
AN ADAPTIVE ENVIRONMENT FOR

PERSONAL INFORMATION MANAGEMENT

A thesis submitted for the degree of Doctor of Philosophy

by

Richard John Keeble B.Sc. (Hons)

Department of Information Systems and Computing

BruneI University

May 1999

Abstract

Abstract

This dissertation reports the results of research into the provision of

adaptive user interfaces to support individuals in the management of

their personal information. Many individuals find that they have in­

creased responsibility for managing aspects of their own lives, includ­

ing the information associated with their jobs. In contrast with tradi­

tional approaches to information management, which are generally

driven by organisational or business requirements, the requirements of

personal information management systems tend to be less rigidly de-.

fined. This dissertation employs research from the areas of personal in­

formation management and adaptive user interfaces - systems which

can monitor how they are used, and adapt on a personal level to their

user - to address some of the particular requirements of personal in­

formation management systems. An adaptive user interface can be im­

plemented using a variety of techniques, and this dissertation draws on

research from the area of software agents to suggest that reactive soft­

ware agents can be fruitfully applied to realise the required adaptivity.

The reactive approach is then used in the specification and develop­

ment of an adaptive interface which supports simple elements of per­

sonal information management tasks. The resulting application is

evaluated by means of user trials and a usability inspection, and the

theoretical architectures and techniques used in the specification and

development of the software are critically appraised. The dissertation

demonstrates an application of reactive software agents in adaptive sys­

tems design and shows how the behaviour of the system can be speci­

fied based on the analysis of some representative personal information

management tasks.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Table of Contents ii

Table of Contents

ABSTRACT .. i

TABLE OF CONTENTS ... ii

LIST OF PUBLICATIONS ... vii

LIST OF FIGURES .. viii

LIST OF T ABLES ... x

ACKNOWLEDGEMENTS .. xii

1. INTRODUCTION ... 1

1.1. INTRODUCTION•.•..............••.....••......•..................•...•••...•••...•••...••......................••.••....••. 1
1.2. INFORMATION MANAGEMENT•....•••••.......••................................•••....•••...••............ 3
1.3. PERSONAL INFORMATION MANAGEMENT•••••.••..........................••••......•.....•.............. 5

1.3.1. Approaches to Personal Information Management .. 5
1.4. SOFTWARE AGENTS: AN INTRODUCTION •••...............•••...•••...••••.•••.................••...••....••.... 8
1.5. SOFTWARE AGENTS FOR PERSONAL INFORMATION MANAGEMENT •.......................... 9

1.5.1. User and Task Modelling ... 10
1.6. STATEMENT OF THESIS ... 11
1.7. BREAKDOWN OF THESIS ... 11

2. MANAGING PERSONAL INFORMATION:
TAKING AN AGENT-BASED VIEW ... 14

2.1. INTRODUCTION ••...•••.....•••........... 14
2.2. PERSONAL INFORMATION MANAGEMENT .. 17

2.2.1. Activities Involved in Personal Information Management.. .. 18
2.2.2. 'Personal' Information ... 19
2.2.3. Personal Information Management Practices .. 20
2.2.4. The Development of Personal Information Management.. .. 21
2.2.5. Personal Information Appliances .. 22

2.3. ApPROACHES TO PERSONAL INFORMATION MANAGEMENT 24
2.3.1. Indirect Management of Personal Information ... 28

2.4. ADAPTIVE INTERFACES AND PERSONAL INFORMATION MANAGEMENT 29
2.4.1. Adaptive User Interfaces for Personal Information Management.. 30
2.4.2. Justification for Adaptivity in User Interfaces ... 32

2.5. ADAPTIVE USER INTERFACES .. 33
2.6. A REFERENCE ARCHITECTURE FOR ADAPTIVE USER INTERFACES 35

2.6.1. The User Model. ... 36
2.6.2. The Domain Model .. 37
2.6.3. The Interaction Model ... 38
2.6.4. Key Relationships Between Models .. 39

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Table of Contents iii

2.6.5. Explicit and Implicit Models40
2.6.6. Realism in Adaptive Systems Design .. .40
2.6.7. Software Agents as Components of Adaptive Interfaces ... 41

2.7. SOFTWARE AGENTS: AN OVERVIEW OF THE AREA ... 42
2.7.1. Views of Software Agents .. -12
2.7.2. Key Agent Characteristics .. 43

2.8. AGENT THEORIES, ARCHITECTURES AND LANGUAGES ... 47
2.8.1. Existing Agent Systems: An Overview ... 49

2.9. AN ApPROPRIATE AGENT TECHNOLOGY ... 51
2.9.1. Reactive Agents: Issues to be Addressed ... 52

2.10. RESTATEMENT OF THESIS .. 53
2.11. CONCLUSION ... 54

3. DEVELOPING A FRAMEWORK FOR AN AGENT-
BASED ADAPTIVE INTERFACE FOR PIM ... 56

3.1. INTRODUCTION ... 56
3.1.1. Overview of Chapter ... 57

3.2. USER INTERFACES TO SUPPORT PERSONAL INFORMATION MANAGEMENT 58
3.2.1. PIM in Action: A Scenario .. 58
3.2.2. User Interfacing for PIM: Simple Information Management Tasks 60

3.3. ANALYSIS OF SIMPLE PIM ACTIVITIES .. 62
3.3.1. Improving Access to Poorly-Placed Files ... 63
3.3.2. Improving Access to Regularly-Used Files .. 64
3.3.3. Allowing Contextual Annotation of Files ... 64
3.3.4. Aiding the Location of Files of Interest.. ... 65

3.4. OPPORTUNITIES TO ~INFORMATE' PIM .. 66
3.5. AN ADAPTIVE INFORMATION MANAGEMENT SYSTEM ... 68

3.5.1. Scope .. 69
3.5.2. AIMS: Functional Requirements .. 70
3.5.3. AIMS: Interfacing Requirements ... 71

3.6. USER INTERFACES REVISITED .. 72
3.6.1. Basic Principles .. 73
3.6.2. Providing Dynamic Functionality in User Interfaces ... 75

3.7. ApPLYING THE ADAPTIVE INTERFACE ARCHITECTURE .. 77
3.7.1. User Model Requirements .. 79
3.7.2. Domain Model Requirements .. 81
3.7.3. Interaction Model Requirements ... 83
3.7.4. From Adaptive Elements to Reactive Interface Agents .. 88

3.8. CONCLUSIONS ... 89

4. DESIGN AND IMPLEMENTATION .. 90
4.1. INTRODUCTION ... 90
4.2. DESIGN BACKGROUND AND INFORMAL SPECIFICATION .. 92

4.2.1. Design Rationale .. 93
4.2.2. Behavioural Requirements and Analysis ... 94
4.2.3. Short-Cut Suggestions ... 95
4.2.4. Hot-List Maintenance .. 96
4.2.5. Passive Support .. 97
4.2.6. File Annotations ... 97
4.2.7. Annotation-Based Retrieval ... 98
4.2.8. Integration Concerns ... 99

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
l\lay1999

Table of Contents IV

4.3. USER INTERFACING: PRACTICAL ISSUES .. 100
4.3.1. Software Environments for Adaptive Interfaces ... 100

4.4. DETAILED DESIGN•••....•••......•................••......................•••........................•................. 102
4.4.1. Architectural Decomposition ... 102
4.4.2. Domain Model ... 105
4.4.3. User Model ... 106
4.4.4. Profile Data ... 106
4.4.5. Interaction Knowledge Base ... 107
4.4.6. Detailed Agent Design: Short-Cut Suggestions ... 107
4.4.7. Dialogue Record .. 109
4.4.8. Structural Design ... 114
4.4.9. Relationship with the AIT architecture ... 115
4.4.10. Object-Oriented Decomposition .. 116
4.4.11. Interface-Based Architecture .. 119

4.5. SYSTEM IMPLEMENTATION••.......••.................•..................................... 125
4.5.1. Choice of Target Implementation Platform .. 126
4.5.2. Platform-Dependency Issues ... 127

4.6. INTEGRATION PROCESS••.....•••..•••....••...••••.......•.........•................••••••..........••.............. 131
4.6.1. Integration Areas ... 132
4.6.2. Interface Event Acquisition: The Active Desktop ... 133
4.6.3. Interface Event Acquisition: Internet Explorer Automation .. 133
4.6.4. Interface Event Acquisition: Context Menu Handlers .. 134
4.6.5. Interface Event Acquisition: Shell Execution Handlers .. 135
4.6.6. Interface Event Acquisition: Message Hooks ... 135
4.6.7. Visual Cueing Techniques: IE4 Browser Control Hosting ... 136
4.6.8. Visual Cueing Techniques: Window Sub-Classing ... 136
4.6.9. Integration Problems: Conclusion ... 137

4.7. TEST HARNESS IMPLEMENTATION•........•...............•......•........•.............. 137
4.7.1. Background .. 138
4.7.2. AIMS Application: General Information .. 138
4.7.3. Shortcut Suggestion ... 140
4.7.4. File Tracking ... 141
4.7.5. File Annotation ... 142
4.7.6. Annotation Searching .. 144

4.8. CONCLUSIONS•...•.•.••..........•........................•..... 145

5. EVALUATION AND CRITIQUE ... 146
5.1. INTRODUCTION ... 146
5.2. EVALUATION OVERVIEW .. 148

5.2.1. Evaluation Objectives .. 149
5.2.2. Ll - Assessing the User Interface .. 150
5.2.3. L2 - Assessing the AIT Architecture ... 153
5.2.4. L3 - Assessing the System Design ... 154
5.2.5. L4 - Assessing the System Implementation ... 155
5.2.6. Evaluation Techniques and Dissertation Contents: A Mapping 155

5.3. EVALUATION A1- CO-OPERATIVE USER TRIALS .••.......................•••....•...................... 156
5.3.1. Aims of the Experiment .. 157
5.3.2. Experimental Method ... 157
5.3.3. Results and Treatment .. 159
5.3.4. Possible Conclusions ... 160
5.3.5. Execution and Results ... 161
5.3.6. Conclusions .. 163

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Table of Contents v

5.4. EVALUATION A2 - USABILITY INSPECTION ••............•......••••••••.•.•.....•.......•••.........•...... 164
5.4.1. Evaluation Aims .. 164
5.4.2. Choice of Guidelines ... 165
5.4.3. Guideline-Based Inspection .. 167
5.4.4. Conclusions .. 169

5.5. EVALUATION B1- THE AIT ARCHITECTURE .. 170
5.5.1. Evaluation Aims .. 171
5.5.2. The AIT Architecture - An AppraisaL ... 171
5.5.3. Conclusions .. 173

5.6. EVALUATION B2 - DESIGN PROCESS .. 1 73
5.6.1. Aims .. 174
5.6.2. Evaluation ... 175
5.6.3. Conclusions .. 176

5.7. EVALUATION B3 - IMPLEMENTATION .. 176
5.7.1. Aims .. 177
5.7.2. Evaluation ... 178
5.7.3. Conclusions .. 179

5.8. SYNTHESIS OF EVALUATION RESULTS .. 179
5.8.1. Issues/ Abstraction/Evaluation Matrix .. 180
5.8.2. L1 - PIM and Interfacing: Principles and Theory .. 182
5.8.3. L2 - Adaptivity and Adaptive Interfaces: Frameworks ... 185
5.8.4. L3 - Agency and Software Agents: Architectures ... 187
5.8.5. L4 - Realisation of the Prototype System: Design and Implementation 188

5.9. KEY RE-DESIGN ISSUES .. 191
5.9.1.
5.9.2.

5.10.

Issues for System Re-Design .. 191
Issues for Theoretical Reworking .. 192

KEY ISSUES FOR FURTHER DISCUSSION ... 193

5.11. CONCLUSION ... 194

6. RE-DESIGN WORK .. 195

6.1. INTRODUCTION ... 195
6.1.1. System Re-Design - Areas to be Addressed .. 196
6.1.2. Theoretical Reworking - Areas to be Addressed .. 199

6.2. RE-DESIGN 1: USING THE REGISTRy .. 200
6.2.1. The Registry - Technical Details .. 201
6.2.2. Dialogue Record Re-Design ... 201
6.2.3. User Model Re-Design .. 202

6.3. RE-DESIGN 2: END-USER TAILORABILITY USING BINARY COMPONENTS 203
6.3.1. COM and ATL - Brief Technical Background ... 204
6.3.2. Using ATL to Re-Implement the Prototype Using Components 205
6.3.3. Tailoring the System using ATL/COM Agents ... 207

6.4. RE-DESIGN 3: OLE-BASED ANNOTATIONS ... 209
6.4.1. OLE - Brief Technical Background ... 210
6.4.2. Developing an OLE-Based Notes Server .. 211

6.5. THE AIT ARCHITECTURE AND OO/CB DESIGN ... 215

6.6. LEVELLED DESIGN OF REACTIVE AGENTS ... 217

6.7. PROVIDING GENERIC EVENT NOTIFICATION .. 221

6.8. CONCLUSION ... 225

7. CONCLUSIONS .. 226

7.1. INTRODUCTION ... 226

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Table of Contents VI

7.2. REVIEW OF DISSERTATION ... 226
7.2.1. Chapter 1 - Introduction ... 227
7.2.2. Chapter 2 - Managing Personal Information: Taking an Agent-Based View 227
7.2.3. Chapter 3 - Developing a Framework for an Adaptive Interface for PIM 228
7.2.4. Chapter 4 - Design and Implementation .. 229
7.2.5. Chapter 5 - Evaluation and Critique ... 230
7.2.6. Chapter 6 - Re-Design and Re-Hypothesis ... 231

7.3. STATEMENT OF CONTRIBUTIONS .. 231
7.3.1. Ll - PIM and Interfacing: Principles and Theory .. 232
7.3.2. L2 - Adaptivity and Adaptive Interfaces: Frameworks ... 233
7.3.3. L3 - Agency and Software Agents: Architectures ... 234
7.3.4. L4 - System Realisation: Design and Implementation .. 235

7.4. CRITIQUE OF THE STUDY .. 236
7.5.

7.5.1.
7.5.2.
7.5.3.
7.5.4.

FUTURE WORK ... 237
L1 - PIM and Interfacing: Principles and Theory .. 238
L2 - Adaptivity and Adaptive Interfaces: Frameworks ... 239
L3 - Agency and Software Agents: Architectures ... 240
L4 - System Realisation: Design and Implementation .. 241

REFERENCES ... 242

APPENDIX A - USER TRIAL MATERIALS ... A-1
A.1. LIST OF ACTIVITIES ... A-2

A.2. OBSERVATION LOG PROFORMA ... A-3

A.3. DE-BRIEFING QUESTIONS .. A-4

APPENDIX B - OBSERVATION NOTES .. B-1
B.1. OBSERVATION NOTES FROM SUBJECT 1 .. B-2

B.2. OBSERVATION NOTES FROM SUBJECT 2 .. B-3

B.3. OBSERVATION NOTES FROM SUBJECT 3 .. B-4

B.4. OBSERVATION NOTES FROM SUBJECT 4 .. B-5

B.S. OBSERVATION NOTES FROM SUBJECT 5 .. B-6

B.6. OBSERVATION NOTES FROM SUBJECT 6 .. B-7

B.7. OBSERVATION NOTES FROM SUBJECT 7 .. B-B

B.B. OBSERVATION NOTES FROM SUBJECT B .. B-9

APPENDIX C - TRANSCRIPTS OF DEBRIEFING INTERVIEWS C-1
C.1. TRANSCRIPT FROM DEBRIEFING INTERVIEW WITH SUBJECT 1 C-2

C.2. TRANSCRIPT FROM DEBRIEFING INTERVIEW WITH SUBJECT 2 C-4

C.3. TRANSCRIPT FROM DEBRIEFING INTERVIEW WITH SUBJECT 3 C-5

C.4. TRANSCRIPT FROM DEBRIEFING INTERVIEW WITH SUBJECT 4 C-6

C.5. TRANSCRIPT FROM DEBRIEFING INTERVIEW WITH SUBJECT 5 C-7

C.6. TRANSCRIPT FROM DEBRIEFING INTERVIEW WITH SUBJECT 6 C-B
C.7. TRANSCRIPT FROM DEBRIEFING INTERVIEW WITH SUBJECT 7 C-9

C.B. TRANSCRIPT FROM DEBRIEFING INTERVIEW WITH SUBJECT B C-10

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
May 1999

List of Publications

List of Publications

This section gives details of publications arising directly and indirectly from the

research reported in this dissertation.

Keeble, R. and Macredie, R. D. (1999). Experience with Adaptive Interface

Agents. Cognition, Technology and Work, forthcoming.

Vll

Keeble, R. and Macredie, R. D. (1999). Assistant Agents for the World-Wide Web:

Intelligent Interface Design Challenges. Interacting with Computers, in press.

Keeble, R. and Macredie, R. D. (1999). Software Agents and Issues in Personalis a­

tion: Technology to Accommodate the Individual. Personal Technologies 2(3):

131-140.

Macredie, R. D. and Keeble, R. (1997). Software Agents and Agency: A Personal

Information Management Perspective. Personal Technologies 1(2): 44-56.

Macredie, R. D., Taylor, S. J. E., Yu, X. and Keeble, R. J. (1997). Virtual Reality and

Simulation: An Overview. Informatica 21(4): 621-626.

Macredie, R. D., Taylor, S. J. E., Yu X. and Keeble, R. J. (1996). Virtual Reality and

Simulation: An Overview. In: Proceedings of the Winter Simulation Conference,

December 8-11, Coronado, CA, USA.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

List of Figures viii

List of Figures

Figure 2.1. A reference architecture for adaptive interface technology

(Benyon and Murray, 1993) ... 36

Figure 3.1. Syntactic, semantic and goal-based levels in an adaptive system, from

(Benyon and Murray, 1993) ... 78

Figure 4.1. Architectural overview for the AIMS application 103

Figure 4.2. A reference architecture for adaptive interface technology

(Benyon and Murray, 1993) ... 104

Figure 4.3. Three-level architecture for shortcut detection 108

Figure 4.4. Outline structure for the AIMS application ... 115

Figure 4.5. Basic adaptive interface class hierarchy ... 119

Figure 4.6. AIMS System Component 'Gallery' .. 123

Figure 4.7. AIMS System Composition .. 124

Figure 4.8. Silent shortcut translation by the operating system (Unix-style) 127

Figure 4.9. Explicit shortcut resolution by the client application

(Windows NT-style) ... 129

Figure 4.10. The AIMS application's pseudo-desktop window 139

Figure 4.11. The AIMS application's pseudo-toolbar. .. 139

Figure 4.12. Suggestion for creating a shortcut to a file ... 140

Figure 4.13. Creating a shortcut to a file - confirmation .. 141

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

List of Figures ix

Figure 4.14. Using the file tracking dialog ... l .. n

Figure 4.15. File annotation options on a file's context menu 143

Figure 4.16. Annotating a file using the note editor ... 143

Figure 4.17. Annotated file icons in shell windows .. 144

Figure 4.18. Searching for annotated files .. 145

F 51 D' . . I d ' Igure " IssertatIon tOpIC roa map .. 148

Figure 6.1. Dialogue Record Registry Key Layout. .. 202

Figure 6.2. User Model Registry Key Layout. ... 203

Figure 6.3. Tailoring an agent module ... 208

Figure 6.4. OLE in-place editing using a in-process server 212

Figure 6.5. Using the ROT to locate the AIMS application 213

Figure 6.6. An embedded note object in a compound document.. 214

Figure 6.7. Three-level solution to compound access detection 220

Figure 6.8. User interface events expressed in FIPA ACL (FIPA, 1997) 224

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

List of Tables x

list of Tables

Table 2.1. A typology of software agent technologies (Nwana, 1996) 50

Table 4.1. Syntactic Events Processed by the System ... 111

Table 4.2. Semantic Events Generated and Processed by the System 111

Table 4.3. Detecting navigation-selection sequences based on user events 112

Table 4.4. Dialogue record per-event information .. 113

Table 4.5. Symbolic event type code list and attribute usage 113

Table 4.6. Per-object communication requirements .. 121

Table 4.7. List of interfaces used within the system ... 121

Table 4.8. Class Descriptions .. 123

Table 4.9. Detecting navigation-selection sequences

based on user events with alia sed names ... 130

Table 4.10. Syntactic Events Processed by the System ... 131

Table 4.11. Symbolic event type code list and attribute usage 131

Table 5.1. Approaches to user-interface evaluation

(from Baecker et al., 1995, p. 82) .. 151

Table 5.2. Evaluation techniques and relevant roadmap topic areas

drawn from Figure 5.1 ... 156

Table 5.3. Descriptions of experimental subjects .. 158

Table 5.4. Experiment times and location types ... 159

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

List of Tables Xl

Table 5.5. Results from the co-operative evaluation .. 160

Table 5.6. Areas of interest in the co-operative evaluation 161

Table 5.7. Statistical usage data for the prototype system's features 162

Table 5.8. Ten guidelines for heuristic evaluation

(from Nielsen (1994) p. 30) .. 166

Table 5.9. Issues, abstraction level and evaluation technique matrix 181

Table 6.1. A three-agent formulation for the

compound access detection problem ... 219

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t-.lav 1999

Acknow ledgements xii

Acknowledgements

I would firstly like to thank Dr Rob Macredie for his infuriatingly accurate super­

vision during my research, for introducing me to the idea of writing something

more than once, and for making obvious to me all those obvious things that peo­

ple still need to be told.

I would also like to thank Professor Ray Paul for his calm and yet firmly directed

comments, and for finally 'nailing me down' (his words).

I also owe a debt of thanks to my family and my friends, without whose support I

would most definitely not be in the position of finishing. Special thanks are due to

Simon K (thanks again for the trip to the land vowels forgot) and the rest of the

Attic for conspiring to get me to submit before the Millennium. Rotters.

I am also grateful to my funding body, the EPSRC (Award Reference Number

95700906) and my CASE industrial sponsors, Nuclear Electric PIc., for their sup­

port.

And one last thing. A'da tzuika, mi pu*a. (Mine's a pint, if you're buying.)

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 1 - Introduction

Chapter 1

Introduction

1.1. Introduction

An awareness of information technology (IT) is rapidly becoming a prerequisite

for many people, as information, in its many forms, is becoming more central to

our everyday existence. The availability of cheap computing resources and public

telecommunications networks is resulting in increasing amounts of electronic in­

formation in many forms, accessible via different media, in many places (Stamper,

1994). Articles in the popular press serve to illustrate how the awareness of this

electronic information, and the IT-based tools used to access and manipulate it is

now finding its way into the lives of many people, at both personal (Sunday

Times, 1997a) and more importantly, professional levels (Sunday Times, 1997b).

Whereas IT was once the sole preserve of technical staff, the majority of office

workers could not now perform their jobs effectively without knowledge of it

(Kling, 1996).

Since much office work tends to revolve around managing information which re­

fers to a company's resources, the management of information is therefore central

1

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 1 - Introduction 2

to the function of many businesses (Seddon, 1988). The majority of businesses rely

on information about customers, suppliers and orders in order to be able to oper­

ate. For the section of the business community whose products embody informa­

tion of some kind, the reliance upon information is far more acute. The effective

management of information can be an important contributing factor to the success

or failure of such enterprises. Organisations which manage their information ef­

fectively ought to enjoy an advantage over those competitors with poorer infor­

mation management facilities (Earl, 1988).

In order to extract maximum benefit from the wide variety of information re­

sources available, a range of factors needs to be considered: what information is

required; will the raw information need to be 'filtered' or selectively discarded ac­

cording to 'usefulness'; where can it be obtained from; by what means can it be ob­

tained; how may it best be stored and/ or organised, and how is it to be used.

To address these points in turn, the task to be accomplished will partially deter­

mine which information is required and within a given body of information which

might be useful and which is irrelevant. This 'useful' information must then be

obtained, raising the questions of location and method of access. This encom­

passes technical details such as the physical access method and network types in­

volved and the protocols and addressing (Stamper, 1994) necessary to locate and

transfer the desired information.

Once obtained, the information must be stored in a system ready for subsequent

use. At the appropriate time it will be retrieved from storage and applied to the

'problem' - used as a basis for decision-making or perhaps used simply as input to

other systems - often in conjunction with information gathered from other

sources.

Systems which aim to support functions such as those described are broadly

termed 'information systems' (Senn, 1989). Information systems development is

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi5
\ fa\" 1999

Chapter 1 - Introduction 3

informed by principles derived from, amongst others, the field of information

management.

1.2. Information Management

There are many different techniques and approaches to information management,

each of which rely on particular assumptions. Depending upon the approach in

question, there will be assumptions about the nature of the information to be

managed, the organisation within which the information will be managed and the

purpose for which the information will be used. In this section, several ap­

proaches are briefly summarised and the trend towards the personal management

of information - with which this study will be concerned - is introduced.

Certain approaches to information management treat the problem from a top­

down, organisational viewpoint: knowledge of the processes involved in a busi­

ness is used to derive a plan for an information system to support that business'

operation (Robson, 1997). This may be at a corporate level, providing a company­

wide strategy or 'vision' for the way information is to be managed. This approach

has the advantage that a standard policy exists across the organisation, giving a

sense of security and uniformity. This can also be a disadvantage, since such an

all-encompassing policy will be difficult to agree on, particularly if a company's

activities are diverse.

If the company does have a diverse range of activities it is likely - simply due to

practical considerations - that the company's internal structure will reflect the dif­

ferent activities carried out. The company may be structured into components

which each perform a significant business function. These components are often

known as 'business units' or 'strategic business units' and can be characterised as

cohesive, identifiable fragments of a company with uniform business goals (Gal­

liers and Baker, 1994).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\la\' 1999

Chapter 1 - Introduction

Instead of enforcing a universal information management policy across the whole

company, each business unit or strategic business unit could have its own infor­

mation management strategy. This should ensure that the activities of the busi­

ness unit are not hampered by irrelevant management procedures designed for

other parts of the company.

Both of the above approaches (focused on corporate policy or business unit policy,

respectively) indicate a organisation-centric approach to the management of in­

formation. Employees or groups of employees have access to repositories of in­

formation usually stored centrally at some sort of 'Information Centre' facility.

This reflects the origins of many corporate information management policies: a

central mainframe processing system, with terminals or other access points for the

workers (Senn, 1989).

Whilst still valid as approaches to information management today, resulting sys­

tems do not usually take great account of the way in which individuals work, fo­

cusing instead on how the business or business unit works as a whole. Increas­

ingly we see offices with a personal computer on every desk, connected to a cor­

porate local-area network or 'LAN' (Stamper, 1994). Project groups within busi­

ness units are given more responsibility for managing their own information on

workgroup servers and other local machines. The trend is generally that of decen­

tralisation (Lacity and Hirschheim, 1993) and the eventual endpoint of such a pro­

cess may be that the responsibility for the effective management of information

would reside firmly with the individuals involved.

The existence of this trend is echoed by the current moves toward decentralisation

and outsourcing prevalent in the employment market (Reilly and Tamkin, 1996).

Individuals will have more and more responsibility for obtaining, managing and

applying information in their jobs and lives in general.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 1 - Introduction 5

This shift in emphasis from the organisation to the individual requires a different

way of conceptualising computer systems meant to manage information. The field

of Personal Information Management aims to support this change in emphasis.

1.3. Personal Information Management

Personal Information Management (PIM) is concerned with how individuals man­

age their personal information: how they obtain; organise; and subsequently use

information in their tasks. The aim is to support these activities to enhance an in­

dividual's effectiveness (Etzel and Thomas, 1996). PIM has its research roots in the

cognitive and psychological study of individual work, as a thread of research

which aims to develop techniques and artefacts to support the individual at work.

PIM emphasises the 'personal' aspect of the process: the term implies a contrast to

corporate, collaborative, shared and collective information management.

Systems designed to support such 'personal' information management need to be

adaptable to their users' characteristics - that is, they should be 'tailorable' or 'per­

sonalisable' in terms of both their functionality and user interface(s) (Thomas et al.,

1994). The aim is to allow the user to work in their own personal manner, unhin­

dered by the technology that is supposed to ease their tasks.

This is a difficult requirement to satisfy, since the exact processes carried out by an

individual to perform a particular task will be entirely dependent upon the indi­

vidual in question, as no two people work in exactly the same way. A range of

approaches exist to provide solutions satisfying the problems resulting from these

individual differences.

1.3.1. Approaches to Personal Information Management

One approach to the task might be for the user to carry out the whole information

management task, as is often the case. A classic example of this approach in action

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ta\' 1999

Chapter 1 - Introduction 6

is the personal organiser - for example, the 'FilofaxTM' - which saw a huge surge in

popularity towards the end of the 1980's. This artefact brings together a diary, a

contact list or address book, daily schedules and reminder notes, forming a valu­

able repository of personal information. This is in itself useful as a device to com­

plement the human memory, but goes further than that to illustrate some of the

key challenges faced by the providers of systems meant to manage personal in­

formation.

The physical integration of different types of information is attractive to begin

with - everything is in one place, so time spent searching for a specific item is re­

duced to a minimum. This in turn promotes a functional integration of the infor­

mation 'stores', in that tasks which require different types of information are sup­

ported. At the simplest level, calling someone to confirm an appointment later in

the day 'integrates' the information from the diary and the contact list.

The personal organiser is also readily accessible at a cognitive level- people know

how to use diaries and the other components of the artefact (Lees et al., 1996; Jones

and Thomas, 1996). In addition, personal organisers are tailorable, in two key

ways. Firstly, components may be removed or added as required - new diary

sheets, and indeed new sections that may not have been available before, can be

added to satisfy changing requirements. Secondly, being paper-based in nature

means that the human user is not rigidly bound by the form of the system, and is

free to use it in ways not originally envisaged.

An approach such as this does guarantee that the user is able to work in their own

particular fashion but is ultimately limited by the passive nature of the device. A

large proportion of time spent managing any information is spent carrying out

mechanistic tasks such as sorting and filing since almost any information requires

some kind of organisation before useful work can be carried out using it. A man-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\lav 1999

Chapter 1 - Introduction 7

ual system requires the human user to spend time and effort on these routine

tasks.

The mechanistic nature of these tasks implies that an automatic system could take

control of some of the routine detail involved in managing information, leaving

more time for doing work, rather than preparing to do it. Examples of the use of

technology to provide support for the lowest levels of detail can be found in de­

vices such as 'Personal Digital Assistants' or PDAs (Davids, 1996a; 1996b).

These usually provide facilities such as diary, contact list and to-do list manage­

ment, thereby automating some of the most mundane parts of the PIM task.

However, even using PDAs does not relieve the user of much of the routine activi­

ties of managing their information, since with much current technology the user is

required to initiate all actions, to enter much of the information themselves, and to

indicate what is to be done with it.

Such user interfaces rely upon 'direct management' since users interact directly

with the computer (or whatever device they perceive it to be) to perform their

tasks. This style of interaction comprises the majority of the user interfaces of to­

day's systems.

In contrast to the' direct management' of user interfaces, an emerging trend in

computing is the use of 'indirect management' interfaces. Instead of the user di­

rectly managing their tasks, they could indirectly manage some autonomous proc­

ess. Kay (1990) argues that a paradigm based on 'indirect management' can pro­

vide a more effective use of time when certain types of tasks are to be performed.

Human users could instruct their systems to perform tasks to their particular re­

quirements and then leave the system to carry out the tasks autonomously, only

stopping to ask advice when needed.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 1 - Introduction 8

The realisations of the 'indirect management' systems that Kay (1990) talks about

are usually known as software 'agents'. The term 'agent' refers to some entity

which can accept tasks delegated by a human operator and then accomplish them

with the minimum of interference by (or dependence upon) the human. Although

tasks are still 'initiated' by the user, the agent 'accepts' responsibility for carrying

them out, and agents can (depending upon the situation and the agent) initiate

subsequent tasks themselves.

The concept of agency can make a substantial contribution to the area of PIM, as

systems implemented using agents can satisfy the key requirements of PIM sys­

tems. Perhaps most importantly from a user's point of view, they provide facili­

ties for the delegation of routine tasks to autonomous systems. They can act as

simple 'personal assistants' which work to complement a human user's intelli­

gence, taking on the routine tasks which form part of the activity of managing per­

sonal information. This suggests that agents may form a worthwhile area of study

within PIM.

1.4. Software Agents: An Introduction

Software agents can be thought of as virtual 'personal helpers' (Maes, 1994). They

can be given simple 'goals' to accomplish and hints on what to do and how to do it

in the form of user preferences. They can then be left to carry out their tasks on

the user's behalf, reporting back when the tasks are complete.

As examples, Jennings and Wooldridge (1996) discuss software agents in the con­

text of PIM, and the difficulties in obtaining and organising information from the

World-Wide Web. Nwana (1996) gives a typology of software agents including a

category he terms 'Information Agents' which perform similar information re­

trieval and categorisation tasks. Maes (1994) presents some software agents meant

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\tay 1999

Chapter 1 - Introduction

to relieve users of some of the repetitive tasks involved in basic information man­

agement such as scheduling and e-mail sorting.

These routine activities give an idea of the kind of tasks agents can be used for,

and fit in well with some of the underlying activities involved in rIM that were

mentioned in section 1.3.

9

Software agents may be implemented using several different underlying tech­

nologies or architectures. Two of the most commonly encountered agent architec­

tures are 'deliberative' and 'reactive' (Wooldridge and Jennings, 1995). Delibera­

tive architectures utilise logic-based theorem-proving and reasoning to infer

knowledge and plan actions according to observed events, whereas reactive archi­

tectures use a much simpler stimulus-response paradigm.

Although agents based on deliberative architectures are theoretically capable of

far more advanced reasoning and planning than reactive agents, they are far more

complex to design and implement and have potential problems which stem from

their logic-based roots (Wooldridge and Jennings, 1995). It is difficult to produce

formal models of the system's environment and to maintain them in a timely

manner, and it is also difficult to design logics which can be manipulated so that

conclusions may be reached in a finite time.

These considerations must be taken into account when a choice of agent architec­

ture is to be made for a specific application area.

1.5. Software Agents for Personal Information Management

This dissertation will argue that reactive agents, although less 'powerful' in

learning and reasoning terms, need not be any less useful than their deliberative

counterparts. Mundane information management tasks do not usually require

much intelligence to carry out, and so effectively represent wasted time on the

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 1 - Introduction

part of any human doing them. These simpler agents are also easier for develop­

ers to create and for users to relate to - an important issue for any system for

which usability is important.

10

As mentioned in section 1.3, any PIM system must be tailored to (or tailorable by)

its user(s}. To be most effective at work, a user will not want to constantly adjust

the way they work in order to accommodate some idiosyncratic feature of the sys­

tem. If this were to be the case, a possible outcome might be that they could lose

interest with it and in the worst case, cease to use it - even if it did offer some sup­

port for routine tasks. To combat this, a means of supplying the agent(s) with in­

formation about their user(s) will be required.

1.5.1. User and Task Modelling

The 'Personal' in 'Personal Information Management' is the driving force in this

research. To make any agents (particularly those for PIM) useful, they must be de­

signed around the user, as must any system meant to participate in human interac­

tion (Norman and Draper, 1986; Shneiderman, 1998). This will encompass knowl­

edge of a user's habits and working practices, the overall job they must eventually

complete, and the sub-tasks they undertake in their progress toward their final

goal.

To be able to design an agent or a set of agents to support a user in their work, an

adequate modelling system is required. Two approaches might be considered. A

specific user / task domain could be modelled: someone searching for information

on the World-Wide Web for example. Another approach might be to attempt to

construct a 'meta-model': to assemble components necessary for workers to define

their tasks.

The latter approach would be more widely applicable and extensible. It may also

reduce the probability of developing irrelevant agents: agents which perform tasks

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\lav 1999

Chapter 1 - Introduction 11

as envisaged by the developers, which consequently prove to be unhelpful to their

end users. In the majority of cases the final users of the agents will know far more

about the way they work - that is, the way the users work - than the agent devel­

opers can hope to learn. The user's own knowledge could therefore be usefully

applied to the design of software agents to support them if such a mechanism ex­

isted.

1.6. Statement of Thesis

This chapter has identified the broad area within which this thesis seeks to make

its contribution - that of information management. Within this area the field of

PIM was shown to be of increasing importance. This dissertation aims to provide

a framework for the design of software agents which can complement a user's in­

telligence by supporting them in the more routine aspects of their PIM work. The

framework will be based around the user's PIM tasks and working habits, in order

to ensure that (as far as possible) the user can work in their own way without

having to make adjustments for arbitrary technical reasons due to the system.

This will be accomplished by providing the system with a model of its user which

will enhance the' fi t' between user and system.

1.7. Breakdown of Thesis

This section gives a high-level outline of the rest of this dissertation.

Chapter 2 provides an examination of the concepts involved in PIM. It will be ar­

gued that user interfaces which adapt to their users offer potential advantages in

the support of PIM. The use of software agents as an approach to providing the

active elements in these adaptive user interface systems is expanded upon. Exam­

ples of current agent technology are evaluated to provide insights into both their

particular strengths and weaknesses and those of the concept of agency in general.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t-.1ay 1999

Chapter 1 - Introduction 12

This leads on to the choice of a suitable agent technology for the provision of

agent-based adaptive user interfaces to support rIM.

Chapter 3 considers the needs of prospective users of adaptive rIM systems. The

tasks and underlying activities involved are analysed and specific potential areas

are identified where machine support is particularly desirable, using some self­

contained rIM scenarios. The task elements noted are used to develop a specifica­

tion for a user interface environment which provides adaptive support for the

user. The specification is then used in a design process which concludes with a

high-level abstract design for a class of user interface systems which can imple­

ment an adaptive rIM environment.

Chapter 4 documents the concrete design and implementation of a particular in­

stance of the class of system specified in Chapter 3. The behaviour argued for in

Chapter 3 is used as a starting point for a process of decomposition, leading to a

set of simple reactive behaviours which are implementable as software agents.

Contemporary techniques of object-oriented design and component-based devel­

opment are applied to the problem, in order to yield a system which has a limited

dependency on the target implementation platform. The prototype system is then

integrated into an existing operating system's user-interface.

Chapter 5 evaluates the usefulness both of the resulting adaptive rIM environ­

ment, and the theory and techniques used in its design, development and imple­

mentation. A range of techniques are used to evaluate the different elements of

this study: an empirical evaluation gains information about real individuals using

the system, and their opinions of it; a heuristic evaluation uses high-level guide­

lines from the literature to examine elements of the system; the theoretical archi­

tecture used to specify the system is appraised; and the design approach and im­

plementation techniques used are also examined.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\ 1.1\' 1999

Chapter 1 - Introduction 13

Chapter 6 addresses problems uncovered in Chapters 4 and 5 and suggests how

they may be addressed. A technical re-engineering of elements of the system is

undertaken to illustrate how some of the target platform's technological features

can be used to improve the prototype system's capabilities. A theoretical re­

working addresses some of the limitations of the techniques used in the specifica­

tion of the system.

Chapter 7 provides a summary and review of the dissertation and makes a state­

ment of the contributions made by this study. A critique of the study as a whole is

provided, addressing the limitations and the constraints of the work. Finally, sug­

gestions for future research and other work in the area are made.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 14:

Chapter 2

Managing Personal Information:
Taking an Agent-Based View

2.1. Introduction

Chapter 1 introduced the background to this dissertation, asserting that informa­

tion and IT play an important role in the lives of individuals and many businesses

(Martin, 1995). A side-effect of the increasing use of computers is that the volume

of information created and managed by such systems is also growing. Ensuring

that this information can be accessed efficiently is therefore an important issue. A

current trend, particularly in directly IT-related employment but shared across

many jobs generally, is the growth of the number of individuals who have more

responsibility for themselves as well as their jobs. The increase in the numbers of

workers classed as 'knowledge workers' (Collin, 1995; Rifkin, 1996; Roos, 1997;

Eden and Spender, 1998) provides evidence for this. These individuals, in addition

to the responsibilities of their jobs, are also responsible for managing their own af­

fairs and their personal information (Etzel and Thomas, 1996).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 15

This chapter will begin by examining how such individuals manage their personal

information; looking at the activities they carry out and the devices or systems

they use to aid themselves. PIM (Thomas et al., 1994; Etzel and Thomas, 1996), as a

sub-field of information management, can be supported using IT. To do this,

some kind of user interface is required between the user and their information.

Since the constituent activities involved in PIM are highly personalised, user inter­

faces for PIM should be designed around their users, to make the interaction in­

volving the user and the interface more natural.

The act of 'designing' something implies some kind of fixed model on the part of

the designer. Since users are different individuals to begin with and can change

over time as they learn, this fixed model means that the 'fit' between the user and

the interface may deteriorate over time (Benyon, 1993). Having an interface that is

not fixed would help, but if the interface can change, something must bring about

this change. Either the user has to customise, 'tailor' or 'adapt' it to their prefer­

ences (Henderson and Kyng, 1991) - which takes time to learn about and time to

do - or the interface can adapt itself (Benyon, 1993).

An adaptive interface which monitors the user's interactions with it and responds

by changing itself in an obvious and predictable manner can alleviate this addi­

tionalload. The scope both for, and of, adaptivity should be limited in these sys­

tems (Hook, 1997) - much scepticism exists towards these systems, as a result in

the main of past work on systems termed 'intelligent', which placed emphasis on

the technological part of these systems at the cost of maintaining usability (Shnei­

derman, 1997).

This study does not aim to duplicate or replace the user's intelligence by 'doing

their job for them'. The goal instead is to complement the user's intelligence by

providing systems that can perform the simple, routine aspects of more complex

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 16

tasks without being explicitly instructed to do so. The approach taken is to pro­

vide simple adaptive elements to the interfaces used by individuals as they work.

Adaptive interfaces can be constructed in a variety of ways. One way to concep­

tualise them is as consisting of a changeable interface and a set of software' agents'

(Maes, 1994; Nwana, 1996; Kay, 1990) which monitor how the user interacts with

the interface and changes it in response to observed behaviour. This is the line

that this study will follow. Work in the field of adaptive interfaces is reviewed

(Benyon, 1993; Schneider-Hufschmidt et al., 1993; Browne et al., 1990), providing a

framework which will then used to identify how these' agents' can be embedded

in the interface and what the requirements for them are in terms of adaptive be­

haviour.

This discussion will lead on to a study of how the agents themselves may actually

be thought about, designed and implemented. The term 'software agent' is used

to mean many things. This is a consequence of the fact that the fields of research

in which it is used are highly diverse, although some key agent characteristics do

seem to be shared amongst the research areas which have adopted the term. A

brief review of some of the concepts and terminology used will be provided, and

will then be used to inform the choice of a suitable agent technology for adaptive

interface systems. One particular category of software agents, labelled 'reactive

agents' (Brooks, 1991a; Brooks, 1991b), matches the kind of sensing and reacting

behaviour which this chapter will argue is important to the design of agent-based

systems for PIM.

The chapter concludes by summarising the important issues raised in the chapter

and the decisions arising from them. These are then used to restate the aim of the

dissertation more precisely, in preparation for the more detailed design work in

the next chapter.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 17

2.2. Personal Information Management

As was discussed earlier, in Chapter 1 and the introduction to this chapter, infor­

mation is fundamental to today's society, since much of it is centred around IT

(Seddon, 1988; Senn 1989). As computers have become cheaper and more power­

ful, they have been adopted into a wide range of settings, resulting in a greatly in­

creased ability to create, distribute, and accumulate information. Systems that

support the management of this information - such as databases and spreadsheets

- have become extremely popular and are an essential part of many organisations'

work (Stamper, 1994).

However, one trend in computing is to develop systems and applications that are

personal rather than organisational, aimed particularly at knowledge workers

(Collin, 1995), suggesting the decentralisation of aspects of organisational com­

puting. Today's offices and workplaces demonstrate this, for the most part being

characterised by a personal computer on almost every desk (Kling, 1996; Zuboff,

1995). Decentralisation tends to result in individuals being given more responsi­

bility for managing themselves and their information (Etzel, 1995) - tasks that his­

torically might have been undertaken by secretaries, such as document prepara­

tion and filing.

To support and enable this move to information management at the 'personal'

level it is important that we consider the development of computing systems

which emphasise the personal aspects of work and that complement the individ­

ual user's capabilities and working practices.

This raises a central challenge - it is extremely difficult (if not impossible) to char­

acterise the exact activities involved in the process of PIM (Etzel and Thomas,

1996). Each person works in a different way, influenced by their background and

previous experience, the particular task in which they are currently engaged, and

so on. A system meant to support users in managing their personal information

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 18

needs to take account of the activities undertaken as part of the process. A non­

exhaustive set of representative key activities is given in Thomas et al. (1994), and

is briefly reviewed here, in preparation for a more thorough exploration of ap­

proaches to the process as a whole. Knowledge of these activities, in conjunction

with the nature of the information involved in them, will then lead to a discussion

of the more complex practices adopted by individuals as they manage their per­

sonal information.

2.2.1. Activities Involved in Personal Information Management

At the most basic level, PIM systems obviously require information storage and

retrieval facilities. Local information, created or manipulated by users, must be

stored for later reference - information such as personal files, data, diaries and

contact lists. Both local and non-local information required by users for their tasks

will often need to be retrieved - this might be anything from flight booking infor­

mation, or perhaps the contents of a financial newspaper.

Support for communication and integration is also necessary. Users will need to

communicate with other users and other computer systems, to pass messages to

them or to link to other information sources. More complex tasks will require in­

tegration - information of different types and from different sources might need to

be brought together. Examples might include arranging meetings, scheduling

events more generally and preparing supporting documentation or securing other

prerequisite resources (Thomas et al., 1994).

Although it is outside the scope of this study, managerial or executive level users

may also require decision-making systems.1 Stored, retrieved and integrated in­

formation might be linked together in various ways and some sort of 'intelligent

1 For further information on this topic, consult Fidler (1996); Dhar (1997).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\lav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

decision aid' or 'decision support system' used (Dhar, 1997), to highlight factors

relevant to a particular problem and to help suggest possible solutions.

19

While PIM as a whole is a complex and varied activity, the component tasks men­

tioned above all have one quality in common - a significant amount of the time

devoted to them will be spent carrying out actions which are repetitive in nature

and exhibit scope for selective automation. This is particularly true of storage, re­

trieval and communication. This suggests that an aim of any PIM system should

at least be to support the automation of such activities, where possible.

Having given a brief overview of some of the common, basic activities undertaken

in managing personal information, the next section explores the nature of the in­

formation involved, as this has a large impact on the requirements placed upon

any system designed to help manage it.

2.2.2. 'Personal' Information

The use of the term 'personal' to refer to the information which forms the focus of

PIM systems can be misleading. The term 'personal' does have connotations asso­

ciated with 'private', 'secret' or 'sensitive', which mayor may not be true in any

given situation, but is not necessarily the case. The use of the term 'personal'

stems from the fact that information may only have meaning to a particular indi­

vidual.

The information we are concerned with here is highly 'situated' in nature (Such­

man, 1987), and (as an extreme example) may take forms similar to an annotation

on a Post-ItTM note. In this case, it is probable that the individual who wrote it

meant it as a self-reminder and the information contained in the annotation is

therefore highly context-dependent - without knowing what was being thought

about or done at the time, it may be impossible to comprehend the information

fully (if at all).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 20

This has an important implication for systems meant to manage personal informa­

tion - sometimes a piece of information may be 'incomplete' if examined in vacuo,

and other items of information about the user may be required in order to inter­

pret any meaning present. Two assumptions made here are that: the system will

attempt to 'work alongside' the user by at least partially 'interpreting' the infor­

mation they work with; and therefore the system will possess some 'knowledge' of

the user in whatever form.

The basic activities mentioned earlier in section 2.2.1 (such as storage, retrieval and

communication), in combination with the personal nature of the information in­

volved, leads to the often subconscious development of a set of 'practices' adopted

by individuals.

2.2.3. Personal Information Management Practices

The processes undertaken by people in order to manage their personal informa­

tion are difficult to describe precisely. This section discusses some factors which

cause this to be the case, and examines how this results in an impact on the design

requirements for systems meant to support PIM.

The 'management' processes carried out are often highly implicit in nature, to

such an extent that they are not consciously reasoned about, occurring almost

automatically. They form part of the 'common sense' segment of a person's

working practices and may therefore be overlooked as just part of 'being organ­

ised'. These processes are also highly individualised, being a function of a per­

son's past experience and their current tasks and habits (Etzel and Thomas, 1996).

A spectrum of activities is involved, ranging from the sophisticated to the simple.

The aim in this study is to complement the simpler activities, removing some of

the tedium associated with the routine management of personal information. Any

system meant to support PIM must at least acknowledge the existence of the more

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 21

sophisticated (and possibly unconscious) practices which develop over time Gones

and Thomas, 1997), as it is important to restrict the scope of PIM support systems

in an appropriate manner - trying to 'second-guess' a user who is working ac­

cording to some subconscious habit would be very difficult to do, and of rather

dubious benefit.

At a basic level, the example concerning the Post-ItTM note illustrates a means of

temporarily recording an item of information for later reference. It is likely that

this simple 'unit' of activity forms a component of a more complex process, simply

because of the contextual nature of the information. For example, Post-ItTM notes

can be used for information which is meant to be recorded for a short time - a

message or a reminder, for example - or for information which acts as an annota­

tion to a larger document.

The processes undertaken are often based around physical artefacts such as diaries

or personal organisers. This may be for several reasons, although it is most likely

to be due to the fact that these items predate any technological support and are

therefore highly 'accessible' from the user's point of view (Norman and Draper,

1986). Put simply, people already 'know how to use them', at least at a basic level,

even if they are not used as part of an all-encompassing strategy for improving

personal effectiveness. The field of PIM encompasses these ideas as well as newer

technological solutions. For example, Etzel and Thomas (1996) give a detailed de­

scription of how an individual can adopt a strategy for managing their personal

information which need not involve any computing devices (although their use

can make the job easier).

2.2.4. The Development of Personal Information Management

The field of PIM also adopts some of the principles behind time management.

Classical 'time management' involves just freeing up time to do more 'work'.

More recent time management literature (Allen, 1995; Bliss, 1995; Croft, 1997) con-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\L1\' 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 22

centrates on combining these ideas with prioritisation and goals - as the most ef­

fective individuals do as a matter of course (Drucker, 1967; Drucker, 1968; Covey,

1992) - to ensure both that sufficient time is kept free for important and/ or urgent

work and that long-term goals can be met gradually, rather than just making sure

there is enough time to do whatever happens to be on a to-do list. As a corollary

of this, PIM's premise is that management of information impacts an individual's

effectiveness - depending upon whether it is done well or badly, it can help or

hinder the individual's performance. The ideas given in Etzel and Thomas (1996)

show how a person's information may be made more manageable and maintained

in the same way, thereby saving time spent searching for information and reduc­

ing the volume of information retained.

As the field of PIM has evolved, ideas for devices have been developed based

around some of the activities noted earlier. Initial products were little more than

electronic emulations of diary and personal organisers, taking the existing arte­

facts directly, as inspiration for metaphors for their user interfaces. These devices

were termed Personal Digital Assistants (PDAs) (Davies, 1996a; 1996b), and were

not as immediately successful as was originally expected (Laberis, 1995; Dieck­

mann,1996). Later work attempts to go further than traditional PDAs in sup­

porting PIM practices more comprehensively. One particular set of devices are

termed 'Personal Information Appliances' and are examined in the next section as

they illustrate some key requirements of systems meant to help in the manage­

ment of personal information.

2.2.5. Personal Information Appliances

Thomas et al. (1994) suggest that a central concept should be that of integration -

the ability of PIM systems or devices to use greatly differing sources and types of

information and to combine or 'integrate' them in a manner which is transparent

to the user (as mentioned earlier in section 2.2.1). They introduce the concept of

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~lay 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 23

integrated 'personal information appliances' - hardware and/ or software systems

which manage personal information and are particularly designed around the

concept of integration. These devices embody many of the principles mentioned

so far in this chapter, and as such illustrate some of the qualities that this disserta­

tion will argue are essential for successful PIM systems.

Two key characteristics of personal information appliances relevant to the discus­

sion concerning user interfaces from Thomas et al. (1994) are:

(i) appropriate information provision: users do not want to waste time by having to

mechanistically sift through information to discard irrelevant items. Infor­

mation filters which can alleviate routine tasks such as these save unneces­

sary effort on the part of the user; and

(ii) radically tailorable end-user interfaces: users want to be able to work in their

own way and will work more effectively if they are allowed to do so. A user

interface that is radically tailorable or personalisable will support this, result­

ing in a medium for interaction which does not increase the mental load of

the user.

These requirements are essentially consequences of the nature of personal infor­

mation and PIM practices. The first characteristic results from the use of knowl­

edge about the user to automatically provide information of use and/ or interest,

and the second characteristic results from the needs of the user to adapt the appli­

ance to their habits and practices, rather than the other way round.

These characteristics place demanding requirements upon systems meant to sup­

port the activities that comprise PIM. Differing approaches exist to the problem of

providing systems to aid the practice of PIM. These are examined in the next sec­

tion.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Ma\' 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 24

2.3. Approaches to Personal Information Management

An 'approach' to PIM could be defined as the combination of artefacts (physical or

virtual; hardware or software) designed to aid PIM, and the techniques used to

take advantage of those artefacts. Two well-known approaches will be examined

here using this definition in order to highlight some of the central issues currently

facing the field. These issues will then inform the recommendation of an approach

based on the idea of 'agency'.

A 'traditional' approach to PIM uses paper-based artefacts to aid the organisation

of the information to be managed, relying on 'common knowledge' of such items

as diaries, contact lists or address books, schedules and reminders (Lees et al.,

1996; Jones and Thomas, 1996), which can be brought together in a personal or­

ganiser, to form a system with a degree of integration - the differing types of in­

formation can be used in concert more easily. Newer PDA systems are generally

based around metaphors derived from the traditional techniques of information

management.

One limitation that must be borne in mind is that an artefact such as a personal or­

ganiser will be most effective if its user adopts a sensible set of practices to com­

plement the stores of information contained in it. The artefact can only be seen as

an 'aid', not an automatic cure for any organisational failings on the part of the in­

dividual. There is a spectrum of organisational ability, from those people who

naturally have good self-organisation, to those who make little effort to organise

themselves and their lives. The benefit that a person will derive from any organ­

isational aid will depend upon their position on this spectrum to begin with.

The first generation of electronic personal organisers (Wheelwright, 1995) used

embedded computing systems to computerise the information storage and re­

trieval functions associated with PIM. They were largely designed around the

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 25

same ideas as paper-based systems, with the emphasis purely on the automation

of entry and searching (Dieckmann, 1996).

A problem with these systems was that although they did automate some of the

underlying activities necessary, they did not tend to take account of the 'bigger

picture'. Diaries, planners and telephone lists are useful items in their own right,

but the success of paper-based personal organisers springs mainly from the ability

to use these information resources in an integrated manner. To be effectively or­

ganised requires that the user be aware not only of the contents of each repository,

but also of the relationships between them - a lot of cross-referencing and mainte­

nance activities are required to use the facilities to their fullest, a burden which is

placed on the users of these artefacts.

The main issue here is that traditional paper-based physical systems are passive in

nature and have a static design. Their strengths spring from the fact that, whilst

they are passive in nature, they can still be used in many ways - the contents and

arrangement of one individual's personal organiser will probably be very difficult

for another person to understand. However, these systems do require their users

to undertake lots of mechanistic cross-referencing and maintenance tasks - for ex­

ample, copying appointments and other information between the sections of a

personal organiser - in order to keep them up to date, and therefore useful.

If the design of an 'active' artefact (such as a PDA) is based too closely on the cor­

responding passive artefact, there is a risk that the information management facili­

ties provided by the artefact might be artificially limited by the original artefact's

inherent design. Given the wide range of processes adopted by users in the man­

agement of their personal information, a device which overly constrains how it

can be used may consequently be perceived as much less useful than the tradi­

tional alternative (Lees et al., 1996).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 26

A paper-based system such as a traditional personal organiser is 'open' - not tied

to any mode of operation as such - and can therefore be used in any number of

ways that were not originally envisaged by its designers. If a PDA were to sup­

port only direct analogues of traditional activities such as creating, altering or de­

leting entries in several different databases (examples being appointments, contact

lists and so on) it would be missing opportunities to take into account a user's per­

sonal preferences as regards the way they work, and the information that they

need. Thomas et al. (1994) highlight three main issues arising from this discussion.

Firstly, there is a lack of design guidance related to PIM processes and systems,

which can lead to unverified assumptions and therefore a misunderstanding of the

nature of PIM, where and how it occurs and the opportunities it offers for techno­

logical support.

Secondly, there is also a natural tendency for vendors to provide systems which

are the easiest to implement rather than those which would provide the most

benefit to their user - the process can be driven more by available technology,

rather than the users' needs.

Finally, appropriate metaphors need to be used in the design phase (Jones, 1989;

Erickson, 1990). If a paper system which is replaced by a technological solution is

too closely echoed, this can lead to a computer-based system whose usefulness

may be artificially limited. A designer cannot hope to anticipate all the ways in

which the artefact will be used and has to assume that users will adopt processes

which suit the metaphors chosen.

These issues indicate some of the immediate needs of the field. To address these

issues, work needs to be done to yield design guidelines or some type of design

framework for systems actually based on the analysis of PIM practices rather than

just assumptions. This suggests that the design of PIM systems should be ap­

proached by considering the needs of the user. A variety of techniques based

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\tav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 27

upon this underlying idea exist, such as user-centred design (Norman and Draper,

1986), cooperative and participatory design (Greenbaum and Kyng, 1991; Schuler

and Namioka, 1993) and usability engineering (Nielsen, 1993). Adopting an ap­

proach which focuses on the eventual users of the systems can rectify many of the

problems arising from lack of knowledge of the nature of PIM, and can avoid pro­

viding a solely technological solution which proves mis-directed.

The choice of an appropriate metaphor is primarily concerned with the nature of

the interface to a user's personal information. There must obviously be some me­

dium which sits between the user and their electronic information repository, pro­

viding the mechanisms by which an individual accesses their information,

searching and updating it for example.

Together, the issues discussed here imply that the design of the interface should be

the subject of detailed analysis. As regards the choice of an appropriate metaphor,

the dynamic nature of users would tend to indicate that, as well as being carefully

designed around their users, PIM systems should not be static in nature - they too

need to be dynamic so that they may be adapted to the processes undertaken by

their users. Taking this idea further, we could consider user interfaces which can

not only be tailored or adapted by their users, but can adapt themselves based on

the way they are used. Such systems are termed adaptive user interfaces (Benyon,

1993; Benyon and Murray, 1993) or intelligent user interfaces (Sullivan and Tyler,

1991; Puerta, 1998), and will form the basis of the user interface design work in

this study.

In addition to the idea of a PIM system having a dynamic interface, the low-level

activities introduced in section 2.2.1 show that there are also opportunities for in­

troducing autonomy into these systems - the idea that delegation of routine tasks

can occur, where a user allows the system to carry out (for example) maintenance

tasks without the need for every operation to be directly triggered.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

2.3.1. Indirect Management of Personal Information

The nature of many of the activities which go to make up PIM naturally lend

themselves to automation of some sort. A key part of effective management (of

anything) is the delegation of certain tasks. This delegation may involve other

people or technologies of some kind. We might think of e-mail systems, for ex­

ample, as supporting certain functions of their human manager - undertaking

'delegated' tasks such as adding signatures and contact details to all out-going

messages, or automatically copying and filing mail to certain respondents. This

type of 'delegation' to computer systems is immediate in nature - such systems

are used directly as tools where the dialogue is always user-initiated, specific and

sequential (and therefore time-consuming) in nature.

28

In contrast to this 'direct management' of computer systems (and hence informa­

tion) via user interfaces, a newer approach to interacting with computer systems

can be used - that of indirect management (Kay, 1990). Instead of viewing the com­

puter simply as a passive, user-driven tool, it becomes a system capable of ac­

cepting delegated tasks and autonomously carrying them out. Users can then

manage their information indirectly by managing autonomous 'helpers' or 'agents'

of some kind.

The different component tasks upon which PIM relies all have one common de­

nominator, in that there exists the opportunity to automate significant parts of the

tasks involved. A meeting scheduler would need access to information which

may be stored in different locations and must be retrieved and integrated to yield

an acceptable solution, which could take some time to do by hand. An e-mail or­

ganiser could use some set of rules or conditions to alleviate a similarly routine

activity - as e-mail arrives it could be prioritised and sorted into different folders,

without the user having to explicitly do this. These systems for information man-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ta\' 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

agement support again perform necessary but basic tasks which should really be

transparent to the end-users of these systems.

29

We have now identified two methods by which PIM systems might be improved:

the interfaces seen by their users could adapt themselves to improve the interac­

tions between system and user, and there could be the facility for the system to ac­

cept tasks delegated by the user. These two areas can actually be seen as part of

the same problem - in order to be successful, they both depend upon the design of

the user interface. A user interface which changes as it is used must do so in a

predictable and obvious manner, otherwise the user may become disorientated

and confused. In parallel with this, if a system is to accept 'commands' or 'tasks'

as a delegate, there needs to be a way for the user to specify these tasks accurately

enough to be able to have confidence that they will be carried out correctly.

The next section discusses user interfaces which fit into this category. The discus­

sion will lead on to the means by which such interfaces can be implemented,

which includes the use of entities referred to earlier as 'software agents'.

2.4. Adaptive Interfaces and Personal Information Management

We have identified that the use of a concept termed 'adaptivity' may be beneficial

in enhancing the usability of an interface meant to support the activities of PIM.

This section considers traditional user interfaces, demonstrating the differences

between them and newer interfacing techniques, and examining the justification

for their use.

Classical user interfaces (Norman and Draper, 1986; Shneiderman, 1998) are static

in nature, embodying a design which (it is hoped) will accommodate the vast ma­

jority of the future users of that system. The fact that a system is designed and

then fixed when implemented at some point means that it must be adapted to by

its users, where any mismatch in a user's conceptualisation of the system occurs.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 30

Similarly, since the system's design springs from the designers' perceptions of the

system users, certain classes of users may be catered for poorly. Customisable or

'adaptable' systems can provide a partial solution to this problem, by allowing us­

ers to express their preferences as to the function or appearance of a user interface,

yet this still places the burden of change upon the user. A central tenet of this

class of systems is that the interface works purely as a tool, manipulated directly

by its users.

In contrast, an adaptive or 'intelligent' user interface (Benyon, 1993; Browne et a/.,

1990; Sullivan and Tyler, 1991) is one where the appearance, function or content of

the interface can be changed by the interface (or the underlying application) itself

in response to the user's interactions with it. The system will typically contain

some component which receives signals or events from interface as the interaction

progresses, and uses some rules to effect adaptation of the interface based on a set

of criteria. In order to be able to do this, the system must possess a model of the

user, a model of the system (or interface) itself, and a model of the interaction be­

tween the two - these themes will be returned to later, in section 2.6.

Having illustrated the differences between these two different approaches to user

interfacing, the next section shows how adaptive user interfaces can be fruitfully

employed to support PIM.

2.4.1. Adaptive User Interfaces for Personal Information Management

The nature of PIM - the fact that it is composed of a set of activities that are highly

specific to the person working - means that any system meant to support rIM

must be extremely flexible in nature if it is to be moulded around its user. As was

discussed in section 2.4, increasing the flexibility of a system too much can render

it much less usable - it is this demand for enhanced flexibility without too great a

cost in terms of usability that provides some of the key motivation for the devel­

opment of adaptive systems (Benyon, 1993).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 31

The justification for having adaptivity in an interface is an important question for

the designer, since adaptivity should only be used where it is appropriate.

Benyon and Murray (1993) propose three criteria which can act as a guide in this

situation. The changing user argument is based on the fact that people do not re­

main the same over time, and change according to their knowledge and experi­

ences. Consequently, an initial 'perfect fit' between user and interface will dete­

riorate over time, necessitating some change on the part of one or other. The a pri­

ori argument states that for certain tasks, such as natural language processing, a

fixed interface will simply not work, and adaptivity is required from first princi­

ples. The usability argument applies if it can be shown simply that the interface

can be made easier or more effective to use if adaptivity is included in it.

Examining two of the key criteria for the utilisation of adaptivity in the context of

PIM illustrates where adaptive systems may be applicable in this domain.

(i) The changing user argument. Adaptivity can be appropriate in situations

where the user of a system changes over time, according to their tasks and

abilities. Since the management of personal information is a means to and

end rather than an end in itself - it supports the 'working context' of an indi­

vidual; how they approach their work - they way the task is carried out will

depend upon the context in which it is being carried out. As the individual's

tasks change, they therefore may also change in terms of how they work;

(ii) The a priori argument. Adaptivity can be appropriate where a system must

cater for a wide range of users to begin with, making the design of a suffi­

ciently flexible system too difficult while providing adequate levels of us­

ability. The class of users at whom these systems are aimed - professionals

with responsibility for self-management and organisation - while sharing

certain characteristics, can be found in a wide range of employment settings.

This implies that a wide range of users would indeed exist.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1av 1y99

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 32

Given the close relationship between the user and their personal information, a

user interface meant to support PIM must support a wide spectrum of users with

different habits and be able to cope with a user whose working practices may

evolve over time - these facts satisfy both the a priori and the changing user argu­

ments, and imply that appropriately designed adaptive interfaces can be fruitfully

applied in this situation.

2.4.2. Justification for Adaptivity in User Interfaces

The use of adaptivity within a user interface should be driven by the needs of the

user(s) of the interface, but must also consider the impact that the introduction of

adaptivity has on the usability of the resulting interface (Hook, 1997). This disser­

tation uses the term 'adaptive' rather than 'intelligent' as far as they are applied to

user interfaces. The reason for this is pragmatic in nature - human users are natu­

rally suited to intelligent behaviour, whilst a great deal of time and effort must be

expended in order for machines to echo such behaviour. In any case Petrie (1996)

notes that in order to be useful, software agents do not necessarily need intelli-

gence.

This dissertation supports the views of others in the field (such as Lieberman and

Maulsby, 1996) that there is a theoretical spectrum of interactive systems which

range from the totally fixed 'designed' system to the totally flexible 'adaptive' sys­

tem, and a parallel spectrum of varying requirements in terms of 'intelligence'.

Lieberman and Maulsby (1996) argue that there is a direct trade-off between flexi­

bility and usability, and that the key aim of designing adaptive systems is in es­

sence to pick the correct point on the spectrum between the two. There is no (non­

trivial) 'absolutely usable' (and therefore highly specialised in design) system

which has much flexibility, and the 'ultimately flexible' system, applicable to a

wide range of situations and users, would be difficult to use.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\lav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 33

The stance taken on this issue in this dissertation is that the simpler the desired

adaptivity of the interface, the easier it should be to quantify and implement. A

central principle of usability is that the user of a system should feel 'in control' of it

(Shneiderman,1998). Any adaptation that occurs ought therefore to be obvious

from two perspectives: both obvious that it has occurred, and obvious why it has

occurred. Much of the scepticism attracted by adaptive user interfaces - and agent

technology as an approach to supporting adaptation - springs from the fact that

this has not always been the case (Shneiderman, 1997). The inclusion of adaptivity

or 'intelligence' in an interface has sometimes been seen as either an abdication of

the responsibility on the part of the designer(s) to make the interface usable in the

first place (Shneiderman, 1997), or as an attempt to 'replace' the user's intelligence

in some way (Lanier, 1996a; 1996b).

Having suggested that adaptive user interfaces can offer advantages over tradi­

tional user interfaces for systems to support PIM, the discussion now turns in de­

tail to the nature of adaptive user interfaces. This will clarify the requirements

placed upon any software agent system meant to form part of an adaptive inter­

face.

2.5. Adaptive User Interfaces

Any adaptive system can alter its state, and possibly its behaviour, in response to

an interaction with another system. For example, humans can change the way

they behave - they can learn new skills, for example - rather than being 'fixed' in

terms of behaviour. Similarly, an adaptive user interface can monitor a user's in­

teractions with it, and change itself based upon them. Any system which interacts

somehow with another must possess a 'model' of that system in order to interact

with it (Benyon, 1993). This is true of all systems and particularly so with user in­

terfaces - the design of the interface embodies the designer's model of how the in­

terface will be perceived and used (Norman and Draper, 1986).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 3-1

To be able to function in this way, the system needs to be able to receive and proc­

ess signals from some other system, and automatically change state or behaviour

in response - it must be able both to interact and adapt. To do this, the system

needs some way of converting raw 'sensor input' into information about the inter­

action, and it needs to have some mechanism by which it can change itself. These

conversions necessitate three other classes of models: a model of the other systems

with which the system interacts, a model of how this interaction can proceed, and

a model of the system itself (Benyon, 1993; Benyon and Murray, 1993).

These models may be extremely simple. Benyon (1993) takes the example of a

thermostat, a simple adaptive system which senses the ambient temperature and

adapts the setting of the heating system based upon it. The model of the world

used in this case is a bimetallic strip forming part of the switch. The model is en­

tirely concerned with the temperature of the world, and nothing else - this is all

that is required for the thermostat to function.

Adaptive systems can be very much more sophisticated than this, according to the

function they hope to perform. An intelligent tutoring system (Mislevy and Gi­

tomer, 1995; Mitrovic et al., 1996) would be an example of an application requiring

more complex models. The aim for such a system is to maintain a model of the

student's level of knowledge and expertise, in order to adapt the instruction given

to the student and to detect and correct misapprehension on the part of the stu­

dent. In this case, it is extremely important to maintain synchronisation between

the models held by both the user and the system - the system's model of the user's

knowledge in the instruction domain must accurately reflect the user's actual

knowledge, or the dialogue between the two will break down as a result of the

user having been led 'up the garden path' (Suchman, 1987).

As was mentioned in section 2.4.2, concerning the justification for adaptivity in a

user interface, these different types of system relate back to a spectrum of com-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~L1\ 1999

./

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 35

plexity in both the user interface itself and its adaptive elements. A well-designed

user interface which exhibits reasonably simple adaptivity should prove to be

easier for individuals to think about and use more effectively than either a rigidly­

designed, fixed user interface, or one that attempts to adapt too much by drawing

tenous inferences about the user.

Having examined adaptive user interfaces at a reasonably theoretical level, this

chapter will now proceed to explore how such interfaces can be decomposed into

a set of component objects in order to be realised in software. This will show what

technologies are appropriate in order to support adaptive interfaces, which forms

the basis for the design and implementation work undertaken in Chapters 3 and 4.

In order to do this, the concept of a 'reference architecture' - a set of component

objects which are common to almost all adaptive systems - will be introduced.

This will be used to inform both the design and implementation, by providing a

framework within which the functionality of an adaptive system can be expressed.

2.6. A Reference Architecture for Adaptive User Interfaces

The discussion in the previous section approached adaptive systems by consider­

ing them as part of a larger system - a user, interacting with a computer system, in

order to accomplish some task. In doing so, it was noted that this implied a need

on the part of both these interacting sub-systems (i.e., the human and the com­

puter) for models used to 'reason' about the interaction as it proceeds.

Three types of models were mentioned as being important in this situation: a

model of the other party in the interaction; a model of the domain in which the in­

teraction occurs; and model of the interaction process itself. Both parties to any

interaction require elements of these models in order to communicate with each

other, although the level of communication in terms of syntax, semantics and in­

formation will dictate the complexity of the models required.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1a\' 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 36

The models referred to here can be thought of as components of what is termed an

'adaptive interface architecture' - a framework which binds together these com­

ponents and provides some techniques for specifying and building the models.

These may be developed into a 'reference architecture' for adaptive interfaces.

Benyon and Murray (1993) provide such a reference architecture, reproduced as

Figure 2.1. This splits the adaptive system up into three major components, each

in itself a composite model. The models are respectively termed the User Model,

the Domain Model, and the Interaction Model. Each of the three models has a par­

ticular purpose, and constraining relationships exist between these models.

User Model Domain Model

Psychological Data Intentional Level

Profile Data I Conceptual Level I
I Student Model I Physical Level

~ /
Interaction Model

I Dialogue Record I
Interaction Know ledge Base

Evaluation Adaption Inference
Mechanisms Mechanisms Mechanisms

Figure 2.1. A reference architecture for adaptive interface technology (Benyon and Murray, 1993).

2.6.1. The User Model

The user model stores information about the user(s) of an adaptive system. This

might seem to imply that there will be one (human) user of the system, but this is

not necessarily the case - if the system interacts with a number of other adaptive

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 37

systems, a user model may be required for each. Three different sorts of informa­

tion make up the user model:

(i) Psychological data: The psychological data reflect innate aspects of the user­

abilities which are difficult or impossible for the user to change, such as spa­

tial ability, character traits or personality;

(ii) Profile data: The profile data gives information about the user's likes, dislikes

and so on - in a customisable system, the user profile would store informa­

tion about the user's preferences;

(iii) The 'student' model: This contains information about what the user is deemed

to know about the system they are using, termed' domain knowledge'.

2.6.2. The Domain Model

The domain model stores information about the application area of an adaptive

system. The domain model stores information at three different levels:

(i) The intentional level: Information at this level reflects the goals and objectives

of the system's users as they work;

(ii) The conceptual level: This level contains information about components of the

system that users are expected to reason about;

(iii) The physical level: This part of the domain model is concerned with the me­

chanics of the system - how a particular action can be brought about.

The intentional level's goal information is the highest level of data manipulated by

any adaptive system - it effectively answers questions about why users do things.

Conceptual level data is concerned with application-specific information about

what operations users bring about - clicking on buttons, for example. Physical

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
!\tav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 38

level data comprises information about raw syntactic elements of the system, such

as programming interfaces.

Information in the domain model forms the basis for the construction of the user

model- that is, the user model cannot contain information about any aspect of the

system that is not adequately reflected in the domain model.

2.6.3. The Interaction Model

The interaction model contains information about the user's interactions with the

system and the mechanisms by which the system can adapt portions of itself. It

consists of the' dialogue record' and the interaction knowledge base. The dialogue

record is simply a 'history list' of the interaction, containing raw data about syn­

tactic events such as mouse clicks, menu selections and so on, forming the basic

'sensory input' to the adaptive system. The dialogue record must be transformed

in order to be of use to the higher-level elements of the system, and this is part of

the function of the interaction knowledge base.

The interaction knowledge base contains information about three different sets of

mechanisms:

(i) Inference mechanisms: These are used to draw conclusions about users as they

interact with the system;

(ii) Adaptation mechanisms: These reflect how the system can change itself, em­

bodying the dynamic facets of the interface;

(iii) Evaluation mechanisms: These allow the system to judge whether its adaptions

are making it more usable.

The inference mechanisms referred to in (i) are those used to gather information

about the user without the system having to be explicitly instructed - an immedi­

ate issue is the quality and quantity of information available about the user. Any

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~L1\" 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 39

conclusions drawn will only be valid or useful if there is a sufficient amount of re­

liable information available. The sorts of conclusions which might be drawn con­

cern (for example) a user's expertise with a particular system, or a user's interest

in a particular subject.

Adaptation mechanisms (ii) represent the facilities available to the system to effect

change in whatever interface is presented to the user. Once the inference mecha­

nisms have arrived at a particular conclusion about the user, the adaptation

mechanisms are responsible for putting that conclusion into action, actually pro­

ducing the change in the system. An example might be the mechanism needed to

alter a hierarchy of menu items based on the history of a user's choices.

The evaluation mechanisms referred to in (iii) are used to self-regulate the adap­

tive system, forming a kind of 'feedback loop'. Some issues raised here are the

means by which the system can judge whether its adaptions are making it more

usable; what evidence is required to make such judgements, and how sufficiently

accurate data can be acquired to make these judgements sound. There are differ­

ent levels of complexity as regards the evaluation an adaptive system carries out.

At the highest level, the system would need to possess a model of itself, to allow it

to carry out the proposed adaptation on the model and to evaluate the effects of it

before choosing to apply it to itself.

2.6.4. Key Relationships Between Models

The user model's contents are partially 'inherited' from the information stored in

the domain model. Informally it could be said that the domain model constrains

the extent of what may be 'known' by the system - that is, the information stored

in the user model will be 'parameters' of elements of the domain model. This has

the consequence that the domain model effectively limits the scope of the adaptive

system's abilities - as ever, any system must have some underlying design which

is fixed at any given time. The complexity of the domain model is an important

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi5
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

issue in adaptive systems design - a more flexible domain model which can

change or be changed may allow more sophisticated adaptation. Any benefit

arising from this has to be considered in parallel with the added complication in­

troduced by adding it to the system.

2.6.5. Explicit and Implicit Models

Although the architecture described here consists of a set of models, each storing

information about a particular facet of the adaptive system, it must be borne in

mind that some of the details in these models may actually be implemented in an

implicit manner. For example, the physical level of the domain model is con­

cerned with the syntactic elements of the domain - how the system communicates

with the user, for example.

In most software systems, this will be via a programming interface of some kind.

Almost all programming languages require that such an interface be fixed (in in­

terface definition files used to compile the software, for example). To make these

elements of the domain part of a modifiable model would introduce considerable

additional complexity into the design and implementation process of the system.

2.6.6. Realism in Adaptive Systems Design

-to

These three levels may not be reflected in all adaptive systems. It may not be fea­

sible to attempt to derive information about a user's goals and intentions in a

given system for a number of reasons - primarily, the quality of information about

the interaction must limit the inferences made upon it. If the information is unre­

liable or not sufficiently conclusive, any inferences drawn upon it will be subject to

error. If any adaptions are subsequently carried out as a result of these inferences,

the result may well be that the user ends up being confused about why the inter­

face has changed in the way that it has. Limitations such as these must therefore

be taken account of when specifying the desired behaviour of adaptive systems.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\ta\' 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 41

This tends to be true of all work which relies on what is basically an information­

processing view of human-computer interaction (Landauer, 1991).

2.6.7. Software Agents as Components of Adaptive Interfaces

The preceding sections have described the nature and requirements of adaptive

user interfaces, using an existing architecture for these systems. Adaptive systems

have certain active components - for example, the inferencing and adaption

mechanisms discussed in section 2.6.3, which will need to be implemented some­

how. An adaptive user interface can be thought of as a passive collection of data­

bases each storing information about some facet of the adaptive system, which is

then manipulated by some active entity or entities. These entities or 'agents' may

be specialised to some particular function such as recognising a given user action

and generating an appropriate response.

The use of 'agents' as a conceptual tool within adaptive user interfaces can suit the

requirements of PIM systems, in two different ways. Firstly, they can be config­

ured to carry out routine tasks (such as the storage, retrieval and communication

requirements) on behalf of their users, leaving the user with more time to spend

on activities that do require human intelligence. Secondly, they can be incorpo­

rated into the interfaces used to access, manipulate and manage personal informa­

tion, in order to permit the interface to adapt itself to the user, making the interac­

tion more natural.

As yet the discussion has not focused on the theories or technologies which can

actually be used to provide agent-based systems. The following sections present a

review of the field of software agents to show what the idea encompasses, the dif­

ferent views of agents and the technical detail behind the theory.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
Mav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View -+2

2.7. Software Agents: An Overview of the Area

This section will begin with a discussion of general issues in the field of software

agents and lead on to an exploration of the varying technologies which are associ­

ated with the term 'agent', in order to inform a decision as to which technologies

may be appropriate to the development of adaptive user interfaces.

Thus far, the terms 'agent' and 'agency' have been used in this dissertation, with­

out a great amount of clarification as to their meaning or implications - conceptu­

ally, technically or otherwise. A variety of software agent technologies exist, and

the next section will discuss software agents themselves in more detail. This will

lead to an informed decision about the types of software agents that will be ap­

propriate to the task of supporting PIM through user interfaces which contain

adaptive components.

2.7.1. Views of Software Agents

Many different definitions of the term 'agent' exist. Consequently, there are many

different types of agents with different properties and characteristics. The central

idea is that an 'agent' embodies some kind of autonomous process working 'in the

background' to help achieve the user's goals.

There are a range of levels at which such agents can be considered to be working.

At a high level, they can be viewed as an enabling functionality providing a serv­

ice of some kind. Maes (1994) gives the example of an agent which will schedule

meetings in accordance with a user's preferences. In this case, the agent is work­

ing at the information level- within the context of human understanding.

At a more basic level, Negroponte (1990) makes the suggestion that agents will be

used for the simpler, basic tasks such as sorting and managing mail and files, han­

dling telecommunications requests, etc. He visualises the majority of agents as

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ fa\' 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

being far simpler in nature than Maes - ubiquitous and small (both in physical

form and functionality).

43

An even lower level view given by Thomas et al. (1994) is that of controllable,

minimal 'information management support' agents. These inhabit the heteroge­

neous 'information space' of personal information appliances, computing devices

and networks present in any particular organisation. In this case the agents pro­

vide much lower-level data-oriented services such as store-and-forwarding, direc­

tory lookups or network fault-tolerance.

This illustrates the spectrum of agent types, from the very simple and low-level

types of agent, up to agents which seem to be working almost at the same level as

the human user. The next section identifies some key characteristics, drawn from

a range of software agent research, which form the background to the develop­

ment of software agents. These will then be used to make some informed choices

about the particular agent technology appropriate for the application being con­

sidered.

2.7.2. Key Agent Characteristics

All agents share some properties or characteristics. A useful characterisation of

agents is given by Jennings and Wooldridge (1996) who identify three classes,

based upon their capabilities:

(i) simple gopher agents, which execute straightforward tasks using pre­

specified rules and assumptions;

(ii) service performing agents, which act on well-defined requests from users, in a

goal-oriented manner;

(iii) complex predictive agents, which provide information or services to users

when the agent decides that it is appropriate to do so.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~1av 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

These classes of agents all have certain common qualities. In a review of the field

of 'intelligent agents', Wooldridge and Jennings (1995) introduce what they term a

'weak' notion of agency. It is used to denote a (usually software-based) system

that exhibits the following properties:

(i) Autonomy: agents should work alone, without intervention from humans or

others, and have control over their internal state;

(ii) Social ability: agents should be able to interact with other agents and possibly

humans through some medium, interface or language;

(iii) Reactivity or responsiveness: agents should be able to perceive their environ­

ment, whatever it is defined as, and react in a timely fashion to changes oc­

curring in it;

(iv) Pro-activeness: agents should not only respond to their environment but also

be able to act in an opportunistic, goal-directed manner and take the initiative

where appropriate.

These 'hallmarks' might be present in differing amounts, depending on the nature

and 'behaviour' of the agent. For example, a 'gopher' agent whose task is simply

to monitor a web document for changes does not exhibit a large degree of pro­

activeness. At the other end of the scale, 'predictive' agents which might recom­

mend articles of news based on a user's interests and reading history do require

the ability to take action without the receipt of a direct request from the user.

Agents can easily be visualised as roughly equivalent to a traditional operating

system 'process' which exhibits these qualities. A typical example of an agent

which corresponds to this style of agency is a softbot, or 'software robot' (Etzioni

and Weld, 1994), used for goal-directed information retrieval.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\\av 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

As opposed to the 'weak' notion of agents and agency (Wooldridge and Jennings,

1995), for some artificial intelligence researchers the term 'agency' encompasses

much more than discussed already. 'Strong' agents (typically referred to as 'intel­

ligent agents') are often discussed using concepts more usually applied to humans,

in addition to the weaker agents' capabilities. Mentalistic activities such as rea­

soning and learning (and perhaps emotion) are usually involved. While there are

good reasons for ascribing such attributes to agents - see for example Bates (1994)

and Minsky (1994) - they are unnecessary for the basic tasks involved in PIM. In­

troducing more human qualities, particularly those such as emotion, could lead to

potential users of the system inferring more sophisticated functionality than that

possessed by the system. Based on the needs of the application - that of comple­

menting the human user in the management of their information - emotion would

carry very little useful information, and would distract from the real focus of the

system. The 'weak' notion of agency will therefore form the focus of this discus-

slon.

The reason for this is primarily because we are concerned with the development of

simple but ubiquitous software agents that can be used primarily in the role of as­

sistant, capable of performing the mechanistic aspects of tasks whilst leaving users

to perform those (aspects of) tasks that demand human intelligence.2

The term 'agent' is very much a 'banner', under which many different types of re­

search are being undertaken. No one definition can possibly cover all work, and

in a parallel fashion, agents may be classified in a great number of ways. To illus­

trate the wide variety of different ways of defining the term agent, an alternate

treatment of the concept is given by Nwana (1996). He does not attempt rigorous

2 The motivation for this approach is explored in more detail in Macredie and Keeble (1997).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi5
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 46

classifications and instead provides some 'dimensions' along which to characterise

agents:

(i) Mobility: agents may either be static or mobile -located in a fixed place, as

traditional computer processes, or with the ability to move around (a net­

work for example) in order to be closer to required resources;

(ii) 'Thought' model: an agent which possesses some internal symbolic reasoning

model and planning and negotiation faculties may be referred to as delibera­

tive, after the deliberative thinking paradigm. In contrast a purely reactive

agent functions according to a stimulus/response principle;

(iii) Attributes of agenthood: agents can also be classified according to the posses­

sion of certain key attributes (not unlike the hallmarks of agenthood men­

tioned earlier). Nwana (1996) gives autonomy, learning and collaboration as

a basic minimum set, indicating that there are certain qualities that most

people agree upon, although even this limited set can be controversial;

(iv) Roles: the tasks agents are meant to accomplish can sometimes be used to

classify them - examples given of major roles are World-Wide Web search

engines and spiders, classified as information agents;

(v) Hybridisation: a agent can be termed a hybrid if two or more separate agent

philosophies are embodied within a single agent.

Given the diversity of the field, a precise definition of the term agent is not gener­

ally possible, and is probably not desirable since such a wide variety of work is

ongoing under the 'agent' banner. The central issue is the underlying concept of

agency itself - that humans could explicitly delegate routine or boring tasks to

autonomous processes that can carry them out more efficiently and without suf­

fering the associated boredom.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t-.tay 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

2.8. Agent Theories, Architectures and Languages

The technologies upon which software agents are based is an important factor - in

the context of this dissertation, a choice will need to be made in order to imple­

ment an agent-based system as part of this study. There are many different \'iews

of how agents should be formally conceptualised and reasoned about, how they

should be constructed and the notations used to specify their actions. Although

the main focus of this dissertation lies elsewhere (in the ways in which agents will

actually be used) the material referred to here will be used to inform the develop­

ment and implementation of software agents accomplished later in Chapter 4.

An agent theory is an underlying formalisation involved in conceptualising some

set of agents. Agent theories are primarily useful in describing the properties of

systems to be built, while adequately reflecting the different levels of abstraction

used by the designers, implementors and users of agent systems (Shoham, 1993).

Strong agent theories are often expressed in some sort of modal or temporal logic

(Singh, 1994) and include means of specifying agent properties such as intent, be­

lief, desire, and so on. Weaker agent theories tend to concentrate more upon the

agents as being part of a larger system, rather than being disembodied 'bits of in­

telligence' in their own right (Brooks 1986; 1990).

An agent architecture provides a set of analytical tools and techniques used to rea­

son about how some agent(s) functionality can be realised as either software or

hardware (Maes, 1991). Since agent systems originally emerged as a subset of

multi-agent systems (Singh, 1994) in distributed AI (Bond and Gasser, 1988; Chaib­

draa, 1994; Chaib-draa et al., 1992a; Chaib-draa et al., 1992b), there is a tendency for

them to be viewed as a particular type of knowledge-based system, known as

symbolic AI (Bond and Gasser, 1988), although there are other means of viewing

them. Classical AI recommends deliberative agent architectures (Huhns and Singh,

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\ lav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View -18

1994), where agents possess some logical model of the world, and have the ability

to reason about the world using it.

However, Wooldridge and Jennings (1995) indicate central, difficult problems,

which must be resolved in order to build deliberative agents: transduction - the

problem of the timely translation of the real world into an accurate and adequate

symbolic description; and representation or reasoning - how to symbolically repre­

sent information about complex real-world entities or processes and how to get

agents to reason with it in time for the results to be useful. To combat the prob­

lems associated with these deliberative architectures, reactive architectures were

devised (Brooks, 1986; 1990; 1991a; 1991b; Maes, 1991; Etzioni, 1993). These do not

use explicit models of the world in the style of symbolic AI and also do not use

any complex symbolic deductive reasoning, but can still exhibit 'intelligent be­

haviour' Brooks (1991a; 1991b).

An agent language is a programming language which permits the implementation

of an executable agent process of some kind. The symbolic AI roots of much agent

research has led to many agent implementations in LISP, due to the language's

ability to explicitly encode programs as data with ease (Wayner, 1995). Sun's

'Java' language (Gosling and McGilton, 1995) provides an intermediate solution,

realising applications as consisting of a set of 'applets', although the mobility of

Java applets is severely limited (for security purposes). To combat this, a public­

domain mobile agent toolkit developed in Java has been developed by the Agents

Group at IBM (Chang and Lange, 1996). As a purpose-designed agent language,

General Magic's 'Telescript' environment (White, 1994) provides for agent pro­

grams which can run at one location, and then issue a 'go' instruction which re­

sults in the program moving between hosts as if nothing had occurred.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\L1\" 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 49

2.8.1. Existing Agent Systems: An Overview

The previous section described some underlying' enabling' technologies which

fulfil elements of the requirements of agent-based systems. This section presents a

brief review of the state of the art in software agent research and development to

give some specific examples of how agents and user interfaces have been brought

together to yield adaptive or dynamic interfaces that have some of the characteris­

tics of 'assistants', rather than simply being tools.

Nwana (1996) gives an informal typology of agents, which is adopted in this dis­

sertation to act as an analytical framework, using which the different agent sys­

tems which exist at the moment may be critically examined. Nwana himself ad­

mits that many researchers find fault with his typology, reproduced as Table 2.1 -

this is to a great extent inevitable, since so many agent types overlap with others

to a greater or lesser degree.

It can be seen that a single agent may be classified as belonging to more than one

of these classes - yet the set of classes does cover the vast majority, if not all, cur­

rent examples of deployed and emergent agent technologies. Some examples of

agent system technology are now introduced to show how they relate to each

other, and the typology given in Table 2.1.

Chin (1991) describes how 'intelligent' user interfaces themselves can be charac­

terised as containing agents, as entities that cooperate with the user - collaborative

agents. Cypher (1991) reports on the development of an assistant agent called

'Eager' which can spot repetitive patterns in the user's behaviour, infer the se­

quence, and complete it under supervision. Maes (1991) gives the example of a

somewhat simpler approach to using agents in user interfaces - rather than infer­

ring sequences of operations, the interface is conceptualised as consisting of a set

of reactive 'competence modules', each responsible for a different behaviour.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\Lw 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 50

Agent Type Agent Description

Collabora tive Agents which emphasise autonomy and cooperation (with other
agents) - and therefore social ability - as well as responsiveness
and proactiveness in order to perform tasks for their owners.

Interface Agents which emphasise autonomy and learning to perform
tasks as 'personal assistants' for their owners, thereby with less
emphasis on inter-agent collaboration.

Mobile Processes which are capable of roaming across wide-area net-
works (WANs) or indeed the Internet (and therefore the World-
Wide Web), obtaining information from remote host computers
on behalf of their owners, then return having accomplished the
tasks set.

Informa tion/Internet Agents which aid the acquisition, integration and interpretation
of information from a range of possibly distributed data sources,
shielding their owners from the huge amounts of irrelevant in-
formation now available.

Reactive Agents which work without modelling the external world and
instead operate on simplistic a stimulus-response principle, situ-
ated in some kind of environment. A group of these agents can
then exhibit emergent behaviour when viewed as a whole.

Hybrid Agent systems which bring together components belonging to
two or more of the five previous agent' classes', in order to both
maximise the strengths and to combat inherent weaknesses of
the component technologies.

Table 2.1. A typology of software agent technologies (Nwana, 1996).

Maes' work (1991) has its original foundations in robotics - its original proponent

Brooks (1986) insisted that physical embodiment was a prerequisite, although Et­

zioni (1993) countered by asserting that software environments could be just as

effective. The principles were further used to build interfaces to large bodies of

information (in organisations or on the World-Wide Web), which used 'software

robots' or softbots (Etzioni and Weld, 1994; Etzioni et al., 1994; Etzioni, 1997) with a

user interface which could accept searching tasks and carry them out without di­

rect supervision, as information/internet agents.

Other work focuses more closely on the 'assistant' style of user interfaces de­

scribed in Table 2.1. NewT (Maes, 1994) supports the automatic sorting and or­

ganisation of electronic mail messages. Letizia (Lieberman, 1995) and Webmate

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\ tav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View 31

(Chen and Sycara, 1998) are two examples of assistant agents embedded in user

interfaces to act as a Web browsing assistants, recording a user's browsing actions

and making suggestions for Web pages that may be of interest.

The discussion up to this point has illustrated the range of technologies which can

be classed as 'agent systems'. The next step in the development of a system to

support PIM is to choose an agent technology which fits well with the needs of

both of the user, and of the interface within which the agents will be embedded.

2.9. An Appropriate Agent Technology

We see the objective of providing software agents to support PIM as complementing

the user's abilities, in much the same way as Maes (1994). We do not want to at­

tempt to 'replace' the user's intelligence, as this is simply not feasible given the

current state of the art. Instead, we wish to provide systems more in the mould of

'assistants' (Cypher, 1991; Lieberman, 1995), which can spot opportunities to

automate routine activities and offer to take over, or to provide suggestions which

can make the interaction more effective. At the same time the overriding necessity

of user-centred design for PIM systems must be borne in mind, due to the highly

personal nature of the processes and information management practices that take

place.

Based upon the agent typology introduced in section 2.8.1, we could combine the

interface agent and reactive agent categories, to yield an adaptive interface which

does not make complex inferences about its user, and therefore requires inputs of

a more limited (and therefore more realistic) nature. Out of the differing agent

technologies reviewed in this chapter, reactive agents (or at least, systems based

on reactive agents embedded in user interfaces) appear to offer a beneficial avenue

of research, based upon the evidence provided thus far. A set of reactive agents

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t-.1ay 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

embedded in an adaptive user interface would be suited to the task to their char­

acteristics in several different areas:

52

(i) Reactive agents have good 'cognitive economy' (Ferber, 1994) in use - that is,

they are easy to conceptualise and think about for the user. This is in agree­

ment with one of the central tenets of classical user-centred design philoso­

phy (Norman and Draper, 1986), in that users can only control interfaces ef­

fectively if they have an accurate mental model of them. As a side-effect, this

decreases the 'cognitive load' - the mental effort - on the user so that they

are not distracted from their work;

(ii) The 'situatedness' and 'embodiment' (Brooks, 1990) qualities of reactive

agent technologies are well-suited to the application area of software agents

embedded in user interfaces;

(iii) Reactive agents are computationally simple (Wooldridge and Jennings, 1995)

and therefore quick-functioning, which is essential in a hard real-time situa­

tion such as a user interface, where sluggish response times can markedly

decrease the perceived effectiveness of an interface Gohnson, 1997).

Although reactive agents do offer a profitable direction in research, they do have

their own characteristic weaknesses. These are considered in the next section,

which then guides the final focus of this dissertation.

2.9.1. Reactive Agents: Issues to be Addressed

Some of the advantages of reactive agents lead to key research issues in their own

right. The most important in this situation is that purely reactive agent systems do

not possess any sort of model of the world. For a personal assistant system that

must adapt to a user's way of working, some kind of model of the user is clearly

required to facilitate any degree of 'shared understanding', required where 'part­

nership' is to take place. Even simple limited 'adaption' to users would also be

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~i~
Mav 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

useful, as something (as long as it is the 'right' adaption) is better than nothing

(Orwant,1996). Allying the adaptive interface architecture with its models of the

user and system to the simple adaption facilitated by reactive agents should go

some way to addressing this issue.

53

On a more pragmatic level, one of the main criticisms of reactive agent systems

research is that much of the current work is based on an ad-hoc, trial and error

approach where systems of reactive agents are put together anew for each applica­

tion (Nwana, 1996). There is no guarantee that the resulting emergent behaviour

will be quasi-intelligent as required, which indicates that this needs to be ad­

dressed by developing some design guidance for a system of this type. In fact,

similar problems are suffered by adaptive user interface architectures (Benyon,

1993) - it should be noted that development of these can lead to improved design

guidance both for the interfaces themselves and the reactive-style software agents

used to construct them, which acts as part of the contribution by this dissertation.

2.10. Restatement of Thesis

The direction of this dissertation can now be restated in more detail. This disserta­

tion will focus on the development of a system based on an adaptive user inter­

face, hybridising reactive software agents with an existing adaptive interface ar­

chitecture which provides a user modelling resource. A system of this type, where

existing research can guide the choice of reactive agent behaviours will provide a

better chance of obtaining useful emergent behaviour that does appear 'intelligent'

and can be used to assist individuals in managing personal information. This pro­

cess will be informed by the development of an associated design framework for a

suitable interface architecture using reactive software agents as the active element

of an existing adaptive interface architecture.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

2.11. Conclusion

This chapter has explored the field of PIM in more depth, driven in particular bv

the trend towards the individual and therefore more 'personal' technologies.

Some traditional approaches to PIM were examined, and some key issues arising

from them noted. It has been shown that significant opportunities exist to provide

automated support in many PIM scenarios.

The chapter highlighted some areas in which knowledge is lacking - design guid­

ance for PIM systems based around the user and able to adapt to her. The use of

adaptive interfaces in systems to support the management of personal information

was suggested, illustrating how the requirements of PIM systems can be fulfilled

using interfaces which can adapt themselves based on their user's working habits

and practices. A concept known as 'agency', based on an indirect-management

paradigm involving delegation to software agents was introduced, and it was

shown that a user interfacing approach based around this idea can provide solu­

tions to some of the central problems concerned with PIM. It was shown that

software agents can be used in the realisation of these interfaces, which led to an

overview of current work in the development of agent systems.

This chapter has also shown that the class of agents referred to in the literature as

'reactive' can offer behaviour which appears to be 'intelligent', whilst bypassing

the problems associated with 'deliberative' architectures, but also demonstrated

the need for more concrete design methodologies for reactive systems (this issue

forms the basis for much of the design work in Chapter 3). The use of reactive

agents as part of adaptive interfaces was put forward as a possible solution to

some of these problems. To provide PIM systems using reactive agents together

as part of an adaptive interface, it was shown that through a combination of re­

quirenlents from user-centred design and the design guidance needs of reactive

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1av 1999

Chapter 2 - Managing Personal Information: Taking an Agent-Based View

agent systems, that the provision of a system based around a user model, as part

of an existing adaptive interface architecture is needed.

The next chapter will present the development of a design framework for adaptive

user interfaces which utilise suitable reactive software agents based on the issues

raised in this chapter.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~i~
May 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PI\l 56

Chapter 3

Developing a Framework for an
Agent-Based Adaptive Interface for PIM

3.1. Introduction

Chapter 2 established that information management, and in particular Personal

Information Management (PIM) will become increasingly important due to vari­

ous factors, and illustrated the nature of the activities involved and some of the

central issues facing the development of systems to aid the practice of PIM. It

demonstrated that these systems can be conceptualised as interfaces which contain

adaptive components and suggested that such systems can be implemented as a

set of reactive agents as part of an generic architecture for adaptive interfaces.

This chapter will therefore present the design of an adaptive interface which util­

ises reactive agent technology within a traditional direct-manipulation interface

(Shneiderman,1998). The design will be kept abstract to begin with - the aim of

this work is to provide a framework which is language, platform and operating­

system neutral (as far as is practical). The resulting abstract design will act as the

basis for a concrete design and implementation in Chapter 4. Factors such as the

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM

operating system and user interfacing toolkits in use will then influence the exact

form of the design and subsequent implementation undertaken.

3.1.1. Overview of Chapter

='1

One of the main aims of this study is to provide systems to support PIM. This

chapter will therefore present the design for an interface between the user and

their personal information, which can then be augmented with adaptable elements

and adaptive behaviour to support routine activities. This interface is scoped and

specified in terms of the basic activities that users perform when working with

compu ter-based information.

For the final system to be implementable, the chapter will then show how user in­

terfaces work in general- that is, how they provide a usable 'buffer' between the

user and the underlying complexity of a computer and its operating system. It

will also demonstrate the additional requirements of interfacing systems which

can change or be changed. The chapter will then show how such a system can be

designed, based on the requirements of the interface itself, and the technical re­

quirements involved in user-interfacing software. These requirements include the

event-driven paradigm of software development; the implications of platform­

independency; the availability and use of user interfacing toolkits; the effect of

object-orientation on the design and implementation of interfaces; and the proce­

dures which can be used to integrate such a system into the user's interface envi-

ronment.

An abstract design will then be derived for a class of system that will address the

requirements of the interface and the implementation issues. Specifically, the

framework of the architecture for adaptive interface technology (AIT) will be used

to partition details of functional requirements into manageable elements. These

will then be considered in the light of technical information concerned with user

interface implementation to show how they can be realised in software.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
\Ll\" 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 58

3.2. User Interfaces to Support Personal Information Management

In order to provide an adaptive user interface which aims to support PIM, we

must understand the requirements of user interfaces in general and in particular

the requirements of PIM systems. Considering the stance taken earlier in the dis­

sertation (see section 2.4.2) - that simple, well-defined and obvious adaption in an

interface runs much less of a risk of violating the tenets of user-centred design -

key requirements of PIM systems need to be adequately reflected in a user inter­

face which remains usable.

We need to know what would be useful in an interface that claims to support PIM;

we need to understand what we can provide that will ease the task of PIM. It

should be noted that this does not necessarily imply that the system will automate

the entire information management task (whatever that is), but will provide some

kind of support for a particular sub-task or area of PIM which can sensibly be

augmented in a straightforward manner.

Rather than concentrating purely on the automation of basic activities, one ap­

proach suggested by Thomas et al. (1994) is to 'informate' elements of the interface

- that is, to make better use of available information resources to enhance human­

computer interactions. Although it could be argued that the end results may be

similar, the idea of focusing on applying available information to augment user

interactions instead of slavishly automating interfaces appears to offer a more re­

alistic chance of improving the situation.

3.2.1. PIM in Action: A Scenario

A brief scenario may be useful in order to provide some insight into the compo­

nent tasks undertaken by an individual as they manage their personal informa­

tion. A user, sitting at their PC, works to satisfy some goal. The goal may be en­

tirely personal, or may be for the benefit of others. In any case, they generally

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
Mav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 59

work with 'applications' in order to fulfil the task in hand. These 'application'

programs (such as word processors, spreadsheets and databases) manipulate in­

formation, usually in the form of files. Many tasks require that information from

different sources be combined to yield a final product - an example would be the

preparation of a report, including financial performance figures of a particular

project, to be sent to a given group of people. This task might require that infor­

mation about a project (in a word-processed document) is combined with numeri­

cal data (from a spreadsheet or database), and is then sent to a given list of people,

whose details are stored in a contact list (a specialised form of database). These

various sorts of information need to be accessed, which additionally poses the

problem of retrieval-locating a file which contains a particular item of informa­

tion of interest, and organising files such that they can be found easily at a later

date. Such organisational activities are usually based around 'directories', analo­

gous to filing cabinets, which store related items of information in a hierarchical

structure.

Following the philosophy of aiming to provide simple systems (which are conse­

quently more usable), an area which would benefit from support is that concerned

with the organisation, presentation, storage and retrieval of information. This task

is implicit in almost all others which take place in the course of working with in­

formation. It also takes place at a reasonably low level of abstraction, and will

therefore be more amenable to the analysis and design processes needed to con­

struct software.

The more high-level 'goal-directed' behaviours, which utilise the basic information

management activities mentioned, are far more difficult to infer; assuming even

that this was feasible, it may not be clear how to assist them. Yet again, the theme

of simplicity and predictability leads us to consider simpler activities first, but to

remain aware of the more complicated possibilities for the application of software

assistance.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ta\" 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PI~1 60

3.2.2. User Interfacing for PIM: Simple Information Management Tasks

In the context of PIM, the elements of interest will be at the conceptual level (refer­

ring back to the discussion in Chapter 2 and particularly section 2.6.2 of the differ­

ent levels of abstraction in adaptive interfaces), concerned with reflecting the

user's collections of personal information. From the scenario, we see that well­

known items such as files, folders and applications are manipulated by users. It

would be possible to use refinement types of these object classes - for example,

specialised 'database', 'diary' or 'telephone list' files, associated with their respec­

tive applications. In addition to simply using file types to know which application

to run with a particular file (as is commonplace today), a PIM system with infor­

mation about file types, groupings and contents could perform checking and

cross-referencing between files that might otherwise have to be done by hand.

Another possibility is to aim to aid the organisation of these objects as well as their

content. Some kind of 'associative indexing' of objects based on content would be

useful- for example, someone working on a particular project will generate a set

of files related to that (and possibly other) projects. Ensuring that this repository

of associated information is arranged well and is easily accessible is a task which

requires fairly simple organisational skills. Automatically organising a set of files

(or presenting an associatively-organised view of a set of files) could offer advan­

tages in terms of reducing the time spent actively managing the arrangement of

files and time spent searching for a particular file. 3

3 It is important to bear in mind as this scoping and design process continues that the eventual

output of this study will be a tool for an individual. It may well have components which can adapt

to some characteristics of its user, but it nevertheless remains a tool. As was noted earlier in section

2.3, an individual with good innate organisational abilities will tend to be able to exploit such a tool

to better effect than a disorganised person - however, we do not seek to train individuals in self­

organisational practice.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~1a\' 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PI!'..! 61

The information management tasks mentioned so far all have one feature in com­

mon - as they centre on the manipulation of information, their use requires that

the information upon which they work can be obtained easily. As discussed ear­

lier in section 2.2.1, there are some readily identifiable key activities which form

much of the basis for PIM: storage, retrieval, communication and integration.

These activities are briefly discussed to give an understanding of the basic func­

tional requirements necessary to provide workable PIM systems.

Both storage and retrieval activities require some kind of underlying organisation.

A repository of information is of greatly diminished value if it is poorly organised,

so we should aim to support individuals in organising their personal information.

Communication is more poorly-defined and more wide-ranging (phone, fax, e­

mail, LANs and intranets and the Internet), and integration is even harder to char­

acterise precisely.

Storage and retrieval activities have a reasonably well-defined scope, and typically

occur in an interactive fashion. Given the stance of this dissertation - that adap­

tion needs to be simple, obvious and predictable - the basic activities of storage

and retrieval are suitable candidates for automated, 'informated' support.

In this particular context, storage will be defined as placing information in some

repository for later access and manipulation, and retrieval will be defined as

gaining access to information previously stored in some repository. Fundamental

to both these activities are the methods used to locate information within the re­

pository - information cannot be retrieved (without searching) if its location is not

known or easily guessable. Associations between information - such as different

information related to the same project - would also ideally be reflected by having

related information located together. A means of supporting the location of in­

formation within a structured repository would therefore facilitate both storage

and retrieval activities.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ta\" 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PI\l 62

Means to assist communication and integration of information would be feasible if

it were possible to infer a user's intentions from their actions within the user inter­

face. This is quite a problematic area, due to the wide range of tasks which en­

compass elements of PIM and the fact that the accuracy of inferences tends to be

dependent upon the narrowness of the domain involved. The initial focus of this

study will therefore be limited to supporting the management of information stor­

age and retrieval activities, and means to aid the organisation of the information

involved.

3.3. Analysis of Simple PIM Activities

Based on the discussion in the previous section, this section examines, in detail,

some specific and complete examples of activities that fall within the remit of PIM.

This approach is inspired by so-called 'task-centred' design approaches (Lewis

and Rieman, 1993). A task-centred approach requires the designers of an interac­

tive system to actively consider complete examples of tasks that users need to be

able to do, and to use these task specifications as the basis for the system's design.

The chief characteristics of useful task specifications in this context are as follows:

They describe the user's aims, but not the mechanisms by which they are accom­

plished - eliminating any pre-conceived ideas about how tasks should be done.

They describe specific details, allowing consideration of the exact procedure to be

followed, thereby prohibiting designers from hiding behind 'generality' - i.e., de­

ferring the consideration of details until (too) late in the design process. They de­

scribe a whole, self-contained 'job', in its entirety. Some simple activities are now

analysed using this approach, to give possible objectives for the final system.

The tasks discussed below are not entirely separate, but overlap somewhat. There

may be no entirely 'right' way to support these activities, but a selection of good,

safe alternatives ought to be better than none.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~i~
\1ay 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 63

3.3.1. Improving Access to Poorly-Placed Files

In retrieving information from some kind of hierarchical file system, the user often

needs to navigate through it. If a user repeatedly selects a file using an inefficient

route, some attempt should be made to improve the situation:

Scenario: The user might wish to open a file called 'Fax Template', in a folder 'Let­

ters', in a folder 'Documents' that appears on the desktop, and do so by opening the

two folders, and selecting the file. They may wish to access the same file within ten

minutes, having to repeat the same actions (opening two folders, then opening the

file). The file may be poorly placed, and the system should offer a better alternative,

allowing the user to access the file without so much intervening navigation.

If the user opens a desktop folder 'Documents', immediately opens a subfolder

'Letters' within it, and then opens a file 'Fax Template' contained in 'Letters' (with

that sequence of access operations having a gap no greater than twenty seconds

between each), the system should record this. If the user subsequently repeats

these folder navigation and file opening actions within ten minutes, the system

should offer some means to repeat these actions in a more efficient manner. Many

platforms provide 'shortcuts' -logical 'links' to files - and these could be used to

help.

Some applications do offer a 'recently-used file' feature - although it is possible to

unintentionally defeat these for some tasks, particularly when a boilerplate file is

opened, modified and then stored as a new file. In many applications (MS Word

and Excel, for example) the recent file list will contain the new file's name, but not

the name of the template from which it was derived. (Again, some applications

offer the ability to set up template files for often-used documents, but the proce­

dure for doing this varies and is often complex, involving details that have noth­

ing to do with everyday work.)

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\tav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM
64

3.3.2. Improving Access to Regularly-Used Files

Several files in a user's filesystem may be used quite regularly - perhaps se\"eral

times in a week, or maybe a couple of times a day - but not necessarily be used

multiple times in quick succession. Some kind of aide-memoire to help the user

locate their file could be useful.

Scenario: The user might wish to open a file that they have used a few times before

and that they last accessed yesterday, but does not now appear on their word­

processor's default four-item recent file list. They know that they have accessed the

file before, but cannot recall where it is (and may not remember exactly what it was

called). The system should offer a better alternative, allowing the user to access

files historically somehow.

A brute-force exhaustive search might yield the answer, assuming the user can

remember enough about the file - a fragment of it's name, for example - but

would be inefficient. A list of some kind, with details of previously-opened files

(not just saved files, as most applications offer) could provide a solution. Files that

have been used approximately daily might be presented in one list, whereas those

used (but used less) may appear in another.

3.3.3. Allowing Contextual Annotation of Files

People often want to annotate files with information, without wanting to modify

the contents of the files themselves. This is also true of paper documents, as the

sales figures of sticky-note suppliers will attest to. The exact objective of a user in

annotating a file may be difficult to fathom, but it is still an inherently useful thing

to be able to do.

Scenario: The user has a set of document files in a folder, some of which need work

to be done on them, requiring some information which is not yet available. Some

days later, one of the items of information arrives and the user cannot recall which

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\fa\' 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM

document required it, without scanning through each of the documents it may ap­

ply to - or all of them if the user has forgotten. The system should offer a better al­

ternative, allowing the user to locate the correct file directly without having to

manually search through all the alternatives ..

The ability to store information about other information (so-called 'meta-inform­

ation') could be provided by using a similar mechanism to paper notes, where

small text annotations could be stored, associated to particular files. It would be

preferable to have this fact reflected visually, allowing the user to see which files

have annotations attached without requiring any further operations.

3.3.4. Aiding the location of Files of Interest

65

There is another category of files (in terms of usage patterns) that has not yet been

considered. A file may not be used regularly, but might be part of an important

task that has yet to be completed for some reason. Nevertheless, the user might

need to be able to access a file that had been worked on in the past and left with

work outstanding.

Scenario: The user has a document file that must be sent to a particular recipient, for

whom an item of address information is lacking, and may be some time in arriving.

The user writes themselves a reminder note, sticks it on the side of the monitor, and

puts the file in a folder somewhere. Several days later, the information arrives, and

the user cannot recall where they put the file. The system should offer a better al­

ternative, by allowing the user to locate files quickly based on their contents some­

how.

The problem here is that although the user thinks ahead enough to write them­

selves a reminder, the note is still separated from the object to which it refers, and

cannot be used to find it (unless, of course, the location of the file is noted as well).

In any case, it is still tiresome to have to scan a lot of notes in the hope that one

may contain the nugget of information required.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
~1a\' 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 66

Instead, the file-annotation support described in section 3.3.3 might be augmented

to include a feature that paper note documents do not have - i.e., associative re­

call. There is no reason why a user might search for a file based not on informa­

tion contained in the file, but on information about the file. Although there is no

direct analogue in the physical world, it is very likely a user might want this to be

possible. In essence, to rule this option out would be to impose the limitation of a

parallel paper system upon a computing solution, which would be most unhelp­

ful.

The four task specifications discussed in sections 3.3.1 to 3.3.4 give some ground­

ing to the types of support it may be possible to provide. Using these as concrete

examples to work with, a synthesis of PIM support techniques will now be pre­

sented, which will then lead to a set of software requirements.

3.4. Opportunities to 'Informate' PIM

This section draws together the preceding discussion to identify specific ways in

which PIM could be supported by augmenting the user interface. Support by the

interface could either be active or passive - that is, either by adapting to the user

or acting directly under her control. These two categories might be characterised

as follows:

(i) Active support: the system, acting autonomously, responds to the user's ac­

tions and attempts to adapt their workspace, making the interaction envi­

ronment closer to some kind of 'ideal' situation;

(ii) Passive support: the system provides tools with which the user can organise

their own workspace or augment it so as to better reflect their habits, prefer-

ences and current tasks.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\1a\' 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 67

Essentially, passive support is the more traditional of the two - many systems al­

low users to express preferences and tailor their environments, whereas active

support (provided in this case using adaptive interfacing) tends to be more novel.

The four scenarios described within section 3.3 each have different requirements

in terms of the kind of support which would be appropriate. Using the scenarios

and the two different support types, the following mechanisms seem to be appro­

priate.

Considering passive support first, a strength of paper-based organisation systems

is that they can be augmented using notes - free-form pieces of information which

can be attached to the items to which they refer. It would be possible to provide a

tool which echoes this idea, and would allow people to annotate objects (files,

folders, applications) with textual information. Once the ability to allow people to

annotate objects with textual information has been provided, an obvious extension

is to allow the contents of these notes to be searched at a single point, permitting

users to locate files or objects based on their annotations.

With respect to active support mechanisms, a user's filestore is a central element in

their work. Certain files in a user's filestore are used more often than others, and

it would be useful if these files were more readily available without any searching.

By monitoring which files are opened by users, a prioritised list of regularly-used

files can be compiled, based on how often and how recently the files have been ac-

cessed.

The information about a user's file accesses could also be used to draw inferences

about the placement of files. If a file is poorly placed in the filestore, the result will

be an increased amount of folder navigation necessary to locate and open it.

Where a user navigates through some kind of directory structure to find the same

file more than once within a short time, a suggestion could therefore be made that

a short-cut to the file might be of use.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 68

Following the call for an integrated approach to the support of PIM, these indi­

vidual support elements could be provided as part of a holistic PIM support appli­

cation/ environment. The next section examines how this could be accomplished.

3.5. An Adaptive Information Management System

A system could be designed to act as the 'medium' between a user and their per­

sonal information. In the scenarios mentioned earlier in sections 3.3.1 to 3.3.4, the

user operates a set of applications which work on information. In that sense, al­

though the applications' interfaces shield the user from the precise details of the

individual operations on their information, they do not shield the user from the

organisation required to maintain their collection of files. An interface which can

work at a higher level of abstraction could augment existing file-oriented applica­

tions in such as way as to support file organisation as well as being able to monitor

and adapt to the user's actions as they work.

Such a system could take the form of some kind of I Adaptive Information Man­

agement System', which can support and integrate a user's interactions with in­

formation-based - and hence file-oriented - applications such as databases,

spreadsheets or word-processors. One component could be like a I desktop man­

agement' system which monitors how the user works with files and applications­

helping users to maintain order in a collection of files (of different types) related to

different tasks. (The majority of current personal computer systems employ

proven metaphors to aid the representation and manipulation of such items based

on graphical displays, so similar techniques should be employed by this system.)

Other components to be provided might be simple assistants to existing applica­

tions, in the mould of traditional Web assistant-style software (Lieberman, 1995).

In PIM terms, tasks like cross-referencing and information integration (such as

providing assisted support for merging document and address information) could

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi5
Mav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PI~1
69

also be supported. The idea of automatically cross-referencing files and docu­

ments based on content overlaps is attractive - a problem in retrieving informa­

tion is often that one remembers roughly what the item referred to, but not the ex­

act content or the exact location.

Autonomous assistance may be possible - perhaps support for reorganising file

locations (or adding shortcuts) based on the frequency of use of a particular file.

However, the goal must be to maintain a usable system, so excessively complex

adaptive behaviour should be discouraged as it may confuse an individual to have

elements of the user interface changing very much in a short time.

Now that we have a good idea of the sort of thing that an adaptive interface to

support PIM will need to do, a more precise scope for the system to be imple­

mented will be outlined.

3.5.1. Scope

The preceding discussion has suggested that the Adaptive Information Manage­

ment System (AIMS) could fruitfully be realised as an interactive 'desktop' style

application. As such, it would need to be either integrated into the operating sys­

tem in question, or provided as a separate 'File Manager', 'Explorer' or 'Finder'

style application. Each of these applications acts as an intermediary between the

user and their files, directories and applications. In operating system terms, they

are referred to as 'shells', in that they encapsulate details about the underlying in­

formation and operating system commands and data.

In either case, there would be a 'top level' desktop, which would reflect filing sys­

tems and applications. Files and directories should be represented in the normal

fashion, as icons or detail lists presented in windows. It is normal for these appli­

cations to provide support for file-type associations, based on well-known file­

name extensions and/ or contents. For example, any file whose name ends in the

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~1ay 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM

sequence '.TXT' might be deemed by the operating system to be a plain text file,

and' .DOC' files might contain word processor documents.

It would be desirable to provide support for 'shortcuts' - essentially, 'links' to

files, so that popular files could be 'left out' on the top-level desktop for ease of

access, removing the need to constantly navigate through the filing system to

reach them. From a basic PIM perspective, this would provide a mechanism

which would allow users to tailor their environment. In addition, this facility

could be used by the system in proposing automatic shortcuts - if a file was

deemed to be poorly placed by the system, a shortcut to it could be suggested.

70

These ideas will now be used to generate some detailed functional and subsequent

interfacing requirements for the adaptive information management application as

a whole, which can then be used to develop the abstract design.

3.5.2. AIMS: Functional Requirements

Following on from the informal description of the AIMS application and the sce­

narios discussed earlier, this section provides a set of functional requirements for

the application, bearing in mind the scope set out in the previous section. As the

system will augment an existing graphical user interface (CUI), certain operations

need to be present as a matter of course. The fact that the system will also offer

adaptive support to the user adds more requirements on top of these.

At a basic minimum, the user must be able to gain access to their files and run ap­

plications, using the conventions supported by the eventual target platform. This

should ensure that any user who has been exposed to the vast majority of desktop­

style CUIs should be able to use the application simply as a normal desktop, with-

out difficulty.

In addition, the scenarios presented in sections 3.3.1 to 3.3.4 suggested that a use­

ful feature would be to enable the user to annotate objects with textual 'notes' .

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The5i5
\tav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM
71

This will allow users to record ad-hoc textual data in context, by associating it

with the information to which it refers. In tandem with this feature, the system

needs to allow objects to be located using a search based on annotation text, re­

flecting the advisability for the system to be able to locate files associatively by an­

notation. These requirements essentially echo the passive support of PIM by the

system.

With respect to active support, the system should be able to suggest shortcuts to

files which are used frequently but are not readily available - that is, are located in

places which need several folder navigations to access. Based on the user's file ac­

cess behaviour, the system should also prOVide an adapted view of the user's files,

in response to their usage patterns. In addition, the system will need to maintain

an index of file annotation contents and information about the referred-to objects.

These requirements then echo both the needs of the passive support mechanisms

and the opportunities for active support.

3.5.3. AIMS: Interfacing Requirements

Following on from the informal description of the AIMS application and the sce­

nario discussed earlier, this section examines the functional requirements arrived

at in the previous section to yield requirements for an interface to support the sys­

tem. The development of the application embodies several assumptions, the most

fundamental of which is that the information to be manipulated by the users is

stored in a traditional desktop filestore, using such concepts as files and folders.

As one of the predominant styles of interaction, this may mask the fact that re­

gardless of how information is stored and represented, there will be needs and

opportunities to support the organisation of any body of useful information.

Within the AIMS application, well-known items such as files, folders and applica­

tions will be manipulated by users. These objects can be reflected directly in a

free-form desktop-style user interface, in a similar fashion to the majority of direct-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~i~
Ma\· 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PI~l

manipulation interfaces (Shneiderman, 1998) in use today. The object's type can

be used at a basic level to represent it in the user interface - in the same way as
./

72

current systems such as the Windows Program Manager, the Windows 95 and NT

Explorer, or the Macintosh desktop and Finder - by choosing an appropriate pic­

torial representation, or 'icon', for the object.

The more advanced features - such as the file-annotation and searching support,

the shortcut suggestion mechanism and the file-usage monitor - will need to be

presented to the user in such a ways as to be as obvious as possible. The goal is to

provide mechanisms which are sufficiently simple to be almost 'instantly' usable­

that is, an individual with experience of the target platform should have no trou­

ble using the features without instruction.

The next step in producing a detailed specification for a system to support rIM is

to be aware of the techniques and technology available to be used in the provision

of user interfaces. This will then inform the design of the system, ensuring that the

design arrived at can be implemented as easily as possible.

3.6. User Interfaces Revisited

Chapter 2 discussed the interplay between user interfaces and personal informa­

tion management, containing adaptive components. Up to this point, user inter­

faces have been mentioned in the context of other technologies but have not been

concentrated upon in their own right. A more comprehensive understanding of

how user interfaces can be conceptualised, designed and implemented, and the

ways in which interfaces can be presented to their users, now follows.

This discussion begins at a reasonably abstract level, presenting the principles un­

derlying user interfaces and the techniques used to present interfaces in such a

way as their function can easily be deduced from their appearance. This discus­

sion then moves on to the technology necessary to provide dynamic elements in

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~L1\' 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 73

user interfaces - whether this happens as a result of explicit tailoring or customisa­

tion by the user, or as a result of the system adapting itself to the user. Both these

techniques have consequences in terms of additional functionality required as part

of dynamic user interfaces, which influence how the final interface is imple­

mented.

3.6.1. Basic Principles

This section provides a brief review of common user interfacing techniques at a

reasonably general level, in preparation for the detailed design work to come later.

The design for a user interface is critical in establishing the user's ideas of what the

user interface is capable of, and how it can be used in order to accomplish a given

task. In essence, the user interface is acting as a sort of communication medium

between the designer of a system and the eventual user of the system. Norman

and Draper (1986) refer to a set of three related models - termed the Designer's

Model, the System Image and the User's Model. The designer of an interactive

system has an idea about how the system will work, and constructs the design

model to reflect this. The resultant visible implementation of the system is termed

the system image, and is the primary representation of the system available to the

user.

The system image must therefore convey sufficient information about what the

interface is and how it may be used, whilst at the same time hiding irrelevant de­

tails from the user. The user, as a result of exposure to the system image, forms

their own model of how the system works, and interacts with it based upon this

model. If there is some discrepancy between the designer's model of how the sys­

tem works and the user's model of how to exploit it - as a result of presenting the

system inappropriately - the end result will be that the user will have misconcep­

tions about how the system operates and will consequently find the system to be

less usable than it would otherwise be.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1av 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 74

The system image may take several forms. The vast majority of modern personal

computer systems use graphical means to represent objects within the system to

the user, and hence, to generate the system image referred to. A user interacts

with the computer by manipulating pictorial elements on a display screen, and

these actions are 'translated' internally into the underlying operations to which

they refer.

An example is the process of moving a file between directories in a filesystem.

Folders or directories and files might be represented to the user as rectangular

'windows' or icons which can be 'clicked' or 'dragged' to perform actions. To

move a file from one folder to another, the user might have to indicate the file to

be moved by pointing at it with the mouse cursor, depressing the mouse button­

thereby 'picking up' the icon - moving to the destination folder's window, and

releasing the mouse button - a 'drag and drop' manoeuvre. This combination of

actions in the GUI results in some set of underlying calls to the operating system,

which effect the desired result - the file disappears from one directory, and reap­

pears in another.

The previous section referred to 'icons' and 'windows' as graphical objects that

users can manipulate. These are essentially visual metaphors which act as abstrac­

tions from underlying complexity. A system's graphical representation - i.e., the

system image - should clearly demonstrate what the state of the system is, and

perhaps just as importantly, how it can be used.

Almost every user interface employs a subset of well-known elements from the

user interface designer's palette. These components can be separated into two

sets: those concerned with simply interacting with the interface (syntactic level- for

example windows, icons, dialogs and pushbuttons) and those concerned with ma­

nipulating the user's information (conceptual level- files, folders and applications­

the items of interest in a PIM system). These components form the underlying

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 75

'currency' of the interaction between a human and a computer, and need to be

chosen well in order for the interface to have an obvious 'meaning' to its users.

Many interface components commonly in use are traditional metaphor-based ele­

ments (windows, applications, files and folders, for example), using direct abstrac­

tions to represent objects within the system.

3.6.2. Providing Dynamic Functionality in User Interfaces

In addition to the basic elements, a user interface which is meant to be applicable

to a wide range of users needs to possess some means by which to accommodate

them. Two options immediately suggest themselves: either the interface needs to

be adaptable or tailorable - the user changes the interface to reflect their preferences,

or it needs to be adaptive, where the interface monitors how it is being used and

changes itself in response.

Both approaches can be used simultaneously and a balance of the two is often a

more preferable situation - radical tailoring (if required) can be done by the user,

and the simpler (and hopefully more predictable) adaption can be the responsibil­

ity of the system. Both of these approaches require additional functionality in the

user interface over and above that needed to implement a traditional fixed inter­

face. This section provides a brief summary (with a small amount of technical de­

tail, leading up to the later design work) of user interfacing with tailoring and

adaption.

The provision of tailoring or user preferences generally requires use of some kind

of a software toolkit such that the appearance of the user interface can be gener­

ated programmatically, rather than being wholly static and predefined in nature.

Examples of this are modifiable menus and toolbars, common on many systems

today. User Interface Management Systems (Olsen, 1992) are applications which

provide both programmatic support for dynamic interfaces, and also provide an

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PI\1 76

interface for generating and maintaining interfaces, thereby reducing development

load.

Obviously, such an approach requires additional interfacing support to control the

rearrangement of elements of the user interface under user control. Manyapplica­

tions allow user-customisation, e.g., the "Tools I Customise" menu selection in Mi­

crosoft Word, which allows toolbars, menus and keyboard shortcuts to be altered

to suit a user's preference.

Customisation such as this represents one end of a spectrum from simple to com­

plex or 'radical' tailorability (Malone et al., 1995). As usual in such situations,

there is a corresponding trade-off in terms of cost/benefit - the more customisable

a system is, the more effort must be expended in producing it, and the harder it

can be to use. Some studies have shown that many users choose to exploit prefer­

ences and customisation to make new versions of software appear and work ex­

actly like the old ones (Mackay, 1990), and consequently that 'tinkering' with an

interface accounts for significant amounts of wasted work time.

The provision of interface adaption brings a slightly different set of requirements.

As is the case for tailorability, dynamic aspects in the interface require some kind

of GUI 'toolkit' approach which can build and reconfigure user interfaces 'on the

fly', so almost all the requirements noted for tailorable systems apply to adaptive

systems. However, instead of providing an interface to allow users to directly

change how the interface looks or responds, some element of the interface must

react to events triggered by the user as they work with the interface. This can be

provided by embedding reactive agents (as discussed in section 2.9) within the in­

terface to observe events and respond to them.

A combination of adaptable and adaptive interfacing techniques seems to be re­

quired (as Benyon, 1993 and Fischer, 1993 agree), particularly as an adaptable inter­

face possesses the scope for many of the underlying dynamic aspects mentioned as

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~la\' 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 77

being necessary for adaptive user interfaces. This combination is therefore sensible

from a usability viewpoint as well as acknowledging practical issues in the im­

plementation of adaptive user interface systems.

Given the scope and requirements for the AIMS application, the adaptive interface

architecture (as discussed at a theoretical level in Chapter 2) is now used to em­

body these requirements.

3.7. Applying the Adaptive Interface Architecture

This section briefly reviews the architecture for adaptive interface technology in­

troduced and explained in section 2.6. It then provides details on the application

of the AIT architecture for this particular project, based on the functional descrip­

tion and requirements derived earlier in this chapter.

The key concept to bear in mind is that the architecture, and consequently, any

adaptive system built according to it - is based around agent/ device interactions.

In this situation, an 'agent' is a system which has internal states and - in any sense

- acts to perform some goal. Agents are distinguished from devices in that devices

do not contain any internal state information, and agents interact using devices.

Since the architecture is based on a 'soft systems' methodological approach

(Checkland and Scholes, 1990), the human actually interacting with the computer

is seen as forming part of the system, as an agent in their own right. The class of

adaptive systems built according to this architecture perform transformations

from 'syntactic' sensory-type event information, through the level of semantic

events - where meaning in a particular context has been arrived at - to 'goal­

based' information. These different levels of abstraction are shown in Figure 3.1.

Syntactic events give raw input to a user interface - they are the basic signals a

user can supply, such as mouse-button clicks and keypresses. Semantic events are

formed from a composition of syntactic events and context - the same syntactic

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~i~
May 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 78

event (e.g., a keystroke) could have different meanings depending upon 'where' in

the interface that event took place. Such events are related to conceptual level

models, as they express a limited, specific intention on the part of the user. Exam­

ples might include the user issuing an instruction to save a file, or to exit a pro­

gram. Generic controls - for example, pushbuttons - triggered by a syntactic

event, such as a mouseclick, have specific meaning in a particular setting - such as

a 'save or exit' dialog.

signals

signals

dialogue semantic
record contents

r----------....
receive derive derive
signals semantics

User, Domain and Interaction Models

syntactic
knowledge

transmit
signals

output
semantics

semantic
knowledge

goal-based
knowledge

goals

form
goals

infor­
mation

Figure 3.1. Syntactic, semantic and goal-based levels in an adaptive system, from (Benyon and Murray, 1993).

Higher levels of event information are possible. More sophisticated systems may

attempt goal-based reasoning, trying to fathom the user's intention in performing

an action. It may be possible to do this in some settings, by restricting the meth­

ods available for the user to interact with the system and narrowing the domain of

the interface. It is therefore not the focus of this study as it is difficult to do and

prone to influence by quality and quantity of interaction information available.

Consequently, the systems developed in this study will essentially bypass the

goal-based level, resulting in a direct flow from the 'derive semantics' process to

the 'compute semantics' process of Figure 3.1.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\ lay 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PI~1 79

As introduced in Chapter 2, different models are used to perform these transfor­

mations. These models reflect different elements of the system as a whole: the

user, the domain within which they and the interface are working, and the interac­

tion which proceeds between them. The content of each of these models depends

upon the task for which the interface is designed. The different levels of event in­

formation are echoed by different levels within the models present in the AIT ar­

chitecture, used to transform between the syntactic, semantic and goal-directed

event levels. This can be illustrated by examining a simple adaptive system as an

agent-based solution where different levels are involved in acquiring raw sensor

data, transforming it into syntactic event information using contextual informa­

tion, processing this, and then re-transforming them back to syntactic information

used to adapt the underlying interface. (For a more detailed exposition of the con­

tent and purpose of the components of the AIT architecture, refer to section 2.6.)

We are now in a position to begin a specification for each of the elements of the

AIT architecture, based on the requirements of PIM systems in general, and the

interfacing needs of the example system put forward earlier in section 3.3.

3.7.1. User Model Requirements

This model is concerned with which elements of the user should be modelled by

this system. A more realistic view of the user model is to think of it as that set of

'facts' about the user which the system believes is true - rather than attempting to

construct a detailed model of the user, which has its own set of problems, this

study will attempt to take account only of simple information about which we can

be reasonably sure, as supported by others in the field (Orwant, 1996). Any items

of data to be stored in the user model should therefore be readily available - or at

least, able to be obtained without too great a danger of misinterpretation.

As mentioned in section 2.6.1, there are three types of information which may be

stored in the user model: psychological data, the student model and profile data.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~1a\" 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 80

Each of these types is now examined to arrive at the content of the user model for

this app lica tion.

Psychological Data

Psychological data are supposed to quantify a user's inherent cognitive character­

istics. A simple example of this is spatial ability - an individual's aptitude for

navigating within environments, like a windowed desktop. For a system meant to

support a user working in this type of environment, information about their abil­

ity to find their way around could be used to tune any adaption meant to ease

navigation, although it is unclear how the system might infer good or bad spatial

ability.

The Student Model

The student model finds most of its applications in situations where the adaptive

system is attempting to teach its user. Computer-based training applications are

an example of adaptive systems which try to gauge the student's level knowledge,

altering the questions or advice accordingly. As the focus of this project is not

primarily on training, the student model plays a correspondingly diminished part

in this study. However, it could be used to store information about the user's

knowledge of the system at simple level- for example, whether the user is a nov­

ice or an expert. This could alter the way in which the system adapts in terms of

presenting adaptions, since a novice may be surprised and confused by sudden

adaptions, whereas a user with more experience of the system may take such oc­

currences in their stride.

Profile Data

The profile data is concerned with a user's individual preferences and past usage

history - essentially, any data about the user which do not fit into the two pre­

ceding categories. It is this type of information with which we are primarily con-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\lay 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 81

cerned in this application. These data should be unambiguous in nature and rea­

sonably straightforward to obtain, thereby minimising the risk of drawing conclu­

sions which subsequently prove to be erroneous. At a basic level, simple user

preferences need to be taken account of. Such information would be concerned

mainly with presentation criteria - for example, should the system display files as

labelled icons, or as lists with full or partial details about the file name, type and

associa tion.

3.7.2. Domain Model Requirements

The domain model is concerned with how and where the system fits into the 'big­

ger picture' - that is, how it is integrated into the environment, how it can repre­

sent itself, and how it can interact with its environment - in this case, encompass­

ing both the computer and operating system and the user interacting with it. This

model actually covers both design and implementation issues - for example, how

the system is structured logically (as an interactive graphical window-based appli­

cation) and how is this actually provided (as an adaptive interface possibly based

upon an existing user interface toolkit, implemented as an event-driven graphical

application).

As discussed in section 2.6.2, the domain model contains information at three dif­

ferent levels of abstraction: the intentional level, the conceptual level and the

physical level. Each of these levels map onto a different portion of the application

domain - some may be modelled explicitly, others may be represented implicitly

in the final design and implementation of the system.

Information at the intentional level reflects the goals and objectives of the system's

users as they work. As has been said before, it is not the goal of this study to at­

tempt complex analysis of the user's behaviour in order to draw tenuous conclu­

sions about what they might be trying to do. Such conclusions, made on the basis

of a relatively small amount of information, would amount to little more than

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
~1av 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 82

guesses, and would therefore be of limited use in attempting to adapt a user inter­

face.

The two lower levels of the model are the main concern in this study. The concep­

tuallevel contains information about components of the system that users are ex­

pected to reason about, and the physical level deals with the mechanics of the sys­

tem - how a particular action can be brought about, and the effects thereof.

The conceptual level, in this case, refers to the items that were discussed earlier in

section 3.2.2 - well-known items such as files, folders and applications. The items

that must be modelled at the conceptual level dovetail well with the earlier discus­

sion concerned with the user interface design - since the interface will be based on

direct-manipulation, augmented by the adaptive systems working 'in the back­

ground', the conceptual model must address the mechanics of how the system can

provide a visible model of its state to the user, allowing them to interact effectively

with it. The use of appropriate metaphors in the design of the interface - i.e., those

with which users are familiar, and those which are effective at communicating in­

formation to the user - are supported through the conceptual level of the adaptive

system's domain model. The eventual application must model these items inter­

nally, in order to be able to manipulate information about them, and must reflect

these models externally - via the user interface - in order for the user to be able to

interact with them.

The physical level defines the 'nuts-and-bolts' mechanisms through which the in­

teraction between system and user actually occurs. Objects at this level include

things like windows, menus and buttons as 'clickable things' - graphical items on

the display that suggest, through their appearance, that they can act as the targets

for commands. These objects form the basic visual components of the interface

and occur as part of the user's' common sense knowledge', gained from past expe-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~i~
\lav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PI~l 83

rience, including the use of computers. The system conforms to models of these at

the program's implementation and application programming interface levels.

The physical level, in common with the conceptual level, is coded implicitly in

many systems and is represented likewise in this system. To enable these models

to be stored, displayed and changed would pose several significant problems in

itself: how the model should be represented to the user; how the system could

elicit useful information about the user (since users are not always the best source

of information about themselves), and whether this would be useful or usable in

any case; and at a practical level, how to implement such a radically open and re­

configurable system. Our focus in this study is at a more basic and pragmatic

level, so we defer these issues to future work (see section 7.5.2).

3.7.3. Interaction Model Requirements

The interaction model's two primary constituents are the dialogue record and the

interaction knowledge base, itself composed of three sets of active mechanisms.

The dialogue record holds historical details about the user's interactions with the

system which can then be used to make inferences about the user's behaviour.

The interaction knowledge base, composed of three distinct sets of mechanisms,

forms the active part of the adaptive interface. It is responsible for actually mak­

ing inferences about the user, carrying out any adaption in the interface deemed

necessary as a result, and monitoring the effectiveness of the interface as a whole.

Dialogue Record

The contents of the dialogue record are dependent upon the information that can

be acquired concerning the interaction between the user and the system. This in

turn is dependent upon two factors: the design of the user interface for this sys­

tem, and the means by which it is integrated into the user's environment. In order

to arrive at a reasonable design for the dialogue record, it is necessary to decide

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\tay 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 8-1

what elements of the interaction between the user and their information will be

either simply useful or absolutely required in order to provide helpful, predictable

adaption. This effectively boils down to the question of what information is avail­

able for this component of the system, in terms of user interface events.

Using the functional requirements from section 3.5.2 and the resulting interface

requirements from section 3.5.3, it is obvious that certain events will need to be

available and will be both useful and necessary in accomplishing meaningful

adaption in the interface. As the AIMS application has been cast in terms of a

'shell' application - in the same mould as the Windows 'Explorer' or Macintosh

'Finder' - events will be available that are similar to those that occur as these pro­

grams are operated.

The majority of these events are based around file management - events such as

'opening' objects by double-clicking on icons to open files with an application, re­

arranging files and applications within folders, and maintaining the desktop.

Interaction Knowledge Base

There are three groups of mechanisms at work in this component of the architec­

ture: inference mechanisms are used to draw conclusions about users as they in­

teract with the system; adaptation mechanisms reflect how the system can change

itself, embodying the dynamic facets of the interface, and evaluation mechanisms

allow the system to judge whether its adaptions are making it more 'usable'.

In common with the dialogue record, these components of the interaction model

are closely related to the dynamic aspects of the system that will be required.

They form a part of the 'feedback loop', responsible for drawing conclusions about

the user as the results of observed interactions, testing these conclusions, and then

changing the representation presented to the user in order to reflect the results of

these conclusions. The issue about testing the conclusions drawn is important, al-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\L1\' 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 8;

though in this application it is possibly not too much of an issue, as the conclu­

sions will be quite simple in nature.

Inferencing mechanisms

The inferencing mechanisms are the active elements within the system which

draw 'conclusions' about the user concerning their use and manipulation of ob­

jects within the system. These conclusions need to be as simple as possible for two

reasons: they will be easier to draw, and they will then have clearly-defined impli­

cations for the interface (Browne, 1990). At the same time, they need to be worth­

while in that they should add value to the interface. Conclusions which would

prove useful are:

(i) Files which are used quite often but which are located at a deep level within

the hierarchy could be moved higher up for ease of access. The conclusion

here would be that the file may be in the wrong place;

(ii) Files which are not used regularly could be marked as suitable for archival,

and be moved to backup locations. Again, the conclusion here would be that

the file may be in the wrong place.

These conclusions, whilst being quite basic in nature, seem to be similar to the rou­

tine management activities performed by users when managing their files, espe­

cially when the file management scenarios in sections 3.3.1 to 3.3.4 are considered.

The criteria upon which they are based need to be carefully chosen - if a file is ref­

erenced a certain number of times over a given time period, this could be taken as

evidence for conclusion (i) above, for example. However, care must be taken to

ensure that the user retains a sense of control and awareness of the situation­

where files are deemed to be in the wrong place, the mechanism used to 'move'

them must not be likely to leave the user searching for a file that has mysteriously

disappeared. These problems are dealt with in the next section.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
~lav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 86

Adaption mechanisms

This section deals with the mechanisms used to effect change in the user interface.

Once a conclusion has been drawn by the inferencing mechanisms, it needs to be

reflected in the user interface in response. These mechanisms can be considered to

be working at two levels, analogously to the two lower levels of the domain model

discussed in section 3.7.2 - they must take account of the conceptual objects pre­

sented to the user as the means of communication, as well as the physical objects

used to actually make the necessary changes. The adaption mechanisms need to

fulfil the requirements of the inference mechanisms proposed in the previous sec­

tion.

File moving: Where a file is to be 'moved', the basic mechanism to do this would

actually be to move the file between directories or folders (however these may be

stored and represented). A file which disappears and reappears will be likely to

confuse the user, so an alternative solution is proposed. In conceptual terms,

rather than move the file in on operation, a 'link' or shortcut to the file could be

placed in the new location, and the old reference to the file only removed when

the shortcut has been use a few times - in this way, the user is tacitly acknowl­

edging the adaption at the same time as using it. The physical operations neces­

sary here may vary in precise detail by implementation platform, but files, directo­

ries and links are common currency amongst most graphical shells.

File tracking: As files are opened by the user (not necessarily often, but maybe a

few times in a session) the system needs to maintain a set of access statistics for

each file used. These can then be used by more traditional elements of the user

interface to present the user's file-access history in a convenient format - filtered

or ranked according to frequency or recentness of use. Again, the underlying op­

erating system will provide the physical operations necessary to compile these sta-

tistics.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 87

For each of these adaption mechanisms, we can see that the physical level of the

domain model plays a central part in providing the basic facilities to make changes

in both the interface and the user's file storage. This part of the domain model is

therefore implicit in the system once it is implemented, although it is considered

to be part of the model.

Evaluation mechanisms

All adaptive systems need to regulate themselves in some way, to ensure that the

adaptions performed by the system are actually benefiting the interface, by mak­

ing it easier to use, however that may be defined. The evaluation mechanisms of

the interaction knowledge base are intended to fulfil this need. Once a conclusion

has been drawn, and an adaption based on that conclusion made, it should be

monitored to ensure that it remains valid.

For this application, we would like to ensure that the user is spending less time in

routine managing activities, and more time in working with their information. In

practice, this goal may not be directly attainable and we may need to settle for

some indirect measure of increased 'usability' - perhaps based on the number of

file-manipulation operations performed by the user. Two criteria that could be

used are:

(i) Are files which have been moved to new locations used more than others?

(ii) Does the user appear to be able to select files with as small a set of naviga­

tions as possible?

Evidence of much 'hunting' - for example, a large number of navigation opera­

tions, opening folders and directories and closing them quickly without selecting

any files - would imply that the adaption (in general) is not succeeding, and that

the system's confidence in its own predictions should be reduced. In contrast,

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
Mav 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM

when only those navigations required to reach files are performed, the system

could have greater confidence in itself.

3.7.4. From Adaptive Elements to Reactive Interface Agents

88

The previous section has documented a variety of active behaviour required in the

adaptive components of this system. Given the dynamics required of the inter­

face, the next step is to arrive at a situation where they can be expressed as a set of

'reactive' processes or 'software agents'.

The mechanisms mentioned as part of the interaction knowledge base can be con­

ceptualised as active rules or 'agents', and as such requiring implementation as

active components within the interface. These agents, then, have requirements of

their own - as well as implementing the behaviours discussed already, they need

to be able to: gain information about the user's actions; exploit the data stored in

the user model; and make their responses known to the interface.

Each of the behaviours noted in the set of mechanisms forming the interaction

knowledge base could be implemented as a separate simple agent. This set of

agents once integrated into the application's user interface, will then exhibit the

required behaviour.

Although the simplistic behaviours of these reactive agents may not qualify for

'agenthood' under some of the stronger definitions presented in Chapter 2, the

aim of this study is not solely to write agents - it is to bring together some existing

tools and techniques in order to provide a tool which can aid an individual in

managing their information.

The next step towards the finished application is to demonstrate how a user inter­

face which contains embedded reactive agents may be implemented. An apprecia­

tion is required of the features of user interfacing software is required to be able to

do this successfully, and this provides the starting point for the next chapter.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
May 1999

Chapter 3 - Developing a Framework for an Agent-Based Adaptive Interface for PIM 89

3.B. Conclusions

This chapter developed an abstract design for a system which will act as an exam­

ple implementation of a system which embodies some of the principles noted in

Chapter 2 as being important to systems which support PIM. The starting point

was the notion that an adaptive interface meant to support the basic activities in

PIM could be provided using a set of reactive agents as part of an adaptive inter­

face architecture; both these concepts had been introduced and explored at a theo­

reticallevel in Chapter 2, and were made more concrete in this chapter.

The chapter proceeded with the development of a design for an adaptive interface

which utilises reactive agent technology within a traditional interface. A sample

'adaptive information manager' application was introduced and used as the scope

for a detailed design for a user interface which exhibits simple adaptive character­

istics as well as providing support in more traditional ways. At the same time, the

design activity was kept abstract as far as possible, resulting in a framework

which, to as great an extent as is feasible, is language, platform and operating­

system neutral. Ideas covered at a theoretical level in Chapter 2 were examined

more closely in the light of the scope laid down, as the requirements became more

concrete. The end result was a set of functional requirements - behaviours that the

user interface will be required to respond to and exhibit - and in turn, an informal

set of requirements to be satisfied by the reactive software agents that must im­

plement them.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
May 1999

Chapter 4 - Design and Implementation 90

Chapter 4

Design and Implementation

4.1. Introduction

Using the informal abstract specification and design developed in Chapter 3, this

chapter develops and implements a concrete design which takes account of a par­

ticular application, platform, environment and operating system, and implements

it as a working software application. The application will demonstrate how the

principles argued for in Chapter 2 can be realised in a piece of software that can

provide automatic support for some simple activities encountered as part of Per­

sonal Information Management (PIM).

The previous chapter arrived at a set of informal agent requirements based upon a

subset of user behaviours observed during file management activities (see the

'task specifications' in section 3.3). These are analysed in detail to yield a number

of basic 'fragments' of adaptive behaviour required to implement a system which

supports the tasks specified. These elements of adaptivity, in turn, allow the in­

formation requirements of the adaptive system to be ascertained - that is, the set

of events and conditions that must be supplied to, and monitored by, the system

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. The~i~
t-.tav 1999

Chapter 4 - Design and Implementation

in order to have a basis on which to draw inferences. These also lead to the final

requirements in terms of the support for adaption within the interface, and the

means of its presentation within the interface itself.

91

An outline class hierarchy is developed at the start of this chapter, to serve as a

template for a class of systems which satisfy the general requirements discussed in

Chapter 3. This basic class hierarchy is then augmented according to the precise

application required. In this case, the requirement is for a system which can moni­

tor a user's interactions with a system of files. A behavioural specification for the

system is developed which contains details about events required to be observable

- opening files and folders, for example - and actions required of the interface in

adaptive terms - making suggestions to the user and adding shortcuts, and rank­

ing lists of popular files.

These compound behaviours are partitioned and analysed to yield simpler frag­

ments of functionality which can be translated into agent specifications - the file

manipulation operations such as opening and moving will trigger successively

more sophisticated 'layers' of reactivity - pairs of related actions may be detected

by one agent, in turn yielding events at a higher level of abstraction which could

then be used as input by the next higher layer. At the top layer, events generated

by the system will finally be used to trigger adaptions in the user interface.

Also under consideration will be the information required by the system to make

inferences about the user's actions. There will need to be means to represent and

process the user-interface events mentioned in the agent specifications. Other

events, possibly generated by the agents themselves, may need to be processed.

For example, information concerning the user's file manipulation actions gained

from the file system user interface will need to be considered in tandem with in­

ternal events, such as the notification of inferences made by the agents. In order to

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\ lay 1999

Chapter 4 - Design and Implementation 92

implement the system, the class hierarchy is refined further with the addition of

objects to reflect such event information.

Having arrived at an abstract design for the system, the next issue to be settled is

the choice of platform to be used in the implementation phase. Although the dis­

cussion in this and previous chapters has mentioned windows, desktops, user in­

terfaces and so on, no decisions have so far been discussed about the platform to

be used for the final implementation of the system. An informed choice of plat­

form is therefore made based on several pertinent factors - the discussion encom­

passes technical issues both of infrastructure and implementation as well as issues

concerning how the graphical user interface (CUI) to the system may be presented

to the user without distracting them from their tasks. A suitable platform, to­

gether with a supporting infrastructure and integration techniques are then used

to implement the system as designed.

4.2. Design Background and Informal Specification

The aim of this section is to develop the ideas introduced so far in this chapter into

an abstract design for a I class of systems' which fulfil the functional requirements

arrived at in the previous chapter, without explicitly binding them to a particular

language, platform or operating system.

All designs are based on a number of assumptions, and these are presented and

justified in the next section. Bearing these assumptions in mind, the subsequent

sections develop an architectural decomposition of the system and then express it

in object-oriented (00) terms. Finally, an 00 class hierarchy and an abstract sys­

tem design implemented using it are presented.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\\ay 1999

Chapter 4 - Design and Implementation

4.2.1. Design Rationale

The design work presented here is based on the 00 paradigm (Coad and Your­

don, 1991; Booch, 1994) of software development. In a wider context, good soft­

ware engineering practice recommends the use of some methodology for devel­

oping the specification and design of any software system (Sommerville, 1996;

Pressman, 1997), so an 00 approach seems justified on those grounds alone.

93

However, a user interface which has been even informally outlined in 00 terms

will benefit from it - after all, when finally implemented the user interface will be

presented to the user as a set of components utilising aggregation and inheritance

characteristics (albeit subconsciously, from the user's point of view). In addition,

an interface which contains a set of co-operating interface agents, deemed to share

certain characteristics - responding to user events and triggering interface adap­

tion, for example - shows features which are clearly 00 in nature.

As well as having benefits for the implementation of the system itself, the realisa­

tion of the user interface will be eased by using 00 techniques. Using an 00 ap­

proach can insulate the implementation (as far as possible) from the specific details

of the interface environment, and result in a more general system. In fact, the

majority of interface implementation toolkits use some measure of object­

orientation as a matter of course, and many are entirely 00 in nature.

For example, Microsoft Windows uses the Microsoft Foundation Class (MFC) hi­

erarchy to implement GUI applications (Kruglinski, 1997), the X Window System

uses the 00 Xt/Xlib interfaces (Nye, 1992; Nye and O'Reilly, 1993) and

OSF /Motif (Heller and Ferguson, 1994; Ferguson, 1993) user interface toolkits, and

Sun's Java language (Gosling and McGilton, 1995) has an Abstract Windowing

Toolkit (A WT) based on object-orientation. The use of 00 software therefore ap­

pears to be a widely-accepted technique in the implementation of user interface

toolkits and related user interface support.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 4 - Design and Implementation 9-1

A related design and implementation technique, especially relevant for imple­

menting software which has particular integration requirements, is interface-based

development (Box, 1998a). This approach relies on the total separation of an ob­

ject's external appearance - its interface(s) - and the internal details used to actu­

ally implement the object. This technique reduces the interdependencies between

elements of a software system, reducing the behavioural complexity of interac­

tions within and between objects and is discussed more fully in section 4.-1.11.

At a more general level, another of the aims of this work is to arrive at some

guidelines for the development of systems such as these. Even if the software it­

self is not re-used, hopefully these techniques, as by-products of the design and

development process, can be.

Having given the background and rationale for the design work presented in this

chapter, the discussion now turns to the requirements of the system to be imple­

mented. The following subsections examine the adaptive behaviour required of

the system and develop informal specifications for two active support mecha­

nisms: short-cut suggestions and file 'hot-list' maintenance. As discussed in sec­

tion 3.5.2, the adaptive mechanisms are complemented by some passive support,

and informal specifications are developed for two passive support mechanisms:

file annotation, and annotation-based retrieval. These informal specifications, in

conjunction with issues concerned with the process of integrating the final applica­

tion with an existing graphical shell, then lead on to a discussion of the interfacing

techniques to be used.

4.2.2. Behavioural Requirements and Analysis

This section re-examines the adaptive behaviour required of the system as de­

scribed in section 3.7, in order to arrive at a set of 'atomic' behaviours, directly im­

plementable as simple reactive software agents. The adaptive behaviour desired

of the system, arrived at in section 3.7.3, is as follows:

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~is
May 1999

Chapter 4 - Design and Implementation
95

(i) To monitor navigation behaviour and suggest optimisations for filesystem

access based on these observations - for example, multiple similar navigate­

selections (that is, repetitive navigating through several levels of folders in

order to open a single file) could imply that a shortcut is needed;

(ii) To maintain a 'hot-list' of often-used objects (files or folders), which can be

accessed by the user with minimal navigation, and which can act as a re­

minder of recent tasks;

The active elements of the adaptive system are to be cast in terms of 'agents' as

part of the Adaptive Interface Technology (AIT) architecture (Benyon and Murray,

1993, see section 2.6), and will form part of the interaction knowledge base - spe­

cifically, they will implement the inference, adaptation and evaluation mecha­

nisms. These behaviours are now examined in more detail to provide a behav­

ioural specification for the set of agents required.

To implement the two behaviours described above, certain features will be re­

quired. At a basic level, different types of user event information must be avail­

able to the system - files being opened, folders being navigated through. The

user's responses to suggestions also need to be acquired.

In addition to these events triggered directly by the user, the system may trigger

events which signify the results of inferences made about the user (rather than just

direct observation). Self-evaluation of the system's effectiveness - whether the

user is taking advantage of the adaptive components of the system or not - might

result in the triggering of further events causing re-examination of the system's

state, and further adaptation based upon it.

4.2.3. Short-Cut Suggestions

As the user works with their files and folders, the system will be monitoring their

actions. The desired goal is to identify which particular files may be poorly

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\tw 1999

Chapter 4 - Design and Implementation 96

placed, and offer suggestions to make them more easily accessible. In this situa­

tion, a file might be considered 'poorly-placed' (as the task specification given in

section 3.3.1 illustrates) if:

(i) It requires navigation through two or more folders to locate and open it; and

(ii) It is opened more than once in a short period of time.

Informally, the system needs to be able to spot a compound 'navigation-selection'

action. If the user opens a folder, a subfolder within it, and a file within that, the

system should make a note of this access. If the same access is repeated within a

short while, the particular file might benefit from having a short-cut to it.

There are two main parameters to consider, relating to timing the individual

events which make up the compound access. For the purposes of the prototype,

opening a folder, followed by opening a subfolder within less than ten seconds

(for argument's sake) might be deemed to be a connected pair of navigation

events.

4.2.4. Hot-List Maintenance

As with the short-cut suggestion facility, as the user works with their files and

folders, the system will be monitoring their actions. The desired goal is to record

accesses to files in order that the user may have a dated record of all their file ac­

cesses, which can be interrogated at any time.

This is an example of ongoing adaptation and evaluation - as the user works, the

logical state of the hotlist will be continuously monitored and updated. Again,

this process has several parameters which control how the final result may appear,

although the information that needs to be recorded is reasonably straightforward.

Each physical file that has been accessed by the user is recorded, along with the

last access time and the number of times it has been accessed. These items of in-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\tay 1999

Chapter 4 - Design and Implementation
97

formation will allow the user to search for recently-accessed files ranked by name,

last access, total number of accesses, and frequency of access.

4.2.5. Passive Support

The task specifications discussed earlier (see sections 3.3.3 and 3.3.4) indicated that

some passive support can helpfully complement active support in aiding PIM ac­

tivities. One facility which recommended itself was to provide a way for users to

add annotations to filesystem objects - for example, allowing information about a

given document to be stored, associated closely with the document, but not actu­

ally as part of the document's contents.

Although no explicit adaptivity is required to provide these facilities, these

mechanisms do require that the eventual system is closely integrated with the tar­

get platform's existing graphical shell system. The succeeding sections examine

how these might be provided and the additional impact they have on the imple­

mentation requirements.

4.2.6. File Annotations

Many applications exist which provide note-pad like functionality - for example,

Microsoft's commercial 'Outlook' organiser application allows users to stick col­

oured 'notes' on a 'board' (basically, icons within a window) and search them. A

number of shareware 'notes' applications also exist, which allow users to place

'notes' windows, which remain above others, on the desktop. However, this ig­

nores one of the basic qualities of a sticky note. They can not only be used for

short-term repositories of small fragments of information, but they are also ex­

tremely useful for contextual annotations - small pieces of information placed in a

particular location. This attribute of sticky-notes seems to be important, so the

objective in this part of the study is to provide a parallel ability - notes that can be

Richard J. Keeble
An Adaptive Environment for Personal Information i\lanagement

Ph.D. Thesi~
i\Jav 1999

Chapter 4 - Design and Implementation 98

attached to objects such as applications or files, providing the ability to annotate

them.

The underlying idea of this mechanism is therefore very simple - to allow a user to

'stick' a text note on a file. In providing this ability, however, several issues need

to be considered. The purely technical requirement is quite simple - the system

will need to store a list of one-to-one associations, holding the names of files that

have been annotated, linked to text objects which store their annotations.

The more profound problems revolve around user-interfacing mechanisms which

are required to represent this facility to the user and to allow them to use it. Users

need to be able to add notes to filesystem objects, to be able to view them, and to

be able to know that a particular object has an annotation. Although these issues

will have technical ramifications as far as the software implementation is con­

cerned, they will be noted here as requiring special consideration when the user

interface is designed.

4.2.7. Annotation-Based Retrieval

This feature builds on the file-annotation support described in the previous sec­

tion. The objective is to provide the ability for a user to locate and retrieve a file

based on the contents of its annotation. The information entered into these notes

will probably be stored by some centralised application, even though they will

primarily be accessed via the annotated object. This would provide a natural'as­

sociative searching' mechanism, where users could ask to open an object based on

the contents of its annotation.

Given that the underlying information store used to implement the mechanism

described in the preceding section - that is, a list of files and associated annota­

tions - the purely technical issues involved in providing this facility are relatively

straightforward. Given a word or phrase, the list of text notes needs to be

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 4 - Design and Implementation 99

searched for those containing occurrences of it. If it is found in a given note, a

means should be provided to allow the associated file to be opened.

The integration and user interfacing requirements for this feature should be

slightly less demanding than for the representation and manipulation of the notes

themselves - after all, the idea of 'searching' for something using a computer is a

concept with which almost all users will have had some contact. An suitable solu­

tion will probably be an interface element (such as a dialog) which accepts a word

or phrase and responds with a list of matching files, one of which the user can

choose to open.

4.2.8. Integration Concerns

The previous two sections show that the final implementation of the system will

need to be quite closely integrated with the target platform and its user interfacing

environment. Assuming that the target platform will be based around some kind

of graphical shell- insulating the users from the underlying representations of

files, folders, applications and suchlike - there will be a need to communicate

closely with this shell application.

The target platform will therefore need to provide some kind of 'extension'

mechanism, to allow external applications to work alongside the existing user in­

terface, augmenting it with the additional features discussed in sections 4.2.6 up to

this point. As well as this, suitable mechanisms will need to be identified within

that environment to allow notes to be created, added, viewed and searched in a

predictable manner, in such a way as to be consistent with the platform's inter­

facing conventions.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
Mav 1999

Chapter 4 - Design and Implementation 100

4.3. User Interfacing: Practical Issues

Up to this point, the discussion has centred upon the 'interface' only in a reasona­

bly informal state - in order to be implemented, it must obviously be expressed as

software. This section briefly describes general issues in user-interfacing tech­

niques and theory, and then concentrates on the particular additional require­

ments of adaptive systems.

Interactive software, rather than non-interactive software, has an additional set of

requirements, resulting in the need for a slightly different approach to the design

and implementation of applications with CUIs. Interactive applications devel­

oped obviously need to present their interfaces graphically, and must also be able

to respond to user events, rather than explicitly requesting information or choices

from their users. CUI toolkits, such as aSF /Motif (Heller and Ferguson, 1994;

Ferguson, 1993), and integrated development environments (Kruglinski, 1997) ex­

ist which relieve some of the burden of providing graphical interfaces and dealing

with user input.

A CUI can be realised within an application using a programmatic toolkit ap­

proach or by using a some kind of visual development tool. However, adaptive

interfaces have slightly more complex requirements than simple interactive sys­

tems, in that they may need to be 'reflective' - that is, they need to be able to ma­

nipulate themselves. The next section addresses this issue.

4.3.1. Software Environments for Adaptive Interfaces

This section examines the problems faced by adaptive interfaces with respect to

self-modification. All CUIs exist as graphical representations of the application's

system image, so that the user can interact with the application. However, an

adaptive system may need to be able to change the CUI. This therefore requires

that the model be made explicit in software internal to the system, so that it may be

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
May 1999

Chapter 4 - Design and Implementation 101

manipulated either by the user (as interface designer) or by the system itself (to

make adaptions, as required by the system under development). Although the

physical and conceptual levels of the domain model reflect the design of the appli­

cation's GUI, these models are often coded implicitly within the program, and

cannot be changed.

Different possibilities exist for providing these 'reflective' interfaces, such as high­

level user-interface toolkits and user-interface management systems (UIMS).

These are both systems which either contain or manipulate explicit representations

of user interfaces. This allows programs to enquire about the form and capabili­

ties of their user interfaces, which is be required for programs that need to be able

to change aspects of the interface as they run.

A high-level user interface toolkit (Myers, 1993) provides re-usable components

which can be refined as necessary and integrated into larger systems, while at the

same time remaining modifiable. An approach such as this naturally promotes the

use of techniques concerning 00 specification and development of software and is

useful in terms of abstract design, to encapsulate functionality not of concern

within components that can then be used to implement the interface desired.

A UIMS (Olsen, 1992) is essentially a GUI-based application which can be used for

building GUI-based applications, and may also provide associated runtime sup­

port for programmatic manipulation of a user interface. Most modern software

development environments provide some kind of UIMS, enabling developers to

specify the appearance and layout of a GUI's elements visually, and then add pro­

gram code to it later.

Many development environments such as Visual C++ (Kruglinski, 1997) actually

provide a mix of the two techniques discussed here - a UIMS is provided to allow

visual specification of an interface, and, once running, the software uses a high­

level toolkit to access features of the user interface. This is the approach that will

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi5
May 1999

Chapter 4 - Design and Implementation
102

be followed in this study, as a UIMS provides quite a rapid means to develop pro­

totype software, yet the environment does not sacrifice the generality of a toolkit

programming interface.

4.4. Detailed Design

This section presents the final design for the prototype AIMS application. This de­

sign encompasses two main elements: the design for the system, using 00 and in­

terface-based approaches for modularity and extensibility, without considering

the target platform as far as possible; and the integration techniques to be used to

present the visible parts of the system to the user. These two elements will then be

brought together to yield the final system which will then be evaluated in Chapter

5.

Firstly an 00 architectural decomposition will be presented, identifying the main

components of the system and the object types which will be necessary to reflect

the important parts of the system. An interface-based communications architec­

ture will then be developed, which shows how these different objects can 'talk' to

each other, invoking methods and so on. These two complementary models are

then used to arrive at a detailed design for the AIMS application's objects and

their interfaces.

4.4.1. Architectural Decomposition

This section builds on the functional specifications derived in sections 4.2 to 4.2.7,

to yield a high-level architecture for the system. This will illustrate how it will be

integrated with existing systems and how the major components of the system

will be structured.

The first step is to consider the environment into which the AIMS application

must be integrated, and the means necessary to isolate the application (as far as

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\ta\' 1999

Chapter 4 - Design and Implementation 103

possible) from that environment. Figure 4.1 shows the context within which the

AIMS 'application' will have to function .

The overall architecture is presented at three levels: the application level; the port­

ability level; and the environment level. This will enable the application's inter­

nals to be designed without needing detailed knowledge of the final implementa­

tion platform. The portability components will encapsulate these details, exploit­

ing features of the environment in order to present a platform-independent inter­

face to the application.

AIMUI

flnnnQ
pO

DODD DDl4-rr ----+

DDDDDF=
DOD

Desktop Shell

r--...~____ : /"",~:

'--~---
File System

Shell

os

L..----'

Environment Portability

AIM
Applica tion

Application

Figure 4.1. Architectural overview for the AIMS application.

An important feature to notice is that the final application will need to respond to

events in its own user interface - so the user may tailor the operation of the AIMS

application if desired and respond to questions posed by it - while at the same

time it must respond to events in the 'shell ' application of the operating system.

This would appear to imply that the final system may need to exhibit a degree of

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Th
1ay 1

Chapter 4 - Design and Implementation
10-l

parallelism, since the system is real-time in nature. Excessive delays in responding

to the user's actions are highly undesirable, so implementation techniques which

can alleviate this problem should be taken into account.

The next step is to consider how the various elements of the Adaptive Interface

Technology (A IT) architecture will be reflected in the design of this system. To do

this, the requirements arrived at in this chapter will be re-examined to yield a con­

crete set of agents, events and modelling resources which satisfy PIM support sys­

tem design criteria, as discussed in the previous chapters.

User Model Domain Model

Psychological Data Intentional Level

Profile Data Conceptual Level

I Student Model I Physical Level

~ /
Interaction Model

I Dialogue Record I
Interaction Know ledge Base

Evaluation Adaption Inference
Mechanisms Mechanisms Mechanisms

Figure 4.2. A reference architecture for adaptive interface technology (Benyon and Murray, 1993).

This is done by using the AIT architecture as a template for the system design, im­

plementing it as an aggregate component. To reprise some of the earlier descrip­

tion of the architecture (shown as Figure 4.2, originally as Figure 2.1 in section 2.6),

the main elements of interest are: the Domain Model, describing the system's ap­

plication; the User Model, containing data concerned with user preferences and

the user's profile; the Dialogue Record, giving a historical log of events that have

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\lay 1999

Chapter 4 - Design and Implementation
105

occurred; and the Interaction Knowledge Base, comprising mechanisms for infer­

ence, adaption and evaluation.

As mentioned in section 3.7.2, some of these elements are to be implemented in an

implicit manner - in particular, the Domain Model will be expressed mainly in

terms of the definitions of internal data structures. The Interaction Knowledge

Base is actually implemented as a set of agents - each of which fall into one of the

categories of inference, adaptation and evaluation - which respond to events and,

using information stored in the dialogue record and the user model, can generate

internal events reflecting inferences drawn or adaptions to be made. Each of these

elements will now be examined in detail, with the accompanying design docu­

mentation necessary for the implementation of each.

4.4.2. Domain Model

The domain modelling necessary for this study occurs at the conceptual and

physical levels (the intentional level being too abstract for consideration in this

rather general application).

Entities which must be reflected at the conceptual level are those manipulated by

the user - files, directories, applications, and so on. These will be implicitly mod­

elled in the data structures used by the system to store and process information

about the user's actions.

Also at the conceptual level, we encounter those 'measurements' about the user

that the system must store - effectively, the template for the design of the user

model. If something is not incorporated within the domain model, the system

cannot 'know' anything about it. Although the 'modelling', such as it is, is gener­

ally limited to acknowledging that something exists and we want to store informa­

tion about it, this forms the basis for the following specific attributes which appear

in the user model:

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1av 1999

Chapter 4 - Design and Implementation
106

(i) 'Hot' files: files which the user tends to use more often than others' ,

(ii) 'Shortcut' files: files which have shortcuts to them;

(iii) Notes: textual annotations applied to objects;

Physical level entities are largely concerned with the interface to the external op­

erating system. These are reflected implicitly, in the program's run-time library

bindings and the binary layout of the program itself.

4.4.3. User Model

The user model holds information about the individual using the system. Three

sorts of data may be considered: psychological data; the student model; and pro­

file data (as described in sections 2.6.1 to 2.6.3). Information associated with psy­

chological data and the student model do not playa role in this study, as we seek

to support the lower levels of user behaviour, rather than modelling the user's

abilities or knowledge.

4.4.4. Profile Data

The profile data stored in the user model reflects personal information about an

individual user. It stores details of accessed files - a list of files which the user has

opened, containing the files' names, frequency and time of last use. The profile

also stores information about the list of shortcut files, recording the names of re­

ferring and referenced files - this is the list of files which the system has proposed

shortcuts for, and the names of the shortcuts which refer to them. Finally, the pro­

file contains data regarding the objects (files, directories or applications) which

have had annotations applied to them, stored as a list of associations between an

annotated item and the textual annotation applied to it.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\lay 1999

Chapter 4 - Design and Implementation 107

4.4.5. Interaction Knowledge Base

The interaction knowledge base provides the 'active' elements of the adaptive sys­

tem, responding to the event information as it is entered in the dialogue record,

producing corresponding changes in the interface and monitoring any changes

made. Each of the following areas (inferencing, adapting and evaluating) requires

sensing and reactive behaviour of a sort, and the final set of agents which will be

needed by the implementation is governed by the adaptive behaviour required.

Inferencing mechanisms respond to combinations of events observed, usually

making reference to 'historical' data in the dialogue record, to draw conclusions

about the user based on their behaviour. These are then acted upon by the adap­

tion mechanisms, bringing about some change in the user interface. Evaluation

mechanisms could monitor shortcut and hotlist usage in relation to direct use of

the underlying objects, and if a significant ratio, of references disregard the short­

cut/hotlist entry, suggest that the shortcut/hotlist entry be removed.

4.4.6. Detailed Agent Design: Short-Cut Suggestions

The subsequent sections present descriptions of the processes behind each of the

behavioural elements described above. They show how simple events are used in

combination to draw simple general conclusions, which are in turn used to form

more complex, specific conclusions.

One way of realising the adaptive short-cut suggestion behaviour is to partition

the task into three levels of reactive sensing, allied with the information contained

in the dialogue record. This partitioning is shown in Figure 4.3.

At the lowest level, two agents are responsible for detecting relationships between

simple events. One examines the stream of events as they arrive for a folder-ope1led

event followed by a file-opened event, generating a navigate-open(l) event - where

the parameter 1 indicates the number of directories referred to in the event - for

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 4 - Design and Implementation 108

any pair where the file is contained within the folder. The other searches for con­

nected pairs of folder-opened events, where one folder is directly contained within

another, resulting in a navigate-folders event. The parent-child relationships are de­

tected by comparing the file and folder names, to show whether a given file or

folder object is contained within another given folder.

suggest-shorteu t(jopjic)

i
naviga te-open(jopjiClx)
duplicated with x >= 3?

navigate-open(jopji

("
navigate-folders(jopjoi) and

~ navigate-open(joijiC/x-l)?

navigate -folders (fopjOY ~aVigate-o
folder and folder and
sub-folder? sub-file?

J

folder-opened(jo) file-opened (ji)

Figure 4.3. Three-level architecture for shortcut detection.

At the next level up, a single agent examines incoming navigate-folders and navi­

gate-open(x-1) events for any pair connected by a parent-child relationship - spe­

cifically, where the subfolder of the navigate-folders event is the parent folder of the

navigate-open(x-1) event. If a connected parent-child pair is spotted, a compound

navigate-open(x) event is generated, with an incremented directory level count to

denote the additional connection.

At the top level, a single agent checks any navigate-open(x) event with a level count

of three or more (denoting two folders opened, followed by a subfile) to find if the

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
~lay 1999

Chapter 4 - Design and Implementation
109

same event has occurred previously. If so, a suggest-shortcut event is generated

which will be handled by the OS-specific part of the application.

The short-cut suggestion mechanisms are subject to several parameters governing

the detection of duplicate navigate-open sequences. The two most obvious are the

time periods permissible between connected events. Firstly, elapsed time must be

considered when looking at a folder-opened event and a file-opened event referring

to an object in that folder - if the time between the two is too great, they should

not be accepted as a connected pair. Similarly, the time elapsed between two du­

plicate navigate-open(x>3) sequences must be considered when deciding whether to

suggest a short-cut.

For the prototype system to be developed, these timing periods are as follows. For

a folder-opened event and a file-opened event to be cause the generation of a navigate­

open(l) event, the time between the folder being opened and the sub-file being

opened must be 10 seconds or less. For two duplicate navigate-open(x>3) sequences

to cause the generation of a suggest-shortcut event, the time between the two dupli­

cates must be 10 minutes or less.

It should be restated that the selection of the parameter values in these specifica­

tions are in fact somewhat arbitrary in nature. The exact values of the parameters

are not really the prime consideration - the goal is to provide a system which ex­

hibits good face validity as the basis for the later practical testing in Chapter 5. As

long as the system supports the elements of the PIM tasks identified earlier in sec­

tions 3.3.1 to 3.3.4, this goal should be satisfied.

4.4.7. Dialogue Record

The system's dialogue record stores a journal-type log of events which may occur

due to the user's actions, or may be produced internally in response to certain

combinations of actions. The event log is therefore a timed list of input events of

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesl5
\tav 1999

Chapter 4 - Design and Implementation 110

interest. These input events are used by the system to observe the user's behav­

iour and form the basis for inferences drawn about adaptions to be made. Events

are listed at two levels, syntactic and semantic, as defined in section 3.6, concern­

ing abstraction levels within the AIT architecture.

Syntactic events are at a low level of abstraction, and reflect basic occurrences

within the interface. These events are independent, and do not take into account

any context other than the objects to which they refer. Semantic events, to a cer­

tain extent, take context into account by reflecting relationships between syntactic

or other semantic events, and are generated by the system (refer to section 3.7 on

the syntactic/ semantic signals of the AIT system diagram). The syntactic events

fall into several categories - however, in all cases, the generation of these events is

triggered directly by a single occurrence outside the scope of the application:

(i) User action events: these are the important basic events, which reflect the

user's interaction with the system's desktop interface - opening files and

folders and actively using the system;

(ii) Database maintenance events: if a file or folder is either renamed or deleted,

and is referred to in any other part of the user model, any references to it

must be either updated or deleted in order to maintain a consistent profile

database;

(iii) Session management events: these take account of when sessions are started

and stopped, thereby enabling more accurate timekeeping for access-

frequency calculations.

The semantic events within the system are all concerned with connected folder­

folder and folder-file access - the important difference to note is that they are gen­

erated by the system itself, in response to sets of connected events separated by

intervals of time.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 4 - Design and Implementation 111

Event Name Event Description

file-opened (file) triggered when the user double-clicks a datafile file,
causing the associated application to run, opening the file

folder-opened (folder) triggered when the user double-clicks a folder folder,
opening it to explore its contents

object-renamed (object, object') triggered when the user changes the name of a file or
folder from object to object'

object-deleted (object) triggered when the user deletes the file or folder object
session-starts triggered when a user logs on to the system and begins

interacting with it

session-ends triggered when the user logs out of the current session

Table 4.1. Syntactic Events Processed by the System

Tables 4.1 and 4.2, respectively, show the different syntactic and semantic event

types processed and generated by the system. These tables show the event names

and also, where appropriate, the attributes of each of the events. For example, the

file-opened event has a single attribute, the name of the file that was opened.

Event Name Event Description

navigate-folders (folderparent, folderchild) triggered when a folder folderchild is opened which is
a subfolder of a folder folderparent opened within the
last ten seconds

navigate-open (folder parent, filechildt 1) triggered when a file filechild is opened within a
folder folderparent which was opened within the last
ten seconds

navigate-open (folderparent, filechild, x) triggered when a navigate-folders (fp, fi) and navigate-
open (fi, /C, x-1) pair is observed (that is, at least two
folder levels are navigated followed by a file-open
operation)

suggest-shortcut (foldeY/ocation, filetarget) triggered when a pair of identical navigate-open (fi,
/t, x>3) events are detected within ten minutes

Table 4.2. Semantic Events Generated and Processed by the System

As a rule, an action in the user interface causes a single semantic event, of the as­

sociated type. One exception to this rule is that a folder opened as a result of se­

lecting it from the desktop window causes a pair of folder-open events to be gener-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\ t.1\" 1999

Chapter 4 - Design and Implementation 112

ated, one for the desktop location and one for the sub-folder, as is required to indi­

cate the source of the desktop folder. The process is illustrated in Table 4.3.

Event Description Internal Detail Event

1. User opens folder ~Personal' from desktop ~window'

folder-opened (1/\ ") E1

folder-opened ("\Personal") E2

System recognises folder-subfolder relationships (E1, E2)

navigate-folders (1/\ ", "\Personal") E3

2. User opens folder ~Documents'

folder-opened (I/\Personal\Documents") E4

System recognises folder-sub folder relationships (E2, E4)

navigate-folders (I/\Personal", I/\Personal\Documents") E5

3. User opens file ~Diary.DOC'

file-opened (I/\Personal\Documents\Diary.DOC") E6

System recognises folder-sub file relationship (E4, E6)

navigate-open (I/\Personal\Documents", I/\Personal\Documents\Diary.DOC", 1) E7

System recognises earlier folder navigation as parent of event (E5, E7)

navigate-open (I/\Personal", I/\Personal\Documents\Diary.DOC", 2) E8

System recognises earlier folder navigation as parent of event (E3, E8)

navigate-open ("\ ", I/\Personal\Documents\Diary.DOC", 3) E9

Table 4.3. Detecting navigation-selection sequences based on user events.

Event E9 [navigate-open (1/\ ", I/\PersonaZ\Documents\Diary.DOC", 3)] shows that

the system has spotted that the user started at the desktop and navigated through

two levels of folders before opening their file. If an identical event to E9 is de­

tected within ten minutes, a suggest-shortcut event is generated, which instructs the

system to offer to create a shortcut between the parent folder and the file opened.

Implicit within this description is the fact that each event's timestamp is consid­

ered when deciding whether or not to generate any navigate-xxx event. For exam­

ple, in order for the event E3 in Table 4.3 to be generated, there must be no more

than ten seconds between the preceding E1 and E2 events. This should ensure that

only connected folder navigation events trigger shortcut suggestions.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 4 - Design and Implementation 113

The structure of each dialogue record entry is that shown in Table 4.4. The time

attribute field holds a timestamp denoting when the event was generated. The

data is held as a 'time_t', which is actually a 32-bit signed integer, defined as the

number of seconds before the event since January 1st, 1970 (a de facto standard in­

troduced in the K&R Unix/C standard library in the late seventies). The code field,

which will be implemented as an integer, stores one of a small set of values to in­

dicate which event type the particular event relates to. The set of code values to be

defined is shown in Table 4.5.

Attribute Type Description

time timestamp records the event's generation time, in standard time_t format

code eventcode records a code denoting the event's type

namel filename records the first filename associated with the event

name2 filename records the second filename associated with the event

level integer records the number of folder levels between namel and name2

Table 4.4. Dialogue record per-event information.

code namel name2 level

SESSION_STARTS - - -

SESSION_ENDS - - -

FILE_OPENED name of file - -

opened

FOLDER_OPENED name of folder - -
opened

NAVIGATE_FOLDERS parent folder name child folder name -

NAVIGATE_OPEN parent folder name child file name number of folder
levels between

parent and child

SUGGEST SHORTCUT parent folder name target file name

Table 4.5. Symbolic event type code list and attribute usage.

The namel and name2 fields are used to store the names of the file and folder ob­

jects referred to by the event. Table 4.5 also shows which event types use them,

and for what purpose. The level field is used only by the navigate-open events,

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\lay 1999

Chapter 4 - Design and Implementation 11-1

when it gives the number of objects (folders and files) used in a particular com­

pound navigation/ selection sequence.

This concludes the 'first cut' of the abstract design for the separate components of

the theoretical AIT architecture. The next step in the development process is to

bring the various components together in a system outline which will integrate

with a user environment.

4.4.8. Structural Design

Given these contex,tual requirements, a proposal for the structure of the AIMS ap­

plication itself is now presented. Figure 4.4 gives an outline for the AIMS applica­

tion's internal structure - it consists of a set of external communication channels

between the user interface, the shell and the operating system, and a set of agents

which are supplied with events. These events may be generated externally, as a

result of user actions, or may be generated by other agents within the application,

allowing the functionality or outputs of lower-level agents to be utilised by others.

Certain entities in the application may need to operate as separate sub-processes

or 'threads' in their own right - these are denoted by the thicker lines, being the DI

and Shell ports, the Event Handler, and the set of agents themselves. Threads

(concurrent paths of execution within a single process, sharing the application's

data) are available on most current implementation platforms, and can also be

emulated, should the need arise. Alternately, it may be that true concurrency will

not be required, in which case it will be prudent to use a single thread of control,

which is always far easier to reason about and design with.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 4 - Design and Implementation 115

I Event Distribution I
~ ~

UI ~ 1 1

Port 1 Agent Agent Agent
A B C t ~ ~ f .

Shell Event
--,.

Port Handler

I t ~
f'" -.. -......

User Dialogue I

Model Record :

...... I

1 1
I Filesystem Handler I • as I

Port
AIMS Application

Figure 4.4. Outline structure for the AIMS application.

4.4.9. Relationship with the All architecture

The architecture for adaptive interfaces, described earlier in section 2.6, is echoed

mainly in the shaded part of Figure 4.4. The user model (section 2.6.1) and dia­

logue record (section 2.6.3) components will be implemented explicitly as data

stores of some kind. These will then form the resources used by the various

agents to draw their conclusions about the user.

The domain model (section 2.6.2) and the remaining components in the interaction

knowledge base (section 2.6.3), in this system as in almost all others, will be im­

plemented in quite an implicit manner. The domain model's physical level will be

embodied in the platform-specific portability layer, mapping between AIMS ap­

plication primitives and the external environment (user interfaces, shell applica­

tions and the operating system). At a conceptual level, the domain model will be

implicit in the design of the AIMS user interface and the representation of files and

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~1a\· 1999

Chapter 4 - Design and Implementation
116

folders in the augmented graphical shell. The dynamic behaviour of the various

interaction knowledge base mechanisms - for inferencing, adaption and evalua­

tion purposes - is provided for by conceptualising the system as containing agent

processes which execute autonomously.

The 'implicitness' of the domain model and parts of the interaction knowledge

base is really a symptom of a wider issue which can cause problems in adaptive

systems design - that is, at what level of detail to model the environment, and

whether or not to provide an explicit domain model. To the extent an implemen­

tation of an adaptive system must be realised in software, a domain model must

exist. However, this is normally represented only in the design and coding of the

final program.

It is theoretically possible to implement modelling software which would allow a

domain model to be held explicitly and manipulated by the system, although this

introduces considerable complexity - effectively, it requires 'meta-modelling'

support. A domain model defines the extent of a system's relationship with some

environment - consisting both of concrete details of software implementation, and

more abstract, elusive concepts of user knowledge. A fully explicit domain model

would require that the eventual software possess the ability to model any envi­

ronment that could be realised, not only at the software level, but at the concep­

tuallevel as well. This provides some interesting research questions, but as it is

not a fundamental issue in this study, work on it is deferred to the future (see sec­

tion 7.5.2).

4.4.10. Object-Oriented Decomposition

This section illustrates how a user interface conceptualised as discussed in Chapter

2 can be expressed in 00 design terminology. The adaptive interface, containing

simple reactive software agents, will need to be expressed as a set of objects. The

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
May 1999

Chapter 4 - Design and Implementation 117

set of objects will be instantiated from a hierarchy of classes which can be refined

and augmented as dictated by the precise application.

Using the elements of adaptive behaviour identified earlier in sections 4.2 to 4.2.7,

we can then develop general specifications for agents meant to respond to events

in user interfaces. This work will illustrate the infrastructure requirements for

such a system, especially given the event-driven nature of the interfaces involved,

the requirement to transform interaction information (syntactic data) from the

user interface into meaningful events (semantic information) and the integration

requirements - that is, how the system 'links in' with existing software.

Referring back to Figure 4.4, the internal structure of the AIMS application has al­

ready been expressed (albeit informally) as consisting of a set of component ob­

jects. Immediately, we can see two possible classes of object - the 'Port' objects,

used to communicate with the external environment, and the' Agent' objects. Al­

though in Figure 4.4, no descriptive names or particular functionality were as­

cribed to the set of agents shown, it is obvious from the figure that they must share

some common characteristics - the receipt, processing and distribution of events

and the manipulation and maintenance of the user model and dialogue record.

Looking at the full range of components present in the internal structure leads to

the following list of candidate classes, as described here:

(i) Port: A link with the external environment, which acts as a source and sink

for events from or to a particular source;

(ii) Event Handler: Responsible for accepting events from ports, distributing them

to agents and communicating the responses back to the requisite port(s);

(iii) Event: Stores information about events;

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
t-.tav 1999

Chapter 4 - Design and Implementation

(iv) Agent: An autonomous process with internal state which processes events

using information from the user model and the dialogue record;

(v) User Model: A persistent resource which stores profile information about a

particular user;

118

(vi) Dialogue Record: A persistent resource which stores historical data about the

interactions between the user and the system;

(vii) AIMS Application: The application as a whole, represented as an object.

This initial list can be further refined, by noting some facts about these candidate

object classes and relationships amongst them.

A Port may be synchronous or asynchronous in nature - for example, a port which

receives event data from the user interface or graphical shell will be asynchronous

- that is, the timing of incoming data cannot be predicted. In contrast, a port to the

file system will be synchronous - a request will be followed by a response almost

immediately. Thus, there could be two subclasses of Port, one which is used for

asynchronous data and one for synchronous data. Implementations of the two

might differ in that an asynchronous port might need its own thread of execution,

whereas the messages passed through a synchronous port could simply take the

form of method invocation.

Another relationship exists between the User Model, Dialogue Record and Agent

candidate classes. Both the User Model and Dialogue Record objects must be persis­

tent in nature - that is, the information stored within them should persist between

sessions and not be lost when the system is shut down. Agent objects may simi­

larly require their state to be persistent. A Persistent Object class could therefore be

the superclass of these three candidate classes. Instances of this class would pos­

sess utility methods for 'suspending' the instance and placing its contents in sec­

ondary storage, then reactivating the instance at a later date.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
\1ay 1999

Chapter 4 - Design and Implementation

....... 1.
Port

....... 1 .. ~ ~ ~ ~ ~:'r ·r·.·.·.·.·.· . . 1
. .

Synchro- : : Asynchro­
nous Port : : nous Port

Object

·········r······ .

Event Event
Handler

. 1.
Persistent

Object

119

·······r·······
--~--------. 1. ,

Agent
User

Model
Dialogue
Record

Figure 4.5. Basic adaptive interface class hierarchy.

Bringing all this together yields the class hierarchy shown in Figure 4.5. Classes

with dotted outlines in Figure 4.5 are 'abstract' classes - that is, in the class 'li­

brary' which will result from this development, these classes will exist but will re­

quire further refinement in order to be fully implemented. For example, there

would be little point in instantiating an Agent without implementing its internal

state and dynamic behaviour. In most 00 notations, this can be explicitly en­

forced by the programmer.

4.4.11. Interface-Based Architecture

The class hierarchy developed in the previous sections shows what component

objects the system consists ot but does not show how these components commu­

nicate to perform the required functions. This section develops an interface-based

architecture which shows how the system's constituent objects are connected to­

gether.

The term interface, in this context, refers to contracts of behaviour and functionality

between software entities, rather than between humans and computers. An inter­

face is a single-minded, cohesive set of methods, implemented by a particular ob­

ject, which can then be invoked by another object. Box (1998a) defines interface­

based software development as representing the 'second wave' of 00 software

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\Ln'1999

Chapter 4 - Design and Implementation 120

development. The first wave is typified by classical 'implementation inheritance'

(Booch, 1994) in an 00 system.

This style of software re-use, where objects inherit both their 'appearance' (i.e.,

their interfaces) and their functionality (or implementation) from others, often

leads to so-called white-box re-use, where excessive coupling develops between a

base class and a derived subclass. A related issue is the fragile superclass problem,

where a change in the implementation of a superclass (although it may not alter

any externally-visible details) may break existing binary client applications (see

Box (1998b) for a more detailed exposition). Interface inheritance seeks to address

these problems by considering the implementation of an object as a black box, ac­

cessible only through predefined set of interfaces, betraying no detail whatsoever

about the object's inner construction.

As well as providing an implementation that has a minimum of coupling between

its component parts, another benefit that can be gained from following an inter­

face-based development approach is that the resulting software could then be

packaged as components. A component is usually defined as a self-contained object

which can be swapped and rearranged at will, exhibiting graceful degradation

where required functionality is not present. Section 2.2.5 (concerned with features

of systems meant to support PIM), mentioned that an important requirement of

PIM systems was the ability of individuals to radically tailor their environment.

Allowing a user to tailor their desktop environment by using different assistant

agents on a 'plug-and-play' basis could therefore prove very useful.

In order to arrive at an interface-based design, a set of interfaces is required that

will allow the component objects, identified in the 00 decomposition, to commu­

nicate as needed. Essentially, the inter-object communication pathways denoted

in Figure 4.4 will be implemented as interfaces in the target object of each path­

way, and given interfaces will only be exposed to the objects that need to use

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 4 - Design and Implementation 121

them. This is effectively an example of 'least privilege' in design, where objects

are only permitted to use as much of the rest of the system as they need to.

Object Needs ...

the AIMS application 1. to accept events from the shell;
2. to accept events from its own user interface;
3. to be able to cause events in the external operating system.

the Agents 1. to accept events from the rest of the system;
2. to generate events for propagation to the rest of the system.

the Dialogue Record 1. to record a journal of events that have occurred in the system;
2. to service requests for past events for inferencing purposes.

the User Model 1. to service requests for user preference data;
2. to service requests for user profile data.

the File Access record 1. to record file access information;
2. to service requests for access information about files.

Table 4.6. Per-object communication requirements.

Interface Description

IUIPort Used to communicate actions within the AIMS application's user in-
terface to the application itself.

IShellPort Contains methods which are used to indicate events within the oper-
ating system's shell application.

ISysPort Contains methods to control the relevant parts of the operating sys-
tem - to create shortcuts and to rank file access records.

IDialogueRecord Contains methods to record events and to search the journalled event
record back in time for specific events.

IUserModel Contains methods to access user preference information and to gain
access to the file access record store (manipulated via IFileAccess).

IFileAccess Contains methods to update and retrieve information from the file
access log.

IE vent A event 'sink' interface - used by another object to pass event infor-
mation to the object implementing the interface.

IAgent (derived Used to access an agent's functionality, with methods to initialise the
from IE vent) agent as part of the application, and to send events to the agent.

Table 4.7. List of interfaces used within the system.

Table 4.6 shows the communication requirements of the objects present in the sys­

tem. Where an object is noted as accepting events or servicing requests from any

other object, it is likely that an interface will be required by the accepting object.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

,;

Chapter 4 - Design and Implementation 122

Table 4.7 shows the list of interfaces arising from the analysis of the inter-object

communication requirements4. The interfaces fall into two main categories - sin­

gleton interfaces (used by only one object in the system) and other interfaces used

by more than one object.

For singleton objects such as the Dialogue Record, the interface will simply be the

collection of methods used to access the object, as would be the case for a normal

00 design. For other object types, the interface indicates a subset of the object's

abilities. Essentially, the interface definitions in an interface-based design repre­

sent an object type hierarchy rather than an object behaviour hierarchy.

One subtle element to the design is the definition of the IAgent interface in Table

4.7. Since agents need to be able to receive event information, they should be

event sinks, and therefore implement IEvent. However, they will also need to pass

event information back to the system, and therefore need to be initialised with in­

formation about the system's IEvent sink. The IAgent interface is therefore a re­

finement of IEvent - illustrating interface inheritance, rather than implementation

inheritance. Another point to note is that the explicit XxxPort objects in the origi­

nal object hierarchy can be subsumed as XxxPort interfaces in the design, simpli­

fying the object set.

From these requirements, and with the set of objects already identified, the set of

components needed to build the system as a whole can be set out, as shown in

Figure 4.6. The IEvent interface of the CAimCore class is shaded, denoting that it is

a private interface. It is used by the agents registered with the system, so that they

can communicate events (as the results of their inferences) back to the system. The

4 The interface names in Table 4.7 are prefixed with 'I' to distinguish them from plain classes,

whose names are adorned with a 'C' instead - this is a de facto naming convention, particularl~'

common in COM-based (Box, 1998a) development environments.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~i~
~tay 1999

Chapter 4 - Design and Implementation
123

interface is not public, as the external environment has no need to access it. The

CAimCore class also (in this design) contains the user model and dialogue record

informa tion.

Class

CAimCore

CAgent

CDialogueRecord

CUserModel

CFileAccess

CXxxSystem

Richard J. Keeble

IUIPort
ISheliPort CUserModel CDialogueRecord

I Event __ ---I

'" _

IAgent 0----; "
'\ CAgent)

... -'

IUserModel
IFileAccess 0-{

IDialogueRecord

CDialogueRecord
... _ .. - ..

, ,

ISysPort~
,

'\ ___________ ~~~~~X~~~~)

CAimCore

CFileAccessJ

CUserModel

Figure 4.6. AIMS System Component 'Gallery'.

Description

The main component of the system, encapsulating the function-
ality of the application, event handler and event distributor
shown in Figure 4.4.

An abstract class which will be used to implement the final
agents, by deriving them from this class. Also includes private
methods to create new events and propagate them back to the
system.

Implements which record events and to search the journalled
event record back in time for specific event types.

Implements methods to access user preference information and
to gain access to the file access record store (manipulated via
IFileAccess, below).

Implements methods to update and retrieve information from
the file access log.

A to-be-implemented class which will encapsulate the operating
system environment, implementing the ISysPort interface.

Table 4.8. Class Descriptions.

An Adaptive Environment for Personal Information Management
Ph.D. Thesis

\lav 1999

Chapter 4 - Design and Implementation

IUIPort

ISheliPort

I Event

IAgent

IAgent

IAgent

IAgent

IUser~odel (~

~ CUserMOdelj
IDialogueReco d ;:================::

CDialogueRecord

CAimCore

ISysPort

CHotLister

CNavFinder

CMultiNavFinder

CShortCutter

Figure 4.7. AIMS System Composition.

12.+

CXxxSystem J

Table 4.8 describes the classes which need to be implemented to realise the system

as a set of communicating components. The only 'missing links' are the derived

CAgent instances (which just implement the behaviours documented in sections

4.4.6 and 4.4.7), and the CXxxSystem class which implements the ISysPort interface,

to communicate with the external operating environment. The classes described

in Table 4.8 are connected together to form the final system, as shown in Figure

4.7.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thl'~i~
\ lay 1999

Chapter 4 - Design and Implementation 123

As can be seen from Figure 4.7, the system consists of a number of agent instances

being fed event information (via their IAgent interfaces) from the AIMS applica­

tion core. In turn, the agents may generate events as the result of inferences and

send these back to the core, via its (private) IEvent interface. The agents may also

call on the core for dialogue record and user modelling information, gained

through the IDialogueRecord and IUserModel interfaces provided by members of

the core.

4.5. System Implementation

This section briefly documents the implementation process followed in realising

the AIMS application as a working piece of software. A choice of target imple­

mentation platform is made, which then leads to a small amount of re-design

work, as some features need to be generalised slightly to cope with all eventuali­

ties.

The integration process is then discussed, showing how the platform-independent

core implementation was dovetailed into an existing operating system environ­

ment. It was originally planned to integrate the software into a current popular

graphical shell application - namely, the Windows NT Active Desktop Shell, as

this supposedly exhibited the ability to support extensions of this kind. In practice

this proved extremely difficult to do; while the Windows NT Shell does offer sig­

nificant opportunities for extension, the features required by this system were not

supported by it. Instead, a skeleton shell-like application (which allows users to

navigate through the filesystem, open files, run applications and so on) was devel­

oped. This was then used as a source of live user event data, in order to test the

application.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\lav 1999

Chapter 4 - Design and Implementation 126

4.5.1. Choice of Target Implementation Platform

The final choice to be resolved before a concrete design can be arrived at is that of

the target platform for the implementation of the system prototype. Several fac­

tors need to be considered when making this choice:

(i) Installed llser base: the prototype should be implemented on a platform which

is widely used, to be a representative example of how such an application

would be implemented and subsequently used;

(ii) Standardisation of user interface: the prototype needs a target platform which

has quite a standardised user interface, across various architectures and ma­

chine types;

(iii) Availability of development tools: in order to reduce, as far as possible, the

amount of low-level user-interface programming work, the system should

have a good range of tools which actively support user interface and applica­

tion development;

(iv) Extensible shell interface: the platform should have a reasonably straightfor­

ward means of extending the default graphical shell application (thereby al­

lowing the implementation of features such as the annotation support dis­

cussed earlier);

(v) Good integration substrate: it would be preferable if the target platform offered

an existing mechanism for integrating software components - as it is highly

likely that the extensions mentioned in (iv) will require such support.

The Windows NT platform provides all the desirable features mentioned above -

it is widely used, it has many good development tools available, and from Win­

dows 95 onwards it has had a reasonably standardised user interface. The graphi­

cal shell application has an extensible interface, based on a good software compo-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 4 - Design and Implementation

nent integration substrate (COM, the Component Object Model, another widely­

used de facto standard). The underlying operating system provides memory and

process-protection, useful in developing and debugging applications, plus a per­

user profiling model.

In terms of infrastructure and integration, the system will be implemented using

C++, MFC and COM. MFC, a stable platform for development work, provides a

set of classes which insulate software from the specifics of the underlying operat­

ing system. Utility classes are provided (at a basic level, objects may be contained

in lists and so on) and more sophisticated support (such as that required by persis­

tent objects). Also, COM provides a simple and elegant mechanism for processes

running on the same machine to intercommunicate - as required to gain user­

interface event information.

4.5.2. Platform-Dependency Issues

This section considers the impact that the choice of platform has on the system to

be developed. The design work up to this point has not considered any details of

the environment to be used to implement the software, and there generally tend to

be subtle elements of the environment which need to be taken into account for the

system to work as well as possible.

report.doc

Figure 4.8. Silent shortcut translation by the operating system (Unix-style).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ta\' 1999

Chapter 4 - Design and Implementation 128

The nature of 'short-cuts' was not fully discussed in the preceding sections con­

cerned with the system design (sections 4.4 to 4.4.11). The assumption was made

that a 'shortcut' would be indistinguishable from a normal file, except that the op­

erating system would translate it as required. This situation is depicted in Figure

4.8.

A folder named 'work' contains a shortcut called Ivers ions', which in turn con­

tains folders 'doc_vI', 'doc_v2' and so on, for versions of a document under de­

velopment. The 'documents' folder also contains a shortcut called 'current',

showing the current version of the document, which is a shortcut to the folder

've r s ion s \ doc v 2'. The' do c_ v 2' folder contains a report document file called

'report. doc'.

Given this situation, the design assumed that if a client application opened the file

'wo r k \ cur re n t \ rep 0 rt . doc', the operating system would silently follow the

shortcut, actually accessing the file 'wo r k \ ve rs ion s \ doc_ v 2 \ repo rt . doc' with­

out any intervention by the client application. Two (logical) files have the same

underlying (physical) location. This is the case under almost all Unix-style oper­

ating systems (where shortcuts are referred to as links).

However, under Windows NT 4.0, this is not the case. Shortcuts are represented

by special files which contain information referencing another file or folder, and

which must be explicitly resolved by client applications. This introduces a prob­

lem in identifying parent-child relationships between folders and files. Figure 4.9

illustrates the underlying situation. The shortcut file 'work\current.1 nk' con­

tains a reference to the folder' w 0 r k \ ve r s ion s \ d 0 C_ V 2', conveying the same logi­

cal structure as in Figure 4.8.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\ lav 1999

Chapter 4 - Design and Implementation 129

current.lnk
work\versions\doc v2

report.doc

Figure 4.9. Explicit shortcut resolution by the client application (Windows NT-style).

The difference is that the file 'wo r k \ cur rent. 1 n k \ repo rt . doc' does not exist,

and would not be found by the operating system - the client application first has

to examine the file 'wo r k \ cur re n t . 1 n k' using OS-supplied routines to determine

that the link's target is actually 'wo r k \ ve rs ion s \doc_v 2 \ repo rt. doc', and use

that file instead.

The preceding design work assumed that, since shortcuts would be transparently

followed by the operating system, a file's name alone could be used to spot single­

level parent-child relationships between folders and files - for example, the folder

two r k \ cur rent' is the parent directory of the file two r k \ cu r rent \ repo rt . doc',

which can be seen by comparing the file's path.

However, this is not the case when shortcut files are brought into the equation. In

the example shown in Figure 4.9, the file 'wo r k \ ve r s ion s \doc_ v 2 \ repo rt . doc'

is a subfile of the folder shortcut two r k \ cu r rent. 1 n k', but that fact cannot be dis­

covered simply by comparing the pathnames. The solution to this problem is that

the event-handling support needs to be generalised to accept files and folders that

have' aliased' shortcut names. Instead of just recording that a file or folder was

opened, if that file or folder is a shortcut, then both the target object's name and its

shortcut alias should be stored.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\1a\·1999

Chapter 4 - Design and Implementation l30

The necessity for this alteration is illustrated in Table 4.9. This reflects the same

kind of folder and file accesses as those in the previous example shown in Table

4.3, except that the folder and file objects in this sequence are actually shortcuts. If

the shortcut aliases were not taken into account when attempting to detect parent­

child relationships (as was the case earlier), these connected accesses would not be

found. This would have resulted in a system where compound accesses would be

silently ignored when shortcuts were involved.

Event Description Internal Detail ID

1. User opens desktop folder 'Personal' which is a shortcut to 'Rich \Home'

folder-opened (1/\") E1

folder-opened (I/\Rich\Home", I/\Personal.LNK") E2

System recognises folder-subfolder relationships using (E1, E2)

navigatejolders (1/\", I/\Rich\Home") E3

2. User opens folder 'Documents' which is a shortcut to '\Local \Docs'

folder-opened (I/\Local\Docs ",I/\Rich \Home \ Docllments.LNK") E4

System recognises folder-sub folder relationships (E2, E4)

navigate-folders (I/\Rich\Home", I/\Local\Docs") E5

3. User opens file 'Diary' which is a shortcut to '\Journal\Today.DOC'

file-opened (I/\Local\Docs\Diary.LNK", I/\Journal\ Today. DOC") E6

System recognises folder-sub file relationship (E4, E6)

navigate-open ("\Local\Docs", I/\Journal\ Today.DOC", 1) E7

System recognises earlier folder navigation as parent of event (E5, E7)

navigate-open ("\Rich \Home", "\Journal\ Today.DOC", 2) E8

System recognises earlier folder navigation as parent of event (E3, E8)

navigate-open (1/\ ", I/\Journal\ Today.DOC", 3) E9

Table 4.9. Detecting navigation-selection sequences based on user events with aliased names.

Table 4.9 shows the modified mechanism at work. For example, event E3 is gen­

erated because I/\Rich \Home" has a shortcut alias I/\Personal.LNK" which is a sub­

file of the previously-opened desktop folder 1/\". Therefore, the user has per­

formed a single navigate-folders event from the desktop 1/\ ", to "\Rich\Home"

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 4 - Design and Implementation 131

(even though this physically spans two folder levels, it appears to the user as only

one).

Taking these alterations into account results in the modified event types shown in

Table 4.10 (contrast with Table 4.4, above), and the modified event attribute usage

patterns shown in Table 4.11 (contrast with Table 4.5, above).

Event Name Event Description

file-opened (file [, alias]) triggered when the user double-clicks a datafile file (with
an optional shortcut alias alias), causing the associated
application to run, opening the file

folder-opened (folder [, alias]) triggered when the user double-clicks a folder folder (with
an optional shortcut alias alias), opening it to explore its
contents

Table 4.10. Syntactic Events Processed by the System

code namel name2 level

FILE_OPENED name of file the file's shortcut -
opened alias (if any)

FOLDER_OPENED name of folder the folder's short- -
opened cut alias (if any)

Table 4.11. Symbolic event type code list and attribute usage.

These modifications were all that were necessary to allow the system's core func­

tionality to be implemented under the target platform's operating system envi­

ronment. The next step in the process was to consider how this platform­

independent system could be integrated with the graphical interface to its target

platform.

4.6. I ntegration Process

The software developed up to this point was a standalone system, devoid of any

bias toward a particular platform, having no user-interface as such - other than

the binary and programmatic interfaces devised so far. Rather than build a new

user interface specifically for the purpose of exercising the system, an existing

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
t\ lay 1999

Chapter 4 - Design and Implementation 132

graphical shell interface was augmented. In this way, the AIMS application could

be seamlessly integrated with an existing environment without having a visible

effect as far as experienced users were concerned.

4.6.1. Integration Areas

A complete implementation of the AIMS application would need to be integrated

into the target environment in two ways. User-interfacing support would be

needed to allow individuals to use the features of the software - to attach, edit and

search for notes, to accept suggestions for shortcut creation and to view regularly­

accessed files. De facto 'standards' exist for operations such as these - for example,

most users are familiar with the idea of dialog boxes with lists to choose from.

In contrast to these reasonably standard interfacing requirements, the software

also had to be integrated with the graphical shell. There were two main integra­

tion areas that had to be addressed here:

(i) The timely and accurate acquisition of information about the user's actions within

the shell's user interface: the short-cut suggestion and file tracking mechanisms

rely on these events, so there needed to be a source of them;

(ii) The ability to 'hook' into the user interface such that minor visual cues could be ef­

fected: the file annotation support would require a mechanism to indicate the

existence of a given file's annotation, possibly using icon overlays or such­

like.

These areas necessitated the acquisition of some reasonably esoteric details about

the target platform's operating system, Windows NT 4.0. All the available docu­

mentation for the NT Shell's application programming interfaces (APIs) and the

Win32 APIs seemed to indicate that they would support extensions along these

lines. There were a number of different approaches that seemed to offer possibili­

ties for both of the above areas, but it proved to be the case that the precise nature

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi"
\tav 1999

Chapter 4 - Design and Implementation
133

of the information required was too specific to be supported by the available APIs.

The approaches examined and the shortcomings found with them are now dis­

cussed in the following sections.

4.6.2. Interface Event Acquisition: The Active Desktop

The latest public major release of Microsoft's 'Internet Explorer' application, ver­

sion 4 (referred to as IE4) brought with it a 'Desktop Update'. This allowed the

desktop screen to be generated by an HTML page (essentially, a Web page held

locally). More importantly for this application, the Desktop Update provided an

API to the Active Desktop itself, allowing client applications to alter the appear­

ance of the desktop page.

The documentation seemed to imply that applications could also react to events

on the desktop, in just the fashion that was required by the software under devel­

opment - but this was not entirely the case. It is possible to write a small Java

applet, appearing as an icon, that delivers an event when the user clicks on it - but

this cannot be generalised to any icon in any window under the control of the

shell.

4.6.3. Interface Event Acquisition: Internet Explorer Automation

One slightly-documented aspect of the Active Desktop is that it replaces the Win­

dows NT Explorer (the shell application) by Microsoft's Internet Explorer, which

includes file-system browsing ability. Essentially, Internet Explorer becomes the

operating system's shell applications. Internet Explorer, in common with many

S As was required to circumvent a US High Court ruling that Microsoft's own IE4 internet browser

could not be unfairly distributed with their operating system as it was not a part of it.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\tay 1999

Chapter 4 - Design and Implementation

Windows applications, supports the Automation6 mechanism. In IE4's case, an

interested client can request to be informed when events occur in the browser

window - clicking on links, and so on. It was hoped that this mechanism would

allow file-management events to be received from an Internet Explorer-hosted

shell window. Unfortunately, this method does not generalise to multiple win­

dows (i.e., when a new window is opened, events are not received from it).

4.6.4. Interface Event Acquisition: Context Menu Handlers

Other methods for acquiring user interface events were evaluated. Windows NT

has context menus - menus of item-specific operations. These are generated by the

shell application in response to a right-mousebutton click. It is possible to register

extended context menu handlers with the NT shell, so that application defined

menu choices specific to a given file can be added to the system's default context

menu7.

The Windows NT documentation notes a special case where the context menu

handler is called to discover the default (i.e., double-click) action for a file. This

could be used to note that an object has been selected. Tests have shown, how­

ever, that the context menu handler is never called in this case. Sources from Mi­

crosoft confirm that this is true (Arnold, 1999).

6 Automation is the ability for one application to control another, using a special COM interface.

This is mechanism is used in scripting environments, such as Visual Basic. Automation-enabled

applications ('servers') running on a machine can register themselves with the operating system. A

client can look up the server it requires, access it using COM, and issue commands to it.

7 For example, when the WinZip file compression utility is installed on a Windows NT machine,

file and folder menus automatically have compression options added to them by WinZip.

Richard]. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\tav1999

Chapter 4 - Design and Implementation
135

4.6.5. Interface Event Acquisition: Shell Execution Handlers

In a similar fashion to context menu handlers, it is possible to install COM-based

handlers which are called to determine how to execute objects. The Win32 API

function ISh ell Ex e cut e ()' scans any installed handlers, passing control to them

one at a time, searching for one that can handle the file specified. This mechanism

would provide the information required by the file tracking support, but as direc­

tories are not 'executed' by the shell, the shortcut detector would not then func­

tion.

4.6.6. Interface Event Acquisition: Message Hooks

The preceding event acquisition methods have functioned at a reasonably high

level- that is, the information that would be provided by them (had they worked)

would have been instantly usable. This is obviously preferable - getting the full

name of a file that has been opened is the best option - but there are ways of ac­

cessing user interface event information at a lower level.

The Win32 API provides functions to insert what are termed 'hooks' into the sys­

tem's event handling chains. Two categories seemed relevant to the task in hand­

journal hooks and window message hooks. Journal hooks are at the higher level

of the two, processing input events in much the same way as a macro-recording

system. Applications can be informed of keystrokes and mouse-clicks, but it is

very difficult to relate these reliably to the visual object (window, icon) that they

will eventually affect.

Window message hooks operate at a lower level, allowing the messages that are to

be sent to a window to be intercepted. All visual' controls' in Windows - such as

pushbuttons, checkboxes and the like - are realised using child sub-windows, and

these window 'hierarchies' are recorded by the operating system. This informa­

tion could be used to allow an application to traverse the window hierarchy of an

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1a\" 1999

Chapter 4 - Design and Implementation 136

application (such as a shell window), to locate the subwindow that a mouse dou­

ble-click event would affect. However, this approach was rendered useless as

shell windows do not use explicit sub-windows for their contents, using freeform

graphics instead.

As well as event acquisition, a method was required to present a visual cue for the

file annotation support, so that files with annotations would be obvious - perhaps

using an overlaid miniature' sticky-note' icon. The next two sections examine

some methods that were evaluated, and the shortcomings that were identified.

4.6.7. Visual Cueing Techniques: IE4 Browser Control Hosting

The IE4 browser control, mentioned in conjunction with Automation in section

4.6.3, supports another access method. It is possible to create an application which

hosts Internet Explorer as a subwindow of the application - in essence, re-using

the facilities of IE4. IE4 exposes much of its functionality through a set of COM

interfaces (one of which is the event-notification interface that was examined ear­

lier in section 4.6.3). This was evaluated to test whether the window containing

the IE4 control could be used as a filesystem browser while at the same time

painting overlay graphics on it as required to indicate annotations. However, the

browser control does not expose any methods for accessing the icons presented

within the window, so this method was not appropriate.

4.6.8. Visual Cueing Techniques: Window Sub-Classing

Each window, in Windows, is a member of a window 'class'. Class members share

common attributes - some related to appearance, and some related to the way the

window processes events. Existing window classes can be subclassed to refine or

alter their behaviour. Tests were conducted to ascertain whether it was possible to

develop a subclass of that used in shell windows. This subclass could then be

supplied with a custom event handler to record information about the window to

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1ay 1999

Chapter 4 - Design and Implementation
137

be used later. A special class for shell windows is registered - which shows up as

being named 'SysList32', when a window 'spy' tool is used - but as it is not men­

tioned in the system's documentation or definition files, insufficient information

existed to use it.

4.6.9. Integration Problems: Conclusion

This brief survey of possible - yet unsatisfactory - methods of integrating applica­

tions with the existing Window NT shell illustrates that this is a task which is not

at all straightforward. This work - which spanned several months - was carried

out with the aid of an employee of Microsoft, whose help was invaluable in ruling

out these approaches. It would appear that there are very few people that possess

the necessary knowledge to implement a piece of software such as this (Arnold,

1999). It is difficult to speculate about the possible reasons for this, although some

thoughts on the subject are presented in Chapter 7.

Although not the desired outcome, for the purposes of this study the most profit­

able route to implementing the software is to develop a 'test harness' - a skeleton

application which implements a subset of the look, feel and functionality of the

Windows NT shell. The implementation of a production-quality piece of software

is not an objective of this study, but some means of evaluating the final product is

definitely required. The development of this test harness is therefore discussed in

the next section.

4.7. Test Harness Implementation

This section documents the development of a skeleton shell program, used to pro­

vide a 'live feed' of interaction event data to the agent framework developed al­

ready. Some technical background to the development is presented, followed by a

discussion of the software's capabilities, illustrated by examples of the features in

use.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
i\ 1.1 \. 1999

Chapter 4 - Design and Implementation 138

4.7.1. Background

The test application for this system was implemented as an application using the

MFC hierarchy. MFC is a class library which supports development of applica­

tions under Windows, and is a de facto standard used by a large number of devel­

opers across the world. The primary development language is C++, and many

features of the integrated development environment - Visual Studio - actively

support the MFC framework. The environment includes a tool called Class­

Wizard, which provides a high-level graphical interface to the syntactic structure

of a program. Programs can be browsed as collections of classes and methods -

rather than just a set of source-code files which eventually compile into a program.

The MFC class library encapsulates many of the underlying system objects present

in the Windows system, wrapping them with 00 construction, access methods

and such like. It also takes care of many of the tedious housekeeping functions

encountered in CUI development. CUI elements are designed using a visual edi­

tor, and can then be connected with underlying C++ member variables, automat­

ing a large part of dialog development. The MFC application framework handles

window messages, mapping them onto C++ member functions, removing the

need to interpret archaic message identifiers.

4.7.2. AIMS Application: General Information

There are two components to the final implemented system as a whole: the shell

windows and the application tool-bar. When invoked, the AIMS application dis­

plays a full-screen shell window with the normal Desktop icons on it (see Figure

4.10). These icons work in the same way as the normal desktop, accepting double­

clicks for selection, and right-button clicks to display standard context menus.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi5
May 1999

Chapter 4 - Design and Implementation

Figure 4.10. The AIMS application 's pseudo-desktop window.

/mAIMS Test Harness 13

[Status Messages

file Tracker ~earch Notes I ~ie'N Suggestions 1f"···· .. ·· · ·t~·i"C· · · ll
, ,

Figure 4.11. The AIMS application's pseudo-toolbar.

The AIMS application also displays a floating pseudo-toolbar (see Figure 4.11),

with push-buttons on it to invoke the following operations:

(i) View Suggestions: displays (when enabled by the system) a list of possible

shortcut suggestions;

139

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The i
1ay 1

Chapter 4 - Design and Implementation

(ii) File Tracking: displays a dialog which allows the user to view a filtered,

sorted log of their file accesses;

140

(iii) Search Notes: displays a dialog which allows the user to search any file anno­

tations currently stored in the system.

Each of these mechanisms is now discussed, with examples to show how they can

are used in practice.

4.7.3. Shortcut Suggestion

The objective for the shortcutting mechanism is to allow the system to convey its

suggestions for shortcuts to the user, for the user possibly to choose a sugges tion

with which they agree, and for the resulting shortcut to be created. As designed,

the system issues events (of type suggest-shortcut) when it has identified a com­

pound file and folder usage pattern which has been repeated within the preset in­

terval.

The solution chosen was to allow the user to display a 'shortcut suggestions' dia­

log, which contains a list in plain text of the suggestions made by the system, as

shown in Figure 4.12. The example shown in the figure suggests the creation of a

shortcut to the file "Experiment Report.doc" in the desktop folder.

Shortcut Suggestions t3

Current suggestions (double-click to choose one to accept):

8ccept.. . .Qecline... I

Figure 4.12. Suggestion for creating a shortcut to a file.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

klose

Ph.D. The i
Ma 1

Chapter 4 - Design and Implementation 1-11

The user can select a shortcut to be created by double-clicking on the list, is asked

whether they are sure (see Figure 4.13), and if so, the relevant operating system

routines are invoked to create a shortcut.

MicloShell 13

Make a shortcut to 'E :\WINNT\Profiles\user\Oesktop\Oocuments\U ser Assistance\E><periment Report. doc' in folder
'E :\WINNT\Profiles\user\Oesktop'?

~ "I~I ~~

Figure 4.13. Creating a shortcut to a file - confirmation.

4.7.4. File Tracking

The system maintains a list of files, their last access times and their total access

counts, as part of the CFileAccess object embedded in the user model (see section

4.4.11 and Figure 4.6). The user requires access to this information in a form which

they can interpret easily, depending upon the memory of the file that they have.

File Tracker f3

File List (double-click to open a file)---------------,

Investments. xis 5 times, last was 23/03/99 at 14:25:24)
•

MicroS hell. Ink [twice, last was 13/03/99 at 14: 17: 48)
: PC-05.doc [once, last was 15/03/99 at 15:15:38)
Personal. Ink [once, last was 13/03/99 at 14:17:52)
Smith P.doc [4 times, last was 23/03/99 at 14:25:33)

~----------------------------------.~
Figure 4.14. Using the file tracking dialog.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Files Last 0 pened ...

r Today

r Yesterday

r 2-5 days ago

(. Before that

Sort By ... ------;

r. Name

r Last accessed

r Most accessed

.Qpen File ...

1;lose

Ph.D. Th
M Y 1

Chapter 4 - Design and Implementation 142

The file tracking dialog allows the user to obtain a view of the files they have

opened in the past, sorted and filtered according to various criteria. The files are

filtered according to their last access time - whether they were last accessed today,

yesterday, between 2-5 days ago, or before that - so that not all files ever accessed

have to be scanned through by the user. The user can also choose to display this

file list sorted alphabetically by name, in order of last access from most recent, or

in descending order of total accesses from most accessed, as shown in Figure 4.14.

The user can double-click on any choice in the list, causing that file to be opened

with the appropriate application.

4.7.5. File Annotation

The file annotation feature allows textual notes to be applied to any icon object in

any of the shell's windows. Notes can be added or viewed using the Window NT

context menu, which then has the appropriate option added to it (if no annotation

exists, the user can choose to add one; if one exists, the user can choose to view it),

as shown in Figure 4.15.

Figure 4.16 shows the user in the process of entering a note - a note-style dialog

with a multi-line edit control (with a pale yellow background) is used. (The

ghosted 'Remove' button is enabled when viewing, rather than adding, a note to

allow the user to remove an annotation.)

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\ta\' 1999

Chapter 4 - Design and Implementation

Richard J. Keeble

Mew

.Erint

Quick View

~ICQ . Send to user ~

~Add to~ip

~Bdd to New Reference.zip

Send To ~

Cu!

bOP'y

Create ~hortcut

Qelete

Ploperties

Add Note .. .

Figure 4.15. File annotation options on a file 's context menu.

New Reference (note) 13
Add this to the J oumal Paper

Bemove I C::::g:~: : :::::l l bancel

Figure 4.16. Annotating a file using the note editor.

An Adaptive Environment for Personal Information Management

l ·B

Ph .D. Th
lay 1

Chapter 4 - Design and Implementation 1+1

The shell-style windows displayed by the AIMS application show the presence of

an object annotation by modifying the appearance of the object's icon. Users of the

Windows NT shell are familiar with the 'shortcut' overlay icon - a small arrow

that is superimposed on the bottom left-hand corner of an icon, signifying that the

icon represents a shortcut to the actual object. An object that has an attached an­

notation uses the same technique to indicate the fact, overlaying a small yellow

note icon over the bottom right-hand corner of the icon, as illustrated in Figure

4.17.

Iii Hardware I!lIiII3
file £. dit ~iew

tJ ~ tJ tJ
LP·01 LP·02 PC·01 PC·02

tJ tJ ~
PC·03 PC·04 PC·05

Figure 4.17. Annotated file icons in shell windows.

4.7.6. Annotation Searching

The file annotation feature in itself appears quite useful, but can be augmented

further. The 'Search Notes' button on the AIMS application toolbar allows the

user to search through the list of all the annotations entered, looking for a par­

ticular word or phrase. This is accomplished using the Note Search dialog, as

shown in Figure 4.18.

This dialog simply allows the user to enter a word or phrase in the dialog's search

field, then have the system look through all the file-annotation associations for any

that contain it. A list of the matching filenames, and the first few lines of the re­

lated note, are then displayed. A double-click on a given file causes that file to be

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Th
lay 1

Chapter 4 - Design and Implementation

opened using the relevant application, as if the user had double-clicked on the fi le

in a shell window.

Search notes 13

Word or phrase to find: I
Results:

I ~earch Now I Qpen File .. .

. - . -. .

Figure 4.18. Searching for annotated files.

4.8. Conclusions

klose

Using the informal abstract specification and design developed in Chapter 3, this

chapter has developed and implemented a concrete design which took account of

a particular application, platform, environment and operating system, and imple­

mented it as a working software application. This application forms the basis for

part of the evaluation work to be carried out in Chapter 5.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Th
1 vI

Chapter 5 - Evaluation and Critique

Chapter 5

Evaluation and Critique

5.1. Introduction

This chapter presents an evaluation of the work reported in the previous chapters.

The evaluation is carried out at several levels: the application implemented in

Chapter 4 is examined, by means of user trials and usability inspection; the im­

plementation is also examined in software engineering terms; the component­

based adaptive agent software architecture developed in Chapter 3 is evaluated, to

show its usefulness in arriving at the design for the implementation; and the archi­

tecture for Adaptive Interface Technology (AIT) (Benyon, 1993) adopted in Chap­

ter 2 - the theoretical framework underlying the study - is critically appraised.

The findings from these evaluations are then summarised, leading on to the dis­

cussion of future work in the next chapter.

The objective of this chapter is to critically evaluate the work carried out in this

study - to identify strengths and weaknesses of the final product of the research,

and the methods and theories used in its design and implementation. This will

lead to a set of general and specific issues arising from the research. These issues

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\tay 1999

Chapter 5 - Evaluation and Critique 1-+7

will be used to develop solutions for shortcomings in the product itself, and indi­

cate directions for future development of the processes and theories used.

The tangible product of the study - the software application, developed in Chap­

ter 4 - is evaluated firstly by means of a small-scale user trial, based on a co­

operative evaluation approach (Monk et al., 1993). This involves a small set of in­

dividuals performing a set of tasks using a prototype interface augmented with

the software developed. The trial will illustrate how the system performs some of

the routine, mechanistic elements of PIM tasks, allowing the individuals to focus

on higher-level issues. Usability heuristics are also used to examine the final sys­

tem by inspection on a more finely-grained level, to highlight opportunities for

improvement.

The system's final design and implementation are examined in technical terms, to

give some insight into the output of the design process. This will illustrate how

the design process was supported by the software architectures developed in

Chapters 3 and 4. Software engineering issues are considered, to show how the

development process may be improved to yield systems which are more elegant

and easier to design and implement.

The design architectures and frameworks used to develop the system are also

evaluated at a more theoretical level, by considering how they were used in the

development of the specification for the system's behaviour and functions. Ab­

stract frameworks obviously need to be reasonably application-neutral in their

formulation, and the evaluation reflects this by seeking to show what concrete in­

formation needed to be added to them, in this situation, in order to give useful de-

sign advice.

The chapter concludes by providing a summary of the important issues raised in

this set of evaluations to be used as the basis for discussion in the next chapter,

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
~tay 1999

Chapter 5 - Evaluation and Critique
l'+S

which will attempt to remedy problems noted in this work as a individual case,

and to develop the field as a whole in the future.

5.2. Evaluation Overview

This section begins by examining the objectives of the evaluation process as a

whole. It goes on to discuss a range of appropriate techniques that might be used

to evaluate the system, and justifies the choice of a small number that are to be ac­

tually used. This is driven by an understanding of the structure and topics cov­

ered within the dissertation up to this point, to ensure that the reasons for choos­

ing each evaluation technique are obvious.

Chapter Topics Discussed

2 Personal Information Management

Adaptivity

I
Interfaces

II
Models

I

Agency and Software Agents

3
Archi tectures

I
Reactivity

I

4 Realisation

Object-Oriented Design

Component-Based Development

Integration Implementation

Figure 5.1. Dissertation topic 'roadmap'.

Level of
Abstraction

Ll abstract

L2

L3

L4

concrete

Figure 5.1 gives an overview of the preceding chapters (2, 3 and 4) of the disserta­

tion, showing the nature of the issues addressed in each of them and how the

Richard]. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thl'~l~
~fay 1999

Chapter 5 - Evaluation and Critique
1-19

various topics explored relate to one another in terms of levels of abstraction, from

the abstract to the concrete. The figure also shows their general location within

the preceding chapters. The evaluation process will seek to critically appraise

each of these areas of work in order to arrive at a set of issues to be used as the

bases for the discussion and reflection in Chapters 6 and 7. With these topic areas

in mind, the evaluation process begins by stating the objectives of the evaluation,

which naturally lead on to a discussion of applicable techniques.

5.2.1. Evaluation Objectives

The evaluation, as a whole, has a number of underlying objectives. These are pre­

sented to give the background to the evaluation as it is essential that the reasons

for attempting any evaluation process are known ahead of time. The objectives for

this evaluation are as follows:

(i) to quantify the 'successfulness' of the interface: this aims to discover if the inter­

face is performing as expected, and to gauge the extent to which it supports

the individuals in performing their tasks;

(ii) to gauge the' effectiveness' of the concepts and metaphors used within the interface:

this should show whether the subjects have a good mental model of the sys­

tem and its features, and if they understand the mechanisms by which it is

supposed to support them;

(iii) to examine the theory used in the system's specification, architectural design and de­

velopment: the development of the system draws upon a body of adaptive in­

terface theory, which is appraised to find any shortcomings which might ad­

versely affect the development process;

(iv) to appraise the design of the system: in software engineering terms, to examine

how elegantly the system's form and structure were realised as system com­

ponents;

Richard]. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1av 1999

Chapter 5 - Evaluation and Critique
l~O

(v) to critique the final implementation of the system: this will give a view of the

software development undertaken during the system's realisation, to exam­

ine how easily implementation and integration was accomplished.

These five objectives lead on to the choice of evaluation techniques to be applied

to different parts of the work reported in this dissertation. They can be placed into

two categories: objectives (i) and (ii) above address the characteristics of the final

product of the work; whereas (iii), (iv) and (v) are concerned with the system's de­

velopment process. In terms of levels of abstraction, objectives (i) and (ii) apply

primarily to the highest abstraction level, Ll, from Figure 5.1. Objectives (iii), (iv)

and (v) then apply mainly to levels L2 to L4, respectively, although the mapping is

not precise (as is discussed in section 5.2.6).

Sections 5.2.2 to 5.2.5 follow the four levels Ll to L4, in discussing evaluation tech­

niques applicable to each of the levels of abstraction. Ll is essentially concerned

with the tangible product of the study, which is to be assessed in terms of usability

and usefulness. L2 addresses the theoretical basis used to arrive at the require­

ments for the user interface and the AIMS application. L3 refers to the architec­

tural and design techniques used to develop the system and L4 to the practical

process of realising the system in software. The following sections address each

level in turn.

5.2.2. II - Assessing the User Interface

There are a wide range of techniques that can be used to examine a user interface.

In this study, we are primarily concerned with testing the validity of the resulting

user interface from two different angles (essentially, objectives (i) and (ii) from sec­

tion 5.2.1). Firstly, we wish to examine it to see whether it is performing as ex­

pected in helping users in simple information management tasks. Secondly, we

wish to check whether useful metaphors and techniques have been used to present

the augmented elements of the interface to users. A discussion of a range of us-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~tay 1999

Chapter 5 - Evaluation and Critique 151

ability assessment methods will lead to a choice of suitable techniques to be used

in this stwiy.

Approaches to user interface evaluation can be placed into one of two categories:

those which involve users and those which do not. Table 5.1 gives a brief taxon­

omy of system and user-interface evaluation approaches. Cognitive walkthroughs

and heuristic evaluations use expert knowledge to examine a user interface with­

out direct user involvement - they are effectively types of inspection methods. In

contrast, the other three methods - usability testing, usability engineering and

controlled experiments - are empirical in nature, all requiring users to take part in

a study of some kind.

Evaluation Approach Description

Cognitive Walkthroughs A user interface is 'stepped through' methodically by ex-
perts, in a manner analogous to a program code walk-
through, to identify possible weaknesses in the interface.

Heuristic Evaluations with A user interface is inspected by experts who use a set of
Usability Guidelines broad guidelines to examine the interface for such things as

consistency, error prevention, flexibility and efficiency.

Usability Testing A reasonably general term for an approach which focuses
on the observation of users performing tasks, which can
inform subsequent redesign of the user interface.

Usability Engineering A more strict testing approach where metrics - usability
'measures' of some kind - are devised, and quantitative
usability goals are set and aimed for in test situations.

Controlled Experiments The use of formal scientific experiments involving control
groups, rigorous experimental design and subject selection,
usually aimed at specific, low-level usability goals.

Table 5.1. Approaches to user-interface evaluation (from Baecker et al., 1995, p. 82).

The approaches presented in Table 5.1 give a good sense of the spectrum of

evaluation methods. Each of the categories in Table 5.1 will have a set of different

sub-types - for example, there are a wide variety of methods which can be classi­

fied as 'usability testing'. At the same time, some of the methods - particularly

those classified under 'usability engineering' and 'controlled experiments' - can

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1a\' 1999

Chapter 5 - Evaluation and Critique 152

have quite daunting requirements. Extended periods of time can be necessary to

carry them out properly and they are resource-intensive, some needing laborato­

ries, office mock-ups and so on.

For this study, a 'discount' approach to usability testing (Nielsen, 1989) must from

necessity be followed, as the evaluation scope will need to be limited due to time

and resource constraints. 'Discount usability engineering' can be characterised as

a hybrid of empirical usability testing and heuristic evaluation, which gives a

good mix of evaluation covering both empirical user-based work and inspection­

based appraisal, and is therefore the approach adopted here.

The system to be evaluated in this study is basically a prototype, although a func­

tionalone. The evaluation should reveal problems with the usability of this proto­

type by examining how users interact with it and gathering information about

them. Some kind of interpretive approach - as opposed to the use of highly­

controlled experiments - would seem to be most appropriate, as the evaluation's

aims are not rigidly quantitative in nature. The users' opinions of how the system

presents itself, and any means by which it might be improved, form important

parts of the desired results.

A technique which can be deployed to good effect in a situation such as this is co­

operative evaluation (Monk et al., 1993). Co-operative evaluation aims to improve

a user interface (or its specification) by detecting the problems in a prototype or

partial simulation. This is accomplished by following an approach where the de­

signer of a user interface works with a small number (typically around four) of

representative subjects from the user population, so that a combination of their re­

spective viewpoints can be used to identify potential problems and their possible

solutions.

For the prototype system, an evaluation approach based on these ideas of co­

operative, interpretive research would be suitable. It offers good control over the

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t-.1a\" 1999

Chapter 5 - Evaluation and Critique
153

experiment, good support for the experimental subject, a reasonable tolerance for

the prototypical nature of the system, and can be sufficiently flexible to account for

individuals' attitudes to the system.

As mentioned above, 'discount' usability testing also has an inspection-based,

heuristic component to it. Inspection methods are useful in evaluating prototype

systems (Baecker et al., 1995), but there are some drawbacks that must be consid­

ered. Although a variety of several large sets of guidelines are available, such as

(Smith and Mosier, 1986; Brown, 1988; Mayhew, 1992), large sets of guidelines are

difficult to work with, and guidelines can be difficult to contextualise and apply

(Mosier and Smith, 1986). Heuristics tend to be more widely-applicable, less spe­

cific guides to desirable qualities of interfaces, so for the prototype a heuristic

evaluation approach would be more suitable.

Based on the discussion so far, the assessment of the user interface will employ

two suitable techniques. Firstly, usability testing with a co-operative evaluation

approach (Monk et al., 1993) will be done to observe users working with the sys­

tem and to record detailed data on their interactions with the system (in quantita­

tive terms) and ask users about their opinions about the system (in qualitative

terms). Secondly, a heuristic evaluation will be carried out (Nielsen, 1992; 1994) to

inspect the system, with a set of published usability guidelines in mind, to gauge

how well the system should aid individuals in performing simple information

management tasks.

5.2.3. l2 - Assessing the All Architecture

This evaluation element aims to critically appraise the theoretical framework upon

which the design of the system developed in the previous chapters was based.

This assessment aims to examine the specification process to show any benefits re­

alised for future designers of systems which have similar aims as this, to see how

the specification process was aided by the AIT architecture, and to illustrate areas

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
\1ay 1999

Chapter 5 - Evaluation and Critique

where additional guidance was necessary. A future aim is to develop design

guidelines based on the experience of this study, particularly based on the addi­

tional guidance required by this study.

1~

The AIT architecture (Benyon, 1993) adopted earlier in the thesis (see section 2.6)

provides a framework which can be used to design adaptive interfaces which are

meant for a wide variety of applications. For each specific application, the various

components of the architecture (the Domain Model, the User Model and so on)

provide 'templates' for elements of the system. Evaluation of the architecture will

appraise the process of 'fleshing out' the basic skeleton of the AIT architecture to

arrive at the design for the adaptive elements of the prototype system - how much

guidance the architecture provided, and where additional information would

have been useful.

5.2.4. L3 - Assessing the System Design

The third area of evaluation aims to critically appraise the design of the system

developed in the previous chapters from a software engineering viewpoint. The

system's design embodies elements of the AIT architecture. One focus of the

evaluation will be to assess how well the final implementation reflects the goals of

the AIT architecture by using reactive agent systems, when the architecture itself

makes few prescriptive suggestions for the active mechanisms which comprise

part of it.

The evaluation will also seek to discover if the overall design of the system was

elegant (in software engineering terms), and whether the software architecture

developed in Chapter 3 was useful in the detailed design process. The aim will be

to illustrate how some of the experience, knowledge and/ or architectural details

developed in this study can be re-used in the development of similar systems.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~t.1\· 1999

Chapter 5 - Evaluation and Critique 155

5.2.5. l4 - Assessing the System Implementation

The final evaluation element aims to critically appraise the implementation and

integration of the system developed in the previous chapters. The implementation

of the system is evaluated in software engineering terms, to provide an under­

standing of how the experience gained in this study may be generalised.

This will show how the use of a component-based approach has an impact on the

ease of development and potential re-use of the system, how well the system is in­

tegrated into its host environment, and how this can be improved in interfacing

terms, or eased in technical terms. We wish to find out if the resulting implemen­

tation is elegant, in software engineering terms, or if it reflects a disordered, ad hoc

design. Again, an overall aim is to show how some of the experience, knowledge

and/ or architectural details developed in this study be re-used in the develop­

ment of similar systems.

5.2.6. Evaluation Techniques and Dissertation Contents: A Mapping

Sections 5.2.2 to 5.2.5 described evaluation techniques broadly relevant to the four

levels of discussion (shown in Figure 5.1) presented within this dissertation.

However, there is not a direct mapping between the evaluation techniques and the

levels to which their results may be applicable - in fact, the evaluations presented

in the following sections relate to one or more of the topic areas identified above.

Table 5.2 shows how the different evaluation techniques apply to the elements of

the topic roadmap. This describes how results from the different evaluation tech­

niques relate to the different topic areas shown in Figure 5.1, and also demon­

strates that the evaluations presented in this chapter completely cover the work

reported in this dissertation thus far.

The next five sections provide detailed discussions of the evaluation process,

showing how the principles identified earlier were applied to the system de\'el-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
~ta\" 1999

Chapter 5 - Evaluation and Critique 156

oped, and the theory used in its development. The evaluations are split into two

sets - evaluations Al and A2 focus on the usability of the prototype system,

whereas evaluations BI to B3 address the theoretical frameworks used, the design

process followed, and realisation of the system, respectively. These complemen­

tary evaluation approaches are used to give a fuller picture of the system than

would be obtained using just one or two analytical perspectives.

Evaluation Technique Applies to Topic Areas (from Figure 5.1)

AI: Co-operative Usability Evaluation Ll: Personal Information Management;
L2: Adaptivity (Interfaces).

A2: Heuristic Usability Inspection Ll: Personal Information Management;
L2: Adaptivity (Interfaces and Models).

Bl: Theoretical Evaluation L2: Adaptivity (Models);
L3: Agency and Agents (Architectures and
Reactivity).

B2: Design Evaluation L3: Agency and Agents (Architectures);
L4: Object-Oriented Design;
L4: Component-Based Development.

B3: Implementation Evaluation L4: Component-Based Development;
L4: Integration;
L4: Implementation.

Table 5.2. Evaluation techniques and relevant roadmap topic areas drawn from Figure 5.1.

5.3. Evaluation A 1 - Co-operative User Trials

This evaluation will observe individuals using the software to perform some sim­

ple PIM tasks, using a co-operative evaluation approach. The experiments seek to

show how users can exploit the features of the software to help with these tasks.

This evaluation does not seek to examine how individuals manage their personal

information - to address this is well outside the scope of this study, and a stance

on this issue has been taken and justified earlier in the dissertation (see sections

2.2,3.3 and 3.4). Instead, we seek to establish whether the tools provided by the

software are perceived as useful, and can be easily taken advantage of, by indi­

viduals familiar with the existing Windows NT graphical shell system.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\tay 19y9

Chapter 5 - Evaluation and Critique 157

The experiments are quite short in nature, and may therefore appear somewhat

contrived. This is because they are meant to exercise as many of the features of the

software as possible, while keeping the time necessary to perform the experiments

within reasonable limits. A more prolonged study could provide in-depth results

that might be more representative of actual work patterns, but this would intro­

duce more variables into the experiment. This would make the focus of the

evaluation less tight and more open to interpretation, where it would be prefer­

able to restrict the scope.

5.3.1. Aims of the Experiment

Any evaluation process should be conducted with a particular set of aims in order

to be useful and valid. The aims of this experiment are pragmatic and seek to es­

tablish the usefulness of the developed system. The experiment:

(i) aims to examine how well the software is perceived and thought about by

the subjects;

(ii) aims to examine how well the software supports the set of tasks identified in

sections 3.3.1 to 3.3.4;

(iii) aims to examine how well the subjects can use the software as developed.

These three aims are, from the highest to lowest levels of abstraction, meant to

show the suitability of the software, its interface, and the underlying principles

used to design and develop it.

5.3.2. Experimental Method

A number of subjects were selected, all of whom had been exposed to the Win­

dows NT operating system and its user interface. The subjects were all members

of the University research staff and research student cohort, and had differing lev-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thc.;i.;
t\lay 1999

Chapter 5 - Evaluation and Critique 158

els of'experience with the Windows NT graphical shell- some used other com­

puting systems almost exclusively whereas others spent the majority of their time

working with Windows NT. Details of the subjects are given in Table 5.3.

Subject Description of Subject

1 Year 2 Ph.D. student with extensive experience of Windows NT

2 Recent Ph.D. with extensive experience of Windows NT but also uses the X
Window System under Unix

3 Year 1 Ph.D. student with extensive experience of Windows NT

4 Year 1 Ph.D. student with moderate experience of Windows NT

5 Year 1 Ph.D. student with moderate experience of Windows NT but almost
exclusively uses the X Window System under Unix

6 Year 3 Ph.D. student with moderate experience of Windows NT but mostly
uses the X Window System under Unix

7 Recent Ph.D. with extensive experience of Windows NT

8 Year 2 Ph.D. student with moderate experience of Windows NT

Table 5.3. Descriptions of experimental subjects.

The subjects were asked to perform a small set of document-based information re­

trieval and manipulation tasks (shown in Appendix A.I), using the prototype

software to select and locate the files to be worked on. The tasks were to be ac­

complished in a specific order, as this would obviously have an impact on how the

software responds to the access sequences observed.

Each of the tasks was meant to be accomplished using at least one feature of the

software, and this was indicated to the subject through suitable guidance next to

the description of the task to be performed. The subjects were told about the fea­

tures of the software, but were not be given a direct demonstration of them - al­

though they were be able to converse with the experimenter as they worked. The

subjects were asked to pose any questions they wished, and to think out loud

about the given tasks if they wished to do so. The experiments were carried out at

the times and location types shown in Table 5.4 under supervision by the experi­

menter, who recorded (in note form) any points the subjects raised as they

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~1a\" 1999

Chapter 5 - Evaluation and Critique

worked. (A proforma for the observation notes is also presented in Appendix

A.2).

Subject of Date and Time of Location Type
Experiment Experiment

1 16/03/99 16:34 -16:45 Closed-plan office

2 18/03/99 14:37 -14:45 Closed-plan office

3 18/03/99 14:57 -15:07 Closed-plan office

4 18/03/99 15:30 -15:39 Closed-plan office

5 19/03/99 17:16 - 17:26 Closed-plan office

6 23/03/99 16:43 -16:51 Closed-plan office

7 26/03/99 14:09 -14:17 Closed-plan office

8 26/03/99 14:30 -14:42 Closed-plan office

Table 5.4. Experiment times and location types.

Following the performance of the tasks, a short debriefing was carried out using a

semi-structured interview. The experimenter asked a small set of questions de­

signed to test how the subjects approached the tasks - having been given details of

the software - and to test how they thought these features could (or should be)

applied (see Appendix A.3 for details of the debriefing questions). This aimed to

find out whether the subject appreciated how the features of the software could

help them, how useful the subject found the software generally, and any opinions

about possible improvements they might have had.

5.3.3. Results and Treatment

There were three distinct sets of results from the experiment, documented in Table

5.5. The event log and the observer notes were essentially two different views of

the same thing, so the observer notes were useful in 'fleshing out' the basic event

log information. This had the advantage that the observer was less concerned

with noting the exact events taking place, since the software was doing this any­

way, so that more attention could be paid to the subject's questions and thoughts.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesb
\ 1.1\ 1999

Chapter 5 - Evaluation and Critique 160

Result Set Nature and Means of Acquisition

Observer notes Information about the subject's actions, questions and thoughts,
(see Appendix B) recorded by the experimenter, as the subject progressed through

the tasks.

Event log information A timestamped 'journal' of user-interface events. The software
automatically recorded the file-access actions performed by the
subjects, for later perusal.

Debriefing notes The subjects' opinions about the usefulness and applicability of
(see Appendix C) the software, including any possible improvements suggested,

acquired using a short structured interview after the completion
of the tasks.

Table 5.5. Results from the co-operative evaluation.

The first two sets of results are used as the basis for a straightforward quantitative

analysis of whether the features of the software were used as intended in the

original design. The final set of results - the results of the debriefing interviews­

is clearly less tightly-controlled in nature than the previous two, and is used for a

qualitative review of the software's design and implementation.

Taken together the quantitative sets of results should illustrate whether or not the

software is performing as intended, in supporting the simple tasks identified ear­

lier in Chapter 3 (sections 3.3.1 to 3.3.4). The qualitative results should be useful in

identifying issues not foreseen at the experimental design stage.

5.3.4. Possible Conclusions

The areas in which conclusions were to be drawn as a result of this experiment

were threefold, and are presented in Table 5.6 in tandem with the questions that

the results of each might be helpful in answering. All the questions presented in

Table 5.6 should ideally be answered positively if the system's design and imple­

mentation accurately reflects the needs of the users, based on the stance taken on

PIM in this dissertation. Any deviation from this should prove useful in later

work, as it will highlight issues which need to be subject to further consideration

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\tay 1999

Chapter 5 - Evaluation and Critique 161

with respect to the presentation of the interface or the principles used in its speci­

fication and development.

Level Questions

Conceptual Does the system correspond to the users' ideas of how it might be used?
Can they reason about the workings of the system and how it applies to
the context within which it is to be used? Do the users feel that it adds
value to the working environment?

Practical Does the system provide adequate support for the sample PIM tasks pre-
viously identified? Do the users exploit the features of the system, or do
they ignore them? Are the sample tasks made easier or less monotonous
than they might otherwise be?

Usability Does the system provide an obvious and logical interface to the PIM task
support? Do the users feel in control of the system, or do they mistrust it?
How might the appearance and function of the system be improved?

Table 5.6. Areas of interest in the co-operative evaluation.

5.3.5. Execution and Results

The experiment was carried out over a period of several days, when a sample of

subjects were asked to carry out a set of simple tasks involving file manipulation

and location, and were then asked a small number of debriefing questions de­

signed to find out how they perceived the usefulness and applicability of the soft-

ware.

The experiment was conducted in two parts. Firstly, a pilot study was undertaken

using a single subject in order to uncover faults in the presentation of the interface

and the instructions for the subject. The results of this were used to perform a

small amount of re-development (which mostly consisted of adding 'Open' but­

tons to any dialogs which originally only used double-clicking to select items from

lists). The main sample, consisting in this case of seven individuals, then carried

out the experiments using the updated interface and instructions.

Table 5.7 shows basic statistical data about the utilisation of the prototype system's

different features. This information was gained both from the observation notes

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. n\('~is
May 1999

Chapter 5 - Evaluation and Critique 162

taken as the activities were being performed and from the machine-readable log

files generated by the software. The statistics show that 90% of the activities were

completed successfully by the subjects without explicit guidance from the investi­

gator.

Feature and Activity Description Usage

Shortcut Creation: Two repeated accesses to the same file, which should lead to 7'-°' J ,0

the system suggesting a shortcut which could then be taken up by the user.

File Tracking: Two uses of the file tracking system to locate and open files which 100%
were supposedly edited by the user several days ago.

Note Viewing: A single use of a visible note overlay icon to indicate that a file has 88%
had a note attached to it, leading to the viewing of the associated note.

Note Searching: A single use of the note search mechanism to locate and open a 100%
file which had a note attached, containing a particular word of interest.

Average 90%

Table 5.7. Statistical usage data for the prototype system's features.

Most of the confusion arose over the descriptions of the activities to be performed

by the subjects. A common problem was that the difference between a document

and the note attached to it was not made sufficiently clear in the instructions. For

example, the activities included one where the subject needed to look in a folder

for a file with a note attached, open the note (for later use) then open the file itself

and add some information to it. This was misconstrued by a number of the sub­

jects, leading to some confusion. Some used the document itself instead of the

note, some re-used the note overlay icon to find the information.

Another common problem was that, while the shortcut suggestion dialog could

present a list of options, in the experiment it would only ever display a single sug­

gestion. The re-designed dialog meant that the subjects could either double-click

on a suggestion to accept it, or they could single-click to highlight it and then click

an 'Accept' button to accept it. Most users commented that it would have been

preferable to automatically highlight a singleton in the list.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\1ay 1999

Chapter 5 - Evaluation and Critique 163

In qualitative terms, the opinions of the subjects were consistent on some points,

and more varied on others. All reported that they had no problems in seeing 'the

idea' behind the system (that is, to use information about their activities to try to

make the interaction more efficient), and several actually volunteered the opinion

that it was attempting to make their 'virtual desktop' more like their actual one.

All the subjects also said that that they could appreciate how the system would

complement their abilities, in thinking about the specific mechanisms provided by

it.

Most of the subjects (75%) asserted that, if the actual Windows NT shell contained

some of the features present in the prototype, they would use them. Some subjects

displayed enthusiasm for one or two of the mechanisms provided, but were not

interested in others - one subject said they would definitely use the file tracking

support, but would not use any of the other mechanisms. This is perhaps attribut­

able to individual styles of desktop use, and use of computers in general.

None of the subjects attempted any form of anthropomorphisation of the interface

based on their experience with it - although the interface makes no attempt to por­

tray itself as a character of any sort. The subjects were not asked to think of the

system as an assistant in its own right, and did not try to do so based on the fea­

tures provided by it. This would seem to support the choice of the 'keep it simple'

stance taken during this study.

5.3.6. Conclusions

Based on the results discussed above, the features provided by the system seem to

appeal to users, who would then have few problems in using them alongside ex­

isting features of the Windows NT graphical shell. The overall impression gained

from the user trials was that users appreciated the features provided by the sys­

tem, and could see how they would use them. In terms of PIM system design the­

ory, the findings from this study are limited, as this was not the real focus of the

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 5 - Evaluation and Critique 164

experiment. However, it did tend to reaffirm the fact that different individuals

can go about the same task in a wide variety of different ways, even for the simple

activities used in the trial.

5.4. Evaluation A2 - Usability Inspection

This evaluation element concentrated on a literature-based inspection of the sys­

tem, which aimed to arrive at a set of observations based on published usability

guidelines. This provided a complementary evaluation of the system (as com­

pared with the empirical evaluation reported in sections 5.3 to 5.3.6), allowing a

more rounded view to be gained. The overall objective was to give a full impres­

sion of the system, from both a designer's and a user's viewpoint, which might not

be possible with a purely empirical approach. The output from this portion of the

evaluation should, ideally, have reflected the findings of the empirical work - re­

flecting their complementary nature.

5.4.1. Evaluation Aims

The specific aims of this portion of the evaluation were as follows:

(i) to highlight usability issues within the interface;

(ii) to show where elements of the interface are particularly useful;

(iii) to provide a guide towards the overall usefulness of the software, as far as

possible, in its current form.

These aims, whilst at quite a high level of abstraction, illustrate that the guidelines

to be used should provide quite broad advice, which can be refined to the specific

needs of this evaluation. The next section deals with this issue in depth.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 5 - Evaluation and Critique 165

5.4.2. Choice of Guidelines

As well as establishing aims for this evaluation, the guidelines to be followed

during the inspection are important. Generally, guidelines tend to be quite vague

and consequently difficult to apply directly (Mosier and Smith, 1986) (although

detailed guidelines can be too specific to be applicable in a given situation). Also,

when applying guidelines in an inspection or critique, the context within which

they are interpreted is also important - a guideline applied out of context will

probably not provide useful results.

However, this fact has not deterred the HeI community from developing and

publishing large sets of interfacing guidelines. There is a variety of sets of guide­

lines, each of which typically contain large numbers of guidelines for the interface

designer to contend with, such as (Smith and Mosier, 1986; Brown, 1988; Mayhew,

1992). There will obviously be difficulty in applying large numbers of guidelines

to an interface - problems in selecting a reasonable sample, problems in identify­

ing the context in which each should be applied, and so on - so some kind of dis­

tillation of the ideas behind guidelines would be preferable.

Usability heuristics are designed to answer this need. They are typically arrived at

by analysis of the application of design guidelines to system developments, noting

which types of guidelines are applicable in which area of the system, and the effect

they have. The usability heuristics to be used in this assessment are taken from

(Nielsen, 1994) and are reproduced as Table 5.8.

The heuristics reproduced as Table 5.8 illustrate that most of the heuristics can be

directly applied to almost any interfacing system. In addition, they provide con­

crete advice to the designer and inspector of a user interface, as well as guidelines

for improving any interface that has shortcomings with respect to the heuristics.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\la\" 1999

Chapter 5 - Evaluation and Critique 166

System Area Description of Heuristic

Visibility of sys- The system should always keep users informed about what is going
tern status on, through appropriate feedback within reasonable time.

Match between The system should "speak the user's language", with words,
system and the phrases and concepts familiar to the user, rather than system-
real world oriented terms. Follow real-world conventions, making information

appear in a natural and logical order.

User control and Users often choose system functions by mistake and will need a
freedom clearly marked "emergency exit" to leave the unwanted state with-

out having to go through an extended dialogue. Support undo and
re-do.

Consistency and Users should not have to wonder whether different words, situa-
standards tions or actions mean the same thing. Follow platform conventions.

Error prevention Even better than the provision of good error messages is a careful
design which prevents a problem from occurring in the first place.

Recognition rather Make objects, actions and options visible. The user should not have
than recall to remember information from one part of the dialogue to another.

Instructions for use of the system should be visible or easily retriev-
able whenever appropriate.

Flexibility and ef- Accelerators - unseen by the novice user - may often speed up the
ficiency of use interaction for the expert user such that the system can cater for

both inexperienced and experienced users. Allow users to tailor
frequent actions.

Aesthetic and Dialogues should not contain information which is irrelevant or
minimalist design rarely needed. Every extra unit of information in a dialogue com-

petes with the relevant units of information and diminishes their
relative visibility.

Help users recog- Error messages should be expressed in plain language (no codes),
nise, diagnose and precisely indicate the problem, and constructively suggest a solu-
recover from er- tion.
rors

Help and docu- Even though it is better if the system can be used without docu-
mentation mentation, it may be necessary to provide help and documentation.

Any such information should be easy to search, focused on the
user's task, list concrete steps to be carried out, and not be too large.

Table 5.8. Ten guidelines for heuristic evaluation (from Nielsen (1994) p. 30).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~lay 1999

Chapter 5 - Evaluation and Critique 167

5.4.3. Guideline-Based Inspection

This inspection will use the ten heuristics presented above in Table 5.8 to examine

the system, appraising its features in the light of each. For each of the heuristics

there may be several elements of the system which are relevant, or there may only

be a general sense in which the heuristic can be applied. In either case, the nature

of the heuristics themselves imply that useful guidance will be forthcoming as the

result.

Visibility of system status: The system uses visual indicators to show the presence

or absence of file annotations, and also makes use of messages and cues to show

when a shortcut suggestion has been made. In a sense, this heuristic (taken to­

gether with the next two) encapsulates the goal of any graphical shell application­

that the underlying operating system should be presented to the user in a form

they can easily relate to and think about.

Match between system and the real world: The 'sticky-note' metaphor is familiar to

many people, providing a 'ready-made' idea of how the system works. At a trivial

level, the note-entry dialog visually reflects a yellow note, reinforcing this impres­

sion. The text messages presented by the system (in terms of shortcut suggestions,

and file-tracking descriptions) also use plain English.

User control and freedom: The shallow flexibility of a shell application - the provi­

sion of a consistent graphical representation of a possibly heterogeneous under­

lying environment - in conjunction with the prototypical nature of the system,

means that this heuristic tends to be satisfied (at a trivial level) by default. The

system's use of modeless dialogs (ones that do not suspend an application until

they are dismissed) for the annotation support means that, if they so desired, users

could transfer notes between objects or other applications - perhaps an example of

not arbitrarily imposing a specific way of doing something. The requirement to

offer an 'escape route', in allowing users to undo actions and re-do them if neces-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
t\lav 1999

Chapter 5 - Evaluation and Critique
168

sary was not supported by the prototype - however, if full integration had been

possible, the existing shell system would have supported undo and re-do anyway.

Consistency and standards: The system uses right-button menus ('context menus')

for note attachment, which is consistent with the Windows NT approach. Context

menus are generally available for any non-button object in the system - as a rule,

the Windows NT consistency guideline is that if a graphical object responds to a

left double-click operation to invoke some action (an icon, double-clicked to run,

for example), a single right-click should show a menu with valid choices for that

item.

Error prevention: This heuristic is applicable primarily to the process of file annota­

tion entry, editing and deletion. The dialogs are designed to only offer sensible

operations - that is, one can only 'update' a note if any changes have been made,

for example - and simple questions are always asked before any annotation is de­

leted.

Recognition rather than recall: Although the system does not really have multi-stage

dialogues as such, graphical cues (such as the presence of a note on a file) can help

in recalling which file is needed. For example, the ability to show all annotated

files (by entering an empty search string) can allow the user to find a file if all they

remember is simply that it did have a note on it. In addition, the file-tracking

support allows users to view a list of their recently-used files, allowing them to

recognise the file desired, rather than having to remember it exactly.

Flexibility and efficiency of use: This heuristic would appear to be aimed more at the

'application' type of user interface, and has limited applicability in this situation.

The dialogs used by the application do support keyboard accelerators, but the

shell is a primarily graphical environment with only a limited amount of text en­

try. Having said that, the short-cut suggestion system will allow a user to cumula-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 5 - Evaluation and Critique 169

tively tailor their environment by accepting the system's suggestions from time to

time.

Aesthetic and minimalist design: The dialogs used by the system are extremely sim­

ple, with a small set of options which have rigidly-defined effects. They are highly

cohesive in nature - that is, each dialog is for one task only, with no other ele­

ments which can clutter the display and increase the load on the user. The graphi­

cal indicators used to signal that an object has an annotation are similarly tmobtru­

sive, yet aesthetically pleasing.

Help users recognise, diagnose and recover from errors: The messages produced by the

prototype system are all in plain English and contain no error codes. In fact, there

are no error-style messages (apart from, perhaps, the 'search term(s) not found'

message which appears in the Note Search dialog if a search term is not found).

Help and documentation: As the system developed was primarily an addition to an

existing system, if users understand the original system they will have little trou­

ble in exploiting the additional features provided by the prototype. Proper inte­

gration with the current NT shell would necessitate the addition of documentation

to the shell's 'help' files - appropriate tools exist for this purpose, so this would

pose no problem from a technical viewpoint.

5.4.4. Conclusions

Each of the ten system areas addressed by the heuristics presented in Table 5.8 has

relevance for the prototype system. For the purposes of this discussion, the areas

which concentrate on the visible portions of the system - and the ways in which it

can be used - are the most important, particularly from the user's point of view.

The heuristics addressing these areas - specifically, those concerned with how the

additional features provided by the prototype are presented to the user and can be

integrated within their knowledge of the existing system - are satisfied to a great

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 5 - Evaluation and Critique
170

degree. Areas which are not well supported are mainly due to the nature of the

prototype, in that it does not fit the notion of a monolithic application, which is the

traditional target of most usability testing.

To conclude, the system's use of graphical indicators and dialogs allow the user to

see much of the system's state at a glance. The system conforms to the conven­

tions expected by seasoned users of the environment within which it functions.

The representations and metaphors used by the system match the user's real

world, making it easier to think and reason about. The interaction mechanisms

implemented within the system are as simple as possible. The system therefore

seems to satisfy many of the criteria which constitute the heuristics used for this

inspection.

5.5. Evaluation B1 - The AIT Architecture

The specification and design of the prototype system was largely influenced by an

existing theoretical architecture for the development of adaptive interfaces. (See

section 2.6 for the introduction and discussion of the AlT architecture, and section

3.7 for its application in the design of the system). This section examines the AlT

architecture, both as a whole and in terms of its component parts, to show where it

was particularly useful in specifying the system, and where guidance was lacking

for this application.

One of the benefits of using an existing architecture for specifying and designing a

system is that is should provide concrete advice for the developer. The architec­

ture, as presented (Benyon, 1993), is reasonably abstract in nature, which is to be

expected as it is meant for use in a wide range of applications. Although quite ab­

stract, the architecture is mainly prescriptive in nature, providing a ready-made

breakdown of the different parts of an adaptive system, and advice on how to

conceptualise the system as a whole.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
May 1999

Chapter 5 - Evaluation and Critique
1;"1

5.5.1. Evaluation Aims

The overall aims of this section of the evaluation are as follows:

(i) to examine the AIT architecture as a theoretical tool for the specification and

design of adaptive interface systems;

(ii) to highlight areas where additional information is required in the specific

application area of PIM;

(iii) to identify more general, future work in adaptive interfacing.

The issues arising from this evaluation will then be used in the formulation of

suggestions for improvements that could be made to the AIT architecture and ad­

ditional design guidance for adaptive systems in general.

5.5.2. The AIT Architecture - An Appraisal

The power of the AIT architecture comes mainly from its simplicity - the fact that

is provides an almost 'cook-book' approach to the specification and design of an

adaptive system. When approaching the design of a system that could benefit

from adaptive behaviour (or any novel technology, for that matter), there is a

great temptation to focus purely on the deployment of 'adaptivity' for its own

sake, without paying due regard to ensuring a sound theoretical basis upon which

to found the system design. The AIT architecture provides a structured, accessible

'template' for the specification of an adaptive system - a set of pigeonholes which

each have a contribution to the system as a whole, but could be individually for­

gotten.

The different components of the AIT architecture each reflect a facet of the overall

system's behaviour. The Domain Model is used in an abstract fashion to provide a

scope for the possible adaptive behaviour of the system, and to give a kind of 'dic­

tionary' of the concepts and terminology usable by the system. The User Model,

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
Mav 1999

Chapter 5 - Evaluation and Critique 172

with its different levels of information about the user - psychological and cogni­

tive data where appropriate, profile data and a learning-based 'student' model- is

used as a template for a store of information about individual users. The Interac­

tion Knowledge Base contains a history of the user's interactions with the system,

and sets of mechanisms for arriving at, effecting and evaluating any changes made

by the system - realised, in this application, by a set of simple software agents.

In short, the AIT architecture gives a good starting point for the specification and

design of an adaptive system. It can be used purely in a prescriptive manner, as it

provides ample guidance as to the components of an adaptive system and the in­

formation required by each of them. However, each application will be different­

the specific area, the required adaptive behaviour, and so on - and the PIM appli­

cation is no different. There will always be situations where good judgement is

required, as in many design techniques - without forethought and planning, al­

most any method can be rendered ineffective.

As it stands, the architecture also provides little guidance as to the exact nature of

the 'active' components of the Interaction Knowledge Base (those used in adapting

the system's interface). These can be implemented in a wide variety of ways, us­

ing technologies ranging from simple active rules up to far more sophisticated

techniques such as those generally classed as 'artificially intelligent'. Although

perhaps a matter of common sense, a good match must be made between the

needs of the system's users, in terms of the adaptivity necessary to support them,

and the technology deployed to effect the required adaptivity. In this application,

the adaptivity required was provided by relatively simple agent-based inferencing

mechanisms using reactive techniques, which appeared to give a good match

based on the results of the empirical study.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 5 - Evaluation and Critique 173

5.5.3. Conclusions

The preceding discussion has demonstrated the utility of the AIT architecture as a

means for the specification and development of adaptive systems in general, and

in particular of the prototype system developed in this study. The straightforward

nature of the architecture and the consequent ease of application results in a useful

theoretical framework. Although quite open in nature, relying to a degree on

good judgement on the part of the designer, effective results can be achieved using

it. The fact that the architecture does not prescribe specific implementation tech­

niques for the active elements of the system has also allowed the prototype to

demonstrate the usefulness of the reactive agent paradigm in the implementation

of an adaptive interface - making a good match between the simple, concrete na­

ture of the tasks supported and the adaptivity supplied.

One element of the AIT architecture which was not used in this application is the

psychological level of user data in the User Model. Typically, this contains cogni­

tive data about the user - such measures as spatial ability, for example. The dis­

cussion of the nature of PIM as a whole (see sections 2.2 to 2.2.5) highlighted that a

large part of PIM tends to be based on commonsense reasoning, especially con­

cerned with information management practices. This would imply that there

might be scope for supporting more complex PIM activities, in terms of abstract

cognitive processes.

5.6. Evaluation 82 - Design Process

Having used the AIT architecture as the basis for the specification of the system's

adaptive behaviour, the next task was to develop a design for the system. This

was done by following an object-oriented (00) approach, using the components of

the AIT architecture as a basis for the system's internals, and an interface-based

development technique to reflect both the internal and external communication

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
~ta\' 1999

Chapter 5 - Evaluation and Critique
174

needs of the system. This evaluation will assess the design process to show 'shere

these techniques proved useful and where additional support could have been

taken advantage of.

5.6.1. Aims

The aims of this portion of the evaluation process are closely related to some of the

key goals of software engineering in general (Coad and Yourdon, 1991; Booch,

1994; Sommerville, 1996; Pressman, 1997). In these terms, a design is good if it ex­

hibits desirable characteristics such as: evidence of the effective use of the

strengths of the 00 approach; that the separate elements of the system are cohe­

sive in nature; that the system is as free of coupling as possible; and that the sys­

tem is maintainable - well structured and commented, with good use of develop­

ment language and library features to aid understandability; and that elements of

the system are re-usable as far as possible.

The objectives of this element of the evaluation are therefore as follows:

(i) To illustrate how the 00 paradigm of software development helped in the

design process;

(ii) To provide an understanding of how the application of an interface-based

development paradigm can result in an elegant system which can provide

opportunities for subsequent re-use;

(iii) To show how the design process was aided (or otherwise) by using the ele­

ments of the AIT architecture as a template for the set of objects in the system

design.

The issues arising from this evaluation will then be used to inform any re-design

activities necessary, and to provide an insight into the practical implications of de­

veloping software to be integrated into component-based environments.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
Mav 1999

Chapter 5 - Evaluation and Critique

5.6.2. Evaluation

The decision to use an 00 approach for the design of the system was not a diffi­

cult one - casting the internal structure of a system as a set of objects, each with a

set of methods, is quite natural to do, and is a widely-used technique (Norman,

1996). The AIT architecture, as discussed earlier, is presented in the form of a

structured framework, which provides a natural template for a set of objects with

which to implement it. From a practical perspective, the environment within

which the system was to be implemented (Le., Windows NT using the MFC appli­

cation framework, which is supplied as a set of C++ object classes) would alone

have justified an 00 approach.

The goal of implementing the system as one that would be integrated into an ex­

isting environment had a definite impact on the design techniques that were used.

A stated goal of the design process was that, as far as possible, implementation

and platform-specific issues should be deferred within the design process as long

as it was practical to do so. The result of that goal is that the abstract design for

the system (see section 4.4) is almost entirely free from system dependencies, and

could be implemented as a standalone component under any operating system

which shared the currency of files and folders.

This is largely due to the use of an interface-based development process, where

the usual 00 principles of encapsulation are applied, but also where the object it­

self is totally opaque - other objects, even within the same system, simply have a

reference to an interface of an object or component - a kind of 'contract', specifying

available methods and their functionality. Interfaces were used to define the rela­

tionship between the system's internals and the external portions of the final im­

plementation environment, while at the same time reducing interdependencies

between them.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Ma\' 1999

Chapter 5 - Evaluation and Critique 176

Interface-based development does have some drawbacks - mainly that the design

of objects which could be used as components in their own right can be compli­

cated rather by the need to have complete, cohesive interfaces. The positive aspect

of this is that a component, once designed and implemented, can be re-used at a

binary level without any further intervention, offering considerable opportunity

for systems that can be tailored by end users.

5.6.3. Conclusions

This element of the evaluation has illustrated the complementary usefulness of the

00 software development approach and the interface-based development tech­

niques that rely upon it. The AIT architecture provided a good starting point for

an 'initial cut' of the system's structure and functionality, which was then devel­

oped further. The application of a component-based approach provides benefits

for the design of systems which are primarily to be integrated within existing en­

vironments, but can introduce conflicts between strictly 00 principles and the

practical requirements of components.

As ever, the experience of the designer is paramount in the design of easily­

integrable components. As a by-product of the component-based development

process, the prototype system described in this dissertation could be implemented

as a COM component in its own right, using, as sub-components, the set of agents

which provide the system's adaptive behaviour. This would then permit the sys­

tem to be tailored by end users to the point where they could specify and imple­

ment their own agents to be integrated into the environment.

5.7. Evaluation 83 - Implementation

The prototype system was originally designed to be implementable as a set of ex­

tensions to the existing Windows NT shell- due to a range of technical factors

(documented in sections 4.6.2 to 4.6.9) this was not directly possible. Howe\'er, the

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~i5
\tav 1999

Chapter 5 - Evaluation and Critique
177

system's prototype implementation was realised as a skeleton application sharing

many characteristics with the NT shell, and this evaluation examines the common

ground between them, with particular reference to the component-based de,"el­

opment processes used. Also discussed are the application frameworks and soft­

ware development tools used, to give an insight into the technical and practical

issues encountered in the development of contemporary interactive, graphical ap­

plications such as the output of this study.

5.7.1. Aims

The objectives of this element of the evaluation are as follows:

(i) To reflect upon the process followed in implementing the software, and the

nature of the resulting working prototype system;

(ii) To examine the 'integration' of the system with the Windows NT shell and

operating system and to appraise the current state of component-based soft­

ware development and the opportunities and pitfalls associated with it;

(iii) To highlight technical issues in the development and implementation of

graphical systems using the Windows system and the MFC application

framework and to report on the effectiveness and usability of the tools used

in the development of the prototype.

The results of the evaluation will be used to offer suggestions for the likely future

development of open shell applications and to provide an insight into the current

technical barriers to such developments. The strengths and weaknesses of con­

temporary development environments in supporting the development of these

applications will also be discussed.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. ThL'~is
\1ay 1999

Chapter 5 - Evaluation and Critique 178

5.7.2. Evaluation

The design of the system, having been undertaken using the proven technique of

00 design, and the emerging approach of interface-based development, reflects

many of the desirable properties of a software system. The core of the system is

largely platform independent, using a set of interfaces to communicate between

itself and the external environment. With minimal effort, a COM-compliant im­

plementation of the system would make these interfaces explicitly available to the

outside world, allowing radical tailorability of the system's adaptive behaviour.

The (technical) failure to properly integrate the system as a part of the Windows

NT shell can be seen as a side-effect of the relative infancy of component-based

software development as applied to interactive systems. The techniques used to

develop software have progressed from purely imperative programming systems,

through 00 languages and environments, toward interface-based component­

based approaches. As these changes have occurred, the systems available have

expressed these changes in such technologies as Microsoft's OLE, allowing objects

of one type to be embedded within objects of another. Some (Brockshmidt, 1995)

postulate that the next 'revolution' in computing will be based entirely around the

document, and 'the application' - as it is currently known - will cease to be the fo­

cus of software development as far as the end-user is concerned.

The development environment used in this project (Visual C++, and the MFC ap­

plication framework) provides a variety of tools and support for the development

of graphical applications. MFC follows an 00 development model, which is

complemented by the tools available - visual interface design tools, and structured

browsing support, allowing the developer to explore the structure of a project in

terms of its classes and methods, rather than files of source code.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\ tay 1999

Chapter 5 - Evaluation and Critique
179

5.7.3. Conclusions

The implementation process has suggested that the architectures and designs used

in the specification and development of the system have had beneficial effects on

the final implementation process. The prescriptive nature of the AIT architecture

provided a sound basis for the 00 structural design of the system, and the com­

ponent-based development approach enabled the communication possible be­

tween individual parts of the system to be rigidly specified. These structured ap­

proaches aided the compartmentalisation of the system's overall functionality,

helping the decomposition, refinement and final implementation processes.

The choice of implementation environment was perhaps a mixed blessing - the

tools and infrastructure provided by the Windows NT platform were helpful, yet

the integration process (as originally envisaged) proved virtually impossible. Al­

though the Windows NT shell does provide support for 'shell extensions', it only

allows the shell to be extended in very particular ways, which did not accord with

the needs of the prototype system.

5.8. Synthesis of Evaluation Results

This section will use the structure of the dissertation topic roadmap (introduced as

Figure 5.1) to retrace the issues raised during the five component evaluations (AI,

A2, Bl, B2, B3). Each issue may have been raised by one or more of the evaluation

techniques used, and each may apply to one or more of the four levels identified

in Figure 5.1. The discussion will follow this four-level structure in order to relate

the issues raised by each evaluation back to the relevant parts of the dissertation

and, indirectly, to the literature to which the issue refers.

The output of this synthesis process will be twofold: a set of outstanding (mainly

technical) issues which can be addressed by means of re-design work in Chapter 6;

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~la\' 1999

Chapter 5 - Evaluation and Critique 180

and a set of more philosophical issues which will form the basis of the disserta­

tion's contribution, which will be discussed in Chapter 7.

5.8.1. Issues/Abstraction/Evaluation Matrix

Table 5.9 summarises the output of the different evaluation approaches followed

in this chapter. This table presents an overview of the issues raised during this

study, characterising them in terms of the level to which they apply, and the

evaluation technique from which they resulted. A brief description of the issue is

given, and the subsequent columns show at which level of abstraction the issue

applies (these levels relate back to the original topic roadmap, Figure 5.1), and by

which of the evaluation technique(s) the issue was originally highlighted. Where

issues apply at more than one level of abstraction, or were encountered in more

than one evaluation technique, a large 'X' denotes the more significant level or

technique.

Table 5.9 shows that the evaluation work done as part of this study has resulted in

a wide range of issues being raised, which cover the different levels of abstraction

- and hence, the whole body of theoretical and practical work - present in the dis­

sertation. Given the range of topics covered in this dissertation, this would seem

to vindicate the choice of evaluation approaches. The table also shows that there

is a reasonable correlation between the levels of abstraction of the issues, and the

evaluation technique(s) used to demonstrate them.

The following sub-sections address each of the levels of abstraction in turn, dis­

cussing the issues relevant to that level. Some issues apply to more than one level

- these are discussed in detail at the higher level, and are mainly referred back to

when dealing with the lower levels of abstraction, with appropriate explanation.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~tav 1999

Chapter 5 - Evaluation and Critique 181

Abstraction Level Evaluation Technique

Issue Brief Description of Issue LI L2 L3 L4 Al A2 Bl B2 B3

1 Opporhmities for providing support X X x
for 'integration'.

2 Applying' appropriate information X X x
provision' principle to a filesystem.

3 Provision of more complex delega- X x X
tion raises problems of trust.

4 Support for tailorability and per- X x x X
sonalisation within the interface.

5 Opporhmities for more complex re- X X X x
organisation tasks.

6 Representation of agent' characters' x X x X
as explicit interface elements.

7 Shortage of design guidance for X x X X
adaptive systems developers.

8 Modelling and behavioural specifi- X X X X

cation using ArT architecture.

9 Definition of criteria for user file re- X X X x
arrangement based on content.

10 Use of agents as a partitioning de- X x X

vice for adaptive behaviours.

11 Tailorability of adaptive elements of x X X x
the system as binary components.

12 Infrastructure required to augment x X X

ArT architecture in design.

13 Differences between 00 designs x X X

and implementation reality.

14 File annotation could be widened to X X x

use COM/ OLE embedding.

15 Using ArT as a specification tem- X X

plate gives a non-optimal design.

16 Tool requirements for packag- X X

ing/ distributing components.

17 Inelegant use of local files to store X X

dialogue record information.

18 Difficulties in acquiring event in- X X

formation restrict adaptive systems.

Table 5.9. Issues, abstraction level and evaluation technique matrix.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
t\ la\" 1999

Chapter 5 - Evaluation and Critique 182

5.8.2. L 1 - PIM and Interfacing: Principles and Theory

The discussion at this level is aimed mainly at assessing the validity of the work

done in this study, in terms of the needs of the users of the software. While the

focus in this work was not to develop theories concerned with the way that people

manage their personal information using computers, this study has given some

insights into the usefulness of software meant to support them in doing so. This

section addresses some of wider issues concerning the nature of PIM and the im­

pact it has on user-interface systems meant to support it, showing how the proto­

type system developed as part of this study satisfies some of them.

Based on a stance taken at the beginning of the study - that a profitable route

would be to provide PIM systems which exhibit simple adaptivity - the relevant

evaluations sought to establish that software based on this premise is useful. On

the whole, this assumption has been borne out, particularly by the results of the

user trials, which were promising (see sections 5.3.5 and 5.3.6). As comments from

the usability evaluations show, the use of agency as an enabling technology - as

transparently as possible, to avoid unduly loading users of the system - seems to

be a good approach in the context of this study. The use of adaptivity - in an ob­

vious manner, ensuring that the user maintains a sense of control- also appears to

provide a good approach to the provision of PIM systems.

In Chapters 2 and 3 (see sections 2.2.1 and 3.3), some simple task elements were

identified within PIM as a whole, and it was shown that these provided scope for

automated support. In particular, the activities of storage and retrieval underly

almost any information management system. The prototype system allows users

to perform these task elements by providing most of the standard shell's function­

ality in a transparent manner.

As well as storing and retrieving information, PIM systems should also to be able

to support the individual in organising their information, aiding the storage and

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 5 - Evaluation and Critique
183

retrieval process in order to ease the recall of documents. The adaptive element of

the system observes the user's file manipulations and offers suggestions accord­

ingly, as well as providing a historical record of the set of files used. The usability

evaluations showed that individuals were able to use the support provided by the

system to aid location and organisation of their files, and that these ideas were

easily thought about by the individuals involved. However, the trials and the

heuristic evaluations did raise some issues of interest.

As mentioned earlier in Chapter 2 (see section 2.2.1), a desirable characteristic of

more sophisticated PIM systems is integration (in the sense of combining disparate

forms and modalities of information to exploit relationships between them). As it

is currently implemented, the system offers little scope for this - the prototype is

not well integrated (in the implementation sense) within the final operating envi­

ronment, so the scope for the integration of the information used internally by it is

limited (issue 1). This is demonstrated by the usability inspection, as well as (im­

plicitly) in the design assessment. However, this appears to be the result of the

stance taken in the study that simpler, more controllable systems are preferable­

to address integration more fully would have required a different approach.

Similar comments apply to the characteristic of 'appropriate information provi­

sion' (see section 2.2.5) - although this would imply some kind of information­

filtering application (for example, a system which can automatically redirect or

dispose of e-mails based on a combination of subject and content), it can be ap­

plied to a file-based storage system (issue 2). In a sense, as a user works with the

system over a period of time, it will attempt to optimise the selection of files by

offering shortcuts to those which appear to be badly placed with respect to their

patterns of usage, as demonstrated by the usability trials - this might be argued to

be the provision of the appropriate information.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~lay 1999

Chapter 5 - Evaluation and Critique lS-i

In using the prototype system, the user is effectively delegating part of the task of

'being organised' when using a computer-based storage system. Admittedly, the

'delegation' which happens in this system is very simple in nature - although this

simplicity does mean that it is much easier to relate the actions of the system to the

actions of the user, as mentioned in the usability inspection. If agency is applied

to more complex tasks, issues of trust soon become something of a problem (issue

3). For example, instead of providing shortcuts to frequently-used files, the sys­

tem could attempt to optimise the user's file store by archiving and deleting files

which are not used - this would require the user to be able to trust the system

much more than when purely non-destructive adaptivity was used (Milewski and

Lewis, 1997).

The tailorability of the system is reasonably limited due to its nature as a proto­

type - the existing Windows NT shell provides some customisation facilities in

terms of user preferences, but true 'tailorability' (in the sense of deferred design) is

not present - this was highlighted by the usability inspection (issue 4). The proto­

type does provide support for personalisation, mainly in terms of the file annota­

tion feature. Individuals each have their own set of notes - this could be useful in

recalling the locations of shared files, where each user would have access to the

same underlying file system, but would have a personal 'view' of it.

As demonstrated by the usability tests, and to a lesser degree by the inspection,

the re-organisation attempted by this system is quite basic in nature, and it might

therefore be possible to provide more comprehensive support (issue 5). While the

existing system provides support for organisation of files based purely on usage

patterns, an issue to be addressed is the provision of alternative ways of accom­

plishing this.

The usability inspection also demonstrates that the prototype system does not

make any attempt to actively portray itself 'as an agent' - i.e., no cartoon charac-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 5 - Evaluation and Critique 185

ters or other anthropomorphic representations are employed (issue 6). From a

technical viewpoint, it is possible to make 'agents' more explicit in appearance­

an example being the Office Assistants provided by Microsoft, implemented using

the Microsoft Agent API (Microsoft, 1997). In reality, however, these animated

'characters' are only used as a graphical front-end for a context-sensitive help sys­

tem and a documentation search tool. The use of explicit agent characters is a dif­

ficult issue in user interfacing, as it is important to provide the user with an accu­

rate expectation of the level of 'intelligence' possessed by these characters (Nor­

man,1994). As the prototype system does not attempt to be intelligent - merely to

offer sensible suggestions in a timely manner - this issue is largely one for future

consideration.

5.8.3. L2 - Adaptivity and Adaptive Interfaces: Frameworks

This section begins to address some of the more technical aspects of the develop­

ment undertaken in this study, addressing issues concerning the use and applica­

tion of the AIT architecture in the development of the system, refining and aug­

menting the components and models as necessary. This level of abstraction is

largely concerned with the theoretical architectures used in the specification of the

software as a system with an adaptive user interface.

In Chapters 2 and 3 (see sections 2.4 and 3.5), a conceptualisation, specification and

design approach based on adaptivity in user interfacing was proposed, and this

section examines that approach used in development of the system and its inter­

face - in particular, the use of adaptivity - and the use of agents within a frame­

work for adaptive interfaces. The AIT architecture effectively provides a template

for the specification and design of adaptive systems, based on a set of models.

This 'template' gives the designer of an adaptive system an analytical framework

which can be used to deconstruct the interconnected details concerned with a

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\L1V 1999

Chapter 5 - Evaluation and Critique 186

given problem, yielding a design for a set of models and mechanisms which, when

implemented, will realise the adaptive behaviour desired of the system.

Essentially, the AIT architecture is applied to partition the problem into manage­

able components. However, this process is reasonably subjective in nature (as is

the case with many design tools). To implement the generic AIT architecture for a

specific case requires additional knowledge about the application. In addition to

the modelling input needed to 'flesh out' the template of the AIT architecture, the

addition of a set of simple reactive agents brings its own requirements. The area

of adaptivity and adaptive interfaces shares some aspects of a selection of the is­

sues noted in conjunction with the principles and theory of PIM, such as the provi­

sion of more complex delegation and the trust required by it, the opportunities for

more complex re-organisation tasks, and problems concerning the representation

of adaptive agent' characters' as explicit interface elements.

The evaluation of the AIT architecture showed that there is a shortage of design

guidance for developers of adaptive systems, as they tend to be quite niche­

oriented. This is not necessarily a bad thing, as specific focused solutions to par­

ticular problems can be more effective than wide-ranging, shallow systems. Hav­

ing said this, there is a need for the ability to generalise experience gained from

point solutions (issue 7). A related point is that the modelling approach taken in

this study was to use the AIT architecture as a template for the possible informa­

tion that might be required, and then to partition this into the separate models (is­

sue 8). More guidance as to how to perform this modelling and partitioning

would therefore be useful.

In the previous section, opportunities were identified for providing more compre­

hensive support - for example, automatically arranging a user's files could be ac­

complished in alternative ways. A process such as this obviously requires a set of

criteria for doing so - instead of usage patterns, a content-based approach could be

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The::>is
\1ay 1999

Chapter 5 - Evaluation and Critique
187'

followed, for example (issue 9). Various techniques exist for inferring user inter­

ests from document contents - for example, much work has been done on this in

the arena of Web page recommendation (Crabtree et ai., 1999).

5.8.4. l3 - Agency and Software Agents: Architectures

This section addresses the ideas behind agency itself, as well as the more technical

details concerning the technology used to implement the agents in this study. The

use of agency was driven by the idea of indirect management, provided through

adaptive systems. The concept of software agents was appropriate since an adap­

tive system may be conceptualised as a user interface which contains a set of

agents, where each agent may be responsible for a portion of the system's adap­

tive behaviour as a whole.

The choice of a particular agent technology was made in Chapter 2 (see section

2.9), where reactive software agents were recommended based on the fit between

the qualities of reactive agents and the requirements of software meant to inte­

grate within a user interface. The use of reactive agents in an event-driven envi­

ronment such as the system developed illustrates that the reactive agent paradigm

fits well with the real-time needs of a user interface.

As was the case in the previous section, an overlap exists between this area and

the previous one, primarily in the shortage of design guidance for adaptive sys­

tems developers which applies equally well to those developing agent-based sys­

tems. Additionally, modelling and behavioural partitioning using the AIT archi­

tecture has an impact. Partitioning the total adaptive behaviour required of the

system into component parts for implementation as a set of agents can be difficult

- some guidance would be useful here (issue 10). In the case of this system, the

adaptivity required was quite simple, and the approach taken was to decompose

the behaviour required into a set of levels and implement an agent for each. It is

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\1ay 1999

Chapter 5 - Evaluation and Critique

not obvious how more complex adaptivity would be handled, as the approach

taken here might not prove to be scaleable.

188

On a more practical note, the design evaluation highlighted the possibility for the

provision of tailor ability of the adaptive (and possibly passive) elements of the

system (issue 11). This could be achieved using a binary component model, which

would then permit the swapping of components to perform different tasks. This is

somewhat related to the fact that the active mechanisms of the AlT architecture

(inference, adaption and evaluation mechanisms), once implemented as a set of

agents, also required infrastructure in terms of event acquisition, distribution and

feedback (issue 12). Both issues could be addressed by using a software infrastruc­

ture which treated the agents (and possibly other elements of the system) as

opaque components.

The AlT architecture is cast in terms of a set of models augmented, in this situa­

tion, by a set of agents. With such a set of readily identifiable objects, a design

process based on the 00 paradigm recommended itself. However, many 00 de­

sign paradigms have roots in system-based design methods, where specification

and design often takes place in something of a 'vacuum' - for example, objects are

largely assumed to run in parallel, whereas in a final system implementation, they

might have to execute sequentially (depending upon the target platform). This

mismatch was alleviated to a greater degree in this project due to the use of com­

ponent-based development to formalise the intercommunication needs of objects,

and using method calls to reflect event occurrences (issue 13).

S.B.S. L4 - Realisation of the Prototype System: Design and Implementation

This section discusses the final design and implementation stages of the study,

where a combination of 00 and component-based design approaches were used

to partition the system into implementable parts. The process of integrating the

software into the target platform's operating environment is also addressed. This

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\lay 1999

Chapter 5 - Evaluation and Critique 189

section contains technical details about shortcomings uncovered in the evaluations

which could largely be addressed by re-design work. Some outstanding issues

from the previous section which also apply here concern the tailorability of adap­

tive elements of the system as binary components, the infrastructure required to

augment the AIT architecture in design, and the differences between 00 designs

and implementation reality.

As mentioned, an 00 paradigm suited the implementation of the AIT architec­

ture. The use of a component-based development process - where all communica­

tion between objects occurs via interfaces - further aided the partitioning of the

system into implementable elements. The use of a component-based approach

had other benefits - since inter-object communication is characterised in terms of

rigidly-specified interfaces (sets of methods) with each objects' internal detail en­

tirely hidden, integrating the system with an existing environment would have

been eased from a technical viewpoint.

In addition, the use of a binary component standard such as COM (Box, 1998a)

allows a level of tailor ability to be provided, with minimum re-development ef­

fort. This is because components are typically cast as interchangeable binary enti­

ties, so alternative sets of adaptive elements (Le., components containing the reac­

tive agents used in the system), could be provided and re-configured by the end-

user.

As regards the final integration process, the adaptive elements of this system were

to be integrated with an existing non-adaptive graphical shell interface, because

they were meant to subtly enhance the interaction, rather than be the centre of at­

tention. This integration process posed substantial problems, due to a variety of

technical and design issues. These were covered in detail in Chapter 4 (see section

4.6), but are largely the result of only partial adoption, by system providers, of the

principles underlying open document-centric computing.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\Ia\' 1999

Chapter 5 - Evaluation and Critique
190

The design and implementation evaluations showed that while the file annotation

feature currently works purely within the shell system, the metaphor could be ex­

tended to work across applications (issue 14). This could be implemented under

Windows NT using a combination of the COM infrastructure and the OLE object

embedding mechanism to provide embedded notes within compound documents.

In addition, while the AIT architecture provided a good starting point for the de­

sign of the system, the information needs of the different components of the re­

sulting system meant that some of the system's design was not as elegant as possi­

ble (issue 15). This was due to such factors as the detailed intercommunication re­

quirements between the agents within the system and the dialogue record and

user models, which tended to clash with the 00 design ideal of encapsulation.

There is a requirement for the use of an automated tool for packaging the adaptive

components of the system and for distributing them (issue 16). This would pro­

mote integration and tailorability - the system could be constructed as a compo­

nent in its own right, containing interchangeable adaptive elements, realised as

components. The prototype system was implemented using an hand-coded emu­

lation of COM, which would not provide the ability to package, distribute and re­

configure elements of the system. However, a COM-compliant implementation

would be feasible, particularly given the support provided by Microsoft's ATL

(Active Template Library) which supplies classes which hide component imple­

mentation issues and can be used to develop COM components directly from ex­

isting objects.

The use of flat files to store information about the dialogue record, note data and

file access logs is inelegant, and makes sharing this information difficult, where

features exist within Windows NT - notably the Registry, a centralised database of

application information - which can be used to good effect in this situation (issue

17).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\tav 1999

Chapter 5 - Evaluation and Critique
191

In platform-independent terms, the adaptive elements of this system were inte­

grated with an existing non-adaptive graphical shell interface, because they were

meant to subtly enhance the interaction, rather than be the centre of attention.

This integration process posed substantial problems, reported in section 4.6, owing

to several factors. Most importantly, differing platforms have different means of

accessing information about user actions. The specific nature of the information

required by this system means that it can be difficult to gain access to it (issue 18).

An aim of the design work was to make the resulting system as independent of

architecture, platform and operating system as possible, yet the impact of the spe­

cific nature of interaction event acquisition on the development was considerable.

5.9. Key Re-Design Issues

This section summarises the issues discussed already which will be directly ad­

dressed as part of this study, to lead to a re-working either of the system's design

or the theory used in its development. These issues will then form the basis for

the re-design work presented in Chapter 6.

5.9.1. Issues for System Re-Design

The issues described here are primarily technical in nature, arising from levels 3

and 4 of the evaluation, and illustrate opportunities to take greater advantage of

the technological support present in the target operating system environment.

Windows NT provides 'roving profiles' (so that a user's personal profile data can

'follow' them around a networked installation). The current system uses local files

to store profile data, which precludes this, and also makes it difficult for other ap­

plications to share the data. The operating system's support for the Registry will

therefore be exploited to enhance the mechanisms used for profile data storage.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Ma\' 1999

Chapter 5 - Evaluation and Critique
192

The evaluation highlighted the opportunity to allow the object-annotation meta­

phor to be extended by providing a system whereby note objects can be directh'

inserted into compound documents (e.g., word processor documents). The linking

and embedding technology present in Windows NT will therefore be utilised to

develop an OLE server which can allow note objects to be handled in this way.

Finally, the evaluation suggested that the provision of tailorability using explicit

binary components would be desirable. The COM component infrastructure pro­

vides the ability to dynamically reconfigure systems using 'plug-and-play' binary

components, and this technique could be used to open up the system, allowing

end-users to tailor the adaptive behaviour of the system.

5.9.2. Issues for Theoretical Reworking

The issues described here are primarily theoretical in nature, arising from levels 2

and 3 of the evaluation, and illustrate opportunities to take greater advantage of

theory and technological support present in the wider context of adaptive and re­

active systems design and implementation.

The evaluation suggested that the system's design based on the AIT architecture

was non-optimal in terms of implementation complexity and inter-object commu­

nications requirements. This re-working will seek to address the problems uncov­

ered in implementing the AIT architecture directly in terms of objects using a

component-based approach.

The evaluation also suggested that a more rigorous approach to the specification

and design of the behaviours of reactive software agents would be desirable. The

ad-hoc approach taken to the decomposition of the system's desired adaptive be­

haviour will therefore be formalised to yield design guidance for future develop­

ers of adaptive systems in the form of a level-based behavioural partitioning tech-

nlque.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\1.1\ 1999

Chapter 5 - Evaluation and Critique
193

The problems encountered at integrating the prototype system into an existing

user interface environment suggest that this issue needs to be looked at. Although

perhaps an implementation issue, within a wider context, the feasibility of a gen­

eral event information notification mechanism will be examined. This will seek to

show how platform-independent event acquisition might be accomplished, based

on existing methods used by current operating systems.

5.10. Key Issues for Further Discussion

This section summarises some issues which are either beyond the scope of this

project, or serve to illustrate useful avenues for future research. These issues will

then drive the discussion in Chapter 7 which aims to show clearly the contribution

made by this study.

The evaluations have uncovered some interesting points about how rIM activities

relate to adaptivity in user interfaces and how these can be examined in terms of

the concept of agency, which will lead to a discussion of the relationship between

PIM, adaptivity and agency. Additionally, the support for rIM provided by the

prototype is reasonably basic, but there is certainly scope to support more com­

plex task elements such as integration.

Addressing wider issues, there is a question concerning the role 'intelligence' has

to play in controllable, predictable, trustworthy user interface systems. Allied

with this is the users' perceptions of adaptive interfaces - adaptive systems change

over time, but many users may be apprehensive of an interface which promises to

do so. There are also opportunities for the application of the concept of agency in

related areas. The concept of agency is quite simple and attractive, but this is no

guarantee that it would be applicable to any given area.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. TheSIS
\lav 1994

Chapter 5 - Evaluation and Critique

5.11. Conclusion

This chapter reported the results of five separate evaluations of aspects of the

work presented in the first four chapters of this dissertation. Two usability

evaluations were carried out, one based around a live user trial, and one based on

a usability inspection driven by published guidelines. The framework and theory

used to design the system was critically examined, as was the prototype's design,

and the system's final implementation.

These different viewpoints give a picture of the system's strengths and weak­

nesses, from practical and philosophical perspectives. The results of these assess­

ments were summarised as a list of key issues which are carried forward into the

next chapter. This will address some of the more tractable problems identified in

order to provide possible solutions for a re-design of the work presented. The

more wide-ranging philosophical issues identified will be deferred until Chapter

7, where they will be used (in conjunction with the other issues highlighted) as the

basis for a discussion of the contribution made by this study and to frame future

work.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The"j"
\tay 1 yY9

Chapter 6 - Re-Design Work
19:;

Chapter 6

Re-Design Work

6.1. Introduction

This chapter presents some practical solutions and theoretical approaches to ad­

dress problems uncovered during this study, based on the issues discussed at the

end Chapter 5. This study raises issues at various levels - from the technical de­

tails of implementing open interface systems using interface-based software com­

ponents, up to philosophical and intellectual issues concerning the inclusion of in­

telligence in interfaces and the impact this has on usability.

This chapter considers the practical aspects of the issues raised in this study, by

presenting re-design work which addresses problems identified by the evaluations

in Chapter 5. The re-design activity occurs at two levels. Firstly, at a practical

level, some elements of the system are augmented by exploiting additional fea­

tures of the target platform used in the implementation of the software. Secondly,

at a more abstract level, some suggestions are put forward for ways to improve

the theoretical tools available to help with building adaptive systems in general.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thl'~i~
\Ia\' 1999

Chapter 6 - Re-Design Work
196

The more philosophical issues raised in Chapter 6 are deferred until Chapter 7,

where they are examined in context of the work done in this study, as well as the

wider context of the state of the art. This will aid distillation of the key issues

raised in order to state the contribution made by this dissertation more precisely.

The next two sections introduce the issues to be dealt with and provide some of

the background to them, in preparation for the detailed discussion of the re-design

work which follows.

6.1.1. System Re-Design - Areas to be Addressed

This portion of the re-design work is primarily based on some of the practical

shortcomings found, and the associated opportunities for improvement of the

software itself. The result of this work will be a re-designed system which takes

more advantage of the technological possibilities provided by the target platform

and is therefore better integrated within it. The re-design activities are concerned

with three aspects of the system, using platform-native support to re-implement

elements of the current prototype: storage of personal user profiles; embedding

and manipulation of notes; and providing scope for end-user tailoring of the adap­

tive elements of the system.

The current system uses plain local files to store profile data. Although this is the

simplest and quickest route to take when designing and implementing a prototype

system, it is not the preferable solution, for several reasons. The files' formats and

locations are known only by the application, making the sharing of the informa­

tion held within them difficult and hazard-prone. In addition, the user's profile

data is held in a static location, so it would not be able to travel with them.

Windows NT provides a system database called the 'Registry', which is a struc­

tured repository of information concerning many aspects of the operating system.

Specifically of interest for this system, it maintains secure per-user profile areas

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thl'~lS
\1a\' 1999

Chapter 6 - Re-Design Work 197

which can hold application-defined information about individual users. The Reg­

istry also supports 'roving profiles', so that a user's personal profile data can 'fol­

low' them around a networked installation without any intervention by the user

or the application. Support for these facilities will be incorporated into the proto­

type system to remedy the shortcomings mentioned in the previous paragraph.

Another area for improvement partially revolves around the component-based

approach taken during the design and development of the software, and partially

refers back to tailor ability, one of the desirable attributes of PIM user interfaces

discussed in section 2.2. Although the prototype system was not directly imple­

mented as explicit components, it did follow rules of interface-based design and

implementation, thereby reducing coupling between modules of the system so

that a component-based implementation would be possible.

Windows NT uses the COM (Component Object Model) component infrastructure

for many application programming interfaces (in fact, COM underlies the OLE

mechanism to be used in developing the note objects discussed earlier in this sec­

tion). To be COM-compliant, a component needs to implement certain standard

interfaces, and to respond to method calls on those interfaces in standard ways.

The exact specifications are not important here (they will be discussed in the rele­

vant section), however, these standard interface protocols are implemented in the

Active Template Library (ATL) supplied by Microsoft.

Once implemented as components, the mechanisms provided by COM promote

the ability to dynamically reconfigure systems using 'plug-and-play' binary com­

ponents - that is, systems can be reconfigured under software control with no

need to recompile or re-link them. By defining appropriate standard interfaces

(essentially, a superset of those already defined within the prototype), and a small

amount of administrative information (for example, a Registry-stored list of avail-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\lay 1999

Chapter 6 - Re-Design Work
198

able agent components), this could be used to open up the system, allowing end­

users to tailor the adaptive behaviour of the system.

The final area for improvement involves the icon-annotation support provided by

the prototype, which proved quite popular with the test subjects, but which had

some problems. Firstly, this was a new idea to those who had previously only

used Windows NT, as no equivalent mechanism exists in the operating system,

resulting in a few subjects confusing the document and the annotation to it. Sec­

ondly, from a practical viewpoint, the requirement for the system to be able to

display its own overlay icons on the shell windows (to indicate the presence of a

note) was one of the reasons why it proved to be impossible to directly integrate

the prototype system with the Windows NT shell.

A possible solution to this might be to use a slightly different metaphor for anno­

tating objects - one which revolves around the notion of a 'compound document'.

This term refers (in the world of Microsoft) to a document which can contain ob­

jects of different types. Word documents are referred to as compound documents

as they can contain objects such as pictures, charts and so on. If a note were to be

one of the types of objects which could be inserted in such a compound document,

this would provide an alternative mechanism.

Windows NT does support a mechanism which can be used to provide this sort of

functionality. OLE (originally standing for Object Linking and Embedding, and

based on COM) has evolved into a de-facto standard for the encapsulation of ob­

jects within compound documents, and the in-place editing of embedded objects.

The OLE mechanism will be used to extend the object-annotation metaphor by

providing a system whereby note objects can be directly inserted into compound

documents, analogous to sticking a note on the page of a document.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi:-;
\1ay 1999

Chapter 6 - Re-Design Work
199

6.1.2. Theoretical Reworking - Areas to be Addressed

The issues dealt with in this section do not result directly in re-implementation of

the system but are instead concerned with providing some guidance for future de­

signers and implementors of adaptive systems such as this one. There are three

areas of concern arising out of the design, implementation and evaluation work,

each of which will be briefly introduced before being examined in detail: using the

AIT architecture in a component-based design; the feasibility and requirements of

a generic architecture for acquiring user-interaction events; and the process of de­

composing adaptive behaviour into mechanisms suitable for direct implementa­

tion as reactive agents.

The process of implementing a system directly based on the AIT architecture

raised some issues, particularly concerning the sometimes slightly conflicting re­

quirements of object-oriented design and the component-based approach versus

the need for an elegant design. This re-working will seek to address the problems

uncovered in implementing the AIT architecture directly in terms of objects.

The AIT architecture is presented as an aggregate object, comprising a set of mod­

els and a dynamic knowledge base. The active elements of this knowledge base

are essentially deemed to have access to all the models' data - however, in this de­

sign, the interface-based approach required that the active elements access this in­

formation through interfaces. The final implementation of the architecture

showed that while the component-based approach eliminated data coupling, the

penalty paid for this purity was a more involved communications structure be­

tween the components of the system. Having said this, a useful by-product of the

approach was the ability to dynamically configure a component-based system, as

discussed in the previous section.

Connected with an examination of the handling of the AIT architecture is a re­

examination of the way in which the reactive agents' behaviours were arri\'ed at

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\Iay 1999

Chapter 6 - Re-Design Work
200

for this prototype. This will examine the nature of reactive agents and attempt to

formalise a process of levelled behavioural partitioning, based on the somewhat

ad-hoc approach taken to the decomposition of the prototype system's desired

adaptive behaviour. The aim will be for this work to yield some re-usable design

guidance for future developers of adaptive systems which use reactive software

agents.

The final element in the re-working addresses one of the main contributing factors

to the technical failure to integrate the prototype into the existing Windows NT

shell- namely, the lack of any supported mechanism to get direct access to infor­

mation about user interactions. This is a requirement that would be shared by any

other system that sought to assist users in the same way as this one - i.e., by moni­

toring user actions and attempting to use the information to good effect. This re­

working will seek to examine how feasible it would be to define a generic user

event notification mechanism. Existing methods used by current operating sys­

tems and other relevant technologies will be examined to see how platform­

independent event acquisition might be accomplished.

The following sections now address the issues raised in section 6.1.1 which lead to

some practical re-design work, discussed below.

6.2. Re-Design 1: Using the Registry

The Windows NT operating system provides a system-wide centralised database

for storing named application-specific information, known as the Registry. This

portion of the re-design activity aims to take advantage of the Registry database to

store the prototype system's model data in a secure yet shareable form. The fol­

lowing subsections firstly give a brief technical background to the Registry, and

then detail the design for a version of the system which uses it to store the data

which, in the first version of the software, reside in flat files on the local drive.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\by 1999

Chapter 6 - Re-Design Work

6.2.1. The Registry - Technical Details

This section details what the Registry is and gives a rough description of how it

works, to show how it can better support the system's current data storage re­

quirements. Essentially, the Registry came about as a solution to the problem of

storing per-application and per-user configuration data in a regular, structured

and shareable way, as is required by almost any application of any size.

201

In contrast to this centralised approach, many applications used to use their own

'.INI' files, resulting in non-portability, a lack of personalisation and a profusion of

files in unpredictable locations, not to mention the added burden on developers to

provide per-application configuration file handling requirements. Instead of this,

the NT Registry provides machine-specific and user-specific data storage facilities,

thereby circumventing some of the more peripheral implementation issues.

The Registry takes the form of a hierarchy of keys, each of which stores a set of

name/value pairs. Keys are analogous to directories, and in fact use the same

naming conventions as directory names. Certain Registry keys are guaranteed to

exist by the system. For example, the key "HKEY _CURRENT _USER\Softwa re" acts

as a repository for any application configuration data which needs to be personal­

ised to the current user. Any information stored here by an application is auto­

matically associated with the user who was logged in when that information was

stored, is permanently saved when the user logs out, and is restored when they

log back in at a later date.

6.2.2. Dialogue Record Re-Design

The prototype system's implementation of the dialogue record simply writes a file

containing a list of events. (Section 4.4.7 documents the required event types and

their attributes - these are currently stored in a sequential list, being written out

on shutdown and read back in on start-up). Instead of being stored as text in a flat

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thl'~i~
\1.1\ 1999

Chapter 6 - Re-Design Work
202

file, these events will be written into Registry keys in the structure shown in Fig­

ure 6.1.

HKEY_CURRENT USER\
L- Software\

L- AIM\
L- DialogueRecord\

~ First(DWORD)
~ Last(DWORD)
L- (numeric index>\

~ Code(DWORD)
~ Time(DATETIME)
~ Namel(OLECHAR[])
~ Name2(OLECHAR[])
L- Level (DWORD)

Figure 6.1. Dialogue Record Registry Key Layout.

The keys First and Last below the DialogueRecord key store the numeric index of

the earliest and latest events stored in the dialogue record. This will permit some

of the dialogue record data to be expired as new data is entered, to avoid gener­

ating huge volumes of data over a period of time. For the purposes of this study,

the dialogue record will need no more than a few days' worth of data, and it may

be possible to have the system function well with less than that. The events them­

selves are then stored, indexed numerically, with their associated data.

Although the use of numeric indexes indirectly referring to file names might seem

to be more complex than is necessary, plain filenames cannot be stored as part of

key names - obviously, they may contain '\' characters, which have special

meaning in Registry key names, which have the same naming conventions as di­

rectories.

6.2.3. User Model Re-Design

Using the same principle as for the dialogue record, the persistent data stores used

by the rest of the system can be re-implemented using the Registry as the storage

medium. Figure 6.2 shows, in symbolic form, the storage of the user model as

Windows NT Registry data. For example, the key named:

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. TI'1l'~I~
t\ta\' 1999

Chapter 6 - Re-Design Work

HKEY_CURRENT_USER\Software\AIM\UserModel\FileAccessLog\O\Filename

might have the value" E: \ WI NNT\ Da ta Fi 1 es \ Report 1. DOC ", and if the ke\"

named:

HKEY_CURRENT_USER\Software\AIM\UserModel\FileAccessLog\O\UseCount

203

then had the value 12, this would indicate that the user's Reportl document data

file had been opened 12 times.

HKEY_CURRENT_USER\
L--- Software\

L--- AIM\
L--- UserModel\

~ FileAccessLog\
I ~ CountCDWORD)
I L--- <numeric_index>\
I ~ FileNameCOLECHAR[])
I ~ UseCountCDWORD)
I L--- LastUseCDATETIME)
~ ShortCutList\
I ~ CountCDWORD)
I L--- <numeric_index>\
I ~ TargetFileNameCOLECHAR[])
I L--- ShortCutNameCOLECHAR[])
L--- AnnotationList\

~ CountCDWORD)
L--- <numeric_index>\

~ FileNameCOLECHAR[])
L--- AnnotationCCHAR[])

Figure 6.2. User Model Registry Key Layout.

Again, the Registry automatically takes care of the possible requirement to handle

profiles for multiple users, as the HKEY _CURRENT_USER key is automatically re­

mapped according to the identity of the currently-logged-in user.

6.3. Re-Design 2: End-User Tailorability Using Binary Components

The COM component infrastructure provides the ability to dynamically reconfig­

ure systems using 'plug-and-play' binary components. The following sections

give a brief overview of COM and ATL at a technical level and proceed to illus-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
~1a\' 1999

Chapter 6 - Re-Design Work

trate the re-design of the system to use fully COM-compliant components where

necessary.

6.3.1. COM and ATL - Brief Technical Background

The Component Object Model (Box, 1998a) is an infrastructure for interface-based

software development. For example, it defines a standard interface through which

a client application can discover the other various interfaces supported by any

given component, called the I Un known interface. COM also defines some stan­

dard ways of creating components, all of which are based on the idea of a 'class

factory' (which, technically, is a component factory, although the misnomer is

generally accepted as equivalent in the literature).

A class factory is a special object type which is responsible for constructing new

instances of components of a given class. The simplest way for a client application

to construct a component is to call a system function which creates a single in­

stance of a specific class of component. This system function actually uses a sys­

tem-specific method to determine the class factory for that component class, con­

structs it, and then uses it to construct the desired component.

Although COM strictly specifies all these mechanisms and the ways in which they

must be used, it does not provide implementations for them - this is left to the im­

plementors of the components. The Active Template Library (ATL) provides a set

of C++ classes which can be sub-classed to arrive at a COM-compliant component

more quickly and with less scope for errors than would be possible by hand­

crafting a component implementation.

As the components which comprise the prototype system have been implemented

using an interface-based approach, ATL classes can be applied to them (by rede­

fining the inheritance of classes to be made into explicit components), to arri\"e at a

COM-compliant system. This will then allow the reactive agents in their own

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. The~i~
\1ay 1999

Chapter 6 - Re-Design Work
205

right to be divorced from the rest of the system, permitting the end-users of the

system to tailor the exact adaptive behaviour of it according to their wishes, sim­

ply by using a different set of software agents.

6.3.2. Using AlL to Re-Implement the Prototype Using Components

This section describes the process of applying ATL classes to the prototype system,

so that it can be said to be truly component-based. The initial version of the proto­

type used interface inheritance, based upon the notion that a class can effectively

'advertise' - by exposing a specific interface - that objects belonging to it behave in

a certain way. The COM standard requires that any COM-compliant component

object must expose a basic interface called' I Un known'B. This interface implements

a method called 'Que ry I nte rfa ce', which is used to enquire about the other inter­

faces supported by that particular component object.

Interface inheritance differs from traditional object-oriented implementation in­

heritance - essentially, exposing a specific interface means that the component be­

haves in a specific way (without reference to any other component or object). Tra­

ditional implementation inheritance implies that a subclass is a refinement of some

superclass, which mayor may not inherit a set of traits from that superclass, may

or may not exhibit all or some of the behaviour of that superclass, and mayor may

not maintain the same states as the superclass. Interface inheritance is a much

purer way of defining the behaviour of a system, as it separates the implementa­

tion of a component from the interface used to manipulate it - although source­

level implementation re-use is not directly possible, a well-developed component

is easy to re-use.

B The name I Un known arises from the fact that the underlying type of the component is initially

unknown - the component could be anything.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~l~
\fav 1999

Chapter 6 - Re-Design Work 206

The first step in applying ATL to the system is to identify the elements of the sys­

tem which do actually need to be components in their own right. Initially, the

classes used to implement the agents themselves obviously need to be modified,

although some other items, like the system's interfaces, could be set up as compo­

nents as well. The objects and interfaces used by the agents, such as the dialogue

record and the other elements in the user model, also need to be borne in mind

during this process. However, if the AIMS application is modified to be COM­

compliant, that would then allow this to be done without great problems, as if the

system itself were a component, all the other interfaces required by the agents

could be obtained directly from the application component's I Un known interface

without any problem. (The application's component class will not need a class fac­

tory, as the system explicitly constructs it on startup, and the references to it held

by the agents will be released when the system is shut down.)

In practical terms, the existing inheritance system needs to be altered so that the

CAgent class inherits from the requisite ATL component-object class. Although

COM specifies that a legal COM interface must inherit from one (and one only)

other legal COM interface, a class which implements a COM component can in­

herit from any number, including indirectly via another component class (as long

as the eventual 0 u e r yIn t e r fa c e method is overridden accordingly). A class fac­

tory also needs to be developed for the A TL-based agent component class. This

can be accomplished by defining an ATL subclass, which can be used by each

agent type to do this.

The result of this is that it will then be possible to realise an agent (or set of agents)

as a binary component in its own right. Instead of being a tightly-linked element

of the system, each agent or set of agents could be packaged in a system code

module, such as a dynamic-link library. The system-specific COM support would

then be able to load these on behalf of the main AIMS application, based on a

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\Ln- 1999

Chapter 6 - Re-Design Work
207

small amount of configuration data. The process of doing this is discussed in the

next section.

6.3.3. Tailoring the System using ATl/COM Agents

For an end-user to be able to tailor their system, there needs to be some kind of in­

termediary between the user and the tailorable elements of the system. The most

obvious way to do this would be to provide a simple user interface which displays

the system's configuration and allows it to be changed. An important factor is that

the system needs to be able to 'explain itself', in that it needs to be able to provide

understandable details about what it does, and how changes will affect the status

quo.

This user interface could exploit the nature of the agents, being packaged as

standalone components. For example, the system could designate a specific folder

to store all the agent component modules. The user-interface could then use a

special configuration interface on each agent, to acquire information about what it

does and the parameters applicable to it, as well as natural language descriptions

of the agent(s) present in the module. Figure 6.3 shows a hypothetical system set­

up where the user is configuring an agent - this shows the description provided

by the agent component, and also displays a configuration set-up (again, gener­

ated by the agent).

At a more technical level, several issues arise from the requirements placed upon

the agents by a user interface such as that discussed in the previous paragraph.

Each agent must be able to have different configuration data, yet this must all be

presented in a consistent format within the tailoring interface. The agents must

therefore somehow generate their own configuration interfaces in response to a

call from the interface - a technique which is already used by the Windows NT

shell. One of the shell extension types is a 'Property Sheet Handler', called by the

operating system to display the properties for some file system object - the name,

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ta\" 1999

Chapter 6 - Re-Design Work
20

size and free space for a hard disk, for example. Again, a configuration property

sheet handler can be stipulated as part of the agent component standard, imple­

mented to generate the user interface elements and retrieve data from them.

fi,Agent Parameters 13

Shortcut Suggestions I Archival List I Contact Manager I
Short-cut Suggestion Parameters------~

N umber of Folder Levels jl3

Time 8 etween Folder Levels j'rr-1-0-s-ec--

Time 8 etween Duplicate Selections : il7 mirl

OK Cancel

Figure 6.3. Tailoring an agent module.

As well as allowing additional agent types to be added to the system, another is­

sue is that the current system is limited to the event types defined when the sys­

tem was designed, which would prove inadequate for other applications. For ex­

ample, to extend the system to handle a Web assistant would result in additional

event information requirements. In addition, methods for allowing the system to

accept or generate events which are not yet known would be required - for a Web

assistant, there would need to be some means to communicate with any browsers

running on the machine.

In fact, a partial solution already exists to this problem, in that the agent class

definition within the prototype includes the ability for agents to generate their

own events, as used in the levelled design for the shortcut suggestion system (see

section 4.4.6). Since agents would be presented as components, there is no reason

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Th
a 1

Chapter 6 - Re-Design Work 209

why an agent could not contain a thread of execution which would generate inter­

nal events as the result of external happenings.

The issue of providing new event codes and different types of event information is

still outstanding - that is, allowing differing types of information to be associated

with each event code, other than plain character strings, as are currently used by

the prototype. To allow new event codes to be transparently added to the system

(in such a way as they cannot interfere with those already defined) a system of

identifiers could be introduced, which associates event names with numeric codes

which can be handled by the system. The underlying idea is that an agent submits

a set of event names, and these are then stored by the system, which associates a

set of codes with them, and these are then used by the agents to refer to the events.

As regards allowing more types of event attributes, the string type could be ex­

tended to contain symbolic information in a machine-readable format. (For infor­

mation on a suitable format, see section 6.7).

6.4. Re-Design 3: OLE-Based Annotations

This section will describe an alternative approach to the annotation feature present

in the prototype. As mentioned earlier (in section 6.1.1), the icon-annotation sup­

port provided by the prototype proved quite popular with most of the test sub­

jects, but there were some problems with it. From the usability viewpoint, a few

subjects confused the notions of the document and the annotation to it. Secondly,

from a practical viewpoint, the need to be able to display custom overlay icons on

shell windows meant that the full integration that was originally envisaged

proved to be impossible.

A solution to this would be to take advantage of the notion of a I compound

document', which can contain other 'objects' of different types - objects such as

pictures, charts and so on. A mechanism called OLE (originally standing for Ob-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ta\' 1999

oJ

Chapter 6 - Re-Design Work 210

ject Linking and Embedding) is the de facto Microsoft standard for the encapsula­

tion of objects within compound documents. OLE provides an infrastructure

which allows objects created by different applications to co-exist and be displayed

in a containing compound document, and should edits subsequently be required,

defines methods for locating and executing the program originally responsible for

creating that object - transparently, from the user's viewpoint.

Essentially, the OLE mechanism will be exploited to provide an alternative object­

annotation metaphor, by implementing a system whereby note objects can be di­

rectly inserted into compound documents, analogous to sticking a note on the

page of a document. The subsequent sections give a brief technical background to

the mechanisms provided by OLE, and then show how they can be used in the de­

sign and development of an alternative annotation system.

6.4.1. OLE - Brief Technical Background

The OLE infrastructure (for our purposes here) essentially provides a mechanism

which can be used to divorce the contents of a compound document from the ac­

tual document itself. The program responsible for creating and editing the docu­

ment is termed the 'client', and the ancillary programs which create and maintain

objects that can be embedded within compound documents are called 'servers'.

It is possible for a single program to act in both ways - for example, when Excel is

being used as a spreadsheet, it is functioning as a client (in that other objects, such

as charts, can be inserted in an Excel workbook). When part of an Excel spread­

sheet is pasted into a Word document, however, Excel is acting as a server, re­

sponsible for all operations on that spreadsheet - display rendering, editing,

printing and so on.

The important point to grasp is that although the document might be a single en­

tity in itself, there may be any number of server programs responsible for the ob-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesi~
\lav 1999

Chapter 6 - Re-Design Work
211

jects within that document. When that document is being edited, printed or what­

ever, the OLE infrastructure transparently manages these servers, marshalling in­

formation between them to allow the system to present the illusion that one single

program is responsible for the whole document, where in fact several may be at

work behind the scenes.

OLE is itself based upon COM technology - a multi-server linking and embedding

scenario clearly requires communication between the client and server applica­

tions, and COM is the logical way to provide this. In fact, COM and OLE started

out effectively as two facets of the same thing (driven by the need for extensible

linking and embedding support), but were logically separated by Microsoft when

the utility of a component-based development infrastructure in its own right was

recognised.

An OLE server is therefore no more than a COM component which supports a

particular set of standard interfaces defined by the OLE programming interface

specification (Brockshmidt, 1995). The next section describes how this may be

used in actually developing an OLE server which can be integrated within the sys­

tem, allowing users to insert note objects into their compound documents.

6.4.2. Developing an OLE-Based Notes Server

This section considers the functional requirements of both the note objects them­

selves and the OLE infrastructure to arrive at a design for an implementable

server. Some changes to the existing prototype system are also proposed, which

are necessary in order to accommodate some of the practical issues encountered in

writing software of this type.

The end product of this design will be an OLE server, which generally takes the

form of a dynamic link library (DLL) - a chunk of program code that can be

loaded on demand by the operating system, and merged into a running process.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ta\" 1999

Chapter 6 - Re-Design Work 212

When a compound document with embedded objects in it is loaded, OLE locates

the correct servers for each of the embedded objects, and dynamically loads them

using the operating system, as shown in Figure 6.4. Servers of this type are re­

ferred to as 'in-process' servers, as they effectively become part of the client appli­

cation's resident set.

r---i

,..

XYZ object

I----------------~

I
I
I IUnknown
I
I
I

0 LE : IOleXYZ
I

~ -
XYZ component

(embedded in document) XYZ OLE server DLL

ABC compound document editor

ABC document editor process

Figure 6.4. OLE in-place editing using a in-process server.

However, servers of this type present a problem for this application, because of

the requirement to search the contents of notes for a given word or phrase. To do

this, the centralised AIMS application obviously needs access to the contents of the

notes. This would not be possible using an OLE server alone, as when loaded, the

operating system insulates each instance of the server from the rest of the applica­

tions executing on the system, so that a global search would not be possible. To

rectify this, there still needs to be some central point of contact that can be used by

the note objects to store and retrieve their contents, which can then be used when a

search is required.

The obvious solution to this problem is to make a modification to the current

AIMS prototype, so that it can function as a repository for the notes' contents.

When a note object is inserted into a compound document, it could then use the

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\tay 1999

Chapter 6 - Re-Design Work 213

AIMS program as a kind of database to store and retrieve its contents. A search of

note contents would then proceed much as it does in the current version of the

prototype.

To do this, the AIMS application will need to be presented to the operating system

as a component in its own right - for the instances of the note objects to be able to

find it, it must be registered with the operating system in the Running Object Ta­

ble (ROT), which acts as a kind of directory of active components on the machine.

Other applications running on the system can then use the ROT to find an instance

of a required component, gain access to an interface to it, and use the methods it

provides, as shown in Figure 6.5.

r-------------------,
I

I I I r----------------------
I
I I

I I IUnknown
I ROT I

Y I I
I

t-

IAimApp 0--1 '\

INoteData 0--
OLE

IOleNotes 0--
"-

AIMS I component'
L ______________________

ABC compound document edItor AIMS process boundary

ABC document editor process

Figure 6.5. Using the ROT to locate the AIMS application.

The administrative overhead of making the AIMS application look like a compo­

nent is quite small (it involves creating a COM-compliant object, which can be

done using ATL), but there is one technical issue which arises from it. When the

application registers itself as a component, it makes a set interfaces available to the

rest of the system. Client applications (the note objects, in this case) may obtain

references to these and call methods on them in any order, possibly at the same

time - that is, there may be multiple threads of execution active simultaneous I .

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The i
May 1

Chapter 6 - Re-Design Work

This introduces the need for some synchronisation primitives, so that the AIMS

application's internal data stores cannot be rendered inconsistent by simultaneou

accesses. Again, this is not a difficult problem to solve, but an awareness of it is

essential to arrive at a system design which does not suffer from rare, obscure and

highly unpredictable race conditions.

,N:ii;"fj,itl 1lj11j1,'M@i,
Ij~ EU. ~dlt :ilew Insert FQrmat 10015 T ~ble Wndow t!elp

II D ~ ,.. , ~ ~ ::Y ' \, r~ ~ <1 1 ., • Co ·1 ., ~ rn trn ~ n r.~ 1!5:J 1T 120% • ~ I
II Normal • Book Antiqud • 12 · 1 B I 11 I j§: ~ ~ ~ 1= := t,i;: ~i;:: D· £. . t!. .

~ol@jhl.1

Abstract

Personal agents are an important advance in the management of electronic information.

CrablTee et al. (llT
agents paper) - Fl1d
lSR publications on
intErest-IT acking
algori thms

Accurate user profiling is a critical to the personalisation of agent-based

services. In this paper we describe a framework for personal agents, which

provides a range of services using a common user profile . The user profile is

automa tic ally learned from observa tion of the electronic documents a user

reads, alnd tracks user interests over time. We report on a large trial of this

framework, which has given us important inSights into the effectiveness of personal agent

applications. In particular we discuss the benefits obtained from the use of a common

profile and the interoperation of several personal agent applications.

Competing Agents in Agent-Mediated Institutions

E. Plaza, J. L. Arcos, P. Nonega and C. SIerra

Abstract

Social processes and agent interaction always take place in a specific context. A school of

thought in social studies analyses them in the framework of institutions. We present in this

paper the notion of agent-mediated institutions and show how it is relevant for multiagent

systems (MAS) in general and,. more specifically, for MAS that include human agents and

II Dt~w· ~ G 1 AytoShapes' " " D 0 ~ 41 : ~ • ..I. • t!. . == ~ E l(I
r-Paoe 2 .. "Sec -j-- - - ·'-2/4 _.

Figure 6.6. An embedded note object in a compound document.

_10> I xl
.:M.IE

u

In implementation terms, a note embedded in a compound document could just

be stored as a index reference, and the note's contents plus a file reference would

actually be stored by the central application for searching and container-object ac­

cess. The eventual/user interface' to a note object would be extremely simple, as

was the file-annotation dialog. Following a philosophy of simplicity, a suitable

interface would consist simply of a multi-line edit control, in its own window,

with appropriate line imagery on the border, as shown in Figure 6.6. The text en-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Th I_

ta\' 1

Chapter 6 - Re-Design Work 215

tered into these notes would then be stored along with the standard icon­

annotation note text, and be searchable in the same manner.

6.5. The AIT Architecture and OO/CB Design

This section addresses some of the issues raised by implementing the AIT architec­

ture directly in terms of objects and interfaces. As presented in the literature, the

architecture takes the form of an aggregate object, comprising a set of models and

a dynamic knowledge base, where the active elements of this knowledge base

have access to all the models' data. However, the object-oriented and component­

based design approach together with the AIT architecture resulted in a final de­

sign for the prototype system which appeared to be less elegant than it could have

been - while data coupling had been eliminated, the interface-based communica­

tion required between the modules of the software had at the same time been

made quite complex.

There are several reasons why this increased complexity might have been brought

about. One is that the problems noted in this study could have simply been the

result of applying 00 and component-based (CB) development techniques to a

model that was developed before these techniques began to gain wider accep­

tance. For example, the published version of the architecture used in this study

appeared in 1993, at a time when 00 methods were quite well established, but CB

development had yet to make much of an impact.

The increased complexity could also be seen as a mismatch between the levels of

abstraction and detail of AIT architecture and the abstraction levels of the adaptive

agents - the agents function at quite a low level of abstraction, whereas the All

architecture needs to be applicable at a range of levels of abstraction - from syn­

tactic, through semantic, up to goal oriented. Although the goal-oriented level of

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~Lw 1999

Chapter 6 - Re-Design Work
216

information does not really play any part in the prototype system implemented in

this study, the system's design would not preclude it from being used if necessary.

It is difficult to address the problem of the intra-architecture communication re­

quirement with a view to reducing or eliminating it, as it will in fact take place

anyway - whether explicitly through a component's interfaces, or implicitly as di­

rect (unprotected) data member accesses. From a software engineering viewpoint,

the former is much preferred as it at least offers the server component the chance

to protect and hide its internal details from its clients. Instead, it would be prefer­

able to accept that the communication takes place, and recast the AIT architecture

to support it explicitly.

An alternative design which retains an interface-based approach to systems devel­

opment will suffer from the need to implement a number of observer/mutator in­

terfaces, but this also occurs in purely object-oriented design when the principles

of encapsulation and data-hiding are rigidly adhered to. Although the ideas of

component-oriented and interface-based development are not new in an academic

sense, support for them in terms of integration with existing methodologies is

limited, and much research is ongoing in this topic area (Pooley and Stevens, 1998;

Szyperski, 1997).

Rather than presenting the architecture simply as an aggregate object, it could

therefore be repackaged as a set of components in its own right. As well as re­

sulting in a more elegant design solution in general, this would also make the ac­

tive nature of the mechanisms explicit as sub-components in their own right.

There are several advantages to be gained from a natively component-based archi­

tecture for adaptive interfaces. From a practical perspective, this would promote

easier deployment of adaptive systems, as they could be re-used as standalone

components in applications not yet designed. There is also the usual benefit of in­

sulating components from implementation changes - if an alternative environ-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Chapter 6 - Re-Design Work
217

ment existed which could be used to gain event information, the event input com­

ponent and the system interface component, both of which effectively act as adap­

tors, could simply be swapped without reference to the rest of the system. As an

added benefit, the use of published interfaces to adaptive systems would also

promote the sharing of profile information. This is especially useful in systems

where bootstrapping is an issue - a larger user base would improve the statistical

reliability of conclusions, and improve user perceptions of the usefulness of adap­

tive systems in general.

As is almost always the case with any design technique, the designer needs to bal­

ance the requirements of the design approaches and the requirements of the sys­

tem being implemented, to end up with a design that is as elegant as possible

given the applicable constraints. Component-based solutions offer significant op­

portunities for the re-use of existing systems, without many of the drawbacks in­

herent in some purely object-oriented environments.

6.6. Levelled Design of Reactive Agents

This section will examine the nature of reactive agents and propose a process of

levelled behavioural partitioning, based on the approach taken to the decomposi­

tion of the prototype system's desired adaptive behaviour. The approach taken in

this study is partially formalised to yield design guidance for future developers of

adaptive systems which use reactive agents as the active inferencing mechanisms.

The software agent technology used in this study was based on the idea of reactive

agents - entities which possess few modelling resources, and instead exploit their

nature, embedded within existing systems, to perform their tasks. However,

many classical reactive systems tend to rely on a form of emergence (Nwana,

1996), where a set of sensing and responding mechanisms, when composed to­

gether, result in a compound behaviour which appears to be intelligent in nature.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\fa\' 1999

Chapter 6 - Re-Design Work
218

Although this is useful as a result in itself (illustrating that intelligence can be an

emergent property of a set of simple behaviours), it would be preferable to be able

to guarantee that a given design will produce useful adaptive behaviour, which

can be a problem with purely reactive architectures. We therefore propose an ap­

proach based on a hybridisation of reactive agents and simple models such as

those used in this study, in combination with a semi-formal design technique for

arriving at an implementable set of simple reactive agents which result in the de­

sired behaviour.

The technique used in this study was to adopt, implicitly, a kind of levelled ap­

proach to deriving semantic information from syntactic events - this is essentially

influenced by the different levels of information manipulated by adaptive systems

(Benyon, 1993), as shown in Figure 3.1. At the lowest level, the input signals to the

system give the total of syntactic information available, and these need to be com­

bined with each other to arrive at information of some semantic value. In this

study, levels of reactive agents were used, where simple inferences were made on

the basis of the syntactic information and were effectively passed up a hierarchy of

agents, leading to more complex inferences (in terms of temporal span or the na­

ture of the conclusion).

To formalise this idea, the technique basically uses a behavioural specification as a

starting point, decomposing compound behaviours into simpler fragments and

organising these into levels or hierarchies. The result is a set of levels of simple

behaviour, each of which can be implemented using one or two agents. In turn,

these agents pass their results on to higher-level agents, which make more com­

plex inferences, eventually arriving at the semantic result desired.

To apply this idea to the prototype system developed, the starting point for de­

fining the adaptive behaviour of the system was to examine the relevant user sce­

nario in section 3.3.1, where a user executes two multi-folder compound navigate-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. The~is
May 1999

Chapter 6 - Re-Design Work
219

open sequences (i.e., opening a folder, then a folder within it, then a file within

that) twice within a short period of time. The syntactic events available to the svs­

tern are just those concerned with opening folders and files.

The notion of a compound access is obViously important here, so we could define

this as a sequence of at least one folder access followed by a file access, where the

folder and file accesses are all linked by parent-child relationships. A simple com­

pound access would occur when the user opens a file which resides in a folder that

was opened recently. The first reactive behaviour necessary would recognise this

sequence of events, and generate a simple compound access event.

The need to recognise multiple levels of folder access also exists, so we could add

a second behaviour which reacts to any compound access which is preceded by

the opening of the folder in which the compound access takes place. This would

produce some kind of a multiple compound access event. This formulation is natu­

rally recursive, in that one multiple compound access event might cause the gen­

eration of another, if it had been preceded by the containing folder.

The final reactive behaviour necessary would need to recognise duplicated multi­

ple compound access events (i.e., those accesses which are repeated within a given

time). When recognition occurred, some kind of event would need to be gener­

ated to signal this, which would be processed by the external system to (as in the

case of the prototype) make a suggestion based upon it.

Agent Label Description of Agent

Single compound access detector Recognises a file access preceded by an access of
the file's parent folder.

Multiple compound access detector Recognises a compound access preceded by a
parent folder access.

Duplicate compound access detector Recognises a compound access preceded by the
same compound access.

Table 6.1. A three-agent formulation for the compound access detection problem.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\lav 1999

Chapter 6 - Re-Design Work
220

The results of this analysis are presented in Table 61 h . h . ,s oWIng t at we ha\'e ar-
rived at a set of three reactive agents. An interesting pOl·nt t t· h h o no e IS tat t e pro-
totype implementation actually used four although the fI·nal b h· f h ' e aVlOur 0 t e two

would be the same. The three agents can be arranged as a stack as shown in Fig-

ure 6.7, where the events generated by low-level agents are used by those at

higher levels to make their inferences.

suggest-shortcut(fo

naviga te-open(fop,fiCtx)
duplicated with x >= 3?

~

/
""

naviga te-open(fop,fi

'-+
folder-opened(fop) is parent of fOi

and navigate-open(foi,fiCtx-l)?

navigate-op

folder and
sub-file?

.J

folder-opened(fo) file-opened (fi)

Figure 6.7. Three-level solution to compound access detection.

This kind of formulation is related to other work in the area of reactive software

agents - in particular, the Agent Network Architecture (Maes, 1991) and subsump­

tion architectures (Brooks, 1986). The former architecture uses a set of 'compe­

tence modules' with pre-conditions and post-conditions which activate, given the

correct system configuration, producing an effect in the environment. Subsump­

tion architectures were originally developed as light-weight (in computational

terms) solutions to the problems of real-time control in robotics, but the principles

of reactivity (simple models, if any, in conjunction with computationally-quick al-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesis
\la\' 1999

Chapter 6 - Re-Design Work
221

gorithms for generating resulting behaviours) fit well with the needs of an simple

adaptive user interface.

This section has shown how a semi-formal approach to the design of reactive

software agents can be applied to problems such as those described in this study.

However, the technique reported also gives advice on designing the set of agents,

which was somew:hat lacking in earlier work, which tended to focus more on the

mechanisms of the agents themselves rather than the processes followed in de­

signing the set of agents necessary (Wooldridge and Jennings, 1998). In conclu­

sion, the behaviour of a simple, predictable adaptive interface should be specifi­

able using a semi-formal structure such as this one, since a similar approach to this

has been used with some success in this study.

6.7. Providing Generic Event Notification

This section will seek to examine how platform-independent event acquisition

might be accomplished, based on existing methods used by current operating sys­

tems. As mentioned in section 6.1.2, lack of any supported mechanism to get di­

rect access to information about user interactions was one of the main contributing

factors to the technical failure to integrate the prototype into the existing Windows

NT shell. Since this is a requirement that would be shared by any other system

that sought to assist users by monitoring user actions, this re-working will seek to

examine the feasibility of defining a generic user event notification framework and

mechanism.

There is a general lack of mechanisms for registering interest in, and receiving in­

formation about, events occurring within an operating system, and in particular as

a result of user-interface events. This might be owing to the technical nature of the

requirement, or the unwillingness of software vendors to expose such proprietary

information to the public development community. However, one main difficulty

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~l';
\1av 1999

Chapter 6 - Re-Design Work
222

is the lack of a common standard for representing these events - a manifestation of

this can be seen in the number of different mechanisms implemented on just one

platform. For example, in the case of Windows NT, four or five different wavs of

acquiring different sets and types of system event information are available (see

Appendix C for a description of some of these).

There are systems which do make an effort to ease the task of acquiring event in­

formation and integrating with the operating system. Two systems which par­

tially address some of the issues in user interface integration are the AppleEvents

system used on the Macintosh, and the Workplace Shell in use under IBM's OS/2

operating system. Systems such as Eager (Cypher, 1991) and Letizia (Lieberman,

1995) used the AppleEvents mechanism to receive information about the actions of

users, and more recently systems such as Apple Data Detectors (Nardi et ai., 1998)

continue to exploit the open, flexible nature of this system. The OS/2 Workplace

Shell offers some of the integration features lacking in the Windows NT equiva­

lent, providing an application programming interface which allows applications to

'hook' into events concerning application window-creation, for example.

Of course, there is great difficulty in defining a common standard - while almost

all platforms do share certain syntactic concepts (such as windows and buttons,

mouse-clicks and key-presses), other system elements can differ widely. There are

considerable implications in designing a system to handle generic events. An ini­

tial need would be to define a basic set of events which are well-known, and

whose meaning is implicit - mouse-clicks, key-presses and so on. Basic events

such as these would then need to be augmented with higher-level events -like

icon-selection, as in the prototype system. This introduces a problem of repre­

senting the events, their context and their actual meaning.

This actually introduces yet another problem - there needs to be a way of repre­

senting common events concisely and unambiguously, while at the same time

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~i..;
~ta\" 14Y4

Chapter 6 - Re-Design Work
223

leaving scope for the representation of other events which may not even be known

about at design time. This shares some of the requirements of the research into

communication languages for software agents, where (particularly in multi-agent

systems work) sets of agents need to be able to converse, unambiguously, without

imposing unnecessary restrictions on the form and content of the messages ex­

changed.

Effectively, this is an ontological problem, in that the meaning of events needs to

be explicit. This is currently a major problem, particularly in the area of inter­

agent communication, although efforts are ongoing to solve this problem (Nwana

et al., 1999). This ontological information is implicit in the design of most applica­

tions, but could be made explicit - a partial example of this can be seen in Micro­

soft Internet Explorer's automation model, which exposes events and properties

which can be used to control the application and get information about happen­

ings within it. This approach could be widened to include information about the

events occurring within the system, which could in fact be generated automati­

cally as a result of the user-interface resource definitions present in the applica­

tion.

The multi-agent systems research effort has produced several standards for the

interchange of messages. Two related efforts are - KQML/KIF, the Knowledge

and Query Manipulation Language and the Knowledge Interchange Format ex­

pressed within it (Finin et al., 1997) and the FIPA ACL, the Foundation for Intelli­

gent Physical Agents' Agent Communication Language (FIPA, 1997). Both use

structured yet flexible text messages (i.e., easily machine-readable and able to be

extended without rendering existing systems unable to use them) to express re­

quests and responses, so could be adapted to express the occurrence of events.

Both standards also include explicit support for an 'ontology' - that is, a set of

terms of reference, so that an event is a self-contained entity which gives informa-

tion as to how it should be interpreted.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~l"
~ta\' 1999

Chapter 6 - Re-Design Work

The user-interface message requirements could therefore b d I e expresse as a ev-

elled ontology in KIF /KQML or FIPA/ ACL format which has th b f· f b . , e ene It 0 emg

machine-readable and platform independent As a simple exa I f th . mp e 0 e message

format, Figure 6.8 shows some hypothetical messages corresponding to user-

interface events: (a) a raw mouse-click; (b) a push-button activation (which results

in the dismissal of a dialogue box); and (c) an icon-selection (which results in the

running of a program).

a) (tell :sender Desktop
:content (mouseclick 450 760)
:ontology Global_UI)

b) (tell :sender MS-Word.Save
:content (buttonpush Cancel)
:ontology Global_UI.FileDialog)

c) (tell :sender Desktop.Shell
:content (iconselect "Microsoft Office" "Microsoft Excel")
:ontology Global_UI.ShellWindow)

Figure 6.8. User interface events expressed in FIPA ACL (FIPA, 1997).

At a more general level, this discussion illustrates that to a certain extent, in com­

mon with the problems experienced in implementing the prototype system in this

study, useful facilities are sometimes suppressed due to lack of technological sup­

port in the environments in which they are supposed to function. If a generic sys­

tem existed which could be used to publish the structure of applications and the

nature of the user interfaces and the events which occur within them, extensive

use would almost certainly be made of it to provide more (and better, in terms of

integration) commercial user interface assistant systems. Since the annotation sys­

tem designed as part of this study would have been reasonably trivial to imple­

ment, many other applications would be found by the community.

The acquisition of user-interface event information (and other system-wide event

data, for that matter) is currently a difficult task, but is nevertheless central to the

development of transparent, integrated adaptive interfaces. To prevent much re-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The..;\..;
\la\' 1999

Chapter 6 - Re-Design Work
225

inventing of the wheel, this is an area which needs to be looked at, and the tech­

nique proposed here is part of a possible solution to it.

6.8. Conclusion

This chapter began by examining some of the issues raised by the evaluation, us­

ing these to inform re-design activities and examinations of some of the theory

used in the development of the system. The work discussed in this chapter has

covered both theoretical and practical aspects. Technical work concerning the un­

derlying software implementation of the system was covered, as was an alterna­

tive means of integrating some of the PIM support into an existing user interface

and environment. The chapter concluded by examining some theoretical re­

workings, in order to arrive at some re-usable design guidance for future develop­

ers of adaptive systems meant to support individuals, such as this one.

Richard J. Keeble t
An Adaptive Environment for Personal Information Managemen

PhD. Thesb
\ fa\' 1999

Chapter 7 - Conclusions
226

Chapter 7

Conclusions

7 .1. Introduction

This chapter concludes the dissertation, providing a review of the main body of

text, summarising the main points covered in each chapter, and the key issues

raised by them. It also presents a statement of the contributions made during the

study, by relating the issues raised in the dissertation as a whole to the wider dis­

cussions taking place in the research community.

The scope and limitations of the research reported in this dissertation are also dis­

cussed in a critique of the study as a whole. The chapter concludes by considering

promising areas for future research arising from the work undertaken in this

study.

7.2. Review of Dissertation

This section gives a brief review of the first six chapters of the dissertation, giving

the objectives of each chapter and a summary of the key points raised and conclu­

sions drawn.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesl";

\fa\" 1999

Chapter 7 - Conclusions

7.2.1. Chapter 1 - Introduction

Chapter 1 introduced the study, giving an overview of the wider context of the

dissertation. The chapter showed that it is concerned with aiding today's profes­

sional individuals in activities which revolve around the management of informa­

tion.

The chapter began by focusing on the importance of information in general and

the consequent need for information management both by corporations and indi­

viduals. The increasing 'information load' on individuals was noted - in terms of

the information that forms the basis of many professionals' jobs and the ways in

which this may need to be acquired, manipulated and stored. The discussion sug­

gested that there is a necessity to support Personal Information Management

(PIM). A variety of approaches exist which aim to support PIM activities, and an

indirect approach was introduced, based on the idea of 'agency' and indirect man­

agement. This approach was shown to offer opportunities to aid the support of

PIM, via user interfaces which could adapt to their users.

7.2.2. Chapter 2 - Managing Personal Information: Taking an Agent-Based View

Chapter 2 explored the field of PIM in more depth, driven in particular by the

trend towards empowering the individual, therefore requiring more 'personal'

technologies. Some traditional approaches to PIM were examined, and issues

arising from them were noted. In particular it was shown that significant oppor­

tunities exist to provide automated support in many PIM scenarios. The chapter

highlighted some areas in which knowledge is lacking - particularly, in terms of

design guidance for PIM systems which are to be based around the user and able

to adapt to her, based on patterns of interaction behaviour. The use of adapti\'e

interfaces in systems to support the management of personal information was

suggested, illustrating how the requirements of PIM systems can be fulfilled using

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesi-..
\1.1\' 1999

Chapter 7 - Conclusions
228

interfaces which can adapt themselves based on their user's k' h b' wor Ing a Its and
practices.

The use of software agents as an approach to providing the active elements in

these adaptive user interface systems was discussed in detail. Examples of current

agent technology were evaluated to provide insights into both their particular

strengths and weaknesses and those of the concept of agency in general. This led

on to the choice of a 'reactive' software agent technology as suitable for the provi­

sion of agent-based adaptive user interfaces to support PIM. These reactive agents

can offer behaviour which appears to be somewhat 'intelligent', whilst bypassing

the problems associated with deliberative architectures.

7.2.3. Chapter 3 - Developing a Framework for an Adaptive Interface for PIM

Chapter 3 developed an abstract design for a class of systems which would act as

examplar implementations - these systems would embody some of the principles

noted in Chapter 2 as being important to systems which support PIM. The start­

ing point was the notion that an adaptive interface meant to support the basic ac­

tivities in PIM could be provided using a set of reactive agents as part of an adap­

tive interface architecture; both these concepts had been introduced and explored

at a theoretical level in Chapter 2, and were made more concrete in this chapter.

The chapter proceeded with the development of a design for an adaptive interface

which utilises reactive agent technology within a traditional interface. A sample

'adaptive information manager' application was introduced and used as the scope

for a detailed design for a user interface which exhibits simple adaptive character­

istics as well as providing support in more traditional ways. At the same time, the

design activity was kept abstract as far as possible, resulting in a framework

which, to a great an extent as was feasible, was language, platform and operating-

system neutral.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D, The';l"
\1.1\' 1944

Chapter 7 - Conclusions

Ideas covered at a theoretical level in Chapter 2 were exanu'ned I l' more c ose y In the
light of the scope laid down, as the requirements became more c t Th oncre e. e end

result was a set of functional requirements - behaviours that the user interface will

be required to respond to and exhibit - and in turn, an informal set of require­

ments which would need to be satisfied by the reactive software agents that were

to implement them.

7.2.4. Chapter 4 - Design and Implementation

Chapter 4 used the informal abstract specification and design that was developed

in Chapter 3 to develop a concrete design which took account of a particular ap­

plication, platform, environment and operating system, and implement it as a

working software application. The application demonstrated how the principles

argued for in Chapter 2 could be realised in a piece of software that provided

automatic support for some simple activities encountered as parts of PIM.

Chapter 3 arrived at a set of informal agent requirements based upon a subset of

user behaviours observed during file management activities. These were analysed

in detail in Chapter 4 to yield a number of basic 'fragments' of adaptive behaviour

required to implement a system which would support the tasks specified. These

elements of adaptivity then allowed the information requirements of the adaptive

system to be ascertained.

An abstract class hierarchy and architectural design was developed in the chapter,

to serve as a template for a class of systems which satisfy the general requirements

discussed in Chapter 3. The basic class hierarchy was then augmented, according

to the requirements of the final application. A behavioural specification for the

system was developed which contained details about events required to be ob­

servable - opening files and folders, for example - and actions required of the in­

terface in adaptive terms - making suggestions to the user and adding shortcuts,

and ranking lists of popular files.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesi..;
\ fa\' 1999

Chapter 7 - Conclusions

At this point in the process, no decision had yet been made about the platform to

be used for the final implementation of the system. An informed choice was there­

fore made based on several pertinent factors, encompassing technical issues both

of infrastructure and implementation as well as issues concerning how the user

interface to the system may be presented while not resulting in an excessi\'e bur­

den on users. A suitable platform - Windows NT - together with a supporting in­

frastructure and integration techniques was then used to implement the system,

although some considerable problems were encountered in the process of inte­

grating the software into the target environment.

7.2.5. Chapter 5 - Evaluation and Critique

The objective of Chapter 5 was to critically evaluate the work carried out in this

study - to identify strengths and weaknesses of the final product of the research,

and the methods and theories used in the design and implementation of it

The evaluation was carried out at several levels: the application implemented in

the previous chapter was examined, by means of user trials and usability inspec­

tion; the implementation described in Chapter 4 was examined in software engi­

neering terms; the component-based adaptive agent software architecture devel­

oped in Chapter 3 was evaluated, to show its usefulness in arriving at the design

for the implementation; and the architecture for Adaptive Interface Technology

(AIT) adopted in Chapter 2 - the theoretical framework underlying the study -

was critically appraised.

The chapter concluded by providing a summary of the important issues raised in

the set of evaluations.

Richard J. Keeble t
An Adaptive Environment for Personal Information Managemen

PhD. The~l~
\ tJ\" 1999

Chapter 7 - Conclusions
231

7.2.6. Chapter 6 - Re-Design and Re-Hypothesis

Chapter 6 presented some practical and theoretical solutions for problems encoun­

tered during this study, based on the issues discussed at the end of Chapter 5. The

chapter considered the more practical aspects of the issues raised in this study, by

presenting re-design work which addressed problems identified by the e\"alua­

tions in Chapter 5. The re-design activity was undertaken at two levels. Firstly, at

a practical level, some elements of the system were augmented by exploiting addi­

tional features of the target platform used in the implementation of the software.

Secondly, at a more abstract level, some suggestions were presented for ways to

improve the theoretical tools available to help with building adaptive systems in

general.

7.3. Statement of Contributions

This section states the contribution made by this work reported in this disserta­

tion, at various levels of abstraction. The levels of abstraction are those identified

in section 5.2, encompassing the principles and theory relevant to PIM and user

interfacing (L1), adaptive interfaces and frameworks for adaptivity (L2), software

agents and agent architectures (L3), and technical issues concerning software de-

sign and implementation (L4).

The individual elements of the contribution made by this study arise from differ­

ing elements of the dissertation; from the contextual information provided in

Chapter 2, through the design and implementation work reported in Chapters 3

and 4, and the evaluation and re-design activities discussed in Chapters 5 and 6.

This section takes a high-level view of the issues raised by this study, in order to

set out clearly the contributions made by this dissertation. The objective of this

section is to examine the context within which the key issues were raised. This

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. Thesl"
\ \,1\ 1999

Chapter 7 - Conclusions

will show how these issues were resolved, and in doing so, will highlight how

they contribute to the ongoing research work relevant to each area.

7.3.1. II - PIM and Interfacing: Principles and Theory

In Chapter 2, this dissertation argued that adaptive systems, in combination with

more traditional user-interfacing techniques, seemed to offer a profitable combina­

tion. Rather than aiming to replace a user's intelligence, it was argued that PIM

assistant systems need to complement it and allow users to work in their own

way, supporting them where possible.

This contrasts with much of the work in the area, where the emphasis is often

mainly on the features of the technology, paying surprisingly little attention to the

issue of the usability of the resulting systems. For example, in a recent review of

the area of software agents (Jennings et al., 1998), HCI concerns appear to warrant

little more than a few paragraphs. This dissertation has attempted to provide a

more balanced approach to the area, seeking to maintain usability while at the

same time taking advantage of relevant technology.

In Chapter 3, this philosophy of simplicity and predictability yielded a scenario­

based analysis of some simple activities which seem to be found in many elements

of computer-based rIM. These were used as the basis for an interface specification

which incorporated adaptive behaviour with traditional user-interfacing tech­

niques. Once built, in Chapter 5, the results of the evaluation involving user trials

appear to confirm the assertion that simplicity in rIM support appears to be a

highly desirable attribute. Although as a whole rIM is complex, multi-modal and

so on, the individuals in the study were of the opinion that the simple support of­

fered by the prototype system could help them - at least initially.

All of the participants in the experiment said that they would use some of the pro­

totype software's features if the Windows NT operating system had them as stan-

Richard J. Keeble t
An Adaptive Environment for Personal Information Managemen

Ph.D. The"l"
'fav 1m

Chapter 7 - Conclusions
233

dard - although not all features appealed to all the subJ'ects h fi' ,per aps con rffilng

the highly personal nature of the area and the ways in which individuals work.

From a technical perspective, this dissertation has shown in the Chapter 6 re­

design activity, that in current operating systems, technology does offer integra­

tion and tailorability possibilities which are not being explOited greatly at the pre­

sent time. These possibilities are mainly in terms of interface integration, although

the use of advanced technology (such as OLE under Windows NT) should result

in possibilities to support the integration of information as well.

7.3.2. L2 - Adaptivity and Adaptive Interfaces: Frameworks

In recommending a realistic approach to supporting PIM through simple, predict­

able adaptive interfaces, this dissertation has also shown that there are benefits to

be gained through the use of reactive agents in PIM applications. Amongst the

wide variety of agent technologies, the characteristics of reactive agents suit the

needs of PIM applications well, as discussed in Chapter 2. They are computation­

ally simple and therefore quick-responding, and are consequently well-suited to

the requirements of real-time interactive systems. They also do not have great re­

quirements in terms of complex user models and theorem-proving or reasoning

support, which makes them attractive from a development viewpoint.

Part of the output of the design and implementation elements of this study, as re­

ported in Chapters 3 and 4, was a proposed architecture for platform-neutral user­

interface-based agency support. This was based on an existing generic architec­

ture for adaptive interface technology (Benyon, 1993), and illustrates that careful

design can result in a system which is not tied to a specific machine platform.

The implementation phase of the study, as documented in Chapter -±, and the

evaluation and re-design activities reported in Chapters 5 and 6 highlighted some

of the practical difficulties in writing the prototype software. Particularly of con-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~b
\fa\' 1999

Chapter 7 - Conclusions

cern was the fact that user-interface and system event acq , 'h' d
UlSl on prove to be

quite difficult, and the desired integration of the prototype ftw ' h so are mto t e \ Vin-

dows NT environment proved impossible. The dissertation has therefore identi-

fied problems in proprietary integration mechanisms in Chapters -1 d - d . an J, an m

Chapter 6, proposed a technique for making information exchange more easily

possible.

7.3.3. L3 - Agency and Software Agents: Architectures

In Chapter 2 the combination of reactive software agents and adaptive interfaces

had been identified as one that might offer benefits in terms of providing PIM

support systems. Chapters 3 and 4 illustrated the process of designing and im­

plementing a system based on the AIT architecture's elements, but using reactive

agent technology as the inferencing mechanisms. This dissertation therefore con­

tributes a validation of the use of the AIT architecture, with reactive agents as the

active elements within it, as a useful technique for the construction of adaptive in­

terface systems.

To partially address some of the concerns mentioned in the previous paragraph,

part of the re-design work in Chapter 6 resulted in a technique for specifying reac­

tive agent behaviour. This takes the form of a semi-formal method for examining

and analysing the behaviour desired of an adaptive interface, to arrive at a set of

reactive agent specifications which can be used to implement the desired behav­

iour. This could be seen as a contribution either to the theory of reactive agent de­

sign in itself, or to the field of adaptive interfacing in general terms, since reactive

agents have been shown to be of use in that setting.

Although the combination of reactivity and adaptivity was shown to work well in

this study, the dissertation has highlighted areas where additional knowledge was

needed to augment the AIT architecture. In Chapter -1, the final design of the

models necessary for the adaptive system had to be accomplished in a reasonably

Richard J, Keeble
An Adaptive Environment for Personal Information Management

PhD, Thesis
\ 1.1\" 1999

Chapter 7 - Conclusions

ad-hoc manner, in the absence of concrete advice for thel·r d . ti· Th·· en va on. IS IS an

area where additional material was definitely needed to add to the basic AIT

foundation, in order to provide sufficient design guidance. Having made this ob­

servation, however, it is perhaps clear that this problem is dependent upon the

domain and is consequently difficult to formalise.

7.3.4. l4 - System Realisation: Design and Implementation

The contributions made by this dissertation at the levels of design and implemen­

tation are perhaps less important than those made in other areas, but are still wor­

thy of some attention. The implementation work reported in Chapter 4 and the

subsequent evaluation of it in Chapter 5 illustrated that the techniques used in the

development of the system - object-orientation and component-based techniques,

in particular - have a particular set of costs and benefits associated with them.

The implementation of the AIT architecture as a set of components using inter­

faces to communicate resulted, as noted in Chapter 5, in a communications struc­

ture that was more complex than would have been required if the software had

been implemented as an aggregate object. However, the process did show how

the reasonably novel COM-style approach offers advantages in software devel­

opment terms, such as the elimination of data-coupling. It also provides an ex­

plicit way to define facets of objects' behaviour using the idea of the 'interface' as a

kind of behavioural contract.

As a fringe benefit of the use of COM, Chapter 6 highlighted the fact that the com­

ponent-based nature of the resulting software could be used to provide a system

which could support a reconfigurable set of agents. This would then allow end­

user reconfigurability, using preferences, and tailorability through a kind of "plug

and play" approach to agent installation, where end-users could add to or modify

the system's adaptive behaviour by installing new agents, which would then

seamlessly integrate with those already present.

Richard J. Keeble t
An Adaptive Environment for Personal Information Managemen

PhD. The..; • ..;
\tJ\' 199,}

Chapter 7 - Conclusions 236

7.4. Critique of the Study

This section reviews the study as a whole, critically appraising the various parts of

the work reported in this dissertation. It examines strengths and limitations of the

work presented, the choice of methods and techniques, and shows how these re­

late to the scope of the study, the desired results and the eventual contribution

made by the work.

The discussion in Chapter 2, which gave the study its detailed context, essentially

led on from Chapter 1 in defining the scope of the research work to be carried out.

While this study sought to support PIM, it only aimed to support a small part of

PIM as a whole. After all, PIM does not necessarily need to be involved with IT in

any way. To that extent, the study sought to provide an insight into the provision

of an enabling technology which would support individuals in the management of

their computer-based personal information.

This study does not attempt any high-level analysis of PIM behaviour, focusing

rather on the lower-level activities which are more easily identifiable. The stance

taken in this study was to acknowledge that while individuals have highly per­

sonal, often subconscious sets of information management practices, there are a set

of quite low-level tasks which form the basis of many PIM activities. This stance

effectively defines the scope of the practical elements of the study, in seeking to

support these activities.

In Chapters 3 and 4 the effect of this stance on the nature of PIM manifests itself in

the user scenarios employed in the sections relevant to the behavioural analysis of

the system. Having said this, the later evaluation work in Chapter 5 appeared to

confirm that the trial users of the system roughly matched expectations in their

perception and use of the system.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\la\ 1999

Chapter 7 - Conclusions 237

The design and implementation work undertaken as part of the study was quite

small-scale in nature. The application's codebase is not especially large - the com­

plete system is less than 5,000 lines of code, which is small by most standards. The

software is prototypical in nature, especially given the technical failure to ele­

gantly integrate it with the target platform. While the Windows NT environment

has technical strengths such as protected multi-tasking and so on, there are a lack

of ways to closely integrate third-party software with the operating system.

Turning to the evaluations carried out as part of the study, the empirical user

study is small, but the results gained from it are valid in terms of the co-operative

evaluation approach. Around three or four subjects are generally deemed suffi­

cient (Monk et ai., 1993), although a few more (eight, in fact) were used in this case

due to the small-scale nature of the tasks to be performed. The resulting findings

seemed to be quite consistent - some subjects found all the features useful, and all

subjects found some features useful. In any case, empirical work is much needed

in this area (Nwana and Ndumu, 1999).

7.5. Future Work

This section addresses issues left outstanding as a result of this study, examining

them in order to identify which possible avenues of research might be profitable in

resolving them. The key issues discussed in this section are those identified by the

evaluation in Chapter 5 (see section 5.10), complemented by others which have

been mentioned in this dissertation. The same levels of abstraction are used in this

discussion as were used to identify the contribution of this work. This section

therefore explicitly shows the boundaries between what was done in this study

and what is yet to be done and is the subject of ongoing research.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\lay 1999

Chapter 7 - Conclusions 238

7.5.1. L 1 - PIM and Interfacing: Principles and Theory

Personal information systems offer considerable scope for future research, in a va­

riety of directions. The underlying concept of agency is immediately appealing to

most people - the idea that they might be able to delegate routine elements of their

everyday tasks to an autonomous, intelligent assistant. Whilst this study has cho­

sen to avoid a debate about 'intelligence', preferring to leave intelligent decisions

to human users, there is no doubt that there will be much work which aims to

provide intelligent personal support.

The relationship between PIM, adaptivity and agency is a complex one. In this

study, the agency provided by the system was quite low-level in nature, whereas a

long-term goal will probably be to provide systems where a more human form of

agency is the goal. Of course, this raises issues of trust and responsibility and re­

quires the designers of these systems to think very carefully about how systems

like these would present themselves to their users.

The use of adaptivity in user interfaces is also an area of ongoing research - as

with the provision of intelligence within an interface, there is a need to concentrate

on maintaining usability when incorporating behaviour such as adaptivity into an

interface.

There is also scope to provide support for some of the more sophisticated elements

of PIM, such as communication and integration - the consumer electronics market

demonstrates that the technological capability exists to provide integrated tele­

phone and data communication devices - however, research is still needed to

guide the development of these advanced services. There should also be opportu­

nities to 'informate' (as opposed to automate) other activities - with an integrated

telecommunications 'space', fewer barriers exist to the acquisition of information

necessary.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Chapter 7 - Conclusions 239

In abstract terms, research needs to be ongoing into the concept of agency itself

and the agent-based approach, as this is still a very poorly-defined area, encom­

passing ideas from many different fields. A key weakness exists in the over­

adoption of the 'agent-based' buzzword. The viewpoint taken in this dissertation

is that the focus needs to be on solving a problem using appropriate technology,

rather than searching for a problem to apply an 'agent' solution to, as sometimes

appears to be the case.

7.5.2. l2 - Adaptivity and Adaptive Interfaces: Frameworks

There are a variety of opportunities for research into the theoretical frameworks

necessary to support and apply adaptivity within user interfaces. Perhaps most

importantly, much more work needs to be done to produce empirical results

which are needed to gauge user opinions and perceptions about adaptive and/or

intelligent interfaces, and to gain more insight into the effectiveness of the ap­

proach as a whole. The principles of designing interactive systems around their

users are not directly violated by an adaptive interface design as a matter of

course, but care needs to be taken to ensure that usability is maintained as ad­

vanced features are incorporated into products.

There is also considerable scope for the development of adaptive interface theory

and technologies, in the same way as this study showed in the proposals con­

cerning techniques for the design of reactive agent behaviours discussed in Chap­

ter 6. Existing architectures such as that adopted in this study prove useful as

starting points for adaptive systems design, but there is still a general lack of de­

sign guidance for these systems. Technological support could also be improved,

perhaps in the guise of CASE support for interactive systems development in gen­

eral, and in particular where adaptivity is used.

Section 3.7.2 raised issues concerning the domain modelling requirements of adap­

tive interfaces, based on the relationship between the domain and user models-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\ 1av 1999

Chapter 7 - Conclusions
2ol0

that the user model is essentially an 'instantiation' of the domain model. In almost

all adaptive systems, including this one, the domain model is largely implicit - the

mechanisms used to communicate with the operating systems are fixed, and the

set of semantic objects such as windows and files are also static. Future work may

address this issue to arrive at a higher-order management for adaptive systems

where these mechanisms and terms of reference may be more flexibly defined.

7.5.3. L3 - Agency and Software Agents: Architectures

At the more technical level of software agent architectures, future work in the area

will need to concentrate on exploration of agent architectures and support for in­

ter-agent communication, particularly concentrating on the problem of inter­

operability of agent systems - work on this is ongoing most obviously in the fields

of multi-agent systems and agent systems focused on electronic commerce. Other

work will address issues such as the techniques needed by adaptive systems to in­

fer user interests and to track them as they change over time.

Future work is also required to address the need for toolkits for the provision of

agent systems, to counter the current situation where most work involves the im­

plementation of some kind of infrastructure upon which to build the eventual

agent-based systems. Higher-level toolkits which support the provision of agent

systems have been developed - for example, toolkits such as Zeus (Nwana et al.,

1999) and AgentBuilder (Reticular Systems, 1999) address needs such as specifica­

tion and configuration management within an agent-based system. However,

there still exists considerable scope for the development of further CASE support

for the design, implementation and management of agent-based systems, whether

they be personal or group-oriented in nature.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\Iay 1999

Chapter 7 - Conclusions
2'+1

7.5.4. L4 - System Realisation: Design and Implementation

The process of realising the software prototype described in this study revealed

some technical problems, especially concerning the original goal to integrate some

adaptive interface elements into an existing user interface - the Windows NT shell.

At the present time, this kind of endeavour appears to be extremely difficult, and

it is also difficult to see how this will change without quite a fundamental shift in

the perspective from which application software is developed.

It would seem that there is quite a political issue in 'open' software development,

in that manufacturers understandably wish to protect proprietary product infor­

mation. It has been suggested (Brockshmidt, 1995) that the 'document-centric' ap­

proach will represent the next major revolution in desktop and personal comput­

ing, heralding the end of the 'application' as we know it. Software will instead be

supplied and used as components, on an as-required basis, invisibly to its users.

While this is a utopian view of the future, some of the technology that will be nec­

essary to realise this vision exists at this time, in the form of the component-based

software environments such as COM.

The object-orientation and component-based nature of COM software (and similar

component-oriented systems) could also be taken advantage of in providing solu­

tions in the area of rapid application development and prototyping - for example,

providing a library of commonly-used business components in tandem with a

means of specifying and organising them within a user interface of some kind.

This should herald opportunities for increased open systems integration, allowing

easier customisation and 'plug-and-play' composition, in the same sorts of ways as

were proposed for this system in Chapter 6.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\lay 1999

References

References

Allen, K. R. (1995). Time and Information Management that Really Works: Organiza­

tion for the '90s. Affinity Publishing, Los Angeles, CA.

242

Arnold, J. (1999). Private Communication by E-Mail. January 15th, 1999, from <v­

johnar@microsoft.com>.

Baecker, R. M., Grudin, J., Buxton, W. A. S. and Greenberg, S. (eds.) (1995). Hll­

man-Computer Interaction: Toward the Year 2000. Morgan Kaufmann Publish­

ers, San Francisco, CA.

Bates, J. (1994). The Role of Emotion in Believable Agents. Communications of the

ACM, 37(7): 122-125.

Benyon, D. R. (1993). Adaptive Systems: A Solution to Usability Problems. User

Modelling and User-Adapted Interaction, 3(1): 1-22.

Benyon, D. R. and Murray, D. (1993). Adaptive Systems: From Intelligent Tutor­

ing to Autonomous Agents. Knowledge-Based Systems, 6(4): 197-219.

Bliss, E. C. (1995). Getting Things Done: The ABCs of Time Management. Charles

Scribner's Sons, New York, NY.

Bond, A. H. and Gasser, L. (eds.) (1988). Readings in Distributed Artificial Intelli­

gence. Morgan Kaufmann, Los Angeles, CA.

Booch, G. (1994). Object-Oriented Analysis and Design (2nd ed.). Addison-Wesley,

Reading, MA.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
~ 1a\' 1999

References
2·+3

Box, D. (1998a). Essential COM. Addison Wesley Longman, Reading, MA.

Box, D. (1998b). The Evolution of Objects. Microsoft Systems Journal, January 1998,

reproduced in Box, D. (1998a) Essential COM, Addison Wesley Longman, Read­

ing,MA.

Brockshmidt, K. (1995). Inside OLE. Microsoft Press, Redmond, WA.

Brooks, R. A. (1986). A Robust Layered Control System for a Mobile Robot. IEEE

Journal of Robotics and Automation, 2(1): 14-23.

Brooks, R. A. (1990). Elephants Don't Play Chess. In: Maes, P. (ed) (1990) Design­

ing Autonomous Agents: Theory and Practice from Biology to Engineering and

Back, MIT Press, London.

Brooks, R. A. (1991a). Intelligence Without Reason. In: Proceedings of the Twelfth

International Joint Conference on Artificial Intelligence (IJCAI'91), Sydney, Aus­

tralia: 569-595.

Brooks, R. A. (1991b). Intelligence Without Representation. ArtifiCial Intelligence,

47: 139-159.

Brown, C. M. (1988). Human-Computer Interface Design Guidelines. Ablex, Nor­

wood, NJ.

Browne, D. P. (1990). Chapter 7: Conclusions. In: Browne, Totterdell and Norman

(eds.) (1990) Adaptive User Interfaces, Academic Press, London.

Browne, D. P., Totterdell, P. A. and Norman, M. A. (eds.) (1990). Adaptive User

Interfaces. Academic Press, London.

Chaib-draa, B. (1994). Distributed Artificial Intelligence: An Overview. In: Kent,

A. and Williams, J. (eds.) Encyclopedia of Computer Science and Technology,

31(16).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\1.1\' 1999

References

Chaib-draa, B., Mandiau, R. and Millot, P. (1992a). Distributed Artificial Intelli­

gence: An Annotated Bibliography. ACM SigART, 3(3): 20-37.

Chaib-draa, B., Moulin, B., Mandiau, R. and Millot, P. (1992b). Trends in Distrib­

uted Artificial Intelligence. Artificial Intelligence Review, 6(1): 35-66.

Chang, D. and Lange, D. B. (1996). Mobile Agents: A New Paradigm for Distrib­

uted Object Computing on the WWW. In: Proceedings of the OOPSLA'96

Workshop Toward the Integration of WWW and Distributed Object Technology,

San Jose, USA, October 1996.

Checkland, P. and Scholes, J. (1990). Soft Systems Methodology in Action. Wiley,

Chichester.

Chen, L. and Sycara, K. (1998). Webmate: A Personal Agent for Browsing and

Searching. In: Proceedings of the Second International Conference on Autonomous

Agents (Agents'98), May 1998, Minneapolis/St Paul, MN.

Chin, D. (1991). Intelligent Interfaces as Agents. In: Sullivan, J. W. and Tyler, S. W.

(eds.) (1991) Intelligent User Interfaces, ACM Press, New York, NY: 177-206.

Coad, P., and Yourdon, E. (1991). Object-Oriented Analysis (2nd ed.). Yourdon

Press and Prentice-Hall, Inc., New York, NY.

Collin, N. (1995). Knowledge Workers and Information Technology: Managing a New

Organizational Paradigm. SRI International, Business Intelligence Program,

Menlo Park, CA.

Covey, S. R. (1992). The Seven Habits of Highly Effective People: Restoring the Charac­

ter Ethic. Simon & Schuster, London.

Crabtree, I. B., Soltysiak, S. J., Thint, M. P. (1999). Adaptive Personal Agents. Per­

sonal Technologies 2(3): 141-151.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\Lw 1999

References

Croft, C. (1997). Time Management. International Thomson Business Press, Lon­

don.

Cypher, A. (1991). Eager: Programming Repetitive Tasks by Example. In: Pro­

ceedings of CHI'91 , New Orleans, LA, ACM: 33-39.

Davids, N. (1996a). Personal Digital Assistants (1). Computer 29(9): 96-99.

Davids, N. (1996b). Personal Digital Assistants (2). Compllter 29(11): 100-104.

Dhar, V. (1997). Intelligent Decision Support Methods: The Science of Knowledge Work.

Prentice Hall, Upper Saddle River, NJ.

Dieckmann, M. (1996). Information/Technology - PDAs Get Connected. Man­

aging Office Technology, 41(5): 44-45.

Drucker, P. F. (1967). The Effective Executive. Harper and Row, New York, NY.

Drucker, P. F. (1968). The Age of Discontinuity: Guidelines to Our Changing Society.

Harper and Row, New York, NY.

Earl, M. (ed.) (1988). Information Management: The Strategic Dimension. Oxford

University Press, New York, NY.

Eden, C. and Spender, J.-C. (eds.) (1998). Managerial and Organizational Cognition:

Theory, Methods and Research. Thousand Oaks, London, UK.

Erickson, T. (1990) Working with Interface Metaphors. In: Laurel, B. (ed.) (1990)

The Art of Human-Computer Interface Design, Addison-Wesley, Reading, MA:

65-73.

Etzel, B. (1995). New Strategy and Techniques to Cope With Information Over­

load. In: Proceedings of the lEE Colloquium on Information Overload. lEE, Lon­

don, UK: 1-10.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\ ta\' 1999

References

Etzel, B. and Thomas, P. J. (1996). Managing Personal Information: Tools and Tech­

niques for Achieving Professional Effectiveness. Macmillan Business, Basing­

stoke.

Etzioni, O. (1993). Intelligence Without Robots: A Reply to Brooks. AI Magazine,

14(4): 7-13.

Etzioni, O. (1997). Moving up the Information Food Chain: Deploying Softbots on

the World-Wide Web. In: Proceedings of the Thirteenth National Conference on

Artificial Intelligence, Portland, OR.

Etzioni, O. and Weld, D. (1994). A Softbot-Based Interface to the Internet. Com­

munications of the ACM, 37(7): 72-76.

Etzioni, 0., Lesh, N. and Segal, R. (1994). Building Softbots for UNIX. In: Etzioni,

O. (ed.) Software Agents - Papers from the 1994 Spring Symposium (Technical Re­

port SS-94-03), AAAI Press: 9-16.

Ferber, J. (1994). Simulating with Reactive Agents. In: Hillebrand, E. and Stender, J.

(eds.) (1994) Many Agent Simulation and Artificial Life, Amsterdam, lOS Press:

8-28.

Ferguson, P. M. (1993). The Motif Reference Manual for OSF/Motif Release 1.2.

O'Reilly and Associates, Inc., Sebastopol, CA.

Fidler, C. (1996). Strategic Management Support Systems. Pitman Publishing, Lon­

don.

Finin, T., Labrou, Y. and Mayfield, J. (1997). KQML as an Agent Communication

Language. In: Bradshaw, J. (ed.) (1997) Software Agents, AAAI/MIT Press, Menlo

Park, CA.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\ fa\' 1999

References

FIPA. (1997). FIPA 97 Specification, Version 2.0, Part 2: Agent Communication

Language. Available as 'http://wwwjipa.org/spec/fBa22.zip'.

247

Fischer, G. (1993). Shared Knowledge in Co-operating Problems-Solving Systems

- Integrating Adaptive and Adaptable Components. In: Schneider­

Hufschmidt, M., Kuhme., T. and Malinowski, U. (eds.) (1993) Adaptive User Inter­

faces - Results and Prospects, Elsevier Science Publications, Amsterdam.

Galliers, R. D. and Baker, B. S. H. (1994). Strategic Information Management: Chal­

lenges and Strategies in Managing Information Systems. Butterworth Heine­

mann, Oxford, UK.

Gosling, J. and McGilton, H. (1995). The Java Language Environment. White Pa­

per, Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, CA 94043.

Greenbaum, J. and Kyng, M. (eds.) (1991). Design at Work. Lawrence Erlbaum As­

sociates, Hillsdale, NJ.

Heller, D. and Ferguson, P. M. (1994). The Motif Programming Manual for

OSF/Motif Release 1.2 (2nd ed.). O'Reilly and Associates, Inc., Sebastopol, CA.

Henderson, A. and Kyng, M. (1991). There's No Place Like Home: Continuing

Design in Use. In: Greenbaum, J. and Kyng, M. (eds.) (1991) Design at Work,

Lawrence Erlbaum Associates: 219-240.

Hook, K. (1997). Steps to Take Before lUI Becomes Real. In: Proceedings of the 1997

Workshop liThe Reality of Intelligent Interface Technology", March 1997, Edin-

burgh, UK.

Huhns, M. and Singh, M. P. (eds.) (1998). Readings in Agents. Morgan Kaufmann

Publishers, San Mateo, CA.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\L1\ 1999

References

Jennings, N. and Wooldridge, M. (1996). Software Agents. lEE Review, (January

1996): 17-20.

Jennings, N. R., Sycara, K. and Wooldridge, M. (1998). A Roadmap of Agent Re­

search and Development. Autonomous Agents and Multi-Agent Systems 1: 7-

38.

Johnson, C. (1997). The Impact of Marginal Utility and Time on Distributed In­

formation Retrieval. In: Thimbleby, H., Q'Connaill, B. and Thomas, P. (eds.)

(1997) People and Computers XII, Proceedings of HCI'97, Springer-Verlag, Go­

dalming, UK: 191-204.

Jones, M. K. (1989). Human-Computer Interaction: A Design Guide. Educational

Technology Publications, Englewood Cliffs, NJ.

Jones, S. R. and Thomas, P. J. (1996). Perception and Understanding of Personal

Information Management Artefacts. In: Proceedings of Computers in Psychol­

ogy '96 Conference, University of York, UK, 25-27 March.

Jones, S. R. and Thomas, P. J. (1997). Empirical Assessment of Individuals' 'Per­

sonal Information Management Systems'. Behaviour and Information Technol-

ogy, 16(3): 158-160.

Kay, A. (1990). User Interface: A Personal View. In: Laurel B. (ed.) (1990), The Art

of Human-Computer Interface Design, Addison-Wesley, Reading, MA, 191-207.

Kling, R. (ed.) (1996). Computerization and Controversy: Value Conflicts and Social

Choices (2nd Edition) Academic Press, San Diego.

Kruglinski, D. (1997). Inside Visual C++ (4th ed.). Microsoft Press, Redmond, WA.

Laberis, B. (1995). PDAs Are Still a Solution Looking for a Problem. Computer­

World 29(27): 36.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\Iay 1999

References

Lacity, M. C. and Hirschheim, R. A. (1993). Information Systems Outsourcing.

Wiley, Chichester, UK.

Landauer, T. (1991). Let's Get Real: A Position Paper on the Role of COgniti\'e

Psychology in the Design of Humanly Useful and Usable Systems. In:

Carroll,]. (ed). Designing Interaction, Cambridge University Press: 60-73.

Lanier, J. (1996a). Agents of Alienation. Hotwired (available as http://

www.voyagerco.com/miscljaron.html).

Lanier, J. (1996b). My Problems with Agents. Wired Magazine.

Lees, D. Y., Meech, J. F. and Thomas, P. J. (1996). Information, Artefacts and

Management Strategies: The Personal Perspective. In: Proceedings of

OzCHI'96, Hamilton, New Zealand, November 1996.

2-19

Lewis, C. and Rieman, J. (1993). Getting to Know Users and Their Tasks. Self­

published over the the Internet, reproduced in Baecker, R. M., Grudin,]., Buxton,

W. A. S. and Greenberg, S. (eds.) (1995) Human-Computer Interaction: Toward the

Year 2000. Morgan Kaufmann Publishers, San Francisco, CA: 122-127.

Lieberman, H. (1995). Letizia: An Agent that Assists Web Browsing. In: Proceed­

ings of the Fourteenth International Joint Conference on Artificial Intelligence

(I]CAI'95), Montreal, Quebec, Canada, August 1995, AAAI Press: 924-929.

Lieberman, H. and Maulsby, D. (1996). Instructible Agents: Software That Just

Keeps Getting Better. IBM Systems Journal 35(3-4): 539-556.

Mackay, W. (1990) Patterns of Sharing Customisable Software. In: Proceedings of

CSCW'90, ACM: 209-221.

Macredie, R. and Keeble, R. (1997). Software Agents and Agency: A Personal In­

formation Management Perspective. Personal Technologies 1(2): 44-56.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Ma\" 1999

References

Maes, P. (1991). The Agent Network Architecture (ANA). SIGART Bulletin, 2(4):
115-120.

Maes, P. (1994). Agents that Reduce Work and Information Overload. Communi­

cations of the ACM 37(7): 31-40.

Malone, T. W., Lai, K.-Y. and Fry, C. (1995). Experiments with Oval: A Radically

Tailorable Tool for Cooperative Work. ACM Transactions on Information S115-

tems 13(2): 177-205.

Martin, W. J. (1995). The Global Information Society. Aslib, Aldershot.

Mayhew, D. (1992). Principles and Guidelines in Software User Interface Design.

Prentice Hall.

Microsoft. (1997). ActiveX Technology for Interactive Software Agents. Technical

Documentation - Platform SDK, MSDN Library Edition, July 1998.

Milewski, A. E. and Lewis, S. H. (1997). Delegating to Software Agents. Interna­

tional Journal of Human-Computer Studies 46: 485-500.

Minsky, M. (1994). A Conversation with Marvin Minsky about Agents. Commu­

nications of the ACM 37(7): 23-29.

Mislevy, R. J. and Gitomer, D. H. (1995). The Role of Probability-Based Inference

in an Intelligent Tutoring System. User Modelling and User-Adapted Interaction

5(3/4): 253-282.

Mitrovic, A., Djordjevic-Kajan, S. and Stoimenov, L. (1996). INSTRUCTA: Model­

ling Students by Asking Questions. User Modelling and User-Adapted Interac­

tion 6(4): 273-302.

Monk, A., Wright, P., Haber, J. and Davenport, L. (1993). Improving your Human­

Computer Interface: A Practical Technique. Prentice-Hall, New York, NY.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The"l"
\lay 1999

References
:!51

Mosier, J. and Smith, S. (1986). Applications of Guidelines for Designing User In­

terface Software. Behaviour and Information Technology 5(1): 39-46.

Myers, B. (1993). State of the Art in User Interface Software Tools. In: Hartso1l, H.

and Hix., D. (eds.) (1993) Advances in Human Compllter Interaction 4, Ablex:

110-150.

Nardi, B. A., Miller, J. R. and Wright, D. J. (1998). Collaborative, Programmable

Intelligent Agents. Communications of the ACM 41(3): 96-104.

Negroponte, N. (1990). Hospital Corners. In: Laurel, B. (ed.) (1990) The Art of Hu­

man-Computer Interface Design, Addison-Wesley, Reading, MA.

Nielsen, J. (1989). Usability Engineering at a Discount. In: Salvendy, G. and Smith,

M. J. (eds.) (1989) Designing and Using Human-Computer Interfaces and Knowl­

edge Based Systems, Elsevier, Amsterdam: 394-401.

Nielsen, J. (1992). Finding Usability Problems Through Heuristic Evaluation. In:

Proceedings of CHI'92, ACM: 373-380.

Nielsen, J. (1993). Usability Engineering. Academic Press, Boston.

Nielsen, J. (1994). Heuristic Evaluation. In: Nielsen, J. and Mack, R. (eds.) (1994)

Usability Inspection Methods, John Wiley and Sons, New York, NY: 25-62.

Norman, D. A. (1994). How Might People Interact with Agents. Communications

of the ACM 37(7): 68-71.

Norman, D. A. and Draper, S. (eds.) (1986). User Centered System Design, Law­

rence Erlbaum, Hillsdale, NJ.

Norman, R. J. (1996). Object-Oriented Systems Analysis and Design. Prentice-Hall,

Inc., Upper Saddle River, NJ.

Richard J. Keeble .
An Adaptive Environment for Personal InformatIOn t\lanagement

Ph.D. Thesis
'laY 1999

References
252

Nwana, H. S. (1996). Software Agents: An Overview. Knowledge Engineering Re­

view 11(3): 1-40.

Nwana, H. S., and Ndumu, D. (1999). A Perspective on Software Agents Re­

search. To appear in the Knowledge Engineering Review in 1999.

Nwana, H. S., Ndumu, D., Lee, L. and Collis, J. (1999). ZEUS: A Tool-Kit for

Building Distributed Multi-Agent Systems. Applied Artificial Intelligenct! !ollr­

naI13(1): 129-186.

Nye, A. (1992). The Xlib Programming Manual for XllR4/R5 (3rd ed.). O'Reilly and

Associates, Inc., Sebastopol, CA.

Nye, A. and O'Reilly, T. (1993). The X Toolkit Intrinsics Programming Manual for

XllR4/R5 (3rd ed.). O'Reilly and Associates, Inc., Sebastopol, CA.

Olsen, D. (1992). User Interface Management Systems: Models and Algorithms.

Morgan Kaufmann, Mountain View, CA.

Orwant, J. (1996). For want of a bit the user was lost: Cheap user modelling. IBM

Systems Journal 35(3-4): 398-416.

Petrie, C. J. (1996). Agent-Based Engineering, the Web, and Intelligence. IEEE

Expert 11(6): 24-29.

Pooley, R. J. and Stevens, P. (1998). Using UML: Software Engineering with Objects

and Components. Addison-Wesley, Harlow, UK.

Pressman, R. S. (1997). Software Engineering: A Practitioner's Approach (4th ed.).

McGraw-Hill, London, UK.

Puerta, A. R. (1998). Intelligent User Interfaces. Knowledge-Based Systems 10(5):

263-264.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\ la\' 1999

References
~53

Reilly, P. A. and Tamkin, P. (1996). Outsourcing: A Flexible Option for the Future?

Institute for Employment Studies, Brighton, UK.

Reticular Systems. (1999). ACENTBuILDER: An Integrated Toolkit for Constructing

Intelligent Software Agents. White Paper. Reticular Systems, Inc., 4715 Vie­

wridge Avenue, Suite #200, San Diego, California 92123.

Rifkin, J. (1996). The End of Work: The Decline of the Global Labour Force and the

Dawn of the Post-Market Era. G.P. Putnam's Sons, New York.

Robson, W. (1997). Strategic Management and Information Systems: An Integrated

Approach (2nd ed.). Pitman, London.

Rogerson, D. (1997). Inside COM. Microsoft Press, Redmond, WA.

Roos, J. (1997). Intellectual Capital: Navigating the New Business Landscape. Mac­

millan Business, Basingstoke, UK.

Schneider-Hufschmidt, M., Kuhme, T. and Malinowski, U. (eds.) (1993). Adaptive

User Interfaces: Principles and Practice. Elsevier, North Holland.

Schuler, D. and Namioka, A. (eds.) (1993). Participatory Design: Principles and Prac­

tices. Lawrence Erlbaum Associates, Hillsdale, NJ.

Seddon, D. (1988). Experiences in IT Strategy Formulation: Imperial Chemical In­

dustries PLC. In: Earl, M. (ed.) (1988) Information Management: The Strategic

Dimension, Oxford University Press, New York: 147-156.

Senn, J. A. (1989). Analysis and Design of Information Systems (2nd edition).

McGraw-Hill, London.

Shneiderman B. (1997). Direct Manipulation vs. Agents: Paths to Predictable,

Controllable and Comprehensible Interfaces. In: Bradshaw, J. (ed.) (1997)

Software Agents, AAAI/MIT Press, Menlo Park, CA: 97-106.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
\fa\' 199q

References
254

Shneiderman, B. (1998). Designing the User Interface: Strategies for Effective Hllman­

Compllter Interaction (3rd ed.). Addison-Wesley Longman, Harlow, UK.

Shoham, Y. (1993). Agent-Oriented Programming. Artificial Intelligence 60(1): 51-

92.

Singh, M. P. (1994). Multiagent Systems: A Theoretical Framework for Intentions,

Know-How and Communications. Lecture Notes in Artificial Intelligence 799,

Springer-Verlag, Heidelberg.

Smith, S. and Mosier, J. (1986). Guidelines for Designing User Interface Software. Re­

port No.7, MTR-10090, ESD-TR-86-278, MITRE Corporation.

Sommerville, I. (1996). Software Engineering (5th ed.). Addison-Wesley, Woking­

ham, UK.

Stamper, D. A. (1994). Business Data Communications (4th ed.). Benja­

min/Cummings Publishing, Inc., Redwood City, CA.

Suchman, L. (1987). Plans and Situated Actions: The Problem of Human-Machine

Communication. Cambridge University Press, Cambridge.

Sullivan, J. W. and Tyler, S. W. (eds.) (1991). Intelligent User Interfaces, ACM Press,

New York, NY.

Sunday Times. (1997a). "Internet Lets Shoppers Browse at Leisure", Sunday Times,

20th April 1997, Section 4 (Money): 6-7.

Sunday Times. (1997b). IIIInformation Fatigue' Saps the E-mail Set", Sunday Times,

20th April 1997, Section 1 (News): 8.

Szyperski, C. (1997). Component Software - Beyond Object-Oriented Programming.

Addison-Wesley, Harlow, UK.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesi~
\t.1Y 1999

References

Thomas, P. J., Meech, J. F. and Macredie, R. D. (1994). Information Management

Using Integrated Personal Information Appliances. In: Proceedings of the BeS

Computer Graphics and Displays Group Conference on Digital Media and Elec­

tronic Publishing.

Wayner, P. (1995). Agents Unleashed: A Public Domain Look at Agent TecJl1lologtj.

Academic Press, London.

Wheelwright, G. (1995). PDAs: The Next Generation. Personal Computer World

18(5): 518-522.

White, J. E. (1994). Telescript Technology: The Foundation for the Electronic

Marketplace. White paper, General Magic, Inc., 2465 Latham Street, Mountain

View, CA 94040.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent Agents: Theory and Prac­

tice. Knowledge Engineering Review, 10(2): 115-152.

Wooldridge, M. and Jennings, N. R. (1998). Pitfalls of Agent-Oriented Develop­

ment. In: Proceedings of the 2nd International Conference on Autonomous Agents,

Minneapolis, USA.

Zuboff, S. (1995). The Emperor's New Workplace. Scientific American 273(3): 202-

204.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The..;\..;
\lay 1999

Appendix A - User Trial Materials A-I

Appendix A - User Trial Materials

This appendix contains a copy of the list of activities performed by the subjects as

part of the user trials (A.I), and a copy of the observation note proforma used to

record details as the subjects worked through the activities (A.2). The appendix

contains a copy of the list of questions asked as part of the de-briefing interviews

with subjects after they had undertaken the tasks shown (A.3).

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thl'~i~
\1ay 1999

Appendix A - User Trial Materials
A-2

A.l. list of Activities

1. On the desktop there is a folder called 'Documents', which contains a folder

called 'User Assistance', which has a file in it called 'Experiment Report'.

Open the file and type your name where shown, then close the word proces­

sor; (Hint: You'll need to do this as normal, but it will provide the sl/stem with in-
formation used by the shortcut suggester.) -

2. You worked on a spreadsheet file called 'Investments' a few days ago, but you

can't remember where it is. Now a change needs to be made - find the file,

and alter the price of the Prudential (PRU) stock to 950.50, then close the
spreadsheet; (Hint: You could use the file tracker.)

3. A couple of days ago, a customer requested a quote for accounting services.

You attached a note to their record document, which is in the Customer Rec­

ords folder on the Desktop. The quote is £250, which needs to be inserted in

their record document; (Hint: Look for a document with a note on it in the Cus­

tomer Records folder - view the note and leave it open for the next task.)

4. Add the name of the customer from Activity 3 (use the note you left open) to

the file named 'Experiment Report' (located in the folder 'User Assistance' in

the folder 'Documents'), and close the word processor. (Hint: If you do this by

opening the document file as normal, the system should ask if you want a shortcut

made.)

5. You have received a request for information about a new PC. The information

is in an invoice document somewhere. The PC was supplied by Viglen, which

you recorded in a note attached to the file. Locate the file and open it. (Hint:

You could use the note search feature.)

6. The file 'New Reference' on the desktop contains a reference for a publication

currently under development. Add it to the 'Journal Paper References' docu­

ment - pretend you last edited this a few days ago. (Hint: You could usc the file

tracker.)

7. Record the current time in the file named 'Experiment Report' (located in the

folder 'User Assistance' in the folder 'Documents'). (Hint: You could liSt' the

shortcut that should have been created in Activity 4.)

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. The~l~
\fav 199~

Appendix A - User Trial Materials
A-3

A.2. Observation Log Proforma

Subject: ____________ _ IDNo: ____ _

1.

2.

3.

4.

5.

6.

7.

On the desktop there is a folder called 'Documents', which contains a folder called 'User Assistance', which has a file

in ~t calle~ 'Experiment ~eport'. Open the file and type your name where shown, then close the word processor;
(Hmt: You II need to do thIS as normal, but it will provide the system with information used by the shortcut suggester.)

You worked on a spreadsheet file called 'Investments' a few days ago, but you can't remember where it is. Now a

change needs to be made - find the file, and alter the price of the Prudential (PRU) stock to 950.50, then close the
spreadsheet; (Hint: You could use the file tracker.)

A couple of days ago, a customer requested a quote for accounting services. You attached a note to their record

document, which is in the Customer Records folder on the Desktop. The quote is £250, which needs to be inserted in

their record document; (Hint: Look for a document with a note on it in the Customer Records folder - view the note and leave
it open for the next task.)

Add the name of the customer from Activity 3 (use the note you left open) to the file named 'Experiment Report'

(located in the folder 'User Assistance' in the folder 'Documents'), and close the word processor. (Hint: If you do this
by opening the document file as normal, the system should ask if you want a shortcut made.)

You have received a request for information about a new Pc. The information is in an invoice document some­

where. The PC was supplied by Viglen, which you recorded in a note attached to the file. Locate the file and open

it. (Hint: You could use the note search feature.)

The file 'New Reference' on the desktop contains a reference for a publication currently under development. Add it

to the 'Journal Paper References' document - pretend you last edited this a few days ago. (Hint: You could use the file

tracker.)

Record the current time in the file named 'Experiment Report' (located in the folder 'User Assistance' in the folder

'Documents'). (Hint: You could use the shortcut that should have been created in Activity 4.)

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Appendix A - User Trial Materials

A.3. De-Briefing Questions

These questions form the basis for the brief interviews conducted following the

experiment. The interview is therefore reasonably structured in nature, but can be

adjusted to cover unexpected points raised by the subject.

Transcriptions of all de-briefing interviews are provided as Appendix C.

(i) Do you get it - can you see how the system attempts to help?

(yes ... no (why?))

(ii) Do the various mechanisms make sense, or are they confusing?

(yes ... no (why?))

(iii) What did you think about the system's interface, as implemented?

(good ... bad / clear ... unclear (why?))

(iv) If things didn't go to plan:

In activity X, I noticed that [whateverl ... ; why did you do that?

(v) Would you use it?

(yes ... no (why?), (would you need to make a special effort to do so?))

(vi) How can the system be improved, in your opinion?

(make it more obvious how to use (how?), make it look nicer (how?), make it do more

(what?), it doesn't do x)

Richard J. Keeble . M ment
An Adaptive Environment for Personal InformatIon anage

Ph.D. Tht?~lS
\ lJ\' 1 yyy

Appendix B - Observation Notes B-1

Appendix B - Observation Notes

This appendix contains copies of the observation notes taken during the user trials

as the subjects followed the instructions shown in Appendix A.1.

Richard J. Keeble . M ment
An Adaptive Environment for Personal Information anage

Ph.D. Thesis
May 1999

Appendix B - Observation Notes

B.l. Observation Notes from Subject 1

Observation Log

Subject:
ID No: _-----!/ __

1. Add your name to the file 'Experiment Report' located in the folder 'User Assistance' in the folder 'Documents' on the Desktop,

and close the word processor; (Hint: You'll need to do this as nonnal, but it will provide the system with infonnation used Uy the short­
cut suggester.)

2. Assume you updated a spreadsheet file called 'Investments' a few days ago, and you can't remember where it is now _ but a

change needs to be made. Find the file, and alter the price of the PRU stock to 950.50, dosing the spreadsheet afterward; (Hint:
You could use the file tracker.)

3. A couple of days ago, a customer requested a quote for year-end accounting and audit services. You can't remember which

customer it was, but you attached a note to their record. The quote is £250, which needs to be inserted in their record document.

The documents are stored in the Customer Records folder on the Desktop; (Hint: Look for a docummt with II note on it in the Cus­
tomer Records folder -leavt the note opm for the next task.)

4. Add the name of the customer from activity 3 (user the note you left open) to the file named 'Experiment Report' located in the
folder 'User Assistance' in the folder 'Documents' on the Desktop, and dose the word processor. (Hint: If you do this Uy opming
the docummt file as nonnal, the system should ask if you WIlnt a shortcut made.)

. I ")
- (~C ~ •

5. You have received a request for the invoiced amount for a new PC - the price is stored in an account document file somewhere.

6.

7.

The PC was supplied by Viglen - a fact you recorded in a note attached to the file. Locate the file and open it. (Hint: You could

use the note sedrch feature.)

f 'th d ktop (someone J'ust mailed you with it) contains atation details for a publication currently The file 'New Re erence on e es ..,
dd thi t th 'J I Paper References' document - you last edited this a few days ago. (Hint: You could under development. A s 0 e ouma

use the file tracker.)

. . ed 'E . t Report' located in the folder 'User Assistance' in the folder 'Documents'
Record the current time In the file nam xpenmen . . .

. Id the shortcut that should have bem created In ActIVIty 4.) on the Desktop. (Hint: You cou use

8-2

Richard J. Keeble M t
., I Inf tion anagemen An Adaptive EnVIronment for Persona orma

Ph.D. Thesis
Mav 1999

Appendix B - Observation Notes
B-3

B.2. Observation Notes from Subject 2

Observation Log

Subject: ID No: __ 2 __ _
1.

2.

On the desktop there is a folder called 'Documents', which contains a folder called 'User Assistance', which has a file in it called

'Experiment ~ep~rt'. ~en the file and type your name where shown, then close the word processor; (Hint: Yov'lI n«tJ to do this
as normal, but It will provide the system with information used by the shortcut suggtster.)

You worked on a spreadsheet file called 1nvesbnents' a few days ago, but you can't remember where it is. Now a change needs

to be made - find the file, and alter the price of the Prudential (pRU) stock to 950.50, then close the spreadsheet; (Hint: Yov Q1IlLd
we the fik tracker.)

3. A couple of days ago, a customer requested a quote for accounting services. You attached a note to their record document,
which is in the Customer Records folder on the Desktop. The quote is £250, which needs to be inserted in their record docu­
ment; (Hint: Look for a document with a note on it in the Customer Records folder - view the note and ltIlW it wrnfor the nat tJuIc.J

4. Add the name of the customer from Activity 3 (use the note you left open) to the file named 'Experiment Report' Oocated in the
folder 'User Assistance' in the folder 'Documents'), and close the word processor. (Hint: If you do this fry optrting the document Jilt
as ncmnal, the system should ask if you want a shortcut rruuh.J

6~ ~"-'i_~J,'O, Sk>.J.oI I><.

5.

IAa
6.

7.

-~ ~'~
'a.<. (C~ ~I

You have received a request for information about a new PC. The information is in an invoice document somewhere. 1be PC

• was supplied \ly Viglen, which you recorded in a note attached to the file. Locate the file and open It. (Hint: You a1Ill.d use the

note starch jtJI.turt.J

The file 'New Reference' on the desktop contains a reference for a publication currently under development. Add it to the 1our­

nal Paper References' document - pretend you last edited this a few days ago. (Hint: You could use tht fik tracJcer.)

Qle .

Record the current time in the file named 'Experiment Report' (located in the folder 'User Assistance' in the folder 'Documents').

(Hint: You could use the shortcut tluJt should have been cnDtttl in Activity 4,)

uk,

~.s I.t",,', tt-l
~("~""~l

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Appendix B - Observation Notes
B-4

B.3. Observation Notes from Subject 3

Observation log

Subject: ID No: __ ~ __ _

1.

I~
2.

I~

On the desktop there is a folder called 'Documents' which contains a folder called 'Use Ass' tan ' hich ha fil·· , r IS ce , w s a e Ln It called
'Experiment ~e~rt'. O~en the file and type your name where shown, then dose the word processor; (Hint: You'll nwJ to do this
as normal, but It WIll provide the system with information used by the shortcut suggester.)

You worked on a spreadsheet file called 'Investments' a few days ago, but you can't remember where it is. Now a change needs

to be made - find the file, and alter the price of the Prudential (PRU) stock to 950.50, then dose the spreadsheet; (Hint: You could
use 1M fik tracker.)

3. A couple of days ago, a customer requested a quote for accounting services. You attached a note to their record document,

which is in the Customer Records folder on the Desktop. The quote is £250, which needs to be inserted in their record docu­

ment; (Hint: Lookfor a document with a note on it in the Customer Records folder - trinu the note and leave it opmfor the nLxt tJuk.)

~ h~ Ok..
J--b(.I.-\.-V ("""--+.(.

~'Yt..> M~

C·...sMc.h·~,...<; !j

4. Add the name of the customer from Activity 3 (use the note you left open) to the file named 'Experiment Report' (located in the

folder 'User Assistance' in the folder 'Documents'), and dose the word processor. (Hint: If you do this by opening the document file

as normal, the system should ask if you want a shortcut made.)

5. You have received a request for information about a new PC. The information is in an invoice document somewhere. The PC

6.

7.

• was supplied \ly Viglen, which you recorded in a note attached to the file. Locate the file and open it. (Hint: You could use the

note search jtatllre.)

01<- ,

The file 'New Reference' on the desktop contains a reference for a publication currently under development. Add it to the 1our­

nal Paper References' document - pretend you last edited this a few days ago. (Hint: You could use the fik traM.)

0(<..

Record the current time in the file named 'Experiment Report' (located in the folder 'User Assistance' in the folder 'Documents').

(Hint: You could use the shortcut thllt should Iurot been CTtJJttt1 in Activity 4.)

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
Mav 1999

Appendix B - Observation Notes

B.4. Observation Notes from Subject 4

Observation Log

Subject:
ID No: ---..I.t __

1.
On the desktop there is a folder called 'Documents' which contains a folder called 'U Ass' ta ' hich ha fil"

' ser 15 nee, w 5 a e In It called
'Experiment ~ep~rt'. ~en the file and type your name where shown, then dose the word processor; (Hint: You'll nud to do this
as nOmJlll, but It will proVIde the syston with injomuJtion ustd by the shortcut suggester.)

2. You worked on a spreadsheet file called 1nvestments' a few days ago, but you can't remember where it is. Now a change needs

to be made - find the file, and alter the price of the Prudential (PRU) stock to 950.50, then dose the spreadsheet; (Hint: YOII could
use the Jilt tracker.)

3. A couple of days ago, a customer requested a quote for accounting services. You attached a note to their record document,

which is in the Customer Records folder on the Desktop. The quote is £250, which needs to be inserted in their record docu­
ment; (Hint: Look for a document with a note on it in the Customer Records folder - viroJ the note and letroe it oprnfor the nat task.)

OIL

4. Add the name of the customer from Activity 3 (use the note you left open) to the file named 'Experiment Report' Oocated in the
folder 'User Assistance' in the folder 'Documents'), and dose the word processor. (Hint: If you do this by opening the docummt Jilt
as nomJlll, the syston should ask if you want a shortcut made.)

\~'-~ D~ ("'-"'.~: ')
.~ .

~~\.~ lACe

5. You have received a request for information about a new Pc. The information is in an invoice document somewhere. The PC

6.

7.

I~

• was supplied h Viglen, which you recorded in a note attached to the file. Locate the file and open it. (Hint: You could IlSt the
nolt seIIrchftaturt.)

The file 'New Reference' on the desktop contains a reference for a publication currently under development. Add it to the 1our­

nal Paper References' document - pretend you last edited this a few days ago. (Hint: You could IlSt the Jilt trackrr.)

Record the current time in the file named 'Experiment Report' (located in the folder 'User Assistance' in the folder 'Documents1.

(Hint: You could use the shortcut thot should luzvt been created in Activity 4.)

B-5

Richard J- Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Appendix B - Observation Notes

B.S. Observation Notes from Subject 5

Observation log

Subject: IDNo:

1.

I~
2.

3.

On the desktop there is a folder called 'Documents' which contains a fold lied 'U A __ • ,. • . . ,er ca ser n=lstance , which has a file In It called
'Expenment Report' 0 th fil d . . . ~n e e an type your name where shown, then close the word processor; (Hint: You'll nmi to do this
as normal, but It will prOVIde the system with information used by the shortcut suggested

You worked o~ a spre~dsheet file called 'Investments' a few days ago, but you can't remember where it is. Now a change needs

to be made - find the file, and alter the price of the Prudential (PRU) stock to 950.50, then close the spreadsheet; (Hint: YOII could
use the file tracker.)

A couple of days ago, a customer requested a quote for accounting services. You attached a note to their record document,

which is in the Customer Records folder on the Desktop. The quote is £250, which needs to be inserted in their record docu­

ment; (Hint: Look Jar a document with a note on it in the Customer Records folder - view the note and ItlZVe it open for the next wk.)

4. Add the name of the customer from Activity 3 (use the note you left open) to the file named 'Experiment Report' (located in the

folder 'User Assistance' in the folder 'Documents'), and close the word processor. (Hint: If you do this by opening the document file
as normal, the system should ask if you want a shortcut made.)

~.
"'? (0

5. You have received a request for information about a new Pc. The information is in an invoice document somewhere. The PC

• was supplied py Viglen, which you recorded in a note attached to the file. Locate the file and open it. (Hint: You could use the

note search jtJIturt.J

8-6

6. The file 'New Reference' on the desktop contains a reference for a publication currently under development. Add it to the 'Jour­

nal Paper References' document - pretend you last edited this a few days ago. (Hint: YOII collld list the file traM.)

/\~

7.

JPe
.(il

~

Record the current time in the file named 'Experiment Report' (located in the folder 'User Assistance' in the folder 'Documents').

(Hint: You could list the shortcut that should havt been created in ActiTJity 4.)

D~-

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Appendix B - Observation Notes

B.6. Observation Notes from Subject 6

Observation Log

Subject: ID No: __ b-=--__
1.

2.

On the. desktop there is a folder called 'Documents', which contains a folder called 'User Assistance', which has a file in It called
'Expenment Report' Op th fil d en e e an type your name where shown, then close the word processor; (Hint: You'll n«d to do this
as normal, but It WIll proVIde the system with information used by the shortcut suggester.)

(lfV"'fNcA

You worked on a spreadsheet file called 'Investments' a few days ago, but you can't remember where it is. Now a change needs

to be made - find the file, and alter the price of the Prudential (PRU) stock to 950.50, then close the spreadsheet; (Hint: You could
use the file tracker.)

3. A couple of days ago, a customer requested a quote for accounting services. You attached a note to their record document,

which is in the Customer Records folder on the Desktop. The quote is £250, which needs to be inserted in their record docu­

ment; (Hint: Look for a document with a note on it in the Customer Records folder - view the note and leave it open for tIlL next /Qsk.J

4. Add the name of the customer from Activity 3 (use the note you left open) to the file named 'Experiment Report' (located in the

folder 'User Assistance' in the folder 'Documents'), and close the word processor. (Hint: If you do this by opening tIlL document filt

as normal, tIlL system should ask if you want a shortcut made.)

5. You have received a request for information about a new Pc. The information is in an invoice document somewhere. The PC

• was supplied by Viglen, which you recorded in a note attached to the file. Locate the file and open it. (Hint: You could \1St tIlL
•

note starch feature.>

8-7

6. The file 'New Reference' on the desktop contains a reference for a publication currently under development. Add it to the lour­

nal Paper References' document - pretend you last edited this a few days ago. (Hint: You could use the file trackrr.)

QL.

7.
Record the current time in the file named 'Experiment Report' (located in the folder 'User Assistance' in the folder 'Documents').

(Hint: You could use the shortcut that should have been created in Activity 4.)

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesis
May 1999

Appendix B - Observation Notes
8-8

B.7. Observation Notes from Subject 7

Observation Log

Subject: ID No: __ 7!.......-__

1.

2.

On the desktop there is a folder called 'Documents', which contains a folder called 'User Assistance', which has a file in it called

'Experiment Report'. Open the file and type your name where shown, then dose the word processor; (Hint: You'll need to do this
as nonnal, but it will provide the system with information ustd by the shortcut suggtsttr.)

You worked on a spreadsheet file called 1nvesbnents' a few days ago, but you can't remember where it is. Now a change needs

to be made - find the file, and alter the price of the Prudential (PRU) stock to 950.50, then dose the spreadsheet; (Hint: You rould
use the file trackn-.)

I~ I '"

3. A couple of days ago, a customer requested a quote for accounting services. You attached a note to their record document,

which is in the Customer Records folder on the Desktop. The quote is £250, which needs to be inserted in their record docu­

ment; (Hint: Look for Q document with a note on it in the Customu Records foldtr - view the note and ItllVt it oprnfor the nut task.)

" .,
"'""'""- \ ""'-, ~< 'C"

/'Iti!~ci 9k..-c."'h~~ ~

4. Add the name of the customer from Activity 3 (use the note you left open) to the file named 'Experiment Report' (located in the

folder 'User Assistance' in the folder 'Documents'), and dose the word processor. (Hint: If you do this by opening the document Jilt
as nonnal, the system should ask if you want a shortcut made.)

h....-'\. ~,.., .~r

(,...~ c~d~

5. You have received a request for information about a new PC. The information is in an invoice document somewhere. The PC

6.

7.

, was supplied py Viglen, which you recorded in a note attached to the file. Locate the file and open it (Hint: You rould use the

note $arch jetlhlre.)

The file 'New Reference~ on the desktop contains a reference for a publication currently under development. Add it to the 1our­
nal Paper References' document - pretend you last edited this a few days ago. (Hint: You could USt the Jilt trru:Jcu.)

. . th fil ed 'Expenm' ent Report' (located in the folder 'User Assistance' in the folder 'Documents'). Record the current time In e e nam
(Hint: You could use the shortcut tlult should have betn cretJted in Activity 4,)

I~

Richard J. Keeble t
An Adaptive Environment for Personal Infonnation Managemen

Ph.D. Thesis
Mav 1999

Appendix B - Observation Notes

B.8. Observation Notes from Subject 8

Observation Log

Subject:
ID No: __ 0 __ _

1. On the desktop there is a folder called 'Documents', which contains a folder called 'User Assistance', which has a file in it called

'Experiment Report'. Open the file and type your name where shown, then close the word processor; (Hint: You'll netd to do this
as normal, but it will provide tht system with infimnation used by tht shortcut suggester.)

2. You worked on a spreadsheet file called 1nvestments' a few days ago, but you can't remember where it is. Now a change needs

to be made - find the file, and alter the price of the Prudential (PRU) stock to 950.50, then close the spreadsheet; (Hint: YOII C%1IlId
use the fik tracJcn-.J

3. A couple of days ago, a customer requested a quote for accounting services. You attached a note to their record document,

which is in the Customer Records folder on the Desktop. The quote is £250, which needs to be inserted in their record docu­

ment; (Hint: Look for a document with a note on it in tht Customer Records folder - view tht note and /eInIe it open for the nut wkJ

Ot~ ~.4.. ~~~ktJ'

~....y>hf'l. (
\

4. Add the name of the customer from Activity 3 (use the note you left open) to the file named 'Experiment Report' (located in the

folder 'User Assistance' in the folder 'Documents'), and close the word processor. (Hint: If you do this by opening the document file
as normal, tht system should ask if you want a shortcut made.)

Dk
/ sic

S. You have received a request for information about a new Pc. The information is in an invoice document somewhere. The PC

was supplied py Viglen, which you recorded in a note attached to the file. Locate the file and open it. (Hint: You could use the
note starch /tatun.)

6.

7.

. ~ prob~ . .

The file 'New Reference' on the desktop contains a reference for a publication currently under development. Add it to the 'jour­

nal Paper References' document - pretend you last edited this a few days ago. (Hint: You could use tht file tradcer.)

-Jp /C... •

Record the current time in the file named 'Experiment Report' Oocated in the folder 'User Assistance' in the folder 'Documents').

(Hint: You could use tht shortcut that should havt been created in Activity 4.)

8-9

Richard J. Keeble t
An Adaptive Environment for Personal Information Managemen

Ph.D. Thesis
Mav 1999

Appendix C - Transcripts of Debriefing Interviews C-l

Appendix C - Transcripts of Debriefing Interviews

This appendix contains transcripts of the semi-structured debriefing interviews

conducted after each of the users accomplished the tasks shown in Appendix A.1.

Richard J. Keeble . M . ement
An Adaptive Environment for Personal InformatIOn anag

PhD. ThesIs
\lJ" lYYo..)

Appendix C - Transcripts of Debriefing Interviews
C-2

C.l. Transcript from Debriefing Interview with Subject 1

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

Did you - did you, get it, you know?

Yeah, yeah - it's just something to organise your work - to do some of the, er, dirty work for
you, which is

What like?

I mean the, this '" (indicates list of activities) is ...

D'you mean the detail, of all sort of the things kicking around it, kind of obscured ...

Sorry?

So, all the documents, and the ...

Yeah, document organisation ...

... those instructions kind of distracted from what it actually does? (I'd got a [lit nl}lfll~('d hat'­

perhaps I thought the subject was unclear about the difference between the instrllctions and the experi­
ment)

It's a, I mean, like, it's also a reminder, and you do some stuff, and you sometimes forget that

you have to continue, and it reminds you what to do. That's what I think it does.

E: (back on track now) With the interface that it's got, you raised some points about, like, double­

clicking where buttons should be?

S: Yeah, 'cos - I mean, for a user, double-clicking may not always be, their thing, 'cos they'd like

to press some button - press this button, that button.

E: Right - it's a good point. So apart from that can you think of any way you might improve it?

S: If you have a messages like suggestions, or something, I'd prefer to put them like in, you

know, one of those things - Bing! (impersonates Windows cilime on message box) - would you like

to do this, yes or no, yeah?

E: Yeah - a more common way of saying - I have a suggestion for you?

S: Yeah, so it's like, it's not like you have to come back to see if it has a suggestion for you. It will

come to you.

E: Have you used the little Microsoft Office thing, where it puts a little lightbulb, to say' ah, I\'e

spotted something you've done'?

S: Yeah.

E: Do you mean that kind of thing, 'cos that's like a little \\"indo\\', and this symbol clears - (illdi­

cates the message area in the 'toolbar' window)

S: Yeah, like that's a ...

Richard J. Keeble
An Adaptive Environment for Personal Information Management

Ph.D. Thesl';
\ 1.1\ 1 C)C)lj

Appendix C - Transcripts of Debriefing Interviews
C-2

C.l. Transcript from Debriefing Interview with Subject 1

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

Did you - did you, get it, you know?

Yeah, yeah - it's J'ust something to' k -organIse your wor - to do some ot the, er, dirt\ work for
you, which is '" -

What like?

I mean the, this ... (indicates list of activities) is ...

D'you mean the detail, of all sort of the things kicking around it, kind of obscured ...

Sorry?

So, all the documents, and the ...

Yeah, document organisation ...

... those instructions kind of distracted from what it actually does? (I'd got a bit COI~fIlSt'd here­

perhaps I thought the subject was unclear about the d~ffl!rellct' between the instrllctioll~ alld the npcri­
ment)

It's a, I mean, like, it's also a reminder, and you do some stuff, and you sometimes forget that

you have to continue, and it reminds you what to do. That's what I think it does.

(back on track now) With the interface that it's got, you raised some points about, like, double­

clicking where buttons should be?

Yeah, 'cos - I mean, for a user, double-clicking may not always be, their thing, 'cos tlw\,'d like

to press some button - press this button, that button.

Right - it's a good point. So apart from that can you think of any way you might improve it?

If you have a messages like suggestions, or something, I'd prefer to put them like in, you

know, one of those things - Bing! (impersonates Windows chime on message box) - would YOLI like

to do this, yes or no, yeah?

Yeah - a more common way of saying - I have a suggestion for you?

Yeah, so it's like, it's not like you have to corne back to see if it has a suggestion for you. It will

corne to you.

Have you used the little Microsoft Office thing, where it puts a little lightbulb, to say 'ah, ['\'{>

spotted something you've done'?

Yeah.

Do you mean that kind of thing, 'cos that's like a little window, and this symbol clears - (illdi­

cates the message area in the 'toolbar' window)

Yeah, like that's a ...

Richard J. Keeble .
An Adaptive Environment for Personal InformatlOn Management

PhD. The"!"'
\ 1.1\ lqCl'1

Appendix C - Transcripts of Debriefing Interviews
C-3

E: Something even more prominent than that, would you say?

5: Yeah, 'cos sometimes I see, that one (the message line) stays - does it stay?
~ -

E: Erm - what, you mean in between other options, other operations?

5: Yeah.

E: Yes it does.

5: It stays, because that one stays, if you don't see it on the spot, if you do some other editing

stuff or like that it will stay until you see it, until you click it - if you don't click it, it won't go.

So, it may take time to see that one, because still, in the corner, I mean you're using two ...
(windows) So ...

E: Do you think that if Windows NT had features like that you would actually use them:

5: Sorry?

E: If Windows NT did actually have features like that, like you could put notes on icons, search

for things, and use a more detailed file history - do you think you would use actually them?

Or would you not be bothered?

5: Er - well, I mean if something like for example Viglen (referring to note searching task) if yOll,

sometimes you want to search a word, a key word in a file, yes, it could be helpful, so I could

E: Well, with the existing system, you can, er NT will let you search for words in a file, but, I

suppose my idea was that you don't always want to put words in a file, you'd rather just,

y'know, like you stick a note on something, you don't want to write in a book ...

5: Oh that one, yes, that's, a like visual effect, that's even better because if you know, for exam­

ple, the general location of the file, and you open it (a window) and find a list of files, instead of

going - er, this file (mimes browsing) oh, the name is not full, let's click and so it will expand

the name, but if you found the icon then something (claps hands together) it's just there, that's

good, a visual effect.

E: Well, thankyou very much for your help.

5: No problem, any time.

E: Wasn't too bad, was it?

5: No, no, that's no bother at all.

E: I can see you've managed to uncover all sorts of problems ...

Richard J. Keeble t
An Adaptive Environment for Personal Information Managemen

Ph.D. The,,\"
\1.1\ I\.N~

Appendix C - Transcripts of Debriefing Interviews
C --+

C.2. Transcript from Debriefing Interview with Subject 2

E:

5:

E:

5:

E:

5:

E:

5:

E:

5:

E:

5:

There you go ... and that's the end of the activities.

I want one of these - it's quite good.

So, do you get it?

Yes, I think I did - I think I did. It's quite handy ...

So you ...

... it's like, like using - I don't know - it's adding things that you use on \'our desk, on \'llUr
proper desk, but that isn't available ... '-

So, do you see what the mechanisms are?

Yes, I can, you can put another, the computer's got a structure for storing the information, but

you can like make up your own structure with your post-it notes and things ... so ... just a dif­

ferent way of referencing information, because your way of doing it, 'cos everyone has their

own way of doing it. That's a way of imposing your own way of doing it.

Urn, apart from that, the interface, the way it's presented ... what did you think of that, is there

anything you'd do differently ... or found strange, at all?

No, I don't think so ... the, the little yellow notes, were, obviously little yellow notes ... erm ...

... providing you knew that they were ...

Yeah, well I know ... there's nothing odd about that. The things were, the removing-it feature

was obvious ... I assume I can add a note (reaches for mouse to try it) to something can I ... right

yeah '" that's obvious (types a note on one of the desktop files) so that's contextual as well. It says

add note and remove note (referring to context menu option) unless it ... good. Yes, I think that

makes .. , sense. Does the, can you do any other, does it catch any other suggestions? Or just

that you've opened something more than one time?

E: At the moment, just the ... well, let's see, it's ... you've opened it more than, more than one

time, quite close together, in time .. , so less than sort of five or six minutes apart, I think, and

the file's located within two directories, at least. So you know, click-click, click-click, click­

click to open it, and then, done that twice within ten minutes, then it says d'you want this?

5: Oh ... so yes, that makes sense.

E: Apart from that erm ... so do you think you'd use it? If it was actually part of the system .. ,

5: Yes, I would. S'coo1.

E: Well, that concludes the interview. Thankyou very much.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD, The"i"
\1.1\ IlN4

Appendix C - Transcripts of Debriefing Interviews
c-~

C.3. Transcript from Debriefing Interview with Subject 3

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

s:

E:

There you go.

Is that it?

That's, that's it for the doing this, I'm just going to ask you a couple of questions.

Oh, okay.

Did you, did you, did you get what the software was trying to do, never mind about my

questions (the activities) did you kind of see what ...

Yeah, it's making a profile of me.

Yeah, sort of, I guess.

-It's being nosey, almost.

Well, yeah, it's trying to adapt your ... the files to you, really.

To what I use most? It's trying to provide a customised environment:

That sort of thing, yeah. Did you think the interface was alright ... any good or bad things?

It's just '" the usual. It's just the same, it's what you're used to.

Right, I guess. Well, that's part of the idea.

You know how to use it.

Erm. How do you think you might ... well ... would you use it, if NT came with features like

this as part of it? Do you think? Or would you not bother?

I'd probably use, you know where you do the bits about when you ... when you can't remem­

ber where you've stored a document, I do that all the time, and I can never find it, so that's a

good feature. Erm ... I don't know about the note thing.

Uhhuh.

Is that it?

Yeah, it is, thankyou very much.

Richard J. Keeble t
An Adaptive Environment for Personal Information Managemen

Ph.D. Th''-''­
\ \.1\ 14~)I.l

Appendix C - Transcripts of Debriefing Interviews C-b

C.4. Transcript from Debriefing Interview with Subject 4

E: That concludes the activities, I'll just ask you a couple of questions ...

S: Did you take ... oh, OK, I won't ask questions then ...

E: .. , again, I'm not testing you, it's just that ... once you'd got through my questions did that kind

of make sense ... did you get it?

S: Yeah, it was really good, actually ... I like this (indicates tlze 'toolbar' window), this is really use­

ful, and it's just there, isn't it, so you don't have to go ... I mean there is a file thing but you

have to go into ... and it's just there. I like the idea.

E: And you get, like, the idea of sticking a note on things ...

S: Yeah ... and ...

E: Looking around?

S: Looking for notes, yeah.

E: And the interface, did you thing it was alright ... and good or bad points, improvements you

would make?

S: It's ... it's ... no, because ... it's something that we're used to, in a way isn't it I suppose, it's not

too different ...

E: Do you think that if NT actually had features like this you'd use them:

S: Yes, they're not difficult to use. Did you note down the first, the time that I started:

E: No, but that's not really what I'm looking at ...

S: You weren't timing me then?

E: No, it's nothing like that. It's not a race.

S: I see ...

E: Thankyou very much.

Richard J. Keeble . Management
An Adaptive Environment for Personal InformatlO

n

PhD. Tlw \..:.
\ Ll\ 1 cjcjq

Appendix C - Transcripts of Debriefing Interviews

c.s. Transcript from Debriefing Interview with Subject 5

E:

s:

E:

s:

E:

s:

E:

s:

~~at's .the end of the activities, I'll just ask you a few questions ... do you '" kind of ... get what
It S trymg to do?

Yeah.

The various mechanisms?

It's using like, like the notes is assisting, extending some of the, extending the criteria bv

which you can search for items within the desktop, isn't it, it's user-configurable to the 'extent

that you can just chuck what you want in there as a key word, so that's, that's reallv cool ...

What did you think about the interface to it?

The interface, like ... that? (indicates toolbar)

Yeah, the ...

With this, particular ... I thought the button toolbar was pretty cool, but ... I think the Win­

dows 95-y sort of Windows environment, what would have been nice would han' been to

have ... like these as buttons, you know, with the task bar, yeah, just to keep it ... because

sometimes, lot of windows, it gets a bit ... erm .. , so obviously you're using some type of pas­

sive agent for that just to pick up on, on probably some rules, so ... I think that was realh' neat

actually what that does, and 'cos it does, it doesn't just suggest, it does it for !'ou, which is a

good thing.

E: Erm ... do you think that Windows NT had features like this in it already that you would ac­

tuall y use them?

S: Personally, no. Erm ... like, things like shortcuts and the desktop and so on, I tend not to cus­

tomise them by much at all, in fact, I'll just like use the start menu and that's that, but I can see

where, other people, like family members, might find it really useful. Definitely, I think that

some of these features, like definitely, that ... file tracker was a bit ... was ... file tracker was a

bit .. , dunno, not sure if that's useful, search notes is really good, erm ... suggestions ... yeah,

good. But the file tracker was a bit ." err. I would probably use search notes, but I doubt I'd

use that one at all, ever.

E: Why, what do you do, do you just tend to keep things organised?

S: Well I keep things organised in terms of where I locate my files and stuff, so I know exactly

where everything is, so yeah. But search notes is really good in terms of, like reminders if you

need to do something to a particular file of whate\'er you can just set up key \\'ords and just

do a big search and catch the particular set of files you want. It's good.

E: Thankyou very much for your time.

Richard J. Keeble
An Adaptive Environment for Personal Information Management

PhD. The"i"
\\.1\ 1 ljqq

Appendix C - Transcripts of Debriefing Interviews c -"

C.G. Transcript from Debriefing Interview with Subject 6

(The tape recording of this interview turned out to be of particularly bad quality,

as the batteries had begun to fade, combined with the fact that the subject's voice

was quite soft anyway - this is therefore as a good an approximation as possible.)

E: First of all, did you get it? Did you see what it was trying to do?

S: Yes .. , I quite liked the erm, file tracker, the when you've last edited thing, today, yesterday,

some days before ... I think, when you can't remember the name of a file you\'e edited, that'd

be quite useful ...

(some unclear dialoglle)

E: Do you think, or what do you think could be improved about the interface to it, or maybe the

ideas behind it?

S: I thought it was alright, looked OK ... erm ... well I don't know really. What do \'Oll mean?

E: One example was, the suggestions dialog, well, with this experiment YOll only ever see one

suggestion in it although it's actually a list, and some people said, erm ... perhap" that should

be highlighted straight away so you didn't have to select it?

S: Yeah, well I've seen that, one choice, and I've thought, select it and click the button, fair

enough. Selected it directly.

E: Erm ... if NT had features like that, in there as standard, do you think that you might use

them?

S: I don't know about the notes one, just, because it's not one of those things you're used to, but

the file tracker ... I'd use that, I think.

E: Thankyou very much for your time.

Richard J. Keeble . \\ nagement
An Adaptive Environment for Personal InformatIon. a

Ph.!) Thl'''i''
\ Ll', 1 ,;44

Appendix C - Transcripts of Debriefing Interviews
C-y

C.7. Transcript from Debriefing Interview with Subject 7

E: Right ... did you, sort of ... get what it was trying to go, and the mechanisms in if'

S: Yes, well it was trying to make my life easier, and just find things that I used quite often, and

say that there's a much easier way to get to them and do things with them.

E: Erm ... with your, when you said rather than have it say 'oh, I've got a suggestion' and then

leave you to look at it, do you think ... would you, would that interrupt you very much, do

you think? (Earlier, during the activities, the subject expressed the opinion that it ,col/ld hm't' bt't'll

preferable to have a direct suggestion made when the system Iloticed a duplicate tl((t'ss, ratht'r thall
having to check the suggestion afterwards.)

S: What if a box carne up, and ... ? Well, I suppose it could annoy you after a while if stuff kept

corning up and saying ... I think what you've got to get used to, is probabl!', I'm not used to

looking for status messages (the message line in the pselldo-toolbar willdow) so if you get, once,

once you're used to that being there and you just keep an eye on what's going on, then that's

probably quite a good way to do it, probably I just like the, the kind of phrased as a question

format that says 'would you like me to do this' and you can choose to ignore it if YOU want to.

Er ... you know, I don't know, I suppose I'm just used to, I suppose you get used to the Win­

dows API and the sort of central message box, popping up,

E: Erm ... if, if, if NT actually had features like this in it, do you think you would use them-:

S: Erm ... yes, because they're ... yeah, I think you would, just because it is, and if it's there, and

it's seamless then, you know ... if it makes life easier, then yeah.

E: Thanks for your time.

Richard J. Keeble f t' \111' 1'~l'nlL'nt
f P I In orma IOn. , "t:­An Adaptive Environment or ersona

Ph I) TlW"l"
\ 1.1 \' 1 9ci'l

Appendix C - Transcripts of Debriefing Interviews
C-IO

C.B. Transcript from Debriefing Interview with Subject 8

E: Right. Did you, kind of get what this system's trying to help ...

S: Yes, I did.

E: ... I mean, I think the main problem with this experiment's the directions, i~rd it ...

S: ... never mind about the directions, but that, that's \'ery good. That'~ extremeh' useful.

E: What did you think about the current interface to it?

S: I liked the interface, I thought it was ... clear, concise, easy to use, not too much information

came up on screen, so you weren't overwhelmed with information ...

E: Did you think ... erm, when it ... said 'oh I've got this suggestion' do you think that would,

would it be better for it to say 'do you want the shortcut made' and gi\'e :-ou the whole mes­

sage, or just say 'oh, there is a suggestion' and check it later if :-'ou want:

S: You could do it either way, but quite honestly, I enjoyed ha\'ing '" erm ... a about, the first bit,

the " 'do you want to' ... what ... because it was personable, it was as though it was spea"lJ1
h

to you, which I thought was good, I liked that.

E: Do you think there are some improvements that could be made to it a~ it current!\ c\ists ... is
there anything you would change about it.

S: No '" it sits nice and snugly, without taking up too much space, so it's not obtrusi\'e ... is, is

that a particularly big screen? What's the screen size?

E: It's a sort of ... Super YGA resolution, so not huge.

S: No, I can't think of anything I'd suggest.

E: If Windows NT had features like this in it, as standard, you know properly integrated into the

system, do you think you'd use them?

S: Yes I would, yeah. Absolutely, there's far too much opening and closing of fill'''', and going

back and forth, yes.

E: Thankyou very much.

Richard J. Keeble . \11111 'l'l11l'nt
An Adaptive Environment for Personal InformatlOn. , ,~

Ph.D T1w-..l-..
\ I ,\ \. 1 'I'i')

	285089_0000
	285089_0001
	285089_0002
	285089_0003
	285089_0004
	285089_0005
	285089_0006
	285089_0007
	285089_0008
	285089_0009
	285089_0010
	285089_0011
	285089_0012
	285089_0013
	285089_0014
	285089_0015
	285089_0016
	285089_0017
	285089_0018
	285089_0019
	285089_0020
	285089_0021
	285089_0022
	285089_0023
	285089_0024
	285089_0025
	285089_0026
	285089_0027
	285089_0028
	285089_0029
	285089_0030
	285089_0031
	285089_0032
	285089_0033
	285089_0034
	285089_0035
	285089_0036
	285089_0037
	285089_0038
	285089_0039
	285089_0040
	285089_0041
	285089_0042
	285089_0043
	285089_0044
	285089_0045
	285089_0046
	285089_0047
	285089_0048
	285089_0049
	285089_0050
	285089_0051
	285089_0052
	285089_0053
	285089_0054
	285089_0055
	285089_0056
	285089_0057
	285089_0058
	285089_0059
	285089_0060
	285089_0061
	285089_0062
	285089_0063
	285089_0064
	285089_0065
	285089_0066
	285089_0067
	285089_0068
	285089_0069
	285089_0070
	285089_0071
	285089_0072
	285089_0073
	285089_0074
	285089_0075
	285089_0076
	285089_0077
	285089_0078
	285089_0079
	285089_0080
	285089_0081
	285089_0082
	285089_0083
	285089_0084
	285089_0085
	285089_0086
	285089_0087
	285089_0088
	285089_0089
	285089_0090
	285089_0091
	285089_0092
	285089_0093
	285089_0094
	285089_0095
	285089_0096
	285089_0097
	285089_0098
	285089_0099
	285089_0100
	285089_0101
	285089_0102
	285089_0103
	285089_0104
	285089_0105
	285089_0106
	285089_0107
	285089_0108
	285089_0109
	285089_0110
	285089_0111
	285089_0112
	285089_0113
	285089_0114
	285089_0115
	285089_0116
	285089_0117
	285089_0118
	285089_0119
	285089_0120
	285089_0121
	285089_0122
	285089_0123
	285089_0124
	285089_0125
	285089_0126
	285089_0127
	285089_0128
	285089_0129
	285089_0130
	285089_0131
	285089_0132
	285089_0133
	285089_0134
	285089_0135
	285089_0136
	285089_0137
	285089_0138
	285089_0139
	285089_0140
	285089_0141
	285089_0142
	285089_0143
	285089_0144
	285089_0145
	285089_0146
	285089_0147
	285089_0148
	285089_0149
	285089_0150
	285089_0151
	285089_0152
	285089_0153
	285089_0154
	285089_0155
	285089_0156
	285089_0157
	285089_0158
	285089_0159
	285089_0160
	285089_0161
	285089_0162
	285089_0163
	285089_0164
	285089_0165
	285089_0166
	285089_0167
	285089_0168
	285089_0169
	285089_0170
	285089_0171
	285089_0172
	285089_0173
	285089_0174
	285089_0175
	285089_0176
	285089_0177
	285089_0178
	285089_0179
	285089_0180
	285089_0181
	285089_0182
	285089_0183
	285089_0184
	285089_0185
	285089_0186
	285089_0187
	285089_0188
	285089_0189
	285089_0190
	285089_0191
	285089_0192
	285089_0193
	285089_0194
	285089_0195
	285089_0196
	285089_0197
	285089_0198
	285089_0199
	285089_0200
	285089_0201
	285089_0202
	285089_0203
	285089_0204
	285089_0205
	285089_0206
	285089_0207
	285089_0208
	285089_0209
	285089_0210
	285089_0211
	285089_0212
	285089_0213
	285089_0214
	285089_0215
	285089_0216
	285089_0217
	285089_0218
	285089_0219
	285089_0220
	285089_0221
	285089_0222
	285089_0223
	285089_0224
	285089_0225
	285089_0226
	285089_0227
	285089_0228
	285089_0229
	285089_0230
	285089_0231
	285089_0232
	285089_0233
	285089_0234
	285089_0235
	285089_0236
	285089_0237
	285089_0238
	285089_0239
	285089_0240
	285089_0241
	285089_0242
	285089_0243
	285089_0244
	285089_0245
	285089_0246
	285089_0247
	285089_0248
	285089_0249
	285089_0250
	285089_0251
	285089_0252
	285089_0253
	285089_0254
	285089_0255
	285089_0256
	285089_0257
	285089_0258
	285089_0259
	285089_0260
	285089_0261
	285089_0262
	285089_0263
	285089_0264
	285089_0265
	285089_0266
	285089_0267
	285089_0268
	285089_0269
	285089_0270
	285089_0271
	285089_0272
	285089_0273
	285089_0274
	285089_0275
	285089_0276
	285089_0277
	285089_0278
	285089_0279
	285089_0280
	285089_0281
	285089_0282
	285089_0283
	285089_0284
	285089_0285
	285089_0286
	285089_0287
	285089_0288
	285089_0289
	285089_0290
	285089_0291

