,  total impulse on seabed for problem 4 is slightly higher 
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                Figure 7.5.8: Total impulse on the seabed for  and  
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Problem 3 Problem 4 

 

 

 

 

  

              Figure 7.5.9: Total impulse on the seabed for  and  

 

 

 

7.5.3   Total impulse on the wall 

The total impulse on the wall,  is given by the integral of , (which  for 

problems 2 and 3 and  for problem 4) from  to : 

               

as is shown in figure 7.5.7. We can see that the lowest total impulse on the wall is in 

problem 2. The highest is in problem 4 as expected because the baffle is located on the 

seabed. The total impulse on the wall for problem 3 is higher than problem 2,  and in the 
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                                                              Figure 7.5.10: Total impulse on wall for  and                     5.0bH 8.0bH
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7.5.4   Total impulse on the deck 

 

Total impulse on the deck,  for problem 3 is given by the integral of  from 

 to : 

              

The total impulse on deck for  and  is given in figure 7.5.11 and 

figure 7.5.12 respectively. When the length of baffle increases the total impulse on the 

deck increases. 

                            

                              Figure 7.5.11: Total impulse on deck for  
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7.6   Moment Impulse 

 

In this section we will calculate the moment impulse on the baffle,   on the wall, 

 on the seabed,  and on the deck,  for each problem. We take the clockwise 

direction sense about the foot (●) of the wall as positive moment. 

 

 

 

 

 

 

 

 

Figure 7.6.1: The direction of the moment impulses. 

 

 

7.6.1 Moment impulse on the baffle 

 

The moment impulse on the baffle,   is given by adding the moment impulse on 

back of the baffle,  and moment impulse on the front of baffle,  and its 

positive for moment impulses directed in a clockwise sense about the foot of  the wall. 

 

      

The moment impulse on the baffle for each problem we can see as below: 

 

i) Moment impulse on baffle for problem 1 

ii) Moment impulse on baffle for problem 2 

iii) Moment impulse on baffle for problem 3 

iv) Moment impulse on baffle for problem 4 
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Figure 7.6.2 and figure 7.6.3 show the moment impulse for the whole structure with a 

baffle for each problem. We can see that the moment impulse for problem 3 is the 

opposite direction and quite a bit higher than problem 1, 2 and 4. The moment impulses 

for problem 1, 2 and 4 are almost same except the shape of the graph for problem 4 is 

quite different.  

 

 

Figure 7.6.2 : Moment impulse on baffle for   and . 
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Problem 3 Problem 4 

 

 

 
 

 

 

 

                       

Figure 7.6.3: Moment impulse on baffle for   and  

 

 

 

 

7.6.2   Moment impulse on the seabed 

The moment impulse on the seabed about the foot of the wall is 

 

The moment impulse on the seabed for each problem is shown in figures 7.6.4 and 

7.6.5. We can see that the highest moment impulse on the seabed is in problem 3 

followed by problem 4. Problems 1 and 2 are almost the same. Moment impulses for all 

problems increase when the length of the baffle increases. The moment impulse for 

problem 1 is higher than problem 2. Problem 3 remains the highest and problem 4 is the 
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7.6.3   Moment impulse on the wall 

The moment impulse on the wall, about an axis at its bottom, due to the pressure 

impulse on the wall is 

               

 

and the results we can see in figure 7.6.6. We can see that the moment impulse on the 

wall for problem 3 is in the seaward direction and it has the highest moment impulse 

compared to problems 2 and 3.         
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                Figure 7.6.4: Moment impulse on seabed for  and  
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Problem 3 Problem 4 

 

 

 

 

 
 

 

 Figure 7.6.5: Moment impulse on seabed for  and .
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Figure 7.6.6: Moment impulse on the wall for  and                                                     5.0bH 8.0bH
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7.6.4  Moment impulse on the deck 

 

The moment impulse on the deck about the foot of the wall is 

 

The moment impulse on the deck for problem 3 is given in figures 7.6.7 and 7.6.8. The 

moment impulse increases when the length of baffle increases. 

 

                          

                                    Figure 7.6.7: Moment impulse on deck for   
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7.7 Conclusion 

 

We can see different impact pressure impulse distributions for different cases of baffle. 

We note that pressure impulse on the baffles is almost the same for cases 1, 2 and 3 for 

different length of baffles with same size of impact. However the pressure impulse 

behind the baffles decreases when the length of baffle increases for problem 2 and 3. 

 

For problem 4, the pressure impulse on the wall and behind the baffles increases when 

the length of baffle on the seabed increases. 

 

The total impulse in front of baffles is greater than those on the back of baffle for 

problems 1 and 2. In contrast, for problem 3 the total impulse behind the baffle is 

greater than total impulse in front of the baffle. 

 

The total impulse on the seabed for problem 3 is the highest compared to the other 

problems. 

 

Problem 4 has the highest total impulse on the wall. The total impulse on the wall for 

problem 3 is higher than problem 2 and in the seaward direction. This somewhat 

counter-intuitive result arises from high pressure impulses behind the baffle being 

trapped beneath a rigid top surface. 

 

 

 

 

 

 

 

 

 

 

 

 



206 

 

 

 

 

 

CHAPTER 8 

 

 

 

 

CONCLUSIONS 

 

 

8.1 Conclusions 

 

In this thesis we have explored various mathematical models of wave impact on 

rectangular structures. By solving Laplace’s equation for the pressure impulse, P, we 

model a wave breaking against vertical structures. We have been particularly interested 

in the pressure impulse that is generated, due to the damage that they it can cause to 

structures.  

 

Chapter 2 reviewed the literature concerning the modelling of wave breaking against 

coastal structures, and then derived the Pressure Impulse theory. 

 

In Chapter 3 we considered a two-dimensional model of the berm and ditch problems. 

We compared the berm and ditch results with a vertical wall. When comparing the 

worst cases i.e. those for the largest possible impact region, the seawall with a ditch has 

a largest maximum pressure impulse which is with , the basic 

seawall (Cooker’s model) has pressure impulse  with , and the 

seawall with a berm has the smallest maximum pressure impulse which is  

with  

,400.1 0 HU 2.1

,742.0 0 HU 0.1

,570.0 0 HU

.8.0
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From table 3.8.1, we can see that total impulse on the wall with a ditch is the greatest 

followed by the plain seawall and then the berm as expected. This is partly because a 

seawall with a ditch has the largest area of impact while the area of impact of a seawall 

with a berm is smaller than for the plain seawall. The same trend occurs for total 

impulse for the seabed as defined in figure 3.5.1 

 

Table 3.8.2, shows the moment impulse for wall and seabed for the vertical wall, berm 

and ditch problems. We can see that a seawall with a ditch has the largest value of 

moment impulse on the wall and on the seabed. As expected, the moment impulse for a 

seawall with a berm has the smallest value compared to the other two problems. 

 

We can conclude that a seawall with a berm has a beneficial effect on reducing pressure 

impulse while a seawall with a ditch can be very detrimental. This means that scour at 

the base of a seawall is likely to be extremely dangerous. For the maximum impact 

region, a seawall with a berm has a beneficial effect on reducing pressure impulse by 

almost 23% (compared with Cooker’s model) while a seawall with a ditch makes the 

impact almost double. This confirmed the work of Greenhow (1996). 

 

Figure 3.7.2 shows the overtopping discharge for a seawall with a berm and a ditch. We 

can see that the discharge of the overtopping for both cases is comparable for 

corresponding freeboard values. Having said that, the freeboard values for the berm are 

substantially higher than for the ditch, meaning that the berm’s jet will reach far higher 

in the air.  

 

Further results show that the ditch overtopping is largely insensitive to the ditch width 

(as expected because the ditch pressure is almost constant). More surprisingly, the berm 

overtopping is also quite insensitive to the berm size if the berm is submerged to at least 

half the water depth. On the other hand if the berm’s top is near the bottom of the 

impact region then there is typically an increase of about 20% to 30% compared with a 

deeply submerged berm, for any given freeboard. 

 

In Chapter 4, a structure with a missing block, we divide the structure into two regions, 

where the inner region is for the missing block. The results show no noticeable decrease 

in pressure impulse in the missing block region. This agrees with Wolters and Müller 
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(2004) who also concluded that partially-filled cracks are more dangerous for the 

integrity of the structure than fully-filled cracks.  

 

From the comparison results for different widths ( 0.1, 0.2, 0.3) of block with same 

depth ( ) of the missing block for varying , we can conclude that the 

pressure impulse decreases when the width of missing block increases. The pressure in 

the missing block region looks almost constant. As  increases, the pressure impulse in 

this region also increases. 

 

The comparison of results for different depths ( 0.1, 0.2, 0.3) of block with 

the same width ( ) for varying show that the pressure impulse for different 

depths gives no significant difference, except for the pressure impulse in the missing 

block region, which shows slight decrease when the depth is increased. We can 

conclude that the thinner the missing block, the greater the pressure impulse on the 

walls of the missing block region. For the pressure impulse on the wall in the outer 

region, we get an increase when  increases. 

 

We also found that the total impulse on the wall for the missing block problem is 

greater when the location of the missing block is close to the seabed, but it is still 

smaller than the total impulse on the wall for Cooker’s model. The same trend happens 

to the total impulse on the seabed. 

 

The results for the total impulse on seawall, the total impulse on the inner region (top 

and bottom of the block) and on the seabed can be seen in figure 4.5.2 to 4.5.5. Figure 

4.5.2, figure 4.5.3 and figure 4.5.4 show the total impulse on the wall and on the top and 

bottom of the missing block, with different location of the missing block but the same 

width and depth. We can see that when the location of the missing block is closer to the 

seabed, the total impulse for each face increases. For instance, for total impulse on the 

wall, the first location which near to the free surface  has a total 

impulse of 0.0425 , the second location  has a total impulse 

of 0.190  and the location near to the seabed has a total 

impulse of 0.380 .  

1B

1.012  HH 



 12 HH

2.01 B 



)3.0,2.0( 21  HH

2UH )6.0,5.0( 21  HH

2UH )9.0,8.0( 21  HH
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We also can see there is a total impulse on the vertical wall at the inner region but it is 

small compared to vertical wall at the outer region. However, it can be larger than the 

total impulse at the bottom of the vertical wall of the outer region when the location of 

the missing block is near to the seabed. The total impulse on the top and bottom of the 

inner region largely cancel each other. Given the almost constancy of the pressure in the 

missing block region, this is expected. These impulses do not move the wall vertically 

but may tend to open cracks in the missing block region. 

 

We can see that the total impulse increases when the location of the missing block 

moves down to the seabed, see figure 4.5.5. The total impulse on the wall is larger than 

the impulse on the seabed in all cases. 

 

Figures 4.6.2 to 4.6.4 show the moment impulses for different locations of the missing 

block. We can see that the deeper the location of the missing block, the bigger the 

overturning moment impulse. We also can see that the moment impulse on the seabed 

for each case is lower than the total moment impulse on the wall. 

 

The moment impulse on the wall and the seabed for the missing block problem is 

greater when the location of the missing block is close to the seabed. Compared to the 

Cooker model, the moment impulse on the wall for the missing block is greater than 

moment impulse on the wall for Cooker’s model. However for the moment impulse on 

the seabed, the missing block problem has a much smaller value than Cooker’s model. 

 

Since region 2 is largely unaffected by the missing block, the overtopping calculations 

will be almost the same as for the simple seawall. 

 

The work of Chapter 5 and Chapter 6 studied the effect of having a deck projecting 

from a seawall. To do this it was useful to consider the impact of a wave from different 

directions.  

 

Chapter 5 considered a wave impacting the seawall. It is found that pressure impulse on 

the wall is greater when the length of the deck is bigger. For the same length of deck, 

the pressure impulse is greater when the impact region is larger.  
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We notice that the value of pressure impulse increases when the value of  increases 

for each length of the deck. If we compare the results between the different lengths of 

deck, we can see the pressure impulse also increases when the length of the deck 

increases. The largest value of pressure impulse is when  which is 0.7546

 and 0.9909  for b1 = 0.1 and b1 = 0.5 respectively for depth 1 below the 

free surface. The first shows the good agreement with Cooker and Peregrine (1995) who 

discovered the maximum value of pressure impulse is 0.742  when  for 

depth 1 below the free surface.  

 

A good agreement is also shown with Cooker and Peregrine (1995), in which the 

different impact lengths give very similar pressure impulse distributions near the impact 

wall. 

 

We see that having a deck on the top of the wall can dramatically increase the pressure 

impulse on the wall. The position of the maximum P can move to the corner between 

the vertical wall and the deck, see figures 5.4.9 and 5.4.10. Hence we can conclude that 

having a deck on the top of the seawall increases the value of the maximum pressure 

impulse and the extent down the seawall of a high pressure impulse region. These 

results show a good agreement with those of Oumeraci (1994), which gave a high 

pressure impulse on the breakwater resulting from wave impact on the deck. 

The highest values for pressure impulse occur at the wall and the region beneath the 

deck. As  increases towards 1 the maximum value increases, as expected, the 

pressure impulse also increases as the length of the deck increases.  

 

Figures 5.4.13 and 5.4.14 show the distribution of pressure impulse in the water beneath 

the deck for different values of  and . The highest value of pressure impulse occurs 

at the landward end and it increases as  increases toward 1. The values of pressure 

impulse for  are more than 50% greater than those for  for each value of 

. Overall we can see that pressure impulse beneath the deck is greater than pressure 

impulse along the seabed. 

 



0.1

HU 0 HU 0

HU 0 0.1



 1b



5.01 b 1.01 b
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The total impulse for a seawall with a deck is greater than the total impulse for Cooker’s 

model. When the length of deck increases, the total impulse increases. The total impulse 

on the seabed for a seawall with a deck is greater than the total impulse for Cooker’s 

model. When the length of deck increases, the total impulse increases. The total impulse 

beneath the deck is greater when the length of the deck is bigger. 

 

The moment impulse on the wall for a seawall with a deck is almost double the moment 

impulse for Cooker’s model. It increases when the length of the deck increases. The 

moment impulse on the seabed also increases when the length of the deck increases. 

The moment impulse beneath the deck becomes larger when the length of the deck is 

bigger. The presence of a deck increases the overtopping. 

 

Chapter 6 considered a wave impacting upwards underneath a deck. We confirmed that 

increasing the length of the deck increases the pressure impulse and total impulse for the 

both cases. Similar results for the case in Chapter 6 are given in Wood and Peregrine 

(1997). The moment impulse beneath the deck, becomes larger when the length of the 

deck is bigger. 

 

We found that the pressure impulse on the deck increases when the length of deck 

increases. There is a strong pressure gradient beneath the deck near the seaward edge. 

Similar results were found in Wood and Peregrine (1997) who studied the pressure 

impulse beneath the deck for different depths of water for the same length of deck. We 

also agreed that the maximum pressure impulse is at the landward end of the impact 

zone. 

 

We can conclude that when the deck’s length to depth ratio is increased, the pressure 

impulse will increase. The same trend was described by Wood and Peregrine (1996). 

 

Finally, in Chapter 7 we studied pressure impulse for different cases of baffle. We can 

see different impact pressure impulses for different cases of baffle. We note that 

pressure impulse on the baffles is almost the same for cases 1, 2 and 3 for different 

length of baffles with the same size of impact. However the pressure impulse behind the 

baffles decreases when the length of baffle increases for problem 2 and 3. 
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For problem 4, the pressure impulse on the wall and behind the baffles increases when 

the length of baffle on the seabed increases. 

 

As we can see that for problem 1 in figures 7.4.1 and 7.4.2 the pressure impulse on the 

baffle increases when   increases. For small , the pressure impulse is almost same 

for different lengths of baffle but when  is greater, the pressure impulse is higher the 

greater the length of the baffle. 

 

For problem 2, the pressure behind the baffle increases when   increases but it 

decreases when the length of baffle increases. 

 

For a closed surface between the wall and baffle (problem 3), we can see there is a high 

pressure behind the baffle. For the same size of impact, let say , the pressure 

impulse behind the baffle is greater when the length of baffle increases. 

 

We have a different case for problem 4 which the baffle is located on the seabed in front 

of the wall. We can see that pressure impulse on the wall is greater when  increases 

and the pressure impulse behind the baffle increases for higher lengths of baffle for the 

same impact. 

 

From the comparison between the four problems for the same baffle length and , we 

can see that the pressure on the baffle for problem 1 to 3 are almost the same and they 

have a small increase when the length of baffle increases. For problem 2, the pressure 

impulse behind the baffle at the bottom is high and it decreases when length of baffle 

increases. For problem 3, the pressure impulse behind the baffle under the closed region 

is higher when the length of the baffle is smaller. This contrasts with problem 4, where 

the pressure impulse on the wall is greater than on the baffle for problem 1, 2 and 3 and 

the pressure impulse behind the baffle is greater when the baffle is higher. 

 

The total impulse in front of the baffle for problem 1 and 2 is higher than the total 

impulse behind the baffle. The total impulse on the front of the baffle and behind the 

baffle for problem 2 is higher than problem 1 respectively. However the total impulse 

(obtained by adding the total impulse on the front and on the back of the baffle) shows 

 





5.0




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problem 1 is only slightly higher. The total impulse for both problems increases when 

the length of the baffle increases. 

 

For problem 3, the total impulse on the front of the baffle is higher than the total 

impulse behind the baffle. However we can see that when the length of baffle increases, 

the total impulse at the back is slightly higher than at the front. The total impulse after 

adding the total impulse at the back and in front of baffle is smaller than problems 1 and 

2. For a greater , the total impulse at the back for problem 3 is higher than total 

impulse on the front of baffle, so it will push the baffle seaward. This somewhat 

counter-intuitive result arises from high pressure impulses behind the baffle being 

trapped beneath a rigid top surface.  

 

The lowest total impulse on the wall is in problem 2. The highest is in problem 4 as 

expected because the baffle is located on the seabed. The total impulse on the wall for 

problem 3 is higher than problem 2, and in the seaward direction. For problem 4 we can 

see that the total impulse at the back is greater than at the front of the baffle. 

 

Experimental comparison may be time consuming due to the many parameters 

involved. The present study will hopefully inform experimenters as to the likely effect 

of varying these parameters and suggest which experiments would be most useful to do. 

 

 

 

8.2 Method used in the thesis 

We use two methods to solve the problems in this thesis. For problem in Chapter 3, 

Chapter 5 and Chapter 6 we used hybrid collocation method and for Chapter 4 and 

Chapter 7 we used a basis function method. In contrast to the simple seawall case of 

Cooker (1990), the basis functions are not orthogonal over the integration range and 

hence we do not get the unknown coefficients explicitly, as in equation (2.4.15). Instead 

this procedure gives a matrix system, which is truncated and solved in MATLAB. This 

can cause numerical problems in some cases. 

 


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We initially wanted to use the basis function method to solve all the problems in this 

thesis, but the method failed for the Fourier series in Chapter 5 and Chapter 6. Then we 

introduced collocation method and used it first to solve the problems in Chapter 3, the 

berm and ditch problems which were solved by Greenhow (2006) using a basis function 

method. After it worked for berm and ditch, this method was applied to solve the 

problems in Chapter 5 and Chapter 6 where the basis function method fails. 

 

 

8.2.1 The difference between basis function method and hybrid collocation 

method 

 

After we have a formulation which satisfies all the boundary conditions in the problems 

except on the impact region, both methods use an integral method on the seawall which 

gives us a forcing term on the right hand side of the resulting matrix system. The 

difference between these two methods is at the matching interface, see Chapter 3-6. For 

basis function method, we multiply by basis functions and integrate over the depth for 

both sides of equations and its derivatives. In contrast, for hybrid collocation method, 

we matched the equations and its derivatives by the collocation points distributed over 

the depth. We explored and compared both methods in Chapter 3 and Chapter 4. 

Comparisons were made between both methods for the simple seawall, in order to 

establish the collocation method for a known case.  

 

 

 

8.2.2 The reasons basis function method fails for the Fourier series in Chapter 5 

and   Chapter 6 

 

The reason why the basis function method failed in Chapter 5 and Chapter 6 is not fully 

understood, analytically. The hyperbolic terms such as  in both 

chapters require MATLAB to evaluate very large numbers which may lead to overflow 

problems. More importantly the hyperbolic terms in Chapter 4 result in terms such as 
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 which grow exponentially large for finite x and their evaluation is 

needed at the matching boundary. However the method still works in Chapter 7 which 

has the same hyperbolic term as in Chapter 5 and Chapter 6. So we conclude that the 

basis function method fails for the Fourier series numerically, not mathematically, in 

Chapter 5 and Chapter 6. On the other hand the collocation method does not require 

multiplication by basis function, so the 2 in the above cosh term is missing and the 

exponential growth is less rapid. This postpones the problem so that most cases of 

practical interest, with moderate values of x at the matching interface, can be calculated. 

We showed that in cases where both methods work, the collocation method is, in fact, 

preferable anyway. 

 

 

8.3 Poorly-conditioned matrix 

 

Sometimes, in Chapter 5 for example, we will get a non-sensical graph and warning 

from MATLAB as in figure 2.9.1. The poor conditioning means the solution   is 

sensitive to numerical errors in the RHS of . A square matrix A also can 

become poor-conditioned if it is invertible but can become singular when some of its 

entries are changed very slightly. Figure 8.1 shows an example of a poorly conditioned 

matrix which happened when the value of b, was slightly changed. 
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Length of deck Results 

 

 

 Warning: Matrix is close to singular or badly scaled. 

         Results may be inaccurate. RCOND = 4.028648e-017. 

 

 Warning: Matrix is close to singular or badly scaled. 

         Results may be inaccurate. RCOND = 4.028648e-017. 

 

                         

                                    Figure 8.3.1: Poorly-conditioned matrix 

5.01 b

6.01 b

7.01 b
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8.4 Possible extension to VLFS 

 

i. Very large floating structure (VLFS) problem 

A very large floating structure (VLFS) is a floating structure with very large length-to-

draft and width-to-draft ratios relative to the largest existing ships (Jiao, 2011). This 

problem has studied by Jiao for floating airports, where wave impact on the seaward 

edge of the structure was solved using advanced numerical solvers. In principle we 

could apply pressure impulse theory to solve this problem. 

The problem needs to be divided into three regions. 

 

 

 

 

 

 

                

                Figure 8.4.1: VLFS sketch model, wave impact on the seaward edge. 

 

 

The impact region indicated here is on the front of the VLFS.  Jiao and Linlin 

considered impact on the bottom of a structure of very small draft which might be 

modelled as: 

 

 

 

 

 

 

 

 

             Figure 8.4.2: VLFS sketch model, wave impact on the front of the VLFS. 
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Here there would be four regions to consider, or perhaps three if the VLFS length is 

considered to be infinite. The specification of the eigenfunction expansions under the 

impact region (II) cannot exploit the boundary conditions (as has been done throughout 

this thesis) and would need special care. 
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APPENDIX 

 

Chapter 2 

A.2.1     Convergence and divergence check for the overtopping formula. 

 

Since the initial upwards velocity (before impact) is zero, the velocity afterwards is 

simply given by Cooker’s model as 

                         (A.2.1) 

 

So that the initial velocity upward when  is 

                                                     (A.2.2) 

 

Equations (A.2.2) diverges at  which can be proved by a comparison test. From 

(A.2.2) we have 

 ,              (A.2.3) 

where  at  

 

Since is a monotonic increasing function of x, we have  

                                                     (A.2.4) 

where . 
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Now  where we have equality if  with . 

i.e.  

i.e.  

if  is irrational then this equation cannot hold. If  is rational then ,  

and  p and q have no common factors. Hence  which also cannot hold if p 

is odd, since the LHS is an integer but the RHS is not. 

 

If p is even and of the form  with r odd then we have  which 

cannot hold since the LHS is even but the RHS is odd. More generally we have 

 where  and r is odd. Then  having cancelled any common 

factors so that q and r have no common factors. Observe also that since p is even, q is 

odd. 

 

Suppose we have a solution  for . Then . Now suppose there 

is a solution  for . Then . Subtracting gives 

. 

 

The LHS must be an integer but the RHS cannot be since r and q have no common 

factors. Alternatively observe that the numerator is even but the denominator is odd. 

 

Hence any term in the series for  with zero coefficients must be followed by a term 

with non-zero coefficient. So at most only every other coefficients in the series can be 

zero. Moreover the first term has non-zero coefficient. 

 

Hence  

                    (A.2.5) 
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So we then have the result 

                                               (A.2.6) 

 

where D is the minimum value of  for any m in the case when all the 

coefficients are non-zero (p odd or with r odd) or for any odd value of m  (in the 

above case when ,  and r odd). 

 

Hence: 

   where  

                              by the Integral Test.                                             (A.2.7) 

i.e.  is bounded below by a divergent series and hence diverges. 

 

For  we have 

                                            

                         (A.2.8) 

By the ratio test, , gives 

                                                      (A.2.9) 

 

so the series converges. 
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