
A THREE-DIMENSIONAL LINEAR ANALYSIS OF 

STEADY SHIP MOTION IN DEEP WATER. 

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

BY 

JOB JOHANNES MARIA BAAR. 

DEPARTMENT OF MECHANICAL ENGINEERING) 

BRUNEL UNIVERSITY) 

UXBRIDGE) U.K. 

NOVEMBER 1986. 



To my wife. 

To my parents. 



- 1 -

ABSTRACT 

The investigation of steady ship motion in calm water is 

a classic problem in ship hydrodynamics, where ship waves and wave 

resistance are subjects of unquestionable importance. Despite 

considerable efforts in the past a satisfactory solution of the 

steady ship motion problem has not been achieved so far. The 

application of three-dimensional potential flow theory results in 

an essentially nonlinear problem formulation due to the unknown 

position of the disturbed free surface. In this thesis consistent 

linearisation schemes are di.scarded in favour of the inconsistent 

Neumann-Kelvin theory. This approximation implies that nonlinear 

free surface effects are neglected entirely, but the three-dimensional 

features of the fluid flow and hull geometry are otherwise fully 

retained. 

The Kelvin wave source potential, otherwise known as the 

wave resistance Green's function, is analysed in great detail. 

Solutions to the disturbance potential of the steady perturbed ship 

flow are obtained by means of a Kelvin wave source distribution 

method. The exact source strength is the solution of a Fredholm 

integral~equation of the second kind. An explicit source strength 

approximation, valid for sufficiently slender ships operating at 

fairly low speeds, is investigated. Particular emphasis is placed 

on computational aspects. Highly accurate and efficient methods 

for the evaluation of the Kelvin wave source potential are proposed. 

The developed theory is applied to five different ship forms, viz. 

a submerged prolate spheroid, Wigley's parabolic ship, a tanker, 

a fast destroyer and a cruiser. Over a wide range of ship speeds 

experimental data are compared with theoretical predictions of the 

steady flow parameters such as wave resistance, wave profiles, 

pressure s~gnatures and lift force distributions. 
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I. INTRODUCTION 

1.1 SHIP WAVES AND WAVE RESISTANCE 

The investigation of a ship in steady rectilinear motion 

at the free surface of a calm sea is a classic problem in ship 

hydrodynamics. The satisfactory solution of this problem is of great 

importance to naval architects and engineers. The ship designer has 

to ensure that a proposed ship achieves the desired speed with a 

minimum of required power, see Saunders (1957). This difficult task 

requires an adequate estimate of the resistance to shi~ motion as 

well as a thorough understanding of the steady flow properties in 

order to obtain a good matching between the ship's hull and the 

propeller. Civil and coastal engineers are more interested in the 

wave pattern generated by the moving ship, see Sorensen (1973). Ship 

waves may have important effects on other ships moored or manoeuvring 

in harbours and navigation channels and on the erosion of shore lines 

and channel and river banks, see Massie (1978). A recent application 

of steady ship motion theory concerns the possibility of identifying 

naval ships and submarines by means of the accurate observation of 

ship generated waves and water pressures, see Swanson (1984). 

The experimental and theoretical investigation of 

steady ship motion is complicated considerably by the dependence of 

the ship resistance on both the viscosity of the sea water and the 
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presence of the gravitational field. The total ship resistance R 
- t 

consists of two components, the viscous resistance R and the wave 
v 

resistance R. The viscous resistance is due to the viscous stresses w 

acting tangentially to the ship's hUll surface and the formation, 

growth and separation (if this occurs) of the ship's boundary layer, 

see Todd (1966). The moving ship also generates a characteristic 

pattern of surface waves trailing downstream in its wake. The work 

done by the wave resistance equals the energy required for the 

formation of ship waves, see Wehausen (1973). 

If the sea water is regarded as homogeneous and 

incompressible the resistance is dependent on the density p and ki-

nematic viscosity v of the seawater, the acceleration of gravity g, 

and the speed V and a characteristic dimension L of the ship. In 

nondimensional form the decomposition of the total resistance into 

viscous and wave resistance may then be expressed as: 

et(R ,F ) = e (R ,F ) + e (R ,F ) 
n n v nnw n n 

(1.1) 

where the resistance coefficient e = R/p~L2, the subscripts t, v and 

w refer to the total, viscous and wave resistance respectively, the 

Reynolds number R = VL/v and the Froude number F = V/lgL. The 
n n 

viscous and wave resistance are dependent on both the Reynolds and 

Froude number and cannot be clearly separated, see Sharma (1965),. 

The frictional resistance, that is,the part due to the viscous 

tangential stresses, depends on the wave profile along the ship's 

hull, whereas the formation of ship waves is influenced by the ship's 

boundary layer and wake. The complete solution of the Navier-Stokes 
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equations describing the viscous gravitational flow about a moving 

ship is beyond the present state of computing art (see Miyata et al 

(1983) for some recent developments). 

The difficulties posed by the interaction between 

viscous and gravitational effects are overcome effectively if it is 
• 

assumed that equation (1.1) may be approximated by: 

Ct(R ,F ) ~ C (R ) + C (F ) 
n n v n w n 

(1.2) 

This expression is commonly referred to as Froude's (1868) hypothesis 

concerning the separation of viscous and wave resistance. Froude's 

method for the experimental determination of ship resistance is 

based on the assumption that the Froude number alone controls the 

geometrical similarity of the wave patterns generated by geometrically 

similar ships (i.e. a small scale model and a full scale ship). 

In this study the attention is focussed on an idealised 

version of the steady ship motion problem. Sp,ecifically, the sea 

water is regarded as homogeneous, incompressible and inviscid 

(i.e. ideal) and irrotational flow is assumed. In other words, it 

is supposed that the effects of viscosity on the formation of ship 

waves are negligible and the wave resistance is a function of the 

Froude number alone, in agreement with Froude's hypothesis. The 

usefulness of the investigation of this simplified problem may be 

seen as follows. For most ships the viscous resistance cannot be 

significantly reduced by changing the hull form and this leaves 
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the ship designer more or less free to choose a suitable hull form 

(from a resistance pOint of view). Optimal ship forms are those 

which generate the smallest waves and it is therefore highly 

desirable to develop a theoretical tool to analyse the relationship 

between wave resistance and the geometry of the ship's hull. 

It should be noticed that the physical interpretation 

of the 'inviscid' wave resistance is by no means clear and due care 

is therefore required when comparing experimental data with theoretical 

predictions. Because of the approximate nature of equation (2.1) 

measured wave resistance is always endowed with viscous effects. 

Eggers et al (1967) and Wehausen (1973) discuss a variety of 

techniques employed in the definition and subsequent measurement 

of wave resistance. 

1.2 HISTORICAL REMARKS 

For many years physicists, mathematicians, engineers 

and naval architects have expended considerable effort in developing 

an adequate solution of the steady ship motion problem. The 

experimental and analytical developments-are reviewed comprehensively 

by Wigley (1949), Lunde (1951), Inui (1962), Weinblum (1963), 

Guilloton (1964), Kostyukov (1968), Gadd (1968), Wehausen (1973) 

and Newman (1976). Figure 1.1 illustrates the considerable activity 

in this field. The histograms refer to the number of publications 

on the experimental and/or theoretical study of ship waves and 

wave resistance. The data were compiled using the extensive 
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bibliographies given by Kostyukov (1968), Wehausen (1973, 1976) 

and Inui (1976). The following remarks may serve to explain some 

of the features of the frequency curve shown in Figure 1.1. 

Because ships are large structures accurate full-scale 

measurements of ship resistance are difficult, time consuming and 

expensive. At a very early stage resort was taken to experiments 

with scale models of ships. Leonardo da Vinci (1452-1519) was among 

the first to measure model resistance and wave patterns (see Tursini 

(1953». Over the next three centuries scientists such as Newton, 

Lagrange, Euler (1749), Bernoulli (1757) and naval architects in 

Holland, France, Scandinavia and Great Britain devoted their attention 

to the problem and carried out model tests. 

William Froude (1810-1879) is nowadays generally 

recognised as the first person to have examined ship resistance in 

a systematic manner. Froude (1868) pointed out the advantages of 

model tests and proposed to build a towing tank. The first towing 

tank of the type commonly used nowadays was built in Torquay 

in 1871 (see Gawn (1955». Froude (1876) had also a remarkable 

insight into the different roles played by viscosity and gravity 

in the ship resistance problem. The first detailed discussions of 

the observed characteristics of ship generated waves were presented 

by W. Froude (1877) and R.E. Froude (1889). 
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At about the same time Lord Kelvin (see Thomson (1887, 

1904» established the theoretical mechanism of ship wave generation. 

A moving ship generates a 'Kelvin' wave pattern consisting of two 

wave systems: a diverging wave system spreading out downstream on 

either side of the ship and a transverse wave system contained 

within the wedge shaped area between the diverging waves. Kelvin's 

theory is generally correct but some theoretical shortcomings and 

difficulties were later solved by Havelock (1908), Hogner (1922), 

Peters (1949), Ursell (1960) and others. 

J.H. Michell (1863-1940) was the first to establish 

an analytical relationship between the wave resistance and the 

geometry of the ship's hull. Michell (1898) presented a theory 

to describe the steady potential flow about an idealised thin ship 

hull and arrived at the wave resistance by integrating the water 

pressure distribution over the ship's hull surface. Theoretical 

work in the first half of the twentieth century was largely 

dominated by the efforts of Sir Thomas Havelock (1877-1968) who 

published a long series of papers. Havelock (1925) gave a new 

~ 

derivation of the thin ship wave resistance formula based upon the 

use of a Green's function method rather than the Fourier integral 

method originally used by Michell (1898). Later Havelock (1934) 

showed that the wave resistance may alternatively be obtained by 

evaluating the energy contained in the Kelvin wave pattern behind 

a moving ship (see also Eggers et al (1967) and Newman (1977». 

The nature of the thin ship approximation was clarified by Peters 

and Stoker (1957) who established that Michell's formula is the 
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first order approximation in a thin ship perturbation expansion. 

W.C.S. Wigley (1890-1970) appears to have been the 

first to have evaluated Michell's formula in a systematic manner 

(see Wigley (1949) for a review of his works). Due to interference 

effects between the ship's bow and stern wave systems (see Saunders 

(1957» the curve of wave resistance versus ship speed is of a 

rather oscillatory nature. The humps (maxima) and hollows (minima) 

occur at Froude numbers where the stern wave system is amplified 

or cancelled respectively by the bow wave train. Comparison between 

experimental data and theoretical predictions shows: that r1ichell's 

wave resistance formula tends to exaggerate the humps and hollows. 

Moreover, the predicted humps and hollows occur in general at 

lower Froude numbers. than the experimental data. 

The wave resistance of an idealised flat ship was 

investigated by Hogner (1932), who also proposed a remarkable 

interpolation formula to interpolate between the flat and thin ship 

wave resistance approximations. Encouraged by the success of slender 

body theory in aerodynamics and seakeeping theory, Vossers (1962), 

Maruo (1962) and Tuck (1964) developed a Simple approximation 

formula for the wave resistance of a slender ship. Unfortunately 

the slender ship formula appears to be a natural limit of the thin 

and flat ship wave resistance formulas and this approach has been 

unsuccessful, see Ogilvie (1970) and Noblesse (1983). Recently Maruo 

(1982) and Yeung and Kim (1984) have proposed new formulations of the 

slender Ship theory of wave resistance, but very few numerical results 

have been published thusfar, see Maruo and Ikehata (1983). 
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Various authors have investigated the wavemaking 

of fully submerged. bodies, see Havelock (1931a,b), Kochin (1951), 

Bessho (1961), Farell (1973) and Guttmann (1983). Most surface 

ships operate at fairly low Froude number and the concept of long, 

slow ships is utilised in the low Froude number wave resistance 

theories of Guevel et al (1974), Newman (1979), Baba (1976, 1977), 

Maruo (1977) and Kayo (1978). Chen and Noblesse (1983b) have made. 

an extensive comparison of experimental data and theoretical wave 

* resistance predictions for the Wigley hull. They conclude 

tentatively that the slow ship predictions are in poor agreement 
• 

wi th the experimental data except possibly' at very low Froude 

numbers (at which however both the experimental and numerical data 

show a considerable variation). Certain questions concerning the 

true asymptotic nature of the low speed limit have recently been 

investigated by means of the ray theory, see Keller (1974, 1979), 

Inui and Kajitani (1977), Yim (1981), Chung (1984) and Tulin (1984). 

A ray t~eory for slow ships is similar to the theory of geometrical 

optics and presents two separate relations. One is the dispersion 

relation for the local wave phase and the oth~r is the transport 

equation for the local wave amplitude. The ray theory tries to 

explain the mechanism of ship wave generation but Tulin (1984) 

concludes that the present knowledge is still inadequate. 

*Since first introduced by Wigley (1942) this mathematically defined 

hull form has been used extensively for both experimental and 

theoretical studies. This hull form with parabolic frames and 

waterlines has a beam/length ratio of 0.1 and a (constant) 

draft/length ratio of 0.0625. 

• 
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In recent years much attention has been focussed on 

the so-called Neumann-Kelvin theory which was originally proposed 

by Brard (1971). In this three-dimensional linearised potential 

flow theory the nonlinear effects stemming from the presence of the 

free surface are neglected, while the three-dimensional features 

of the fluid flow and the hull geometry are fully retained. From 

a formal mathematical point of view this approach is inconsistent, 

but in practice it may be argued that most surface ships are 

somewhat slender and operate at fairly low Froude numbers and 

therefore the free surface disturbance is relatively small (except 

possibly in the bow regime). The numerical solution of the 

Neumann-Kelvin problem for the steady disturbance potential of a 

moving surface ship is a difficult task and theoretical predictions 

of the wave resistance have only recently become available, see 

Kusaka (1976), Guevel et al (1977), Tsutsumi (1979) and Tsai et al 

(1983).',urther aspects of the Neumann-Kelvin theory are discussed 

in the next section. 

Omitted from the previous discussion are the nonlinear 

wave resistance theories which go beyond the first order linear 

approximations as used in the consistent thin, flat, slender and 

slow ship theories and in the inconsistent Neumann-Kelvin theory. 

The major difficulty in the higher-order wave theories stems from 

the unknown position of the disturbed free surface and the need 

to use Taylor series expansions to obtain the boundary conditions 

on the mean position of the free surface, see Peters and Stoker 

(1957) for an outline of this procedure. Wehausen (1963), 
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Maruo (1966) and Eggers (1966) have investigated the second order 

thin ship theory. The use of Taylor series expansions has led 

to some criticism with regard to the continuation of the potential 

flow solution outside the mean flow domain and the occurrence of 

non-uniformities at the ship's bow and stern. These difficulties 

can be partially avoided by adopting a Lagrangian description of 

the fluid flow whereby the physical space is mapped into a 

reference domain where the disturbed free surface and the hull 

surface are known coordinate surfaces, see Yim (1968), Wehausen 

(1969) and Noblesse and Dagan (1976). A particularly interesting 

albeit formally inconsistent variant of this approach is Gui1loton's 

(1964, 1965) method. This procedure starts with the flow velocity 

field as predicted by the linear Michell theory and then maps it 

into a better approximation by means of a kind of inverse streamline 

tracing method where the hull surface is however forced to be a 

stream surface. The method has been applied by Emerson (1967, 1971), 

Gadd (1973,1979) and Guevel et al (1979). At low to moderate 

Froude numbers there is good agreement between Guilloton's method 

and measured data. Finally mention is made of some recent attempts 

to solve numerically the exact nonlinear potential flow problem 

by means of Rankine source, finite element or finite difference 

methods, see Korving and Hermans (1977), Oomen (1979, 1981), Daube 

(1980), Daube and Dulieu (1981), Chan and Chan (1979), Yen and 

Chamberlain (1983), Chamberlain and Yen (1985) and Maruo and 

Ogiwara (1985). 
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1.3 THE PRESENT INVESTIGATION 

Ttie present study is concerned with the investigation 

of the steady flow disturbance caused by a moving surface ship. 

In this thesis the Neumann-Kelvin theory is adopted, that is, the 

flow disturbance is described by means of a three-dimensional 

linearised potential flow theory. Specifically, the free surface 

condition is linearised about the mean sea plane, but the boundary 

condition at the ship's wetted hull surface is retained in its 

exact form. The formal inconsistency of the Neumann-Kelvin theory 

warrants some clarification of the reasons for its use in this 

thesis. 

The irrotational flow disturbance caused by a ship 

in steady rectilinear motion at the free surface of a calm ideal 

sea may. be described by means of potential flow theory. The 

wave resistance Rnd other flow parameters may be deriv.ed from the 

knowledge of the velocity potential function, see for example 

Wehausen (1973) and Newman (1976). The velocity potential must 

satisfy appropriate conditions in the flow domain and on its 

boundaries. The position of the disturbed free surface is of 

course not known beforehand and the resulting nonlinearity of 

the free surface condition effectively prohibits the development 

of the complete solution of the exact potential flow problem. 

Systematic perturbation schemes may be used to overcome this 

difficulty and the free surface condition is then linearised about 
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the undisturbed mean sea plane by means of a Taylor series 

expansion. However, the consistent application of such techniques 

requires that one is able to designate a small perturbation 

parameter connected with the problem in such a manner that the free 

surface disturbance gradually vanishes as the magnitude of the 

perturbation parameter is decreased. For example, in the thin and 

slow ship theories the small perturbation parameter corresponds 

to the' ship's thickness and the Froude number respectively 

(see Newman (1976». Mathematically such procedures are consistent 

and justified, but they do not necessarily imply any better 

correlation between experiment and theory. 

In the Neumann-Kelvin theory the perturbation 

parameter is not explicitly specified but it is assumed (sic) 

that the disturbance of the free surface caused by the moving 

ship is small, without formally identifying the reasons for its 

smallness. Clearly this procedure cannot be justified from a 

formal mathematical point of view. However, most surface ships 

are somewhat slender (elongated) and operate at fairly low values 

of the Froude number. In practice it may therefore be argued that 

the ship generated free surface disturbance is relatively small 

* over a wide portion of the sea surface. Noblesse (1976) shows 

that the linear Neumann-Kelvin problem for the disturbance 

*A possible exception occurs near the ship's bow, where the flow 

has a stagnation pOint and the wave amplitude attains a theoretical 

maximum value. 



- 16 -

potential is in fact the consistent first order approximation in 

a regular perturbation scheme, where the perturbation parameter is 

chosen as some measure of the ship generated wave pattern; he ~lso 

pOints out that the transfer of the exact hull surface condition 

to the ship's centreplane in the Michell (1898) thin ship theory 

may be more restrictive in practice than the linearisation of the 

free surface condition. The foregoing observations then suggest 

that in a first approximation the linearised free surface condition 

is adequate, but the three-dimensional features of the hull form 

should be fully retained. Moreover, the inconsistency of the 

Neumann-Kelvin approximation should not prevent the practical 

comparison of experimental and theoretical predictions. 

• 

The main problem arising in the application of the 

Neumann-Kelvin theory is the determination of the solution of the 

linear boundary value problem for the disturbance potenti~l. 

Numerical methodsto achieve this purpose can be classified into 

two categories. The first category of so-called boundary integral 

methods is based on integral identities for the velocity potential 

obtained by applying Green's second formula to the potential and an 

appropriate Green's function. The Green's function may be chosen 

as either a fundamental Rankine source or the potential of a 

translating submerged source (the Kelvin wave source potential). 

In the first approach the Rankine sources are distributed over 

both the mean sea plane and the wetted hull surface, see for 

example Adachi and Takeshi (1983). The second approach involves 

the distribution of Kelvin wave sources over both the hull surface 
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and the water line contour, see Brard (1972). Earlier calculations 

without the water line integral were carried out by Gadd (1970) and 

Kobayashi and Ikehata (1970). Calculations including the water line 

integral have been carried out by Chang (1979), Suzuki (1979), 

Tsutsumi (1979) and Tsai et al (1983). The second cate~ory of 

numerical methods is that of the finite element methods where the 

equivalent variational formulation of the Neumann-Kelvin problem 

is solved by subdividing the flow domain into finite elements. 

The downstream radiation condition can be satisfied by using 

appropriate eigenfunction expansions (Bai (1977, 1979» or 

boundary integral representations (Lenoir (1982), Guttmann (1983» 

of the potential. 

Table 1.1 compares the experimental data and 

theoretical wave resistance predictions for the Wigley parabolic 

hull at four different Froude numbers. The experimental data were 

taken from a survey of eleven sets of experiments, see Chen and 

Noblesse (1983b). All theoretical predictions were obtained by 

numerical solution of the Neumann-Kelvin problem. Bai (1979) 

used a finite element method, Adachi and Takeshi (1983) used a 

Rankine source method, while Chang (1979), Suzuki (1979), 

Tsutsumi (1979) and Tsai et al (1933) all·used Kelvin wave source 

distribution methods. Although the differences between the 

average experimental data and the average theoretical predictions 

are fairly small, the large scatter in the theoretical data is 

clearly unacceptable and must be ascribed to the use of inaccurate 

numerical procedures. For example, at Froude number F =0.350 n 

--



- 18 -

the variation in the theoretical data is 63~. At the same Froude 

number the scatter in the four results obtained by means of a 

Kelvin wave source distribution method is 48%. This discrepancy 

must be mainly ascribed to the errors occurring in the evaluation 

of the Kelvin wave source potential. The Kelvin wave pattern 

generated by a moving submerged source is mathematically expressed 

as a single integral with a rapidly oscillatory integrand, see 

Noblesse (1981). Numerical calculation of such integrals is 

difficult and time consuming. In this study Kelvin wave source 

distribution methods are used to solve the Neumann-Kelvin problem. 

A major novelty is the successful development and employment of 

both accurate and fast algorithms for the evaluation of the Kelvin 

wave source potential. 

1.4 OUTLINE OF THESIS. 

In chapter 2 the hydrodynamic theory of steady ship 

motion is developed. Throughout the present analysis nondimensional 

flow variables are used in terms of the fluid density, the ship 

speed and the ship length, as discussed in section 2.1. The 

exact potential flow problem is formulated in section 2.2. The 

difficulties associated with the nonlinear free surface condition 

are discussed in section 2.3, where the linear Neumann-Kelvin 

formulation is introduced into the analysis. Expressions relating 

the relevant flow parameters to the disturbance potential are 

presented in section 2.4. Simplified equations are proposed for 

the calculation of the sinkage and trim. 
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Chapter 3 is concerned with the theoretical 

investigation of the Kelvin wave source potential, that is, the 

Green's function associated with the Neumann-Kelvin problem. 

This fundamental function plays an important role in the linear 

wave resistance theory. .Physically it represents the potential 

of a translating, submerged source. The definition, fundamental 

properties and physical interpretation of the Kelvin wave source 

potential are discussed in section 3.1. A variety of alternative 

expressions are compared in section 3.2. It appears that the most 

convenient expression from both physical, mathematical and 

numerical pOints of view is an expression originally due to Peters 

(1949). In this formulation the Kelvin wave source potential is 

expressed as the sum of three components: (i) the potential of a 

fundamental Rankine source; (ii) the potential of a nonoscillatory 

nearfield disturbance symmetric upstream and downstream from the 

source; and (iii) the potential of a wave:ike disturbance trailing 

downstream from the source (and zero upstream). The properties 

of the nearfield and wavelike disturbance are investigated in 

sections 3.3 and 3.4 respectively. 

In chapter 4 it is discussed how the Kelvin wave 

source potential can be used to derive integral identities for the 

disturbance potential of the steady flow about a moving ship. A 

basic integral identity is obtained in section 4.1 by applying 

Green's second formula to the disturbance potential and the Kelvin 

wave source potential. Two alternative strategies are proposed 
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to obtain the solution of the disturbance potential. The first 

and classic approach due to Brard (1972) is discussed in section 4.2. 

The exact solution of the disturbance potential is obtained by 

relating it to an auxiliary distribution of Kelvin wave sources over 

the ship's hull surface and water line. The unknown source strength 

must be solved from a Fredholm integral equation of the second 

kind obtained by imposing the boundary condition at the hull surface. 

An alternative strategy to obtain the disturbance potential proposed 

by Noblesse (1983) is discussed in section 4.3. It is based on an 

explicit integro-differential equation for the potential itself. 

This equation can only be solved iteratively and it is shown that 

the first term in the iterative sequence of potential approximations 

provides a useful explicit numerical approximation to the exact 

source strength for sufficiently slender ship forms. The concept 

of the Kochin (1951) wave amplitude function and the related 

Havelock (1934) wave resistance formula is briefly discussed in 

section 4.4 and it is used to demonstrate the importance of the 

additional water line distribution of Kelvin wave sources. 

In chapter 5 the computational procedures are 

presented which were developed to obtain the solution of the 

disturbance potential. A standard point-collocation procedure, 

similar to the one earlier used by Inglis (1980), is used in 

section 5.1 to discretise the integral identities. A, simple 

Gaussian quadrature method is proposed to evaluate the influence 

coefficients. The errors associated with the approximation 

procedure, as well as the exploitation of the ship's lateral 
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symmetry plane, are discussed. The application of the proposed 

method relies heavily on the use of accurate and efficient 

algorithms for the evaluation of the Kelvin wave source potential 

and its gradient. The methods used to evaluate the nearfield and 

wavelike disturbance are discussed in sections 5.2 and 5.3 

respectively. The algorithm for the nearfield disturbance is 

based on Chebyshev approximations derived by Newman (1986a). 

The algorithm for the wavelike disturbance is based on two 

complementary Neumann series expansions originally obtained by 

Bessho (1964). Accurate and efficient methods have been developed 

to evaluate the two series expressions. 

In chapter 6 the developed theory is applied to 

five different hull forms. These are: a submerged prolate 

spheroid, the Wigley parabolic hull form, a tanker, a cruiser and 

a destroyer. Extensive comparisons are made between experimental 

data and theoretical predictions of a wide variety of flow 

parameters such as wave resistance, sinkage, trim, pressure 

signatures, wave profiles and vertical force distributions. 

In most cases the calculations have been carried out for a large 

number of Froude numbers, thus allowing a detailed assessment of 

the ability of the Neumann-Kelvin theory to model the steady ship 

motion problem. In chapter 7 it is concluded that the developed 

computational tools provide an accurate and efficient tool to 

analyse the steady flow disturbance phenomena caused by a 

moving surface ship. 
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0.80 

0.61 

76 

F =0.313 
n 

1.26 

0.39 

31 

1.43 

0.52 

1.64 

0.80 

1.32 

1.14 

1.12 

98 

F =0.350 
n 

1.24 

0.36 

29 

1.35 

1.03 

1.00 

1.56 

0.84 

1.03 

1.14 

0,72 

63 

F =0.402 
n 

1.84 

0.74 

40 

1.81 

2.18 

2.08 

2.42 

1.24 

1.36 

1.85 

1.18 

64 

Table 1.1 Comparison of experimental data and Neumann-Kelvin theoretical 

predictions of the wave resistance (10
4

C = 104R /pV2L2) for 
w w 

the Wigley parabolic hull form. 

N 
N 
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Figure 1.1 Publications on wave resistance and related topics 
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2. HYDRODYNAMIC THEORY OF STEADY SHIP MOTION 

2.1 POTENTIAL FLOW DESCRIPTION 

The present analysis is concerned with the investig~tion 

of the flow about a rigid ship in steady rectilinear motion at the 

free surface of a previously undisturbed sea of infinite depth and 

width. The sea water is regarded as ideal, that is, homogeneous, 

incompressible and inviscid, and irrotational flow is assumed. The 

effects of surface tension, wave breaking and spray formation at 

the bow are neglected. The external forces acting on the ship are 

assumed to stem from the presence of a uniform gravitational field. 

Nondimensional variables are defined in terms of pL
3 

as reference mass, L as reference length and L/V as reference 

time, where p, L and V denote the density of the fluid, the water 

line length of the ship and the speed of the ship respectively. 

Table 2.1 gives the definitions of the thus obtained nondimensional 

flow variables. Notice in particular the definition of the 

nondimensional acceleration of gravity as gL/~ = I/F 2, where 
n 

g is dimensional and the Froude number F = V/lgL. In this study 
n 

the dimensionless variables in terms of p, L and V are used 

exclusively. 

Figure 2.1 illustrates the Cartesian reference frame 

Oxyz attached to the moving ship. The fluid flow is independent 
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of time with respect to Oxyz. The origin 0 is located at amidships 

and the positive Ox axis pOints towards the bow (i.e. x»O and x«O 

correspond to the upstream and downstream flow regimes respectively). 

The positive Oz axis pOints vertically upward and the mean free 

surface coincides with the plane z=O. 

In potential flow theory the irrotational flow of an 

ideal fluid is uniquely determined by the velocity potential function, 

as explained for example by Lamb (1932) and Milne-Thomson (1968). 

Let ~(~) denote the nondimensional potential at position x in the 

fluid. The potential has a steady state characteristic with respect 

to the moving axis system Oxyz consisting of contributions from 

both the uniform free stream flow and the steady flow disturbance 

caused by the moving ship. That is: 

~(x) = -x + CP(~) (2.1) 

where -x is the potential of the uniform free stream flow and CP(~) 

denotes the disturbance potential. By definition, the flow 

velocity vector ~(~) is given by: 

u = V~ = -~ + Vcp = -i + u (2.2) 

where V~ = (~ ~ ~) = (a~/ax, a~/ay, a~/az) denotes the gradient 
x' y' z 

of ~, i = (1,0,0) denotes the unit vector along the Ox axis, and the 

perturbed flow velocity ~ = Vcp. The fluid pressure p(~) is given 

by the nondimensional Bernoulli equation as: 
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2 2 
P = i - ilv~1 - z/F 

n (2.3) 

2 
where IV~I 

222 
= V~.V~ = ~ + ~ + ~ 

x y z is the square of the magnitude 

of the flow velocity vector U = V~ and F denotes the Froude 
n 

number. From this expression it is seen that the total pressure 

consists of contributions from the uniform free stream flow, the 

steady perturbed flow and the hydrostatic pressure. 

2.2 EXACT PROBLEM FORMULATION 

The velocity potential ~ of the steady flow about 

a moving ship must satisfy the foLlowing conditions (see Wehausen 

(1973), Newman (1976) and Noblesse and Dagan (1976»: 

(i) The continuity equation (or conservation of fluid mass) 

(ii) 

requires that the divergence of the flow velocity is 

identical to zero, that is, V.~ = 0, throughout the flow 

domain D. Using equation (2.2) this condition may be 

written as: 

2 
where V ~ = 

2 
V ~ = 0 in D 

~ + ~ + ~ denotes the Laplacian of ¢. 
xx yy zz 

If z = ~ (x,y) denotes the unknown elevation of the 
w 

disturbed free surface S, then the resulting kinematic 

(2.4) 
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condition may be expressed as: 

~ = V~.V~ on S. z w 

This condition ensures that the fluid particles cannot 

pass through the free surface. FUrthermore, the free 

• 
surface is a surface of constant atmospheric pressure and 

it follows from the Bernoulli equation (2.3) that: 

(2.5) 

Substituting this dynamic condition into the kinematic 

condition given in the previous equation, the free surface 

condition to be satisfied by ~ becomes: 

2 2 
~ = -iF v~.vlv~1 on z n 

S. 

The actual position of the disturbed free surface is not 

known beforehand and this implies a major complication 

in the implicit forms of equations (2.5-6). 

(iii) Since fluid particles cannot permeate the wetted hull 

surface H of the ship, it follows that: 

~ = 0 on H , 
n 

where ~ = a~/an = V~.n and n = (n ,n ,n ) is the unit 
n - - x y z 

vector normal to the hull and pointing into the fluid. 

(2.6) 

(2.7) 
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This kinematic condition ensures that the normal components 

of the hull velocity and the flow velocity are identical. 

In general, the moving ship will sink and trim about its 

position at rest and therefore the actual position of the 

ship's hull surface is not known beforehand. 

(iv) Finally a radiation condition must be imposed to ensure the 

existence and uniqueness of the potential, see :Dern (1977) 

for a comprehensive discussion of this topic. This condition 

states that the energy flux of the waves radiated by the 

moving ship is directed outward·at infinity, see Newman (1978). 

In the present context it is seen that the waves are 

following the ship and there are no upstream waves. This 

feature can be expressed by defining: 

~ = - x 
(O(1/1~1) 

+1 0 (1) 
as 1~I+oo if {

x>o 

x<O 

where O(x) and o(x) denote the Landau order symbols of x 

as defined by Erdelyi (1956). 

(2.8) 

Substitution of equation (2.1) into equations (2.4-8) 

results in the following set of conditions to be satisfied by the 

disturbance potential ~: 

(i) continuity: 

2 
V ~ = 0 in D (2.9) 
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(ii) free surface conditions: 

on S (2.10) 

F 2<j> + <j> 
n xx z 

2 
- !~<j>.~I~<j>1 ) on S; (2.11) 

(iii) hull surface condition: 

on H (2.12) 

(iv) radiation condition: 

{

0(1/I X I) 
<j> = - as I~I~ 

0(1) 
{

x>O 
if 

x<O (2.13) 

Equations (2.9-13) are exact within the assumptions stated at the 

beginning of section 2.1 and together they constitute a nonlinear 

elliptic boundary value problem from which the disturbance potential 

must be solved. 

2.3 LINEAR NEUMANN-KELVIN THEORY 

Unfortunately the complicated nonlinear nature of 

the free surface conditions given in equations (2.10-11) prohibits 

the development of an exact solution of the disturbance potential, 

see however Dawson (1977) and Daube (1980) for some recent 
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developments. Therefore some method of approximation is required 

and this may be achieved by means of regular or singular perturbation 

expansions, as discussed by Wehausen (1973). Such procedures rely 

on one's ability to choose a small parameter E which is connected 

with the problem such that as E is decreased the disturbance near 

the free surface is gradually reduced. Ultimately this results in 

a linear formulation where the free surface elevation is small and 

the free surface conditions may be linearised about the mean sea 

plane. 

Three ideas lie behind the choice of a convenient 

perturbation parameter E, see Table 2.2. Specifically, E may be 

related to the assumed smallness of: 

(i) the beam/length and/or draft length ratio of the ship (this 

choice results in the classic thin, flat and slender ship 

approximations); 

(ii) the Froude number (this choice results in the slow ship 

approximation); 

(iii) the Froude number based on the immersion depth of a deeply 

submerged body. 

Any of these approaches results in small disturbance of the free 

surface as E is made smaller, but they also destroy the general 

three-dimensional character of the present analysis. 

An alternative scheme may be based on linearising 

only the free surface condition while the other conditions are 
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retained in their exact forms. The resulting approximation is 

formally inconsistent for surface ships. The free surface conditions 

valid on the disturbed free surface S may be expanded about the mean 

free surface s (i.e. the plane z = 0) using a Taylor series 

expansion of the form: 

~(x,y,~ ) = ~(x,y,O) + ~ ~ (x,y,O) + ... 
W W Z 

The application of this expansion to the free surface conditions 

given in equations (2.10-11) results in: 

• 

F 2(~ 
2 4 + O(F 4~3) ~w = i I V~ I ) + Fn ~x~xz n x n 

F 2~ + ~ 
n xx z 

4 3 
valid on s, where O(F ~) denotes that the neglected terms are 

n 

at least of the fourth order in the Froude number and of the 

third order in derivatives of the disturbance potential, see 

Newman (1976). 

The nonlinear term on the right side of equation 

(2.14) 

(2.15) 

2 2 
(2.15) is of order F ~ and is assumed to be small in comparison 

n 
2 

with the linear term F ~ + ~ . 
n xx z 

2 2 
If terms of O(F ~) are 

n 

neglected in equation (2.15) it follows that the nonlinear 

boundary value problem given previously in equations (2.9-13) is 

transformed into the set of "linear conditions given by: 
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(i) continuity: 

in d 

(ii) free surface condition: 

F 2cp + cp = 0 
n xx z 

(iii) hull surface condition: 

n 
x 

(iv) radiation condition: 

on h 

on S 

cp = {O(I/I~I) 
0(1) 

as I~l-+oo if 

(2.16) 

(2.17) 

(2.18) 

{ 

x>O 

x<O 
(2.19) 

In equations (2.16-18) the actual flow domain D, the free surface S 

and the hull surface H have been replaced by the mean flow domain 

d, the mean free surface s and the mean hull surface h respectively. 

The disturbance potential may now be solved from 

the linear 'Heumann-Kelvin' problem defined by equations (2.16-19); 

the hull surface condition given by equation (2.18) is of the 

Neumann-type, while the linear free surface condition given by 

equation (2.17) was first investigated by Lord Kelvin, see 

Thomson (1887). By definition of the Neumann-Kelvin problem, the 

free surface condition is linearised but no restrictions are 
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imposed on the shape of the hull surface, see Brard (1971, 1974a,b). 

In the remainder of this work the linear Neumann-Kelvin approximation 

is used as the theoretical model for the description of the flow 

about a moving ship. 

Some justification for adopting the linear free 

surface condition may be derived from experimental evidence which 

suggests that the disturbance of the free surface is relatively 

small, except near the bow of surface ships. More precisely, the 

dimensionless wave elevation ~ IF 2 = !(1 - Iv~12) given in equation 
w n 

(2.5) is small for most slender ship forms (notice however that 

~w/Fn2 = !, i.e. not small, at a stagnation point where the flow 

velocity is zero, e.g. near the pointed bow of a surface ship). 

Kajitani et al (1983) have measured the wave profiles along the 

hull of an unrestrained Wigley model. Figure 2.2 shows a typical 

result and clearly illustrates that ~ IF 2 is small if the bow wave 
w n 

crest is discarded. The formal inconsistency of the Neumann-Kelvin 

approximation seems therefore of little practical importance and 

certainly should not invalidate a direct comparison between experimental 

and theoretical predictions. 

2.4 WAVE RESISTANCE) SINKAGE AND TRIM 

Assuming that the disturbance potential is evaluated 

by solving the Neumann-Kelvin problem, the task is reduced to the 

derivation of the relevant flow parameters. These are the flow 
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velocity, the fluid pressure, the wave elevation and the 

hydrodynamic forces which determine the wave resistance and the 

induced sinkage and trim angle. 

The perturbed flow velocity u(x) and the hydrodynamic - -
pressure p(~) may readily be obtained from equations (2.2) and 

(2.3) respectively. D· di t of O(F 2~2) . i (14) 1scar ng erms ~ 1n equat on 2. 
n 

it follows that the wave elevation ~ (x,y) of the disturbed free 
w 

surface is given by: 

~ (x, y) 
w 

2 
= F cP (x,y,O) n x (2.20) 

The hydrodynamic forces can be obtained either-by directly integrating 

the hydrodynamic pressure on the hull surface or by evaluating the 

energy contained in the downstream wave pattern of the ship, see 

Wehausen (1973). Here the first approach is used, while the latter 

is discussed in section 4.4. 

Most ships have a lateral plane of symmetry coinciding 

with th~ plane y=O in figure 2.1. For such vessels the only nonzero 

components of the hydrodynamic force and moment are the drag force 

d , the lift force t and the trimming moment m , where d , t and 
w w w w w 

m 
w 

are nondimensional in the manner indicated in Table·2.1. These 

components may readily be determined by integrating the hydrodynamic 

pressure over the hull surface and it follows that: 
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JJ(~x 
2 

d = - il~~1 )n da (2.21a) w x 
h 

JJ(~x 
2 

t = - il~~1 )n da (2.21b) w z 
h 

JJ(~x 
2 

m = - tl~~1 )(zn - xn )da (2.21c) w x z 
h 

where (n ,n ,n ) are the components of the outward unit normal x y z 

vector on the hull surface. 

Associated with the drag, lift and moment acting 

on the moving ship are the wave resistance C , the sinkage sand 
w w 

the trimming angle e. However, the hull surface h in equations 
w 

(2.21a-c) refers to the unknown position of the hull surface after 

the sinkage and trim have been applied. It follows that the 

quantities C , sand e are interrelated and an iterative procedure 
w w w 

is required in order to determine them. This procedure can be 

initialised by considering the hull surface corresponding to the 

known hydrostatic equilibrium position of the ship at rest, see 

Wehausen (1969), Yeung (1972), Gadd (1973) and Noblesse and Dagan 

(1976). In tOWing tanks a ship model can be restrained (i.e. s =0 
w 

and/or e =0) and the theoretical simulation of this situation is 
w 

considerably simplified. 

In practical calculations the cumbersome iterative 

procedure for the determination of the wave resistance, sinkage and 

trim can easily be avoided by assuming that the sinkage and trim are 

small (this assumption is not tenable at very high ship speeds). 
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Figure 2.3 illustrates the static equilibrium of the moving ship 

acted upon by the drag force d , the lift force t and the trimming w w 

moment m. The wave resistance C is formally defined as negative 
w w 

thrust acting along the propeller shaft line; the additional trimming 

moment induced by the wave resistance is negligible for most 

sufficiently slender ship forms, see Wehausen (1973) and Noblesse 

and Dagan (1976). The sinkage s and trim angle e are reckoned w w 

positive for increasing draft and a bow-up rotation respectively. 

For small sand e the static equilibrium of the moving ship is 
w w 

described by (see Noblesse and Dagan (1976»: 

C = d (2.22a) 
w w 

i S 1.• e + F 20 = 0 o w - 1 w n N W 
(2.22b) 

(2.22c) 

where F denotes the Froude number and the k-th moment of area 
n 

i
k 

of the water line plane is defined by: 

Ii k 
i

k 
= x b(x)dx 
-1 

where b(x) is the beam at position x. These moments of area are 

dimensionless in the manner indicated in Table 2.2 and relate to 

the position ~f the water line plane of the ship at rest. The sinkage 

and trim are coupled and can be obtained by solving the set of linear 

algebraic equations (2.22b-c). 
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variable dimensional nondimensiona1 

density of water p 1 = pip 

length of ship L 1 = L/L 

speed of ship V 1 = V/V 

acceleration of gravity g gL/; = I/F 2 
n 

beam of ship B b = B/L 

draft of ship D d = D/L 

k-th-moment of area Ik i = I /Lk+2 
k k 

coordinates (X,Y,Z) (x,y,z) = (X,Y,Z)/L 

velocity potential tP <P = tP/VL 

flow velocity U u = U/V 

water pressure p P = p/pv2 

wave elevation Z l';w = Z /L 
w w 

drag force D d = D /P~L2 
w w w 

lift force L ~ = L /P~L2 
w w w 

trimming moment M m = M /P~L3 
w w w 

wave resistance R C = R /P;L
2 

w w w 

sinkage S s = S /L 
w w w 

trim by stern e e 
w w 

Table 2.1 Definitions of nondimensiona1 flow variables. 



assumption 

thin ship 

flat ship 

slender ship 

slow ship 

submerged body 
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references 

Michell (1898) 

Wehausen (1973) 

Noblesse (1983) 

Hogner (1932) 

Noblesse (1983) 

Vossers (1962) 

Haruo (1962) 

Tuck (1964) 

Ogilvie (1970) 

Noblesse (1983) 

Guevel et al (1974) 

Newman (1976) 

Baba (1976,1977) 

Maruo (1977) 

Kayo (1978) 

Noblesse (1983) 

Havelock (1931a,b) 

Kochin (1951) 

Bessho (1961) 

Farell (1973) 

Guttmann (1983) 

* Froude number based on immersion depth 

b 

O( E) 

0(1) 

O( E) 

0(1) 

0(1) 

d 

0(1) 

o (E) 

O( E) 

0(1) 

0(1) 

F 
n 

0(1) 

0(1) 

0(1) 

O(E) 

O(E) * 

Table 2.2 Comparison of some assumptions resulting in small 

disturbance near the free surface. 



-1 

-! 

Fi~ure 2.1 

- 39 -

z 

o x 

mean hull surface h 

• 
-d 

mean flow domain d 

y 

mean sea snr!ace 8 

o x 

z 

y 

unit normal vector n 

-d 

Sketch of the coordinate system Oxyz attached to 

the moving shi,. The shi~ has unit length, beam b 

and draft d. 
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d.' 
w 

Figure 2.3 Sketch of the ~oving shi~'s static equilibrium 

showing the drag force d ~ the lift force t , 
. w w' 

the trimming moment m , the wave resistance C , 
w w 

the downward sinkage s and the trim by the 
w 

stern e (ship length = 1). 
w 

x 
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3. THE KELVIN WAVE SOURCE POTENTIAL 

3.1 DEFINITION AND FUNDAMENTAL PROPERTIES 

The Kelvin wave source potential is defined as the 

Green's function associated with the Neumann-Kelvin problem and 

physically this function may be identified with the potential of a 

translating submerged source. The Kelvin wave source potential 

plays a significant role in the linear theory of ship waves and 

wave resistance and this chapter is entirely devoted to its mathematical 

analysis. For many years mathematicians and hydrodynamicists have 

expended considerable effort in the development and analysis of the 

Kelvin wave source potential and their combined efforts have resulted 

in a vast literature which is reviewed by Wehau3en and Laitone (1960), 

Bessho (1964), Eggers et al (1967), Nakatake (1969), Gamst (1979), 

Noblesse (1981) and Euvrard (1983). 

Let ~(~,n,~~O) and x(x,y,z~O) denote ~wo position 

vectors referring to the moving axis system Oxyz, as illustrated in 

2 . 
By definition, the Green's function G(~,x;F ) associated - _ n Figure 3.1. 

with the Neumann-Kelvin problem given by equations (2.16-19) is the 

solution to the following boundary value problem (see Noblesse (1981»: 
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(1) continuity: 

{
~<o 

in z<O if 
~=O 

(ii) free surface condition: 

+ G z 
= { ° on z=O if {,<a 

-8(x - ~)8(y -n) c=o 

(iii) radiation condition: 

G = {O(l/l! -
0(1) 

as Ix ~I~ if { 
~>x 

~<x 

(3.1) 

(3.2) 

(3.3) 

In equation (3.1-2) 8(x) represents the usual Dirac's delta fUnction 

of x. The Green's function is the singular or fundamental solution 

to the homogeneous 'Kelvin' problem obtained by discarding the 

nonhomogeneous Neumann hull surface condition given by equation 

(2.18) from the Neumann-Kelvin problem. 

Physically the Kelvin wave source potential G(~,x;F 2) 
- - n 

represents the l1nearised velocity potential at the field point 

~(~,n,c~O) of the unit outflow produced by a source at the source 

point x(x,y,z<O) in steady rectilinear motion with unit speed at 

at depth -z below the free surface of an otherwise unbounded fluid. 

In the limiting case when z=O the source is evidently no longer fully 

submerged and it may be shown that the unit outflow produced at 
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(x,y,z=O) now stems from a flux across the mean free surface, see 

Ursell (1960), Noblesse (1981) and Euvrard (1983). 

From physical considerations it follows that the 

source flow is symmetric with respect to the centre plane y=n. 

That is, the Green's function satisfies the symmetry relationship: 

G = 0 on y = n y 

Furthermore, it can be shown that: 

2 
G(t;,x;F ) 

- - n 

2 
= G(x,t;;F ) 

- - n 

(3.4) 

if and only if the flow direction is reversed, see Brard (1972) 

and Noblesse (1981). 

Noblesse (1981) demonstrates that the Kelvin wave : 

source potential can be expressed in the form: 

2 
4'ITG(t;,xjF ) _ _ n = -1/1§ - ~I + {N(X) + W(X)}/F 2 _ n , (3.5) 

where Ig - ~I represents the distance between the field and source 

points (see figure 3.1) and the dimensionless vector quantity 

2 
X(t;,x;F ) is defined by: _ - _ n 

x = (X,Y,Z~O) = (x - t;, y - n, I z + 1; I) /F 2 . 
n 

(3.6) 
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The vector Fn2~ jOins the field pOint ~ with the free surface 

mirror image of the source pOint ~ (notice that X<O upstream from 

the source and X>O downstream from the source). 

Equation (3.5) implies that the Kelvin wave source 

potential is decomposed into three characteristic components: 

(i) the potential -1/4~1§ - xl of a fundamental Rankine source 

in infinite fluid (in the absence of the free surface); 

(ii) the potential N(X)/4~F 2 of a localised nonoscillatory near-_ n 

field disturbance, symmetric upstream and downstream from the 

source; and 

(iii) the potential W(X)/4~F 2 of a wavelike disturbance which 
n 

accounts for the waves produced by the source. 

The nearfield and wavelike compondnts account for the effects 

associated with the presence of the free surface and are functions 

only of the vector quantity X defined in equation (3.6). 

3.2 SURVEY OF ALTERNATIVE EXPRESSIONS 

Equivalent expressions for the Kelvin wave source 

potential may be obtained by solving the boundary value problem 

defined by equations (3.1-3), see Noblesse (1981) for a thorough 

mathematical treatise. It appears that there are five alternative 
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representations of the Kelvin wave source potential. These are: 

(i) an expression implicitly contained in Michell's (1898) famous 

paper, rediscovered by Eggers et al (1967) and modified by 

Noblesse (1981); 

(ii) an expression originally due to Havelock (1932) and subsequently 

modified by among others Lunde (1951), Kostyukov (1968), 

Standing (1975) and Shen and Farell (1977); 

(iii) an expression due to Peters (1949) and modified by Noblesse 

(1977), see also Eggers et al (1967) and Andersson (1975); 

(iv) an expression obtained in a remarkable paper by Bessho (1964),· 

rederived by Ursell (1984) and modified by Simmgen (1968); and 

(v) an expression proposed by Demanche (1981) and rederived by 

Baar (1984b). 

Amongst the foregoing expressions, the second representation due to 

-

Havelock (1932) is no doubt the most popular and is also quoted by 

Wehausen and Laitone (1960). The fourth and fifth expressions are 

less well known and although they have certain interesting theoretical 

features they do not appear to offer any practical advantages; here 

these representations will not be considered further. Instead the 

attention is focused on the first three representations due to 

Michell (1898), Havelock (1932) and Peters (1949). 

Table 3.1 compares the relevant 'Michell', 'Havelock' 

and 'Peters' representations of the nearfield and wavelike components 

as defined by equation (3.5). These equivalent expressions are 

modifications of the original representations as obtained by Noblesse 
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(1981). It is seen that the nearfield disturbance N(X) is written 

as the sum of two terms: firstly, a Rankine sink potential l/R, 

where R = Ixi and 2 
r = F R represents the distance between the field n 

point and the free surface mirror image of the source pOint (see 

figure 3.1); and, secondly, a single integral term with the integrand 

expressed in terms of the complex-valued exponential integral function 

E1 (A) , as defined in Abramowitz and Stegun (1972). The integration 

limits are either finite (Peters) or infinite (Michell and Havelock). 

It may be verified that in all three representations the nearfield 

disturbance is symmetric upstream and downstream from the source (i.e. 

the function N is even with respect to both X and Y). 

The differences between the three equivalent expressions 

in Table 3.1 are clearly recognisable from the respective representations 

of the wavelike disturbance W(X). This function is expressed as a 

single integral with at least one infinite integration limit and a 

rapidly oscillatory integrand (the Michell expression contains an 

additional integral term with finite integration limits). Both the 

Michell and the Peters representations have fixed integration limits, 

while the lower integration limit -X/lyl of the Havelock expression 

is variable and depends on the relative position of the field and 

source points. This feature appears to be a major disadvantage of 

the Havelock representation, as was pointed out by Eggers et al (1967). 

The Peters representation of the wavelike disturbance illustrates 

clearly that the waves follow the source, that is, the waves are 

only present downstream from the source, in agreement with the 

radiation condition given by equation (3.3). It is therefore seen 

that the Peters representation is the most convenient from a physical 
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point of view·, it also a e t b pp ars 0 e the best suited expression for 

purposes of mathematical and numerical analysis. 

The Kelvin wave source potential G(~,x;F 2) is thus 
- - n 

expressed in the form of equation (3.5) in which the nearfield 

disturbance N(X) is given by: 

N(X) 
1 

= l/R + (2/TI) J Im{exp(A)E (A)}dt 
-1 1 

(3.7) 

where R = I~I and the complex argument A = {-Z/1-t2 + Yt +ilxl}/1-t2; 

likewise, the wavelike disturbance W(X) is given by: 

where the Heaviside unit step function H(X) is defined by: 

H(X) -- {Ol {

X<O 
if 

X>O 
1. e. {

upstream 

downstream 
from the source. 

(3.8) 

The Peters (1949) representation of the Kelvin wave 

source potential has been neglected for some time, although it was 

used for instance by Eggers and Choi (1975). In recent years, 

however, it has been recognised as the most convenient expression 

from both physical, mathematical and numerical points of view, see 

for example Noblesse (1981), Euvrard (1983) and Newman (1986a,b). 

In the remainder of this chapter the properties of the nearfield 

and wavelike disturbances as defined by equations (3.7) and (3.8) 

respectively are further investigated. 
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3.3 ANALYSIS OF THE NEARFIELD DISTURBANCE 

The nearfield disturbance may be intepreted as the 

potential of a localised nonoscillatory disturbance symmetric upstream 

and downstream from the source. It is convenient to express the 

function N(X) in the form: 

N(X) = M(~)/R (3.9) 

where R = I~I. • According to Noblesse (1981) the function M(X) may 

assume the equivalent forms given by: 

1 

M = 1 + (2/~)R J Im{exp(A)E1 (A)}dt 
-1 

(3.10) 

where T = IXI/[YI and the complex arguments A and B are defined by: 

A = {- z/1 _t 2 - + Yt + i [X I }/1 - t Z 

B = {-Z·/1 +- t 2 + i(lx[ - [ylt)}/1 + t 2 

The expression given in equation (3.10) follows immediately from 

equations (3.7) and (3.9), whereas equation (3.11) may be obtained 

by considering the equivalence of the Peters and Havelock expressions 

given in Table 3.1 (i.e. by noting that N=NP=NH+WH-WP, where 

indices P ,and H refer to the Peters and Havelock expressions respectively). 



- 50 -

The ascending series and the asymptotic expansion of 

the exponential integral E1 (z) are given by Abramowitz and Stegun 

(1972) as:· 

co 

= -{y+ tn(z) + n n 
L: (-1) z Inn!} 

n=l 

-exp(-z) L: (_l)nn!/zn 

n=30 

(3.12) 

(3.13) 

respectively. The ascending series of the nearfield disturbance may 

be obtained by substituting equation (3.12) with z=A into the integrand 

of the integral term in equation (3.10) and evaluating the remaining 

integrals analytically, see Noblesse (1977, 1978b) and Newman (1985, 

1986a). Likewise, the asymptotic expansion of the nearfield 

disturbance may be obtained by substituting equation (3.13) with z=B 

into the integrand of the first integral on the right side of equation 

(3.11), see Noblesse (1975, 1981) and Newman (1986a). 

The first few terms of the thus obtained ascending and 

asymptotic series of the nearfield disturbance are given in Table 3.2, 

where the function M(X) is express,ed in the form; 

M(X) = MA(~) + RMr(X) . (3.14) 

rt is seen that the integral terms Mr in the ascending series 

expressions in Table 3.2 vanish as R~, while the integral terms of 

the asymptotic expansion vanish as R+c:o. The algebraic terms MA of 

the ascending series have been derived by Noblesse (1977, 1978b). 

The first algebraic term (i.e. -1) of the asymptotic expansion 

corresponds to a well-known image source term (i.e. N--1/R as R+c:o) 
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which was earlier obtained by GUilloton (1960) and Bessho (1964). 

Further terms of the ascending and asymptotic series of the nearfield 

disturbance may in principle be derived, see Newman (1986a). 

From the expressions given in Table 3.2 it may be 

concluded that the function M(X) behaves as: 

M(X) = {:: : ::::R) as {R+O 

R~ 

(3.15) 

and it follows from equation (3.9) that the nearfield disturbance N(X) 

. . 
may alternatively be interpreted as the potential of an image sink, 

of strength M(X), in the infinite fluid (as if there were no free 

surface), as discussed by Noblesse (1977). In particular, the nearfield 

disturbance reduces to a simple image sink as R+O (or F ~, as may be 
n 

seen from equation (3.6» and an image source as R~ (or F +0). 
n 

Equation (3.11) clearly illustrates that the nearfield 

disturbance is symmetric upstream and downstream from the source. That is 

M(-X,Y,Z) 

M(X,Y,Z) = M(X,-Y,Z) (3.16) 

M(-X,-Y,Z) 

When y=o tne additional integral term with lower limit of integration 

T=lxI/IYI in equation (3.11) vanishes. The integrands of equations 

(3.10) and (3.11) then become even functions of the integration 

variable t, as may be verified by making use of the relationship 

E1 (~)=E1 (z), where ~ denotes the complex conjugate of z. The centre 
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plane nearfield disturbance is thus given by: 

• 

It is seen that the Havelock and Peters representations in Table 3.~ 

become identical when Y=O. The centre plane nearfield disturbance 

N(X,O,Z)=M(X,O,z)/lxZ+zZ is of great importance in the thin ship 

theory of wave resistance and has been investigated extensively by 

Noblesse (1975) and Newman (1985, 1986a) who have derived the 

complete ascending and asymptotic series. 

A simple picture of the behaviour of the function 

M(X) may be obtained by considering the two special cases where 

y=o=z and X=O respectively. 'Bessho (1964) and Noblesse (1977) 

show that: 

M(O Y Z) = 1 - 2/:EF(~) , , 

where the similarity variable E = i(D+Z), D = /yZ + Z~ and 

* () Y (x) and F(x) denote the Struve, Bessel and Dawson's integral H1 x, 1 

f
x . 2 2 

* Dawson's integral F(x) = ° exp(t -x )dt 
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functions of x as defined by Abramowitz and Stegun (1972). 

Algorithms for these transcendental functions are readily available, 

see Newman (1984, 1986b). Fi 3 2 h th f ( 0 ) gure . sows e unctions M X, ,0 , 

M(O,Y,O) and M(O,O,Z) and clearly illustrates the limiting sink 

and source behaviour of the nearfield disturbance for small and 

large values of R respectively, as indicated in equation (3.15). 

3.4 ANALYSIS OF THE WAVELIKE DISTURBANCE 

The wavelike disturbance defined by equation (3.8) 

represents the potential of a Kelvin wavelike disturbance trailing 

downstream from the source (and zero upstream). This fact can be 

verified by investigating the asymptotic behaviour of the function 

W(X) for large values of p = Ix2 + y2, using the method of steepest 
-

descents (see Erdelyi (1956». This classic investigation is 

reported in detail by Wehausen and Laitone (1960), Ursell (1960), 

Newman (1977), Lighthill (1978) and Euvrard (1983), who show that 

the function W behaves as: 

as p ! 
x<2/21yl 

= IX2+y2~ if X~2/21YI 

x>2/2 1yl 
. (3.17) 

This expression is a more precise formulation of the radiation 

condition given in equation (3.3). It is seen that the dominant 

waves generated by the moving source are confined to a sector making 
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an angle of arccot(2/2)~19028' with the downstream sailing line of 

the source, as illustrated in Figure 3.3. According to equation 

(3.17) the energy flux is the smallest near the border lines of this 

sector. A more detailed analysis shows that within the sector two 

distinct systems of transverse and diverging waves exist; these two 

systems meet near the border lines with a common angle of 

arctan(12)~54044' with the sailing line (see Figur; 3.3). 

The wavelike disturbance defined in equation (3.8) 

may be written in the form: 

W(X) - - H(X)8P(X) 

where the function P(X) is defined by 

for X~O. This function is a special case of the P -functions 
n 

studied by Havelock (1923, 1925) and Bessho (1964). 

(3.18) 

(3.19) 

Table 3.3 gives seven alternative expressions for the 

function P(!). The first expression in this table may readily be 

obtained by expanding the trigonometric term in the integrand of 

equation (3.19). The last expression has been derived by Bessho 

(1964) and may also be obtained by noting that the function P 

satisfies the parabolic differential equation PXX=PZ in the upper 

half-space Z>O; according to Sneddon (1972) the solution of this 

heat conduction problem is given by: 
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The remaining expressions in Table 3.3 may be obtained by 

performing the indicated change of integration variable. The 

second and third expressions are Fourier transform representations 

and have been used by Yeung (1972) and Guttmann (1983) respectively. 

The fourth expression is identical to the expression given by 

Peters (1949). The fifth expression is no doubt the most popular 

and similar in form to the expression quoted by Wehausen and 

Laitone (1960). 

A simple upper bound on the magnitude of the wavelike 

disturbance can be obtained from the sixth expression in Table 3.3. 

Using this expression it may be shown that: 

provided that Z>O, and it is seen that the wavelike disturbance 

decreases exponentially with increasing Z. The sixth expression in 

Table 3.3 is also useful to obtain an asymptotic expansion of the 

function P as Z~ by means of Laplace's method, see Erdelyi (1956) 

and Guttmann (1983). 

The wavelike disturbance is symmetric with respect 

to the centre plane Y=O. That is: 

P(X Y Z) = P(X,-Y,Z) , , 
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as may readily be seen from the expressions given in Table 3.3. 

In particular, when Y=O, it follows that: 

(3.20) 

where sign(x)=x/lx! denotes the usual sign-function. The latter 

expression may be obtained from the last expression in Table 3.3 ' 

and was originally derived by Goodwin (1956) and also given in 

slightly modified form by Noblesse (1978a). The centre plane 

wavelike disturbance P(X,O,Z) has been fUrther analysed by Noblesse 

(197830) and Newman (1986b) who have derived the complete asymptotic 

expansion which is uniformly valid as IX2+Z2~. 

Bessho (1964) has derived two remarkable s~ries 

representations of the wavelike disturbance. These series assume 

the form of Neumann expansions (see Watson (1944» and may be 

obtained by expanding terms in the integrand of equation (3.19) 

into integer order Bessel functions, see Baar and Price (1986b). 

The series representations are given by: 

00 

P = -exp(iZ) L I (_1)n J
2
' (X)K (iD)cos(nG) 
n n 

n=O 

~exp(!Z) L' ·Y
2
' (X)I (iD)cos(nG) 

- . n~O n n 

(3.21) 

(3.22) 
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In these expressions the primed summation sign indicates that the 

first term (with n=O) of the series must be halved and the polar 

coordinates (D~O,O~e~i~) are defined by D=/y2+Z~ and e=arctan(lyI/Z). 

The functions J (x), Y (x) I (x) and K (x) denote the usual Bessel 
n n' n n 

functions of x of integer order n, as defined in Abramowitz and 

Stegun (1972); the p~ime on the functions J
2n

(X) and Y
2n

(X) denotes 

• 
the derivative of these functions with respect to X. 

The Neumann series representation given in equation 

(3.21) is convergent everywhere except on the source track Y=O=Z 

2 
and may be used for both small and moderate values of X ID. The 

complementary series given in equation (3.22) is asymptotic and 

useful for large values of x2/D *. In chapter 5 it is shown how 

the series representations can be used to design a highly effective 

algorothm for the evaluation of the wavelike disturbance. 

A final point of some academic interest concerns the 

singular behaviour of the wavelike disturbance when the origin is 

approached, see Ursell (1960), Bessho (1964), Noblesse (1978a), 

Euvrard (1983), Newman (1986b) and Baar and Price (1986b). When 

*1n a recent communication Newman (1986c) has pointed out that the 

asymptotic Neumann expansion given in equation (3.22), as well as the 

related seventh integral expression in Table 3.3, appear to be too 

regular to be correct on the free surface Z=O, but they are valid 

if the source track Y=O=Z is approached along an inclined radius 

beneath the free surface. 
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X=O, it may be seen from equation (3.19) that P=O, provided that 

Z>O. However, when Y=O=Z, it follows from both equations (3.20) 

and (3.22) that 

For small values of X, the Bessel function Y (X) behaves as 
1 

Y1 (X)=-2/~X+O(X£nX) and it is seen that the wavelike disturbance 

is singular along the source track in the free surface. This 

singular behaviour may be isolated as follows. 

For large values of the integration variable t, 

the integrand of the first expression in Table 3.3 behaves as 

sin(Xt)cos(Yt
2
)exp(-Zt

2
). This behaviour suggests the decomposition 

of the function P into components P=PS+P
R

, where P
R 

is a regular 

function and the singular function Ps is defined by Baar and Price 

(1986b) as: 

= Re{F(X/2A)/A} (3.23) 

In this expression the complex argument A=/Z+iy=l:Dexp(!i0) 

and F denotes the complex-valued Dawson's integral -function (see 

Abramowitz and Stegun (1972), equation 7.4.7). When Z=O the 

integral in equation (3.23) can be expressed in terms of real­

valued Fresnel integral functions (see Gradshteyn and Ryzhik (1980), 

equation 3.691.6). 
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When Y=O=Z it may be verified that the singular and 

regular components become: 

respectively, so that the singularity along the source track is now 

entirely accounted for by the singular component function P . 
S 

Physically, the latter function represents the potential of a 

diverging wave system, as illustrated in Figure 3.4 (an efficient 

algorithm for the evaluation of the complex Dawson's integral has 

been prepared by Gautschi (1970». 

Similar decompositions of the wavelike disturbance 

have been investigated by Bessho (1964) and Euvrard (1983) and, 

for Y=O, by Noblesse (1978a) and Newman (1986b). Bessho (1964) 

recovers the complex-valued Dawson's integral occurring in equation 

(3.23) by considering the behaviour of the Bessel functions in 

equation (3.21) as the origin is approached. It is also noticed 

that the function Ps arised in two recent new approaches to the 

slender ship theory of wavemaking, see Maruo (1982) and Yeung and 

Kim (1984). 



modification of 

expression by 

Michell (1898) 

Havelock (1932) 

Peters (1949) 

nearfield disturbance 

N(X) - l/R 
~ 

R = I~I 

00 

(2/TI) J (t/11+t£) Im{exp(A)E
1

(A)} dt 
_00 

A = {-x+Zt+ilyI/1+t 2}t 

00 

(2/TI) J Re{exp(A)E
1

(A)} dt 
_00 

A = {-Z/1+t 2+i (X+Yt) hh-+t Z 

1 
(2/TI) J Im{eXP(A)E

1
(A)} dt 

-1 

A = {-Z/1-t2+Yt+ilxl}~ 

wavelike disturbance 

W(X) -
00 

-4 J sin{(X-lylt)/1+t 2} exp{-Z(1+t 2
)} dt 

_00 

1 
-4 J cos(X/1-t 2) exp{-(Z/1~t2+IYlt)/1-t2} dt 

o 

00 

-4 J sin{(X+IYlt)~} exp{-Z(1+t 2
)} dt 

T 

T = -x/lyl 

00 

-1I(X)4 J sin{X+Yt)/1+t 2} exp{-Z(1+t 2
)} dt 

_00 

H(X) = (0,1) if X «,» 0 

Table 3.1 Alternative single integral representations of the Kelvin wave source potential 
I 

(modifications due to Noblesse (1981». 

0) 
o 



term ascending series 

1st 

2nd 

3rd 

term 

1st 

2nd 

M = 1 
A 

1 00 00 

MI = (2/TI) f Im{exP(A)El(A)} dt = 
-1 

(2/TI) f Re{eXp(B)El(B)} dt + 4 f Im{exp(B)} dt 
_00 T 

MA = 1 - 2R (l+S
Z

) 
1 

MI = (2/TI) f Im{eXP(A)E
1

(A) + In(A) + y} dt 
-1 

MA = 1 - 2R
1

(1+S
Z

) - R2 [R
x

{ln(S/4) 

MI = (2/TI) f Im[exp(A)El(A) + In(A) 
-1 

+ y - ! - (1/6)(S~-S~)} - (2/3)Ry Sy - (4/3)Rz (l+Sz)] 

+ y + {In(A) + y - l}A] dt 

. asymptotic series 

M =-1 
A 1 00 00 

MI = (2/TI) f Im{eXP(A)EI(A) - l/A} dt = (2/TI) f Re{exp(B)E
1

(B) - l/B} dt + 4 f Im{exp(B)} dt 
-1 _00 T 

1.1 = 
A 

1\'1 = 
I 

-1 - (2/R) {R~/(l+RZ) - R~/(1+RZ)2} 
00 00 

(2/TI) f Re{eXp(B)E
1

(B) - l/B + 1/B2} dt + 4 f Im{exp(B)} dt 
_00 T 

(RX,Ry,RZ,RD) = (IXI ,y,Z,D)/R (Sx,Sy,SZ) = (IXI ,y,Z)/S D = IfT+Z-z S = R + IXI 

Table 3.2 Alternative expressions for the nearfield disturbance. 

m 
t-' 
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expression 

00 

(i) p. = f sin(X/l+t 2) cos(Yt/l+t 2) exp{-Z(1+t 2)}dt 
o 

00 

(ii) P = f (u//u2 -1) sin(Xu) cos(Yu/uZ-l) exp(-Zu 2) du 

(iii) 

l~--..... 
(u = Il+t 2) 

00 

P = f {w/(2w2-1)} sin(Xw) cos(Yv) exp(-Zw2) dv 
o 

(v = t/t 2+1 J 2w2 = 1+/l+4v2) 

00 

(iv) P = i f coshT sin{(X+YsinhT)coshT} exp(-ZcOsh
2
T) dT 

_00 

(t = sinhT) 

i'IT 
(v) P = i f sec 2 S :sin{ (XcosS+YsinS)sec 2 S} exp(-Zsec 2 S) de 

-i'IT 
(t = tanS) 

00 

(vi) P = ! {exp(-Z)/!:Z} f exn(-A 2
) sin{(x+YA/IZ)/l+Az/Z} dA 

_00 

(t = A/Iz) 

00 

(vii) P = !/'IT exp{-!(D-Z)} f exp(-s2) {(2s/D ~ X) Y
1

(W)/w} ds 
_00 

( Y+iZ = Dexp(i8) 

Table 3.3 Alternative expressions for the wavelike disturbance. 
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Figure 3.3 Sketch of the Kelvin ship wave pattern. 



~ 

20 

~ 

~ (J 
~ 

~\,.~"\,'.lk I 1 

J- 1 
~ ~~ 

>-

~O 

).001 f- -1 
15 

x 
10 10 

V/JI 

~ Y 

5 ~ 
5 

o 

Figure 3.4 Sketch of the singular component PS(X,Y,Z) of the wavelike disturbance 

for 0<X<20, 0<Y<10 and Z=~. 

Ps 

en 
en 



- 67 -

4. INTEGRAL IDFNTITIES FOR THE DISTUPBANCE POTENTIAL 

4.1 BASIC INTEGRAL IDENTITY 

• 

Integral identities for the steady disturbance 

potential may be obtained by applying nreen's second formula to the 

disturbance potential and the Kelvin wave source potential. Recall 

that the Kelvin wave source potential is defined as the solution 

to the homogeneous Kelvin problem given in equations (3.1-3). 

Essentially this Green's function can be identified as the response 

at the field point due to a unit impulse excitation applied at the 

source point. The solution of the nonhomogeneous Neumann-Kelvin 

problem for the disturbance potential (see equations (2.16-2.19» 

in terms of an integral distribution of Green's functions (i.e. 

fundamental Kelvin wave sources) can then be interpreted as the 

result of superimposing the response of the set of impulses 

represented by the nonhomogeneous Neumann hull surface condition 

given by equation (2.18). (Notice the analogy with the impulse 

response technique often used in ship dynamics, see for example, 

Price and Bishop (1974) and Bishop and Price (1979». 

/ 

Figure 4.1 illustrates the nomenclature used in the 

present chapter. The finite domain d' is bounded by the hull 

surface h, the finite mean free surface s' and some exterior 

surface h surrounding the hull surface h; C and Coo are the 
00 

intersection curves of hand h respectively with the plane z=O. 
00 
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Application of Green's second formula (see Kreyszig (1983» to 

the disturbance potential ~=~(x) and the Kelvin wave source potential 

2 
G=G(~ x'F ) gives 

- ' -' n 

fff<$V
2

G-GV
2

$)dV = 
d' 

ff<$GZ-G$Z)dXdY 
, 

8 

(4.1-) 

00 

2 
where G =3G/3n = VG(~,x;F ).n(x) and n is the outward unit normal 

n - - n --

vector on h as shown in figure 4.1. 

Consider the second integral on the right side of 

equation (4.1). By expressing its integrand as: 

~G - G~ z z 
222 

= ~(F G +G) - G(F ~ +~) + F (G~ -~G) , n xx z n xx z n x x x 

and by using the Green's identity (see Kreyszig (1983»: 

II (G~ -~G ) dxdy x x x 
8' c c 

00 

equation (4.1) may be rewritten as: 

IG = II<G$n-$Gn)da + Fn2I<G$x-$Gx)dY + 1$ + 100 (4.2) 

h c 

where l
G

, l~ and lao are defined by 
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1G = fff~V2Gdv'- ff~(Fn2Gxx+Gz)dxdY 
d' s' 

1<1> = fJ f GV2~dV - If G(F n 2~XX+~X)dxdY, 
d' s' 

I = f f (~Gn -G~n)da + F 2f(G~ -~G )dy 00 n x x 
h (J 

00 00 

respectively. 

By making use of the radiation conditions given in 

equations (2.19) and (3.3) it can be shown that I vanishes as the 
00 

exterior surface h is expanded towards infinity and subsequently 
00 , 

the finite domain d and free surface s' may be replaced by the 

unbounded flow domain d and mean free surface s respectively. 

Substituting the continuity and free surface conditions given by 

equations (2.16) and (2.17) respectively it follows that 1<1>=0. 

Following a suggestion due to Noblesse (1983) the potential is 

1G becomes 

where, 

c = fff~GdV - ff(Fn2Gxx+nz)dXdY e 
d s 

C = fff (H*) ~Gdv fJ (~-~ )(F 2G +G )dxdy * n xx z 
d s 

(4.3) 

(4.4a) 
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It is seen from equations (3.1-2) that C'=O provided the disturbance 

potential is continuous everywhere in the fluid and on the boundaries, 

that is, if ~-~ +0 as x~~. 
* - - This assumption is required to apply 

Green's second formula (see Kreyszig (1983». 

Substitution of equations (4.3-4a) into equation 
• 

(4.2) results in the basic integral identity: 

F 2f(G~ -~G )dy, 
n x x (4.5) 

c 

where Ce is given by equation (4.4a). Inserting equations (3.1-2) 

in equation (4.4a) it follows that: 

Ce = fffO(X-~)o(Y-n)O(Z-,)dV + 

d 
ffO(X-~)O(Y-n)dxdY 
s 

! 
in d + s - h - c 

for ~ on h + C 

in d. + s. - h - c 
1, 1, 

where d. and s. are the interior domain and mean free surface 
1, 1, 

(4.4b) 

(4.4c) 

respectively inside the hull surface h (see Figure 4.1). Equation 

(4.4c) is a well-known result from the theory of generalised 

functions and distributions, see Griffel (1981), Kantorovich and 

Akilov (1982) and Roach (1982). Usually the integral identity (4.5) 

is obtained in a different manner by applying Green's second formula 

to the domain d - e, where e is a small spherical domain surrounding 

the field point ~, see for example Brard (1972, 1974a,b), Inglis 

(1980) and Baar (1984a); the present derivation is due to Noblesse 

(1983). 
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The value of the constant C defined in equations 
e 

(4.4a,b) represents the total amount of fluid created inside the 

flow domain d (bounded by the hull surface h and the mean free 

surface B) or stemming from a flux across the mean free surface 

B (bounded by the waterline c). According to equation (4.4c) C =1 
e 

if the field point ~, where the flow is observed, is in d or on B, 

but str.ictly outside hand c, while C =0 if ~ is strictly inside h e _ 

or on the mean water line plane B •• Also C =! if ~ is exactly on 
1.,. e _ 

h or on c, provided that the hull is a smooth orientable surface 

(see Kellog (1954»; more precisely, the value of 4TIC (or 2TIC ) 
e e 

at a point ~ of h (or c) is equal to the angle at which d (or s) is 

viewed from ~ (this extends the validity of equation (4.5) to 

piecewise smooth orientable surfaces h, e.g. a ship hull with a 

transom stern). 

In the basic integral identity given by equation (4.5) 

the disturbance potential is represented as an integral distribution 

of sources (proportional to G) and dipoles (proportional to G and 
n 

G ) over the hull surface h and the mean water line c. The 
x 

discontinuity in the value of the constant C across the hull surface 
e 

can be shown to stem from the corresponding discontinuity in the 

dipole distributions over hand c, see Kellog (1954). The presence 

of the additional water line integral distribution in equation (4.5) 

was first pointed out by Brard (1972) although earlier the necessity 

of including this term was also recognised by Peters and Stoker (1957) 

Wehausen (1963) and Kotik and Morgan (1969). The importance of the 

water line integral is investigated in Section 4.4. 
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It is convenient to eliminate the discontinuity in 

the value of Ce in equation (4.4c). Noblesse and Triantafyllou 

(1983) have pointed out that there are two strategies for achieving 

this goal. The first and classical approach is discussed in Section 

4.2 and' employs auxiliary distributions of singularities over the 

hull surface, see Kellog (1954) and Hess and Smith (1966). The second 

approach is discussed in Section 4.3 and employs an integral identity 

for the potential itself, see Chow et al (1976) and Noblesse (1983). 

The latter approach is less well-known, huX appears to be very useful 

because it provides an explicit approximation to the disturbance 

potential of the flow about a sufficiently slender ship moving at 

fairly low speed. 

4.2 AUXILIARY SINGULARITY DISTRIBUTIONS 

The basic integral identity given in equation (4.5) 

relates to the problem of the 'exterior' potential flow about the 

hull. Recall now that the Kelvin wave source potential is defined 

throughout the entire lower half-space, see equations (3.1-3). The 

most well-known technique for eliminating the discontinuity in the 

value of C consists of defining a corresponding 'interior' potential 
e 

~i in the interior domain d
i 

inside the hull h and below the mean 

i 
I I S ( F1' ure 4 1) An 1"ntegral identity for ~ water ine pane . see g .. 

~ 

corresponding to equation (4.5) may readily be obtained in a similar 

manner as outlined in the previous section and it follows that 
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= - 2f i i F (G~ -~ G )dy n x x 
c 

where, in analogy with equations (4.4a-c), C
i 

is given by: 

Ci = fffV2
GdV - ff(Fn2Gxx+Gz)dxdY 

d. s . 
~ ~ 

= fJfO(X-~)o(Y-n)O(Z-')dV+ffO(X-~)O(Y-n)dxdY 
d. s 
~ i 

l
in d + s - h - c 

for ~ on h + C 

in d. + s. - h - c 
~ ~ 

(4.6) 

(4.7a) 

(4.7.b) 

(4.7c) 

The value of C. represents the total amount of fluid created within 
~ 

the interior domain d. (bounded by hand s.) or stemming from a 
~ ~ 

flux across the water line plane s. (bounded by c) . 
~ 

Addition of equations (4.4a-c) and (4.7a-c) gives: 

C = Ce + Ci = fffV2
GdV - ff (Fn

2
Gxx+Gz)dxdY 

d+d. s+s. 
~ ~ 

= Iff O(X-o O(Y-n)O (z-,)dxdydz + If o(x-OO(Y-n)dxdy = 1 (4.8) 

z<O z=O 

for all points ~ outside, inside or on the hull surface h+c, i.e. 

for any point ~ in the lower half space s~O. The term C=1 in 

equation (4.8) represents the amount of outflow produced by the 

moving source (for z<O) or stemming from a flux across the free 

surface (for z=O). Addition of the corresponding integral identities 
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given in equations (4.5-6) therefore results in: 

(4.9) 

where ~* corresponds to ~(~) or ~i(~) for points ~ outside or inside 

the hull surface respectively. 

It is convenient to modify the form of the water I,line 

integral in equation (4.9). If n=(n ,n ,n ) defines the unit normal _ x y z 

vector on the hull surface h pointing into the flow domain d, 

t=(t ,t ,0) defines the unit tangent vector to the water line c _ x y 

oriented as shown in Figure 4.1 and 'i=(l,O,O) is the unit vector 

along the Ox-axis, one obtains the relationship 

(4.10) 

where ~£ and ~d denote the flow velocity components (i.e. derivatives 

of ~) in the direction of t and nxt respectively (the unit vector 

nxt is tangent to the hull and points downwards). Using a similar 

expression for ~i and replacing dy by t d£, equation (4.10) may be 
x y 

rewritten as: 

~ = Jf(QG+SGn)da + F 2J' {(Qn -Snt +Sdn t )G+SG }t d£ '1'* n X!<J x Z Y x y 
(4.11) 

h c 

i i 
where the source strength Q=~ -~ and the doublet strength S=~ -~. 

n n 
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According to equation (4.11), which was first obtained 

by Brard (1972), the potential is generated by four auxiliary 

singularity distributions: 

(i) a source distribution over the hull surface h with strength 

Q per unit area; 

(ii) a doublet (i.e. normal dipole) distribution over h with 

strength S per unit area; 

(iii) a source distribution along the mean water line c with 

strength (Qn -Snt +Sdn t)t per unit arc length; and 
x J\, x Z Y Y 
• 

(iv) a longitudinal doublet distribution along c with strength 

St per unit arc length. 
y 

All singularities are of the 'Kelvin' type in agreement with the 

definition of the Kelvin wave source potential G, that is to say, 

the siugularities satisfy the continuity, free surface and radiation 

conditions given by equations (3.1-3). 

The representation of the potential ~* by means of 

and auxiliary distribution of singularities over the hull surface 

and along the water line is not unique. In fact, ~* may be 

generated by any linear combination of sources and doublets, as 

explained for example by Brard (1974a, b), GueveL et al (1974, 1977), 

Chang and Pien (1975) and Baar (1984a). Table 4.1 illustrates four 

possibilities. Of particular importance is the representation of 

the disturbance potential by means of a source distribution, as 

obtained by setting D=O, that is, ~=~i, in equation (4.11). 
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It follows that: 

(4.12) 

It is seen that this auxiliary source distribution renders the 

velocity potential continuous through the hull surface h+a, whereas 

the normal flow velocity is discontinuous. The representation of 

the disturbance potential by means of a source distribution is no 

doubt the most popular, see Gueve1 et a1 (1977), Tsutsumi (1979), 

Chang (1979) and Tsai et a1 (1983). 

The unknown source strength Q(x) in equation (4.12) 

may be determined by imposing the hull surface condition given in 

eq~ation (2.18) and it follows that: 

-iQ(~) 2J + F Q(x)G n (x)dy = n _ n x _ 

a 

n (~) x _ (4.13) 

2 
on the hull surface h+a, where G =V'G(~,XjF ) .n(EJ. The algebraic n _ _ n __ 

term -iQ(f) stems from the normal differentiation of the Rankine 

source term -1/4TII~-xl in equation (3.5), see Ke110g (1954) and 

Baar (1984a). Equation (4.13) is recognised as a regu.1ar Fredholm 

integral equation of the second kind, see Kantorovich and Aki10v 

(1982). 

It is notable that the representation of the 

disturbance potential by the auxiliary source distribution in 

agreement with equations (4.12-13) is an alternative and equivalent 
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formulation of the Neumann-Kelvin problem given by equations 

(2.16-19), that is to say, by solving the source strength from 

equation (4.13) and representing the potential by equation (4.12) 

an exact solution of the Neumann-Kelvin problem is obtained. 

4.3 EXPLICIT SLENDER SHIP ApPROXIMATION 

Returning to equation (4.5) an alternative strategy 

is now presented for eliminating the discontinuity in the value of 

the constant C. By making use of Gauss' divergence theorem, 
e 

equation (4.7a) may be rewritten as: 

C. = JfGnda + JIG dxdy - JJ<F
2

G +G )dxdy 
1 .z n xx z 

h s . s . 
1.- 1.-

= JfGnda F 2JJG dxdy = JJGnda + F 2JG dy 
n xx n x 

h s . h a 
1.-

Adding the term Ci~* on both sides of equation (4.5) and using the 

identity C +C =1 given in equation (4.8), one finds that: 
i e 

- (~-~*)G. }da + F 2J{G~ n n x 
(4.14) 

a 

for any point ~ inside, outside or on the hull surface h+a. This 

new identity is equivalent to the identity given in equation (4.9) 

as may easily be verified (see Noblesse (1983». 
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Making use of equation (4.10) and substituting the 

hull surface condition given in equation (2.18), the integral 

identity given by equation (4.14) may be expressed in the form of 

the integro-differential equation: 

L(t;;</» (4.15) 

where the potential ~(t;) is explicitly defined as: 

TjI(O = fJG(~.~;Fn2)nx(~)da + Fn2JG(~.~;Fn2)n!(~)dY 
h c 

(4.16) 

and the linear transform L(t;;</» is given by: 

L(";$) = JJ($-$*)Gnda + Fn2J{($-$*)Gx-G(tx$~-nzty$d)}dY . (4.17) 

h c 

The potentia~ ~(t;) given in equation (4.16) is explicitly defined 

in terms of the hull geometry, whereas the linear transform L(t;,</» 

is not known in advance. Equations (4.15-17) constitute yet another 

alternative and equivalent formulation of the Neumann-Kelvin 

problem. The implicit integral identity given in equation (4.15) 

may be solved iteratively by means of the recurrence relationship: 

(4.18) 

f -0 1 where the 1'nitia1 approximation is simply defined or n- , , ... , 

as </>(0)=0, see Noblesse (1983). 
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Associated with the sequence of potential approximations 

is a sequence of wave resistance 

approximations c;n), n~O, as discussed by Noblesse (1983). The 

zeroth order approximation C(O) can be related to the classic thin, 
w 

flat and slender ship wave resistance approximations in the thin, 

flat and slender ship limits respectively, whilst the first order 

approximation C(1) is closely related to the slow ship wave resistance 
w 

approximation in the low Froude number limit (see Table 2.2). 

In the zero Froude number limit the potential 

becomes the zero Froude number potential CPo corresponding to the 

flow about the hull when the free surface is replaced by a rigid wall, 

as may be se~n from equation (2.17). Alternatively, CPo may be 

interpreted as the 'double hull' potential of the waveless flow 

about the hull and its mirror image with respect to the plane z=O 

in infinite fluid. Table 4.2 gives the zero Froude number boundary 

conditions and alternative integral identities, corresponding to 

equations (2.16-19), (4.12-13) and (4.15-18) respectively. Noblesse 
• 
and Triantafyllou (1983) show that LO«WO~CPO for slender bodies 

moving in the direction of their major axis. When the hull surface 

is the lower half of a slender ellipsoid the potentials CPo and wo 
become proportional, that is, WO=kCPO' and the constant k is close 

to unity, see Havelock (1931a,b). Figure 4.2 shows the relative 

error E =(CP _cp(n»/cp =(l_k)n associated with the nth zero Froude 
. n 000 

number potential approximation for a prolate spheroid of aspect 

ratio q. It is seen that O~€1~1/3; in particular, €l=O if q=O 

(i.e. a 'needle') and €1=1/3 if q=1. For slender spheroids with low 
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aspect ratios between 0.1 and 0.2 (the usual range for ships) the 

relative error 8 1 associated with the zero Froude number explicit 

potential approximation is less than about 5%. 

The foregoing remarks suggest that the explicit 

potential approximation ~=~, where ~ is defined by equation (4.16), 

provides a useful approximation to the disturbance potential of the 

flow about a slender ship hull moving at low Froude number, as is 

usually the case in practice. Comparing equations (4.12) and (4.16) 

it is seen that the explicit potential approximation ~=~ is 

equivalent to the explicit source strength approximation Q=n. The 
x 

flow velocity V~ is continuous everywhere. It can also be shown 

that in the thin ship limit the potential ~ reduces to the classic 

Michell (1898) thin ship potential. Further arguments to support 

that ~ is an acceptable slender ship potential approximation are 

given in the next section and in Chapter 6. 

4.4 KOCHIN'S FUNCTION AND HAVELOCK'S FORMULA 

In section 2.4 it was pOinted out that the wave 

resistance may also be obtained by evaluating the amount of radiated 

energy contained in the free waves far behind the moving ship. 

Presently this method is outlined and subsequently used to investigate 

the importance of the water line integral term in equation (4.12), as 

well as to further assess the usefulness of the explicit slender 

ship approximation given by equation (4.16). 



Consider the Kelvin wave cource potential G(~,x;F 2) _ _ n 

defined by equation (3.5). From equations (3.15) and (3.17) it is 

seen that far downstream from the moving sourcp., as ~~OO, both the 

fundamental Rankine source term -1/4nl~-xl and the nearfie1d 

disturbance N(X)/4nF 2 are negligible in comparison with the wavelike 
n 

disturbance 
2 

W(X)/4nF . That is _ n 

as ~~_oo, as may readily be obtained from equations (3.6) and (3.8). 

Substituting this expression into equation (4.12) and reversing the 

order of integration it follows that: 

as ~~OO, where the function K(t) is defined by: 

-2J) 2 2} ( K(t) = Fn exp{z(l+t )/Fn EQda + )EQnxdY 

h C 

2 
with the function E=E(x,y,t,F ) given by: n 

E = exp{-i(x+yt)/1+t2/F 2} . 
n 

(4.19) 

(4.20) 

(4.21) 

Substituting equation (4.19) into equation (2.20) it is found that 

the elevation of the free surface far behihd the ship is gi~en by:-

(4.22) 
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Equations (4.19) and (4.22) relate the potential and 

the wave elevation far behind the ship to a superposition of 

elementary plane waves, see Newman (1977). The function K(t) defined 

by equation (4.20) is a function of the ship geometry and the Froude 

number and is known as Kochin's wave amplitude function (see Kochin 

(1951»; it represents the amplitude of the free wave component at 

angle e=arctan(t) with the negative Ox-axis (i.e. the limits t~O 

(e~) and t+oo (e~~) correspond to the transverse and diverging waves 

respectively in the spectrum of the free waves following the ship, 

see Figure 3.3) . 

.. The wave resist'ance may now be determined by evaluating 

the energy contained in the downstream wave pattern given by equation 

(4.22), see Eggers et al (1967), Wehausen (1973) and Newman (1977). 

It follows that C is given by ,the Havelock (1934) formula: 
w 

(4.23) 

For ships with a lateral plane of symmetry the Kochin's function 

K(t) becomes an even function of t and the integrals occurring in 

equations (4.19, 22-23) may be expressed as integrals over the semi-

infinite interval (0,00). 
• 

A variety of alternative expressions and approximations 

for the Kochin's function may be found in Noblesse (1983). Of 

particular interest, because of their simplicity, are the thin 

ship and slo~ ship approximations. Let the hull surface h be defined 

by the equation y=b(x,z). In the thin ship limit, equation (4.20) 



becomes identical to the Michell (1898) thin ship approximation 

~(t) given by: 

(4.24) 

where hy denotes the projection of h on the ship's centre plane y=O 

and the source strength bx=db/dx. The low Froude number approximation 

K£F(t) of K(t) is obtained by approximating the source strength Q 

by the zero Froude number source strength Q
O 

defined in Table 4.2. 

That is: 

= F -2JJexP{Z(1+t
2
)/F 2}EQ da + 

n n 0 (4.25a) 

h 

Guevel et al (1974), Baba (1976, 1977), Maruo (1977) and Kayo (1977) 

show that this expression is identical to: 

K£F(t) = JJE~OxxdxdY 
s 

(4.25b) 

where s denotes the mean free surface (excluding the ship's water 

line plane s.), E is given by equation (4.21) and the zero Froude 
1", 

number potential ¢O is defined in Table 4.2. 

For simple mathematically defined hull forms the slow 

ship approximation K£F(t) may be evaluated analytically using either 

equation (4.25a) or (4.25b), see for example Baba (1977). Here only 

the case of a vertical semi-infinite prism with elliptic water line 

is considered. Taking the length of the major axis as reference 

• 

• 
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length, the water line contour C is defined by the dimensionless 

222 
equation x +y /q =1, where q denotes the aspect (thickness) ratio. 

The zero Froude number potential CPo and source strength Q
O 

are 

given by ¢O=-qx and Qo=-(I+q)x/lx2+y2/q4, see Milne-Thomson (1968). 

Brard (1972) has evaluated the corresponding low Froude number 

Kochin's funct1.on given by equation (4;25a). •... 'Jhe low Froude number 

tF 
wave resistance C can be computed by means of Havelock's formula w 

given by equation (4.23).' 

Figure 4.3 shows the 10w_Froude number wave resistance 

. t· C tF . f approx1ma 10n as funct10n of the Froude number F or four 
w n 

different aspect ratios q (see Guevel et al (1974». The two curves 

shown correspond to the evaluation of equation 14.25a) with and 

without the water line integral term respectively. It is clearly 

seen that the water line integral has an important effect on the wave 

resistance, in particular at low Froude number and for high aspect 

ratio. For example, when the water line is circular (q=1) 

it may be shown that CtF 
behaves like 

w 

. as F ~. 
n 

ctF = (3328/315)F 6 + 16!;F 7 sin (1/F 2+~/4) 
w n n n 

If the water line integral is omitted, C
tF 

behaves like 
w 

• 

2 
= (64/15)F 

n 

r: 3 2 
- 4Y~F sin(1/F +~/4) 

n n 

as F~. When the aspect ratio decreases the effect of the water 
n 

line integral becomes less important but certainly not negligible. 

• 

For values of q between 0.1 and 0.2 (the usual range for ships) the 
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relative importance of the water line integral increases as F 
n 

decreases. In the zero Froude number limit terms in the hull surface 

and water line integrals can be shown to partially cancel out each 

other, see Kusaka (1976), Hirata and Levi da Conceicao (1976) and 

Bessho (1976). 

A simple physical interpretation of the water line 

integral may be obtained by slightly immersing the hull and closing 

it on top by means of a horizontal plane. The water line source 

distribution may then be shown to stem from the zero immersion limit 

of the surface source distribution over the top surface of the 

slightly immersed closed hull, see Noblesse (1983). Eggers (1980) 

has pointed out that the flow velocity field associated with the 

hull surface source distribution alone is not continuous along the 

water line, and that the water line source distribution is needed to 

obtain a continuous flow velocity field. 

Associated with the sequence of zero Froude number 

(0) (1) (2) 
potentials ¢O =0, ¢O =W

O
' ¢O , ... , defined in Table 4.2, is a 

sequence of low Froude number wave resistance approximations c;n) , 

. . ~ ~(n) . t' 
n~O, which may be evaluated by Subst1tut1ng ~O=~O 1n equa 10n 

(4.25b). Noblesse (1984) has proved the convergence of the sequence 

C(n), n~O, for the vertical prism with elliptic water line. Figure 
w 

1F- . 
4.4 shows the relative error €n=(C~F_c;n»/Cw associated with the 

nth approximation as function of the aspect ratio q. For q=0.15 

the relative error € is about 3.4% and it is seen that the explicit 
1 

potential approximation ¢0~¢~1)=~0 provides an acceptable low Froude 

number approximation to the wave resistance of a slender vertical prism. 
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distribution sources doublets 

condition cpt = cp 

source strength Q -:} 0 Q = 0 

doublet strength S = 0 S =f 0 

potential * + 

velocity * + 

* + = continuous through the hull surface 

- = discontinuous through the hull surface 

mixed 

cpt = 0 

Q =f 0 

S = cp 

mixed 

cpt = 0 
n 

S -:} 0 

Table 4.1 Comparison of singularity distribution methods. 

• 
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zero Froude number boundary conditions: 

V2¢ = 0 in d o 

¢On = nx on h 

¢Oz = 0 on h 

¢O = O(l/I~I) as 

zero Froude number Green's function: 

4TI GO(~'~) = -1/1~-~1 + l/R 

R2 = (~_x)2+(n_y)2+(~+z)2 

auxiliary source distribution representation: 

£f QO(~)Go(~'~) da ¢O(~) = 

-iQO(~) + If Qo(x)G
o 

da = n (~) 
h - n x -

explicit integral identity: 

¢o(~) = ~o(~) - LO(~j¢O) 

~o(~) = 1f Go(~,~)nx(~) da 
h 

LO(~'¢O) = 

¢(n+1) (~) 
o -

¢~O) ;; 0 

• 

da 

on h 

n = 0,1, ... 

Table 4.2 Zero Froude number boundary conditions, Green's 

function and "integral identities. 

• 
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d. 
~ 

Figure 4.1 Definition sketch for ayplicat10n of Green's theorem 

(only port half of mean sea surface is drawn). 
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Figure 4.3 Wave resistance of vertical elliptical prisms 

(see Guevel et al (1974), notice the different scales!). 
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5. COMPUTATIONAL A~PECTS 

5.1 ApPROXIMATION OF INTEGRAL IDENTITIES 

The disturbance potential of the flow about a moving 

ship is expressed in equation (4.12) in terms of a continuous 

distribution of Kelvin wave sources over the mean hull surface and 

water. line of the ship. The unknown source strength distribution 

must be determined by solving the Fredholm integral equation of 

the second kind given by equation (4.13). This may be accomplished 

by means of a point-collocation method-as used for instance by In~lis (1980) 

and Wu (1984). In the pOint-collocation procedure the inte~ral 

equations (4.12-13) are approximated by matrix equations. 

The mean hull surface h is subdivided into a large 

number N of quadrilateral panels. The position vector of the 
• 

centroid and the area of the j-th panel (j=l, ... ,N) are denoted by 

x.and ~h respectively. The panels are numbered such that the 
-J j 

first M panels are adjacent to the mean water line c and ~c. 
J 

denotes the arc length of the j-th water line segment (j=l, ... ,M). 

The integral identities given by equations (4.12-13) are satisfied 

at one control point on each panel, taken at the panel's centroid. 

The source strength is assumed constant over each small panel and 

the source strength on a water line segment is taken equal to that 

of the adjacent hull surface panel. Under these assumptions the 
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integral identities may be written in discretised form as matrix 

equations given by: 

N 

c!>1 = L a. Q 
j=l ij j 

N 

L 8 .. Q. = 
j=l 1J J 

n . 
X1 

for 1=1, ... ,N, where c!>1=c!>(x.) and n .=n(x
i

) are the values of 
_1 X;L-

the disturbance potential and the normal component of the hull 

velocity at the i-th control point and Q.=Q(x.) is the source 
J -J 

strength on the j-th panel. The influence coefficients a. .. and 
1J 

8 .. represent the contributions on the i-th panel to the Kelvin 
1J 

wave source potential and its normal derivative in the j-th 

control point and are given by 

a. .. 
1J 

2 I 2 + 1t,.:F G (~. , x ; F ) n t d £ 
~~J n _1 _ n x y 

D.C . 
J 

II 
2 - '2I - 2 8 .. =-io .. + G (~.,x;F )da+-lI .... F G (~.,x;F )nxt d£ 1J 1J n _1 _ n mJ n n _1 _ n y 

D.h D.c . 
j J 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

for i,j=l, ... ,N, where HMj=l if j=l, ... M and ~j=O if j=M+1, ... N, 

and O .. =1 if i=j and O .. =0 if i~j. 
1J 1J 

Equation (5.2) represents a system of N linear 

algebraic equations in the N unknown source strengths. Having 

evaluated the infuence coefficients 8 .. from equation (5.4), 
1J 

this system may readily be solved and the values of ' the potential 
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at the N control points follow from lequations (5~1)land (5.3). "In 

order to compute the influence coefficients it is convenient to 

express the Kelvin wave source potential in the form: 

2 
G(1;,x;F ) = _ _ n 

where the 'infinite Froude number' Green's function Gi(1;,x) is 

given by 

with r=;(1;-x)2+(n_y)2+(~+z)2 representing the distance between 

(S.Sa) 

(S.5b) 

the field point 1; and the free surface mirror image of the source 

point x. 
2 

The function G2 (1;,x;F ) is given by: _ _ n 

2 2 
4'ITF G

2
(1;,x;F ) = {M(~) - l}/R - H(X)8P(X) n _ _ n (S.5c) 

in agreement with equations (3.S-6), (3.9) and (3.18). The infinite 

Froude number Green's function G1(~'~) and its normal derivative 

vanish when ~=O=z and this function does not contribute to the 

water line integral. Substituting equation (S.Sa) .into equations 

(S.3-4) gives: 

(2) 
+ 0'. •• 

l.J 
13 .. = -io .. + Si(~) + S~~), 

l.J l.J J l.J 
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where 

(1) JJG1(~l'~)da S~~) cx
ij 

= = If G1 (C ,x)da 
1J n _1 _ 

!J.h. !J.h. 
J J 

(2) ffG2(C.,X;F 2)da 2 f 2 cx .. = + HM.F G2(~.,x;F)n t d£ 1J _1 _ n ,J n _1 _ n x y 
!J.h. !J.c. 

J J 

S~~) ffG2 (c.,x;F 2)da + HWF 2 f 2 = G
2 

(~. ,x;F )n t d£ 
1J n _1 _ n ' J n n _1 _ n x y 

!J.h. !J.c. 
J J 

for i,j=l, ... ,N. The integrands of the influence coefficients 

(1) (1) . 
cx.. and S.. 1nvo1ve fundamental Rankine source terms only and 

1J 1J 

these terms may be integrated analytically using the Hess and 

Smith (1966) formulas. The Lntegrands of the panel surface and 

water line segment integrals in the expressions for the influence 

coefficients CXi(~) and S(~) are dependent on the Froude number F 
J iJ n 

and regular for all values of i,j=l, ... ,N (provided s.+z<O as is 
1 

assumed here). Such'integra1s may be integrated numerically by 

means of Gaussian quadrature, as illustrated in Figure 5.1. The 

procedure is based on a linear isoparametric mapping of the 

integration domain to the normalised integration domain where the 

integration variable is less than unity in absolute value. This 

device is frequently used in the Finite Element Method, see 

Zienkiewicz (1977). 

Five possible sources of error are associated with 

the approximation procedure outlined above. These are: 
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(i) The approximation of the hull surface. Guidelines for obtaining 

a suitable subdivision of the hull surface have been formulated 

by Inglis (1980). Whenever possible, panels with low aspect 

ratios should be avoided, variations in size between adjacent 

panels should be kept small .and the panels should be concentrated 

in areas of large curvature of the hull surface where the 

flow velocity might change rapidly. 

(ii) The approximate 'way in which the integral identities are satisfied. 

The point-collocation procedure relies on the assumption that 

the source strength is constant on each panel. For water 

wave radiation/diffraction problems it has been suggested by 

Mei (1978) and Yeung (1982) that the individual panel 

dimensions should not exceed one eighth of the wave length. 

In the present context the dimensionless wavelength is 

2 
proportional to F and it follows that the number of panels 

n 
-4 

N is proportional to F . At low Froude number a very fine 
n 

discretisation of the hull surface may therefore be reqUired. 

Numerical experience suggests that the present approximation 

of the water line integral is reasonable, see for example 

Tsutsumi (1979) and Tsai et al (1983). 

(iii) Quadrature errors in the nWl!erical integration of the influence 

coefficients. There is some discussion of this topic in 

Sclavounos and Lee (1985). The integrands of the influence, 

a~~) and S~~) are in general slowly varying functions except 
l.J l.J 

at very low Froude number when the contribution from the 
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wavelike disturbance component of the Kelvin wave source 

potential may vary substantially within a panel. In the 

present approach a two-point Gauss- Legendre quadrature is 

used with weights w =1 and abscissae a.=(-l)j/1:3 for j=1,2 
j J 

(see Figure 5.1); this formula integrates a cubic polynomial 

exactly, see Davis and Rabinowitz (197.5). 

(iv) The evaZuation of the KeZvin Wave source potentiaZ. In 

sections 5.2-3 algorithms are discussed for the evaluation 

of this function with an absolute accuracy of between five 

and six significant digits. This is considered sufficient 

for practical applications. 

(v) Roundoff-errors in the soZution of the Zinear systen! of 

equations in the unknown source strength. (This source of 

error is not relevant when the explicit slender body 

apprqximation discussed in Section 4.3 is used, in which 

case the source strengths are approximated by the known 

normal components of the hull velocity on the panel). The 

present state of the art of linear system solvers is such 

that this type of error can easily be kept at bay, see 

Nonweiler (1984). In this study the linear system given by 

equation (5.2) is solved by means of Crout's factorisation 

method with partial pivoting and iterative refinement. 
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Most ships have a lateral plane of symmetry and this 

feature may be exploited advantageously to halve the required 

number of evaluations of the Kelvin wave source potential and its 

gradient, see Inglis (1980) and Wu (1984). 2 2 
This number equals N +M 

if no use is made of ship symmetry and the influence coefficients 

are evaluated by means of the usual single node centroid integration 

(i.e. the one-point Gaussian quadrature as used for instance by 

Inglis (1980». Use of the two-point Gauss-Legrendre rule raises the 

2 2 
number of evaluations by about a factor four to 4N ~2M. If the 

ship symmetry is efficiently exploited, this number may be reduced 

2 2 
by a factor two to 2N +M. This may be achieved as follows. In 

matrix notation equation (5.2) may be written as: 

BQ = N (5.6) 

where B is the (NxN) matrix of influence coefficients and Q and N 

are (Nx1) column vectors of source stren~ths and normal hull 

velocity components respectively. If a ship has a lateral plane of 

symmetry such that the port side panels 1 to iN are the mirror images 

with respect to the plane y=O of the starboard side panels iN+1 

to N then the matrix equation (5.6) may be partitioned as follows: 

= 

where B , B ,-B and Bare (tNxiN) matrices, Q , Q , Nand N 
... 1 ... 2 ... 3 ... 4 ... p ... s ... p ... s 

are (iNx1) column vectors and the indices p and s refer to panels 

on the port and starboard side respectively. Due to symmetry 
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~1=~3' ~2=~4' Q =Q and N =N and the unknown source strengths on _p _s _p _s 

the port half of the ship's hull are found from: 

B Q = N 
-p-p -p 

where B =Bl+B is an (iNxiN) matrix. _p _ _2 In this approach the saving 

in computing time and storage space is about 50%. 

The remainder of this chapter is devoted to the 

presentation and discussion of accurate and efficient algorithms 

for the evaluation'ofthe nearfield and wavelike components of the 

Kelvin wave source potential. From the previous considerations it 

is evident that the efficiency of these algorithms is very important 

if an unrealistically large amount of computing time is to be avoided. 

5.2 EVALUATION OF THE NEARFIELD DISTURBANCE 

By choosing a suitable expression from any of the 

alternative representations given in Table 3.2 the problem of the 

numerical evaluation of the nearfield disturbance is reduced to 

calculating a single integral with a slowly varying integrand which 

is expressed in terms of the complex-valued exponential integral 

function. The ascending series representations are best suited for 

evaluating the function M(X) for small values of R=lxl, whereas the 

asymptotiC expansion expressions may be used for large values of R, 

• 
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see Nobl·esse (1978b). Direct numerical integration of the nearfield 

disturbance is both cumbersome and time-consuming. On the one hand, 

the evaluation of the exponential integral tends to be rather time-

consuming, as discussed by Baar (1985) and Newman (1985); a 'near-

optimal' algorithm for the evaluation of this function is presented 

in the Appendix. On the other hand, the integrands of the integrals 

in Table 3.2 have discontinuous low order derivatives at the endpoints 

of the integration interval; this feature prohibits the immediate use 

of an efficient Gaussian quadrature method without taking special 

precautions, as discussed by Davis and Rabinowitz (1975) and Baar 

and Price (1986b). 

Newman (1986a) has developed a highly efficient 

algorithm for the evaluation of the nearfield disturbance which 

effectively overcomes these problems. The method is based on four 

complementary trivariateChebyshev expansions which cover the entire 

definition domain of the function M(X). Chebyshev approximation 

(see Fox and Parker (1968» has proved to be a very useful tool in 

numerical ship hydrodynamics (see Newman (1985» and is based on 

the following principle. For the function f(x) defined in -l~x~l 

the Chebyshev series .is given by: 

f(x) = 
00 

E'a T (x) 
O n n 

n= 

• 

where the primed summation sign indicates that the first term in 

the series must be halved and T (x) is the Chebyshev polynomial as 
n 

defined in Abramowitz and Stegun (1972). The Chebyshev coefficients 



a are given by: 
n 

a 
n 
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11'. 

= (2/TI)ff(Cose)cOS(ne)de 
) 
o 

The Chebyshev series may be shown to converge if f(x) is sufficiently 

smooth in -1~x~1. For some special functions the Chebyshev coefficients 

an can be evaluated analytically, see for example Luke (1969); 

in general, however, they are computed by means of a suitable 

quadrature formula, see Fox and Parker (1968). In computational 

practice the infinite Chebyshev series expansion is truncated beyond 

some suitable value n=N, giving the polynomial approximation 

N 
L'a T (x) + EN(X) 

O
n n 

n= 

The beauty of Chebyshev approximation is that a simple estimate for 

the truncation error EN(X) is immediately available. The Chebyshev 

polynomials oscillate between -1 and +1 and the contribution from 

any term in the expansion is bounded by the magnitude of the 

corresponding coefficient. That is: 

00 

I EN 1 < L·· 1 a I 
n=N+1 n 

and the summation of the Chebyshev series may be terminated once 

the coefficients become less in absolute value than the desired:_ 

accuracy of the approximation. The evaluation of the truncated 

Chebyshev series is facilitated by converting it into an equivalent 

ordinary polynomial of the form: 
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N 
n 

l: p x + € (x) 
n=O n n 

An algorithm for this conversion is given by Nonweiler (1984); 

ordinary polynomials are rapidly evaluated by means of Horner's 

nested multiplication method. 

The Chebyshev approximation procedure may be extended 

to functions of more than one variable, such as the nearfield 

disturbance M(X) defined by equation (3.10). For this purpose it 

is convenient to write equation (3.14) as: 

where the spherical coordinates (R,a,S) are defined by 

(X,Y,Z)=R(sina,cosasinS,cosacosS). Because of the symmetry relations 

given by equation (3.16) only the range (X~O, Y~O, Z~O) or 

(R~O, O~a~l~, .o~s~i~) has to be considered. Newman (1986a) defines 

1 

MA;1-(2/~)R frm{(l + A + ~A2 + !A3
)£n(A)}dt 

-1 

if R<l. This expression may be evaluated analytically by means of 

simple recurrence relationships, see Newman (1986a). The slowly 

varying integral terms M
J 

are approximated by means of .four 

complementary Chebyshev expansions of the form: 
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MI = L:' L: ' L: ' ~i'kT,(R)T,(a)T (S) 
i=O j=O k=O ~ J 1 J k 

= L: L: L: 
-i-j-k 

p, 'kR a S 
i=O j=O k=O 1J 

- ..., ..., 
where -l~R,a,S~l, a=2(a/!7T)-1, 

- 2 
8=2(S/!7T) -1 and 

2R-1 O~R~l 

(2R-5)/3 1~R~4 
R = 

(R-7)/3 4~R~10 

1-20/R R~10 

In these four domains the ordinary polynomial representations of 

MI are eval~ated rapidly with an accuracy of between five and six 

significant digits if the non zero coefficients p, 'k are prestored 
1J 

in four arrays of 187, 206, 198 and 165 elements respectively. Tables 

of both the Chebyshev coefficients ai'k and the ordinary polynomial 
. J 

coefficients Pijk' as well as a full description of the numerical 

methods used to obtain these coefficients, may be found in Newman 

(1986a). 

A Fortran 77 subroutine has been prepared which 

implements Newman's algorithm for the evaluation of the nearfield 

disturbance. The gradient is computed by analytical differentiation 

of the polynomial representations (this procedure slightly degrades 

the accuracy by about one significant digit). The nested 

multiplication algorithm for the evaluation of an ordinary polynomial 

is very well suited to vectorisation on a parallel computer, see 

Schendel (1984), and the computing time on a Cray-1S machine is 
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only a few microseconds per evaluation of M and VM. Figure 5.2 

shows surface plots of the function M(X,Y,Z) for Y=O and several 

values of Z. F~gures 5.2a-b clearly illustrate the limiting 

behaviour of M for small and large values of R as indicated by 

equation (3.15) (compare with Figure 3.2). 

5.3 EVALUATION OF THE WAVELIKE DISTURBANCE 

Numerical integration of equation (3.19) presents 

no particular difficulties except from the possible accumulation of 

roundoff-errors due to the presence of the rapidly oscillatory 

integrand (at small values of D=/y2+Z2 it may be better to use the 

seventh integral expression given in Table 3.3). Baar and Price 

(1986&) have presented an 'efficient numerical integration procedure 

based on a sequence of high precision Gaussian quadrature rules 

with interlacing abscissae (see Patterson (1973». However, the 

efficiency of direct numerical integration is somewhat limited by 

the excessive number of integrand evaluations which is required 

when the integrand is rapidly oscillatory, see Davis and Rabinowitz 

(1975). Alternatively, any of the equivalent integral expressions 

given in Table 3.3 may be used to develop an alternative algorithm 

for the evaluation of the wavelike disturbance, see for example 

Guttmann (1983) who implemented Weber's (1981) method to evaluate 

the third Fourier transform integral expression given in Table 3.3 . 

• 
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In practice an ideal algorithm" for the evaluation of 

the wavelike disturbance is a method which avoids numerical integration 

altogether. Therefore Baar and Price" (1986b) have investigated the 

usefulness of the two series representations given by equations 

(3.21-22). Due care is required when evaluating Neumann series of 

this type. The Bessel functions satisfy three-term recurrence 

relationships with respect to their degree n, as discussed in the 

Appendix, equations (A.4-5). Table 5.1 gives values of the Bessel 

functions for different nand x. It is seen that only the functions 

Y and K are numerically increasing functions of n and these n n 

functions can be evaluated without difficulty by means of forward 

recursion. The functions J and I are numerically decreasing 
n n 

functions of n and are so-called 'minimal' solutions of their 

respective three-term recurrence relationships, see Gautschi (1967); 

recursion is therefore only stable if applied in the backward sense. 

Table 5.1 also clearly illustrates that the functions Y and K n n 

increase exponentially in magnitude with increasing n, whereas the 

functions J and I vanish in an exponential manner. This feature 
n n • 

causes serious cancellation errors and underP.overflow problems during 

the running summation of the Neumann series. Effective algorithms 

to overcome these problems have been derived by Baar and Price (1986b) 

who showed that the difficulties associated with the generation of 

Bessel functions can be avoided by computing ratios of Bessel 

functions rather than the functions themselves, as suggested by 

Gautschi (1967). Details of this method are described in the 

Appendix. 
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For purposes of numerical evaluation it is convenient 

to write both series representations given by equation (3.21-22) 

in the form 

where EN denotes the truncation error and the finite Fourier cosine 

series C~(8) is given by: 

N 
L'a cos(n8) 

n 
n=O 

Series of this type may be evaluated rapidly by means of the 

Goertzel-C1enshaw algorithm (see Nonweiler (1984», which can be 

recursively from: 

b = a + 2cos(8)b 1 - b 2 
n n ~ ~ 

for n=N, N-1, ... ,0, where cos(8)=Z/D and the initial values are 

The Fourier coefficients a , n=O,l, ... ,N, corresponding 
n 

to the series representations given by equations (3.21-22) are 

evaluated in an efficient manner by means of the following two-step 

procedure: 



(i) Compute the sequences of ratios of Bessel functions defined by: 

, (X) = I n 

k (iD) = 
n 

(5.7a) 

K l(iD)/K (!D) n+ n (5.7b) 

for n=O,l, ... ,N in the series given by equation (3.21); and 

(5.7c) 

i (iD) = I l(!D)/I (iD) n n+ n (5.7d) 

for n=O,l, ... ,N in the series given by equation (3.22). 

Notice that jO=YO=-l. Algorithms for obtaining these sequences 

are outlined in the Appendix. 

(ii) Compute the Fourier coefficients a ,n=O,l, ... ,N using the 
n 

recursion relationships: 

a
n

+
1 

= -a k j (1 - j 1)/(1 - j ) n n n n+ n 

for n=0,1, ... ,N-1 in the series given by equation (3.21), 

the initial value being a
o
=exp(-!Z)J1 (X)Ko (iD); and 

a = a i y (1 - y 1)/(1 - y ) 
n+1 n n n n+ n 

f n-O 1 N 1 in the serl.'es given by equation (3.22), the or -, , ... , -

(5.8a) 

(5.8b) 

initial value being ao=-~exp(-!Z)Y1(X)Io(iD). Equations (5.8a-b) 
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may be verified by making use of the derivative relationships 

for the Bessel functions given in the Appendix, equations (A.7-8). 

Extensive numerical experiments have been performed 

to assess the range and capability of the present algorithms, as 

well as to establish the convergence properties of the two series 

representations. In these experiments no attempt has been made to 

evaluate the wavelike disturbance at the free surface (i.e. only 

strictly positive values of Z have been considered). An absolute 

-6 
error tolerance of E=10 was specified, giving an accuracy of 

between five and six significant digits. It appears that the two 

series are indeed complementary: the series given by equation (3.22) 

is best suited for small values of D/x2 with no more than about 20 

terms required to achieve full convergence to within the specified 

accuracy, whereas the series given by equation (3.21) may be used 

2 
for moderate and large values of D/X with no more than about 70 

terms required. 

2 
The precise transition value of D/X between the two 

regimes of convergence depends in a rather complicated fashion on 

both the coordinate X, the distance D=/y2+Z2 from the source track, 

the angular orientation 8=arctan(Y/Z) and the specified tolerance E 

(as expected in view of the asymptote nature of the series given by 

equation (3.22». The following device to establish which series 

should be used has proved very effective in computational practice, 

at little additional cost. Initially the sequences of Bessel function 

ratios given by equations (5.7a-b) are generated for n=O,1, ... ,75 
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and these sequences are used to generate the als by means of equation 
n 

(5.8a). The convergence of the a 's may easily be monitored by 
n 

checking if laNI<E for N<75. If this is not the case the series 

given by equation (3.21) is too slowly convergent and the asymptotic 

series given by equation (3.22) is evaluated using equations (5.7c-d) 

with N=25 and equation (5.8b) until la I<E. The wavelike disturbance 
N 

is subsequently obtained by evaluating the relevant convergent finite 

Fourier cosine series. 

A Fortran 77 subroutine has been prepared which 

implements the outlined algorithms for the evaluation of the series 

representations of the wavelike disturbance. Recurrence relationships 

for the evaluation of the gradient VP of P are obtained by analytical 

differentiation of the series given by equation (3.21-22). The 

derived recursion schemes are very well suited to vectorisation 

(see SChendel (1984» and the average computing time on a Cray-1S 

machine is about 70 micro-seconds per evaluation of P and VP. (This 

is about 100 times faster than direct numerical integration of 

equation (3.19) to within the same accuracy). Figure 5.3 shows 

surface plots of the function P(X,Y,Z) for several values of Z 

(compare with Figure 3.3). 
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x n J (x) y (x) I (x) K (x) 
n n n n 

1 0 (- 1) 7.652 (- 2) 8.826 ( 0) 1.266 (- 1) 4.210 
1 (- 1) 4.401 {- 1)-7.812 (- 1) 5.652 (- 1) 6.019 
2 (- 1) 1.149 ( 0)-1.651 (- 1) 1. 357 ( 0) 1.625 
5 (- 4) 2.498 ( 2)-2.604 (- 4) 2.715 ( 2) 3.610 

10 (-10) 2.631 ( 8) -1. 216 (-10) 2.753 ( 8) 1.807 
20 (-25) 3.874 ( 22)-4.114 (-25) 3.967 ( 22) 6.294 
50 (-80) 2.906 ( 77)":'2.191 (-80) 2.935 ( 77) 3.407 

2 0 (- 1) 2.239 (- 1) 5.104 ( 0) 2.280 (- 1) 1.139 
1 (- 1) 5.767 (- 1)-1.070 ( 0) 1.591 (- 1) 1.399 
2 (- 1) 3.528 (- 1)-6.174 (- 1) 6.889 (- 1) 2.538 
5 (- 3) 7.040 ( 0)-9.936 (- 3) 9.826 ( 0) 9.431 

10 (- 7) 2.515 ( 5)-1.292 (..,; 7) 3.017 ( 5) 1.625 

20 (-19) 3.919 ( 16)-4.082 (-19) 4.311 ( 16) 5.771 

50 (-65) 3.224 ( 62) -1. 976 (-65) 3.353 ( 62) 2.980 

5 0 (- 1)-1.776 (- 1)-3.085 ( 1) 2.724 (- 3) 3.691 

1 {- 1)-3.276 (- I) 1. 479 ( 1) 2.434 (- 3) 4.045 
2 (- 2) 4.657 (- I) 3.677 ( 1) 1.751 (- 3) 5.309 

5 (- I) 2.611 {- 1)-4.537 ( 0) 2.158 (- 2) 3.271 

10 (- 3) 1.468 { 1)-2.513 (- 3) 4.580 ( 0) 9.759 

20 (-11) 2.770 { 8)-5.934 (-11) 5.024 ( 8) 4.827 

50 (-45) 2.294 ( 42)-2.789 (-45) 2.931 ( 42) 3.394 

10 0 (- 1)-2.459 (- 2) 5.567 ( 3) 2.816 (- 5) 1. 778 

1 (- 2) 4.347 (- 1) 2.490 ( 3) 2.671 (- 5) 1. 865 

2 (- 1) 2.546 {- 3)-5.868 ( 3) 2.282 (- 5) 2.151 

5 {- 1)-2.341 (- I) 1.354 ( 2) 7.772 (- 5) 5.754 

10 (- 1) 2.075 (- 1)-3.598 ( 1) 2.189 (- 3) 1.614 

20 (- 5) 1.151 ( 3) -1. 597 (- 4) 1.251 ( 2) 1.787 

50 (-30) 1. 785 ( 27)-3.641 (-30) 4.757 ( 27) 2.061 

50 0 (- 2) 5.581 (- 2)-9.806 ( 20) 2.933 (-23) 3.410 

1 {- 2)--9.751 (- 2)-5.680 ( 20) 2.903 (-23) 3.444 

2 {- 2)-5.971 (- 2) 9.579 ( 20) 2.816 (-23) 3.548 

5 (- 2)-8.140 (- 2)-7.855 ( 20) 2.279 (-23) 4.367 

10 (- 1)-1.138 (- 3) 5.724 ( 20) 1.072 (-23) 9.151 

20 (- 1) -1. 167 (- 2) 1.644 ( 18) 5.442 (-21) 1.706 

50 (- 1) 1.214 (- 1)-2.103 ( 10) 1. 7&5 (-13) 4.006 

100 (-21) 1.116 ( 18)-3.294 (-16) 2.728 ( 13) 1.639 

Example 
-1 

J
10

(50) = {_ 1)-1.138 = - 1.138 10 = - 0.1138 . 

Table 5.1 Bessel functions of integer order. 
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6. APPLICATIONS OF THE THEORY 

6.1 HULL DATA 

The theory developed in the foregoing chapters is 

presently used to analyse the steady flow parameters for five 

different hull forms. Results are presented over prescribed 

ranges of the Froude number and compared with experimental data, 

as well as other theoretical predictions. Both the exact 

Neumann-Kelvin solution (see section 4.2) and the explicit slender 

ship approximation (see section 4.3) are considered. In order to 

gain insight in the performance and limitations of the linearised 

potential flow model a wide variety of flow parameters is investigated. 

These include the wave resistance, lift force, trimming moment, 

sinkange, trim, wave profile, pressure signatures and vertical 

force distributions. 

The five hull forms in elude one mathematically defined 

fully submerged ship, one mathematically defined surface ship, and 

three realistic surface ships (see Andrew et al (1986». The main 

particulars of the considered hull forms are summarised in Table 6.1 

and the schematic body planes of the surface ships are shown in 

Figure 6.1. Table 6.1 gives for each hull form the beam/length 

and draft/length ratio, the block coefficient, the numbers of 

panels used to discretise the port side of the hull surface, and 

the range of Froude numbers. 



- 120 -

The submerged prolate spheroid is considered in 

section 6.2.1. For this hull form an exact analytical solution of 

the Neumann-Kelvin wave resistance is available (see Farell (1973». 

Wigley's parabolic hull form has been the subject of extensive 

experimental and theoretical studies. Experimental data and 

theoretical predictions of the wave resistance, wave profile and 

hull pressure signatures are presented and discussed in section 

6.2.2. The HSVA tanker represents an extreme case of a very full 

hull form and was selected in order to assess the possible 

limitations of the linearised potential flow model. Predictions 

of the wave resistance and wave profile are presented in section 

6.3.1. The 'Friesland' class destroyer represents an other extreme 

case of a very fast ship with transom sterm. Andrew (1985) has 

measured the vertical force distributions in calm water. These 

data, as well as total lift force, trimming moment, sinkage and 

trim, are compared with the theoretical predictions in section 

6.3.2. Finally, a 1930's Cruiser was selected to illustrate the 

versatility of the developed theory to deal with the prediction of 

other flow parameters. For one value of the Froude number 

predictions of the pressure field within the fluid surrounding the 

hull are presented in section 6.3.3. 

All presented flow data are nondimenional in terms 

of the fluid density, the ship speed and the ship length (see 

Table 2.1). 
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6.2 MATHEMATICALLY DEFINED HULL FORMS 

6.2.1 SUBMERGED PROLATE SPHEROID. 

Evidently the water line integral terms (see 

chapter 4) are no longer present in the case of a fully submerged 

body and this implies a major theoretical simplification. Havelock 

(1931a) was among the first to investigate the wave resistance of 

a submerged prolate spheroid and derived a simple wave resistance 

approximation formula by using the axial source distribution 

corresponding to the motion of the spheroid in an infinite fluid 

and applying Lagally's theorem to evaluate the wave resistance. 

Of course, the axial source distribution does not produce a 

spheroid in the presence of a free surface, but the accuracy of 

Havelock's approximation increases with increasing immersion depth. 

Later Farell (1973) obtained the complete analytical solution of 

the Neumann-Kelvin problem by expanding the potential and the 

source strength in equations (4.12-13) into series of spheroidal 

harmonics. Havelock's approximation is obtained by retaining only 

the first term in Farell's exact expansion. By comparing Farell's 

solution with the present theoretical predictions the accuracy of 

the computational methods discussed in the previous chapter can be 

assessed. 
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Figure 6.2 depicts the relationship between the 

wave resistance coefficient C (=R /pv2L2) and the Froude number w w 

Fn (=V/lgL). Havelock's approximation is seen to be in poor 

agreement with Farell's exact solution. This discrepancy is due 

to the small immersion depth of the spheroid's centroid (the 

present immersion depth/length ratio equals 0.1242, see Table 6.1). 

The Neumann-Kelvin theoretical predictions (i.e. the numerically 

exact solutions of equations (4.12-13» are in excellent agreement 

with Farell's exact solution. This result confirms the accuracy 

of the developed computer program. The explicit slender ship 

approximation given by equation (4.16) is in good agreement with 

Farell's solution. The small differences may possibly be ascribed 

to the rather large value of the spheroid's beam/length ratio (this 

ratio equals 0.1667, see Table 6.1). 

6.2.2 WIGLEY'S PARABOLIC HULL 

Wigley's (1942) parabolic hull form has been the 

subject of extensive experimental and theoretical studies, see 

Chen and Noblesse (1983b) and McCarthy (1985) for a review. The 

nondimensional offsets of the Wigley hull are given by the equation 

2 2 2 y= ±ib(1-4x )(l-z /d) for -!~x~!, -d~z~O, where band dare 

constants representing the beam/length and draft/length ratio 

respectively (b=O.l, d=0.0625). Chen and Noblesse (1983b) 

investigated eleven sets of experimental wave resistance data and 
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concluded that considerable variations occur (for example, the 

experiments scatter is 65% at F =0.2). Recently new experiments 
n 

have been carried out by Ju (1983) and Kajitani et al (1983) (see 

also McCarthy (1985» and these data are used in the present 

section. 

The results of Ju's (1983) wave resistance 

measurements with a 10 ft restrained model are summarised in 

Figure 6.3. For Froude numbers between 0.16 and 0.34 this figure 

shows the measured total resistance C
t

' the calculated frictional 

resistance C
f 

(represented by the Schoenherr flat plate friction 

formula), the estimated viscous resistance C
v
=I.1 C

f
' the measured 

viscous wake resistance C (derived from wake survey measurements), 
vw 

the residual resistance Cr=Ct-C
f

, the wavemaking resistance 

C =C -C and the wave pattern resistance C =Ct-C • At low 
w t v wp vw 

Froude numbers (F less than about 0.25) the viscous resistance is 
n 

more than 80% of the total resistance and the wave pattern 

resistance derived from wake-survey measurements is expected to 

be more reliable than the wave pattern resistance derived from 

wave pattern analysis (see McCarthy (1985». 

Figures 6.4{a)-{c) show comparisons between the 

measured wavemaking and wave pattern resistance and theoretical 

predictions. The theoretical data shown in figures 6.4{a)-{b) 

were obtained by Chen and Noblesse (1983a). Figure 6.4{a) compares 

the experimental data with the thin and slow ship theoretical 

predictions calculated using equations (4.24) and (4.25a) 

respectively. Both theoretical curves are in poor agreement 



- 124 -

with the experimental data. The theoretical humps and hollows are 

exaggerated and, more seriously, they occur at rather lower values 

of the Froude number than in the experimental data. Figure 6.4(b) 

shows the zeroth and first order wave resistance approximations 

corresponding to the sequence of slender ship approximations 

defined by equation (4.18). Chen and Noblesse (1983b) made several 

assumptions in order to simplify the calculations. Most notably 

the nearfield disturbance component N(X) of the Kelvin wave source -
potential was approximated by the zero Froude number Green's 

function (i.e. N(X)=-l/\X\, see the discussion surrounding 
- -

equation (3.15», and the water line integral term was neglected. 

The zeroth order wave resistance approximation is essentially a 

generalisation of the classic thin ship approximation and the 

zeroth order curve in figure 6.4(b) suffers from the same defects 

as the theoretical curves in figure 6.4(a). The first order 

wave resistance approximation shown in figure 6.4(b) implies a 

major qualitative improvement of the theoretical predictions. 

Although the humps are still exaggerated, their positions are in 

good agreement with the experimental data. 

The present results are shown in figure 6.4(c). 

Calculations were made at 19 different Froude numbers and both the 

'exact' Neumann-Kelvin theoretical predictions and the explicit 

slender ship approximations are in good agreement with the 

experimental data. At values of the Froude number less than about 

0.25 the theoretical predictions overestimate the 



experimental data. Comparison between the first order curve in 

figure 6.4(b) and the slender ship approximation curve in figure 

6.4(c) shows that the inclusion of the nearfield disturbance 

component has an important (decreasing) effect on the magnitude of 

the humps of the wave resistance curve. Because of the large 

variation in the high Froude number theoretical predictions 

obtained by other authors (see Table 1.1) no direct comparison 

with these data has been included in figure 6.4(c). The presently 

obtained results confirm the usefulness of the Neumann-Kelvin 

approximation for a practical range of Froude numbers. 

Figures 6.5(a)-(d) show a typical comparison 

between the measured and calculated wave profile and hull pressures 

at a fixed value of the Froude number (F =0.316). The wave 
n 

profiles S /F2 (=gZ /~) were measured by Kajitani et al (1983) 
wnw 

using restrained models. Figure 6.5(a) indicates that there is 

good agreement between the measured and calculated wave profiles 

except in the bow regime. The theoretical bow wave crest amplitudes 

are lower than the experimental values. Figure 6.5(b)-(d) show 

the comparisons of the measured and calculated hull pressure 

p (=P/p~) at three different depths (z/d=-0.20, -0.52 and -0.84). 

The measurements were obtained using a short 2.5 m restrained 

model (see Kajitani et al (1983» and it is difficult to draw a 

conclusion from the results shown in these figures. Both the exact 

Neumann-Kelvin solution and the slender ship approximation have 

the same characteristics as the measured pressure signatures. 
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6.3 REALISTIC HULL FORMS 

6.3.1 HSVA TANKER 

The HSVA tanker is al.limiting case with its high 

value of block coefficient and low range of Froude numbers (see 

Table 6.1 and figure 6.1). Figure 6.6 shows the measured wave 

resistance data which were obtained from the total resistance 

measurements carried out 'by .Collatz (1972). Free-running mOdels 

of three different sizes were used (the effects of sinkage and trim 

are assumed to be negligible for this hull form). The estimated 

wave resistance is given by C =Ct-(C t+C ), where C
t 

is the total 
w v vp 

resistance, C
vt 

is the viscous tangential resistance (here assumed 

to be given by the ITTC 1957 line) and C is the viscous pressure 
vp 

(or form) drag. For this hull form C is very large and assumed 
vp 

-4 
to be constant (C =O.895x10 ). The resistance curve for the 

vp 

smallest model has a hump at F~O.17 which does not show up in 
n 

the curves for the two larger models. 

Holtrop and Mennen (1978) have derived estimation 

formulas for the wave resistance by applying statistical regression 

to a large number of existing model and full scale .ship measurements. 

The results obtained by applying these formulas to the HSVA tanker 

are shown in figure 6.6 and are in good agreement with the measured 

data. Also shown in figure 6.6 are the slow ship approximation 
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predictions of Baba (1979). These data are in excess of the 

measurements by a factor three to four (Baba applied his theory 

to a variety of ships but felt that the beam/draft ratio of 

the HSVA tanker is too large for his method to apply). 

The present calculations shown in figure 6.6 are 

in remarkably good qualitative agreement with the experimental 

data. Apparently the absence of interference between the bow and 

stern wave systems due to the long parallel m~ddle body is 

correctly modelled by the linearised potential flow theory. 

However, the Neumann-Kelvin theoretical predictions and the explicit 

slender ship approximation are in excess of the measurements by 

factors of about 1.5 and 2 respectively. The author has not been 

able to explain these differences. Both theoretical curves predict 

a small hump at F ~O.17 in agreement with the measurements for the 
n 

smallest model and Holtrop and Mennen's predictions. 

In order to make a full assessment of the performance 

of the linearised potential flow model in this case, further 

comparisons must be made with other experimental data, such as 

wave profiles, observations of wave breaking, and sinkage and trim 

measurements (see McCarthy (1985». Unfortunately these data were 

not available to the author, but figure 6.7 shows a typical 

comparison of calculated wave profiles at F
n

=O.15. Included in this 

figure are the theoretical predictions of Gadd (1979) who used a 

modified Rankine source method (see Gadd (1976», and Chan and 

Chan (i979) who solved an initial value problem by means of the 
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finite difference method. Chan and Chan's prediction of the bow 

wave amplitude is close to the maximum theoretical stagnation 

2 
point value ('w/Fn=!' see equation (2.5». In both Gadd's and 

Chan and Chan's predictions the bow wave trough is positioned 

slightly more forward than in the present calculations. However, 

effective conclusions cannot be made without reference to further 

measurements. 

6.3.2 'FRIESLAND' CLASS DESTROYER 

The Dutch 'Friesland' class destroyer is a fast 

naval ship with transom stern (see figure 6.1). Andrew (1985) has 

measured the steady lift force distribution in calm water. The 

experimental set-up is sketched in ~igure 6.8. A 3.4 m model was 

built-up from 19 separate segments connected by sensitive strain-

gauge dynamometers to a stiff longitudinal beam firmly attached to 

the carrIage structure. During the experiments the model was 

kept restrained (i.e. prevented from sinkage and trim). Figures 

6.9(a)-(e) show the measured steady lift force distributions 

dt /dx (=(dL /dx)/p~L) at five Froude numbers F =0.15 (0.1) 0.55 
w w n 

(corresponding to full scale ship speeds V=9.68 (6.45) 35.5 knots). 

It can be seen that for F up to 0.35 the lift force is relatively 
n 

uniformly distributed along the ship length. For F above 0.35 
n 

the (downward) sectional force peaks markedly over the aft body 

and increases steeply with increasing speed. 
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The present theoretical curves obtained by sectionwise 

integration of the calculated pressures, are also shown in figures 

6.9(a)-(e). In this case, where only the steady lift force 

distribution of the restrained model is considered, no difficulties 

were encountered in the modelling of the transom stern effects 

(when }he wave resistance of the free running model is calculated 
• 

precautions must be taken to model the effect of the transom stern 

on the sinkage and trim, see Salvesen (1979». At low Froude 

numbers the present calculations are seen to be in good agreement 

with the measurements, but at high values of the Froude number 

both theoretical curves peak less markedly than the experimental 

curves. The slender ship approximation fares less well than the 

Neumann-Kelvin theoretical predictions. 

Figures 6.10(a)-(b) show the total lift force 

t (=L /pv2L2) and trimming moment m (=M /p~L3) as functions 
w w w w 

of the Froude number. The experimental and theoretical curves were 

derived from the lengthwise integration of the distributions shown 

in figures 6.9(a)-(e). The lift force increases relatively 

smoothly with increasing speed and reaches a peak value at F =0.45, 
n 

whilst the trimming moment is small up to nearly F =0.35 after 
n 

which there is a rapid rise with increasing speed. This corresponds 

to the peak distributed vertical force moving aft as seen in 

figures 6.9 (d)-(e), whilst the total moment increases with speed 

above F =0.35 but does not peak. The qualitative agreement between 
n 

the experimental data and theoretical predictions is generally good. 

At low speed (F ~0.35) the quantitative agreement is also very 
n 
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encouraging, but less satisfactory at higher speeds. As might be 

expected after the earlier remarks the slender ship approximation 

compares less favourably as the speed increases. 

s 
w 

Figures 6.10(c)-(d) show the calculated sinkage 

(=S IL) and trim by the stern e (~(D -Df)IL) derived from the w w a 

solution of equations (2.22b-c). Also included in this figure are 

the results of direct sinkage and trim measurements of the free-

running model (see Andrew (1985». These data quantify the 

differences in attitude between the restrained and free-running 

model. Sinkage is seen to increase steadily up to F =0.45 and 
n 

appears to level off thereafter; the trim is small up to F =0.35 
n 

and then increases markedly. As might be expected from the previous 

comparison the sinkage and trim are poorly predicted except for 

F <0.35 when the quantities are small anyway. Using the measured 
n 

lift force and trimming moment in equations (2.22b-c) does not 

significantly improve the predictions. This serves to illustrate 

the invalidity of equations (2.22b-c) at high Froude numbers when 

it would appear that the sinkage and trim should be determined 

iteratively (see section 2.4). 

6 I 3 I 3 CRU I SER ~~ULL FORM 

This 1930's cruiser hull was selected as a final 

test case to illustrate the versatility of the developed theory. 
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For the hull form the calm water pressure field below the hull has 

been recorded at F =0.126 (see Andrew (1986». The arrays of 
n 

measurement positions below the hull are sketched in figure 6.11. 

At two different depths both the keel and transverse pressure 

signature have been measured. The measured and calculated data are 

compared in figures 6.12(a)-(d). It is seen that the experimental 

data and theoretical predictions are in good agreement, both along 

and transverse to the track of the ship. ~or this slender ship form 

(see Tables 6.1 and figure 6.1) travelling at fairly low speed 

the slender ship approximation agrees very well with the Neumann-

Kelvin theoretical predictions. 



ship 

submerged 
prolate 
spheroid 

Wigley's 
parabolic 
hull 

HSVA 
tanker 

'Friesland' 
class 
destroyer 

Cruiser 

beam/ 

length 

0.1667 

0.1000 

0.1515 2 

0.1044 2 

0.1161 

draft/ 

length 

0.1242 1 

0.0625 

0.0561 2 

0.0347 z 

0.0362 

1 draft = immersion depth of centroid 

2 length = length between perpendiculars 

Table 6.1 Hull data. 

block number !of. panels ,on port Froude 

coefficient hull surface water line number 

0.5236 220 0.40-0.80 

0.4444 252 36 0.16-0.34 

0.8503 2 226 32 0.13-0.18 

t-A 
CAl 
t-' 

0.5540 2 227 35 0.15-0.55 

0.5327 231 30 0.1257 
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Figure 6.1 Schematic body plans of four surface ships. 
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Figure 6.8 Schematic of segments and supporting and model mounting 

arrangements during 'Friesland' experiments (from 

Andrew (1985». 
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Comparison of measured and calculated 

total l·ift force (a) and trimming 

moment (b). 
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(a) 

• • 

(b) 

Figure 6.12 Longitudinal keel (a) and transverse amidships (b) 

pressure signatures for z/d = -2.37. 
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Figure 6.12 Longitudinal keel (c) and transverse amidships (d) 

pressure signatures for z/d = -3.55. 
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7. CONCLUSIONS 

As a result of the investigations the following 

conclusions can be drawn: 

(i) The adopted formulation of the Kelvin wave source potential 

is v~ry convenient from both physical, mathematical and 

numerical points of view. Due care is required when evaluating 

this function in order to avoid unacceptable numerical errors . 
• 

The nearfield and wavelike disturbance components can be 

calculated in an accurate and efficient manner by means of 

Chebyshev and Neumann series expansions respectively. 

Certain questions regarding the behaviour of the wavelike 

disturbance in the vicinity of the free surface require 

further investigation. 

(ii) For an adequate description of the steady ship motion problem 

the three-dimensional features of the fluid flow and hull 

geometry cannot be neglected. The transfer of the hull 

surface condition to the ship's centreplane in the consistent 

Michell thin ship theory seems particularly inappropriate 

from this point of view and may be more restrictive than 

the linearisation of the free surface condition. 

(iii) The use of the inconsistent Neumann-Kelvin approximation can 

be justified from a practical point of view when the ship-
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generated free surface disturbance is sufficiently small. This 

assumption is usually violated in the vicinity of the ship's 

bow where the quality of the theoretical predictions of the 

wave profile and hull pressures deteriorates, but this does 

not affect significantly the theoretical predictions of the 

wave resistance and other global flow parameters for ships 

which are sufficiently slender and operate at low to moderate 

values of the Froude number. 

(iv) The solution of the Fredholm integral equation for the source 

strength is rendered superfluous by adopting the explicit 

slender ship approximation, where the source strength is 

approximated by the perturbed normal hull velocity. This 

approximation should only be used however for ships with 

low block coefficients operating at low Froude number. 

(v) The quantitative agreement between the experimental data 

and theoretical predictions becomes less satisfactory when 

the ship is full-bodied. This is probably due to a combination 

of nonlinear free surface effects and viscous interaction 

effects. Further detailed comparisons with experimental 

data are requir~d in order to assess the capability of the 

Neumann-Kelvin theory in this respect. 

(vi) At high Froude numbers the quality of the theoretical 

predictions is less satisfactory and a nonlinear flow description 

incorporating the dynamic effects of sinkage and trim might 
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be required. In particular, when calculating the sinkage 

and trim at high ship speeds, the application of the hull 

surface boundary condition at the mean position of the 

hull is no longer acceptable and an iterative procedure 

is required to determine the sinkage and trim. 
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APPENDIX 

EVALUATION OF SPECIAL FUNCTIONS 

THE EXPONENTIAL INTEGRAL 

Let E1 (z), Izl>o, denote the complex-valued exponential 

integral function of z, as defined in Abramowitz and Stegun (1972). 

Because of the symmetry relationship E
1

(z) = E
1

(z) only values of 

z=x+iy for which y~o are considered. 

For moderate and large values of Izl the exponential 

integral may be evaluated from its continued fraction representation 

given by (see Abramowitz and Stegun (1972»: 

exp(z)E
1

(z) 
1 1 1 2 2 

= ----------
z + 1 + z + 1 + z + 

= lim w (z) 
n 

n~ 

This continued fraction converges in a larger domain than the 

(A.1) 

asymptotic series given by equation (3.13). The successive convergents 

w may be generated recursively as follows (see Gautschi (1967»: 
n 

u = z/(z+a
n

+1u k ) 
n+1 

v = v (u - 1) 
n+1 n n+1 

w = w + v 
n+1 n n+1 
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for n=1,2, ... , where an+1=«n+1)/2> «x> denotes the integer part 

of x) and the initial values are given by u
1

=1, v
1

=w
1
=1/z. Using 

this algorithm an absolute accuracy of at least six significant 

digits can be achieved throughout the domain where 

2 2 
e(x,y) = x +14x+5.0625y ~32, see Baar (1985). 

-For small values of Izl the exponential integral 

may be evaluated from its ascending series representation given 

by equation (3.12), which may be written in the form: 

(A.2) 

n~ 

Successive convergents p are generated by means of: 
n 

for n=1,2, ... , the initial values being P1=q1=z. This method is 

used if e(x,y)<32 and -8<x<2. 

In the remaining domain near the negative real axis, 

where e(x,y)<32 and -16<x<8, the ascending series is slowly converging 

and it is more efficient to use the Taylor series about y=O given 

by (see Newman (1985»: 

00 

exp(z)E
1

(Z) = L Pn(lxl)(iy)n 
n=O 

(A.3) 
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where nP (x) = P l(x) + l/xn 
n n- for n~O, x>O, the initial value 

being PO(x)=-exp(-x){Ei(x)+i~}. In the range 8<x<l6 the exponential 

integral Ei(x) may be computed using the special polynomial 

approximation: 

xexp(-x)Ei(x) = 1.1029749 - 0.0442424t + O.0198l95t2 

- 0.008956lt
3 

+ O.0039l84t
4 

- O.OOl5478t 5 

+ 0.0003842t
6 

- O.0000052t7 + E(X) 

where t=ix - 3 and Is!<4.7E-7, see Baar (1985). 

THE BESSEL FUNCTIONS 

Let J (x), Y (x), I (x) and K (x), n~O, x>O denote 
n n n n 

the usual Bessel functions of x and integer order n, as defined in 

Abramowitz and Stegun (1972). For n=O,l the Bessel functions J (x) 
n 

and Y (x) can be computed by means of the polynomial approximations 
n 

developed by Newman (1984). Similar approximations for the modified 

Bessel functions I (x) and K (x) were derived by Allen (1956) and 
n n 

these are quoted in Abramowitz and Stegun (1972). From a numerical 

point of view it is slightly better to compute exp(-x)I (x) and n 

exp(x)K (x) since this removes most of the variation in I (x) and n n 

K (x) respectively. 
n 
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When n~2 the following procedures proposed by Baar 

and Price (1986b) are very convenient. Following Gautschi (1967) 

consider the general three-term recurrence relationship: 

f 1 + a f + b f 1 = 0 n+ n n n n-
(A.4) 

where f =f (x) and n31. For the Bessel functions the coefficients n n . 

a (x) and b (x) are given by Abramowitz and Stegun (1972) as: 
n n 

(-2n/x, 1) J Y 
n' n 

(a n,bn ) = (2n/x, -1) if f = -I (A.5) 
n n 

(-2n/x,-1) K 
n 

From equation (A.4) it follows that the ratio r (x)=f 1/f n n+ n 

satisfies the relationship: 

r + a + b Ir 1 = 0 n n n n-
(A.6) 

for n31 , provided that f ~O (this restriction is not serious from 
n 

the practical point of view, as explained by Gautschi (1967». 

The functions Y (x) and K (x) are numerically increasing functions 
n n 

of n and the ratios r can simply be computed by means of the 
n 

forward recurrence: 

r = -(a + b jr 1) 
n n n n-

for n31, the initial value being ro=f1/fO' 
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The functions J (x) and I (x) are numerically 
n n 

decreasing functions of n (i.e. 'minimal' solutions of equation 

(A.4» and therefore the recurrence relationship given by equation 

(A.6) is only stable when applied in the backward direction. That is: 

r
n

_1 = -b /(a + r ) 
n n n 

for n=N,N-1, ... ,1, where it is assumed that the ratio r is known 
n 

for some value n=N. Gautschi (1967) shows that rN is given by the 

continued fraction: 

-b N+1 

aN+1 -
= lim w 

n 
n-+oo 

where a and b are given by equation (A.5). The successive 
n n 

convergent. values of w may be generated recursively as follows: 
n 

u 
n+1 

v 
n+1 

w 
n+1 

= v (u 1 - 1) 
n n+ 

= w + v 1 n n+ 

The presented algorithms are very well suited to 

the computation of the sequences of Bessel function ratios defined 

(5 7 d) In order to verify the relationships given 
in equations . a- . 

by equations (5.8a-b), as well as to derive similar relationships 
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for the evaluation of the gradient of the wavelike disturbance, the 

following derivative relations are useful: 

cf' = f 1 + df 1 n n- n+ 

where ft =df (x)/dx and 
n n, 

(2,-1) 

(c,d) = (2,1) 

(-2,1) 

if f = 
n 

see Abramowitz and Stegun (1972). 

• 

J , Y n n 

I 
n 

K 
n 

In particular: 

(A.7) 

(A.B) 
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NOME~ICLATURE 

General conventions 

Nondimensional flow variables in terms of the .fluid density, 

the ship speed and the ship length are used exclusively. 

The coordinate system Oxyz is attached to the moving ship. 

The origin 0 is located amidships in the undisturbed sea surface. 

The positive Ox and Oz axes point toward the ship's bow and 

vertically upward respectively. 

Whenever the independent variables x,y,z are used as subscripts 

partial differentiation with respect to x,y,z is implied. 

The definition and notation of mathematical functions is in 

agreement with Abramowitz and Stegun (1972). 

List of symbols 

Symbols not included in the list below are only used at a specific 

place and are explained where they occur. 
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q 

beam/length ratio of ship 

mean water line contour 

draft/length ratio of ship 

drag force 

mean flow domain 

interior flow domain 

acceleration of gravity 

mean hull surface 

k-th moment of area of mean water line plane 

lift force 

trimming moment 

unit vector normal to hull surface 

fluid pressure 

aspect ratio 
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sinkage 

undisturbed free surface 

mean water line plane 

unit vector tangent to water line contour 

perturbed flow velocity 

position vector of source pOint 

total resistance coefficient 

viscous resistance coefficient 

wave resistance coe11icient 

Froude number 

Kelvin wave source potential 

zero Froude number Green's function 

infinite Froude number Green's function 

Kochin's function 

water line length of ship 

nearfield disturbance 

source strength 

Reynolds number 

dipole strength 

flow velocity 

ship speed 

wavelike disturbance 

vector joining the field point and the free surface 

mirror image of the source point 

influence coefficient 

influence coefficient 

wave elevation 

kinematic viscosity of fluid 

position vector of field point 

density of fluid 

disturbance potential 

interior potential 

zero Froude number (double body) potential 

explicit potential approximation 

velocity potential 
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