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Abstract

The boundary element method (BEM) has become a powerful method for the numerical

solution of boundary-value problems (BVPs), due to its ability (at least for problems with

constant coefficients) of reducing a BVP for a linear partial differential equation (PDE)

defined in a domain to an integral equation defined on the boundary, leading to a simplified

discretisation process with boundary elements only. On the other hand, the coefficients

in the mathematical model of a physical problem typically correspond to the material

parameters of the problem. In many physical problems, the governing equation is likely to

involve variable coefficients. The application of the BEM to these equations is hampered

by the difficulty of finding a fundamental solution.

The first part of this thesis will focus on the derivation of the boundary integral equation

(BIE) for the Laplace equation, and numerical results are presented for some examples

using constant elements. Then, the formulations of the boundary-domain integral or

integro-differential equation (BDIE or BDIDE) for heat conduction problems with variable

coefficients are presented using a parametrix (Levi function), which is usually available.

The second part of this thesis deals with the extension of the BDIE and BDIDE formu-

lations to the treatment of the two-dimensional Helmholtz equation with variable coef-

ficients. Four possible cases are investigated, first of all when both material parameters

and wave number are constant, in which case the zero-order Bessel function of the second

kind is used as fundamental solution. Moreover, when the material parameters are variable

(with constant or variable wave number), a parametrix is adopted to reduce the Helmholtz

equation to a BDIE or a BDIDE. Finally, when material parameters are constant (with

variable wave number), the standard fundamental solution for the Laplace equation is

used in the formulation.

In the third part, the radial integration method (RIM) is introduced and discussed in

detail. Modifications are introduced to the RIM, particularly the fact that the radial inte-

gral is calculated by using a pure boundary-only integral which relaxes the “star-shaped”

requirement of the RIM. Then, the RIM is used to convert the domain integrals appearing

in both BDIE and BDIDE for heat conduction and Helmholtz equations to equivalent

boundary integrals. For domain integrals consisting of known functions the transforma-

tion is straightforward, while for domain integrals that include unknown variables the

transformation is accomplished with the use of augmented radial basis functions (RBFs).



iii

The most attractive feature of the method is that the transformations are very simple and

have similar forms for both 2D and 3D problems.

Finally, the application of the RIM is discussed for the diffusion equation, in which the

parabolic PDE is initially reformulated as a BDIE or a BDIDE and the RIM is used to

convert the resulting domain integrals to equivalent boundary integrals. Three cases have

been investigated, for homogenous, non-homogeneous and variable coefficient diffusion

problems.
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Chapter 1

Introduction

The boundary element method (BEM) has become an efficient and popular alternative to

the finite element method (FEM) because of its ability, at least for some problems with

constant coefficients, of reducing a boundary-value problem (BVP) for a linear partial

differential equation (PDE) defined in a domain to an integral equation defined on the

boundary, leading to a simplified discretisation process with boundary elements only. The

main requirement for the reduction of the PDE to a boundary integral equation (BIE) is

that a fundamental solution to the PDE must be available. Such fundamental solutions

are well known for many PDEs with constant coefficients, see [1–6], but are not generally

available when the coefficients of the original PDE are variable. The solution of PDEs

with variable coefficients is important in many practical engineering problems and there

is an effort to develop BEM formulations to treat these problems, see [7].

In the last three decades, many researchers proposed formulations for the application of

the BEM for PDEs with variable coefficients. Although some success has been achieved,

this has been limited to specific forms of the coefficients for some engineering problems.

However, this is hampered by the difficulty of finding appropriate fundamental solutions

for general forms of the coefficients.

In this thesis, we investigate mathematical formulations leading to a boundary-domain

integral and integro-differential equations (BDIE and BDIDE) based on the use of a

parametrix (Levi function), which is usually available, for three important problems in

heat conduction, wave propagation and diffusion.

1
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1.1 Aims and Objectives

The motivation of this research is to derive BDIE and BDIDE formulations to represent

PDEs with variable coefficients. The radial integration method (RIM) is then used to

convert the domain integrals appearing in both BDIE and BDIDE to equivalent boundary

integrals. This is achieved through studying three problems, based on Laplace, Helmholtz

and diffusion equations with variable coefficients. These approaches allowed to derive

boundary-only integral equations for such problems. Numerical examples are presented

for several simple problems with square and circular domains, for which exact solutions

are available. It is shown that the present methods produce accurate results even with

coarse meshes. The numerical results also show that satisfactory results and convergence

are obtained with mesh refinement.

1.2 Outline of contributions of this thesis

The main contributions to knowledge of this thesis can be summarised in the following

points:

1) Derivation of BDIE and BDIDE formulations for stationary heat transfer in isotropic

media associated with Dirichlet, Neumann and mixed boundary conditions.

2) Extension of the BDIE and BDIDE formulations to the treatment of the two-dimensional

Helmholtz equation with variable coefficients.

3) Modifications have been introduced to the RIM particularly the fact that the radial

integral is calculated by using a pure boundary-only formulation which relaxes the “star-

shaped” requirement of the RIM, as the straight path from the source point to any field

point will always exist.

4) A new type of boundary-only integral equation technique is developed for the non-

homogeneous heat conduction problems with variable coefficients based on the use of a

parametrix. The RIM is used to convert the domain integrals appearing in both BDIE

and BDIDE to equivalent boundary integrals.

5) A new type of boundary-only integral equation technique is developed for the Helmholtz

equation when the material parameters and wave number vary within the medium. The

RIM is used to convert the domain integrals appearing in both BDIE and BDIDE to

equivalent boundary integrals.

6) Derivation of the BDIE and BDIDE formulations for non-homogeneous diffusion equa-
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tion with variable coefficients. The RIM is used to convert the domain integrals appearing

in both BDIE and BDIDE to equivalent boundary integrals.

1.3 Summary of the thesis

The present chapter is the first introductory part of the thesis. It gives some preliminary

background information about the subject, presents the aims and objectives of the re-

search, outlines the contributions of the present thesis and provides the structure for the

remaining eight chapters.

Chapter 2 presents the boundary integral equation formulation for solving two-dimensional

BVPs with mixed boundary conditions. The BEM is then applied to solve the correspond-

ing BIE, with the boundary discretised by using constant elements.

The third chapter provides the BDIE and BDIDE formulations for stationary heat transfer

in isotropic materials with variable coefficients associated with Dirichlet, Neumann and

mixed boundary conditions. The Neumann BVP is not unconditionally and uniquely

solvable and neither is the corresponding integral equation. Therefore, the resulting system

of linear algebraic equations will be either singular or ill-conditioned. This problem is

treated using a perturbation technique.

Chapter 4 aims to extend the BDIE and BDIDE formulations to the treatment of the

two-dimensional Helmholtz equation with variable coefficients. Four possible cases are

investigated, first of all when both material parameters and wave number are constant,

in which case the zero-order Bessel function of the second kind is used as fundamental

solution. Moreover, when the material parameters are variable (with constant or variable

wave number), a parametrix is adopted to reduce the Helmholtz equation to a BDIE or

BDIDE. However, when material parameters are constant (with variable wave number),

the standard fundamental solution for the Laplace equation is used in the formulation. In

order to show the accuracy of these methods, some test examples with square and circular

domains are given.

In Chapter 5, the RIM is introduced and discussed in detail. For domain integrals consist-

ing of known functions the transformation into boundary integrals is straightforward, while

for domain integrals that include unknown variables the transformation is accomplished

with the use of radial basis functions (RBFs) augmented by polynomials to approximate

the unknown quantities. The most attractive feature of the method is that the transfor-
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mations are very simple and have similar forms for both 2D and 3D problems. It can also

remove various singularities appearing in the domain integrals, and treat different types

of domain integrals in a unified way since it does not resort to particular solutions as in

the dual reciprocity method (DRM). Some numerical examples are given to demonstrate

the efficiency of the presented method.

Chapter 6 presents the application of the RIM to convert the domain integrals appearing in

both BDIE and BDIDE to equivalent boundary integrals. Then, a new type of boundary-

only integral equation technique is developed for the non-homogeneous heat conduction

problems with variable coefficients.

In Chapter 7 the RIM is used again to convert the domain integrals appearing in both

BDIE and BDIDE to equivalent boundary integrals. Then, a new type of boundary-only

integral equation technique is developed for the non-homogeneous Helmholtz equation

when the material parameters and wave number vary within the medium.

Chapter 8 presents the derivation of BDIE and BDIDE formulations for the parabolic

time dependent diffusion equation. Then, the RIM is used to convert the domain integrals

appearing in both BDIE and BDIDE to equivalent boundary integrals. Moreover, three

possible cases are investigated, homogenous, non-homogeneous and variable coefficient

diffusion equations.

Finally, Chapter 9, summarises the conclusions drawn as a result of the research work

presented herein. This chapter also discusses some suggestions for future work.



Chapter 2

The boundary element method

The boundary element method (BEM) is an important computational tool used by re-

searchers in many fields in the physical and engineering sciences [4].

The BEM is one of the methods for the numerical solution of boundary integral equations.

It presents many advantages, first of all, only the boundary of the domain needs to be

discretised. Especially in two dimensions, where the boundary is just a curve, this allows

very simple data input and storage methods. Also, the smaller computer time due to a

lesser number of nodes and elements (but a fully populated matrix). Moreover, high accu-

racy and the stability of numerical computations because of the utilization of fundamental

solutions. Furthermore, the BEM method has another important advantage in the case

of problems with infinite or semi-infinite domains. Only the finite surface of the infinite

domain has to be discretised for these problems, and the solution at any arbitrary point

in the domain can be found after determining the unknown boundary data, see [5].

In order to reduce a boundary-value problem (BVP) for a partial differential equation

(PDE) to a boundary-integral equation useful for numerical implementation, the neces-

sary condition is the knowledge of the fundamental solution of the governing differential

operator. Such fundamental solutions are well known for many PDEs with constant coef-

ficients, see [1–6].

The boundary is discretised by elements, where the continuous function and its normal

derivative along the boundary are approximated using interpolation functions. Many

types of interpolation functions (constant, linear and quadratic) have been implemented

to arrive at a system of linear algebraic equations, but this system unlike FEM is fully

populated [1–6].

5
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In the present chapter, the boundary integral formulation for the Laplace equation will

be derived, and then the BEM will be implemented. Numerical examples are presented

for three problems with different geometries, for which exact solutions are available, to

demonstrate the accuracy of the BEM.

2.1 Two-dimensional Laplace’s equation

Perhaps a good starting point for introducing the BEM is through solving BVPs governed

by Laplace’s equation for a two-dimensional bounded body Ω, with prescribed temperature

ū(x) on part ∂DΩ of the boundary ∂Ω and prescribed heat flux t̄(x) on the remaining ∂NΩ

part of ∂Ω:

∇2u =
∂2u

∂x21
+

∂2u

∂x22
= 0, x ∈ Ω. (2.1)

subject to boundary conditions:

u(x) = ū(x), x ∈ ∂DΩ, (2.2)

q =
∂u

∂n
(x) = t̄(x), x ∈ ∂NΩ, (2.3)

where ∇2 = ∇·∇ is the Laplace operator, u is the dependent variable, x1, x2 are cartesian

coordinates of the point x =(x1, x2), n(x) is the external normal vector to the boundary

∂Ω, and ū(x) and t̄(x) are known functions on the Dirichlet part ∂DΩ and the Neumann

part ∂NΩ, respectively.
 

 

 

Ω 

n 

   ∂NΩ    ∂DΩ 

(∂u/∂n is specified here) (u is specified here) 

Figure 2.1: Laplace’s equation in two dimensions for a bounded region Ω
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2.2 Two-dimensional boundary integral equation

The fundamental solution of the two-dimensional Laplace equation with source point at

y = (y1, y2) is [6, 8],

F (x, y) =
1

2π
ln r, (2.4)

where r = |x− y| =
√

(y1 − x1)2 + (y2 − x2)2 .

In the BEM formulation, the problem is reduced from within the domain to its boundary.

We use the well-known Green’s second identity to do this, see e.g. [8–10],

∫
Ω
(u∇2v − v∇2u)dΩ =

∫
∂Ω

(u
∂v

∂n
− v

∂u

∂n
)dΓ (2.5)

Here v, u have continuous first and second derivatives.

Let u satisfy Eq.(2.1), i.e. ∇2u = 0, everywhere in the solution domain Ω. Then, take

v(x) as the fundamental solution F (x, y) which satisfies ∇2
x F (x, y) = 0 everywhere except

at the point x = y, where F (x, y) is singular. If y does not lie in the region Ω̄ = Ω ∪ ∂Ω,

then

∫
∂Ω

[
u(x)

∂F (x, y)

∂n(x)
− F (x, y)

∂u(x)

∂n(x)

]
dΓ(x) = 0, y /∈ Ω ∪ ∂Ω. (2.6)

In order to use Eq.(2.5) when the point y lies in the region Ω∪ ∂Ω, we must deal with the

singularity at this point. Let us deal first with the case in which y lies in the interior of

Ω, [5].

Let us surround y with a small circle of radius ϵ, and then examine the solution as ϵ −→ 0.

The new domain is Ω\Ωϵ and the boundary is ∂Ω ∪ ∂Ωϵ, so:

∫
Ω\Ωϵ

(u(x)∇2
xF (x, y)− F (x, y)∇2u(x))dΩ(x) =

∫
∂Ω∪∂Ωϵ

[
u(x)

∂F (x, y)

∂n(x)
−

−F (x, y)
∂u(x)

∂n(x)

]
dΓ(x). (2.7)

Within the domain Ω\Ωϵ, ∇2 u = 0 and ∇2
x F (x, y) = 0. So, the left-hand side of Eq.(2.7)

is zero and the right-hand side is now:
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Figure 2.2: Domain which excludes a circle of radius ϵ centred at source point y

0 =

∫
∂Ω

[
u(x)

∂F (x, y)

∂n(x)
− F (x, y)

∂u(x)

∂n(x)

]
dΓ(x) +

∫
∂Ωϵ

[
u(x)

∂F (x, y)

∂n(x)
−

−F (x, y)
∂u(x)

∂n(x)

]
dΓ(x). (2.8)

Let us first analyse the first integral on the second term in Eq.(2.8). Initially, the value of

u at the source point, u(y), is subtracted from and added to the value of u(x) to give

∫
∂Ωϵ

u(x)
∂F (x, y)

∂n(x)
dΓ(x) =

∫
∂Ωϵ

[u(x)− u(y)]
∂F (x, y)

∂n(x)
dΓ(x) +

+u(y)

∫
∂Ωϵ

∂F (x, y)

∂n(x)
dΓ(x) (2.9)

with

∂F (x, y)

∂n(x)
=

2∑
i=1

∂F (x, y)

∂xi
ni

From Eq.(2.4) we get,

∂F (x, y)

∂xi
=

1

2πr

∂r

∂xi

and
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∂r

∂xi
=

∂
√

(x1 − y1)2 + (x2 − y2)2

∂xi
=

1

2

2(xi−yi)

r
=

xi − yi
r

so that,
∂F (x, y)

∂xi
=

1

2πr

xi − yi
r

and then,

∂F (x, y)

∂n(x)
=

2∑
i=1

∂F (x, y)

∂xi
ni =

2∑
i=1

1

2πr
(−ni).(ni) = − 1

2πr

since

ni = −xi − yi
r

and ni · ni = 1.

Now, substituting the expression of ∂F (x,y)
∂n(x) in the second integral of Eq.(2.9), and writing

the integral in polar coordinates, in which case dΓ = ϵdθ, we get

lim
ϵ→0

∫
∂Ωϵ

∂F (x, y)

∂n(x)
dΓ(x) = − lim

ϵ→0

2π∫
0

1

2πϵ
ϵdθ = −1. (2.10)

We still need to evaluate the limit of the first integral on the right-hand side of Eq.(2.9).

Using the same reasoning as before, and assuming the function u is continuous at y, we

achieve,

lim
ϵ→0

∫
∂Ωϵ

[u(x)− u(y)]
∂F (x, y)

∂n(x)
dΓ(x) = 0. (2.11)

Thus, using Eq.(2.10) and Eq.(2.11),

∫
∂Ωϵ

u(x)
∂F (x, y)

∂n(x)
dΓ(x) = −u(y). (2.12)

The same ideas can be applied to evaluate the limit for the second integral of the second

term in Eq.(2.8), this gives

lim
ϵ→0

∫
∂Ωϵ

∂u(x)

∂n(x)
F (x, y)dΓ(x) = − lim

ϵ→0

2π∫
0

1

2π
ln(ϵ)

∂u(x)

∂n(x)
ϵdθ = 0. (2.13)

Substituting both values of the limit in Eq.(2.12) and Eq.(2.13) in the integral over ∂Ωϵ
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in Eq.(2.8), we have

lim
ϵ→0

∫
∂Ωϵ

[
u(x)

∂F (x, y)

∂n(x)
− F (x, y)

∂u(x)

∂n(x)

]
dΓ(x) = −u(y). (2.14)

The following integral equation is obtained from Eq.(2.7):

u(y) =

∫
∂Ω

[
u(x)

∂F (x, y)

∂n(x)
− F (x, y)

∂u(x)

∂n(x)

]
dΓ(x), y ∈ Ω. (2.15)

This equation is known as Green’s third identity.

To obtain a boundary integral equation when y lies on the boundary ∂Ω, we can follow

the same procedure as before by excluding the point y by a semi-circle when y belongs to

a smooth part of the boundary as in Figure 2.3:

Figure 2.3: Semi-circle of radius ϵ centred at source point y

The only difference from the previous case is on the upper integration limit in Eq.(2.10)

and Eq.(2.13), which is now π rather than 2π. Taking the limit when ϵ −→ 0 gives, for a

point y on a smooth boundary,

lim
ϵ→0

∫
∂Ωϵ

[
u(x)

∂F (x, y)

∂n(x)
− F (x, y)

∂u(x)

∂n(x)

]
dΓ(x) = −1

2
u(y) (2.16)

and the following boundary integral equation is obtained:

1

2
u(y) =

∫
∂Ω

[
u(x)

∂F (x, y)

∂n(x)
− F (x, y)

∂u(x)

∂n(x)

]
dΓ(x) (2.17)

for every point y on a smooth part of the boundary.



2.2. Two-dimensional boundary integral equation 11

The above is true if the point y is at a smooth point (i.e., a point with a unique tangent)

on the boundary of Ω. If y happens to lie at some nonsmooth point, the coefficient will

be changed, e.g. at a corner, the coefficient 1
2 is replaced by α

2π , where α is the internal

angle at y, Figure 2.4, see e.g [4].

Figure 2.4: Illustration of internal angle α at source point y.

For convenience, we can write Eqs.(2.6), (2.15) and (2.17) as a single equation given by:

c(y)u(y) =

∫
∂Ω

u(x)
∂F (x, y)

∂n(x)
dΓ(x)−

∫
∂Ω

F (x, y)
∂u

∂n
dΓ(x) (2.18)

c(y) =



1,

1
2 ,

α
2π ,

0,

if y ∈ Ω

if y ∈ ∂Ω and ∂Ω smooth at y

if y ∈ ∂Ω and ∂Ω not smooth at y (corner with internal angle α)

if y /∈ Ω ∪ ∂Ω

The unknowns in Eq.(2.18) are the boundary values of u or ∂u
∂n . We shall consider the

Laplace equation with the following boundary conditions:

1) Dirichlet problem: u is given at every point y on the boundary.

2) Neumann problem: ∂u
∂n is given at every point y on the boundary.

3) Mixed case: Either Dirichlet or Neumann conditions are given at every point y on the

boundary.

Substituting the boundary conditions 1) or 2) or 3) above in the Green identity (2.18) and

applying it for y ∈ ∂Ω, we arrive at a direct boundary-integral equation [6, 8, 9].
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2.3 The boundary element method

In this section, we shall show how a simple numerical implementation of the BEM may

be obtained to find approximations to the solution of the BVP for the Laplace equation.

 

 Γ2 

 Γ3 

  

 Γ1 
 ΓN 

Figure 2.5: Curve approximated by boundary elements Γ1, Γ2, Γ3,........,ΓN

The first step of the BEM is to approximate the boundary ∂Ω by a polygon with N

straight-line segments. That is, we make ∂Ω ≃ Γ1 ∪Γ2 ∪Γ3......∪ΓN , as illustrated in

Figure 2.5. We construct these segments by choosing N points, say xk=(xk1,x
k
2), k =

1,2,.....,N , on the boundary, and we define xN+1=x1. Then, Γk is the straight line joining

xk to xk+1. These straight line segments Γk for k = 1, 2, ..., N , are known as boundary

elements. There are different types of boundary elements.

Case 1(Constant elements):

We approximate the values of u and ∂u
∂n by constants over each boundary element. More

specifically, we take the values at the midpoint of each element to be the values over the

whole element. That is, for k = 1, 2, ..., N , u ≈ uk and ∂u
∂n ≈ qk, where uk and qk are the

values of u and ∂u
∂n at the midpoint of boundary element Γk.

Using these values, we can write (2.18) as an approximation, see e.g [2, 9]:

c(y)u(y) =
N∑
k=1

(ukHk(y)− qkGk(y)), (2.19)



2.3. The boundary element method 13

where

Gk(y) =

∫
Γk

F (x, y)dΓ(x), (2.20)

Hk(y) =

∫
Γk

∂F (x, y)

∂n(x)
dΓ(x). (2.21)

If we know uk and qk, then we can use equation (2.19) to find the values of u(y) for y ∈ Ω.

However, in a properly posed boundary value problem, either uk or qk (but not both) is

known on any given portion of the boundary.

By using the collocation method, we collocate y in (2.19) at the midpoints of Γ1,Γ2, ....,ΓN .

Therefore, one can use equation (2.19), firstly to find approximations to these unknown

boundary values, before using it again to approximate the values at the interior points, so

we get,

1

2
um =

N∑
k=1

[
ukHk(x̄m, ȳm)− qkGk(x̄m, ȳm

]
, for m = 1, 2, ...., N, (2.22)

where (x̄m, ȳm) is the midpoint of Γm, and when y is on Γk, c(y) = 1/2.

It is convenient to write Eq.(2.22) as a system of equations in the form Az=b. The

unknowns in z are either uk or qk. The right hand side b is made up of all the known

values. In other words, for each m=1,2,...,N , we obtain:

N∑
k=1

Amkzk = bm, where bm =

N∑
k=1

b̃mk. (2.23)

We construct A and b̃mk by considering the two cases, namely (a) when u is given (Dirich-

let condition) and (b) when q = ∂u
∂n is given (Neumann condition) over the boundary Γk,

for each equation m = 1, 2, ...., N in Eq.(2.22).

So, we have the following cases for the construction of matrix A and vector b̃mk,

Amk =


−Gk(x̄m, ȳm),

Hk(x̄m, ȳm),

Hk(x̄m, ȳm)− 1
2 ,

if u given over Γk ;

if q given over Γk and k ̸=m,

if q given over Γk and k=m.

(2.24)

b̃mk =


qkGk(x̄m, ȳm),

−ukHk(x̄m, ȳm),

uk(−Hk(x̄m, ȳm) + 1
2),

if q given over Γk ;

if u given over Γk and k ̸=m,

if u given over Γk and k=m.

(2.25)
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Therefore, after A and b are formed, we can solve for z.

When all the values on the boundary are obtained, we can then use equation (2.19) to

obtain values at any interior point in the domain Ω.

Case 2(Linear elements):

The values of u and q = ∂u
∂n at any point on the element can be defined in terms of

their nodal values and two linear interpolation functions Ψ1(t) and Ψ2(t). They can be

represented by a reference coordinate t, see e.g [4], as shown in Figure 2.6. In order to

write the explicit form for the coordinates of a point placed somewhere along the element

as a function of the coordinates of the end points of this element, we use the reference

coordinate t in the following way,

xi(t) = Ψj(t)xji , (2.26)

where the repetition of the index j implies a summation; t is the reference coordinate along

the element, which takes the values -1, +1, at the edges; xi is the coordinate i (i=1,2 in 2D)

at the intermediate point defined by t; Ψj is called the interpolation function associated

to j, xji represents the i coordinate of node j.

The two linear interpolation functions are,

Ψ1(t) =
1

2
(1− t); Ψ2(t) =

1

2
(1 + t). (2.27)

Then (2.26) yields

x1(t) = Ψ1(t)x11 +Ψ2(t)x21 =
x21 − x11

2
t+

x21 + x11
2

,

x2(t) = Ψ1(t)x12 +Ψ2(t)x22 =
x22 − x12

2
t+

x22 + x12
2

.

Also,

dsk =
√

dx21 + dx22 =
Lk

2
dt,

where Lk represents the length of the element Γk.

Now we are going to represent the functions which are defined along the elements (the
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functions u and q), which can be represented in the following way,

u(t) = Ψ1(t)u1 +Ψ2(t)u2 = [Ψ1(t) Ψ2(t)]

 u1

u2

 , (2.28)

q(t) = Ψ1(t)q1 +Ψ2(t)q2 = [Ψ1(t) Ψ2(t)]

 q1

q2

 , (2.29)

where ui, qi, (i = 1, 2) are the nodal values.

 

t =-1 t =1 

 

Nodal 

Value 

of u or 

q 

Nodal 

Value 

of u 

or q 

  L/2  L/2 

 

Figure 2.6: Linear element definitions

By using representations such as (2.27), (2.28), (2.29), we can write equation (2.18) as an

approximation given by:

c(y)u(y) =

N∑
k=1

[ 1∫
−1

[Ψ1(t) Ψ2(t)]

 u1

u2

 ∂F (t, y)

∂n(x)

Lk

2
dt−

−
1∫

−1

F (t, y)[Ψ1(t) Ψ2(t)]

 q1

q2

 Lk

2
dt

]
. (2.30)

We can write the first and second integrals in equation (2.30) in a compact form as,

1∫
−1

F (t, y)[Ψ1(t) Ψ2(t)]

 q1

q2

 Lk

2
dt = [g1 g2]

 q1

q2

 (2.31)

and

1∫
−1

[Ψ1(t) Ψ2(t)]

 u1

u2

 ∂F (t, y)

∂n(x)

Lk

2
dt = [h1 h2]

 u1

u2

 , (2.32)

where:
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g1 =
1∫

−1

F (t, y)Ψ1(t)Lk
2 dt, and g2 =

1∫
−1

F (t, y)Ψ2(t)Lk
2 dt,

h1 =
1∫

−1

Ψ1(t)∂F (t,y)
∂n(x)

Lk
2 dt, and h2 =

1∫
−1

Ψ2(t)∂F (t,y)
∂n(x)

Lk
2 dt.

2.4 Numerical solutions using Matlab

It is clear from the previous discussion that a method such as the BEM would best be

implemented with a tool that can perform matrix computations and numerical integration

efficiently and produce graphical output. Matlab is one such tool that can perform all these

tasks with a simple code.

For simplicity and convenience, we shall solve the boundary integral equations using con-

stant elements.

It is very useful to divide the Matlab program into three stages [9]:

First stage:

During this stage, the program creates a uniform discretisation on the boundary of the

domain. It also computes the coordinates of all the midpoints and the lengths of each

boundary element, as well as the unit normal vector to each element. This information

will be needed for the next stage.

Second stage:

During this stage, the matrix A and column vector b are constructed, so that the system

for z can be solved to find the approximate solutions to the unknown boundary values.

There are two integrals to be computed. These are,

∫
Γk

F (x, y)ds(x) and

∫
Γk

∂F (x, y)

∂n(x)
ds(x).

When k = m, the integrals can be evaluated analytically to give, see e.g [2, 9],

∫
Γk

F (x, y)ds(x) =
Lk

2π

[
ln(

Lk

2
)− 1

]
, (2.33)

∫
Γk

∂F (x, y)

∂n(x)
ds(x) = 0. (2.34)
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When k ̸= m, we can evaluate the integrals using numerical methods such as Gauss

quadrature because the analytic calculation of the integrals is more complicated. Then,

we use the Gauss elimination method to solve the final algebraic system of equations.

Third stage:

In this stage, we essentially use Eq.(2.19) to calculate the solutions at the interior points.

We also calculate the exact solution and the difference between the exact and approximate

solutions. We can draw and generate a surface plot for the exact and approximate solutions

and the difference between them, also the relative error is calculated as

r(J) =

max
1≤j≤J

∣∣uapprox(xj)− uexact(x
j) |

max
1≤j≤J

|uexact(xj) |
, (2.35)

where uapprox, uexact are the numerical and exact solutions, respectively.

2.5 Examples

In this section, we shall examine some test examples to assess the performance of the BEM

Matlab program. In order to verify the convergence of the method, we applied the BEM

to some test problems with different domains as discussed below. The surface plots of the

numerical solutions were obtained with the most refined mesh in each example. The graph

of relative error has the number of nodes on the horizontal axis and the relative error on

the vertical axis.

2.5.1 Example 1:

Let us solve the following problem, see Figure 2.7:

∇2u = 0, for 0 < x1 < 1, 0 < x2 < 1,

with the boundary conditions:

u=0 when x1=0, for 0 < x2 < 1,

u=cos(πx2) when x1=1, for 0 < x2 < 1,

q=∂u
∂n = 0, when x2=0 and x2=1, for 0 < x1 < 1.
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The exact solution for this problem is

uexact(x1, x2) =
sinh(πx1) cos(πx2)

sinh(π)
.

A surface plot of the exact and approximate solutions and the difference between them is

shown in Figure 2.8.

Figure 2.7: Domain plot for Example 1

Table 2.1: Computed temperatures along line x2 = 0.8

x1 32 elements 64 elements 128 elements 256 elements Exact

0.10 -0.022383 -0.022375 -0.022373 -0.022372 -0.022371
0.20 -0.047005 -0.046981 -0.046973 -0.046970 -0.046969
0.30 -0.076310 -0.076263 -0.076248 -0.076243 -0.076241
0.40 -0.113207 -0.113134 -0.113110 -0.113103 -0.113099
0.50 -0.161361 -0.161261 -0.161228 -0.161217 -0.161212
0.60 -0.225558 -0.225431 -0.225388 -0.225373 -0.225367
0.70 -0.312171 -0.312024 -0.311973 -0.311956 -0.311948
0.80 -0.429788 -0.429648 -0.429597 -0.429579 -0.429571
0.90 -0.590047 -0.589986 -0.589958 -0.589947 -0.589941

Table 2.1 lists the computed values of u(x) along the line x2 = 0.8. The values at interior

points are obtained by using 32 to 256 boundary elements, compared with the exact

solution. The improvement in the accuracy of the numerical results can be seen clearly

when the number of boundary elements is increased from 32 to 256.
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Number of elements Relative error
32 0.0437
64 0.0145
128 0.0030
256 0.0007

Table 2.2: Convergence of the approximate solution of Example 1
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Figure 2.8: Surface plot of solution for Example 1

Table 2.2 provides the relative error as the number of boundary elements is increased. It

can be clearly seen that the relative error is reduced by increasing the number of boundary

elements, demonstrating the convergence of the solution.

2.5.2 Example 2:

Let us solve the following problem, see Figure 2.9:

∇2u = 0 for x1 > 0, x2 > 0 and x21 + x22 < 1

with the boundary conditions:

u=x2 when x1=0, for 0 < x2 < 1,

u=x1 + x2 when for x21 + x22 = 1,
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q=∂u
∂n = −1, when x2=0, for 0 < x1 < 1.

The exact solution for this problem is uexact(x1, x2) = x1 + x2.

Figure 2.9: Domain plot for Example 2

Let us discretise each straight side of the boundary into N0 elements and the arc on

(x21 + x22 = 1) into 2N0 elements, so the total number of elements for the domain is

N = 4N0.

By applying the Matlab program (Appendix A), a surface plot of the exact and approx-

imate solutions and the difference between them is obtained, see Figure 2.10. Table 2.3

provides the relative error for an increasing number of the boundary elements.

Number of elements Relative error
64 0.0067
128 0.0019
256 0.0006

Table 2.3: Convergence of the approximate solution of Example 2
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Figure 2.10: Surface plot of solution for Example 2

2.5.3 Example 3:

Let us solve the following problem, see Figure 2.11:

∇2u = 0 for 1 < x1 < 2, 1 < x2 < 2 and 1 < x21 + x22 < 4.

The domain is bounded by the circles x21 + x22 < 1 and x21 + x22 < 4 and the boundary

conditions are :

∂u
∂n = 0 on the straight side x1 = 0, 1 < x2 < 2,

∂u
∂n = 0 on the straight side x2 = 0, 1 < x1 < 2,

u=cos(4arctan(x2
x1
)) on the arc x21 + x22 = 1, x1 > 0, x2 > 0,

u=3 cos(4arctan(x2
x1
)) on the arc x21 + x22 = 4, x1 > 0, x2 > 0.

The exact solution for this problem is

uexact(x1, x2) = [
16

85
([x21+x22]

2− 1

[x21 + x22]
2
)− 16

255
(
[x21 + x22]

2

16
− 16

[x21 + x22]
2
)] cos(4arctan(

x2
x1

)).

Let us discretise each of the straight sides of the boundary into N0 elements and the arcs

on (x21 + x22 = 1) and (x21 + x22 = 4) into 2N0 and 4N0 elements, respectively, so the total

number of elements for the domain is N = 8N0.
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Figure 2.11: Domain plot for Example 3

By applying the Matlab program (Appendix A), a surface plot of the exact and approx-

imate solutions and the difference between them is obtained, see Figure 2.12. Table 2.4

shows the values of the relative error with different BEM discretisations.

Figure 2.12: Surface plot of solution for Example 3
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Number of elements Relative error
64 0.7638
128 0.0182
256 0.0068
512 0.0031

Table 2.4: Convergence of the approximate solution of Example 3

2.6 Concluding remarks

In this chapter, the BIE formulation is presented for solving the two-dimensional interior

boundary-value problem defined by Eq.(2.1) with mixed boundary conditions. The BEM

is then applied to solve the corresponding BIE. The boundary is discretised by straight line

elements, and the function u and its normal derivative q are approximated as constants

over each boundary element.

The following remarks apply to the present chapter:

• The function u and its normal derivative q are approximated as constants over each

boundary element, therefore the boundary integrals can be easily evaluated and the dis-

continuity of the normal derivative at corner points is avoided;

• The main features which render the BEM advantageous with respect to the finite element

method (FEM) and the finite difference method (FDM) are, therefore, the reduction of

the problem dimensions by one and the fact that no discretisation of the computational

domain is required;

• Convergence studies with mesh refinement show that the BEM possesses acceptable

rates of convergence for the problems studied.



Chapter 3

Heat conduction problems with

variable coefficients

3.1 Introduction

As discussed in the previous chapters, the main requirement for the reduction of the PDE

to a BIE is that a fundamental solution to the PDE must be available. Such fundamental

solutions are well-known for many PDEs with constant coefficients, see [1–7], but are not

generally available when the coefficients of the original PDE are variable.

The coefficients in the mathematical model of a physical problem typically correspond to

the material parameters of the problem. In heterogeneous media the material parameters

may vary with position and/or time. For this reason, there is a demand on the development

of accurate and efficient numerical methods able to deal with the spatial variations of

material coefficients [7, 11,12].

Finding the fundamental solution for PDEs with variable coefficients has generally been

limited to specific forms of the coefficients. Clements [13] derived a BEM formulation for

a 2D Laplace equation with variable conductivity in one direction. Shaw [14] and Shaw

et al. [15] developed a BIE formulation for a Poisson equation with a linearly layered con-

ductivity, using 2D and 3D Green’s functions for this heterogeneous medium problems,

respectively. Ang et al. [16] have extended the method of Clements [13] for more compli-

cated variable coefficients, which can be written in separate forms but only for such special

case. The main drawbacks of the analytic methods to find the fundamental solution pre-

sented in [13–16] are first, that they only work for special cases of variable coefficients.

24
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Second, even for such simple cases, the mathematical procedures are very complicated [12].

Several BEM techniques have been proposed to treat problems with variable coefficients,

e.g. by cell discretisation [11] or the dual reciprocity method (DRM) [12]. In the present

chapter, a parametrix (Levi function) is adopted, which is usually available [8,17,18]. This

allows a reduction of the mathematical problem to a boundary-domain integral or integro-

differential equation (BDIE or BDIDE) [8, 19]. A BDIE and a BDIDE formulations to

solve problems with variable coefficients are presented in [8] using specially constructed

localised parametrices to reduce a BVP with variable coefficients to a localised boundary-

domain integral or integro-differential equation (LBDIE or LBDIDE). The use of specially

constructed localised parametrices leads to sparsely populated systems of linear algebraic

equations. An implementation of the LBDIE method for the numerical solution of a

second-order linear elliptic PDE with variable coefficients is presented in [19], although

the formulation is restricted to Neumann boundary-value problems.

Boundary-domain integral equation (BDIE) methods have also been developed by Sker-

get et al. [20–22] for the solution of non-linear fluid mechanics problems described by

the Navier-Stokes equations. Skerget’s formulation treats all the nonlinear terms as body

forces, which are included in the boundary integral equations as a domain integral evalu-

ated by discretising the body into cells. Another related formulation developed by Popov

and Power [23], named the dual reciprocity-multi-domain (DRM-MD) approach, combines

the DRM with domain decomposition, leading to substantial improvements in the accu-

racy and convergence of the DRM formulation for complex problems. The DRM-MD

formulation has been applied to the solution of the Navier-Stokes equations [24] and to

flow and solute transport in fractured porous media [25].

A further BDIE technique is the Analog Equation Method (AEM) of Katsikadelis [26],

which has been applied to the solution of several elasticity problems, mostly related to

plate bending. Katsikadelis and Nerantzaki [27] extended the AEM to a boundary-only

method which decomposes the solution into a homogeneous part and a particular solution

of the non-homogeneous one, and then obtained the particular solution via a radial basis

function expansion of the domain term.

In the present chapter, the BDIE and BDIDE formulations proposed by Mikhailov [8,19]

are extended to the treatment of mixed BVPs. The numerical algorithms developed here

do not use the concept of localisation as in [8,19], but rather use global mesh-based discreti-

sations. The chapter also discusses different techniques to deal with the discontinuity of
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the flux at corners, by testing different positions of the collocation points. The implemen-

tation of the BDIE and BDIDE formulations in the present chapter for stationary heat

transfer in isotropic materials with variable coefficients associated with Dirichlet, Neu-

mann and mixed boundary conditions has been published in [28–31]. Numerical solutions

of several test examples are included to validate the methods.

3.2 Reduction of the BVP to a BDIE/BDIDE

Let us consider the following stationary heat transfer BVP in an isotropic inhomogeneous

medium for a two-dimensional bounded body Ω, with prescribed temperature ū(x) on part

∂DΩ of the boundary ∂Ω and prescribed heat flux t̄(x) on the remaining ∂NΩ part of ∂Ω,

i.e. we consider the second-order linear elliptic PDE [8,19,28–31],

(Lu)(x) :=
2∑

i=1

∂

∂xi

[
a(x)

∂u(x)

∂xi

]
= f(x), x ∈ Ω. (3.1)

Let us consider three types of problems:

• Dirichlet problem:

u(x) = ū(x), x ∈ ∂Ω. (3.2)

•• Neumann problem:

[Tu](x) = a(x)
∂u(x)

∂n(x)
= t̄(x), x ∈ ∂Ω. (3.3)

• • • Mixed problem:

u(x) = ū(x), x ∈ ∂DΩ, (3.4)

Tu(x) = t̄(x), x ∈ ∂NΩ, (3.5)

where ū(x) and t̄(x) are known functions on the Dirichlet part ∂DΩ and the Neumann

part ∂NΩ, respectively.

In equations (3.1) to (3.5), Ω is a bounded domain, u(x) the temperature, a(x) a known

variable thermal conductivity coefficient, f(x) a known heat source, T a surface flux

operator, [Tu](x) := a(x)∂u∂n(x), n(x) the external normal vector to the boundary ∂Ω, and



3.2. Reduction of the BVP to a BDIE/BDIDE 27

ū(x) and t̄(x) are known functions. The BVP (3.1-3.5) appears when modelling stationary

heat transfer, elastostatics, electrostatics, and diffusion problems for functionally graded

materials, as well as in flow in porous media.

The Green formula for the differential operator L has the form

∫
Ω
[uLv − vLu]dΩ =

∫
∂Ω

[uTv − vTu]dΓ, (3.6)

where u and v are arbitrary twice differentiable functions.

Let L be a linear operator and F (x, y) be its fundamental solution, i.e.

LxF (x, y) = δ(x− y),

where δ is the Dirac delta function. Then one could take v(x) = F (x, y), identify u(x)

with a solution of Eq.(3.1), and thus arrive at the third Green identity

c(y)u(y)−
∫
∂Ω

[u(x)TxF (x, y)− F (x, y)Tu(x)]dΓ(x) =

∫
Ω
F (x, y)f(x)dΩ(x), (3.7)

where c(y) is given by Eq.(2.18). Substituting the boundary condition in the Green identity

Eq.(3.7) and applying it for y ∈ ∂Ω, we arrive at a direct BIE [1–6].

For partial differential operators with variable coefficients, like L in Eq.(3.1), a fundamental

solution is generally not available in explicit form. However, a parametrix is often available,

which is a function P (x, y) satisfying the equation [8, 19,28–31],

LxP (x, y) = δ(x− y) +R(x, y). (3.8)

The fundamental solution of the operator with frozen coefficients a(x) = a(y) corre-

sponding to the operator L defined in Eq.(3.1), can be used as a parametrix, in the

two-dimensional case [8, 19,28–31],

P (x, y) =
1

2πa(y)
ln |x− y| . (3.9)

Substituting Eq.(3.9) in Eq.(3.8), we obtain,

2∑
i=1

∂

∂xi

[
a(x)

∂

∂xi

[
1

2πa(y)
ln |x− y|

]]
= δ(x− y) +R(x, y).
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By applying the product rule for differentiation, we get:

2∑
i=1

[
1

a(y)
· ∂a(x)

∂xi
· ∂

∂xi

[
1

2π
ln |x− y|

]
+

a(x)

a(y)
· ∂2

∂x2i

[
1

2π
ln |x− y|

]]
= δ(x− y) +R(x, y).

Now, since a(x) = a(y) and
2∑

i=1

∂2

∂x2
i

[
1
2π ln |x− y|

]
= δ(x− y), we have

δ(x− y) =

[
a(x)

a(y)

]
·

2∑
i=1

∂2

∂x2i

[
1

2π
ln |x− y|

]
and

R(x, y) =
2∑

i=1

1

a(y)
· ∂a(x)

∂xi
· ∂

∂xi

[
1

2π
ln |x− y|

]
.

since
∂

∂xi

[
1

2π
ln |x− y|

]
=

1

2πr

∂r

∂xi
=

xi − yi
2πr2

, r = |x− y| ,

The remainder R(x, y) will then be,

R(x, y) =

2∑
i=1

xi − yi
2πa(y)|x− y|2

∂a(x)

∂xi
, x, y ∈ R2, (3.10)

which has only a weak singularity at x = y.

Substituting P (x, y) for v(x) in Eq.(3.6) and taking u(x) as a solution to Eq.(3.1), we

obtain the integral equation,

c(y)u(y)−
∫
∂Ω

[u(x)TxP (x, y)− P (x, y)Tu(x)]dΓ(x) +

+

∫
Ω

R(x, y)u(x)dΩ(x) =

∫
Ω

P (x, y)f(x)dΩ(x). (3.11)

Identity (3.11) can be used for formulating either a BDIE or a BDIDE, with respect to u

and its derivatives. Let us consider the two forms below.
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3.3 Boundary-domain integral/integro-differential

equations (BDIE/BDIDE)

3.3.1 Dirichlet problem

System of boundary-domain integral equations (BDIEs)

Substituting the boundary condition (3.2) into (3.11), introducing a new variable t(x) =

Tu(x) for the unknown Tu(x) on ∂Ω, we can reduce the BVP (3.1)-(3.2) to the following

system of BDIEs for u(x) at x ∈ Ω, and t(x) at x ∈ ∂Ω,

∫
∂Ω

P (x, y)t(x)dΓ(x) +

∫
Ω

R(x, y)u(x)dΩ(x) = −c(y)ū(y) +

+

∫
∂Ω

ū(x)TxP (x, y)dΓ(x) +

∫
Ω

P (x, y)f(x)dΩ(x), y ∈ ∂Ω, (3.12)

u(y) +

∫
∂Ω

P (x, y)t(x)dΓ(x) +

∫
Ω

R(x, y)u(x)dΩ(x) =

=

∫
∂Ω

ū(x)TxP (x, y)dΓ(x) +

∫
Ω

P (x, y)f(x)dΩ(x), y ∈ Ω. (3.13)

Boundary-domain integro-differential equations (BDIDEs)

Using another approach, we can substitute the boundary condition (3.2) into (3.11) but

leave T as a differential operator acting on u on the boundary. We then arrive at the

following BDIDE for u(x) at x ∈ Ω̄ with given boundary values of u,

u(y) = ū(y), y ∈ ∂Ω, (3.14)

u(y) +

∫
∂Ω

P (x, y)Tu(x)dΓ(x) +

∫
Ω

R(x, y)u(x)dΩ(x) =

=

∫
∂Ω

ū(x)TxP (x, y)dΓ(x) +

∫
Ω

P (x, y)f(x)dΩ(x), y ∈ Ω. (3.15)

As the last term in the left hand side of Eqs.(3.12), (3.13) and (3.15) includes the unknown

values of u over the whole domain Ω, this BDIE does not lead to a BIE as in the case when

the parametrix is a fundamental solution. The two systems of equations (3.12)-(3.13) and
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(3.14)-(3.15) will lead, after discretisation, to fully populated systems of linear algebraic

equations.

3.3.2 Neumann problem

To ensure a solution exists for the BVP (3.1), (3.3), we assume that the functions t̄(x)

and f(x) satisfy the compatibility condition [10,19,32],

∫
∂Ω

t̄(x)dΓ(x)−
∫
Ω

f(x)dΩ(x) = 0.

Substituting the boundary condition (3.3) into (3.11), but leaving u(x) for the unknown

on ∂Ω, we can reduce the BVP (3.1), (3.3) to the following system of BDIEs for u(x) at

x ∈ Ω ∪ ∂Ω,

c(y)u(y)−
∫
∂Ω

u(x)TxP (x, y)dΓ(x) +

∫
Ω

R(x, y)u(x)dΩ(x) +

=

∫
Ω

P (x, y)f(x)dΩ(x)−
∫
∂Ω

P (x, y)t̄(x)dΓ(x), y ∈ ∂Ω, (3.16)

u(y)−
∫
∂Ω

u(x)TxP (x, y)dΓ(x) +

∫
Ω

R(x, y)u(x)dΩ(x)

=

∫
Ω

P (x, y)f(x)dΩ(x)−
∫
∂Ω

P (x, y)t̄(x)dΓ(x), y ∈ Ω. (3.17)

The Neumann BVP (3.1), (3.3) is not unconditionally and uniquely solvable, see e.g.

[10, 19, 32–34], and neither is the integral equation. Therefore, the resulting system of

linear algebraic equations will be either singular or ill-conditioned. The problem can be

solved by the approach described in [10, 19, 32, 33]. The BVP (3.1), (3.3) is only unique

up to an additive constant. So, if u is a solution of (3.1), (3.3) then, for any c ∈ R,

ũ(x) = u(x) + c for x ∈ R is also a solution of Neumann BVP(3.1), (3.3). In order to fix

the constant c ∈ R and make it uniquely determined, one can perturb the BDIE (3.16) by

adding the operator

[
o
K u](x) =

1

|∂Ω|

∫
∂Ω

u(x)dΓ(x), (3.18)

where |∂Ω| denotes the length of the boundary ∂Ω, to the left-hand side of the BDIE
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(3.16), obtaining the equations:

c(y)u(y)−
∫
∂Ω

u(x)TxP (x, y)dΓ(x) +

∫
Ω

R(x, y)u(x)dΩ(x) +

+
1

|∂Ω|

∫
∂Ω

u(x)dΓ(x) =

∫
Ω

P (x, y)f(x)dΩ(x)−
∫
∂Ω

P (x, y)t̄(x)dΓ(x), y ∈ ∂Ω, (3.19)

u(y)−
∫
∂Ω

u(x)TxP (x, y)dΓ(x) +

∫
Ω

R(x, y)u(x)dΩ(x)

=

∫
Ω

P (x, y)f(x)dΩ(x)−
∫
∂Ω

P (x, y)t̄(x)dΓ(x), y ∈ Ω. (3.20)

Using the operator in Eq.(3.18), one can prove that the BVP (3.1), (3.3) has a unique

solution up to an additive constant.

Let ũ1(x) = u(x), then
1

|∂Ω|

∫
∂Ω

ũ1(x)dΓ(x) = a, a ∈ R. (3.21)

Let us define a new function ũ2(x) = ũ1(x) + c, which is also a solution of the Neumann

problem,
1

|∂Ω|

∫
∂Ω

ũ2(x)dΓ(x) = b, b ∈ R. (3.22)

Moreover, let u1(x) = ũ1(x)− a, and hence,

∫
∂Ω

u1(x)dΓ(x) =

∫
∂Ω

[ũ1(x)− a]dΓ(x).

Using Eq.(3.21) and the fact that
∫
∂Ω

dΓ(x) = |∂Ω|, we get,

∫
∂Ω

ũ1(x)− 1

|∂Ω|

∫
∂Ω

ũ1(x)dΓ(x)

 dΓ(x) = 0.

Therefore, ∫
∂Ω

u1(x)dΓ(x) = 0.
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Let us now define u2(x) = ũ2(x)− b, following the same steps as before, we can prove that

∫
∂Ω

u2(x)dΓ(x) = 0.

Now, our goal is to prove that u1(x) = u2(x). Using Eq.(3.22), we have

b =
1

|∂Ω|

∫
∂Ω

ũ2(x)dΓ(x).

Since ũ2(x) = ũ1(x) + c and
∫
∂Ω

dΓ(x) = |∂Ω|, we get,

b =
1

|∂Ω|

∫
∂Ω

[ũ1(x) + c]dΓ(x) = a+ c.

Therefore, b = a + c. On the other hand, u2(x) = ũ2(x) − b = (ũ1(x) + c) − (a + c) =

ũ1(x)− a = u1(x). 2

3.3.3 Mixed problem

Boundary-domain integral equation (BDIE)

Substituting the boundary conditions (3.4) and (3.5) into (3.11), introducing a new vari-

able t(x)=Tu(x) for the unknown flux on ∂DΩ and using Eq.(3.11) at y ∈ Ω∪∂Ω reduces

the BVP (3.1) with (3.4)-(3.5) to the following BDIE for u(x) at x ∈ Ω∪∂NΩ and t(x) at

x ∈ ∂DΩ,

c0(y)u(y)−
∫

∂NΩ

u(x)TxP (x, y)dΓ(x) +

∫
∂DΩ

P (x, y)t(x)dΓ(x) +

+

∫
Ω

R(x, y)u(x)dΩ(x) = Ψ0(y), y ∈ Ω ∪ ∂Ω, (3.23)

where

Ψ0(y) := [c0(y)− c(y)]ū(y) + Ψ(y), (3.24)

Ψ(y) :=

∫
∂DΩ

ū(x)TxP (x, y)dΓ(x)−
∫

∂NΩ

P (x, y)t̄(x)dΓ(x) +

∫
Ω

P (x, y)f(x)dΩ(x) (3.25)



3.4. Discretisation of the BDIE/BDIDE 33

and

c0(y) =

 0

c(y)

if y ∈ ∂DΩ

if y ∈ Ω ∪ ∂NΩ
(3.26)

Boundary-domain integro-differential equation (BDIDE)

Using another approach, we can substitute the boundary conditions (3.4) and (3.5) into

(3.11) but leave T as a differential flux operator acting on u on the Dirichlet boundary

∂DΩ and use the following BDIDE

c(y)u(y)−
∫

∂NΩ

u(x)TxP (x, y)dΓ(x) +

∫
∂DΩ

P (x, y)Tu(x)dΓ(x) +

+

∫
Ω

R(x, y)u(x)dΩ(x) = Ψ(y), y ∈ Ω ∪ ∂NΩ. (3.27)

The two equations Eq.(3.23) and Eq.(3.27) will lead, after discretisation, to fully populated

systems of linear algebraic equations.

3.4 Discretisation of the BDIE/BDIDE

Let us discretise the domain Ω into a mesh of triangular elements Tk, k = 1, 2, ...., N ,

Th ∩ Tm = ∅, h ̸= m. Let J be the total number of nodes xi, i = 1, ..., J , at the vertices

of triangles, from which there are JD nodes on ∂Ω, see Figure 3.1.

 

∂Ω 

Ω 

 ω(x
i) xi 

Figure 3.1: Discretization of the domain Ω

In the present chapter equations (3.12)-(3.13), (3.14)-(3.15), (3.21)-(3.22), (3.23) and

(3.27) will be solved. To obtain a system of linear algebraic equations by the colloca-

tion method, we collocate at the nodes xi, i = 1, ..., J , and substitute an interpolation of
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u(x) of the form

u(x) ≈
∑
ω̄j∋x

u(xj)Φj(x), Φj(x) =

 ϕkj(x) if x, xj ∈ T̄k

0 otherwise,
(3.28)

where ω̄j is the support of Φj(x), which consists of all triangular elements that have xj as

a vertex; ϕkj(x) are the shape functions localized on an element Tk, and associated with

the node xj . For the triangular elements, ϕkj(x) can be chosen as linear functions. We

can also use an interpolation of t(x) = (Tu)(xj) along only boundary nodes

t(x) =
∑

xj∈∂Ω

t(xj)vj(x), x ∈ ∂Ω. (3.29)

Here, vj(x) are boundary shape functions, taken now as constant. Therefore, vj(x) will

be equal 1 at xj ∈ Γj and 0 elsewhere, and Γj are boundary elements.

3.4.1 Dirichlet problem

System of boundary-domain integral equations (BDIEs)

Substituting the interpolations (3.28) and (3.29) in BDIE (3.12) and applying the collo-

cation method, we arrive at the following system of JD linear algebraic equations,

∑
xj∈Ω

K
′
iju(x

j) +
∑

xj∈∂Ω

Qijt(x
j) = −c(xi)ū(xi)−

∑
xj∈∂Ω

K
′
ij ū(x

j) +

+ΨD(xi), xi ∈ ∂Ω. (3.30)

Discretising the BDIE (3.13), by substitution of interpolations (3.28) and (3.29), we arrive

at the following system of J − JD linear algebraic equations,

u(xi) +
∑
xj∈Ω

K
′
iju(x

j) +
∑

xj∈∂Ω

Qijt(x
j) = −

∑
xj∈∂Ω

K
′
ij ū(x

j) + ΨD(xi), xi ∈ Ω. (3.31)

Here,

K
′
ij =

∫
ωj

Φj(x)R(x, xi)dΩ(x), (3.32)

ΨD(xi) =

∫
∂Ω

ū(x)TxP (x, xi)dΓ(x) +

∫
Ω

f(x)P (x, xi)dΩ(x), (3.33)
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Qij(x
i) =

∫
∂Ω∩ ω̄j

P (x, xi)vj(x)dΓ(x). (3.34)

Boundary-domain integro-differential equations (BDIDEs)

From (3.14), we have JD known values of u, since Dirichlet boundary conditions are given,

u(xj) = ū(xi), xi ∈ ∂Ω. (3.35)

Discretising (3.15) by substitution of interpolations (3.28) and applying the collocation

method, we arrive at the following system of J − JD linear algebraic equations,

u(xi) +
∑
xj∈Ω

K
′
iju(x

j) +
∑
xj∈Ω

Q
′
iju(x

j) = −
∑

xj∈∂Ω

K
′
ij ū(x

j)−
∑

xj∈∂Ω

Q
′
ij ū(x

j) +

+ΨD(xi), xi ∈ Ω. (3.36)

Here,

Q
′
ij =

∫
∂Ω∩ ω̄j

P (x, xi)TΦj(x)dΓ(x), (3.37)

and K
′
ij , ΨD(xi) are given by Eqs. (3.32) and (3.33), respectively. Equation (3.36) is used

in order to obtain the numerical values of u(x) for the BVP (3.1)-(3.2) at interior points.

3.4.2 Neumann problem

System of boundary-domain integral equations (BDIEs)

To obtain a system of linear algebraic equations from the BDIEs (3.19) and (3.20) by the

collocation method, we apply (3.19) at the nodes xi, i = 1, ..., J , and by substituting the

interpolations (3.28), we arrive at the following system of JD linear algebraic equations,

c(xi)u(xi)−
∑
xj∈Ω̄

Qiju(x
j) +

∑
xj∈Ω̄

K
′
iju(x

j) +
∑

xj∈∂Ω

o
Kj u(x

j) = ΨN(xi), xi ∈ ∂Ω,

(3.38)

where
o
Kj :=

1
|∂Ω|

∫
∂Ω

Φj(x)dΓ(x).

Discretising the BDIE (3.20), by substituting the interpolations (3.28) and applying the
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collocation method, we arrive at the following system of J−JD linear algebraic equations:

u(xi)−
∑
xj∈Ω̄

QNiju(x
j) +

∑
xj∈Ω̄

K
′
iju(x

j) = ΨN(xi), xi ∈ Ω, (3.39)

where

ΨN(xi) =

∫
Ω

f(x)P (x, xi)dΩ(x)−
∫
∂Ω

P (x, xi)t̄(x)dΓ(x), (3.40)

QNij =

∫
∂Ω∩ ω̄j

Φj(x)TxP (x, xi)dΓ(x). (3.41)

3.4.3 Mixed problem

We can also use an interpolation of t(x) = (Tu)(xj) along the boundary nodes belonging

to ω̄(xj) ∩ ∂DΩ

t(x) =
∑

xj∈ω̄(xj)∩∂DΩ

t(xj)vj(x), x ∈ ω̄(xj) ∩ ∂DΩ. (3.42)

Here, vj(x) are boundary shape functions, taken now as constant. Therefore, vj(x) will

be equal 1 at xj ∈ ω̄(xj) ∩ ∂DΩ and vj(x) = 0 if xj /∈ ω̄(xj) ∩ ∂DΩ.

Boundary-domain integral equation (BDIE)

Substituting the interpolations (3.28) and (3.42) in BDIE (3.23) and applying the collo-

cation method, we arrive at the following system of J linear algebraic equations for J

unknowns u(xj), xj ∈ Ω ∪ ∂NΩ and t(xj) = (Tu)(xj), xj ∈ ∂DΩ,

c0(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

KMiju(x
j) +

∑
xj∈∂DΩ

QM
′
ijt(x

j) = Ψ0(xi)−

−
∑

xj∈∂DΩ

KMij ū(x
j), xi ∈ Ω ∪ ∂Ω, i = 1, ..., J,no sum in i, (3.43)

where Ψ0(xi) = [c0(y)− c(y)]ū(y) + ΨM(y), and

ΨM(xi) =

∫
ω̄(xi)∩∂DΩ

ū(x)TxP (x, xi)dΓ(x)−
∫

ω̄(xi)∩∂NΩ

P (x, xi)t̄(x)dΓ(x) +

+

∫
ω(xi)∩Ω

f(x)P (x, xi)dΩ(x), (3.44)
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KMij =

∫
ωj

Φj(x)R(x, xi)dΩ(x)−
∫

ω̄(xi)∩∂NΩ

Φj(x)TxP (x, xi)dΓ(x), (3.45)

QM
′
ij =

∫
ω̄(xi)∩∂DΩ

P (x, xi)vj(x)dΓ(x). (3.46)

Boundary-domain integro-differential equation (BDIDE)

To obtain a system of linear algebraic equations from the BDIDE (3.27) by the collocation

method, we collocate at the nodes xi, i = 1, ..., J , arriving at a system of J −JD algebraic

equations for J − JD unknowns u(xj), xj ∈ Ω∪ ∂NΩ. Substituting interpolation formulae

(3.28) into the BDIDE (3.27) leads to the following system:

c(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

KM
′
iju(x

j) = ΨM(xi)−
∑

xj∈∂DΩ

KM
′
ij ū(x

j),

xi ∈ Ω ∪ ∂NΩ, no sum in i, (3.47)

where

KM
′
ij =

∫
ω(xi)∩Ω

Φj(x)R(x, xi)dΩ(x) +

∫
ω̄(xi)∩∂DΩ

P (x, xi)TΦj(x)dΓ(x)−

−
∫

ω̄(xi)∩∂NΩ

Φj(x)TxP (x, xi)dΓ(x). (3.48)

The details of the calculations of the boundary and domain integrals and the treatment

of the weak singularity using Duffy transformation is given in Appendix B. Also, some

literature about numerical integration techniques for domain integrals is listed in Appendix

B.

3.5 Assembling the system matrix and right-hand

side for BDIE/BDIDE

We shall discuss in this section the assembling of matrix A and right-hand side b for the

case of mixed problems, with the Dirichlet and Neumann problems forming special cases.

Let us start with a Laplace equation with a mesh of eight boundary elements, nine nodes

and eight triangular cells, as shown in Figure 3.2.
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For the BDIE method, the system of algebraic equations resulting from Eq.(3.43) has two

unknown variables t and u, i.e. t on Dirichlet boundaries and u on Neumann boundaries,

in addition to interior nodes.

In this chapter, we present two implementations using mixed boundary elements with lin-

ear variation of u and constant t, to avoid the discontinuity of t at corner points. In the

first case, the collocation nodes for calculating t on Dirichlet boundaries are taken at the

mid point of the boundary elements, while in the second case the collocation points are at

the end nodes. Therefore, for the first case, the system Ax = b is given by:

Figure 3.2: Simple mesh

A =


A11 A12 A13

A21 D +A22 A23

A31 A32 I +A33


7×7

, x =


t on ∂DΩ

u on ∂NΩ

u on Ω


7×1

,

b =


cvec+ b11 + b12 + b13

b21 + b22 + b23

b31 + b32 + b33


7×1

,

where [A11]4×4, [A21]2×4, [A31]1×4 are the integrals in Eq.(3.46) with the collocation nodes

belonging to ∂DΩ, ∂NΩ and interior nodes in Ω and integration nodes xj belonging to ∂DΩ,

respectively. Also, [A12]4×2, [A22]2×2, [A32]1×2 are the second integral in Eq.(3.45) with

the collocation nodes xi belonging to ∂DΩ, ∂NΩ and interior nodes in Ω and integration

nodes xj belonging to ∂NΩ, respectively. Moreover, [A13]4×1, [A23]2×1, [A33]1×1 are the

second integral in Eq.(3.45) with the collocation nodes xi belonging to ∂DΩ, ∂NΩ and

interior nodes in Ω and integration nodes xj belonging to Ω, respectively. In a general

mesh the dimensions of the matrix are [A]J−2×J−2, and right-hand side [b]J−2×1, where J
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is the total number of nodes.

The matrix D in this simple case is given by

D =

 0.5 0

0 0.5


2×2

, and the matrix I is the identity matrix, in this case just equal 1.

The right-hand side can be assembled in the same way as matrix A, where [b11]4×1,

[b21]2×1, [b31]1×1 are the first integral in Eq.(3.44) with the collocation nodes belonging

to ∂DΩ, ∂NΩ and interior nodes in Ω, respectively. Also, [b12]4×1, [b22]2×1, [b32]1×1 are

the second integral in Eq.(3.44) with the collocation nodes belonging to ∂DΩ, ∂NΩ and

interior nodes in Ω, respectively.

Moreover, [b13]4×1, [b23]2×1 and [b33]1×1 are equal to −
∑

xj∈∂DΩ

Kij ū(x
j) (with only the

second integral in Eq.(3.45), since R = 0 for the Laplace equation, therefore, the first inte-

gral disappears), with the collocation nodes belonging to ∂DΩ, ∂NΩ and interior nodes in

Ω, respectively. In addition, [cvec]4×1 is a vector equal to −c(xi)ū(xi), with the collocation

nodes belonging to ∂DΩ and the values of c given in Eq.(2.18).

In the second case, where the collocation nodes for calculating t in Dirichlet boundaries

are taken at the end points of the elements, the system is given by:

Ax = b , where [A]m×n and m ≥ n. This system can be solved in the least square sense

by solving the system ATAx = AT b, where for our simple mesh the matrices are given by:

A =


A11 A12 A13

A21 D +A22 A23

A31 A32 I +A33


9×7

, x =


t ∈ ∂DΩ

u ∈ ∂NΩ

u ∈ Ω


7×1

,

b =


cvec+ b11 + b12 + b13

b21 + b22 + b23

b31 + b32 + b33


9×1

,

where [A11]6×4, [A21]2×4, [A31]1×4 , [A12]6×2, [A22]2×2, [A32]1×2, [A13]6×1, [A23]2×1,

[A33]1×1 and the matrices D, I are the same as before.

By applying the least squares technique, the final system will be Cx = d:

[C]7×7 = [AT ]7×9[A]9×7, and [d]7×1 = [AT ]7×9[b]9×1. Also, the right-hand side b can be

calculated like in the previous case but with different dimensions for the sub-vectors, i.e.,

[b11]6×1, [b12]6×1, [b13]6×1, [cvec]6×1 and the other sub-vectors are the same as before.

For the BDIDE method, the system of algebraic equations in Eq.(3.47) has only one un-
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known variable u, i.e. u in Neumann parts in addition to interior nodes. In this case, the

assembling of matrix A and vector b is much easier than in the BDIE, i.e. by just adding

the sub-matrices or sub-vectors which have the same dimension J × J for matrix Afull

or vector bfull. The matrix Afull and vector bfull only have coefficients on positions xi,

xj ∈ Ω ∪ ∂NΩ and zero elsewhere. So, for the simple mesh, we can construct matrix A

and vector b from Afull, bfull respectively, and the system Ax = b is given by:

A =
[
A1 +A2 +A3

]
k×k

, x =

 u ∈ ∂NΩ

u ∈ Ω


k×1

, b =
[
b1 + b2 + b3 + b4

]
k×1

,

where k = J − r, J is the total number of nodes and r is the number of nodes on Dirichlet

boundaries. The matrix A1 in this simple case is,

A1 =


0.5 0 0

0 1 0

0 0 0.5


3×3

, the matrix [A2]3×3 is the second integral in Eq.(3.48) and

[A3]3×3 is the third integral in Eq.(3.48).

Finally, the right-hand side b can be calculated by adding the sub-vectors b1, b2, b3, b4,

where b1, b2 are the first and the second integrals in Eq.(3.44), respectively. The vector

b3 and b4 are defined as:

b3 = −
∑

xj∈∂DΩ

K1ij ū(x
j), b4 = −

∑
xj∈∂DΩ

K2ij ū(x
j),

where

K1ij =

∫
ω̄(xi)∩∂DΩ

P (x, xi)TΦj(x)dΓ(x),

K2ij = −
∫

ω̄(xi)∩∂NΩ

Φj(x)TxP (x, xi)dΓ(x).

Remark 3.1: In order to assemble the system of algebraic equations for the Poisson

equation, where the third integral in Eq.(3.44) appears, one can follow the same steps as

before for both BDIE and BDIDE in addition to the domain integral on the right-hand side

b. However, to solve Eqs.(3.1)-(3.5), which have been re-formulated to BDIE or BDIDE

in Eqs.(3.43), (3.47), an extra domain integral appears (first integral in Eqs.(3.45) and

(3.48)). Therefore, extra sub-matrices will be added to the matrix A for both BDIE and
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BDIDE.

3.6 Numerical results

In this section, we shall examine some test examples to assess the performance of the

BDIE/ BDIDE formulations with either Dirichlet, Neumann or mixed boundary condi-

tions. To verify the convergence of the methods, we applied them to some test problems

on square and circular domains, for which an exact analytical solution, uexact, is available.

Also, the relative error was calculated as in chapter 2, Eq.(2.35).

3.6.1 Laplace’s equation with mixed boundary conditions

The starting point for testing the BDIE/ BDIDE formulations is to consider Laplace’s

equation with mixed boundary conditions. In this case there is no domain integral, i.e.

f = 0 and a(x) = 1 in our original BVP (3.1)-(3.5),

∇2u := ∆u =
∂2u

∂x21
+

∂2u

∂x22
= 0

This simple test involves a square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, with boundary

conditions:

(3.2) is ū(x) = x1 + x2, (3.3) is t̄(x) = n1(x) + n2(x), and for the mixed boundary

conditions (3.4), (3.5), we have (3.2) for {x2 = 2;x2 = 3; 2 ≤ x1 ≤ 3}; and (3.3) for

{x1 = 2;x1 = 3; 2 ≤ x2 ≤ 3}.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

3.6.2 Poisson’s equation with mixed boundary conditions

The next test considers Poisson’s equation, in which case there is a domain integral coming

from f ̸= 0; we still consider a(x) = 1 in the original BVP (3.1)-(3.5), and assume a square

domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, f(x) = 4 for x ∈ Ω̄, with boundary conditions,

(3.2) is ū(x) = x21 + x22, (3.3) is t̄(x) = 2(x1n1(x) + x2n2(x)), and for the mixed boundary

conditions (3.4), (3.5), we have (3.2) for {x2 = 1;x2 = 2; 1 ≤ x1 ≤ 2}; and (3.3) for

{x1 = 1;x1 = 2; 1 ≤ x2 ≤ 2}.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.
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The next series of tests with variable coefficients involve simple square or circular geome-

tries with increasing degree of complexity of the variation of both the material parameter

coefficients and the body force term f . The exact solutions of the problems range from

linear to cubic, and will be used to verify the convergence of the numerical solutions.

3.6.3 Test 1

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, a(x) = 2(x1 + x2), f(x) = 4 for x ∈ Ω̄,

with boundary conditions:

(3.2) is ū(x) = x1 + x2, (3.3) is t̄(x) = 2(x1 + x2)(n1(x) + n2(x)), and for the mixed

boundary conditions (3.4), (3.5), we have (3.2) for {x2 = 2;x2 = 3; 2 ≤ x1 ≤ 3}; and

(3.3) for {x1 = 2;x1 = 3; 2 ≤ x2 ≤ 3}.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

3.6.4 Test 2

Square domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, a(x) = x21 + x22 , f(x) = 8(x21 + x22) for

x ∈ Ω̄, with boundary conditions:

(3.2) is ū(x) = x21 + x22, (3.3) is t̄(x) = 2(x21 + x22)(x1n1(x) + x2n2(x)), and for the mixed

boundary conditions (3.4), (3.5), we have (3.2) for {x2 = 2;x2 = 3; 2 ≤ x1 ≤ 3}; and

(3.3) for {x1 = 2;x1 = 3; 2 ≤ x2 ≤ 3}.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

3.6.5 Test 3

Circular domain Ω̄ = {(x1, x2) : (x1 − 1.5)2 + (x2 − 1.5)2 ≤ 0.25}, a(x) = x21 + x22,

f(x) = 8(x21 + x22) for x ∈ Ω̄, with boundary conditions:

(3.2) is ū(x) = x21 + x22, (3.3) is t̄(x) = 2(x21 + x22)(x1n1(x) + x2n2(x)), and for the mixed

boundary conditions (3.4), (3.5), we have (3.2) for x2 =
√

0.25− (x1 − 1.5)2 + 1.5; and

(3.3) for x2 = −
√

0.25− (x1 − 1.5)2 + 1.5.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

3.6.6 Test 4

Circular domain Ω̄ = {(x1, x2) : x21 + x22 ≤ 1}, a(x) = x1 + x2 + 4, f(x) = 2 for x ∈ Ω̄,

with boundary conditions:
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(3.2) is ū(x) = x21 + x22, (3.3) is t̄(x) = (x1 + x2 + 4)(n1(x) + n2(x)), and for the mixed

boundary conditions (3.4), (3.5), we have (3.2) for x2 =
√

1− x21; and (3.3) for x2 =

−
√

1− x21.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

3.6.7 Test 5

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, a(x) = exp(x1+x2), f(x) = 2 exp(x1+x2)

for x ∈ Ω̄, with boundary conditions:

(3.2) is ū(x) = x1 + x2, (3.3) is t̄(x) = exp(x1 + x2)(n1(x) + n2(x)), and for the mixed

boundary conditions (3.4), (3.5), we have (3.2) for {x2 = 2;x2 = 3; 2 ≤ x1 ≤ 3}; and

(3.3) for {x1 = 2;x1 = 3; 2 ≤ x2 ≤ 3}.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

3.6.8 Test 6

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, a(x) = exp(x1 + x2), f(x) = exp(x1 +

x2)(6x1 + 3x21 + 6x2 + 3x22) for x ∈ Ω̄, with boundary conditions:

(3.2) is ū(x) = x31 + x32, (3.3) is t̄(x) = exp(x1 + x2)(3x
2
1n1(x) + 3x22n2(x)), and for the

mixed boundary conditions (3.4), (3.5), we have (3.2) for {x2 = 2;x2 = 3; 2 ≤ x1 ≤ 3};

and (3.3) for {x1 = 2;x1 = 3; 2 ≤ x2 ≤ 3}.

The exact solution for this problem is uexact(x) = x31 + x32, x ∈ Ω̄.

The surface plots of the numerical solutions were obtained with the most refined mesh in

each example. The graph of relative error has the number of nodes on the horizontal axis

and the relative error on the vertical axis. Both boundary and domain integrals appearing

in the formulation have a weak singularity. To calculate the boundary integrals we used

a standard Gaussian quadrature rule. For the domain integrals, we have implemented a

Gaussian quadrature rule for two dimensions with Duffy transformation, by mapping the

triangles into squares and eliminating the weak singularity, see Appendix B.

3.6.9 Dirichlet problem

Numerical results for BDIDE

The results in Figures 3.3 and 3.4 are for the Laplace and Poisson tests, respectively.

In these tests, the domain is square and the exact solutions are linear and quadratic,
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respectively. Since we are using linear basis functions, there is no interpolation error for

Laplace’s equation test, but there is interpolation error for Poisson’s equation as the exact

solution is quadratic. In addition, other errors come either from discretisation of the

domain into triangles or from calculating the boundary and domain integrals numerically;

very good results and high rates of convergence are obtained for both tests.
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Figure 3.3: Relative error for Laplace’s
equation; when J=1089, r(1089) ≈ 1.62×
10−11
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Figure 3.4: Relative error for Poisson’s
equation; when J=1089, r(1089) ≈ 1.00×
10−4

2
2.5

3

2
2.5

3
4

5

6

Exact solution

2
2.5

3

2
2.5

3
4

5

6

Approximate solution

2

2.5

3

2

2.5

3
0
2
4

x 10
−9

Exact−Approximate

10
0

10
2

10
4

10
−10

10
−8

10
−6

Relative error

Figure 3.5: Relative error for Test 1; when
J=1089, r(1089) ≈ 4.84× 10−10
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Figure 3.6: Relative error for Test 2; when
J=1089, r(1089) ≈ 1.42× 10−4

Tests 1 and 2 analyse problems with variable coefficients, so there is one more domain

integral coming from the remainder, i.e. R ̸= 0. Therefore, there are discretisation and

numerical integration errors for test 1. Also, there is interpolation error for test 2, as the

exact solution is quadratic. It can be seen clearly from Figures 3.5 and 3.6 the convergence

of the solution by increasing the number of elements, for both tests.
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Figure 3.7: Relative error for Test 3; when
J=656, r(656) ≈ 1.13× 10−4
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Figure 3.8: Relative error for Test 4; when
J=925, r(925) ≈ 1.05× 10−7

In addition, for the circular domain in tests 3 and 4, an extra approximation error has

been added which comes from approximating the boundary curve by polygons. It can be

seen clearly from Figures 3.7 and 3.8 that test 4 gives better results than test 3 in this

case; a possible reason is that there is interpolation error for test 3, as the exact solution

is quadratic.
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Figure 3.9: Relative error for Test 5; when
J=1089, r(1089) ≈ 3.22× 10−9

2
2.5

3

2
2.5

3
0

50

100

Exact solution

2
2.5

3

2
2.5

3
0

50

100

Approximate solution

2

2.5

3

2

2.5

3
0

0.005
0.01

Exact−Approximate

10
0

10
2

10
4

10
−4

10
−3

10
−2

Relative error

Figure 3.10: Relative error for Test 6;
when J=1089, r(1089) ≈ 1.60× 10−4

The exact solutions for tests 5 and 6 are linear and cubic, respectively. It can be seen

clearly from Figures 3.9 and 3.10 that the results for test 5 are still better than test 6, as

there is interpolation error for test 6 since the exact solution is cubic.
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Numerical results for BDIE

As both u and t along the boundary are calculated in the BDIE method, we implemented

mixed boundary elements with linear u and constant t to avoid the discontinuities of t at

corner points.
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Figure 3.11: Relative error for Laplace’s
equation; when J=1089, r(1089) ≈ 4.09×
10−7
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Figure 3.12: Relative error for Poisson’s
equation; when J=1089, r(1089) ≈ 1.22×
10−6

From Figures 3.11-3.14 the results for the Laplace and Poisson equations and for tests 1

and 2 are very good, with high rates of convergence. Moreover, it is clear that the BDIE

results for the Poisson equation and test 2 are better than the BDIDE results for the same

problems.
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Figure 3.13: Relative error Test 1; when
J=1089, r(1089) ≈ 4.25× 10−7
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Figure 3.14: Relative error Test 2; when
J=1089, r(1089) ≈ 2.60× 10−6

Moreover, in tests 3 and 4 the exact solutions are quadratic and linear, respectively. Since

both tests have a circular domain, an extra approximation error has been added which
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Figure 3.15: Relative error for Test 3;
when J=656, r(656) ≈ 3.29× 10−4
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Figure 3.16: Relative error for Test 4;
when J=925, r(925) ≈ 2.20× 10−4

comes from approximating the boundary curve by polygons. Therefore, lower accuracy

is obtained (see Figures 3.15 and 3.16) in comparison with tests 1 and 2. It can be seen

also that the BDIDE gives better results than BDIE in this case; a possible reason is the

approximate calculation of the value of c for BDIE which is avoided for the BDIDE.
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Figure 3.17: Relative error for Test 5;
when J=1089, r(1089) ≈ 5.00× 10−7
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Figure 3.18: Relative error for Test 6;
when J=1089, r(1089) ≈ 7.50× 10−6

Finally, in tests 5 and 6, good rates of convergence have been achieved for both tests, see

Figures 3.17 and 3.18. The results for test 6 for the BDIE are better than those for the

BDIDE.
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3.6.10 Neumann problem

Numerical results for BDIE

As discussed in the subsection 3.3.2, the perturbation operator ensures that the solution

of the Neumann problem has zero mean integral on the boundary, i.e.

∫
∂Ω

uapproxdΓ(x) = 0.

The exact solution of course has also to be constructed such that the same property holds

∫
∂Ω

uexactdΓ(x) = 0.

But our exact solution did not have this property, therefore we have to change it by a

constant c̃, i.e uexact − c̃, we define uexact = ũ− c̃ with
∫
∂Ω ũdΓ(x) ̸= 0. As

0 =

∫
∂Ω

uexact =

∫
∂Ω

(ũ− c̃) =

∫
∂Ω

ũ− |∂Ω|c̃

we could deduce

c̃ =
1

|∂Ω|

∫
∂Ω

ũ.

The value of c̃ = 1
|∂Ω|

∫
∂Ω

u(x)dΓ(x) for Laplace’s equation can be calculated in the param-

eterisation equation for the boundary curve through the following steps:

1

|∂Ω|

∫
∂Ω

u(x)dΓ(x) =
1

|∂Ω|

[∫
Γ1

u(x)dΓ1(x)+

∫
Γ2

u(x)dΓ2(x)+

∫
Γ3

u(x)dΓ3(x)+

∫
Γ4

u(x)dΓ4(x)

]
,

where Γ1,Γ2,Γ3,Γ4 are the boundary segments starting from point (2, 2) in anti-clockwise

direction.

So,

Γ1 =

(
x1
x2

)
=

(
2

2

)
+ t

(
1

0

)
, 0 ≤ t ≤ 1

dΓ1(x) = |ẋ(t)|dt = 1, since ẋ(t) =
(
1
0

)
, therefore,

∫
Γ1

(x1 + x2)dΓ1(x) =

1∫
0

[(2 + t) + (2 + 0)] · 1dΓ1(x) = 4.5
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and similarly,

Γ2 =

(
x1
x2

)
=

(
3

2

)
+ t

(
0

1

)
, 0 ≤ t ≤ 1,

∫
Γ2

(x1 + x2)dΓ2(x) = 5.5,

Γ3 =

(
x1
x2

)
=

(
3

3

)
+ t

(
−1

0

)
, 0 ≤ t ≤ 1,

∫
Γ3

(x1 + x2)dΓ3(x) = 5.5,

Γ4 =

(
x1
x4

)
=

(
2

3

)
+ t

(
0

−1

)
, 0 ≤ t ≤ 1,

∫
Γ4

(x1 + x2)dΓ4(x) = 4.5,

and then, c̃ = 1
|∂Ω| · 20 = 1

4 · 20 = 5 ⇒ uexact = x1 + x2 − 5.

For Poisson’s equation the value of c̃ can be calculated with the same steps above and

then we get the value c̃ = 58
12 , so the exact solution was taken as uexact = x21 + x22 − 58

12 .

The results in Figures 3.19 and 3.20 demonstrate that the BDIE method is able to generate

accurate solutions for both Laplace and Poisson equations.
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Figure 3.19: Relative error for Laplace’s
equation; when J=1089, r(1089) ≈ 5.9 ×
10−6
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Figure 3.20: Relative error for Poisson’s
equation; when J=1089, r(1089) ≈ 5.09×
10−5

In test 1, the value of c̃ can be calculated with exactly the same steps as in the Laplace’s
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equation test and then, uexact = x1 + x2 − 5. Also, the exact solution for test 2 was taken

as uexact = x21 + x22 − 58
12 .
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Figure 3.21: Relative error for Test 1;
when J=1089, r(1089) ≈ 6.36× 10−6
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Figure 3.22: Relative error for Test 2;
when J=1089, r(1089) ≈ 1.33× 10−4

In tests 3 and 4, the domain is a circle, and the value of c̃ can also be calculated by the

parameterisation equation for the boundary curve but slightly different than in examples

(1) and (2), since the general equation of the circle with center (h, k) is

(x− h)2 + (y − k)2 = r2

Then,

Γ =

(
r cos(t) + h

r sin(t) + k

)
, 0 ≤ t ≤ 2π

where r is the radius of the circle, equal to 0.5, and h = k = 1.5, dΓ(x) = |ẋ(t)|dt = 0.5,

since ẋ(t) =
(− 1

2
sin(t)

1
2
cos(t)

)
, therefore,

1

|∂Ω|

∫
∂Ω

u(x)dΓ(x) =
1

|∂Ω|

∫
Γ

u(x)dΓ(x) =
19

4
,

where 1
|∂Ω| = π, so the exact solution was taken as uexact = x21 + x22 − 19

4 . The exact

solution for test 4 was taken to be uexact(x) = x1+x2 as c̃ = 0 in this case. The numerical

results for both tests are given in Figures 3.23 and 3.24.

Remark 3.2:

The values of c(xi) = α(xi)
2π , where α(xi) is the interior angle at a corner point xi of the
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Figure 3.23: Relative error for Test 3;
when J=656, r(656) ≈ 1.67× 10−3
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Figure 3.24: Relative error for Test 4;
when J=925, r(925) ≈ 2.06× 10−3

boundary ∂Ω in Eq.(2.18). By using the fact that the sum of the interior angles of a

regular polygon with n sides is (n− 2)× 180, the interior angle of a regular polygon with

n sides is just (n− 2)× 180 divided by the number of sides n.

Finally, by following the same procedure for calculating the value of c̃ the exact solution

for test 5 is uexact(x) = x1 + x2 − 5, and for test 6 we have uexact(x) = x31 + x32 − 135
4 . The

numerical results for both tests are given in Figures 3.25 and 3.26.
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Figure 3.25: Relative error for Test 5;
when J=1089, r(1089) ≈ 6.60× 10−6
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Figure 3.26: Relative error for Test 6;
when J=1089, r(1089) ≈ 2.00× 10−4
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3.6.11 Mixed problem

Numerical results for BDIE and BDIDE

The results in Figures 3.27 to 3.34 demonstrate that both the BDIE and BDIDE methods

are able to generate accurate and convergent solutions for the BVP (3.1) with mixed

boundary conditions (3.4) and (3.5). When comparing the solutions obtained by using

both methods, it can be seen that the BDIDE method produced better results for the

Laplace equation and for tests 1 and 3-5. However, more accurate results were obtained

for the BDIE method for the Poisson equation and for tests 2 and 6. A possible explanation

is the approximation of the flux t in the BDIDE method using linear basis functions for u

living on triangles; thus, TΦj(x) is constant within each triangle. These approximations

are appropriate for the Laplace equation and for tests 1, 4 and 5 as the solution to these

tests are all linear, while the solution to the Poisson equation and tests 2, 3 and 6 are

quadratic or cubic. The accuracy of the BDIE for tests 3 and 4 is also reduced by the

approximation of the flux t at the boundary nodes, as there is a slight flux discontinuity

at these points which is avoided in the BDIDE method.

Table 3.1: Relative errors for all tests by using BDIE and BDIDE

No. of nodes Tests BDIE (mid-node) BDIE (end-node) BDIDE

1089 Laplace 2.48× 10−5 1.01× 10−6 5.80× 10−7

1089 Poisson 4.64× 10−5 4.40× 10−6 1.00× 10−4

1089 Test 1 1.62× 10−4 1.38× 10−6 6.10× 10−7

1089 Test 2 5.00× 10−4 1.40× 10−5 1.00× 10−4

3715 Test 3 2.63× 10−4 4.01× 10−4 4.56× 10−5

3715 Test 4 1.00× 10−5 2.00× 10−5 5.00× 10−7

1089 Test 5 8.00× 10−4 2.70× 10−6 6.80× 10−7

1089 Test 6 9.00× 10−4 2.26× 10−5 2.00× 10−4
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Figure 3.27: Relative errors for Laplace’s
equation
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Figure 3.28: Relative errors for Poisson’s
equation
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Figure 3.29: Relative errors for Test 1
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Figure 3.30: Relative errors for Test 2
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Figure 3.31: Relative errors for Test 3
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Figure 3.32: Relative errors for Test 4
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Figure 3.33: Relative errors for Test 5
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Figure 3.34: Relative errors for Test 6

3.7 Concluding remarks

In this chapter, the BDIE and BDIDE methods are developed and implemented for solving

two-dimensional second-order linear elliptic mixed problems with variable coefficients with

either Dirichlet, Neumann or mixed boundary conditions. Convergence studies with mesh

refinement show that the present methods produce accurate results. The boundary and

domain integrals appearing in the formulations have a weak singularity. To calculate

the boundary integrals we used a standard Gaussian quadrature rule. For the domain

integrals, we have implemented a Gaussian quadrature rule with Duffy transformation by

mapping the triangles into squares and eliminating the weak singularity, which is discussed
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in more details in Appendix B. The following remarks apply to the present approach:

• A parametrix (Levi function), which is available for equations with variable coefficients,

is used as a test function;

• The values of the unknown variables are obtained accurately with the present methods;

• Unlike in the standard BEM, the unknown function u is approximated using linear basis

functions living on triangles for both BDIE and BDIDE methods, allowing to obtain the

values of u at interior points directly;

• As both u and t along the boundary are calculated in the BDIE method, we implemented

mixed boundary elements with linear u and constant t to avoid the discontinuities of t

at corner points. In this case, collocation was tested at the mid and end points of each

boundary element. It was shown that end-node collocation generally provides higher

accuracy than mid-node collocation;

• The only boundary variable in the BDIDE method is u along Neumann boundaries, thus

there is no need for collocation along Dirichlet boundaries. Thus, the problem caused by

the discontinuity of the normal derivative at corner points is avoided. This feature will

save memory and computational time when we apply the BDIDE for practical problems;

• The generation, assembly and solution of the system of linear equations for the BDIE

method are more complicated and thus take longer than that for the BDIDE method.



Chapter 4

Helmholtz equation with variable

coefficients

4.1 Introduction

The Helmholtz equation is widely used to model many problems in physics and mechanics.

If the material is homogeneous and there are no source/sink terms, then the governing

equation is the homogeneous Helmholtz equation [35,36]. When source terms are present,

however, a non-homogeneous Helmholtz equation must be considered. Numerical solutions

of these problems, in either the homogeneous or the non-homogeneous case, have been

obtained by means of the finite element method (FEM) and the finite difference method

(FDM).

Rangogni [36] presented a BEM formulation for the non-homogeneous Helmholtz equation

with harmonic source terms, and the domain integral transformed to a boundary integral

using Green’s formula. The BEM for a non-homogeneous Helmholtz equation with variable

coefficients is discussed in [35]. The authors used the fundamental solution for the Laplace

equation to transform the non-homogeneous Helmholtz equation to a boundary integral

equation, and then an iteration method was used to solve the BIE. A comparative study

of BEM and FEM for the Helmholtz equation in two dimensions is performed in [38];

the numerical investigations showed that the BEM is generally more accurate than the

FEM when the size of the finite elements is comparable to that of the boundary elements,

especially for the Dirichlet problem. As in previous chapters, in order to apply the BEM

for Helmholtz equation the fundamental solution must be known. For Helmholtz equation

56
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with constant coefficients the fundamental solution is well-known [5, 6, 38]. However, for

Helmholtz equations with variable coefficients, fundamental solutions are only available

for simple forms of coefficients, see [38]. Recently, Marin et al. [39,40] successfully applied

the dual reciprocity boundary element method (DRBEM) for a Helmholtz equation with

variable coefficients. In this chapter, the boundary-domain integral or integro-differential

equation (BDIE or BDIDE) formulations developed in chapter three for heat conduction

are extended to the treatment of the two-dimensional Helmholtz equation with variable

coefficients. Four possible cases are investigated, first of all when both material parameters

and wave number are constant, in which case the zero-order Bessel function of the second

kind is used as fundamental solution.

Moreover, when the material parameters are variable (with constant or variable wave num-

ber), a parametrix is adopted to reduce the Helmholtz equation to a BDIE or BDIDE.

However, when material parameters are constant (with variable wave number), the stan-

dard fundamental solution for the Laplace equation is used in the formulation. In order to

show the accuracy of these methods, some test examples with square and circular domains

are given.

4.2 Reduction of the Helmholtz equation to an

integral equation

Let us consider the following non-homogeneous Helmholtz equation with variable coef-

ficients for a two-dimensional body Ω. In the direct problem formulation, the acoustic

pressure ū(x) is prescribed on part ∂DΩ of the boundary ∂Ω and the normal velocity t̄(x)

on the remaining ∂NΩ part of ∂Ω, see [6, 39],

2∑
i=1

∂

∂xi

[
a(x)

∂u(x)

∂xi

]
+ k(x)u(x) = f(x), x ∈ Ω, (4.1)

with the mixed boundary conditions

u(x) = ū(x), x ∈ ∂DΩ, (4.2)

Tu(x) = t̄(x), x ∈ ∂NΩ, (4.3)
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where Ω is a bounded domain, a(x) is a known variable material coefficient, f(x) is a given

function; x = (x1, x2); k(x) is a known variable wave number, [Tu](x) := a(x)∂u∂n(x), n(x)

is the external normal vector to the boundary ∂Ω, and ū(x) and t̄(x) are known functions.

The non-homogeneous Helmholtz problem (4.1)-(4.3) becomes a pure Neumann problem

if ∂DΩ = ∅, and a pure Dirichlet problem if ∂NΩ = ∅. We assume that k(x) is not an

eigenvalue for the homogeneous form of the mixed problem (4.1)-(4.3).

Eqs. (4.1)-(4.3) when both a(x) and k(x) are constant can be expressed as the integral

equation (3.7) where the fundamental solution in this case is given by [6, 37],

F (x, y) =
1

4
Y0(kr), (4.4)

where Y0 is the zero order Bessel function of the second kind.

For partial differential operators with variable coefficients, like L in Eq.(4.1) a fundamental

solution is generally not available in explicit form. However, a parametrix is often available

instead, which is discussed in detail in chapter 3. By following the same procedure, we

obtain the integral equality

c(y)u(y)−
∫
∂Ω

[u(x)TxP (x, y)− P (x, y)Tu(x)]dΓ(x) +

+

∫
Ω

[R(x, y) + k(x)P (x, y)]u(x)dΩ(x) =

∫
Ω

P (x, y)f(x)dΩ(x), (4.5)

where the parametrix P (x, y) and R(x, y) are given in Eqs.(3.9) and (3.10), respectively.

Identity (4.5) can be used for formulating either a BDIE or a BDIDE, with respect to u

and its derivatives. Let us consider both forms below.

4.3 Boundary-domain integral/integro-differential

equations (BDIE/BDIDE)

Boundary-domain integral equation (BDIE)

Substituting the boundary conditions (4.2) and (4.3) into (4.5), introducing a new variable

t(x)=Tu(x) for the unknown normal velocity on ∂DΩ and using Eq.(4.5) at y ∈ Ω∪∂Ω

reduces the BVP (4.1)-(4.3) to the following BDIE for u(x) at x ∈ Ω∪∂NΩ and t(x) at
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x ∈ ∂DΩ,

c0(y)u(y)−
∫

∂NΩ

u(x)TxP (x, y)dΓ(x) +

∫
∂DΩ

P (x, y)t(x)dΓ(x) +

+

∫
Ω

[R(x, y) + k(x)P (x, y)]u(x)dΩ(x) = Ψ0(y), y ∈ Ω ∪ ∂Ω (4.6)

where Ψ0(y) is given by Eq. (3.24).

Boundary-domain integro-differential equation (BDIDE)

Using another approach, we can substitute the boundary conditions (4.2) and (4.3) into

(4.5) but leave T as a differential operator acting on u on the Dirichlet boundary ∂DΩ and

use the following BDIDE at y ∈ Ω ∪ ∂NΩ,

a(y)c(y)u(y)−
∫

∂NΩ

u(x)TxP (x, y)dΓ(x) +

∫
∂DΩ

P (x, y)Tu(x)dΓ(x) +

+

∫
Ω

[R(x, y) + k(x)P (x, y)]u(x)dΩ(x) = Ψ(y), y ∈ Ω ∪ ∂NΩ, (4.7)

where Ψ(y) is given by Eq.(3.25). As we will see below, this approach can lead, after

discretisation, to a system with a reduced number of linear algebraic equations.

4.4 Discretisation of the BDIE/BDIDE

By following the same procedure in chapter 3, and using the interpolations of u(x) and

t(x) in Eqs.(3.28) and (3.42), we can obtain a system of linear algebraic equations by the

collocation method for equations (4.6) and (4.7).

4.4.1 Discretisation of the BDIE

Substituting the interpolations (3.28) and (3.42) in BDIE (4.6) and applying the collo-

cation method, we arrive at the following system of J linear algebraic equations for J
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unknowns u(xj), xj ∈ Ω ∪ ∂NΩ and t(xj) = (Tu)(xj), xj ∈ ∂DΩ,

c0(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

Miju(x
j) +

∑
xj∈Ω∪∂NΩ

DKiju(x
j) +

+
∑

xj∈∂DΩ

M
′
ijt(x

j) = Ψ0(xi)−
∑

xj∈∂DΩ

Mij ū(x
j)−

∑
xj∈∂DΩ

DKij ū(x
j),

xi ∈ Ω ∪ ∂Ω, i = 1, ..., J,no sum in i. (4.8)

where Ψ0(xi) is calculated from Eq.(3.24), and

Ψ(xi) =

∫
ω̄(xi)∩∂DΩ

ū(x)TxP (x, xi)dΓ(x)−
∫

ω̄(xi)∩∂NΩ

P (x, xi)t̄(x)dΓ(x) +

+

∫
Ω
P (x, xi)f(x)dΩ(x), (4.9)

Mij = −
∫

ω̄(xi)∩∂NΩ

Φj(x)TxP (x, xi)dΓ(x) (4.10)

M
′
ij =

∫
ω̄(xi)∩∂DΩ

P (x, xi)vj(x)dΓ(x), (4.11)

DKij =

∫
ω(xi)∩Ω

Φj(x)[R(x, xi) + k(x)P (x, xi)]dΩ(x). (4.12)

4.4.2 Discretisation of the BDIDE

To obtain a system of linear algebraic equations from the BDIDE (4.7) by the collocation

method, we collocate at the nodes xi, i = 1, ..., J , arriving at a system of J −JD algebraic

equations for J − JD unknowns u(xj), xj ∈ Ω∪ ∂NΩ. Substituting interpolation formulae

(3.28) into the BDIDE (4.7) leads to the following system:

c(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

M
′′
iju(x

j) +
∑

xj∈Ω∪∂NΩ

DKiju(x
j) = Ψ(xi)

−
∑

xj∈∂DΩ

M
′′
ij ū(x

j)−
∑

xj∈∂DΩ

DKij ū(x
j), xi ∈ Ω ∪ ∂NΩ, no sum in i, (4.13)
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where Ψ(xi) and DKij are given by Eqs.(4.9) and (4.12), respectively, and

M
′′
ij =

∫
ω̄(xi)∩∂DΩ

P (x, xi)TΦj(x)dΓ(x)−
∫

ω̄(xi)∩∂NΩ

Φj(x)TxP (x, xi)dΓ(x). (4.14)

4.5 Numerical results

In this section, we shall examine some test examples to assess the performance of the BDIE

and BDIDE formulations for the non-homogeneous Helmholtz equation for four cases.

Firstly, when both material parameter a(x) and wave number k are constant. Secondly,

when the material parameter a(x) is variable and the wave number k is constant. Thirdly,

when the material parameter a(x) is constant and the wave number k(x) is variable.

Fourthly, when both the material parameter and wave number are variable. We applied

the BDIE and BDIDE methods to some test problems on square and circular domains,

for which an exact analytical solution, uexact, is available. Also, the relative error was

calculated as in chapter 2, Eq.(2.35). The relative error has been calculated for J= 25,

81, 289 and 1089 in all test examples.

4.5.1 Numerical results when both a(x) and k(x) constant

Numerical results for homogeneous Helmholtz equation

We shall initially test the BDIE and BDIDE formulations for the homogeneous Helmholtz

equation, i.e. f(x) = 0. In this case, both BDIE and BDIDE reduce to BIE and BIDE

with no domain integrals.

Test 1 :

Square domain Ω̄ = {(x1, x2) : 0 ≤ x1, x2 ≤ 1}, k =
√
2π
4 , for x ∈ Ω̄. The exact solution

for this problem is uexact(x) = sin(πx1
4 ) cos(πx2

4 ), x ∈ Ω̄.

Test 2 :

Circular domain Ω̄ = {(x1, x2) : x21 + x22 ≤ 1}, k =
√
2π
4 , for x ∈ Ω̄. The exact solution for

this problem is uexact(x) = sin(πx1
4 ) cos(πx2

4 ), x ∈ Ω̄.

Both tests will be run with the following boundary conditions:

• Dirichlet boundary conditions:
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ū(x) = sin(πx1
4 ) cos(πx2

4 ), x ∈ Ω̄.

•• Neumann boundary conditions:

t̄(x) = 1
4 cos(

1
4πx1)π cos(14πx2)n1(x)− 1

4 sin(
1
4πx1)π sin(14πx2)n2(x).

• • • Mixed boundary conditions:

ū(x) = sin(πx1
4 ) cos(πx2

4 ) for {x2 = 0;x2 = 1; 0 ≤ x1 ≤ 1}; or x2 =
√

1− x21.

t̄(x) = 1
4 cos(

1
4πx1)π cos(14πx2)n1(x) − 1

4 sin(
1
4πx1)π sin(14πx2)n2(x) for {x1 = 0;x1 =

1; 0 ≤ x2 ≤ 1}; or x2 = −
√

1− x21.

The algorithm was implemented in computer programs by using Matlab. The surface plots

of the numerical solutions were obtained with the most refined mesh in each example. The

graph of relative error has the number of nodes on the horizontal axis and the relative

error on the vertical axis.

Dirichlet problem

Boundary Integro-Differential Equation Method

The BIDE formulation for the Dirichlet problem only calculates the values of the func-

tion u at internal points as the normal derivative ∂u
∂n is approximated through linear basis

functions living on triangles. The main numerical errors come from the resulting domain

discretisation and the numerical evaluation of the boundary integrals. Good results and

rates of convergence are obtained for both tests, as can be seen in Figures 4.1 and 4.2.

It can also be seen that the results for test 2 have lower order of accuracy as there is an

extra error coming from approximating the circular boundary by polygons.
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Figure 4.1: Relative error for test 1, when
J=1089, r(1089) ≈ 4.00× 10−4
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Figure 4.2: Relative error for test 2, when
J=925, r(925) ≈ 1.10× 10−3
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Boundary Integral Equation Method

The BIE method for the homogeneous Helmholtz equation reduces to the standard BEM.

The normal derivative ∂u
∂n is assumed to be constant within each boundary element to take

into account its discontinuities at corner points. The results for tests 1 and 2, presented

in Figures 4.3 and 4.4, respectively, show that the BIE method produces more accurate

results than the BIDE method for Dirichlet problems.
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Figure 4.3: Relative error for test 1, when
J=1089, r(1089) ≈ 2.64× 10−6
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Figure 4.4: Relative error for test 2, when
J=925, r(925) ≈ 2.00× 10−4

Neumann problem

Only the BIE formulation is applicable for Neumann problems. Tests 1 and 2 with Neu-

mann boundary conditions are solved using linear interpolation for the function u along

each boundary element. The results for both tests in Figures 4.5 and 4.6, respectively,

demonstrate the convergence of the solutions.
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J=1089, r(1089) ≈ 2.00× 10−4
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Figure 4.6: Relative error for test 2, when
J=925, r(925) ≈ 2.00× 10−3

Mixed problem

Boundary Integro-Differential Equation Method

The BIDE formulation for mixed problems does not employ collocation points on the

Dirichlet boundaries; therefore, unlike the standard BEM, the values of t on Dirichlet

boundaries are not calculated. The main numerical errors come from the use of linear

basis functions living on triangles for approximating the values of t, the resulting domain

discretisation and the numerical evaluation of the boundary and domain integrals. Good

results and rates of convergence are obtained for both tests, as can be seen in Figures 4.7

and 4.8.
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J=1089, r(1089) ≈ 4.00× 10−4

−1

0

1

−1

0

1
−1

0
1

Exact solution

−1

0

1

−1

0

1
−1

0
1

Approximate solution

−1

0

1

−1

0

1
−1

0
1

x 10
−3

Exact−Approximate

10
1

10
2

10
3

10
−3

10
−2

10
−1

Relative error

Figure 4.8: Relative error for test 2, when
J=925, r(925) ≈ 1.10× 10−3



4.5. Numerical results 65

Boundary Integral Equation Method

The treatment of corner points in the BIE method for two-dimensional mixed BVP for

a second-order linear elliptic PDE with variable coefficients, by using mixed boundary

elements with linear interpolation for u and constant for t, with mid-node or end-node

collocation (M-NC or E-NC), is discussed in detail in chapter three. Figures 4.9 and 4.10

below show the results for tests 1 and 2 with mixed boundary conditions. Once more, the

BIE method produced more accurate results than the BDIE method.
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E-NC; when J=1089, r(1089) ≈ 1.57 ×
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Figure 4.10: Relative error for test 2 with
M-NC; when J=925, r(925) ≈ 1.00 ×
10−3

Numerical results for the non-homogeneous Helmholtz equation

We shall test the BDIE and BDIDE formulations for the non-homogeneous Helmholtz

equation, i.e. f(x) ̸= 0. Initially, all tests will assume k = 1. For the domain integrals

which appear in the non-homogeneous Helmholtz equation, we have implemented the cell-

integration technique exactly like when treating the heat source domain integral in chapter

three.

In the cell-integration technique, the weak singularities which appear when using trian-

gular elements (where collocation is at the vertex of the integration element) have been

solved by using Gaussian quadrature rules for two dimensions (with eight points in each

direction), in addition to Duffy transformation, by mapping the triangles into squares and

eliminating the weak singularity in the process for each of the three vertices of the inte-

gration element. However, for elements with no collocation points, Gaussian quadrature



4.5. Numerical results 66

rules for two dimensions are enough to achieve the desired accuracy.

Test 1 :

Square domain Ω̄ = {(x1, x2) : 0 ≤ x1, x2 ≤ 1}, for x ∈ Ω̄, f(x) = x1+x2 and the boundary

conditions: (4.2) is ū(x) = x1 + x2, (4.3) is t̄(x) = n1(x) + n2(x) and for mixed boundary

conditions (4.2), (4.3), we have (4.2) for {x2 = 0;x2 = 1; 0 ≤ x1 ≤ 1}; and (4.3) for

{x1 = 0;x1 = 1; 0 ≤ x2 ≤ 1}. The exact solution for this problem is uexact(x) = x1 + x2,

x ∈ Ω̄.

Test 2:

Square domain Ω̄ = {(x1, x2) : 0 ≤ x1, x2 ≤ 1}, for x ∈ Ω̄, f(x) = 4 + x21 + x22 and the

boundary conditions: (4.2) is ū(x) = x21 + x22, (4.3) is t̄(x) = 2x1n1(x) + 2x2n2(x) and for

mixed boundary conditions (4.2), (4.3), we have (4.2) for {x2 = 0;x2 = 1; 0 ≤ x1 ≤ 1};

and (4.3) for {x1 = 0;x1 = 1; 0 ≤ x2 ≤ 1}. The exact solution for this problem is

uexact(x) = x21 + x22, x ∈ Ω̄.

Test 3 :

Square domain Ω̄ = {(x1, x2) : 0 ≤ x1, x2 ≤ 1}, for x ∈ Ω̄, f(x) = − cos(x1) sin(x2) and

the boundary conditions: (4.2) is ū(x) = cos(x1) sin(x2), (4.3) is

t̄(x) = − sin(x1) sin(x2)n1(x) + cos(x1) cos(x2)n2(x) and for mixed boundary conditions

(4.2), (4.3), we have (4.2) for {x2 = 0;x2 = 1; 0 ≤ x1 ≤ 1}; and (4.3) for {x1 = 0;x1 =

1; 0 ≤ x2 ≤ 1}. The exact solution for this problem is uexact(x) = cos(x1) sin(x2), x ∈ Ω̄.

Test 4 :

Circular domain Ω̄ = {(x1, x2) : x21 + x22 ≤ 1}, for x ∈ Ω̄, f(x) = − cos(x1) sin(x2). and

the boundary conditions: (4.2) is ū(x) = cos(x1) sin(x2), (4.3) is

t̄(x) = − sin(x1) sin(x2)n1(x) + cos(x1) cos(x2)n2(x) and for mixed boundary conditions

(4.2), (4.3), we have (4.2) for x2 =
√
1− x21; and (4.3) for x2 = −

√
1− x21. The exact

solution for this problem is uexact(x) = cos(x1) sin(x2), x ∈ Ω̄.

The Matlab programs for homogeneous problems have been modified by adding the cal-

culation of the domain integral for the new tests 1-4 above.



4.5. Numerical results 67

Dirichlet problem

The Boundary-Domain Integro-Differential Equation Method

In test 1 the exact solution is linear and we are using linear basis functions living on

triangles, therefore, there is no interpolation error. So, the errors come either from dis-

cretisation of the domain into triangles or from calculating the boundary and domain

integrals numerically. However, for test 2, the exact solution is quadratic, therefore, there

is interpolation error in addition to the other numerical errors in test 1. The results for

both tests in Figures 4.11 and 4.12 are good, with satisfactory convergence.
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Figure 4.11: Surface plot of solution for
test 1, when J=1089, r(1089) ≈ 6.00 ×
10−9
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Figure 4.12: Surface plot of solution for
test 2, when J=1089, r(1089) ≈ 6.00 ×
10−4

The exact solutions for tests 3 and 4 are trigonometric functions, therefore, interpolation

errors are present for both tests. Also, there are discretisation and numerical integration

errors, and an extra error has been added for test 4 which comes from approximating the

boundary curve by polygons, but the results are still good with satisfactory results and

convergence, as can be seen in Figures 4.13 and 4.14.
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Figure 4.13: Surface plot of solution for
test 3, when J=1089, r(1089) ≈ 6.00 ×
10−4
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Figure 4.14: Surface plot of solution for
test 4, when J=925, r(925) ≈ 1.00 ×
10−4

The Boundary-Domain Integral Equation Method

We will now test the BDIE for tests 1-4, using the same procedure as for the homogenous

case, in which t is assumed to be constant on the boundary to deal with the discontinuity

of the normal derivative at corner points.

0
0.5

1

0
0.5

1
0

1

2

Exact solution

0

0.5

1

0

0.5

1
0

1

2

Approximate solution

0

0.5

1

0

0.5

1
−5

0
5

x 10
−6

Exact−Approximate

10
0

10
2

10
4

10
−5.9

10
−5.2

Relative error

Figure 4.15: Surface plot of solution for
test 1, when J=1089, r(1089) ≈ 1.23 ×
10−6
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Figure 4.16: Surface plot of solution for
test 2, when J=1089, r(1089) ≈ 2.43 ×
10−6

The results in Figures 4.15-4.18 demonstrate that the BIE method is able to generate

accurate solutions with high rates of convergence for the BVP (4.1)-(4.2). When comparing

the solutions obtained by using BIE/BIDE methods, it can be seen that the BIDE method

produced better results for test 1. However, more accurate results were obtained for the

BIE method for tests 2, 3 and 4. A possible explanation is the approximation of the flux

t in the BIDE method using linear basis functions for u living on triangles; thus, TΦj(x)
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Figure 4.17: Surface plot of solution for
test 3, when J=1089, r(1089) ≈ 2.90 ×
10−6
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Figure 4.18: Surface plot of solution for
test 4, when J=925, r(925) ≈ 1.00 ×
10−4

is constant within each triangle. These approximations are appropriate for test 1, as the

solution is linear, while the solution to the tests 2, 3 and 4 are not linear. The accuracy

of the BIE for tests 1, 2 and 3 is also reduced by the approximation of the flux t at the

boundary nodes, as there is a slight flux discontinuity at these points which is avoided in

the BIDE method.

Neumann problem

The solution of the Neumann problem will provide values of u on the boundary and domain

(different from Dirichlet problems, where the values of u on the boundary are specified),

therefore, lower accuracy should be expected.
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Figure 4.19: Surface plot of solution for
test 1, when J=1089, r(1089) ≈ 2.85 ×
10−6
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Figure 4.20: Surface plot of solution for
test 2, when J=1089, r(1089) ≈ 6.00 ×
10−4
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Figure 4.21: Surface plot of solution for
test 3, when J=1089, r(1089) ≈ 3.00 ×
10−4
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Figure 4.22: Surface plot of solution for
test 4, when J=925, r(925) ≈ 3.10 ×
10−3

Mixed problem

The Boundary-Domain Integro-Differential Equation Method

BDIDE will be tested for tests 1-4 with mixed boundary conditions. It is important to

notice that there are no collocation points on Dirichlet boundaries, therefore, the only

unknown is u along Neumann boundaries. Thus, the problem caused by the discontinuity

of the normal derivative at corner points is avoided in all tests.
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Figure 4.23: Surface plot of solution for
test 1, when J=1089, r(1089) ≈ 1.68 ×
10−6
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Figure 4.24: Surface plot of solution for
test 2, when J=1089, r(1089) ≈ 5.00 ×
10−4

For tests 2, 3 and 4, lower accuracy is obtained in comparison with test 1. A possible

explanation is the approximation of the flux t in the BIDE method using linear basis

functions for u living on triangles; thus, TΦj(x) is constant within each triangle. These
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Figure 4.25: Surface plot of solution for
test 3, when J=1089, r(1089) ≈ 6.00 ×
10−4
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Figure 4.26: Surface plot of solution for
test 4, when J=925, r(925) ≈ 7.00 ×
10−4

approximations are appropriate for test 1, as the solution to this test is linear, while the

solution to tests 2, 3 and 4 are quadratic and trigonometric functions.

The Boundary-Domain Integral Equation Method

Finally, BDIE will be tested with mixed boundary conditions. In the BDIE formulation,

both u and t along the boundary are calculated. We implemented mixed boundary ele-

ments with linear u and constant t to avoid the discontinuities of t at corner points. In

this case, collocation was tested at the mid and end points of each boundary element. It

was shown in chapter three that end-node collocation generally provides higher accuracy

than mid-node collocation. Therefore, the end-node collocation is adopted for the square

domain in tests 1-3, while mid-node collocation is adopted for the circular domain as it

gives slightly better results than end-node collocation as shown in chapter three (using

mid-node collocation has an advantage for curved domains as the value of c is always 1
2).

Good rates of convergence are obtained for all tests, as can be seen in Figures 4.27-4.30.
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Figure 4.27: Surface plot of solution for
test 1 with E-NC, r(1089) ≈ 3.36× 10−6
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Figure 4.28: Surface plot of solution for
test 2 with E-NC, r(1089) ≈ 4.11× 10−5
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Figure 4.29: Surface plot of solution for
test 3 with E-NC, r(1089) ≈ 2.30× 10−5
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Figure 4.30: Surface plot of solution for
test 4 with M-NC, r(925) ≈ 1.00× 10−4

4.5.2 BDIE/BDIDE for higher wave numbers

In this section, we assess the performance of the BDIE and BDIDE methods for the non-

homogeneous Helmholtz equation with higher wave numbers. It is well known that the

proper resolution of wave propagation and scattering problems for high wave numbers

requires the use of fine meshes [41]. Let us resolve Test 1 in page 66, with mixed boundary

conditions using BDIE and BDIDE with k > 1, where: f(x) = k2(x1 + x2), the exact

solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

It can be clearly seen from Figures 4.31 and 4.32 that lower accuracy is obtained as k is

increased. This behaviour is similar to other methods such as the standard BEM, FEM

and FDM for solving the Helmholtz equation.
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Figure 4.31: Relative errors for test 1 us-
ing BDIDE
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Figure 4.32: Relative errors for test 1 us-
ing BDIE

4.6 Numerical results for variable coefficients

In this section, we shall examine some test examples to assess the performance of the

BDIE/ BDIDE formulations with mixed boundary conditions for three possible cases,

when a(x) variable and k(x) constant, when a(x) constant and k(x) variable and when

both a(x) and k(x) variable . To verify the convergence of the methods, we applied them to

some test problems on square and circular domains, for which an exact analytical solution,

uexact, is available. Also, the relative error was calculated for fixed J= 9, 25, 81, 289 and

1089 as in chapter two, Eq.(2.35). For the square domain, the top and bottom sides have

known acoustic pressure u (Dirichlet boundary condition), while the left and right are

imposed with normal velocity t (Neumann boundary condition). In order to compute the

acoustic pressure u(x) along some lines of the plates, the total number of nodes is fixed

to 81 (32 on the boundary plus 49 in interior).

For the circular domain, the upper-half semi-circle has known acoustic pressure u, while

the lower-half semi-circle has known normal velocity t. In order to compute the acoustic

pressure u(x) for some selected interior points, the total number of nodes is fixed to 55

(23 on the boundary plus 32 in interior) for test 2 and 75 (27 on the boundary plus 48 in

interior) for test 5.
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4.6.1 Numerical results when a(x) variable and k(x) constant

In this case, when the material parameter a(x) is variable and the wave number k(x) is

constant, the parametrix in Eq.(3.9) is adopted.

Test 1 :

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, where k(x) = 1, for x ∈ Ω̄, a(x) =

2(x1 + x2), f(x) = 4 + x1 + x2 and the boundary conditions:

ū(x) = 2 + x1, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 3 + x1, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = 2(x1 + x2)(n1(x) + n2(x)), for x1 = 2 or x1 = 3; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

The first test example to be considered is a square domain. Table 4.1 lists the computed

acoustic pressure u(x) along the line x2 = 2.5 of the plate using BDIDE and BDIE, and

Figures 4.33 and 4.34 represent the plot of the results and relative errors, respectively.

Table 4.1: Computed acoustic pressure along line x2 = 2.5

x1 BDIDE BDIE Exact

2 4.50001261 4.50001472 4.50000000
2.125 4.62500159 4.62500359 4.62500000
2.25 4.75000069 4.75000233 4.75000000
2.375 4.87500002 4.87500117 4.87500000
2.5 4.99999943 5.00000008 5.00000000

2.625 5.12499878 5.12499896 5.12500000
2.750 5.24999796 5.24999770 5.25000000
2.875 5.37499684 5.37499625 5.37500000

3 5.49998557 5.49998486 5.50000000
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Figure 4.33: Acoustic pressure distribu-
tion along the line x2 = 2.875 in test 1
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Figure 4.34: Relative error for BDIDE and
BDIE for test 1

Test 2 :

Circular domain Ω̄ = {(x1, x2) : x21+x22 ≤ 1}, where k(x) = 1, for x ∈ Ω̄, a(x) = x1+x2+4,

f(x) = 2 + x1 + x2 and the boundary conditions:

ū(x) = x1 + x2, for x2 =
√

1− x21,

t̄(x) = (x1 + x2 + 4)(n1(x) + n2(x)), for x2 = −
√

1− x21.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

The second test example to be considered is a circular domain. Table 4.2 lists the com-

puted acoustic pressure u(x) for some selected interior points using BDIDE and BDIE,

and Fig.4.35 represents the plot of the relative errors.

Table 4.2: Computed acoustic pressure for some selected interior points

(x1, x2) BDIDE BDIE Exact

(0.00000000, -0.72045733) -0.72040690 -0.72032692 -0.72045733
(0.13034379, -0.42081664) -0.29045666 -0.29052234 -0.29047285
(0.12923797, 0.15630183) 0.28555418 0.28554375 0.28553981
(0.26820818, 0.68285186) 0.95109415 0.95116850 0.95106003
(0.00000001, 0.73368609) 0.73366884 0.73386992 0.73368609
(0.28400244, -0.66580702) -0.38179397 -0.34945629 -0.38180459
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Figure 4.35: Relative error for BDIDE and BDIE for test 2

Test 3:

Square domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, where k(x) = 1, for x ∈ Ω̄, a(x) = x21+x22,

f(x) = 9(x21 + x22) and the boundary conditions:

ū(x) = 1 + x21, for x2 = 1; 1 ≤ x1 ≤ 2,

ū(x) = 4 + x21, for x2 = 2; 1 ≤ x1 ≤ 2,

t̄(x) = 2(x21 + x22)(x1n1(x) + x2n2(x)), for x1 = 1 or x1 = 2 ; 1 ≤ x2 ≤ 2.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

The third test example to be considered is a square domain. Table 4.3 lists the computed

acoustic pressure u(x) along the line x2 = 1.5 of the plate using BDIDE and BDIE, and

Figs. 4.36 and 4.37 represent the plot of the results and relative errors, respectively.

Table 4.3: Computed acoustic pressure along line x2 = 1.5

x1 BDIDE BDIE Exact

1 3.23904254 3.25001788 3.25000000
1.125 3.50524145 3.51695736 3.51562500
1.25 3.80173933 3.81393990 3.81250000
1.375 4.12971330 4.14223153 4.14062500
1.5 4.48916298 4.50185631 4.50000000

1.625 4.88007916 4.89283775 4.89062500
1.750 5.30243537 5.31520029 5.31250000
1.875 5.75620027 5.76895964 5.76562500

2 6.23998789 6.25274089 6.25000000

It can be seen from Tables 4.1-4.3 and Figs.4.33-4.37 that both the BDIE and BDIDE

methods are able to generate accurate solutions with good convergence for non-homogeneous
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Figure 4.36: Acoustic pressure distribu-
tion along the line x2 = 1.875 in test 3
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Figure 4.37: Relative error for BDIDE and
BDIE for test 3

Helmholtz equations with variable material parameter a(x) and constant wave number k,

by using a parametrix to derive the formulations. The BDIDE formulation for mixed

problems does not employ collocation points on the Dirichlet boundaries; therefore, un-

like the standard BEM, the values of t on Dirichlet boundaries are not calculated. The

treatment of corner points in the BDIE method, by using mixed boundary elements with

linear interpolation for u and constant for t, with mid-node or end-node collocation, is

discussed in detail in the previous chapter. We adopted the end-node collocation in BDIE

as the results are much better than for mid-node collocation.

4.6.2 Numerical results when a(x) constant and k(x) variable

In this case, when the material parameter a(x) = 1 constant, the remainder R(x, y) in

Eq.(3.10) will be zero. The parametrix in Eq.(3.9) is exactly the same as the fundamental

solution for the Laplace equation.

Test 4 :

Square domain Ω̄ = {(x1, x2) : 0 ≤ x1, x2 ≤ 1}, where k(x) = x31+x32, for x ∈ Ω̄, a(x) = 1,

f(x) = (x31 + x32)(x1 + x2) and the boundary conditions:

ū(x) = x1, for x2 = 0; 0 ≤ x1 ≤ 1,

ū(x) = 1 + x1, for x2 = 1; 0 ≤ x1 ≤ 1,

t̄(x) = n1(x) + n2(x), for x1 = 0 or x1 = 1; 0 ≤ x2 ≤ 1.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.
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Table 4.4 lists the computed acoustic pressure u(x) along the line x2 = 0.5 of the plate

using BDIDE and BDIE, and Figures 4.38 and 4.39 represent the plot of the results and

relative errors, respectively.

Table 4.4: Computed acoustic pressure along line of x2 = 0.5

x1 BDIDE BDIE Exact

0 0.50001354 0.50001418 0.50000000
0.125 0.62500238 0.62500297 0.62500000
0.25 0.75000135 0.75000181 0.75000000
0.375 0.87500056 0.87500085 0.87500000
0.5 0.99999989 0.99999998 1.00000000

0.625 1.12499922 1.12499910 1.12500000
0.750 1.24999839 1.24999810 1.25000000
0.875 1.37499729 1.37499688 1.37500000

1 1.49998607 1.49998561 1.50000000
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Figure 4.38: Acoustic pressure distribu-
tion along the line x2 = 0.875 in test 4
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Figure 4.39: Relative error for BDIDE and
BDIE for test 4

Test 5:

Circular domain Ω̄ = {(x1, x2) : (x1−1.5)2+(x2−1.5)2 ≤ 0.25}, k(x) = x21+x22, a(x) = 1,

f(x) = 4 + (x21 + x22)
2 for x ∈ Ω̄, and the boundary conditions:

ū(x) = x21 + x22, for x2 =
√

0.25− (x1 − 1.5)2 + 1.5,

t̄(x) = 2(x1n1(x) + x2n2(x)), for x2 = −
√

0.25− (x1 − 1.5)2 + 1.5.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

The second test example to be considered is a circular domain. Table 4.5 lists the computed

acoustic pressure u(x) for some selected interior points using BDIDE and BDIE, and Figure
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4.40 represents the plot of the relative errors.

Table 4.5: Computed acoustic pressure for some selected interior points

(x1, x2) BDIDE BDIE Exact

(1.25387206, 1.20879066) 3.02577130 3.03266203 3.03336100
(1.14867828, 1.37015320) 3.18952596 3.19618628 3.19678159
(1.24740029, 1.44618959) 3.64013856 3.64768562 3.64747180
(1.21390452, 1.56002889) 3.90026471 3.90758951 3.90725431
(1.27109495, 1.67196906) 4.40409550 4.41203385 4.41116290
(1.21064845, 1.77910151) 4.62408247 4.63144832 4.63087188
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Figure 4.40: Relative error for BDIDE and BDIE for test 5

Test 6 :

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, where k(x) = cos(x1)+ cos(x2), for x ∈ Ω̄,

a(x) = 1, f(x) = (cos(x1) + cos(x2))(x1 + x2) and the boundary conditions:

ū(x) = 2 + x1, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 3 + x1, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = (n1(x) + n2(x)), for x1 = 2 or x1 = 3; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

The third test example to be considered is a square domain. Table 4.6 lists the computed

acoustic pressure u(x) along the line x2 = 2.5 of the plate using BDIDE and BDIE, and

Figures 4.41 and 4.42 represent the plot of the results and relative errors, respectively.

From Tables 4.5 and 4.6 and Figs.4.38-4.42, it can be seen that both BDIDE and BDIE

results are very close to the exact solution. Moreover, from relative error plots, it can
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Table 4.6: Computed acoustic pressure along line x2 = 2.5

x1 BDIDE BDIE Exact

2 4.50001317 4.50001361 4.50000000
2.125 4.62500210 4.62500249 4.62500000
2.25 4.75000120 4.75000149 4.75000000
2.375 4.87500055 4.87500069 4.87500000
2.5 5.00000005 5.00000000 5.00000000

2.625 5.12499955 5.12499932 5.12500000
2.750 5.24999893 5.24999854 5.25000000
2.875 5.37499806 5.37499757 5.37500000

3 5.49998701 5.49998648 5.50000000
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Figure 4.41: Acoustic pressure distribu-
tion along the line x2 = 2.875 in test 6
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Figure 4.42: Relative error for BDIDE and
BDIE for test 6

be noticed that by increasing the number of nodes, good convergence is achieved. This

demonstrates that the proposed formulations for both BDIDE and BDIE, and their nu-

merical implementation, are correct.

4.6.3 Numerical results when both a(x) and k(x) variable

In this final case, when both the material parameter a(x) and the wave number k(x) are

variable, the parametrix in Eq.(3.9) is adopted.

Test 7 :

Square domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, where k(x) = x1 + x2, for x ∈ Ω̄,

a(x) = exp(x1 + x2), f(x) = 2(exp(x1 + x2)) + (x1 + x2)
2 and the boundary conditions:

ū(x) = 1 + x1, for x2 = 1; 1 ≤ x1 ≤ 2,
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ū(x) = 2 + x1, for x2 = 2; 1 ≤ x1 ≤ 2,

t̄(x) = (exp(x1 + x2))(n1(x) + n2(x)), for x1 = 1 or x1 = 2; 1 ≤ x2 ≤ 2.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

The first test example to be considered is a square domain. Table 4.7 lists the computed

acoustic pressure u(x) along the line x2 = 1.5 of the plate using BDIDE and BDIE, and

Figs.4.43 and 4.44 represent the plot of the results and relative errors, respectively.

Table 4.7: Computed acoustic pressure along line x2 = 1.5

x1 BDIDE BDIE Exact

1 2.50000827 2.49975098 2.50000000
1.125 2.62499815 2.62485102 2.62500000
1.25 2.74999800 2.74992766 2.75000000
1.375 2.87499777 2.87499185 2.87500000
1.5 2.99999737 3.00004969 3.00000000

1.625 3.12499670 3.12510806 3.12500000
1.750 3.24999566 3.25017286 3.25000000
1.875 3.37499422 3.37524777 3.37500000

2 3.49998273 3.50034354 3.50000000
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Figure 4.43: Acoustic pressure distribu-
tion along the line x2 = 1.875 in test 7
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Figure 4.44: Relative error for BDIDE and
BDIE for test 7

Test 8 :

Square domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, where k(x) = sin(x1) + sin(x2), for x ∈ Ω̄,

a(x) = exp(x1 + x2), f(x) = (2(exp(x1 + x2))(2 + x1 + x2)) + (sin(x1) + sin(x2))(x
2
1 + x22)

and the boundary conditions:
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ū(x) = 1 + x1, for x2 = 1; 1 ≤ x1 ≤ 2,

ū(x) = 2 + x1, for x2 = 2; 1 ≤ x1 ≤ 2,

t̄(x) = 2(exp(x1 + x2))(x1n1(x) + x2n2(x)), for x1 = 1 or x1 = 2; 1 ≤ x2 ≤ 2.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

The second test example to be considered is a square domain. Table 4.8 lists the computed

acoustic pressure u(x) along the line x2 = 1.5 of the plate using BDIDE and BDIE, and

Figs.4.45 and 4.46 represent the plot of the results and relative errors, respectively.

Table 4.8: Computed acoustic pressure along line x2 = 1.5

x1 BDIDE BDIE Exact

1 3.23907298 3.24875134 3.25000000
1.125 3.50510973 3.51593634 3.51562500
1.25 3.80153097 3.81314959 3.81250000
1.375 4.12948095 4.14165412 4.14062500
1.5 4.48895221 4.50149612 4.50000000

1.625 4.87992777 4.89272494 4.89062500
1.750 5.30237464 5.31538789 5.31250000
1.875 5.75625542 5.76951472 5.76562500

2 6.24013358 6.25374388 6.25000000
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Figure 4.45: Acoustic pressure distribu-
tion along the line x2 = 1.875 in test 8
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Figure 4.46: Relative error for BDIDE and
BDIE for test 8

From Tables 4.7 and 4.8 and Figs.4.43-4.46, the results are acceptable with good rates of

convergence.

In general, for all test 1-8, it can be seen that the BDIDE method produced better results

for tests 1, 2, 4, 6, and 7. However, more accurate results were obtained for the BDIE

method for the tests 3, 5 and 8. A possible explanation is the approximation of the flux t
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in the BDIDE method using linear basis functions for u living on triangles; thus, TΦj(x)

is constant within each triangle. These approximations are appropriate for the tests 1, 2,

4, 6, and 7 as the solution to these tests are all linear, while the solution to the tests 3, 5

and 8 is quadratic. The accuracy of the BDIE for tests 3, 5 and 8 is also reduced by the

approximation of the flux t at the boundary nodes, as there is a slight flux discontinuity at

these points which is avoided in the BDIDE method, as discussed in the previous chapter.

4.7 Conclusion

In this chapter, the BDIE and BDIDE formulations are derived and implemented for

solving the two-dimensional Helmholtz equation with constant and variable coefficients.

Four possible cases are investigated, first of all when both material parameters and wave

number are constant.

Then, the zero-order Bessel function of the second kind is used when the material param-

eters are variable (with constant or variable wave number), and a parametrix is adopted

to reduce the Helmholtz equation to a BDIE or BDIDE. However, when material parame-

ters are constant (with variable wave number), the standard fundamental solution for the

Laplace equation is used in the formulation.

Numerical test examples show that accurate computational results can be achieved using

both BDIE and BDIDE methods. The boundary and domain integrals in the formulations

have a weak singularity. To calculate the boundary integrals we used a standard Gaussian

quadrature rule. For the domain integrals, we have implemented a Gaussian quadrature

rule with Duffy transformation by mapping the triangles into squares and eliminating the

weak singularity.



Chapter 5

Radial integration method

5.1 Introduction

The BDIE and BDIDE formulations have been developed and successfully implemented

for heat conduction and Helmholtz problems with variable coefficients in chapters 3 and

4, respectively. However, these formulations require a domain integral.

Several methodologies have been proposed in order to overcome this difficulty. One pos-

sible technique is to find a fundamental solution for the problem with variable coefficients

which can provide a pure boundary integral equation. Unfortunately, these fundamental

solutions are only available for some very special cases as discussed in previous chapters.

A robust methodology was developed by Kassab and Divo [7] in which generalised fun-

damental solutions are used to achieve boundary integral equations for heat conduction

problems with spatially varying conductivity. Kassab and Divo’s technique is based on

developing a generalised forcing function rather than using the Dirac delta function in

the derivation of the fundamental solutions. This technique can solve many problems, al-

though issues have been raised by some researchers [42,43]. In addition, as this technique

has been developed for homogeneous problems, a domain integral will still appear when

dealing with heat sources.

An alternative methodology for solving PDEs with variable coefficients with the BEM

without domain discretisation involves the transformation of the domain integrals appear-

ing in the integral equation, derived by using fundamental solutions for linear homogeneous

problems, into equivalent boundary integrals. There are several methods available in the

literature, such as the Galerkin vector technique [2, 12] applied to convert the domain

84
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integral coming from a heat source or from a known function. For some special cases (e.g.

a harmonic function), the Galerkin vector technique can be used to transform the domain

integral to the boundary based on the second Green identity and a particular solution.

The drawbacks from this approach are that it can be only applied for some simple cases

of known functions as it requires to calculate a particular solution. Also, it can not be

applied for domain integral with unknown functions (as for some of the domain integrals

in previous chapters, coming from the remainder R(x, y)).

Nowak and Brebbia [44] developed an alternative technique called the multiple reciprocity

method (MRM) to solve Poisson and Helmholtz equations. The MRM can be viewed

as a generalisation of the Galerkin vector approach. Instead of using one higher-order

fundamental solution as in the Galerkin vector, to convert the remaining domain integrals

to equivalent boundary integrals a series of higher-order fundamental solutions is used.

This method is very powerful, but it may be difficult to calculate the primitives in the

recurrence formula governed by the Laplace operator [45]. The principal limitation of the

MRM appears to be its lack of generality. ln particular, it does not appear that the MRM

can be applied to a general variable coefficient PDE [12].

The dual reciprocity method (DRM) was developed by Nardini and Brebbia [46]. In this

method, the transformation is carried out by approximating the body force term with a

series of basis functions and by using their particular solutions. A detailed description and

practical applications of this method can be found in the book of Partridge et al. [2]. The

drawback of this technique is that the particular solutions may be difficult to obtain for

some complicated problems, depending on the radial basis function (RBF) adopted. In

addition, even for known body forces, the method still requires an approximation of the

known function using RBFs [45].

More recently, a new transformation technique, the radial integration method (RIM),

has been developed by Gao [45, 47]. The RIM can transform any complicated domain

integral to the boundary, while also removing various singularities appearing in the domain

integrals. The main feature of the RIM is that it can treat different types of domain

integrals in a unified way since it does not resort to particular solutions as in the DRM.

The RIM was implemented in [47] for the analysis of elastoplastic problems, in which case

strong and weak singularities were removed by transforming the domain integrals to the

boundary. The RIM was also applied to thermoelastic problems in [48], in which case

the domain integrals included in both displacement and internal stress integral equations
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were transformed into equivalent boundary integrals. The Green’s function for Laplace’s

equation was used to derive a boundary-domain integral equation for heat conduction

problems with heat generation and spatially varying conductivity in [49]. Then, the RIM

was adopted to convert the domain integrals for both heat generation and variable ther-

mal conductivities to boundary integrals. Albuquerque et al. [50] extended the RIM to

transform domain integrals into boundary integrals in a BEM formulation for anisotropic

plate bending problems. Numerical results showed that the RIM, although more time

consuming, presents some advantages over the DRM in terms of accuracy and the absence

of particular solutions in the formulation for static and dynamic problems. Gao et al. [51]

also implemented the RIM to solve elastic problems with nonlinearly-varying material

parameters, such as for functionally graded materials and damage mechanics problems.

Recent work by Yang et al. [52] presented analytic integrations for the RIM for heat

conduction problems with variable coefficients, which can reduce the time needed for

computing the radial integrals.

In this chapter, the RIM will be introduced and discussed in detail. For domain integrals

consisting of known functions the transformation into boundary integrals is straightfor-

ward, while for domain integrals that include unknown variables the transformation is

accomplished with the use of RBFs augmented by polynomials to approximate the un-

known quantities as in the DRM. The most attractive feature of the method is that the

transformations are very simple and have similar forms for both 2D and 3D problems. It

can also remove various singularities appearing in the domain integrals, and treat different

types of domain integrals in a unified way since it does not resort to particular solutions

as in the DRM.

Modifications have been introduced to the RIM in its application to the BDIE and BDIDE

formulations, particularly the fact that the radial integral is calculated by using a trans-

formation proposed by Fata [53] which produces a pure boundary-only formulation and

relaxes the “star-shaped” requirement of the RIM as the straight path from the source

point to any field point will always exist. Some numerical examples are given to demon-

strate the efficiency of the proposed methods.
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5.2 Transformation of domain integrals to bound-

ary using RIM

In this section, the RIM will be discussed to transform the domain integrals into boundary

integrals for two possible cases. The first one is when the integrand is known as in a heat

source domain integral, and the second case when the domain integral has an unknown

integrand.

5.2.1 RIM formulation for domain integrals with known in-

tegrand

A domain integral with known integrand function f(x), x = (x1, x2), can be transformed

into an equivalent boundary integral by the procedure described below [47].

Given a two-dimensional domain Ω bounded by a boundary Γ, define a Cartesian coordi-

nate system (x1, x2) and a polar coordinate system (r, θ) with origin at the source point

y = (y1, y2). The relationships between the Cartesian and polar coordinate systems are:

r1 = x1 − y1 = r cos(θ), r2 = x2 − y2 = r sin(θ), (5.1)

where 0 ≤ θ ≤ 2π and r is the distance between the source point y and a field point x.

Figure 5.1: Relationship between differential elements rdθ and dΓ

The relationship between a differential domain in the Cartesian system and the polar
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system is given by:

dΩ = dx1dx2 = Jdrdθ = rdrdθ, (5.2)

where J is the Jacobian given by:

J =

∣∣∣∣∂(x1, x2)∂(r, θ)

∣∣∣∣ =
∣∣∣∣∣∣

∂x1
∂r

∂x1
∂θ

∂x2
∂r

∂x2
∂θ

∣∣∣∣∣∣ =
∣∣∣∣∣∣ cos(θ) − r sin(θ)

sin(θ) r cos(θ)

∣∣∣∣∣∣ = r.

From Fig. 5.1, when the field point is located on the boundary, we can obtain the following

relation [47],

rdθ = dΓ cosφ = dΓ
rini

r
, (5.3)

where φ is the angle between the normals of the differential arc rdθ with radius r and the

differential boundary dΓ with outward normal ni, and the summation subscript i takes

values 1 to 2.

Substituting Eq.(5.3) in Eq.(5.2) and re-arranging, we obtain:

dΩ = rdrds, (5.4)

where

ds =
1

r

∂r

∂n
dΓ, (5.5)

∂r

∂n
= r,ini, (5.6)

r,i =
∂r

∂xi
=

ri
r
. (5.7)

Now, a function in Cartesian coordinates can be written in polar coordinates and inte-

grated as follows:

∫
Ω

f(x)dΩ =

∫
Γ


r(x)∫
0

f(x)rαdr

dΓ(x) =

∫
Γ

F (x)dΓ(x) (5.8)

where

F (x) =

r(x)∫
0

f(x)rαdr. (5.9)
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In Eqs.(5.8) and (5.9), α = 1 for the two-dimensional case and α = 2 for the three-

dimensional case. The symbol r(x) means the variable r takes values on the boundary Γ,

see Fig.(5.2).

Figure 5.2: Integration along radial direction r

Substituting Eq.(5.5) into Eq.(5.8), we get:

∫
Ω

f(x)dΩ =

∫
∂Ω

1

rα
∂r

∂n
F (x)dΓ(x). (5.10)

The following remarks are important for the RIM:

• The most attractive feature of the RIM is that the transformation (5.9) is very simple

and has similar forms for both 2D and 3D. It can remove various singularities appearing

in domain integrals since rα is included in the radial integral.

In order to transform a domain integral to a boundary integral, the main task is to cal-

culate the radial integral in Eq.(5.9), which can be done analytically for simple kernels.

We have written a simple Matlab code for analytic integration of Eq.(5.9) which can in-

tegrate many given functions f(x), see Appendix C; however, for complicated functions,

numerical integration techniques are required [45,47] which can be easily done in Matlab,

see Appendix C.

• In order to evaluate the radial integral in Eq.(5.9), the coordinates x1, x2 in f(x) need

to be expressed in terms of the distance r using:

xi = yi + r,ir i = 1, 2, (5.11)

where the quantities yi and r,i are constant for the radial integral in Eq.(5.9).
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• Following the idea presented in [53], we can introduce the change of variable:

r = t|x− y|, t ∈ [0, 1] (5.12)

and substitute the new transformation in the straight-line radial integral in Eq.(5.9),

leading to:

F (x) =

1∫
0

f(y1 + r,1rt, y2 + r,2rt)r
2tdt. (5.13)

The representation (5.13) makes it unnecessary to define a variable transformation as

in [49] to treat the radial integral in Eq.(5.9), adding an attractive feature to the RIM

as Eq.(5.13) is now a pure boundary integral. Moreover, the star-shaped requirement for

the integral in Eq.(5.9) can be relaxed as the straight path from the source point y to any

field point x always exists [53].

5.2.2 RIM formulation for domain integrals with unknown

integrand

If the domain integral has an unknown function u(x), the RIM in Eqs.(5.10) and (5.13)

cannot be directly used. Therefore, similar to the Dual Reciprocity Method (DRM), u(x)

has to be approximated by RBFs [2, 54, 55]. We adopt an augmented RBF, as discussed

in [2, 54,55].

Let us write the unknown function u(x) in the following way, assuming augmentation by

a linear function:

u(x) =
M∑
k=1

αkϕk(R) + c1x1 + c2x2 + c3, (5.14)

where M = Nb +NI and Nb, NI are the number of boundary and interior nodes, respec-

tively. Also, R = ∥x− a∥ is the distance from the application point a to the field point

x. Normally, the application points a consist of all boundary nodes and some selected

interior nodes. The most commonly used radial basis functions ϕ(R) are given in Table

5.1.
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The following equilibrium conditions have to be satisfied [55]:

M∑
k=1

αk =
M∑
k=1

αkx1k =
M∑
k=1

αkx2k = 0. (5.15)

Table 5.1: Commonly used radial basis functions ϕ(R)

R R + 1 R3 1 +R2 +R3 R2 logR

The unknown coefficients αk, c1, c2 and c3 can be calculated by applying Eqs.(5.14) and

(5.15) at the application points a, which can be written in the following matrix form [55]:

(
B
)
(M+3)×(M+3)



α1

α2

.

.

αM

c1

c2

c3


(M+3)×1

=



u1

u2

.

.

uM

0

0

0


(M+3)×1

(5.16)

with

B =

 B1 B2T

B2 0̄

 , (5.17)

where B1 represents the matrix formed by the RBF values, i.e. the distance between

application points a to the field points x, as written below:

B1 =



ϕ1,1..............ϕ1,M

ϕ2,1..............ϕ2,M

..........................

..........................

ϕM,1..............ϕM,M


M×M

.

Also, B2 represents the matrix of linear polynomial terms as shown below,
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B2 =


1 1.......................1

x11 x12................x1M

x21 x22................x2M


3×M

.

Moreover, 0̄ represents a 3× 3 zero matrix.

Substituting Eq.(5.14) into the following domain integral with unknown function u(x), we

obtain

∫
Ω

u(x)dΩ(x) =
M∑
k=1

αk

∫
Ω

ϕk(R)dΩ(x) + c1
∫
Ω

x1dΩ(x)

+c2
∫
Ω

x2dΩ(x) + c3
∫
Ω

dΩ(x).

(5.18)

It is very important before applying the RIM using Eqs.(5.9)-(5.10) and (5.12)-(5.13), that

the coordinates x1 and x2 appearing in each domain integral in Eq.(5.18) are expressed in

terms of the distance r using Eq.(5.11).

Now, applying the RIM to each domain integral in Eq.(5.18) leads to

∫
Ω

u(x)dΩ(x) =
M∑
k=1

∫
∂Ω

1
r
∂r
∂nF1(x)dΓ(x) + c1

∫
∂Ω

1
r
∂r
∂nF2(x)dΓ(x)

+c2
∫
∂Ω

1
r
∂r
∂nF3(x)dΓ(x) + c3

∫
∂Ω

1
r
∂r
∂nF4(x)dΓ(x),

(5.19)

where

F1(x) =

1∫
0

ϕ(R)r2tdt, (5.20a)

F2(x) =

1∫
0

(y1 + r,1rt)r
2tdt, (5.20b)

F3(x) =

1∫
0

(y2 + r,2rt)r
2tdt, (5.20c)

F4(x) =

1∫
0

r2tdt. (5.20d)

The four integrals in Eqs.(5.20a-5.20d) can be easily integrated numerically in Matlab.
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Since ϕ(R) is function of the distance R, see Table 5.1, ϕ(R) needs to be expressed in

term of the distance r. Gao [45, 47], referring to Fig. 5.3, defined three vectors −→ay with

length R̄, −→ax with length R and −→yx with length r. From elementary calculus, we have the

following identity:

−→ax = −→ay +−→yx.

Therefore,

|−→ax|2 = (−→ay +−→yx) · (−→ay +−→yx) = |−→ay|2 + 2−→ay · −→yx + |−→yx|2.

Then,

Figure 5.3: Relationship between distances

R =
√

R̄2 + sr + r2, (5.21)

where s = 2
(
(x−y)·(y−a)

r

)
.

We use a simpler procedure that leads to exactly the same results as in Eq.(5.21), in which

we express ϕ(R) = R in terms of r as follows:

R =
√

(a1 − x1)2 + (a2 − x2)2 = |−→ax|.

Then, using Eqs.(5.11) and (5.12), we get

R =
√

(a1 − (y1 + r,1rt))2 + (a2 − (y2 + r,2rt))2.

After numerical integration, if no two nodes share the same co-ordinates, the matrix B in

Eq.(5.17) is invertible, then the unknown coefficients αk, k = 1, .....,M , c1, c2 and c3, can
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be calculated by:



α1

α2

.

.

αM

c1

c2

c3



= (B)−1



u1

u2

.

.

um

0

0

0



,

and the global matrix expressing the domain integral for the function u at all nodes can

be written in the following way:

(A)M×(M+3) (B)−1
(M+3)×(M+3) (C)(M+3)×M



u1

u2

.

.

uM


M×1

, (5.22)

where

(A)M×(M+3) = ((A1)M×M (A2)M×1 (A3)M×1 (A4)M×1) ,

and Ai; i = 1, ..., 4, are the matrices coming from the four integrals in Eq.(5.20),

(C)(M+3)×M =

 (I)M×M

(0)3×M

 ,

where I, 0 are the identity and zero matrices, respectively.

Remark 5.1:

It is important to point out that the formulation discussed in this section is augmented by

a linear polynomial. In order to modify the procedure for augmentation by a quadratic

polynomial the number three appearing in all dimensions of sub-matrices is increased to

six as there are six coefficients in this case. Also, the four integrals in Eq.(5.20) will

increase to seven as well.
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5.3 Applications of the RIM

In the previous section, we have discussed the formulation of the RIM for transforming do-

main integrals with known and unknown functions to boundary integrals. It is important

to point out that the procedure for unknown functions will also work for domain integrals

with known functions. However, the direct RIM discussed in subsection 5.2.1 is recom-

mended for domain integrals with known functions as there is an exact transformation in

this case.

In this section, simple domain integrals (with known functions) will be tested using the

RIM for both known and unknown procedures to convert the domain integrals to the

boundary. For unknown procedures the non-augmented (local radial basis functions) and

augmented cases by linear and quadratic polynomials with the different types of RBFs in

Table 5.1 will be investigated.

5.3.1 The RIM for transforming domain integrals with known

integrand

Test 1

Let us test the following domain integral,

∫
Ω

f(x)dΩ(x) (5.23)

on a square domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2} with the following types of functions:

case 1: f(x) = 2,

case 2: f(x) = x1 + x2,

case 3: f(x) = x21 + x22,

case 4: f(x) = x31 + x32,

case 5: f(x) = exp(x1 + x2),

case 6: f(x) = exp(x1 + x2) + cos(x1 + x2) + sin(x1 + x2) + log(x1 + x2), for x ∈ Ω̄.

Following the procedure described in subsection 5.2.1, the domain integral in Eq.(5.23)

can be converted as follows:

∫
Ω

f(x)dΩ(x) =

∫
∂Ω

1

rα
∂r

∂n
F (x)dΓ(x), (5.24)
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where

F (x) =

1∫
0

f(y1 + r,1rt, y2 + r,2rt)r
2tdt. (5.25)

The main task in the RIM is to calculate the radial integral in either Eq.(5.9) or Eq.(5.25).

We have written Matlab codes in Appendix C (Radialintegral1, Radialintegral2) to calcu-

late the radial integral in both Eq.(5.9) and Eq.(5.25) analytically. After calculating the

radial integral, it can be put back in Eq.(5.24) and follow standard BEM procedures for

the boundary integral as in the Matlab code in Appendix C.

In the present thesis, the radial integral in Eq.(5.25) will be adopted as it is a pure

boundary integral. After running the (Radialintegral2) code in Appendix C, the radial

integral F (x) in Eq.(5.25) will be for cases (a-f):

a)F (x) = r2,

b)F (x) = (r2 ∗ (2 ∗ x1 + 2 ∗ x2 + y1 + y2))/6,

c)F (x) = (r2∗x21)/4+(r2∗x22)/4+(r2∗y21)/12+(r2∗y22)/12+(r2∗x1∗y1)/6+(r2∗x2∗y2)/6,

d) F (x) = (r2 ∗ x31)/5 + (r2 ∗ x32)/5 + (r2 ∗ y31)/20 + (r2 ∗ y32)/20 + (r2 ∗ x1 ∗ y21)/10 + (3 ∗

r2 ∗ x21 ∗ y1)/20 + (r2 ∗ x2 ∗ y22)/10 + (3 ∗ r2 ∗ x22 ∗ y2)/20,

e) F (x) = exp(y1 + y2)/((x1 − y1)/r+ (x2 − y2)/r)
2 − (exp(x1 + x2) ∗ (y1 − x2 − x1 + y2 +

1))/((x1 − y1)/r + (x2 − y2)/r)
2,

f) F (x) = Warning: Explicit integral could not be found.

We can conclude from case f) that the analytic calculation of the radial integral in Eq.(5.25)

will not always be possible, therefore numerical integration is recommended for compli-

cated functions.

The results obtained by applying the Matlab code in Appendix C with 8 boundary elements

are presented in Table 5.2. The radial integral in Eq.(5.25) is calculated numerically, see

Appendix C.

f(x) RIM Exact
case 1 2 2
case 2 3 3
case 3 4.6667 4.6667
case 4 7.5 7.5
case 5 21.8161 21.8161
case 6 22.1248 22.1248

Table 5.2: Computational results of the RIM for the integral in test 1

It can be seen from Table 5.2 that the results are exact to the number of decimal places
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displayed, despite the simple BEM discretisation.

5.3.2 The RIM for transforming domain integrals with un-

known integrand

In this subsection, the domain integrals in test 1 with function cases (1-6) will be tested

again using the RIM procedure for unknown functions to convert the domain integrals to

the boundary. The non-augmented RBFs and augmented RBFs by linear and quadratic

polynomials (LP and QP) with total number of nodes equal to 25 (16 on the boundary

plus 9 in interior), will be investigated with different types of RBFs in Table 5.1.

f(x) R R + 1 R3 1 +R2 +R3 R2 logR Exact
case 1 1.9877 1.9941 2.0047 2.0036 2.0207 2
case 2 2.9815 2.9911 3.0070 3.0054 3.0310 3
case 3 4.6470 4.6637 4.6768 4.6736 4.7174 4.6667
case 4 7.4948 7.5265 7.5142 7.5070 7.5886 7.5
case 5 21.7810 21.8698 21.8558 21.8361 22.0663 21.8161
case 6 22.0908 22.1811 22.1651 22.1450 22.3791 22.1248

Table 5.3: Computational results for non-augmented RBFs

It can be seen from Tables 5.3-5.6 that the results for augmented RBFs are much better

than for non-augmented. Also, the results for RBFs augmented by a linear polynomial

are exact for constant and linear functions, while the results for RBFs augmented by a

quadratic polynomial are exact for constant, linear, quadratic and cubic functions. These

results are similar to those in [54, 55] in which augmented RBFs have been implemented

the in DRM. It is very easy to change the type of RBFs in the RIM by changing this

in both the B1 matrix and in the integral in Eq.(5.20a) only, which is different from the

DRM where the particular solution and the corresponding matrices all must be changed.

f(x) R R + 1 R3 1 +R2 +R3 R2 logR Exact
case 1 2 2 2 2 2 2
case 2 3 3 3 3 3 3
case 3 4.7714 4.7714 4.6680 4.6680 4.7049 4.6667
case 4 7.9711 7.9711 7.5059 7.5059 7.6719 7.5
case 5 22.8886 22.8886 21.6868 21.6868 22.1166 21.8161
case 6 23.2349 23.2349 22.0020 22.0020 22.4429 22.1248

Table 5.4: Computational results for augmented RBFs by LP without interior nodes

It can be clearly seen from Tables 5.4 and 5.5 that the augmented RBFs by a linear
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polynomial with interior nodes produce better results in comparison to the case without

interior nodes. Such behaviour is again similar to the DRM [2,54,55].

f(x) R R + 1 R3 1 +R2 +R3 R2 logR Exact
case 1 2 2 2 2 2 2
case 2 3 3 3 3 3 3
case 3 4.6790 4.6790 4.6678 4.6678 4.6706 4.6667
case 4 7.5556 7.5556 7.5049 7.5049 7.5175 7.5
case 5 21.9512 21.9512 21.8271 21.8271 21.8583 21.8161
case 6 22.2640 22.2640 22.1361 22.1361 22.1683 22.1248

Table 5.5: Computational results for augmented RBFs by LP with interior nodes

Moreover, the results in Table 5.6 for RBFs augmented by a quadratic polynomial are

better that for linear augmentation. However, they are more time consuming as the four

integrals in Eq.(5.20) become seven integrals in this case.

f(x) R R + 1 R3 1 +R2 +R3 R2 logR Exact
case 1 2 2 2 2 2 2
case 2 3 3 3 3 3 3
case 3 4.6667 4.6667 4.6667 4.6667 4.6667 4.6667
case 4 7.5 7.5 7.5 7.5 7.5 7.5
case 5 21.8138 21.8138 21.8144 21.8144 21.8142 21.8161
case 6 22.1226 22.1226 22.1231 22.1231 22.1230 22.1248

Table 5.6: Computational results for augmented RBFs by QP with interior nodes

5.4 Conclusion

In this chapter, the radial integration method (RIM) is presented to transform domain

integrals into equivalent boundary integrals. The most attractive feature of the method

is that the transformations are very simple and have similar forms for both 2D and 3D

problems. They can also remove various singularities appearing in the domain integrals,

and treat different types of domain integrals in a unified way since the RIM does not resort

to particular solutions as in the DRM.

Moreover, for domain integrals with known functions the transformation is straightfor-

ward, while for domain integrals that include unknown variables the transformation is ac-

complished with the use of RBFs augmented by polynomials to approximate the unknown

quantities as in the DRM. Several cases have been investigated for domain integrals with
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unknown functions using different types of non-augmented RBFs, and with RBFs aug-

mented by linear and quadratic polynomials. The numerical results showed that RBFs

augmented by a quadratic polynomial produce the best result, however they are more

time consuming. In the next two chapters the RIM will be implemented to convert the

domain integrals appearing in both BDIE and BDIDE formulations for heat conduction

and Helmholtz equations discussed in chapters 3 and 4, respectively.



Chapter 6

Radial integration method for

heat conduction with variable

coefficients

6.1 Introduction

In this chapter, a new type of boundary-only integral equation analysis technique is de-

veloped for non-homogeneous heat conduction problems with variable coefficients based

on the use of a parametrix (Levi function). Unlike the existing method discussed in chap-

ter 3 and in our published work [41], where the BDIE and BDIDE are solved using the

cell-integration technique, the RIM is adopted and used to convert the domain integrals

appearing in both BDIE and BDIDE to equivalent boundary integrals. For the domain

integrals consisting of known functions the transformation is direct, while for domain inte-

grals that include unknown variables the transformation is accomplished with the use of a

RBF augmented by polynomials to approximate the unknown quantities as in the DRM.

The most attractive feature of the method is that the transformations are very simple and

have similar forms for both 2D and 3D problems. The proposed methodology calculates

the radial integral as a pure boundary integral and relaxes the “star-shaped” requirement

of the RIM. Some numerical examples are given to demonstrate the efficiency of the pro-

posed methods. The present formulations and numerical results of the radial integration

BIE and BIDE for heat conduction problems with variable coefficients, associated with

mixed boundary conditions, have been published in [56].

100
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6.2 Integral equation for heat conduction with

variable coefficients

The use of Green’s third identity in the form of Eq.(3.11) for heat conduction problems

with variable coefficients has two main drawbacks. The first is that it contains the variable

coefficient a(x) in each integrand, which makes the implementation of the formulation and

the resulting computer code less general and difficult to develop as a unified code, as the

function a(x) will change for different problems. The second main drawback is that there

are two domain integrals with known integrand on the right-hand side (coming from heat

source effects), and the second domain integral with unknown integrand on the left hand-

side coming from the remainder R(x, y).

As shown in chapter 3, the BVP (3.1)-(3.3) can be expressed as the following integral

equation,

c(y)u(y)−
∫
∂Ω

[u(x)TxP (x, y)− P (x, y)Tu(x)]dΓ(x) +

+

∫
Ω

R(x, y)u(x)dΩ(x) =

∫
Ω

P (x, y)f(x)dΩ(x). (6.1)

Now, we can multiply both sides of Eq.(6.1) by a(y) to obtain:

a(y)c(y)u(y)−
∫
∂Ω

[u(x)TxP̃ (x, y)− P̃ (x, y)Tu(x)]dΓ(x) +

+

∫
Ω

R̃(x, y)u(x)dΩ(x) =

∫
Ω

P̃ (x, y)f(x)dΩ(x), (6.2)

where

P̃ (x, y) = a(y)P (x, y) =
1

2π
ln |x− y| , (6.3)

R̃(x, y) = a(y)R(x, y) =

2∑
i=1

xi − yi
2π|x− y|2

∂a(x)

∂xi
. (6.4)

Differently from [8, 19, 28–31, 56], the parametrix in identity (6.2) is the fundamental

solution to the Laplace equation, which is much easier to implement in a unified code.

Also, identity (6.2) can be used for formulating either a BDIE or a BDIDE, with respect
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to u and its derivatives. Following the same procedure as in chapter 3, the new modified

BDIE and BDIDE can be written as follows.

6.2.1 Boundary-domain integral equation (BDIE)

c0(y)u(y)−
∫

∂NΩ

u(x)TxP̃ (x, y)dΓ(x) +

∫
∂DΩ

P̃ (x, y)t(x)dΓ(x) +

+

∫
Ω

R̃(x, y)u(x)dΩ(x) = Ψ0(y), y ∈ Ω ∪ ∂Ω, (6.5)

where

Ψ0(y) := [c0(y)− a(y)c(y)]ū(y) + Ψ(y), (6.6)

Ψ(y) :=

∫
∂DΩ

ū(x)TxP̃ (x, y)dΓ(x)−
∫

∂NΩ

P̃ (x, y)t̄(x)dΓ(x) +

∫
Ω

P̃ (x, y)f(x)dΩ(x) (6.7)

and c0(y) is given by

c0(y) =

 0

a(y)c(y)

if y ∈ ∂DΩ

if y ∈ Ω ∪ ∂NΩ
(6.8)

6.2.2 Boundary-domain integro-differential equation (BDIDE)

a(y)c(y)u(y)−
∫

∂NΩ

u(x)TxP̃ (x, y)dΓ(x) +

∫
∂DΩ

P̃ (x, y)Tu(x)dΓ(x) +

+

∫
Ω

R̃(x, y)u(x)dΩ(x) = Ψ(y), y ∈ Ω ∪ ∂NΩ, (6.9)

where Ψ(y) is given by Eq.(6.7).
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6.3 Transformation of domain integrals to bound-

ary using RIM

In this section, the RIM discussed in the previous chapter is used to transform the domain

integrals appearing in equations (6.5) and (6.9) into boundary integrals.

6.3.1 Transformation of heat source domain integral to the

boundary

Both BDIE in Eq.(6.5) and BDIDE in Eq.(6.9) have domain integrals coming from the

known heat source f(x) that appears in Eq.(6.7). The RIM can be directly used to convert

these domain integrals to the boundary, as discussed in subsection 5.2.1. This leads to

∫
Ω

P̃ (x, y)f(x)dΩ(x) =

∫
∂Ω

1

r

∂r

∂n
F (x)dΓ(x), (6.10)

where

F (x) =

1∫
0

P̃ (x, y)f(y1 + r,1rt, y2 + r,2rt)r
2tdt. (6.11)

The integral in Eq.(6.11) can be calculated analytically for many heat sources, and nu-

merically without the need to define a transformation as in [49], as discussed in detail in

the previous chapter. Also, due to the radial integral in Eq.(6.11), the weak singularity

coming from the fundamental solution is removed.

6.3.2 RIM formulation for domain integrals with unknown

integrand

As the last domain integrals on the left-hand side of Eqs. (6.5) and (6.9) have the unknown

temperature u(x), the RIM cannot be directly used. Following exactly the same procedure

discussed in subsection 5.2.2 (the only difference being that the term R̃(x, y) in Eq.(6.4)
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now appears inside the domain integral) leads to:

∫
Ω

R̃(x, y)u(x)dΩ(x) =
M∑
k=1

αk

∫
Ω

R̃(x, y)ϕk(R)dΩ(x) + c1
∫
Ω

R̃(x, y)x1dΩ(x)

+c2
∫
Ω

R̃(x, y)x2dΩ(x) + c3
∫
Ω

R̃(x, y)dΩ(x).

(6.12)

Let r,1 =
x1−y1

r and r,2 =
x2−y2

r , then R̃(x, y) in Eq.(6.4) can be written as:

R̃(x, y) =
1

2π

(
r,1
r

∂a(x)

∂x1
+

r,2
r

∂a(x)

∂x2

)
. (6.13)

It is very important before applying the RIM that the coordinates x1 and x2 appearing

in Eqs.(6.12) and (6.13) are expressed in terms of the distance r using Eq.(5.11).

Now, applying the RIM in section 5.2 to each domain integral in Eq.(6.12) leads to

∫
Ω

R̃(x, y)u(x)dΩ(x) =

∫
∂Ω

h(x)dΓ(x)

and

∫
∂Ω

h(x)dΓ(x) =
M∑
k=1

∫
∂Ω

1
r
∂r
∂nF1(x)dΓ(x) + c1

∫
∂Ω

1
r
∂r
∂nF2(x)dΓ(x)

+c2
∫
∂Ω

1
r
∂r
∂nF3(x)dΓ(x) + c3

∫
∂Ω

1
r
∂r
∂nF4(x)dΓ(x),

(6.14)

where

F1(x) =

1∫
0

R̃(x, y)ϕ(R)r2tdt, (6.15a)

F2(x) =

1∫
0

R̃(x, y)(y1 + r,1rt)r
2tdt, (6.15b)

F3(x) =

1∫
0

R̃(x, y)(y2 + r,2rt)r
2tdt, (6.15c)

F4(x) =

1∫
0

R̃(x, y)r2tdt. (6.15d)

The calculations of the four integrals in Eq.(6.15) are discussed in detail in section 5.2.
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6.4 The radial integration boundary integral and

integro-differential equations

Eqs.(6.10)-(6.11) and (6.14)-(6.15) can now be substituted in both BDIE in Eq.(6.5) and

BDIDE in Eq.(6.9), leading to the expressions in the next subsections.

6.4.1 The radial integration boundary integral equation (RI-

BIE)

c0(y)u(y)−
∫

∂NΩ

u(x)TxP̃ (x, y)dΓ(x) +

∫
∂DΩ

P̃ (x, y)t(x)dΓ(x) +

+

∫
∂Ω

h(x)dΓ(x) = Ψ0(y), y ∈ Ω ∪ ∂Ω, (6.16)

where

Ψ0(y) := [c0(y)− a(y)c(y)]ū(y) + Ψ̃(y), (6.17)

Ψ̃(y) :=

∫
∂DΩ

ū(x)TxP̃ (x, y)dΓ(x)−
∫

∂NΩ

P̃ (x, y)t̄(x)dΓ(x) +

∫
∂Ω

1

r

∂r

∂n
F (x)dΓ(x), (6.18)

and c0(y), F (x) and
∫
∂Ω

h(x)dΓ(x) are given in Eqs.(6.8), (6.11) and (6.14)-(6.15), respec-

tively.

6.4.2 The radial integration boundary integro-differential

equation (RIBIDE)

a(y)c(y)u(y)−
∫

∂NΩ

u(x)TxP̃ (x, y)dΓ(x) +

∫
∂DΩ

P̃ (x, y)Tu(x)dΓ(x) +

+

∫
∂Ω

h(x)dΓ(x) = Ψ̃(y), y ∈ Ω ∪ ∂NΩ, (6.19)

where
∫
∂Ω

h(x)dΓ(x) and Ψ̃(y) are given in Eqs.(6.14)-(6.15) and (6.18), respectively.
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It can be clearly seen from both RIBIE in Eq.(6.16) and RIBIDE in Eq.(6.19) that all

integrations are now carried out only on the boundary, with no domain integrals.

6.5 Discretisation of the RIBIE and RIBIDE

6.5.1 Discretisation of the RIBIE

The RIBIE formulation employs mixed boundary elements with linear u and constant t

to avoid the discontinuities of t at corner points. In this case, collocation was taken at the

end points of each boundary element, since our previous results in chapters three and four

have shown that end-node collocation generally provides higher accuracy than mid-node

collocation.

Let J be the total number of nodes xi, i = 1, ..., J , at the end points of elements, from

which there are JD nodes on ∂DΩ. Thus, the values of u at any point on the element can

be defined in terms of their nodal values and two linear interpolation functions Ψ1(t) and

Ψ2(t) given by Eq.(2.27).

To obtain a system of linear algebraic equations from the RIBIE (6.16), we collocate at the

nodes xi, i = 1, ..., J . We can also use an interpolation of t(x) = (Tu)(xj) along boundary

nodes belonging to xj ∈ ∂DΩ

t(x) =
∑

xj∈∂DΩ

t(xj)vj(x), x ∈ ∂DΩ. (6.20)

Here, vj(x) are boundary shape functions, taken now as constant. Therefore, vj(x) will

be equal to 1 at xj ∈ ∂DΩ and vj(x) = 0 if xj /∈ ∂DΩ. Substituting the interpolations

(2.27) and (6.20) in RIBIE (6.16) and applying the collocation method, we arrive at the

following system of J linear algebraic equations for J unknowns u(xj), xj ∈ Ω∪ ∂NΩ and

t(xj) = (Tu)(xj), xj ∈ ∂DΩ,

c0(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

Kiju(x
j) +

∑
xj∈∂DΩ

Q
′
ijt(x

j) = Ψ0(xi)−

−
∑

xj∈∂DΩ

Kij ū(x
j), xi ∈ Ω ∪ ∂Ω, i = 1, ..., J, no sum in i, (6.21)
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where Ψ0(xi) is calculated from Eq.(6.17), and

Ψ̃(xi) =

∫
∂DΩ

ū(x)TxP̃ (x, xi)dΓ(x)−
∫

∂NΩ

P̃ (x, xi)t̄(x)dΓ(x) +

∫
∂Ω

1

r

∂r

∂n
F (x)dΓ(x), (6.22)

Kij =

∫
∂Ω

h(x)dΓ(x)−
∫

∂NΩ

[Ψ1,Ψ2]TxP̃ (x, xi)dΓ(x), (6.23)

Q
′
ij =

∫
∂DΩ

P̃ (x, xi)vj(x)dΓ(x). (6.24)

6.5.2 Discretisation of the RIBIDE

To obtain a system of linear algebraic equations from the RIBIDE (6.19), we collocate at

the nodes xi, i = 1, ..., J , and substitute an interpolation of u(x) of the form

u(x) ≈
∑
Sj∋x

u(xj)Φj(x), Φj(x) =

 ϕkj(x) if x, xj ∈ T̄k

0 otherwise,
(6.25)

where Sj in this case is the set of collocation points in ∂DΩ and some selected interior nodes

near the boundary segments; ϕkj(x) are the shape functions which can be constructed from

the distance between the two end nodes of each segments and the selected interior nodes,

and associated with the node xj as the normal derivative requires that the function is

known perpendicular to the boundary. In this work, ϕkj(x) are chosen as piecewise linear

functions. It is important to point out here that such formulation is unlike the standard

BEM where u and t on the boundary are independent variables.

We then arrive at a system of J − JD algebraic equations for J − JD unknowns u(xj),

xj ∈ Ω∪∂NΩ. Substituting interpolation formulae (6.25) into the RIBIDE (6.19) leads to

the following system of equations:

a(xi)c(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

K
′
iju(x

j) = Ψ̃(xi)−
∑

xj∈∂DΩ

K
′
ij ū(x

j),

xi ∈ Ω ∪ ∂NΩ, no sum in i, (6.26)

where

K
′
ij = Kij +

∫
∂DΩ

P̃ (x, xi)TΦj(x)dΓ(x) (6.27)
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and Ψ̃(xi) and Kij are given in Eqs.(6.22) and (6.23), respectively.

The details of the calculations of the boundary and domain integrals are given in Appendix

B. The interior nodes near the Dirichlet boundary are used only to define the Jacobian

(see Appendix B) but not as collocation points. The advantages of the RIBIDE technique

are that the only boundary variables are those of u along Neumann boundaries, as there

is no need for collocation along Dirichlet boundaries. Thus, the problem caused by the

discontinuity of the normal derivative at corner points is avoided. Second, the system

of linear equations is smaller than the one for RIBIE. This feature will save memory

and computational time when we apply the RIBIDE for practical problems. Finally, the

assembling of matrix A and vector b is much easier than in the RIBIE, as discussed in

chapters 3 and 4.

6.6 Numerical results

In this section, we shall examine some test examples to assess the performance of the

RIBIE/ RIBIDE formulations. To verify the convergence of the methods, we applied the

methods to some test problems on a square domain, for which an exact analytical solution,

uexact, is available. For comparison, the problems are also computed using both BDIDE

and BDIE given in chapter 3. Also, the relative error was calculated as in chapter 2, as

given by Eq.(2.35) and the Root Mean Square (RMS) is defined as

RMS(J) =

(∑J
j=1(uapprox,j − uexact,j)

2∑J
j=1 u

2
exact,j

)1/2

, (6.28)

where uapprox is the numerical solution and J is the number of nodes in the computational

mesh. These errors have been calculated for J= 25, 81, 289 and 1089 in all test examples.

6.6.1 Poisson’s equation with mixed boundary conditions

The starting point for testing the RIBIE/ RIBIDE formulations is to consider Poisson’s

equation, in which case there is a domain integral coming from f ̸= 0; we assume a square

domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, a(x) = 1, f(x) = 4 for x ∈ Ω̄, with boundary

conditions,

ū(x) = 4 + x21, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 9 + x21, for x2 = 3; 2 ≤ x1 ≤ 3,
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t̄(x) = 2(x1n1(x) + x2n2(x)), for x1 = 2 or x1 = 3 ; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

Table 6.1 lists the computed temperatures u(x) along the middle line of the plate using

RIBIDE and RIBIE, while Fig. 6.1 plots the results along the line x2 = 2.875. The total

number of boundary nodes is 32 in both cases. In addition, 16 interior nodes are used for

the RIBIDE method, 8 near the top face and 8 near the bottom face of the plate where

the Dirichlet boundary conditions are defined. No interior nodes are necessary for the

RIBIE technique. It can be seen that the RIBIDE and RIBIE results are very close to the

BDIDE and BDIE results, respectively.

Table 6.1: Computed temperatures along the line x2 = 2.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

2 10.23978745 10.23978851 10.25004510 10.25004675 10.25000000
2.125 10.75602601 10.75602813 10.76664511 10.76664784 10.76562500
2.25 11.30245688 11.30245871 11.31330624 11.31330869 11.31250000
2.375 11.88030341 11.88030507 11.89129850 11.89130078 11.89062500
2.5 12.48958075 12.48958235 12.50062670 12.50062893 12.50000000

2.625 13.13029723 13.13029889 13.14129031 13.14129260 13.14062500
2.750 13.80244312 13.80244496 13.81328878 13.81329123 13.81250000
2.875 14.50600215 14.50600426 14.51661639 14.51661911 14.51562500

3 15.23965207 15.23965314 15.24990440 15.24990605 15.25000000
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Figure 6.1: Temperature distribution along the line x2 = 2.875
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Figure 6.2: Relative and RMS errors for
RIBIDE method for Poisson’s equation
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Figure 6.3: Relative and RMS errors for
RIBIE method for Poisson’s equation

In the next tests we will consider problems with variable coefficients with increasing degree

of complexity of the variation of both the material coefficients and the body force term f .

The exact solutions of the problems range from linear to cubic, and will be used to verify

the convergence of the numerical solutions. Moreover, ϕ(R) = R3 in chapter 5 (Table 5.1)

is adopted in the next test examples.

6.6.2 Test 1

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, a(x) = 2(x1 + x2), f(x) = 4 for x ∈ Ω̄,

with boundary conditions:

ū(x) = 2 + x1, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 3 + x1, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = 2(x1 + x2)(n1(x) + n2(x)), for x1 = 2 or x1 = 3; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

Table 6.2 lists the computed temperatures u(x) along the middle line of the plate using

RBIDE and RBIE, while Fig. 6.4 shows the temperatures along the line x2 = 2.875.
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Table 6.2: Computed temperatures along the line x2 = 2.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

2 4.50001258 4.50372426 4.50001416 4.50001436 4.50000000
2.125 4.62500157 4.62847379 4.62500308 4.62500356 4.62500000
2.25 4.75000068 4.75263200 4.75000196 4.75000220 4.75000000
2.375 4.87500001 4.87690243 4.87500097 4.87500119 4.87500000
2.5 4.99999943 5.00094713 5.00000004 5.00000025 5.00000000

2.625 5.12499880 5.12496950 5.12499907 5.12499928 5.12500000
2.750 5.24999798 5.24920965 5.24999795 5.24999817 5.25000000
2.875 5.37499687 5.37339011 5.37499662 5.37499667 5.37500000

3 5.49998561 5.49836636 5.49998526 5.49998541 5.50000000
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Figure 6.4: Temperature distribution along the line x2 = 2.875

6.6.3 Test 2

Square domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, a(x) = x21 + x22 , f(x) = 8(x21 + x22) for

x ∈ Ω̄, with boundary conditions:

ū(x) = 1 + x21, for x2 = 1; 1 ≤ x1 ≤ 2,

ū(x) = 4 + x21, for x2 = 2; 1 ≤ x1 ≤ 2,

t̄(x) = 2(x21 + x22)(x1n1(x) + x2n2(x)), for x1 = 1 or x1 = 2 ; 1 ≤ x2 ≤ 2.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

Table 6.3 lists the computed temperatures along the middle line of the plate, while Fig.

6.7 shows the temperatures along the line x2 = 1.875.
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Figure 6.5: Relative and RMS errors for
RIBIDE method for test 1
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Figure 6.6: Relative and RMS errors for
RIBIE method for test 1

Table 6.3: Computed temperatures along the line x2 = 1.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

1 3.23920748 3.27464013 3.24851271 3.25003483 3.25000000
1.125 3.50540314 3.53538109 3.51542087 3.51661121 3.51562500
1.25 3.80189587 3.82668952 3.81238259 3.81327508 3.81250000
1.375 4.12986266 4.15003618 4.14064478 4.14128510 4.14062500
1.5 4.48930354 4.50444549 4.50022930 4.50063728 4.50000000

1.625 4.88021029 4.88998845 4.89115469 4.89132522 4.89062500
1.750 5.30255791 5.30736330 5.31343854 5.31334249 5.31250000
1.875 5.75631681 5.75642826 5.76708929 5.76667600 5.76562500

2 6.24010302 6.23934447 6.25069986 6.24993669 6.25000000
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Figure 6.7: Temperature distribution along the line x2 = 1.875
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Figure 6.8: Relative and RMS errors for
RIBIDE method for test 2
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Figure 6.9: Relative and RMS errors for
RIBIE method for test 2

6.6.4 Test 3

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, a(x) = exp(x1 + x2), f(x) = exp(x1 +

x2)(6x1 + 3x21 + 6x2 + 3x22) for x ∈ Ω̄, with boundary conditions:

ū(x) = 8 + x31, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 27 + x31, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = exp(x1 + x2)(3x
2
1n1(x) + 3x22n2(x)), for x1 = 2 or x1 = 3 ; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x31 + x32, x ∈ Ω̄.

Table 6.4 lists the computed temperatures u(x) along the middle line of the plate using

RBIDE and RBIE, while Fig. 6.10 shows the temperatures along the line x2 = 2.875.

Table 6.4: Computed temperatures along the line x2 = 2.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

2 23.54232032 24.08630891 23.60527950 23.62380015 23.62500000
2.125 25.14010914 25.58333193 25.21156793 25.22695034 25.22070313
2.25 26.93073535 27.28210016 27.00804008 27.02042258 27.01562500
2.375 28.93461607 29.20987807 29.01570850 29.02566367 29.02148438
2.5 31.16341970 31.36593610 31.24659571 31.25423100 31.25000000

2.625 33.62872621 33.76025149 33.71270058 33.71778096 33.71289063
2.750 36.34199348 36.40918430 36.42599323 36.42801377 36.42187500
2.875 39.31464962 39.31893069 39.39832517 39.39627288 39.38867188

3 42.54761895 42.52963849 42.63055914 42.62478750 42.62500000

It can be seen from Tables 6.1-6.4 and Figs. 6.1, 6.4, 6.7 and 6.10 that both the RIBIE and

RIBIDE methods are able to generate accurate solutions in good agreement with BDIE
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Figure 6.10: Temperature distribution along the line x2 = 2.875
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Figure 6.11: Relative and RMS errors for
RIBIDE method for test 3
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Figure 6.12: Relative and RMS errors for
RIBIE method for test 3

and BDIDE results. It is important to point out that the numerical integration in Matlab

is very fast and can save a substantial amount of computational time in comparison to

both BDIDE and BDIE. It is noticed that the RIBIE produces better results than RIBIDE

in all tests. Moreover, the relative and RMS errors in Figs. 6.2-6.3, 6.5-6.6, 6.8-6.9 and

6.11-6.12 show that both the RIBIE and RIBIDE methods are convergent with mesh re-

finement, and in general the RMS error is lower than the relative error as expected.
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6.7 Conclusion

In this chapter, a pure BEM formulation is presented for solving heat conduction problems

with variable conductivities. The radial integration method is used to transform the

domain integrals appearing in both the boundary-domain integral or integro-differential

equation formulations (discussed in chapter 3) to equivalent boundary integrals. Moreover,

the RIM removes the weak singularities appearing in both domain integrals, simplifying

and speeding up the calculation of the integrals.



Chapter 7

RIBIE and RIBIDE for Helmholtz

equation with variable coefficients

7.1 Introduction

In this chapter, a new type of boundary-only integral equation analysis technique is de-

veloped for non-homogeneous two-dimensional Helmholtz equation based on the use of

a parametrix (Levi function). Unlike chapter 4 where the BDIE and BDIDE are solved

using the cell-integration technique, the RIM is adopted and used to convert the domain

integrals appearing in both BDIE and BDIDE to equivalent boundary integrals. For the

domain integrals consisting of known functions the transformation is direct, while for do-

main integrals that include unknown variables the transformation is accomplished with

the use of a RBF augmented by polynomials to approximate the unknown quantities as

in the DRM. The most attractive feature of the method is that the transformation for-

mulations are very simple and have similar forms for both 2D and 3D problems. Some

numerical examples are given to demonstrate the efficiency of the proposed methods. The

present formulations and numerical results of the radial integration BIE and BIDE for the

Helmholtz equation with variable coefficients, associated with mixed boundary conditions,

have been published in [57].
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7.2 Integral equation for the Helmholtz equation

with variable coefficients

The third Green identity as developed in chapter 4, Eq.(4.5), has two main drawbacks.

The first is that it contains the variable coefficient a(x) in each integrand, which makes

the implementation of the formulation and the resulting computer code less general and

difficult to develop as a unified code, as the function a(x) will change for different problems.

The second main drawback is that, there are two domain integrals with known integrand

on the right-hand side (coming from source effects), and the second domain integral with

unknown integrand on the left hand-side coming from the remainder R(x, y)+k(x)P (x, y).

As shown in chapter 4, the BVP (4.1)-(4.3) can be expressed as the integral equation (4.5).

Now, we can multiply both sides of Eq.(4.5) by a(y) to obtain

a(y)c(y)u(y)−
∫
∂Ω

[u(x)TxP̃ (x, y)− P̃ (x, y)Tu(x)]dΓ(x) +

+

∫
Ω

[R̃(x, y) + k(x)P̃ (x, y)]u(x)dΩ(x) =

∫
Ω

P̃ (x, y)f(x)dΩ(x), (7.1)

where P̃ (x, y) and R̃(x, y) are given by Eqs. (6.3) and (6.4), respectively.

The parametrix in identity (7.1) is the fundamental solution for the Laplace equation,

which is much easier to implement in a unified code. Also, identity (7.1) can be used for

formulating either a BDIE or BDIDE, with respect to u and its derivatives. Following the

same procedure as in chapter 4, the new modified BDIE and BDIDE can be written as

follows.

7.2.1 Boundary-domain integral equation (BDIE)

c0(y)u(y)−
∫

∂NΩ

u(x)TxP̃ (x, y)dΓ(x) +

∫
∂DΩ

P̃ (x, y)t(x)dΓ(x) +

+

∫
Ω

[R̃(x, y) + k(x)P̃ (x, y)]u(x)dΩ(x) = Ψ0(y), y ∈ Ω ∪ ∂Ω, (7.2)

where Ψ0(y) is given by Eq. (6.6).
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7.2.2 Boundary-domain integro-differential equation (BDIDE)

a(y)c(y)u(y)−
∫

∂NΩ

u(x)TxP̃ (x, y)dΓ(x) +

∫
∂DΩ

P̃ (x, y)Tu(x)dΓ(x) +

+

∫
Ω

[R̃(x, y) + k(x)P̃ (x, y)]u(x)dΩ(x) = Ψ(y), y ∈ Ω ∪ ∂NΩ, (7.3)

where Ψ(y)is given by Eq.(6.7).

7.3 Transformation of domain integrals to bound-

ary using RIM

In this section, the RIM discussed in chapter 5 is used to transform the domain integrals

appearing in equations (7.2) and (7.3) into boundary integrals.

7.3.1 Transformation of right-hand side domain integral to

the boundary

Both Eq.(7.2) and Eq.(7.3) have domain integrals coming from the known function f(x).

The RIM can be directly used to convert these domain integrals to the boundary, as

discussed in subsection 5.2.1. This leads to Eq.(6.10)

The integral in Eq.(6.11) can be calculated analytically for many different functions, and

numerically without the need to define a transformation as in [49], as discussed in previous

chapter.

7.3.2 RIM formulation for domain integrals with unknown

integrand

As the last domain integrals on the left-hand side of Eqs. (7.2) and (7.3) have the unknown

function u(x), the RIM cannot be directly used. Following exactly the same procedure

discussed in subsection 5.2.2 (the only difference being that the term R̃(x, y)+k(x)P (x, y))
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in Eq.(6.4) now appears inside the domain integral) leads to:

∫
Ω

{R̃(x, y) + k(x)P̃ (x, y)}u(x)dΩ(x) =
M∑
k=1

αk

∫
Ω

{R̃(x, y) + k(x)P̃ (x, y)}ϕk(R)dΩ(x) +

+d1

∫
Ω

{R̃(x, y) + k(x)P̃ (x, y)}x1dΩ(x) + d2

∫
Ω

{R̃(x, y) + k(x)P̃ (x, y)}x2dΩ(x) +

+d3

∫
Ω

{R̃(x, y) + k(x)P̃ (x, y)}dΩ(x).

(7.4)

Let r,1 =
x1−y1

r and r,2 =
x2−y2

r , then we can write:

{R̃(x, y) + k(x)P̃ (x, y)} =
1

2π

(
r,1
r

∂a(x)

∂x1
+

r,2
r

∂a(x)

∂x2
+ k(x)P̃ (x, y)

)
. (7.5)

It is very important before applying the RIM the coordinates that x1 and x2 appearing

in Eqs.(7.4) and (7.5) are expressed in terms of the distance r using Eq.(5.11).

Now, applying the RIM in section 5.2 to each domain integral in Eq.(7.4) leads to

∫
Ω

{R̃(x, y) + k(x)P̃ (x, y)}u(x)dΩ(x) =
∫
∂Ω

z(x)dΓ(x)

and

∫
∂Ω

z(x)dΓ(x) =

M∑
k=1

αk

∫
∂Ω

1

r

∂r

∂n
F1(x)dΓ(x) + d1

∫
∂Ω

1

r

∂r

∂n
F2(x)dΓ(x) +

+d2

∫
∂Ω

1

r

∂r

∂n
F3(x)dΓ(x) + d3

∫
∂Ω

1

r

∂r

∂n
F4(x)dΓ(x), (7.6)
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where

F1(x) =

1∫
0

{R̃(x, y) + k(y1 + r,1rt, y2 + r,2rt)P̃ (x, y)}ϕ(R)r2tdt, (7.7a)

F2(x) =

1∫
0

{R̃(x, y) + k(y1 + r,1rt, y2 + r,2rt)P̃ (x, y)}(y1 + r,1rt)r
2tdt, (7.7b)

F3(x) =

1∫
0

{R̃(x, y) + k(y1 + r,1rt, y2 + r,2rt)P̃ (x, y)}(y2 + r,2rt)r
2tdt, (7.7c)

F4(x) =

1∫
0

{R̃(x, y) + k(y1 + r,1rt, y2 + r,2rt)P̃ (x, y)}r2tdt. (7.7d)

The calculations of the four integrals in Eq.(7.7) are discussed in detail in section 5.2.

7.4 The radial integration boundary integral and

integro-differential equations

Eqs.(6.10)-(6.11) and (7.6)-(7.7) can now be substituted in both BDIE in Eq.(7.2) and

BDIDE in Eq.(7.3), and this leads to the following expressions.

7.4.1 The radial integration boundary integral equation (RI-

BIE)

c0(y)u(y)−
∫

∂NΩ

u(x)TxP̃ (x, y)dΓ(x) +

∫
∂DΩ

P̃ (x, y)t(x)dΓ(x) +

+

∫
∂Ω

z(x)dΓ(x) = Ψ0(y), y ∈ Ω ∪ ∂Ω (7.8)

where

Ψ0(y) := [c0(y)− a(y)c(y)]ū(y) + Ψ̃(y), (7.9)

Ψ̃(y) :=

∫
∂DΩ

ū(x)TxP̃ (x, y)dΓ(x)−
∫

∂NΩ

P̃ (x, y)t̄(x)dΓ(x) +

∫
∂Ω

1

r

∂r

∂n
F (x)dΓ(x), (7.10)
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where c0(y), F (x) and
∫
∂Ω

z(x)dΓ(x) are given in Eqs.(6.8), (6.11) and (7.6)-(7.7), respec-

tively.

7.4.2 The radial integration boundary integro-differential

equation (RIBIDE)

a(y)c(y)u(y)−
∫

∂NΩ

u(x)TxP̃ (x, y)dΓ(x) +

∫
∂DΩ

P̃ (x, y)Tu(x)dΓ(x) +

+

∫
∂Ω

z(x)dΓ(x) = Ψ̃(y), y ∈ Ω ∪ ∂NΩ, (7.11)

where
∫
∂Ω

z(x)dΓ(x) and Ψ̃(y) are given in Eqs.(7.6)-(7.7) and (7.10), respectively.

It can be seen clearly from both RIBIE in Eq.(7.8) and RIBIDE in Eq.(7.11) that all

integrations are now carried out only the boundary, with no domain integrals.

7.5 Discretisation of the RIBIE and RIBIDE

7.5.1 Discretisation of the RIBIE

The RIBIE formulation employs mixed boundary elements with linear u and constant t

to avoid the discontinuities of t at corner points. In this case, collocation was taken at

the end points of each boundary element, since our previous chapters have shown that

end-node collocation generally provides higher accuracy than mid-node collocation.

Let J be the total number of nodes xi, i = 1, ..., J , at the end points of elements, from

which there are JD nodes on ∂DΩ. Thus, the values of u at any point on the element can

be defined in terms of their nodal values and two linear interpolation functions Ψ1(t) and

Ψ2(t), given in Eq. (2.27).

To obtain a system of linear algebraic equations from the RBIE (7.8), we collocate at the

nodes xi, i = 1, ..., J . We can also use an interpolation of t(x) = (Tu)(xj) along boundary

nodes belonging to xj ∈ ∂DΩ

t(x) =
∑

xj∈∂DΩ

t(xj)vj(x), x ∈ ∂DΩ. (7.12)
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Here, vj(x) are boundary shape functions, taken now as constant. Therefore, vj(x) will

be equal to 1 at xj ∈ ∂DΩ and vj(x) = 0 if xj /∈ ∂DΩ. Substituting the interpolations

(2.27) and (7.12) in the RBIE (7.8) and applying the collocation method, we arrive at the

following system of J linear algebraic equations for J unknowns u(xj), xj ∈ Ω∪ ∂NΩ and

t(xj) = (Tu)(xj), xj ∈ ∂DΩ,

c0(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

Kiju(x
j) +

∑
xj∈∂DΩ

Q
′
ijt(x

j) = Ψ0(xi)

−
∑

xj∈∂DΩ

Kij ū(x
j), xi ∈ Ω ∪ ∂Ω, i = 1, ..., J,no sum in i, (7.13)

where Ψ0(xi) is calculated from Eq.(7.9), and

Ψ(xi) =

∫
∂DΩ

ū(x)TxP̃ (x, xi)dΓ(x)−
∫

∂NΩ

P̃ (x, xi)t̄(x)dΓ(x) +

∫
∂Ω

1

r

∂r

∂n
F (x)dΓ(x), (7.14)

Kij =

∫
∂Ω

z(x)dΓ(x)−
∫

∂NΩ

[Ψ1,Ψ2]TxP̃ (x, xi)dΓ(x), (7.15)

Q
′
ij =

∫
∂DΩ

P̃ (x, xi)vj(x)dΓ(x), (7.16)

where F (x) is given in Eq.(6.11) and
∫
∂Ω

z(x)dΓ(x) is given in Eqs.(7.6)-(7.7).

7.5.2 Discretisation of the RIBIDE

To obtain a system of linear algebraic equations from the RBIDE (7.11), we collocate at

the nodes xi, i = 1, ..., J , and substitute an interpolation in Eq.(6.25), we then arrive

at a system of J − JD algebraic equations for J − JD unknowns u(xj), xj ∈ Ω ∪ ∂NΩ.

Substituting interpolation formulae (6.25) into the RBIDE (7.11) leads to the following

system of equations:

a(xi)c(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

K
′
iju(x

j) = Ψ(xi)−
∑

xj∈∂DΩ

K
′
ij ū(x

j),

xi ∈ Ω ∪ ∂NΩ, no sum in i, (7.17)
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where

K
′
ij = Kij +

∫
∂DΩ

P̃ (x, xi)TΦj(x)dΓ(x) (7.18)

and Ψ(xi) and Kij are given in Eqs.(7.14) and (7.15), respectively.

The advantages of the RIBIDE technique are that the only boundary variables are those of

u along Neumann boundaries, as there is no need for collocation along Dirichlet boundaries.

Thus, the problem caused by the discontinuity of the normal derivative at corner points

is avoided. Second, the system of linear equations is smaller than the one for RIBIE.

This feature will save memory and computational time when we apply the RIBIDE for

practical problems. Finally, the assembly of matrix A and vector b is much easier than in

the RIBIE, as discussed in previous chapters.

7.6 Numerical results

In this section, we shall examine some test examples to assess the performance of the

RIBIDE/RIBIE formulations for the non-homogeneous Helmholtz equation with variable

coefficients for three cases. Firstly, when the parameter a(x) is variable and the wave

number k is constant. Secondly, when the parameter a(x) is constant and the wave

number k(x) is variable. Thirdly, when both the parameter a(x) and the wave number

k(x) are variable. For comparison, the problems are also computed using both BDIDE

and BDIE.

We applied the RIBIDE/RIBIE and BDIE/BDIDE methods to some test problems on

a square domain, for which an exact analytical solution, uexact, is available. Computer

programs were developed by using Matlab. The exact solutions of the problems range

from linear to cubic, and will be used to verify the convergence of the numerical solutions.

Moreover, ϕ(R) = R3 is adopted in the test examples. The total number of nodes is 81 (32

on the boundary plus 49 in the interior). The top and bottom sides of the plates for all

tests examples have prescribed acoustic pressure u (Dirichlet boundary conditions), while

the left and right are imposed with normal velocity t (Neumann boundary conditions).

Also, the relative error and Root Mean Square (RMS) error are calculated as given by

Eqs.(2.35) and (6.28) to check the convergence of the proposed methods. These errors

have been calculated for J= 25, 81, 289 and 1089 in all test examples.
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7.6.1 Numerical results when a(x) variable and k(x) constant

Test 1 :

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, where k(x) = 1, for x ∈ Ω̄, a(x) =

2(x1 + x2), f(x) = 4 + x1 + x2 and the boundary conditions:

ū(x) = 2 + x1, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 3 + x1, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = 2(x1 + x2)(n1(x) + n2(x)), for x1 = 2 or x1 = 3; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

Table 7.1: Computed acoustic pressure along line of x2 = 2.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

2 4.50001261 4.50410518 4.50001472 4.50001407 4.50000000
2.125 4.62500159 4.62799548 4.62500359 4.62500309 4.62500000
2.25 4.75000069 4.75269790 4.75000233 4.75000179 4.75000000
2.375 4.87500002 4.87623517 4.87500117 4.87500083 4.87500000
2.5 4.99999943 5.00087173 5.00000008 4.99999980 5.00000000

2.625 5.12499878 5.12429503 5.12499896 5.12499891 5.12500000
2.750 5.24999796 5.24910682 5.24999770 5.24999772 5.25000000
2.875 5.37499684 5.37283038 5.37499625 5.37499615 5.37500000

3 5.49998557 5.49839621 5.49998486 5.49998504 5.50000000

Table 7.1 lists the computed values of u(x) along the middle line of the plate using RIBIDE,

RIBIE, BDIDE and BDIE, while Fig.7.1 shows the variation of u(x) along the line x2 =

2.875.
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Figure 7.1: Acoustic pressure distribution along the line x2 = 2.875
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Figure 7.2: Relative and RMS errors for
RIBIDE method for test 1
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Figure 7.3: Relative and RMS errors for
RIBIE method for test 1

Test 2:

Square domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, where k(x) = 1, for x ∈ Ω̄, a(x) = x21+x22,

f(x) = 9(x21 + x22) and the boundary conditions:

ū(x) = 1 + x21, for x2 = 1; 1 ≤ x1 ≤ 2,

ū(x) = 4 + x21, for x2 = 2; 1 ≤ x1 ≤ 2,

t̄(x) = 2(x21 + x22)(x1n1(x) + x2n2(x)), for x1 = 1 or x1 = 2 ; 1 ≤ x2 ≤ 2.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

Table 7.2 lists the computed values of u(x) along the middle line of the plate using

RIBIDE, RIBIE, BDIDE and BDIE, while Fig.7.4 shows the variation of u(x) along the

line x2 = 2.875.

Table 7.2: Computed acoustic pressure along line of x2 = 1.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

1 3.23904254 3.27576532 3.25001788 3.25005523 3.25000000
1.125 3.50524145 3.53417482 3.51695736 3.51663265 3.51562500
1.25 3.80173933 3.82657272 3.81393990 3.81329415 3.81250000
1.375 4.12971330 4.14846598 4.14223153 4.14130378 4.14062500
1.5 4.48916298 4.50394266 4.50185631 4.50065229 4.50000000

1.625 4.88007916 4.88811964 4.89283775 4.89134235 4.89062500
1.750 5.30243537 5.30636671 5.31520029 5.31335853 5.31250000
1.875 5.75620027 5.75461679 5.76895964 5.76669239 5.76562500

2 6.23998789 6.23825471 6.25274089 6.24995223 6.25000000
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Figure 7.4: Acoustic pressure distribution along the line x2 = 1.875
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Figure 7.5: Relative and RMS errors for
RIBIDE method for test 2
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Figure 7.6: Relative and RMS errors for
RIBIE method for test 2

Test 3 :

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, where k(x) = 1, for x ∈ Ω̄, a(x) =

exp(x1 + x2), f(x) = exp(x1 + x2)(6x1 + 3x21 + 6x2 + 3x22) + x31 + x32 and the boundary

conditions:

ū(x) = 8 + x31, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 27 + x31, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = exp(x1 + x2)(3x
2
1n1(x) + 3x22n2(x)), for x1 = 2 or x1 = 3 ; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x31 + x32, x ∈ Ω̄.

Table 7.3 lists the computed values of u(x) along the middle line of the plate using RIBIDE,

RIBIE, BDIDE and BDIE, while Fig.7.7 shows the variation of u(x) along the line x2 =

2.875.

It can be seen from tables 7.1-7.3 and Figs. 7.1, 7.4 and 7.7 that both the RIBIE and
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Table 7.3: Computed acoustic pressure along line x2 = 2.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

2 23.54227795 24.08753950 23.60035796 23.62472805 23.62500000
2.125 25.14006793 25.58360246 25.20769297 25.22737334 25.22070313
2.25 26.93069620 27.28226866 27.00518929 27.02088546 27.01562500
2.375 28.93457973 29.20969252 29.01338124 29.02608159 29.02148438
2.5 31.16338664 31.36617250 31.24439482 31.25465503 31.25000000

2.625 33.62869650 33.75998894 33.71028780 33.71823012 33.71289063
2.750 36.34196670 36.40889990 36.42304776 36.42847247 36.42187500
2.875 39.31462484 39.31873001 39.39451701 39.39688883 39.38867188

3 42.54759473 42.52953357 42.62601667 42.62475880 42.62500000
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Figure 7.7: Acoustic pressure distribution along the line x2 = 2.875

RIBIDE methods are able to generate accurate solutions in good agreement with BDIE

and BDIDE results.
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Figure 7.8: Relative and RMS errors for
RIBIDE method for test 3
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Figure 7.9: Relative and RMS errors for
RIBIE method for test 3

7.6.2 Numerical results when a(x) constant and k(x) variable

In this case, when the parameter a(x) is constant, the remainder R̃(x, y) in Eq.(7.1) will

be zero.

Test 4 :

Square domain Ω̄ = {(x1, x2) : 0 ≤ x1, x2 ≤ 1}, where k(x) = x31+x32, for x ∈ Ω̄, a(x) = 1,

f(x) = (x31 + x32)(x1 + x2) and the boundary conditions:

ū(x) = x1, for x2 = 0; 0 ≤ x1 ≤ 1,

ū(x) = 1 + x1, for x2 = 1; 0 ≤ x1 ≤ 1,

t̄(x) = n1(x) + n2(x), for x1 = 0 or x1 = 1; 0 ≤ x2 ≤ 1.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

Table 7.4: Computed acoustic pressure along line x2 = 0.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

0 0.50001354 0.49808573 0.50001417 0.50001295 0.50000000
0.125 0.62500238 0.62295805 0.62500297 0.62499982 0.62500000
0.25 0.75000135 0.74742745 0.75000181 0.74999816 0.75000000
0.375 0.87500056 0.87244433 0.87500085 0.87499711 0.87500000
0.5 0.99999989 0.99766609 0.99999998 0.99999501 1.00000000

0.625 1.12499922 1.12187828 1.12499910 1.12499501 1.12500000
0.750 1.24999839 1.24604751 1.24999810 1.24999412 1.25000000
0.875 1.37499729 1.37172154 1.37499688 1.37499191 1.37500000

1 1.49998607 1.49586330 1.49998561 1.49998264 1.50000000

Table 7.4 lists the computed values of u(x) along the middle line of the plate using RIBIDE,
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RIBIE, BDIDE and BDIE, while Fig.7.10 shows the variation of u(x) along the line x2 =

0.875.
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Figure 7.10: Acoustic pressure distribution along the line x2 = 0.875
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Figure 7.11: Relative and RMS errors for
RIBIDE method for test 4
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Figure 7.12: Relative and RMS errors for
RIBIE method for test 4

Test 5 :

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, where k(x) = cos(x1)+ cos(x2), for x ∈ Ω̄,

a(x) = 1, f(x) = (cos(x1) + cos(x2))(x1 + x2) and the boundary conditions:

ū(x) = 2 + x1, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 3 + x1, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = n1(x) + n2(x), for x1 = 2 or x1 = 3; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.
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Table 7.5 lists the computed values of u(x) along the middle line of the plate using RIBIDE,

RIBIE, BDIDE and BDIE, while Fig.7.13 shows the variation of u(x) along the line x2 =

2.875.

Table 7.5: Computed acoustic pressure along line of x2 = 2.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

2 4.50001317 4.50314478 4.50001361 4.50001702 4.50000000
2.125 4.62500210 4.63140975 4.62500249 4.62500705 4.62500000
2.25 4.75000120 4.76005830 4.75000149 4.75000504 4.75000000
2.375 4.87500055 4.88111739 4.87500069 4.87500317 4.87500000
2.5 5.00000005 5.00489097 4.99999999 5.00000137 5.00000000

2.625 5.12499955 5.13117889 5.12499932 5.12500185 5.12500000
2.750 5.24999893 5.25665463 5.24999854 5.25000135 5.25000000
2.875 5.37499806 5.37992272 5.37499757 5.37500057 5.37500000

3 5.49998701 5.49941772 5.49998648 5.49998770 5.50000000
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Figure 7.13: Acoustic pressure distribution along the line x2 = 2.875

From tables 7.4-7.5 and Figs. 7.10 and 7.13, it is clear that both the RIBIE and RIBIDE

methods are able to generate accurate solutions in good agreement with BDIE and BDIDE

results.
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Figure 7.14: Relative and RMS errors for
RIBIDE method for test 5
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Figure 7.15: Relative and RMS errors for
RIBIE method for test 5

7.6.3 Numerical results when both a(x) and k(x) variable

In this final case, when both the material parameter a(x) and wave number k(x) are

variable, the parametrix is adopted. Let us consider some test examples to assess the

accuracy of the RIBIDE/RIBIE and BDIDE/BDIE methods.

Test 6 :

Square domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, where k(x) = x1 + x2, for x ∈ Ω̄,

a(x) = exp(x1 + x2), f(x) = 2(exp(x1 + x2)) + (x1 + x2)
2 and the boundary conditions:

ū(x) = 1 + x1, for x2 = 1; 1 ≤ x1 ≤ 2,

ū(x) = 2 + x1, for x2 = 2; 1 ≤ x1 ≤ 2,

t̄(x) = (exp(x1 + x2))(n1(x) + n2(x)), for x1 = 1 or x1 = 2; 1 ≤ x2 ≤ 2.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

Table 7.6: Computed acoustic pressure along line of x2 = 1.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

1 2.50000827 2.53200759 2.49975098 2.49997915 2.50000000
1.125 2.62499815 2.65179178 2.62485102 2.62497797 2.62500000
1.25 2.74999800 2.77092058 2.74992766 2.74998578 2.75000000
1.375 2.87499777 2.89109656 2.87499185 2.87499340 2.87500000
1.5 2.99999737 3.01111090 3.00004969 3.00000009 3.00000000

1.625 3.12499670 3.13157705 3.12510806 3.12500611 3.12500000
1.750 3.24999566 3.25284233 3.25017286 3.25001177 3.25000000
1.875 3.37499422 3.37410114 3.37524777 3.37501589 3.37500000

2 3.49998273 3.49815802 3.50034354 3.50000900 3.50000000
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Table 7.6 lists the computed values of u(x) along the middle line of the plate using RIBIDE,

RIBIE, BDIDE and BDIE, while Fig.7.16 shows the variation of u(x) along the line x2 =

1.875.
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Figure 7.16: Acoustic pressure distribution along the line x2 = 1.875

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

Number of nodes

 

 
Relative error
RMS Norm

Figure 7.17: Relative and RMS errors for
RIBIDE method for test 6
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Figure 7.18: Relative and RMS errors for
RIBIE method for test 6

Test 7 :

Square domain Ω̄ = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, where k(x) = sin(x1) + sin(x2), for x ∈ Ω̄,

a(x) = exp(x1 + x2), f(x) = (2(exp(x1 + x2))(2 + x1 + x2)) + (sin(x1) + sin(x2))(x
2
1 + x22)

and the boundary conditions:

ū(x) = 1 + x1, for x2 = 1; 1 ≤ x1 ≤ 2,

ū(x) = 2 + x1, for x2 = 2; 1 ≤ x1 ≤ 2,
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t̄(x) = 2(exp(x1 + x2))(x1n1(x) + x2n2(x)), for x1 = 1 or x1 = 2; 1 ≤ x2 ≤ 2.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

Table 7.7 lists the computed values of u(x) along the middle line of the plate using RIBIDE,

RIBIE, BDIDE and BDIE, while Fig.7.19 shows the variation of u(x) along the line x2 =

1.875.

Table 7.7: Computed acoustic pressure along line of x2 = 1.5

x1 BDIDE RIBIDE BDIE RIBIE Exact

1 3.23907298 3.32246311 3.24875134 3.24996383 3.25000000
1.125 3.50510973 3.57286266 3.51593634 3.51652295 3.51562500
1.25 3.80153097 3.85513479 3.81314959 3.81320922 3.81250000
1.375 4.12948095 4.17133413 4.14165412 4.14125138 4.14062500
1.5 4.48895221 4.51957143 4.50149612 4.50063760 4.50000000

1.625 4.87992777 4.89980552 4.89272494 4.89135856 4.89062500
1.750 5.30237464 5.31223044 5.31538789 5.31340484 5.31250000
1.875 5.75625542 5.75675965 5.76951472 5.76675756 5.76562500

2 6.24013358 6.23692919 6.25374388 6.25000002 6.25000000
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Figure 7.19: Acoustic pressure distribution along the line x2 = 1.875

It can be seen from tables 7.6 and 7.7 and Figs. 7.16-7.19 that both the RIBIE and

RIBIDE methods are able to generate accurate solutions in good agreement with the

BDIE and BDIDE results. It is important to point out that the numerical integration

of the RIM in Matlab is very fast and can save a substantial amount of computational

time in comparison to both BDIDE and BDIE. It is noticed that the RIBIE produces

better results than RIBIDE in all tests. Moreover, the relative and RMS errors in tests

1-7 show that both the RIBIE and RIBIDE methods are convergent with mesh refinement
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Figure 7.20: Relative and RMS errors for
RIBIDE method for test 7
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Figure 7.21: Relative and RMS errors for
RIBIE method for test 7

and, in general, the RMS error is lower than the relative error as expected. It can also be

clearly seen that the convergence of RIBIE is much faster than RIBIDE, which is a similar

behaviour to the BDIE and BDIDE presented in chapter four in which cell-integration is

used.

7.7 Conclusion

In this chapter, the RIBIE/RIBIDE formulations are derived and implemented for solving

the two-dimensional Helmholtz equation with variable coefficients. Three different cases

have been solved; when the parameter a(x) is variable (with constant or variable wave

number k), a parametrix is adopted in the formulation. However, when the parameter is

constant (with variable wave number), the standard fundamental solution for the Laplace

equation is used.

Using the RIM, it is possible to transform the domain integrals that appear in both BDIE

and BDIDE methods derived and implemented in chapter 4, into equivalent boundary

integrals, thus retaining the boundary-only character of the standard BEM. Moreover,

the RIM removes the weak singularities appearing in both domain integrals, simplifying

and speeding up the calculation of the integrals. Numerical results showed that both the

RIBIE and RIBIDE methods are able to generate accurate solutions in good agreement

with BDIE and BDIDE results.



Chapter 8

RIBIE and RIBIDE for diffusion

equation with variable coefficients

8.1 Introduction

The diffusion equation models transient heat transfer and other similar problems [7, 58].

Several numerical techniques have been proposed to generate boundary integral repre-

sentations for the diffusion equation. The dual reciprocity boundary element method

(DRBEM), initially applied to transient heat conduction problems by Wrobel et al. [59],

interprets the time derivative in the diffusion equation as a body force and employs the

fundamental solution to Laplace’s equation to generate a boundary integral equation. The

BEM and the DRBEM are discussed in detail in [2]. Also, Wrobel and Brebbia [60] pre-

sented an extension of the DRBEM to deal with nonlinear diffusion problems in which the

thermal conductivity, specific heat, and density coefficients are all functions of tempera-

ture.

In [61] the authors applied a meshless method as a boundary-only formulation for transient

heat conduction with a heat source. The transformation of the domain integral into the

corresponding boundary integral is carried out using Green’s theorem.

Recent work by Yang and Gao [58] adopted the Green’s function for the Laplace equation

in deriving normalized boundary-domain integral equations for time-dependent problems

with varying heat conductivities. The authors argued that, unlike the standard BEM,

considering the product of variable coefficients by the unknown functions as a new variable

can provide accurate results. Then, the RIM is employed to convert the resulting domain

135
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integrals into equivalent boundary integrals. However, due to the way the inner radial

integral was calculated, the formulations still required to calculate the integral inside the

domain and are restricted to star-shaped domains.

In this chapter, a new type of boundary-only integral equation technique is developed for

non-homogeneous transient heat conduction problems with variable coefficients based on

the use of a parametrix. It is shown in this chapter that both the parametrix and the

standard fundamental solution for Laplace’s equation lead to the same form of Green’s

third identity when the variable coefficients appear in the second-order linear parabolic

PDE. Moreover, in the last decade, the mathematical theory and equivalence of the BDIE

and BDIDE to the steady-state heat conduction with variable coefficients using parametrix

was proved along with their solvability, solution uniqueness, and the operator invertibility

in appropriate spaces [62,63].

The RIM is used in this chapter to convert the domain integrals appearing in both BDIE

and BDIDE to equivalent boundary integrals. Moreover, the radial integral is calculated

along the boundary only. For domain integrals consisting of known functions the trans-

formation is straightforward, while for domain integrals that include unknown variables

the transformation is accomplished with the use of augmented RBFs, as in chapters 6 and

7. The most attractive feature of the method is that the transformations are very simple

and have similar forms for both 2D and 3D problems.

8.2 Reduction of diffusion equation to a BDIE/B-

DIDE

Let us consider the following diffusion equation in an isotropic non-homogeneous medium

for a two-dimensional body Ω, with prescribed temperature ū(x) on part ∂DΩ of the

boundary ∂Ω and prescribed heat flux q̄(x) on the remaining ∂NΩ part of ∂Ω, i.e. we

consider the second-order linear parabolic PDE,

2∑
i=1

∂

∂xi

[
a(x)

∂u(x, t)

∂xi

]
= f(x, t) +D(x, t)

∂u(x, t)

∂t
, x ∈ Ω (8.1)

with the initial-boundary conditions

u(x1, x2, 0) = u0(x), for x = (x1, x2) ∈ Ω, (8.2)
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u(x1, x2, t) = ū(x1, x2, t), for (x1, x2) ∈ ∂DΩ, t > 0, (8.3)

Tu(x1, x2, t) = q̄(x1, x2, t), for (x1, x2) ∈ ∂NΩ, t > 0, (8.4)

where Ω is a bounded domain, u(x, t) the temperature, a(x) a known variable thermocon-

ductivity coefficient, f(x, t) a known heat source, T a surface flux operator, x = (x1, x2),

[Tu](x, t) := a(x)∂u(x,t)∂n(x) , n(x) the external normal vector to the boundary ∂Ω, u0, ū and

q̄ are known functions, and D(x, t) = ρC, ρ is the mass density and C is the specific heat.

The Green formula for the differential operator L has the form (3.6).

Let L be a linear operator and G(x, y) its fundamental solution, i.e.

LxG(x, y) = δ(x− y),

where δ is the Dirac delta function. Also, the fundamental solution used is the same as

for the Laplace’s equation, given by:

G(x, y) =
1

2π
ln |x− y| = P̃ (x, y). (8.5)

Then, one could take v(x) = G(x, y), identify u(x, t) with a solution of Eq.(8.1), and thus

arrive at the third Green identity

c(y)u(y, t)−
∫
∂Ω

[u(x, t)TxG(x, y)−G(x, y)Tu(x, t)]dΓ(x) =

=

∫
Ω

G(x, y)f(x, t)dΩ(x) +

∫
Ω
D(x, t)G(x, y)

∂u(x, t)

∂t
dΩ(x), (8.6)

where c(y) is given by Eq. (2.18).

Substituting the boundary condition in the Green identity Eq.(8.6) and applying it for

y ∈ ∂Ω, we arrive at a direct BIE [2,6].

For partial differential operators with variable coefficients, like L in Eq.(8.1), a fundamental

solution is generally not available in explicit form. In order to get the third Green identity

corresponding to the variable coefficients operator L in Eq.(8.1), there are two approaches

available in literature.

The first approach is to use a parametrix P (x, y), which is often available, as discussed in

previous chapters, which for two-dimensionl problems will be given by Eq. (3.9).
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The remainder R(x, y) will then be given by Eq. (3.10).

Substituting P (x, y) for v(x) in Eq.(3.6) and taking u(x, t) as a solution to Eq.(8.1), we

obtain the integral equality,

c(y)u(y, t)−
∫
∂Ω

[u(x, t)TxP (x, y)− P (x, y)Tu(x, t)]dΓ(x) +

∫
Ω

R(x, y)u(x, t)dΩ(x) +

=

∫
Ω

P (x, y)f(x, t)dΩ(x) +

∫
Ω

D(x, t)P (x, y)
∂u(x, t)

∂t
dΩ(x). (8.7)

Now, we can multiply both sides of Eq.(8.7) by a(y) to obtain:

a(y)c(y)u(y, t)−
∫
∂Ω

[u(x, t)TxG(x, y)−G(x, y)Tu(x, t)]dΓ(x) +

∫
Ω

R̃(x, y)u(x, t)dΩ(x) =

=

∫
Ω

G(x, y)f(x, t)dΩ(x) +

∫
Ω

D(x, t)G(x, y)
∂u(x, t)

∂t
dΩ(x),

(8.8)

where

G(x, y) = a(y)P (x, y) = 1
2π ln |x− y| ,

R̃(x, y) = a(y)R(x, y) =
2∑

i=1

xi−yi
2π|x−y|2

∂a(x)
∂xi

.

The second alternative approach is to use the fundamental solution for the Laplace equa-

tion given in Eq.(8.5) as a weighting function to Eq.(8.1), leading to

∫
Ω

∂

∂xi

[
a(x)

∂u(x, t)

∂xi

]
G(x, y)dΩ(x) =

∫
Ω

f(x, t)G(x, y)dΩ(x) +

+

∫
Ω

D(x, t)
∂u(x, t)

∂t
G(x, y)dΩ(x), x ∈ Ω. (8.9)

Using integration by parts, the first domain integral in Eq.(8.9) can be written as,

∫
Ω

∂

∂xi

[
a(x)

∂u(x, t)

∂xi

]
G(x, y)dΩ(x) =

∫
Ω

∂

∂xi

[
G(x, y)a(x)

∂u(x, t)

∂xi

]
dΩ(x)−

−
∫
Ω

∂G(x, y)

∂xi
a(x)

∂u(x, t)

∂xi
dΩ(x). (8.10)

The Gauss’ divergence theorem can now be applied to the first domain integral on the
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right-hand side, leading to

∫
Ω

∂

∂xi

[
G(x, y)a(x)

∂u(x, t)

∂xi

]
dΩ(x) =

∫
∂Ω

G(x, y)a(x)
∂u(x, t)

∂xi
ni(x)dΓ(x) =

=

∫
∂Ω

G(x, y)
∂u(x, t)

∂n(x)
dΓ(x). (8.11)

The second domain integral on the right-hand side of Eq.(8.10) can be manipulated as,

−
∫
Ω

∂G(x, y)

∂xi

[
a(x)

∂u(x, t)

∂xi

]
dΩ(x) = −

∫
Ω

∂G(x, y)

∂xi

∂

∂xi
[a(x)u(x, t)] dΩ(x) +

+

∫
Ω

∂G(x, y)

∂xi

∂a(x)

∂xi
u(x, t)dΩ(x). (8.12)

The first domain integral on the right-hand side of Eq.(8.12) can be manipulated as before,

−
∫
Ω

∂G(x, y)

∂xi

∂

∂xi
[a(x)u(x, t)] dΩ(x) = −

∫
Ω

∂

∂xi

[
∂G(x, y)

∂xi
a(x)u(x, t)

]
dΩ(x)

+

∫
Ω

∂

∂xi

[
∂G(x, y)

∂xi

]
a(x)u(x, t)dΩ(x). (8.13)

Due to the fact that the fundamental solution is singular, the source point y is surrounded

by a small circle of radius ϵ, and then the integrals are examined in the limit as ϵ −→ 0,

as discussed in detail in section 2.2. The second domain integral on the right-hand side of

Eq.(8.13) vanishes, since the source point is excluded from the integration domain. During

the limit procedure the first domain integral on the right-hand side of Eq.(8.13) produces

an additional term a(y)c(y)u(y).

The Gauss’ divergence theorem can now be applied to the first domain integral on the

right-hand side, leading to

−
∫
Ω

∂

∂xi

[
∂G(x, y)

∂xi
a(x)u(x, t)

]
dΩ(x) = −

∫
∂Ω

∂G(x, y)

∂xi
ni(x)a(x)u(x, t)dΓ(x) =

= a(y)c(y)u(y)−
∫
∂Ω

∂G(x, y)

∂n(x)
u(x, t)dΓ(x). (8.14)

Substituting Eqs.(8.10-8.14) in Eq.(8.9), we get the same third Green identity as in

Eq.(8.8).

Remark 8.1: It is important to point out, that using both a parametrix and the funda-
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mental solution for the Laplace equation for the second-order linear parabolic PDE with

variable coefficients leads to the same third Green identity. This statement is also valid

for the previous problems of heat conduction and wave propagation.

The identity (8.8) can be used for formulating either a BDIE or BDIDE, with respect to u

and its derivatives. We still prefer to call the new formulations in the next sections BDIE

and BDIDE even if the identity (8.8) has a new domain integral with a time derivative for

simplicity. Let us consider the two forms below.

8.2.1 Boundary-domain integral equation (BDIE)

Substituting the boundary conditions (8.3) and (8.4) into (8.8), introducing a new variable

q(x, t)=Tu(x, t) for the unknown flux on ∂DΩ and using Eq.(8.8) at y ∈ Ω∪∂Ω reduces

the Eq.(8.1) to the following BDIE for u(x, t) at x ∈ Ω∪∂NΩ and q(x, t) at x ∈ ∂DΩ,

c0(y)u(y, t)−
∫

∂NΩ

u(x, t)TxG(x, y)dΓ(x) +

∫
∂DΩ

G(x, y)q(x, t)dΓ(x) +

+

∫
Ω

R̃(x, y)u(x, t)dΩ(x) = Ψ0(y, t), y ∈ Ω ∪ ∂Ω (8.15)

Ψ0(y, t) := [c0(y)− a(y)c(y)]ū(y, t) + Ψ(y, t), (8.16)

Ψ(y, t) :=

∫
∂DΩ

ū(x, t)TxG(x, y)dΓ(x)−
∫

∂NΩ

G(x, y)q̄(x, t)dΓ(x) +

+

∫
Ω

G(x, y)f(x, t)dΩ(x) +

∫
Ω

D(x, t)
∂u(x, t)

∂t
G(x, y)dΩ(x), (8.17)

and c0(y) is given by (6.8).

8.2.2 Boundary-domain integro-differential equation (BDIDE)

Using another approach, we can substitute the boundary conditions (8.3) and (8.4) into

(8.8) but leave T as a differential flux operator acting on u on the Dirichlet boundary ∂DΩ
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and use the following BDIDE at y ∈ Ω ∪ ∂NΩ,

a(y)c(y)u(y, t)−
∫

∂NΩ

u(x, t)TxG(x, y)dΓ(x) +

∫
∂DΩ

G(x, y)Tu(x, t)dΓ(x) +

+

∫
Ω

R̃(x, y)u(x, t)dΩ(x) = Ψ(y, t), y ∈ Ω ∪ ∂NΩ (8.18)

where Ψ(y, t) is given by Eq.(8.17).

8.3 Transformation of domain integrals to the bound-

ary using RIM

In this section, the RIM discussed in chapter five is used to transform the domain integrals

appearing in equations (8.15) and (8.18) into boundary integrals.

8.3.1 RIM formulation for domain integrals with known

integrand

Both Eq.(8.15) and Eq.(8.18) have domain integrals coming from the known function

f(x, t). The RIM can be directly used to convert these domain integrals to the boundary,

as discussed in subsection 5.2.1. This leads to

∫
Ω

G(x, y)f(x, t)dΩ(x) =

∫
∂Ω

1

r

∂r

∂n
F (x, t)dΓ(x) (8.19)

where

F (x, t) =

1∫
0

G(x, y)f(y1 + r,1rs, y2 + r,2rs, t)r
2sds (8.20)

The integral in Eq.(8.20) can be calculated analytically for many different functions, and

numerically as discussed in previous chapters. Also, due to the radial integral in Eq.(8.20),

the weak singularity coming from the fundamental solution is removed.



8.3. Transformation of domain integrals to the boundary using RIM 142

8.3.2 RIM formulation for domain integrals with unknown

integrand

Both Eq.(8.15) and Eq.(8.18) have two domain integrals with unknown integrands. The

first domain integral on the left-hand side comes from the term R̃(x, y) and can be treated

exactly as in chapter 6 (subsection 6.3.1). However, the right-hand side domain integral in

Eqs.(8.15) and (8.18) has the unknown time-derivative ∂u(x,t)
∂t in the last domain integral

of Eq. (8.17), and the RIM cannot be directly used. We adopt a similar procedure as in

previous chapters (5, 6 and 7), as follows:

Let us approximate the variation of u(x, t) in the following way:

∂u(x, t)

∂t
=

M∑
k=1

βkϕk(R) + c1x1 + c2x2 + c3. (8.21)

The following equilibrium conditions have to be satisfied , as before:

M∑
k=1

βk =

M∑
k=1

βkx1k =

M∑
k=1

βkx2k = 0 (8.22)

Substituting Eq.(8.21) into the last domain integrals of Eq. (8.17), we obtain:

∫
Ω

D(x, t)
∂u(x, t)

∂t
G(x, y)dΩ(x) =

M∑
k=1

βk

∫
Ω

D(x, t)G(x, y)ϕk(R)dΩ(x) +

+c1

∫
Ω

D(x, t)G(x, y)x1dΩ(x) + c2

∫
Ω

D(x, t)G(x, y)x2dΩ(x) +

+c3

∫
Ω

D(x, t)G(x, y)dΩ(x). (8.23)

It is very important before applying the RIM that the coordinates x1 and x2 appearing

in Eq.(8.23) are expressed in terms of the distance r using Eq.(5.11). Now, applying the

RIM to each domain integral in Eq.(8.23) leads to

∫
Ω

D(x, t)
∂u(x)

∂t
G(x, y)dΩ(x) =

∫
∂Ω

w(x, t)dΓ(x)

where
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∫
∂Ω

w(x, t)dΓ(x) =

M∑
k=1

βk

∫
∂Ω

1

r

∂r

∂n
F́1(x, t)dΓ(x) + c1

∫
∂Ω

1

r

∂r

∂n
F́2(x, t)dΓ(x) +

+c2

∫
∂Ω

1

r

∂r

∂n
F́3(x, t)dΓ(x) + c3

∫
∂Ω

1

r

∂r

∂n
F́4(x, t)dΓ(x), (8.24)

where

F́1(x, t) =

1∫
0

D(x, t)G(x, y)ϕ(R)r2sds (8.25a)

F́2(x, t) =

1∫
0

D(x, t)G(x, y)(y1 + r,1rs)r
2sds (8.25b)

F́3(x, t) =

1∫
0

D(x, t)G(x, y)(y2 + r,2rs)r
2sds (8.25c)

F́4(x, t) =

1∫
0

D(x, t)G(x, y)r2sds (8.25d)

After numerical integration, the unknown coefficients βk, k = 1, .....,M , c1, c2 and c3,

can be calculated following the procedures discussed in section 5.2, in which the αk, k =

1, .....,M , need to be replaced by βk, k = 1, .....,M and u by ∂u
∂t .

8.4 The radial integration boundary integral and

integro-differential equations

Eqs. (6.14)-(6.15), (8.19)-(8.20) and (8.24)-(8.25) can now be substituted in both BDIE

in Eq.(8.15) and BDIDE in Eq.(8.18), and this leads to the following expressions.
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8.4.1 The radial integration boundary integral equation (RI-

BIE)

c0(y)u(y, t)−
∫

∂NΩ

u(x, t)TxG(x, y)dΓ(x) +

∫
∂DΩ

G(x, y)q(x, t)dΓ(x) +

+

∫
∂Ω

h(x)dΓ(x) = Ψ0(y, t), y ∈ Ω ∪ ∂Ω (8.26)

Ψ0(y, t) := [c0(y)− a(y)c(y)]ū(y, t) + Ψ̃(y, t), (8.27)

Ψ̃(y, t) :=

∫
∂DΩ

ū(x, t)TxG(x, y)dΓ(x)−
∫

∂NΩ

G(x, y)q̄(x, t)dΓ(x) +

+

∫
∂Ω

w(x, t)dΓ(x) +

∫
∂Ω

1

r

∂r

∂n
F (x, t)dΓ(x) (8.28)

where c0(y), F (x, t),
∫
∂Ω

h(x)dΓ(x) and
∫
∂Ω

w(x, t)dΓ(x) are given in Eqs.(6.8), (8.20), (6.14)-

(6.15), and (8.24)-(8.25), respectively.

8.4.2 The radial integration boundary integro-differential

equation (RIBIDE)

a(y)c(y)u(y, t)−
∫

∂NΩ

u(x, t)TxG(x, y)dΓ(x) +

∫
∂DΩ

G(x, y)Tu(x, t)dΓ(x) +

+

∫
∂Ω

h(x)dΓ(x) = Ψ̃(y, t), y ∈ Ω ∪ ∂NΩ (8.29)

where Ψ̃(y, t) is given in Eq. (8.28). It can be seen clearly from both RIBIE in Eq.(8.26)

and RIBIDE in Eq.(8.29) that all integrations are now carried out only on the boundary,

with no domain integrals.
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8.4.3 Discretisation of the RIBIE

The RIBIE formulation employs mixed boundary elements with linear u and constant q

to avoid the discontinuities of q at corner points. In this case, collocation was taken at

the end points of each boundary element, since our previous chapters have shown that

end-node collocation generally provides higher accuracy than mid-node collocation.

Let J be the total number of nodes xi, i = 1, ..., J , at the end points of elements, from

which there are JD nodes on ∂DΩ. Thus, the values of u at any point on the element can

be defined in terms of their nodal values and two linear interpolation functions Ψ1(t) and

Ψ2(t) given in Eq. (2.27).

To obtain a system of linear algebraic equations from the RIBIE (8.26), we collocate at

the nodes xi, i = 1, ..., J . We can also use an interpolation of q(x, t) = (Tu)(xj , t) along

boundary nodes belonging to xj ∈ ∂DΩ

q(x, t) =
∑

xj∈∂DΩ

q(xj , t)vj(x), x ∈ ∂DΩ (8.30)

Here, vj(x) are boundary shape functions, taken now as constant. Therefore, vj(x) will

be equal to 1 at xj ∈ ∂DΩ and vj(x) = 0 if xj /∈ ∂DΩ. Substituting the interpolations

(8.30) and (2.27) in the RIBIE (8.26) and applying the collocation method, we arrive at

the following system of J linear algebraic equations for J unknowns u(xj , t), xj ∈ Ω∪∂NΩ

and q(xj , t) = (Tu)(xj , t), xj ∈ ∂DΩ,

c0(xi)u(xi, t) +
∑

xj∈Ω∪∂NΩ

Kiju(x
j , t) +

∑
xj∈∂DΩ

Q
′
ijq(x

j , t) = Ψ0(xi, t)−

−
∑

xj∈∂DΩ

Kij ū(x
j , t), xi ∈ Ω ∪ ∂Ω, i = 1, ..., J,no sum in i, (8.31)

where Ψ0(xi, t) is calculated from Eq.(8.27), and

Ψ̃(xi, t) =

∫
∂DΩ

ū(x, t)TxG(x, xi)dΓ(x)−
∫

∂NΩ

G(x, xi)q̄(x, t)dΓ(x) +

+

∫
∂Ω

w(x, t)dΓ(x) +

∫
∂Ω

1

r

∂r

∂n
F (x, t)dΓ(x) (8.32)
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Kij =

∫
∂Ω

h(x)dΓ(x)−
∫

∂NΩ

[Ψ1,Ψ2]TxG(x, xi)dΓ(x) (8.33)

Q
′
ij =

∫
∂DΩ

G(x, xi)vj(x)dΓ(x) (8.34)

8.4.4 Discretisation of the RIBIDE

To obtain a system of linear algebraic equations from the RIBIDE (8.29), we collocate at

the nodes xi, i = 1, ..., J , and substitute an interpolation of u(x, , t) in Eq.(6.25), we then

arrive at a system of J−JD algebraic equations for J−JD unknowns u(xj , t), xj ∈ Ω∪∂NΩ.

Substituting interpolation formulae (6.25) into the RIBIDE (8.29) leads to the following

system of equations:

a(xi)c(xi)u(xi, t) +
∑

xj∈Ω∪∂NΩ

K
′
iju(x

j , t) = Ψ̃(xi)−
∑

xj∈∂DΩ

K
′
ij ū(x

j , t),

xi ∈ Ω ∪ ∂NΩ, no sum in i, (8.35)

where

K
′
ij = Kij +

∫
∂DΩ

G(x, xi)TΦj(x)dΓ(x) (8.36)

and Ψ̃(xi) and Kij are given in Eqs.(8.32) and (8.33), respectively.

8.5 Implementation and time marching solution

scheme

The assembly of the system matrix A and right-hand side b for the BDIE in chapter 3

and the RIBIE in chapters 6 and 7 is suitable for steady-state heat conduction and the

Helmholtz equation. However, this needs to be modified for the diffusion equation. We

will start with steady-state heat conduction before moving to the diffusion problems.
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8.5.1 Assembling the system for RIBIE for heat conduction

with variable coefficients

Let us recall the RIBIE in chapter 6,

a(y)c(y)u(y)−
∫
∂Ω

u(x)a(x)
∂P̃ (x, y)

∂n(x)
dΓ(x) +

∫
∂Ω

P̃ (x, y)q(x)dΓ(x) +

+

∫
∂Ω

h(x)dΓ(x) =

∫
∂Ω

1

r

∂r

∂n
F (x)dΓ(x) (8.37)

where P̃ (x, y) and R̃(x, y), F (x) and
∫
∂Ω

h(x)dΓ(x) are given in Eqs. (6.3), (6.4), (6.11)

and (6.14)-(6.15), respectively. Let us start with a mesh of eight boundary elements and

nine nodes (including an interior node), as shown in Fig. 8.1.

Figure 8.1: Simple mesh with ◦ for u and ⋄ for flux q

For the RIBIE method, the system of algebraic equations resulting from Eq.(8.37) has two

unknown variables q and u, i.e. q in Dirichlet boundaries and u in Neumann boundaries,

in addition to u at interior nodes. After doing the numerical integrations for all boundary

integrals in Eq.(8.37), we obtain the following system for the simple mesh in Fig. 8.1,

(Hmatrix+Rmatrix)9×9 ∗ u9×1 + (Gmatrix)9×8 ∗ q8×1 = fvector9×1,

where Hmatrix = a(y)c(y)u(y) −
∫
∂Ω

u(x)a(x)∂P̃ (x,y)
∂n(x) dΓ(x), Rmatrix is the last boundary

integral on the left-hand side of Eq.(8.37), Gmatrix is the second boundary integral in

Eq.(8.37) and fvector is the right-hand heat source vector.
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Now we can define the boundary conditions (assuming in Fig. 8.1, the top and bottom of

the plate have Dirichlet boundary conditions, left and right have Neumann boundary con-

ditions). Referring to Fig. 8.1, we have six known values of u, namely u1, u4, u7, u3, u6, u9

and four known values of q, namely q1, q5, q4, q8; also, we have three unknown values of

u, namely u2, u5, u8 and four unknown values of q, namely q2, q3, q6, q7. By moving the

columns corresponding to the known u and q values to the right-hand side and re-arranging

the system, we get

A9×7 ∗ x7×1 = B9×10 ∗ y10×1 + fvector9×1 = b9×1,

where the vector y contains the known six values of u and four values of q (coming from

the boundary conditions).

In previous chapters, the least squares technique has been applied in the following way,

the final system being Cx = d:

[C]7×7 = [AT ]7×9[A]9×7, and [d]7×1 = [AT ]7×9[b]9×1. The disadvantages of setting up the

normal equations (ATA) are discussed in [64–66]:

1) Normal equations square the condition number of the original system of equations.

2) Setting up the normal equations can lead to loss of accuracy.

3) Setting up the normal equations is costly in terms of cpu time and memory storage.

4) The possible sparsity of the original set of equations is lost with the normal equations

(in our work, matrix A is already dense).

Regarding points 2 and 3, there is a well known example available in [64,66]:


1 1 1

ϵ 0 0

0 ϵ 0

0 0 ϵ

 , ATA =


1 + ϵ2 1 1

1 1 + ϵ2 1

1 1 1 + ϵ2

 .

If only 6 decimal digits are used on a machine and ϵ equals 10−3, ATA will result in a

matrix where all coefficients are equal to one and all information in the last three rows of A

is lost, the matrix ATA is then exactly singular and its inverse does not exist. Furthermore,

the sparsity of matrix A is completely lost after the multiplication. In order to avoid all

these difficulties, MATLAB avoids calculating the normal equations. There are several

ways to compute the unknown quantities x:



8.5. Implementation and time marching solution scheme 149

1) The backslash operator not only solves square, nonsingular systems, but it also computes

the least squares solution to rectangular, overdetermined systems:

x = A\b.

The computation is done by an orthogonalization algorithm known as the QR factor-

ization. The are two versions of the QR factorization in MATLAB: the first one is the

‘full’ QR decomposition, for a given general matrix Am×n with m > n. In MATLAB,

[Q,R] = qr(A) returns the ‘full’ QR decomposition, with square, orthogonal Qm×m, i.e.

QTQ = I, and Rm×n upper triangular. The second is the ‘economy’ QR decomposition,

in which [Q,R] = qr(A, 0), and Qm×n, Rn×n then:

x = R\QT b which is equivalent to x = A\b and x = lsqr(A, b).

The Gram-Schmidt process and Householder reflections described in many linear algebra

texts are used to get both Q and R, see [67, 68], but the Gram-Schmidt process is nu-

merically less satisfactory. Therefore, Householder reflections are adopted in the built-in

MATLAB functions \, qr and lsqr that are numerically stable.

2) Statistics Toolbox functions like regress and regstats call the MATLAB backslash op-

erator to perform linear regression. The QR decomposition is also used for an efficient

computation, see [69,70]:

x = regress(b, A).

Remark 8.2: In order to assemble the system of algebraic equations for the Laplace

equation we follow exactly the same procedure in which the Rmatrix and fvector are

removed, and for the Poisson equation only the Rmatrix is removed. This procedure leads

to the same results as in chapter 6, see Appendix D, with the advantages that the assembly

is much simpler and the code is much faster, but more memory is used in comparison to

the previous technique.
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8.5.2 Assembling the system for RIBIE for diffusion with

variable coefficients

By following the same procedure as for steady-state heat conduction in the previous sub-

section, we get

(Hmatrix+Rmatrix)9×9 ∗ u9×1 + (Gmatrix)9×8 ∗ q8×1 = fvector9×1 +

+(Ematrix)9×9 ∗ u̇9×1, (8.38)

where the Ematrix results from the boundary integral
∫
∂Ω

w(x, t)dΓ(x) given in Eqs. (8.24)-

(8.25). To solve the equation Eq.(8.38), we adopt a time marching scheme [2, 71, 72]. A

finite difference approximation for the time derivative term is given by:

u̇ =
uk+1 − uk

∆t
, (8.39)

u = (1− θu)u
k + θuu

k+1, (8.40)

q = (1− θq)q
k + θqq

k+1, (8.41)

b = (1− θb)b
k + θbb

k+1, (8.42)

where ∆t is the time step, uk and qk are the temperature and flux at the kth time step,

and θ is a real parameter that determines if the method is explicit (θu, θq, θb = 0 ) or

implicit (θu, θq, θb = 1). The special choice of (θu, θq, θb = 1
2) is known as the Crank-

Nicolson scheme. Several tests were done here to choose the best values for θ and we

selected θu = 1
2 , θq = 1 and θb = 1.

By applying the values of θu, θq, θb and Eqs. (8.39-8.41) in Eq.(8.38), we get:

[
1

2
(Hmatrix+Rmatrix)9×9 −

1

∆t
Ematrix] ∗ uk+1

9×1 + (Gmatrix)9×8 ∗ qk+1
8×1 =

= fvector9×1 + [−1

2
(Hmatrix+Rmatrix)9×9 −

1

∆t
Ematrix)9×9] ∗ uk9×1. (8.43)

Now we can define the boundary conditions with θb = 1, follow the same procedure as in
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the previous subsection and re-arrange the system to end up with:

A9×7 ∗ xk+1
7×1 = bk+1

9×1 + [−1

2
(Hmatrix+Rmatrix)9×9 −

1

∆t
Ematrix)9×9] ∗ uk9×1. (8.44)

In the time marching computation, the unknown quantities x are updated at each time

step by the new values obtained after solving equation (8.44) (using the same solver as

in the previous subsection). At the first time step, the temperature and heat flux at all

boundary and internal points are specified with initial values. The computation ends when

all time steps are fulfilled [58] or a steady state is reached.

8.5.3 Assembling the system for RIBIDE for diffusion with

variable coefficients

By following exactly the same procedure as for steady-state heat conduction in chapters

3 and 6 for the integro-differential equation method, our unknown is only u in Neumann

boundaries, in addition to interior nodes, namely u2, u5, u8. Therefore, the implementa-

tion here is much simpler than the RIBIE. Several tests were done here again to choose

the best values for θ and we concluded the values to be the same as for RIBIE, i.e. θu = 1
2

and θb = 1, we then get:

[
1

2
(Hmatrix+Rmatrix+Gmatrix)3×3 −

1

∆t
Ematrix] ∗ uk+1

3×1 = bk+1
3×1 +

+[−1

2
(Hmatrix+Rmatrix+Gmatrix)3×3 −

1

∆t
Ematrix)3×3] ∗ uk3×1. (8.45)

Then, the unknown quantities u can be obtained by:

uk+1
3×1 = M\S,

where M = [12(Hmatrix+Rmatrix+Gmatrix)3×3 − 1
∆tEmatrix],

S = bk+1
3×1 + [−1

2(Hmatrix+Rmatrix+Gmatrix)3×3 − 1
∆tEmatrix)3×3] ∗ uk3×1.

In the time marching computation, the unknown quantities u are updated at each time

step by the new values obtained after solving equation (8.45) (using the same solver as in

the previous subsection, since the system is square the backslash operator uses the Gauss

elimination method to solve for the unknown u). At the first time step, the temperature

at all Neumann boundary and internal points are specified with initial values.
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8.6 Numerical results

In this section, we shall examine some test examples to assess the performance of the

RIBIDE/RIBIE formulations. We apply the RIBIDE/RIBIE for homogenous, non-homo-

geneous and variable coefficient diffusion equations on a square domain, for which an

exact analytical solution, uexact, is available. Computer programs were developed by

using Matlab. Moreover, ϕ(R) = R3 is adopted in the test examples. The total number

of nodes is 81 (32 on the boundary plus 49 in the interior). Also, the top and bottom

sides of the plates for all tests examples have prescribed temperature u (Dirichlet boundary

conditions), while the left and right sides are imposed with heat flux t (Neumann boundary

conditions). Also, the relative error and Root Mean Square (RMS) error also calculated as

given by Eqs.(2.35) and (6.28) to check the convergence of the proposed methods. These

errors have been calculated for J= 25, 81, 289 and 1089 in all test examples and a time

interval 0 ≤ t ≤ 1 will be used in all test examples for the diffusion equation.

8.6.1 Numerical results for homogeneous diffusion equation

with constant a(x)

Test 1

Consider a square domain, Ω = [1, 2]2. The value of D(x, t) is set as constant, D(x, t) = 1
2

and f(x, t) = 0. Initially, at t = 0, the scalar field function u(x1, x2, t) has a value of

u(x1, x2, 0) = x21 + x22.

The following time dependent mixed boundary conditions are applied on the square do-

main:

u(x1, 1, t) = x21 + 1 + 8t, u(x1, 2, t) = x21 + 4 + 8t,

∂u(1, x2, t)

∂n
= −2,

∂u(2, x2, t)

∂n
= 4.

The exact solution of this problem is u(x1, x2, t) = x21+x22+8t. Figs. 8.2 and 8.3 plot the

relative and RMS errors for RIBIDE and RIBIE, respectively. It can be clearly seen that

the RIBIE produces better results than the RIBIDE.
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Figure 8.2: Relative and RMS errors for
RIBIE method for test 1 with ∆t = 0.1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Number of nodes

E
rr

or
 in

 th
e 

fin
al

 ti
m

e 
st

ep

 

 
Relative error
RMS error

Figure 8.3: Relative and RMS errors for
RIBIDE method for test 1 with ∆t = 0.1

Test 2

Consider a square domain, Ω = [0, 1]2. The value of D(x, t) is set as constant, D(x, t) = 1

and f(x, t) = 0. Initially, at t = 0, the scalar field function u(x1, x2, t) has a value of

u(x1, x2, 0) = 1 + cos
(π
4
x1

)
sin
(π
4
x2

)
.

The following time dependent mixed boundary conditions are applied on the square do-

main:

u(x1, 0, t) = 1, u(x1, 1, t) = 1 + e−
π2

8
t cos

(π
4
x1

)
sin
(π
4

)
,

∂u(0, x2, t)

∂n
= 0,

∂u(1, x2, t)

∂n
= −π

4
e−

π2

8
t sin

(π
4

)
sin
(π
4
x2

)
.

The exact solution of this problem is u(x1, x2, t) = 1 + e−
π2

8
t cos

(
π
4x1
)
sin
(
π
4x2
)
.

Figs. 8.4-8.6 show the variation of u(x) along the line x2 = 0.5 for the three internal points

(x1 = 0.25, 0.5 and 0.75) using RIBIDE and RIBIE with ∆t = 0.01. The total number of

nodes is fixed to 81 (32 on the boundary plus 49 in the interior).
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Figure 8.4: Temperature distribution
along the line x2 = 0.5 with x1 = 0.25
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Figure 8.5: Temperature distribution
along the line x2 = 0.5 with x1 = 0.5
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Figure 8.6: Temperature distribution along the line x2 = 0.5 with x1 = 0.75

Test 3

Consider a square domain, Ω = [0, 1]2. The value of D(x, t) is set as constant, D(x, t) = 1

and f(x, t) = 0. Initially, at t = 0, the scalar field function u(x1, x2, t) has a value of

u(x1, x2, 0) = (1− x2)e
x1 .

The following time dependent mixed boundary conditions are applied on the square do-

main:

u(x1, 0, t) = e(x1+t), u(x1, 1, t) = 0,
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∂u(0, x2, t)

∂n
= −(1− x2)e

t,
∂u(1, x2, t)

∂n
= (1− x2)e

(t+1).

The exact solution of this problem is u(x1, x2, t) = (1− x2)e
(x1+t). Tables 8.1-8.6 list the

computed values of u(x) along the middle line of the plate x2 = 0.5 with three internal

points (x1 = 0.25, 0.5 and 0.75) using RIBIDE and RIBIE with different times steps. The

total number of nodes is fixed to 81 (32 on the boundary plus 49 in the interior). In order

to study convergence, the time steps adopted are ∆t = 0.1, ∆t = 0.01 and ∆t = 0.001.

Table 8.1: Computed temperatures using RIBIE along line x2 = 0.5 with x1 = 0.25

time RIBIE RIBIE RIBIE Exact
(∆t = 0.1) (∆t = 0.01) (∆t = 0.001)

0.1 0.7076 0.7097 0.7099 0.7095
0.2 0.7818 0.7845 0.7847 0.7842
0.3 0.8657 0.8672 0.8674 0.8666
0.4 0.9562 0.9584 0.9586 0.9578
0.5 1.0572 1.0592 1.0594 1.0585
0.6 1.1682 1.1706 1.1709 1.1698
0.7 1.2911 1.2937 1.2940 1.2929
0.8 1.4269 1.4298 1.4301 1.4288
0.9 1.5770 1.5802 1.5805 1.5791
1 1.7429 1.7464 1.7467 1.7452

Table 8.2: Computed temperatures using RIBIDE along line x2 = 0.5 with x1 = 0.25

time RIBIDE RIBIDE RIBIDE Exact
(∆t = 0.1) (∆t = 0.01) (∆t = 0.001)

0.1 0.7268 0.7156 0.7140 0.7095
0.2 0.8276 0.7949 0.7920 0.7842
0.3 0.9172 0.8801 0.8764 0.8666
0.4 1.0163 0.9733 0.9690 0.9578
0.5 1.1245 1.0759 1.0711 1.0585
0.6 1.2417 1.1891 1.1838 1.1698
0.7 1.3738 1.3142 1.3083 1.2929
0.8 1.5169 1.4524 1.4459 1.4288
0.9 1.6778 1.6052 1.5980 1.5791
1 1.8530 1.7740 1.7661 1.7452
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Table 8.3: Computed temperatures using RIBIE along line x2 = 0.5 with x1 = 0.5

time RIBIE RIBIE RIBIE Exact
(∆t = 0.1) (∆t = 0.01) (∆t = 0.001)

0.1 0.9128 0.9117 0.9115 0.9111
0.2 1.0113 01.0079 1.0076 1.0069
0.3 1.1180 1.1140 1.1136 1.1128
0.4 1.2356 1.2312 1.2308 1.2298
0.5 1.3658 1.3607 1.3603 1.3591
0.6 1.5093 1.5039 1.5033 1.5021
0.7 1.6682 1.6620 1.6614 1.6601
0.8 1.8435 1.8368 1.8362 1.8346
0.9 2.0375 2.0300 2.0293 2.0276
1 2.2517 2.2435 1.7661 2.2408

Table 8.4: Computed temperatures using RIBIDE along line x2 = 0.5 with x1 = 0.5

time RIBIDE RIBIDE RIBIDE Exact
(∆t = 0.1) (∆t = 0.01) (∆t = 0.001)

0.1 0.9362 0.9191 0.9168 0.9111
0.2 1.0650 1.0202 1.0163 1.0069
0.3 1.1765 1.1292 1.1244 1.1128
0.4 1.3043 1.2486 1.2431 1.2298
0.5 1.4423 1.3801 1.3740 1.3591
0.6 1.5929 1.5254 1.5185 1.5021
0.7 1.7623 1.6858 1.6783 1.6601
0.8 1.9457 1.8631 1.8548 1.8346
0.9 2.1522 2.0591 2.0498 2.0276
1 2.3769 2.2756 2.2654 2.2408

Table 8.5: Computed temperatures using RIBIE along line x2 = 0.5 with x1 = 0.75

time RIBIE RIBIE RIBIE Exact
(∆t = 0.1) (∆t = 0.01) (∆t = 0.001)

0.1 1.1781 1.1712 1.1704 1.1698
0.2 1.3072 1.2948 1.2938 1.2929
0.3 1.4426 1.4311 1.4299 1.4288
0.4 1.5962 1.5817 1.5803 1.5791
0.5 1.7631 1.7481 1.7465 1.7452
0.6 1.9492 1.9319 1.9302 1.9287
0.7 2.1538 2.1351 2.1332 2.1316
0.8 2.3805 2.3597 2.3576 2.3557
0.9 2.6308 2.6078 2.6055 2.6035
1 2.9074 2.8821 2.8796 2.8773
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Table 8.6: Computed temperatures using RIBIDE along line x2 = 0.5 with x1 = 0.75

time RIBIDE RIBIDE RIBIDE Exact
(∆t = 0.1) (∆t = 0.01) (∆t = 0.001)

0.1 1.2057 1.1798 1.1765 1.1698
0.2 1.3690 1.3088 1.3036 1.2929
0.3 1.5082 1.4482 1.4420 1.4288
0.4 1.6736 1.6011 1.5940 1.5791
0.5 1.8489 1.7697 1.7691 1.7452
0.6 2.0430 1.9560 1.9472 1.9287
0.7 2.2595 2.1617 2.1520 2.1316
0.8 2.4951 2.3891 2.3784 2.3557
0.9 2.7597 2.6403 2.6285 2.6035
1 3.0478 2.9180 2.9049 2.8773

8.6.2 Numerical results for non-homogeneous diffusion equa-

tion with constant a(x)

Test 4

Consider a square domain, Ω = [1, 2]2. The value of D(x, t) is set as constant, D(x, t) = 1

and f(x, t) = −2. Initially, at t = 0, the scalar field function u(x1, x2, t) has a value of

u(x1, x2, 0) = x1 + x2.

The following time dependent mixed boundary conditions are applied on the square do-

main:

u(x1, 1, t) = x1 + 1 + 2t, u(x1, 2, t) = x1 + 2 + 2t,

∂u(1, x2, t)

∂n
= −1,

∂u(2, x2, t)

∂n
= 1.

The exact solution of this problem is u(x1, x2, t) = x1+x2+2t. Figs. 8.7 and 8.8 plot the

relative and RMS errors for RIBIDE and RIBIE, respectively. It can be clearly seen that

the RIBIE produces better results than the RIBIDE.
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Figure 8.7: Relative and RMS errors for
RIBIE method for test 4 with ∆t = 0.1
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Figure 8.8: Relative and RMS errors for
RIBIDE method for test 4 with ∆t = 0.1

Test 5

Consider a square domain, Ω = [1, 2]2. The value of D(x, t) is set as constant, D(x, t) = 1
6

and f(x, t) = 6(x1 + x2)− 2t. Initially, at t = 0, the scalar field function u(x1, x2, t) has a

value of

u(x1, x2, 0) = x31 + x32.

The following time dependent mixed boundary conditions are applied on the square do-

main:

u(x1, 1, t) = x31 + 1 + 6t2, u(x1, 2, t) = x31 + 8 + 6t2,

∂u(1, x2, t)

∂n
= −3,

∂u(2, x2, t)

∂n
= 12.

The exact solution of this problem is u(x1, x2, t) = x31 + x32 + 6t2. Figs. 8.9-8.12 plot the

relative and RMS errors for RIBIDE and RIBIE, respectively, with increased number of

nodes and time steps of ∆t = 0.1 and ∆t = 0.01.
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Figure 8.9: Relative and RMS errors for
RIBIE method for test 5 with ∆t = 0.1
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Figure 8.10: Relative and RMS errors for
RIBIDE method for test 5 with ∆t = 0.1
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Figure 8.11: Relative and RMS errors for
RIBIE method for test 5 with ∆t = 0.01
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Figure 8.12: Relative and RMS errors for
RIBIDE method for test 5 with ∆t = 0.01

8.6.3 Numerical results for non-homogeneous diffusion equa-

tion with variable a(x)

Test 6

Consider a square domain, Ω = [1, 2]2. The value of D(x, t) is set as constant, D(x, t) = 1,

f(x, t) = 2(x1 + x2) +
1
3 sin(t) and a(x) = x21 + x22. Initially, at t = 0, the scalar field

function u(x1, x2, t) has a value of

u(x1, x2, 0) = x1 + x2 +
1

3
.
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The following time dependent mixed boundary conditions are applied on the square do-

main:

u(x1, 1, t) = x1 + 1 +
1

3
cos(t), u(x1, 2, t) = x1 + 2 +

1

3
cos(t),

∂u(1, x2, t)

∂n
= −(1 + x22),

∂u(2, x2, t)

∂n
= 4 + x22.

The exact solution of this problem is u(x1, x2, t) = x1 + x2 +
1
3 cos(t). Figs. 8.13 and 8.14

plot the relative and RMS errors for RIBIDE and RIBIE, respectively.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

Number of nodes

E
rr

or
 in

 th
e 

fin
al

 ti
m

e 
st

ep

 

 
Relative error
RMS error

Figure 8.13: Relative and RMS errors for
RIBIE method for test 6 with ∆t = 0.1
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Figure 8.14: Relative and RMS errors for
RIBIDE method for test 6 with ∆t = 0.1

Test 7

Consider a square domain, Ω = [1, 2]2. The value of D(x, t) is set as constant, D(x, t) = 1,

f(x, t) = 6(x1 + x2) − 4 and a(x) = x1 + x2. Initially, at t = 0, the scalar field function

u(x1, x2, t) has a value of

u(x1, x2, 0) = x21 + x22.

The following time dependent mixed boundary conditions are applied on the square do-

main:

u(x1, 1, t) = x21 + 1 + 4t, u(x1, 2, t) = x21 + 4 + 4t,

∂u(1, x2, t)

∂n
= −2(1 + x2),

∂u(2, x2, t)

∂n
= 4(2 + x2).

The exact solution of this problem is u(x1, x2, t) = x21 + x22 + 4t. Figs. 8.15 and 8.16 plot

the relative and RMS errors for each time step using RIBIE and RIBIDE, respectively,

while Figs. 8.17 and 8.18 plot the relative and RMS errors for the final time step using
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RIBIE and RIBIDE, respectively. It can be clearly seen that by increasing the number of

nodes the accuracy increases and the relative and RMS errors reduce.
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Figure 8.15: Relative and RMS errors for each time step using RIBIE for test 7
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Figure 8.16: Relative and RMS errors for each time step using RIBIDE for test 7
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Figure 8.17: Relative and RMS errors for
final time step using RIBIE for test 7
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Figure 8.18: Relative and RMS errors for
final time step using RIBIDE for test 7

Test 8

Consider a square domain, Ω = [1, 2]2. The value of D(x, t) is set as variable, D(x, t) =

x1+x2, f(x, t) = 5(x1+x2) and a(x) = x1+x2. Initially, at t = 0, the scalar field function

u(x1, x2, t) has a value of

u(x1, x2, 0) = x21 + x22.

The following time dependent mixed boundary conditions are applied on the square do-

main:

u(x1, 1, t) = x21 + 1 + t, u(x1, 2, t) = x21 + 4 + t,

∂u(1, x2, t)

∂n
= −2(1 + x2),

∂u(2, x2, t)

∂n
= 4(2 + x2).

The exact solution of this problem is u(x1, x2, t) = x21 + x22 + t. In this test, both the

material parameter a(x) and D(x, t) are variable. Figs. 8.19 and 8.20 plot the relative

and RMS errors for each time step using RIBIE and RIBIDE, respectively, while Figs.

8.21 and 8.22 plot the relative and RMS errors for the final time step using RIBIE and

RIBIDE, respectively. It can be clearly seen by increasing the number of nodes the accu-

racy increases and the relative and RMS errors reduce.
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Figure 8.19: Relative and RMS errors for each time step using RIBIE for test 8
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Figure 8.20: Relative and RMS errors for each time step using RIBIDE for test 8

Test 9

Consider a square domain, Ω = [1, 2]2. The value of D(x, t) is set as variable, D(x, t) =

1 + t, f(x, t) = 9(x21 + x22) + 12(x1x2) − 1 − t and a(x) = x1 + x2. Initially, at t = 0, the

scalar field function u(x1, x2, t) has a value of

u(x1, x2, 0) = x31 + x32.
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Figure 8.21: Relative and RMS errors for
final time step using RIBIE for test 8
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Figure 8.22: Relative and RMS errors for
final time step using RIBIDE for test 8

The following time dependent mixed boundary conditions are applied on the square do-

main:

u(x1, 1, t) = x31 + 1 + t, u(x1, 2, t) = x31 + 8 + t,

∂u(1, x2, t)

∂n
= −3(1 + x2),

∂u(2, x2, t)

∂n
= 12(2 + x2).

The exact solution of this problem is u(x1, x2, t) = x31+x32+t. Figs. 8.23 and 8.24 plot the

relative and RMS errors for each time step using RIBIE and RIBIDE, respectively, while

Figs. 8.25 and 8.26 plot the relative and RMS errors for the final time step using RIBIE

and RIBIDE, respectively. It can be clearly seen that good accuracy and convergence are

obtained with mesh refinement.
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Figure 8.23: Relative and RMS errors for each time step using RIBIE for test 9
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Figure 8.24: Relative and RMS errors for each time step using RIBIDE for test 9
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Figure 8.25: Relative and RMS errors for
final time step using RIBIE for test 9
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Figure 8.26: Relative and RMS errors for
final time step using RIBIDE for test 9

8.7 Concluding remarks

In this chapter, the BDIE and BDIDE formulations are derived for the two-dimensional

diffusion equation with variable coefficients. The radial integration method is used to

transform the domain integrals appearing in both the BDIE and BDIDE formulations.

The resulting RIBIE/RIBIDE formulations are implemented for the numerical solution

of three possible cases, homogeneous, non-homogeneous and variable coefficient diffusion

equations. From the numerical results presented in this chapter, we can conclude the

following general remarks:
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• By fixing the time step and increasing the number of nodes, we achieved satisfactory

results and convergence was demonstrated (in tests 1 and 4). In general, the RIBIE

produces better results than the RIBIDE;

• In test 2 both the number of nodes and the time step are fixed. The computed

values of u(x) along the middle line of the plate x2 = 0.5 at three internal points

(x1 = 0.25, 0.5 and 0.75) using RIBIDE and RIBIE are presented. It is observed that

the RIBIE produces better results than the RIBIDE;

• In test 3 we fixed the number of nodes and reduced the initial time step of ∆t = 0.1

to ∆t = 0.01 and ∆t = 0.001. The values of u(x) were computed along the middle line

of the plate x2 = 0.5 at three internal points (x1 = 0.25, 0.5 and 0.75). It can be seen

that both the RIBIE and RIBIDE methods are able to generate accurate solutions in good

agreement with the exact solution when the time steps are reduced;

• In test 5 both the time step is reduced and the number of nodes is increased. It can be

clearly seen that the results are convergent;

• Tests 6 and 7 deal with problems with variable coefficients, with increasing degree of

complexity of the variation of the material parameter coefficients. Therefore, a new domain

integral appears due to the remainder. Both RIBIE and RIBIDE provide satisfactory

results. Moreover, the relative and RMS errors for each time step using both the RIBIE

and RIBIDE are presented for test 7. It can be clearly seen the convergence at each time

step.

• The results presented in this chapter for the diffusion equation appear to be less accurate

than for steady-state heat conduction and Helmholtz equations in previous chapters. One

possible reason is the new domain integral appearing due to the time derivative term.

This domain integral is converted to the boundary using the RIM, but still requires more

numerical integrations. Another reason is that the time marching scheme for solving the

time-dependent system of equations is a first-order finite difference technique, probably

using high order algorithms can improve the accuracy of the results.



Chapter 9

Conclusions and Future Work

The main aim of this thesis was to derive the radial integration boundary integral and

integro-differential equations formulations and then implement the boundary element

method to provide the numerical solution for PDEs with variable coefficients. This aim

was achieved by studying steady state heat conduction, Helmholtz equation and transient

heat conduction problems (diffusion equation) in an isotropic inhomogeneous medium. In

this chapter we shall review the main results presented in the thesis and make suggestions

for future work.

9.1 Conclusions

The behaviour of many modern industrial materials, for instance functionally graded ma-

terials, can be mathematically modeled by PDEs with variable coefficients. The solution

of PDEs with variable coefficients is therefore important in many practical engineering

problems.

The application of the BEM to PDEs with variable coefficients is hampered by the need

to find appropriate fundamental solutions. It is difficult or impossible to derive an ana-

lytic expression for the fundamental solution for general PDEs with variable coefficients,

except for some special cases. The ability of finding the fundamental solution for this type

of problem has been restricted to only very specific cases of variable coefficients. Even

for such simple cases the mathematical procedures are very complicated. As a result, if

the fundamental solution cannot be found for PDEs with general types of variable coeffi-

cients, domain integrals will remain in the BEM formulation. If a domain discretisation

167
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is required, the dimensionality reduction advantage of the BEM is lost.

Several techniques have been proposed which allow to convert domain integrals to equiv-

alent boundary integrals. The radial integration method (RIM) appears to be the most

promising method for avoiding domain integration for general PDEs with variable coeffi-

cients. However, it has been observed that the RIM available in the literature is restricted

to star-shaped geometries due to the way the radial integral is calculated through the do-

main. Modifications have been introduced to the RIM in its application to the BDIE and

BDIDE formulations, particularly the fact that the radial integral is calculated by using

a transformation proposed by Fata [53] that was introduced to treat the domain integral

using an extension of the fundamental theorem of calculus to higher dimension, and the

divergence theorem.

The conclusions obtained from this thesis are as follows:

1) Both BDIE and BDIDE methods presented in chapters 3 and 4 for two-dimensional

second-order linear elliptic equations, for heat conduction and wave propagation with

variable coefficients, provided satisfactory results. To calculate the boundary integrals

we used a standard Gaussian quadrature rule. For the domain integrals, we tested many

existing formulations (see appendix B) and implemented a Gaussian quadrature rule with

Duffy transformation, which provides the best results in comparison to the others methods.

However, both BDIE and BDIDE formulations, also when applied to the diffusion equation,

generate domain integrals in the corresponding integral equation. This feature makes the

BEM less attractive as a domain discretisation is then required.

2) The RIM is used to convert the domain integrals appearing in both BDIE and BDIDE

formulations to equivalent boundary integrals. For domain integrals consisting of known

functions the transformation is straightforward, while for domain integrals that include

unknown variables the transformation is accomplished with the use of augmented RBFs,

similar to the DRM. Modifications have been introduced to the RIM developed by Gao [45]

in its application to the BDIE and BDIDE formulations, particularly the fact that the

radial integral is calculated by using a transformation proposed by Fata [53] which produces

a pure boundary-only formulation and relaxes the “star-shaped” requirement of the RIM

as the straight path from the source point to any field point will always exist.

3) As both u and t along the boundary are calculated in the BDIE and RIBIE methods,

we implemented mixed boundary elements with linear u and constant t to avoid the
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discontinuities of t at corner points. In this case, collocation was tested at the mid and

end points of each boundary element. It was shown that end-node collocation generally

provides higher accuracy than mid-node collocation. However, using end-node collocation

leads to over-determined systems of equations which need be solved by using a least

square technique. Different Matlab solvers have been discussed in chapter eight, with the

advantages and disadvantages of each one.

4) The only boundary variable in the BDIDE and RIBIDE method is u along Neumann

boundaries, thus there is no need for collocation along Dirichlet boundaries. Thus, the

problem caused by the discontinuity of the normal derivative at corner points is avoided.

Second, the system of linear equations is smaller than the one for the RIBIE. This fea-

ture will save memory and computational time when we apply the RIBIDE to practical

problems. Finally, the assembly of matrix A and vector b is much easier than in the RIBIE.

In chapter eight, we followed the standard BEM to assemble the system of equations for

the RIBIE (which is also valid for BDIE). We noticed that this implementation can make

the RIBIE faster even than the RIBIDE, although it needed more memory storage in

comparison to the RIBIDE.

5) The BDIE, BDIDE, RIBIE and RIBIDE formulations have been extended to study

the diffusion equation with variable coefficients. The implementations of RIBIE and

RIBIDE have been applied for the three cases, homogeneous, non-homogeneous and non-

homogeneous with variable coefficients. It has been observed that both methods are able

to generate satisfactory results. Also, an implicit time marching solution scheme was de-

veloped for solving the time-dependent system of equations. Several tests were carried out

to select the best values for the parameter θ for RIBIE and RIBIDE, and we concluded

that the best accuracy was achieved with the Crank-Nicolson scheme used with θu = 1
2 ,

and implicit for θq = 1 and θb = 1.

9.2 Future work

We will now suggest some ideas on how this thesis might be modified and extended, in-

cluding some ideas for future work, which can be summarized in the following points:

1) It has been noticed in the application of the RIM in chapters 5-8 for domain integrals

consisting of known functions that the transformation is straightforward and more accurate
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than the DRM as there is an exact transformation to the boundary. However, for domain

integrals that include unknown variables, the transformation is accomplished with the use

of augmented RBFs, and it appears that the numerical integrations in the MATLAB code

are time consuming. One possible recent solution is to use a fourth-order spline RBF

to approximate the unknown function variation and then integrate the resulting integral

analytically [52]. Although the use of analytical expressions can considerably improve the

computational efficiency of the techniques, this work is restricted only to a fourth-order

spline RBF. Our plan to improve the efficiency of the code is by writing parts of the code

(the numerical integration of radial integrals) in C/C++ and link it into MATLAB using a

MEX file (a MEX file (also written as MEX-file) provides an interface between MATLAB

and subroutines written in C, C++ or Fortran).

Another possible plan is to mix DRM and RIM, by applying RIM for known integrand

functions (the advantage being that the RIM does not resort to particular solutions as

in the DRM and exact transformations are available) and use the DRM to convert the

domain integrals that include unknown functions to the boundary without the need for

further numerical integration. This is based on using the available matrices from the

boundary integrals, as discussed in great detail in the book of Partridge et al. [2]. Using

this procedure, it may be possible to simplify and speed up the calculation of the integrals.

2) It would be useful and interesting to develop a theoretical estimate of the convergence

rate of the RIM for all problems in the present thesis.

3) Theoretically, it is straightforward to extend the RIBIE and RIBIDE methods to

three-dimensional problems of heat conduction, non-homogeneous Helmholtz and diffu-

sion equations in an isotropic non-homogeneous medium using the fundamental solution

for the three-dimensional Laplace equation.

4) The work in the present thesis could also be extended to anisotropic and orthotropic

media, which is of great importance in engineering practice.
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Appendix A

Matlab codes for the three

examples in chapter 2

Matlab programs to implement the BEM for the Laplace equation for the three examples

in chapter 2 with given boundary conditions are given in this appendix. The main core

of the code (in the processing stage) is the same for all three tests. However, for the

pre-processing to create a uniform mesh of boundary coordinates for each side, values and

type of boundary condition and post-processing to calculate the interior nodes and plot

the figures (exact, approximate, difference between them and relative error), the programs

are not the same but depend on the problem.

A.1 Main program for example 1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(Main program to calculate the approximate, exact solutions, the difference between them

and relative error)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 clear;

2 clc;

3 N=[];E=[];

4 for i=1:4

5 r=2*i;

179
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6 [s1,z1,d1,w1]=majeed4(r);

7 E(i)=(max(max(abs(w1))))/(max(max(abs(z1)))) ;

8 N(i)=4*r;

9 end

10 for j = 1:99

11 y(j) = 0.01*j;

12 for i = 1:99

13 x(i) = 0.01*i;

14 end

15 end

16 subplot(2,2,1); surface (x, y, z1,'EdgeColor','none');grid on

17 title('Exact solution')

18 subplot(2,2,2); surface (x, y, s1,'EdgeColor','none');grid on

19 title('Approximate solution')

20 subplot(2,2,3);surface (x, y, d1,'EdgeColor','none');grid on

21 title('Exact−Approximate')

22 subplot(2,2,4);loglog(N,E,'−o')

23 title('Relative error')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

First stage: create a uniform mesh of boundary coordinates for each side , values and type

of boundary condition

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 function [s1,z1,d1,w1]=majeed4(r)

2 for i=0:r−1

3 xb(i+1)=i/r;

4 yb(i+1)=0;

5 bt(i+1)=1;

6 bv(i+1)=0;

7 end

8 for i=0:r−1

9 xb(i+1+r)=1;

10 yb(i+1+r)=i/r;

11 bt(i+1+r)=0;

12 my=(i+0.5)/r;

13 mx=1;
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14 cx=pi*my;

15 bv(i+1+r)=cos(cx);

16 end

17 for i=0:r−1

18 xb(i+1+2*r)=(r−i)/r;

19 yb(i+1+2*r)=1;

20 bt(i+1+2*r)=1;

21 bv(i+1+2*r)=0;

22 end

23 for i=0:r−1

24 xb(i+1+3*r)=0;

25 yb(i+1+3*r)=(r−i)/r;

26 bt(i+1+3*r)=0;

27 bv(i+1+3*r)=0;

28 xb(4*r+1)=xb(1);

29 yb(4*r+1)=yb(1);

30 bt(4*r+1)=bt(1);

31 bv(4*r+1)=bv(1);

32 end

33 n = 4*r;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Find midpoints, lengths of elements and their unit normal vectors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 for i = 1:n

2 xm (i) = 0.5*(xb (i) + xb(i + 1));

3 ym (i) = 0.5*(yb(i) + yb(i + 1));

4 lm(i) = sqrt((xb(i + 1) − xb(i))ˆ2 + (yb(i + 1)− yb(i))ˆ2);

5 nx(i) = (yb(i + 1) − yb(i))/lm (i);

6 ny(i) = (xb(i) − xb (i + 1))/lm(i);

7 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Second stage : find approximations for unknown boundary values by: constructing matrix

A and vector b then solving the system “Ax=b” for x

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



A.1. Main program for example 1 182

1 for m = 1:n

2 b(m) = 0;

3 for k = 1:n

4 if(k == m)

5 G = 0.0;

6 F = lm(k)/(2.0*pi)*(log(lm(k)/2.0) − 1.0);

7 del = 1.0;

8 else

9 [F, G] =findfg (xm(m), ym(m), xb(k), yb(k), nx(k), ny(k),lm(k));

10 del = 0.0;

11 end

12 if (bt (k) == 0)

13 A (m, k) = −F;

14 b(m) = b(m) + bv(k)*(− G + 0.5*del);

15 else

16 A(m, k) = G −0.5*del;

17 b(m) = b(m) + bv(k)*F;

18 end

19 end

20 z=A\b';

21 end

22 for m = 1:n

23 u (m) = (1 − bt (m))*bv (m) + bt (m)*z(m);

24 q(m) = (1 − bt (m))*z(m) + bt(m)*bv (m);

25 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Third stage: Find values at required points

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 for j = 1:99

2 y(j) = 0.01*j;

3 for i = 1:99

4 x(i) = 0.01*i;

5 s1(j,i) = 0;

6 for k = 1:n
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7 [F, G] =findfg (x (i), y (j), xb (k), yb (k), nx (k), ny (k),lm(k));

8 s1(j,i) = s1(j,i) + u(k)*G − q(k)*F;

9 z1(j,i)=0;

10 y1=sinh(pi*x(i));

11 y2=cos(pi*y(j));

12 y3=sinh(pi);

13 z1(j,i)=z1(j,i)+(y1.*y2)/y3;

14 end

15 end

16 end

17 d1=z1−s1;w1=s1−z1;

18 end

%%%%%%%%%%%%% End of main program.%%%%%%%%%%%%%

When k ̸= m, the integrals can be evaluated by using numerical methods such as Gauss

quadrature which can be achieved by calling a function quadl and the code is:

1 function [F,G] =findfg(xi, eta, xk, yk, nkx, nky, lk)

2 F = (lk/(4.0*pi))*quadl(@(t) intf (t, xi, eta, xk, yk, nkx, nky, ...

lk),0, 1, 1e−8);

3 G = (lk/(2.0*pi))*quadl(@(t) intg (t, xi, eta, xk, yk, nkx, nky, ...

lk),0, 1, 1e−8);

where intf and intg are defined respectively as:

1 function y = intf (t, xi, eta, xk, yk, nkx, nky, lk)

2 y = log ((xk − t*lk*nky − xi).ˆ2 + (yk + t*lk*nkx − eta).ˆ2);

3 end

1 function y = intg(t, xi, eta, xk, yk, nkx, nky, lk)

2 y = (nkx*(xk −t*lk*nky − xi) + nky*(yk + t*lk*nkx − eta))./((xk ...

− t*lk*nky − xi).ˆ2 + (yk + t*lk*nkx−eta).ˆ2);

3 end
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A.2 Main program for example 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(Main program to calculate the approximate, exact solutions, the difference between them

and relative error)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 clear;

2 clc;

3 N=[];E=[];

4 for i=1:4

5 r=2ˆi;

6 [s1,z1,d1,w1]=majeed10(r);

7 E(i)=(max(max(abs(w1))))/(max(max(abs(z1)))) ;

8 N(i)=4*r;

9 end

10 for j = 1:99

11 y(j) = 0.01*j;

12 for i = 1:99

13 x(i) = 0.01*i;

14 end

15 end

16 subplot(2,2,1); surface (x, y, z1,'EdgeColor','none')

17 title('Exact solution')

18 subplot(2,2,2); surface (x, y, s1,'EdgeColor','none')

19 title('Approximate solution')

20 subplot(2,2,3);surface (x, y, d1,'EdgeColor','none')

21 title('Exact−Approximate')

22 subplot(2,2,4);loglog(N,E,'−o')

23 title('Relative error')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

First stage: create a uniform mesh of boundary coordinates for each side , values and type

of boundary condition

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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1 function [s1,z1,d1,w1]=majeed10(r)

2 for i=1:r

3 xb(i)=(i−1)/r;

4 yb(i)=0;

5 bt(i)=1;

6 bv(i)=−1;

7 end

8 for i=1:2*r

9 x1=(pi)/(4*r);

10 xb(i+r)=cos((i−1)*x1);

11 yb(i+r)=sin((i−1)*x1);

12 bt(i+r)=0;

13 x1m=cos(((i+0.5)−1)*x1);

14 y1m=sin(((i+0.5)−1)*x1);

15 bv(i+r)=x1m+y1m;

16 end

17 for i=1:r

18 xb(i+3*r)= 0;

19 yb(i+3*r)=1−((i−1)/r);

20 bt(i+3*r)=0;

21 bv(i+3*r)=1−(((i+0.5)−1)/r);

22 xb(4*r+1)=xb(1);

23 yb(4*r+1)=yb(1);

24 end

25 n = 4*r;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Find midpoints, lengths of elements and their unit normal vectors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 for i = 1:n

2 xm (i) = 0.5*(xb (i) + xb(i + 1));

3 ym (i) = 0.5*(yb(i) + yb(i + 1));

4 lm(i) = sqrt((xb(i + 1) − xb(i))ˆ2 + (yb(i + 1)− yb(i))ˆ2);

5 nx(i) = (yb(i + 1) − yb(i))/lm (i);

6 ny(i) = (xb(i) − xb (i + 1))/lm(i);

7 end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Second stage : find approximations for unknown boundary values by: constructing matrix

A and vector b then solving the system “Ax=b” for x

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 for m = 1:n

2 b(m) = 0;

3 for k = 1:n

4 if(k == m)

5 G = 0.0;

6 F = lm(k)/(2.0*pi)*(log(lm(k)/2.0) − 1.0);

7 del = 1.0;

8 else

9 [F, G] =findfg (xm(m), ym(m), xb(k), yb(k), nx(k), ny(k),lm(k));

10 del = 0.0;

11 end

12 if (bt (k) == 0)

13 A (m, k) = −F;

14 b(m) = b(m) + bv(k)*(− G + 0.5*del);

15 else

16 A(m, k) = G −0.5*del;

17 b(m) = b(m) + bv(k)*F;

18 end

19 end

20 z=A\b';

21 end

22 for m = 1:n

23 u (m) = (1 − bt (m))*bv (m) + bt (m)*z(m);

24 q(m) = (1 − bt (m))*z(m) + bt(m)*bv (m);

25 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Third stage: Find values at required points

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 for j = 1:99
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2 y(j) = 0.01*j;

3 for i = 1:99

4 x(i) = 0.01*i;

5 y1=x(i);

6 y2=y(j);

7 s1(j,i) = 0;

8 for k = 1:n

9 if (y1.ˆ2+y2.ˆ2<1)

10 [F, G] = findfg (x (i), y (j), xb (k), yb (k), nx (k), ny ...

(k),lm(k));

11 s1(j,i) = s1(j,i) + u(k)*G − q(k)*F;

12 else s1(j,i)=0;

13 end

14 z1(j,i)=0;

15 if (y1.ˆ2+y2.ˆ2<1)

16 z1(j,i)=z1(j,i)+(y1+y2);

17 else (z1(j,i)==0);

18 end

19 end

20 end

21 end

22 d1=z1−s1;w1=s1−z1;

23 end

%%%%%%%%%%%%% End of main program.%%%%%%%%%%%%%

A.3 Main program for example 3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(Main program to calculate the approximate, exact solutions, the difference between them

and relative error)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 clear;

2 clc;

3 N=[];E=[];
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4 for i=3:6

5 r=2ˆi;

6 [s1,z1,d1,w1]=majeed11(r);

7 E(i)=(max(max(abs(w1))))/(max(max(abs(z1)))) ;

8 N(i)=8*r;

9 end

10 for j = 1:199

11 y(j) = 0.01*j;

12 for i = 1:199

13 x(i) = 0.01*i;

14 end

15 end

16 subplot(2,2,1); surface (x, y, z1,'EdgeColor','none')

17 title('Exact solution')

18 subplot(2,2,2); surface (x, y, s1,'EdgeColor','none')

19 title('Approximate solution')

20 subplot(2,2,3);surface (x, y, d1,'EdgeColor','none')

21 title('Exact−Approximate')

22 subplot(2,2,4);loglog(N,E,'−O')

23 title('Relative error')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

First stage: create a uniform mesh of boundary coordinates for each side , values and type

of boundary condition

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 function [s1,z1,d1,w1]=majeed11(r)

2 for i=1:r

3 xb(i)=1+((i−1)/r);

4 yb(i)=0;

5 bt(i)=1;

6 bv(i)= 0;

7 end

8 for i=1:4*r

9 x1=(pi)/(8*r);

10 xb(i+r)=2*cos((i−1)*x1);

11 yb(i+r)=2*sin((i−1)*x1);
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12 bt(i+r)=0;

13 mx=2*cos(((i+0.5)−1)*x1);

14 my=2*sin(((i+0.5)−1)*x1);

15 bv(i+r)=3*cos(4*atan(my/mx));

16 end

17 for i=1:r

18 xb(i+5*r)= 0;

19 yb(i+5*r)=2−((i−1)/(r));

20 bt(i+5*r)=1;

21 bv(i+5*r)=0;

22 end

23 for i=1:2*r

24 x2=(pi)/(4*r);

25 xb(i+6*r)=sin((i−1)*x2);

26 yb(i+6*r)=cos((i−1)*x2);

27 bt(i+6*r)=0;

28 mx=sin(((i+0.5)−1)*x2);

29 my=cos(((i+0.5)−1)*x2);

30 bv((i+6*r))=cos(4*atan((my)/(mx)));

31 xb(8*r+1)=xb(1);

32 yb(8*r+1)=yb(1);

33 bt(8*r+1)=bt(1);

34 bv(8*r+1)=bv(1);

35 end

36 n = 8*r;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Find midpoints, lengths of elements and their unit normal vectors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 for i = 1:n

2 xm (i) = 0.5*(xb (i) + xb(i + 1));

3 ym (i) = 0.5*(yb(i) + yb(i + 1));

4 lm(i) = sqrt((xb(i + 1) − xb(i))ˆ2 + (yb(i + 1)− yb(i))ˆ2);

5 nx(i) = (yb(i + 1) − yb(i))/lm (i);

6 ny(i) = (xb(i) − xb (i + 1))/lm(i);

7 end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Second stage : find approximations for unknown boundary values by: constructing matrix

A and vector b then solving the system “Ax=b” for x

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 for m = 1:n

2 b(m) = 0;

3 for k = 1:n

4 if(k == m)

5 G = 0.0;

6 F = lm(k)/(2.0*pi)*(log(lm(k)/2.0) − 1.0);

7 del = 1.0;

8 else

9 [F, G] =findfg (xm(m), ym(m), xb(k), yb(k), nx(k), ny(k),lm(k));

10 del = 0.0;

11 end

12 if (bt (k) == 0)

13 A (m, k) = −F;

14 b(m) = b(m) + bv(k)*(− G + 0.5*del);

15 else

16 A(m, k) = G −0.5*del;

17 b(m) = b(m) + bv(k)*F;

18 end

19 end

20 z=A\b';

21 end

22 for m = 1:n

23 u (m) = (1 − bt (m))*bv (m) + bt (m)*z(m);

24 q(m) = (1 − bt (m))*z(m) + bt(m)*bv (m);

25 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Third stage: Find values at required points

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 for j = 1:199
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2 y(j) = 0.01*j;

3 for i = 1:199

4 x(i) = 0.01*i;

5 y1=x(i);

6 y2=y(j);

7 s1(j,i) = 0;

8 for k = 1:n

9 if ((y1.ˆ2+y2.ˆ2)>1)&&((y1.ˆ2+y2.ˆ2)<4)

10 [F, G] =findfg (x (i), y (j), xb (k), yb (k), nx (k), ny (k),lm(k));

11 s1(j,i) = s1(j,i) + u(k)*G − q(k)*F;

12 else s1(j,i)=0;

13 end

14 z1(j,i)=0;

15 if ((y1.ˆ2+y2.ˆ2)>1)&&((y1.ˆ2+y2.ˆ2)<4)

16 e1=(16/85*((y1.ˆ2+y2.ˆ2)ˆ2−(1/(y1.ˆ2+y2.ˆ2)ˆ2))...

17 −(16/255)*(((y1.ˆ2+y2.ˆ2)ˆ2/16)...

18 −(16)/(y1.ˆ2+y2.ˆ2)ˆ2)).*cos(4*atan(y2/y1));

19 z1(j,i)=z1(j,i)+(e1);

20 else (z1(j,i)==0);

21 end

22 end

23 end

24 end

25 d1=z1−s1;w1=s1−z1;

26 end

%%%%%%%%%%%%% End of main program.%%%%%%%%%%%%%



Appendix B

Numerical implementation for

chapters 3 and 4

B.1 Computation of matrix A

In this section, we are going to explain how the elements of matrix A can be computed

for some boundary and domain integrals that appear in chapters 3 and 4. Let us begin

by introducing the reference triangular element Tr = {(t1, t2) | 0 ≤ t1, t2 ≤ 1, t1 + t2 ≤ 1}

and defining a transformation

F :

 Tr ⇒ T

t ⇒ x

such that T ⊂ Ω ⊂ R2 and T is any triangle in our domain Ω. Also, if u is a function

defined on Ω ⊂ R2, we have u(x) = ũ(F−1(x)) = ũ ◦F−1(x), where ũ is a function defined

on Tr. So, we have with x = F (t) =⇒ dx = |∂F∂t |dt. Since an affine transformation makes

it possible to transform a reference triangle Tr to any triangle T , we have just to consider

numerical integration on Tr.

B.1.1 Computation of sub-matrix Q
′

Q
′
ij =

∫
∂Ω∩ ω̄j

P (x, xi)Tu(x)dΓ(x), (B.1)

which can be written as

192
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Q
′
ij =

∫
∂Ω∩ ω̄j

P (x, xi)a(x)∇xu(x)n(x)dΓ(x),

since [Tu](x) := a(x)∂u(x)∂n(x) , where n(x) is the external normal unit vector to the boundary

∂Ω of the domain Ω.

Now our goal is to calculate the ∇xu(x), by using slightly the same method in [73], which

has been implemented for the finite element method, we get

Q
′
ij =

∫
∂Ω∩ ω̄j

P (x, xi)a(x)∇xũ(F
−1(x))n(x)dΓ(x). (B.2)

We have shown in section (B.1), that

u(x) = ũ(F−1(x)) = ũ ◦ F−1(x)

Then

u(x) = ũ(t(x)), since x = F (t).

Therefore,

u(x1, x2) = ũ(t1(x1, x2), t2(x1, x2)).

Taking the partial derivative with respect to x1 for both sides, we get

∂u(x1, x2)

∂x1
=

∂ũ(t1(x1, x2), t2(x1, x2))

∂x1
=

∂t1
∂x1

· ∂ũ
∂t1

+
∂t2
∂x1

· ∂ũ
∂t2

.

Similarly, taking the partial derivative with respect to x2 for both sides, we get

∂u(x1, x2)

∂x2
=

∂ũ(t1(x1, x2), t2(x1, x2))

∂x2
=

∂t1
∂x2

· ∂ũ
∂t1

+
∂t2
∂x2

· ∂ũ
∂t2

.

Therefore,

∂u(x)

∂xk
=

∂t1
∂xk

· ∂ũ
∂t1

+
∂t2
∂xk

· ∂ũ
∂t2

=
2∑

k=1

2∑
s=1

∂ts
∂xk

∂ũ

∂ts
.

Substituting the value of ∂u(x)
∂xk

in Eq.(B.2), we have

Q
′
ij =

∫
∂Ω∩ ω̄j

{
P (x, xi)a(x)n(x)

2∑
k=1

2∑
s=1

∂ts
∂xk

∂ũ

∂ts

}
dΓ(x),
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=

∫
Tr

{
P (x, xi)a(x)n(x)

2∑
k=1

2∑
s=1

(
∂ts
∂xk

∂ũ

∂ts
)

}∣∣∣∣∂F∂t
∣∣∣∣ dt,

Due to t = F−1 ◦ F (t) we have

I = ∇tt = ∇tF
−1 ◦ F (t) = [(∇xF

−1) ◦ F (t)]∇tF (t)

that means

I =

(
∂ts
∂tj

)
s,j

=

(
∂ts(x(t))

∂tj

)
s,j

=

(
2∑

k=1

∂ts
∂xk

∂xk
∂tj

)
s,j

=

(
∂ts
∂xk

)
s,k

(
∂xk
∂tj

)
k,j

leading to (
∂ts
∂xk

)
s,k

=

[(
∂xk
∂tj

)
k,j

]−1

.

Therefore, we obtain in two dimensions

 ∂t1
∂x1

∂t1
∂x2

∂t2
∂x1

∂t2
∂x2

 =

 ∂x1
∂t1

∂x1
∂t2

∂x2
∂t1

∂x2
∂t2

−1

=
1∣∣∂F
∂t

∣∣
 ∂x2

∂t2
−∂x1

∂t2

−∂x2
∂t1

∂x1
∂t1


with

∣∣∂F
∂t

∣∣ = ∂x1
∂t1

∂x2
∂t2

− ∂x1
∂t2

∂x2
∂t1

.

Therefore,

Q
′
ij =

∫
Tr

{
P (x, xi)a(x)n(x)

[[
(
∂x2
∂t2

,−∂x2
∂t1

)∇tũ

]
+

[
(−∂x1

∂t2
,−∂x1

∂t1
)∇tũ

]]}
1∣∣∂F
∂t

∣∣
∣∣∣∣∂F∂t

∣∣∣∣ dt.
(B.3)

Finally,

Q
′
ij =

∫
Tr

{
P (x, xi)a(x)n(x)

[[
(
∂x2
∂t2

,−∂x2
∂t1

)∂t1 ũ

]
+

[
(−∂x1

∂t2
,−∂x1

∂t1
)∂t2 ũ

]]}
dt. (B.4)
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Figure B.1: Mapping reference triangle to arbitrary triangle

B.2 Mapping the reference triangle to an arbi-

trary triangle

Given the reference triangle Tr with vertices (0,0), (1,0), (0,1) and a triangle T of the

mesh in Ω of vertices p1, p2, p3, the transformation F : Tr → T is given by [10,73]

F (t) = a+ a1t1 + a2t2

and its coefficients depend on T . Using F , we can write that

p1 = a, p2 = a+ a1, p3 = a+ a2,

and this gives

a = p1, a1 = p2 − p1, a2 = p3 − p1.

Therefore, we get the Jacobian matrix

∂F

∂t
=

 ∂F1
∂t1

∂F1
∂t2

∂F2
∂t1

∂F2
∂t2

 =

 a1(1) a2(1)

a1(2) a2(2)

 . (B.5)

For the determinant we get,

∣∣∣∣∂F∂t
∣∣∣∣ = a1(1)a2(2)− a1(2)a2(1).
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B.2.1 Computation of sub-matrix K
′

K
′
ij =

∫
ωj

Φj(x)R(x, xi)dΩ(x), (B.6)

which can be written using the reference triangle element,

K
′
ij =

∫
Tr

Φj(F (t))R(F (t), xi)

∣∣∣∣∂F∂t
∣∣∣∣ dt, (B.7)

where, F (t) = a+ a1t1 + a2t2 and
∣∣∂F
∂t

∣∣ = a1(1)a2(2)− a1(2)a2(1).

B.3 Numerical integration of boundary integrals

The standard BEM for two-dimensional problems requires the numerical integration of

shape functions, and the product of shape functions with the fundamental solution or its

derivative. The Gauss Legendre quadrature formula is widely used see for example [74,75].

B.3.1 Mapping reference interval to arbitrary interval

Suppose the reference interval Ir = [−1, 1], and arbitrary interval I = [p1, p2], the trans-

formation D̃ : Ir → I is given by

D̃(t) = a+ a1t1,

where a = p1+p2
2 , and a1 =

p2−p1
2 . Therefore we get the Jacobian,

∣∣∣dD̃dt ∣∣∣ = |a1|.

 

P2 -1 1 P1 

Figure B.2: Mapping reference interval to arbitrary interval

Therefore, to find the value of one boundary integral given in chapter 3 by the Gauss

Legendre quadrature formula:

∫
∂Ω

ū(x)TxP (x, xi)dΓ(x) =
N∑
s=1

∫
Γs

K∑
m=1

ū(D̃(t))TxP (D̃(t), xi)|a1|w(m)dt,
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where N is the number of boundary elements, K is the number of Gauss points and w are

the Gauss weights. In our work, we used an eight points Gaussian quadrature rule to get

sufficiently accurate results.

B.4 Numerical integration of domain integrals

Applying the BEM for problems with internal sources requires a domain descretisation

into a number of internal cells (triangular elements), and then numerical integration over

such triangles. Since an affine transformation makes it possible to transform the reference

triangle Tr to any triangle T , we have just to consider numerical integration on Tr as

discussed in subsection B.2. The integral of an arbitrary function f , over the reference

triangle Tr is given by

I =

∫∫
Tr

f(t1, t2)dt1dt2 =

∫ 1

0
dt1

∫ 1−t1

0
f(t1, t2)dt2 =

∫ 1

0
dt2

∫ 1−t2

0
f(t1, t2)dt1. (B.8)

Therefore, in order to find the value of the integral in Eq.(B.8), there are many methods,

as discussed in the next sub-sections.

B.4.1 Symmetric Gauss quadrature formula for unit right

triangle

The quadrature formula for numerical integration of the integral in Eq.(B.8), can be

written in the standard form

I =

K∑
m=1

w(m)f(t1(m), t2(m)),

where w(m) are the weights associated with specific points (t1(m), t2(m)) and K is the

number of points. In [76], the author presented symmetric Gauss quadrature formulas up

to 13 integration points using Cartesian co-ordinates originating at the centroid. Also, [77]

derived quadrature rules for a triangle with vertices at (−1, 0), (12 ,
√
3
2 ) and (12 ,−

√
3
2 )

and produced weights and points for quadrature rules up to 28 integration points for

this equilateral triangle. For a recent review, see [78], an on-line database containing

symmetric Gauss quadrature formulas for a unit right triangle up to 13 integration points;
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these formulas are especially useful for numerical integration of domain integrals for the

finite element method and our boundary-domain integral and integro-differential equation

(BDIE and BDIDE) methods. The three points, see table B.1, we have been tested in

our work and provided good results. However, for BDIE or BDIDE, the domain integrals

with a singularity either of log type or 1/r type, need special treatment to overcome such

problems.

B.4.2 Gauss Legendre quadrature formula for unit right

triangle

In this method, the reference triangle, unit right triangle Tr with vertices (0,0), (1,0), (0,1),

in (t1, t2) space, map to a standard square S in (q1, q2) space : {(q1, q2)|0 ≤ q1, q2 ≤ 1},

see Figure B.3.

 

t2 
 

t1 q1 

q2 
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p 
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 (0,0) 
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 (1,1) 
p 

(0,1) 
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Figure B.3: Mapping unit right triangle to unit square

This overcomes the difficulties associated with the derivation of new weight and integration

points and yields accurate and reliable results, see [79,80] . To do so, let us introduce the

following transformation:

t1 = q1, t2 = (1− q1) ∗ q2

Then, the determinant of the Jacobian and the differential area are:

∣∣∣∣ ∂(t1, t2)∂(q1, q2)

∣∣∣∣ =
∣∣∣∣∣∣
 1 0

−q2 (1− q1)

∣∣∣∣∣∣ = (1− q1). (B.9)
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Number of points t1 t2 w

1 1/3 1/3 1/2

3 1/6 1/6 1/6

2/3 1/6 1/6

1/6 2/3 1/6

4 1/3 1/3 -27/96

0.2 0.2 25/96

0.2 0.6 25/96

0.6 0.2 25/96

6 0.81684757 0.091576214 0.054975872

0.091576214 0.091576214 0.054975872

0.091576214 0.81684757 0.054975872

0.10810302 0.44594849 0.111690795

0.44594849 0.44594849 0.111690795

0.44594849 0.10810302 0.111690795

7 0.10128651 0.10128651 0.06296959

0.47014206 0.05971587 0.06619708

0.79742699 0.10128651 0.06296959

0.47014206 0.47014206 0.06619708

0.10128651 0.79742699 0.06296959

0.05971587 0.47014206 0.06619708

1/3 1/3 0.11250000

12 0.87382197 0.063089014 0.025422453

0.063089014 0.063089014 0.025422453

0.063089014 0.87382197 0.025422453

0.50142651 0.24928675 0.058393138

0.24928675 0.24928675 0.058393138

0.24928675 0.50142651 0.058393138

0.63650250 0.31035245 0.041425538

0.31035245 0.053145050 0.041425538

0.053145050 0.63650250 0.041425538

0.63650250 0.053145050 0.041425538

0.31035245 0.63650250 0.041425538

0.053145050 0.31035245 0.041425538

13 1/3 1/3 - 0.074785022

0.47930807 0.26034597 0.087807629

0.26034597 0.26034597 0.087807629

0.26034597 0.47930807 0.087807629

0.86973979 0.065130103 0.026673618

0.065130103 0.065130103 0.026673618

0.065130103 0.86973979 0.026673618

0.63844419 0.31286550 0.038556880

0.31286550 0.048690315 0.038556880

0.048690315 0.63844419 0.038556880

0.63844419 0.048690315 0.038556880

0.31286550 0.63844419 0.038556880

0.048690315 0.31286550 0.038556880

Table B.1: Symmetric Gauss quadrature formula for unit right triangle
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Then, Eq.(B.8), can be written

I =

∫ 1

0
dt1

∫ 1−t1

0
f(t1, t2)dt2 =

∫ 1

0

∫ 1

0
f(q1, (1− q1) ∗ q2)(1− q1)dq1dq2 (B.10)

In order to solve the integral in Eq.(B.10) using the product of standard Gauss Legendre

formulas for x and y directions, there are two possible ways:

First, the integral in Eq.(B.10), can be transformed further into an integral over a standard

square R in (r1, r2) space : {(r1, r2)| − 1 ≤ r1, r2 ≤ 1}, by introducing the following

transformation:

q1 =
(1 + r1)

2
, q2 =

(1 + r2)

2
.

Then, the determinant of the Jacobian and the differential area are:

∣∣∣∣∂(q1, q2)∂(r1, r2)

∣∣∣∣ =
∣∣∣∣∣∣
 1

2 0

0 1
2

∣∣∣∣∣∣ = 1

4
. (B.11)

Now, using the new transformation, the integral in Eq.(B.10) can be written

I =

∫ 1

0
dt1

∫ 1−t1

0
f(t1, t2)dt2 =

∫ 1

−1

∫ 1

−1
f

(
1 + r1

2
,
(1− r1)(1 + r2)

4

)(
1− r1

8

)
dr1dr2.

(B.12)

Then, the integral in Eq.(B.12) can be written using a quadrature formula, see for example

[75],

I =

n∑
i=1

n∑
j=1

(
1− r1(i)

8

)
w(i)w(j)f(t1(r1(i), r2(j)), t2(r1(i), r2(j))),

where r1(i), r2(i) are Gaussian points in the r1, r2 directions, respectively, and w(i) and

w(j) are the corresponding weights.

Second, solving the integral in Eq.(B.10) without mapping it to a new square R in (r1, r2)

space : {(r1, r2)| − 1 ≤ r1, r2 ≤ 1}, can be achieved just by shifting the original and

standard Gaussian points from [−1, 1] to [0, 1] by using the transformation:

s =
(t+ 1)

2
; s ∈ [0, 1]; t ∈ [−1, 1].
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Then, the integral in Eq.(B.10) can be written using the quadrature formula

I =

n∑
i=1

n∑
j=1

(
1− q1(i)

4

)
w(i)w(j)f(t1(q1(i), q2(j)), t2(q1(i), q2(j))),

where q1(i), q2(i) are Gaussian points in the q1, q2 directions on [0, 1], respectively.

B.4.3 Other useful quadrature formulas

We found three additional formulas that are useful in applications to treat the regular and

weakly singular domain integrals.

First, a 7-points formula from [81] page 171. The integral in Eq.(B.8) can be calculated

using the values of t1, t2 and w in table B.2:

I =

∫ 1

0
dt1

∫ 1−t1

0
f(t1, t2)dt2 =

7∑
m=1

w(m)f(t1(m), t2(m)). (B.13)

Number
of points

t1 t2 w

7 1/3 1/3 9/80

(6−
√
15)/21 (6−

√
15)/21 (155−

√
15)/2400

(6−
√
15)/21 (9+2∗

√
15)/21 (155−

√
15)/2400

(9+2∗
√
15)/21 (6−

√
15)/21 (155−

√
15)/2400

(6 +
√
15)/21 (6 +

√
15)/21 (155 +

√
15)/2400

(6 +
√
15)/21 (9−2∗

√
15)/21 (155 +

√
15)/2400

(9−2∗
√
15)/21 (6 +

√
15)/21 (155 +

√
15)/2400

Table B.2: 7-points quadrature formula

Second, a 16-points formula from [6] pages 208-209. The integral in Eq.(B.10) can be

calculated using the values of q1, q2 and w in table B.3:

I =

∫ 1

0
dt1

∫ 1−t1

0
f(t1, t2)dt2 =

∫ 1

0

∫ 1

0
f(q1, (1− q1) ∗ q2)(1− q1)dq1dq2

=
16∑

m=1

w(m)f(q1(m), (1− q1(m)) ∗ q2(m))(1− q1(m)). (B.14)

Third, a 16-points formulas from [75] page 314. The integral in Eq.(B.8) can be calculated



B.5. Treatment of weak singularity for domain integrals using Duffy
transformation 202

Number of points t1 t2 w

16 1/4+1/(4∗
√
3) 1/4+1/(4∗

√
3) 1/16

1/4+1/(4∗
√
3) 1/4−1/(4∗

√
3) 1/16

1/4−1/(4∗
√
3) 1/4+1/(4∗

√
3) 1/16

1/4−1/(4∗
√
3) 1/4−1/(4∗

√
3) 1/16

3/4+1/(4∗
√
3) 1/4+1/(4∗

√
3) 1/16

3/4+1/(4∗
√
3) 1/4−1/(4∗

√
3) 1/16

3/4−1/(4∗
√
3) 1/4+1/(4∗

√
3) 1/16

3/4−1/(4∗
√
3) 1/4−1/(4∗

√
3) 1/16

3/4+1/(4∗
√
3) 3/4+1/(4∗

√
3) 1/16

3/4+1/(4∗
√
3) 3/4−1/(4∗

√
3) 1/16

3/4−1/(4∗
√
3) 3/4+1/(4∗

√
3) 1/16

3/4−1/(4∗
√
3) 3/4−1/(4∗

√
3) 1/16

1/4+1/(4∗
√
3) 3/4+1/(4∗

√
3) 1/16

1/4+1/(4∗
√
3) 3/4−1/(4∗

√
3) 1/16

1/4−1/(4∗
√
3) 3/4+1/(4∗

√
3) 1/16

1/4−1/(4∗
√
3) 3/4−1/(4∗

√
3) 1/16

Table B.3: 16-points quadrature formula

using the values of t1, t2 and w in table B.4:

I =

∫ 1

0
dt1

∫ 1−t1

0
f(t1, t2)dt2 =

16∑
m=1

w(m)f(t1(m), t2(m)). (B.15)

B.5 Treatment of weak singularity for domain

integrals using Duffy transformation

Multidimensional integrals of singular functions can be troublesome to evaluate numer-

ically. This is particulary clear when the singularity occurs at corners points. In order

to solve the weakly singular integrands, variable transformation method has been used to

treat such type of singularity, see [5]. The main idea in this method is to map the reference

triangle element to a square element, then the singularity is removed through the intro-

duction of the Jacobian. The important transformation which is widely used, the so-called

Duffy transformation, see [82], from a triangle in 2D and a pyramid in 3D to a square and

cube respectively is: (q1, q2, q3) → (t1, t2, t3) : t1 = q1, t2 = t1q2 = q1q2, t3 = t1q3 = q1q3,

which eliminates singularities of the type 1/r, see Figure B.3. The new kernel after the

mapping over a square in two-dimensions is smooth enough and can be integrated using
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Number of points t1 t2 w

16 0.0571041961 0.0694318422*(1-0.0571041961) 0.023568368192143

0.2768430136 0.0694318422*(1-0.2768430136) 0.035388067902662

0.5835904324 0.0694318422*(1-0.5835904324) 0.022584049284999

0.8602401357 0.0694318422*(1-0.8602401357) 0.005423225902803

0.0571041961 0.3300094782*(1-0.0571041961) 0.044185088507857

0.2768430136 0.3300094782*(1-0.2768430136) 0.066344216097338

0.5835904324 0.3300094782*(1-0.5835904324) 0.042339724515001

0.8602401357 0.3300094782*(1-0.8602401357) 0.010167259547197

0.0571041961 0.6699905218*(1-0.0571041961) 0.044185088507857

0.2768430136 0.6699905218*(1-0.2768430136) 0.066344216097338

0.5835904324 0.6699905218*(1-0.5835904324) 0.042339724515001

0.8602401357 0.6699905218*(1-0.8602401357) 0.010167259547197

0.0571041961 0.9305681558*(1-0.0571041961) 0.023568368192143

0.2768430136 0.9305681558*(1-0.2768430136) 0.035388067902662

0.5835904324 0.9305681558*(1-0.5835904324) 0.022584049284999

0.8602401357 0.9305681558*(1-0.8602401357) 0.005423225902803

Table B.4: 16-points Stroud quadrature formula

Gauss Legendre quadrature, as discussed in subsection B.4.2.

In our implementation the collocation points live always on the vertices of the triangles.

However, when the singularity falls inside an element (this case does not appear in the

current thesis), then the element can be divided into triangles in R2 and pyramids in R3

with the singularity lying at a vertex of the subdivisions and the transformation can be

applied to each subdomain separately.

Even though the Duffy transformation works very well for a 1/r singularity, it is not as

efficient for 1/rα when α ̸= 1; to treat such type of singularities, see [83].

Fortunately, the boundary-domain integral and integro-differential equation (BDIE and

BDIDE) methods only have weak singular domain integrals with either log type or 1/r

type. The two domain integrals come from either the remainder R(x, y) with 1/r singu-

larity or from the right-hand side f(x) multiplied by the parametrix P (x, y), which has a

log singularity coming from the parametrix, and both are weakly singular.

∫
ωj

Φj(x)R(x, xi)dΩ(x), (B.16)

∫
Ω

f(x)P (x, xi)dΩ(x). (B.17)
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For numerical implementation, the simple way to calculate such domain integrals with

weak singularity is to use the quadrature formulas in subsection (B.4). In fact, these

formulas are working fine and produce good results. However, in order to achieve bet-

ter accuracy, we have implemented in our Matlab code Gaussian quadrature rule for two

dimensions with Duffy transformation. The collocation points are at vertices of the trian-

gles, so when we do the integration over each element the singularity is either in p1, p2 or

p3 in Figure B.3.

Suppose that p2 is a singular point; in this case, the simple transformation is given in

subsection B.4.2:

t1 = q1, t2 = (1− q1) ∗ q2.

Then, the determinant of the Jacobian is (1 − q1). Also, we have derived other transfor-

mations for p1, and p3 by:

t1 = (1− q1) ∗ q2, t2 = (1− q1) ∗ (1− q2),

with the determinant of the Jacobian being (1−q1) when p1 is the singular point. Finally,

when p3 is singular the transformation will be:

t1 = (1− q1) ∗ q2, t2 = q1,

with the same determinant of the Jacobian equal to (1− q1). It will be useful to mention

that when we do the integration over a regular element, we can just use the same procedure

discussed in subsection B.4.2.



Appendix C

Matlab codes for calculating of the

radial integral in chapter 5

Matlab programs for the analytical calculation of the radial integral in Eqs.(5.9) and (5.13)

appearing in chapter 5, and general numerical codes for using the RIM to numerically

calculate the general boundary integral in Eqs.(5.9) and (5.13) are implemented in this

appendix.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Analytic calculation of the radial integral in Eq.(5.9)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 function result=Radialintegral1

2 clear;

3 clc;

4 syms x1 x2 y1 y2 r1 r2 r

5 val=f([y1+r1*r,y2+r2*r]);

6 result=int(val*r,r,0,r);

7 result=subs(result,r1,(x1−y1)/r);

8 result=subs(result,r2,(x2−y2)/r);

9 result=subs(result,x1,'x(1)');

10 result=subs(result,x2,'x(2)');

11 result=subs(result,y1,'y(1)');

12 result=subs(result,y2,'y(2)');

13 result=simplify(result);
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14 end

15 function val=f(x)

16 %val=2;

17 %val=x(1)+x(2);

18 %val=x(1)ˆ2+x(2)ˆ2;

19 %val=x(1)ˆ3+x(2)ˆ3;

20 %val=exp(x(1)+x(2));

21 val=exp(x(1)+x(2))+cos(x(1)+x(2))+sin(x(1)+x(2))+log(x(1)+x(2));

22 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Analytic calculation of the radial integral in Eq.(5.13)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 function result=Radialintegral2

2 clear;

3 clc;

4 syms x1 x2 y1 y2 r1 r2 ra r t

5 val=f([y1+r1*r*t,y2+r2*r*t]);

6 result=int(val*r*r*t,t,0,1);

7 result=subs(result,r1,(x1−y1)/r);

8 result=subs(result,r2,(x2−y2)/r);

9 result=subs(result,x1,'x(1)');

10 result=subs(result,x2,'x(2)');

11 result=subs(result,y1,'y(1)');

12 result=subs(result,y2,'y(2)');

13 result=simplify(result);

14 end

15 function val=f(x)

16 %val=2;

17 %val=x(1)+x(2);

18 %val=x(1)ˆ2+x(2)ˆ2;

19 %val=x(1)ˆ3+x(2)ˆ3;

20 %val=exp(x(1)+x(2));

21 val=exp(x(1)+x(2))+cos(x(1)+x(2))+sin(x(1)+x(2))+log(x(1)+x(2));

22 end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The main Matlab code for numerical calculation of the boundary integral in Eq.(5.10)

with corresponding numerical calculation of the radial integral in Eqs.(5.9) and (5.13)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 clear;

2 clc;

3 for i=1:2

4 [coord nodes]=ex2mesh(2ˆi);

5 neigh=setneigh(nodes);

6 bp3=m3(coord,nodes,neigh);

7 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

This function generates the coordinates of vertices and the number of corners for each

triangle, we will have n triangles per edge. The algorithm uses the special structure of a

square [1, 2]× [1, 2]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 function [coord nodes]=ex2mesh(n)

2 coord=[]; nodes=[];

3 nnodes=(n+1)ˆ2;

4 coord=zeros(nnodes,2);

5 nodes=zeros(nˆ2*2,3);

6 for i=0:n

7 xi=i/n;

8 txi=xi+1;

9 for j=0:n

10 xj=j/n;

11 txj=xj+1;

12 coord(i*(n+1)+j+1,1)=txi;

13 coord(i*(n+1)+j+1,2)=txj;

14 end

15 end

16 for i=0:n−1

17 for j=0:n−1
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18 n1=i*(n+1)+j+1;

19 n2=(i+1)*(n+1)+j+1;

20 n3=(i+1)*(n+1)+j+2;

21 n4=i*(n+1)+j+2;

22 nodes((i*n+j)*2+1,1:3)=[n1; n2; n3];

23 nodes((i*n+j)*2+2,1:3)=[n1; n4; n3];

24 end

25 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

This function to check the boundary edges for each element, if neigh=0 means the edge is

on the boundary (it has no neighbor)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 function neigh=setneigh(nodes)

2 neigh=zeros(size(nodes));

3 [n1 n2]=size(nodes);

4 nnodes=max(max(nodes)); % largest node number, max(nodes) gives ...

max for columns

5 noel=zeros(nnodes,1); % number of elements per node

6 for i=1:n1

7 for k=1:n2

8 noel(nodes(i,k))=noel(nodes(i,k))+1;

9 end

10 end

11 maxnoel=max(noel);

12 noel=zeros(nnodes,1); elem=zeros(nnodes,maxnoel);

13 for i=1:n1

14 for k=1:n2

15 node=nodes(i,k);

16 noel(node)=noel(node)+1;

17 elem(node,noel(node))=i;

18 end

19 end

20 % now compare only elements which are attached to the same node

21 for node=1:nnodes

22 for p=1:noel(node)
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23 i=elem(node,p);

24 x(1:n2)=nodes(i,:); x(n2+1)=x(1);

25 for q=p+1:noel(node)

26 j=elem(node,q);

27 y(1:n2)=nodes(j,:); y(n2+1)=y(1);

28 for k=1:n2

29 if neigh(i,k)>0

30 continue % neighbour already found, try next edge, skip rest

31 end

32 for l=1:n2

33 if neigh(j,l)>0

34 continue % neighbour already found, try next edge, skip rest

35 end

36 if (x(k)==y(l) && x(k+1)==y(l+1) ) | | (x(k)==y(l+1) && x(k+1)==y(l))

37 neigh(i,k)=j;

38 neigh(j,l)=i;

39 break % exit inner loop, test next edge for k

40 end

41 end

42 end

43 end

44 end

45 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Find the end boundary nodes, and their unit normal vectors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 function [nx,p1,p2]=normalvector(l,k,nodes,coord)

2 n(1:3)=nodes(l,1:3);

3 n(4)=n(1);

4 p1=coord(n(k),:);

5 p2=coord(n(k+1),:);

6 t=p2−p1;

7 nx(2)=−t(1);

8 nx(1)=t(2);

9 nx=nx/norm(nx);
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10 c=(coord(n(1),:)+coord(n(2),:)+coord(n(3),:))/3;

11 m=1/2*(p1+p2);

12 if((c−m)*nx'>0)

13 nx=−nx;

14 end

15 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The numerical calculation of the boundary integral in Eq.(5.10) with corresponding nu-

merical calculation of the radial integral in Eqs.(5.9) and (5.13)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1 function bp3=m3(coord,nodes,neigh)

2 [b1 b2]=size(coord);nnodes=max(max(nodes));bp3=zeros(nnodes,1);

3 for i=1:b1

4 bp3(i)=intt(coord(i,:),coord,nodes,neigh);

5 end

6 end

7

8 function val=intt(y,coord,nodes,neigh)

9 val=0;[n1 n2]=size(nodes);

10 for i=1:n1

11 for k=1:3

12 if neigh(i,k)==0

13 [nx,p1,p2]=normalvector(i,k,nodes,coord);

14 val=val+intuelem2(y,p1,p2,nx);

15 end

16 end

17 end

18 end

19

20 function b=intuelem2(y,p1,p2,nx)

21 a=(p1+p2)/2; a1=(p2−p1)/2;

22 b=0;

23 t=[−0.861136311594000 −0.339981043585000 0.339981043585000 ...

0.861136311594000];

24 w=[0.347854845137000 0.652145154863000 0.652145154863000 ...
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0.347854845137000];

25 for q=1:4

26 m=a+a1*t(q);

27 b=b+rf(m,y,nx)*norm(a1)*w(q);

28 end

29 end

30 function val=rf(x,y,nx)

31 r=norm(x−y);

32 integrand=@(t) t.*funh(repmat(y',1,size(t,2))+(x−y)'*t/r); % ...

integrand of Eq.(5.9)

33 % integrand=@(t) r.ˆ2.*t.*funh(repmat(y',1,size(t,2))+(x−y)'*t); ...

% integrand of Eq.(5.13)

34 I=quad(integrand,0,r); % numerical integration of Eq.(5.9)

35 % I=quad(integrand,0,1); % numerical integration of Eq.(5.13)

36 val=I*((x−y)/rˆ2)*nx';

37 end

38

39 function val=funh(x)

40 %val=2;

41 %val=x(1,:)+x(2,:);

42 %val=x(1,:).ˆ2+x(2,:).ˆ2;

43 %val=x(1,:).ˆ3+x(2,:).ˆ3;

44 %val=exp(x(1,:)+x(2,:));

45 val=exp(x(1)+x(2))+cos(x(1)+x(2))+sin(x(1)+x(2))+log(x(1)+x(2));

46 end



Appendix D

Numerical results for RIBIE for

heat conduction

In this appendix, we applied the new implementations of the RIBIE method discussed in

chapter 8, to three steady-state heat conduction problems on a square domain recalled

them from chapter 3 (Poisson and variable coefficients). Also, the new implementation of

the BIE for the Laplace equation, leads to the same results as in chapters 3 (for Laplace

equation) and 6 (for Poisson and variable coefficients).

D.1 Laplace’s equation with mixed boundary con-

ditions

A square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, a(x) = 1, f(x) = 0 for x ∈ Ω̄ with mixed

boundary conditions:

ū(x) = 2 + x1, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 3 + x1, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = n1(x) + n2(x), for x1 = 2 or x1 = 3; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.

212
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D.2 Poisson’s equation with mixed boundary con-

ditions

Assume a square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, a(x) = 1, f(x) = 4 for x ∈ Ω̄,

with boundary conditions,

ū(x) = 4 + x21, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 9 + x21, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = 2(x1n1(x) + x2n2(x)), for x1 = 2 or x1 = 3 ; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x21 + x22, x ∈ Ω̄.

D.3 Variable coefficients

Square domain Ω̄ = {(x1, x2) : 2 ≤ x1, x2 ≤ 3}, a(x) = 2(x1 + x2), f(x) = 4 for x ∈ Ω̄,

with boundary conditions:

ū(x) = 2 + x1, for x2 = 2; 2 ≤ x1 ≤ 3,

ū(x) = 3 + x1, for x2 = 3; 2 ≤ x1 ≤ 3,

t̄(x) = 2(x1 + x2)(n1(x) + n2(x)), for x1 = 2 or x1 = 3; 2 ≤ x2 ≤ 3.

The exact solution for this problem is uexact(x) = x1 + x2, x ∈ Ω̄.
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Figure D.1: Relative and RMS errors for
BIE method for Laplace’s equation
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Figure D.2: Relative and RMS errors for
RIBIE method for Poisson’s equation

It can be clearly seen from Figs.D.1, D.2 and D.3 that the new implementation of the BIE

and the RIBIE for Laplace, Poisson and variable coefficients equations provides satisfactory

results. As the exact solution for Laplace and variable coefficients is linear, there are no

interpolation errors in both cases. However, there is interpolation error for the Poisson
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Figure D.3: Relative and RMS errors for RIBIE method for variable coefficients

equation, as the exact solution is quadratic, and lower accuracy is achieved in comparison

to the other cases. Moreover, it can be seen the convergence of the solution by increasing

the number of nodes, for all tests.


