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Abstract

We investigate an abstraction based memory scheme for
evolutionary algorithms in dynamic environments. In this
scheme, the abstraction of good solutions (i.e., their approx-
imate location in the search space) is stored in the mem-
ory instead of good solutions themselves and is employed
to improve future problem solving. In particular, this pa-
per shows how learning takes place in the abstract mem-
ory scheme and how the performance in problem solving
changes over time for different kinds of dynamics in the
fitness landscape. The experiments show that the abstract
memory enables learning processes and efficiently improves
the performance of evolutionary algorithms in dynamic en-
vironments.

1 Introduction

A main concern of evolutionary algorithms (EAs) for dy-
namic optimization problems (DOPs) is to maintain the ge-
netic diversity of the population [5, 7]. Only this will guar-
antee continuing and sustainable evolutionary search for op-
tima that change with time. To achieve the maintenance of
diversity, two main concepts have been applied. One is to
preserve diversity by mainly random means, which is real-
ized by designs such as hyper–mutation [9] and random im-
migrants [11]. Another is to promote diversity by basically
deterministic methods through saving individuals or groups
of individuals for future reinsertion or merger. Such ideas
are implemented in memory [3, 8] and multi–population ap-
proaches [4].

Although both concepts have shown to be successful
for certain dynamic environments, there are some points
of criticism. One is that they do not or do not explicitly

incorporate information about the dynamics and hence do
not discriminate between different kinds of dynamic fitness
landscapes. A second concern is the usage of past and
present solutions for improving the quality of future solu-
tion finding. This aspect is not addressed by random di-
versity enhancement. In contrast, memory techniques do
use previous good solutions. This is done in implicit mem-
ory schemes by redundant representation using multiploidy
and dominance [8]. Explicit memory stores good solu-
tions (sometimes accompanied by information about envi-
ronmental conditions) for later reuse [3, 12]. Here, it is nat-
ural to ask how and why this brings improvements in perfor-
mance and an obvious answer is that by storing and reusing
information some kinds of learning processes are carried
out. However, the detailed relationships between memory
and learning in dynamic optimization are poorly studied.

Memory schemes that only store good solutions as them-
selves, known as direct memory [3], for later reinsertion
carry out learning processes implicitly at best. Learning is
something different than memorizing all previous solutions.
In parts, this might be helpful. In general, every realizable
memory will soon prove insufficient in a more complex con-
text; if not by storing capacity itself, then by a timely re-
trieval of the stored content for further usage. In the more
wider sense discussed above, learning refers to detecting the
essence and meaning of a solution. The abstract memory
scheme proposed here, which is detailed in Sec. 3, intends
to address and employ these relations. Abstraction means
to select, evaluate and code information before storing. A
good solution is evaluated with respect to physically mean-
ingful criteria and in the result of this evaluation, storage
is undertaken but no longer as the solution itself but coded
with respect to the criteria. So, abstraction means a thresh-
old for and compression of information, see e.g. [6] which
proposes similar ideas for reinforcement learning. So, the
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scheme we present is not merely concerned with anticipat-
ing the dynamics of the fitness function alone, as considered
in [2], but to predict where good solutions of the dynamic
optimization problem are likely to occur. Hence, we bring
together learning and memory for evolutionary optimization
in dynamic environments.

This paper presents an abstraction based memory
scheme for dynamic optimization. We show that such a
memory scheme enables learning processes conceptionally
and functionally similar to those considered in machine
learning. It explicitly uses past and present solutions in an
abstraction process that is employed to improve future prob-
lem solving and differentiates between different kinds of
dynamics of the fitness landscape. In particular, we intend
to study how learning takes place in the memory scheme.
Therefore, we consider how the performance in problem
solving changes over time for different kinds of dynamics
in the fitness landscape, which are regular, chaotic, and ran-
dom. The rest of this paper is outlined as below. Sec. 2
states the DOP and the EA to solve it. The abstract mem-
ory scheme is given in Sec. 3. Experiments are reported
and discussed in Sec. 4. Sec. 5 concludes the paper with
discussions on future work.

2 Solving the DOP

Learning behavior in abstract memory schemes occurs
in solving a DOP, which in this study is posed as follows.
We employ as dynamic fitness landscape an n–dimensional
“field of cones on a zero plane”, where N cones with coor-
dinates ci(k), i = 1, 2, ..., N are moving with discrete time
k ∈ N0. These cones are distributed across the landscape
and have randomly chosen initial coordinates c(0), heights
hi and slopes si. So, we will employ the dynamic fitness
function

f(x, k) = max
{

0 , max
1≤i≤N

[hi − si‖x− ci(k)‖]
}
.

(1)

The EA we use has a real number representation and λ indi-
viduals xj ∈ R

n, j = 1, 2, . . . , λ, which build the popula-
tion P ∈ R

n×λ. Its dynamics is described by the generation
transition function ψ : R

n×λ → R
n×λ, see e.g. [1], p.64–

65. It can be interpreted as a nonlinear probabilistic dynam-
ical system that maps P (t) onto P (t + 1) by the standard
genetic operators selection, recombination and mutation as
well as by using an abstract memory, which is described
in detail in Sec. 3. It hence transforms a population at
generation t ∈ N0 into a population at generation t + 1,
P (t+ 1) = ψ (P (t)) , t ≥ 0. Starting from an initial popu-
lation P (0), the population sequence P (0), P (1), P (2), ...
describes the temporal movement of the population in the
search space. Both the time scales t and k are related by the

change frequency γ ∈ N as

t = γk. (2)

For γ = 1, apparently, the dynamic fitness function is
changing every generation. For γ > 1, the fitness func-
tion changes every γ generations. The change frequency is
an important quantity in dynamic optimization and will be
the subject of the experimental studies reported in Sec. 4.

3 The Abstract Memory Scheme

The main idea of the abstract memory scheme is that it
does not store good solutions as themselves but as their ab-
straction. We define an abstraction of a good solution to
be its approximate location in the search space. Hence, we
need to partition the search space. This can be obtained by
partitioning the relevant (bounded) search space into rect-
angular (hyper–) cells. Every cell can be addressed by an
element of a matrix. So, for an n–dimensional search space
M we obtain an n–dimensional matrix whose elements rep-
resent search space sub–spaces. This matrix acts as our ab-
stract memory and will be called memory matrix M. It is
meant to represent the spatial distribution of good solutions.

The abstract storage process consists of two steps, a se-
lecting process and a memorizing process. The selecting
process picks good individuals from the population P (t)
while the EA runs. In general, selection has to be done
in terms of (i.) the amount and choice of considered indi-
viduals (ideally sorted according to their fitness) from the
population and (ii.) points in the run–time of the EA (ide-
ally sorted according to changes in the environment). For
the individuals, either only the best or a few best from the
population could be used. In terms of the run–time between
changes only the best over run–time or the best over a few
generations before a change occurs could be taken. We de-
fine the number of the individuals selected for memorizing
as well as the number of generations where memorizing is
carried out.

In the memorizing process, the selected individuals are
sorted according to their partition in the search space which
they represent. In order to obtain this partition, we assume
that the search space M is bounded and in every direc-
tion there are lower and upper bounds, xi min and xi max,
i = 1, 2, . . . , n. With the grid size ε, we obtain for every
generation t the memory matrix M(t) ∈ R

h1×h2×...×hn ,
where hi = �xi max−xi min

ε �. In the memory M(t) the entry
of each element m�1�2...�n

(t) is a counter count�1�2...�n
(t),

�i = 1, 2, . . . , hi, which is empty for initialization, that is,
count�1�2...�n

(0) = 0 for all �i. For each individual xj(t) ∈
P (t) selected to take part in the memorizing, the counter
of the element representing the partition that the individual
belongs to is increased by one. That is, we calculate the in-
dex �i = �xi j−xi min

ε � for all xj = (x1j , x2j , . . . , xnj)T
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Figure 1. Performance of the EA measured by the MFE over change frequency γ for different types
of dynamics and no memory but hypermutation (NM), direct memory (DM) and abstract memory
(AM).

and all 1 ≤ i ≤ n and increment the corresponding
count�1�2...�n

(t). Note that this process might be carried
out several times in a generation t if more than one individ-
ual selected belongs to the same partition. The abstraction
storage process retains the abstraction of good solutions by
accumulating locations where the good solution occurred.
In this way, we encode and compress the information about
good solutions. As the matrix M is filled over run–time, the
memorizing incorporates a learning process. After a change
has been detected (usually if the sliding mean of the best in-
dividual is falling), the abstract retrieval process is carried
out. It consists of two steps. First, a matrix Mµ(t) is calcu-
lated by dividing the matrix M(t) by the sum of all matrix
elements, that is Mµ(t) = 1∑

hi
M(t)M(t). Hence, the sum

of all elements µ�1�2...�n
(t) in Mµ(t) adds up to one. Each

element in Mµ(t) contains an approximation of the natural
measure µ�i

∈ [0, 1] belonging to the corresponding par-
tition cell M�1�2...�n

of the search space M . This natural
measure can be viewed as the probability of the occurrence
of a good solution within the partition over time of the dy-
namic environment. Hence, it is a probabilistic mapping be-

tween search space cells and the expected value for a good
solution within each cell.

Next, we fix the number of individuals to be created by τ ,
1 ≤ τ ≤ λ and create these individuals randomly such that
their statistical distribution regarding the partition matches
that stored in the memory Mµ(t). Therefore, we first de-
termine the number of individuals to be created for each
cell by sorting the µ�1�2...�n

(t) according to their magni-
tude and set the number �µ�1�2...�n

(t)·τ� of new individuals
for high values of µ and the number �µ�1�2...�n

(t) · τ	 for
low values, respectively. The rounding needs to ensure that∑�µ�1�2...�n

(t)·τ�+∑�µ�1�2...�n
(t)·τ	 = τ . Then, we fix

the positions of the new individuals by taking realizations of
a random variable uniformly distributed within each parti-
tion cell M�1�2...�n

. This means the τ individuals are dis-
tributed such that the number within each cell approximates
the probability of the occurrence of good solutions, while
the exact position within partition cells is random. These
individuals are inserted in the population P (t) after muta-
tion has been carried out. This abstract retrieval process can
create an arbitrary number of individuals from the abstract
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Figure 2. The MFE depending on the population size λ and the number of individuals retrieved from
the memory τ , given as percentage τ/λ in %.

memory. In the implementation considered here we upper
bound this creation by the number of individuals in the pop-
ulation. As abstract storage can be regarded as encoding and
compression of information about good solutions in search
space, abstract retrieval becomes decoding and expansion.

4 Numerical Experiments

The numerical results given here are obtained with
an EA that uses tournament selection of tournament
size 2, fitness–related intermediate sexual recombination,
a mutation operator with base mutation rate 0.1 and
the proposed abstraction memory scheme. We mea-
sure performance by the Mean Fitness Error MFE =
1
R

∑R
r=1

[
1
T

∑T
t=1 (fbest(k) − fmax(k))

]
k=�γ−1t�

where

fbest(k) = max
xj(t)∈P (t)

f
(
xj(t), �γ−1t	) is the fitness value

of the best–in–generation individual xj(t) ∈ P (t) at
generation t, fmax(k) = f

(
xs(�γ−1t	), �γ−1t	) is the

maximum fitness value at generation t, T is the num-
ber of generations used in the run, and R is the num-
ber of consecutive runs. Note that f

(
xs, �γ−1t	) and

max
xj(t)∈P (t)

f
(
xj(t), �γ−1t	) change every γ generations ac-

cording to Eq. (2).
The parameters in all experiments are R = 50 and

T = 2000. We consider the dynamic fitness function (1)
with dimension n = 2 and the number of cones N = 7. We
study four types of dynamics of the coordinates c(k) of the
cones; (i.) chaotic dynamics generated by the Hénon map,
see [10] for details of the generation process, (ii.) random
dynamics with c(k) being realizations of a normally dis-
tributed random variable, (iii.) random dynamics with c(k)
being realizations of a uniformly distributed random vari-
able, and (iv.) cyclic dynamics where c(k) are consequently
forming a circle. As the dynamic severity is an important
factor in dynamic optimization, severity is normalized for
all considered dynamics and hence has no differentiating
influence.

In a first set of experiments, the abstract memory scheme
(AM) is tested and compared with a direct memory scheme
(DM), which stores the good solutions and inserts them
again in a retrieval process, and with an EA with no mem-
ory (NM), that uses hypermutation with the hypermuta-
tion rate set to 30, see Figure 1. Here, as well as in the
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Figure 3. Learning curves for the abstract memory scheme showing the learning success measured
by MFEL over learning time tL.

other experiments we fixed the upper and lower bounds
of the search space at x1 min = x2 min = −3 and at
x1 max = x2 max = 3. The best three individuals of the
population take part in the memorizing process for all three
generations before a change in the environment occurs. Fur-
ther, we set the grid size to ε = 0.1. We used a fixed pop-
ulation size of λ = 50 and inserted τ = 20 individuals in
the retrieval process for one generation after the change. In
Figure 1 we give the MFE over the change frequency γ
for all four types of dynamics considered. Also, the 95%
confidence intervals are given. We observe that the memory
schemes outperform the no memory scheme for all dynam-
ics. This is particularly noticeable for small change frequen-
cies γ and means that by memory the limit of γ for which
the algorithm still performs reasonably can be considerably
lowered. Also, it can be seen that the abstract memory gives
better results than the direct memory for irregular dynam-
ics, that is, chaotic and random. For chaotic dynamics, this
is even significant within the given bounds. For regular,
cyclic dynamics we find the contrary, with direct memory
being better than abstract. A second set of experiments ex-
amines the relationship between the populations size λ, the

number of retrieved individuals τ and the performance mea-
sure MFE, see Figure 2, which shows results for the fixed
change frequency γ = 15. We see an exponential relation-
ship betweenMFE and λ, which is typical for EAs. Along
this general trend, the number of retrieved individuals, here
given in percent of the total population, has only a small in-
fluence on the MFE, where in general a medium and large
number gives slightly better results than a very small per-
centage.

To quantify learning depends on metrics for perfor-
mance, which ideally shows improvement over time. For
evaluating the effect of learning and obtaining the learning
curve, the experiment has to enable learning for a certain
time, then turn learning off and measure the performance
using the learned ability. Regarding the abstract memory
scheme considered here, learning takes place as long as the
memory matrix Mµ(t) is filled. This gives raise to the fol-
lowing measure for learning success. We define tL to be
the learning time. For 0 < t ≤ tL the matrix Mµ(t) is
filled as described in Sec. 3. For tL < t < T the stor-
age process is discarded and only retrieval from the now
fixed memory is carried out. We calculate the MFE for
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t > tL only and denote it MFEL. It is a performance mea-
sure for the learning success, where MFEL over tL shows
the learning curve. Figure 3 depicts the results for fixed
λ = 50, τ = 20 and several change frequencies γ on the
semi–logarithmic scale. These learning curves are an ex-
perimental evaluation of the learning behavior. We see that
theMFEL gets gradually smaller with the learning time tL
becoming larger, which confirms the learning success. We
find a negative linear relation between MFE and log(tL),
which indicates an exponential dependency between MFE
and tL. Also, it can be seen that the learning curves are
slightly steeper for larger change frequencies. An exception
to this general trend is cyclic dynamics, where the learning
curves are almost parallel for all γ and a large proportion
of the tested tL. A comparison of the learning success be-
tween the different kinds of landscape dynamics suggests
that the uniform random movement is the most difficult to
learn. To summarize, the results in Figure 3 clearly indicate
the positive effect of learning on the performance of the EA.

5 Conclusions

This paper investigates an abstract memory scheme for
evolutionary algorithms in dynamic environments, where
memory is used to store the abstraction of good solutions
(i.e., their approximate location in the search space) instead
of good solutions themselves. This abstraction is employed
to generate solutions to improve future problem solving. In
order to understand the relationships between memory and
learning in dynamic environments, experiments were car-
ried out to investigate how learning takes place in the ab-
stract memory scheme and how the performance changes
over time for different kinds of dynamics in the fitness land-
scape. The experimental study reveals several results on
the dynamic test environments. First, it is usually benefi-
cial to integrate memory schemes into EAs for DOPs and
the abstract memory performs better than direct memory
in chaotic and random dynamics. Second, the abstraction
based memory scheme enables learning processes, which
efficiently improves the performance of EAs in dynamic en-
vironments. Third, the effect of the abstract memory on the
performance of the EA depends on the learning time and
the frequency of environmental changes. This paper stud-
ied the relations between learning and the abstract memory
in dynamic environments. For the future work, it is valu-
able to further investigate this important but poorly stud-
ied issue, the relations between learning and other memory
schemes for DOPs. Another interesting research is to com-
pare and combine the abstract memory scheme with other
approaches developed for EAs in dynamic environments.
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