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ABSTRACT

This research investigates a batch arrival queueing system with a Bernoulli scheduled
vacation and random system breakdowns. It is assumed that the repair process does
not start immediately after the breakdown. Consequently there maybe a delay in
starting repairs. After every service completion the server may go on an optional
vacation. When the original vacation is completed the server has the option to go on
an extended vacation. It is assumed that the system is equipped with a stand-by server
to serve the customers during the vacation period of the main server as well as during

the repair process.

The service times, vacation times, repair times, delay times and extended vacation
times are assumed to follow different general distributions while the breakdown times

and the service times of the stand-by server follow an exponential distribution.

By introducing a supplementary variable we are able to obtain steady state results in
an explicit closed form in terms of the probability generating functions. Some
important performance measures including; the average length of the queue, the
average number of customers in the system, the mean response time, and the value of

the traffic intensity are presented.

The professional MathCad 2001 software has been used to illustrate the numerical

results in this study.
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Table of Standard Notations for Queueing Systems

Notation

Definition

The mean arrival rate (average number of customers arriving per

unit time).

The mean service rate (average number of customers served per unit

time).

The expected number of customers in the system.

The expected number of customers in the queue.

The expected waiting time in the system.

The expected waiting time in the queue.

Traffic intensity denoting the fraction of time that the server is busy.
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CHAPTER ONE: PRELIMINARIES

1.1 Introduction

Queueing systems are concerned with providing services. In such a system customers
arrive at a service centre looking for service of some kind and depart after such
service has been provided. It is a usual phenomenon that when a customer arrives the
server may be busy providing service, therefore the arriving customers have to join

the waiting line until they receive the service.

We identify three main features of the service centre: the customers’ population, the

waiting line and, the server(s).

The basic queueing model is shown in figure 1.1 below:

)

=

P Server1 =

Customer ! i S - Departure
Papulation \ v CUStOmBrs
I \ -

o SBrvern

Figure 1.1: The basic queueing model

Queueing theory is an important branch of Mathematics in applied probability based
on statistical distributions, calculus, matrix theory and complex analysis. It can also
be classified as part of applied stochastic processes and decision science. A systematic
analysis of a queueing system is crucial for the management to take efficient
decisions. It helps to gain full utilization of a system, minimize its idle time, and

streamline costs of operating the system.



Queueing Theory is a mathematical study of a queue, from it we can find specific
answers for common questions such as how long the customer waits before service
commences? How long should a customer spend in the system to complete their
service? What is the average number of customers in the queue or/and in the system at
any point of time? And how many servers should the service centre employ to get the

best performance from the system.

Thus answers to questions about the mean waiting time in the queue, the mean system
response time (waiting time in the queue plus service time), mean utilization of the
service facility, distribution of the number of customers in the queue, distribution of

the number of customers in the system and so forth need to be found.

There are a lot of situations in real life where waiting in a queue is required and
essential. Queuing theory has applications in many fields; below we briefly describe

some situations in which queueing theory is important.

R/

< The Internet Server

Many customers are connected to the main internet server. What is the acceptable
number of customers connected to the internet per unit of time so that the internet
provides a reasonable response rate? What happens when the number of

customers increases? Is the capacity of the main frame computer sufficient?

¢ Traffic Lights

We need to schedule traffic lights according to the time of the day such that the

queues are acceptable.

+ Parking

In order to avoid overcrowding in front of a shopping mall, it is necessary to

investigate what size and number of parking places to be provided.

13



+« Call Centers of any Company

The call center has a team structure to answer questions by phone, where each
team helps customers from a specific region only. How long do customers have to
wait before an operator becomes available? Is the number of incoming telephone
lines enough? Are there enough operators? How many customers do not get their

call answered?

1.2 Historical background

The history of queueing theory goes back more than a century. According to Bhat
(2008), the first paper on the subject seems to be Johannsen’s paper "Waiting Times
and Number of Calls" (an article published in 1907 and reprinted in the Post Office
Electrical Engineers Journal, London, October, 1910). From the point of view of an
exact treatment, the method used in this paper was not mathematically exact,
therefore, the paper that has historical importance is Erlang’s (1909), "The Theory of
Probabilities and Telephone Conversations". During the next 20 years Erlang’s papers
contain some of the most important techniques and concepts in queuing theory; for
instance the notion of statistical equilibrium and the method of formulating the

balance of state equations (later called Chapman-Kolmogorov equations).

"In 1915 Tore Olaus Engset developed the Engset formula before the breakthroughs
of A. K. Erlang in 1917. The unpublished Engset’s report "Om beregningen av
valgere i et automatisk telefonsystem" (1915) was published later in (1918)" for more
details see (Myskja, 1998).

Molina (1927) published his paper "Application of the Theory of Probability to
telephones Trunking Problems". One year later, Fry (1928) published his book
"Probability and Its Engineering Uses" which expanded much of Erlang’s earlier

work.

During the next two decades several mathematicians became interested in these
problems and developed general models which could be used in more complex

situations.

14



The first use of the term "queueing system" occurred in 1951 in the Journal of the
Royal Statistical Society, when D.C. Kendall published his article "Some Problems in
the Theory of Queues". Of course, there were a huge number of articles on the subject

much earlier (some used the word "queue" but not the word "queueing").

The same author who introduced the term queueing systems introduced an A/B/C

queueing notation in 1953 and this has further been extended by Lee in 1966.

Finch (1958), studied the effect of the waiting room size on the performance measures
of simple queues. The first textbook on queueing theory was published in 1958,
"Queues, Inventories, and Maintenance" by P. M. Morse. In this year Haight (1958)
introduced the concepts of bulking and parallel queues and White and Christie (1958)
were the first to consider server breakdowns. The proof of the very famous formula in
queueing theory, Little's formula (so called because it was first proved by John Little)

was published in 1961.

Since Leonard (1961) published his first paper entitled "Information Flow in Large
Communication Nets", the use of queueing for computer performance evaluation
became an important class of queuing theory applications. Various studies have been
published since that time including; Allen (1967), Fishman (1974), Forest, Mani,
Richard and Fernando (1975), Leonard (1976), Stephen (1983), Lazowska, Zahorjan
and Sevcik (1986) and (1996) and Walrand (1988) to mention some.

In 1967, Skinner considered what is now called the M/G/1 queueing system, but in a
different context. Since that time several authers have studied the M/G/1 queue e.g.,
Jacob and Madhusoodanan (1987), Choi and Park (1990), Cao (1994), Madan (1994),

Atencia, Fortes, Moreno and Sanchez (2006), to mention a few.

Markovian queueing systems, subject to more than one type of service, have been
studied by Beja and Teller (1975). Further studies related to this area appeared later,
we refer to Sen and Jain (1990), Madan (1991), Gail, Hantler and Taylor (1992),
Whitt (1999), Hur and Paik (1999), Ke. (2003a), Bocharov, Manzo and
Pechinkin(2005) and, Mishra and Yadav (2009).

Neuts (1981) introduced the matrix analytic method. As editor of communications in

Statistics: Stochastic Models, he promoted a large variety of queueing models. Other

15



workers in the matrix analytic area included; Neuts (1984) and (1989), Ramaswami

(1990), Alfa (2002), Lothar and Dieter (2005) and, very recently Madan (2011).

During the last 30 years, a lot of important books on queueing theory and its
applications have been published including Borovkov (1984), Kashyap and
Chaudhry (1988), Nelson (1995), Bunday (1996), Gross and Harris (1998), Daigle
(2005), Anisimov (2008) and, Mark (2010) to mention a few.

1.3 Characterization

In most cases, a queuing system is specified by stating the following six basic

characteristics about it:

1.3.1 Input Pattern or Arrival Process of Customers

The arrival process means the manner in which the arrivals occur. It is specified by
the interarrival time between any two consecutive arrivals. Usually the interarrival
times are assumed to follow a common distribution and are independent of each other.
The input pattern indicates the behaviour of the customers when arriving at the
service system. Some customers may wait for a long time patiently, other customers
are less patient and leave after a while. For instance, patients who visit the hospital to
have an appointment with their doctor, if the doctor is not available then some of them
will leave and possibly rebook their appointment. It is also very important to know if

the customers arrive in batches or one by one.

1.3.2 Service Time Patterns.

The pattern of service times is the manner in which the service is rendered. It is
specified by the time taken to complete a service. It is assumed usually that the
service times follow a common distribution and are independent of each other and
independent of the interarrival times. The most common distributions that the service
times may have are deterministic and exponential distributions. Service times may

also be dependent on the queue length.

16



1.3.3 Service Discipline

The service discipline indicates the manner in which the units are taken from the

queue and allowed into service. Customers may be served in groups or one by one.

The most known disciplines are:

FIFO: (First in, First out): the usual queue discipline is first come first served

(FCFS), a customer that finds the service centre busy goes to the end of the queue.

LIFO: (Last in, First out): or last come first served (LCFS), a customer that finds
the service centre busy proceeds immediately to the head of the queue, this

customer will be served next, given that no further customers arrive.

Random Service: also called (SIRO) the customers in the queue are served in a

random order.

Round Robin (RR): every customer gets a time slice. If the servicing of a
customer is not completed at the end of this time then the customer is preempted

and returned to the queue to be served according to the FCFS discipline.

Priority Disciplines: every customer has a (static or dynamic) priority, the server
selects the customers with the highest priority according to their time of arrival at
the system. This scheme can use preemption or no preemption. In the preemption
case the customer with the highest priority is allowed to enter service and stop the
service of a customer with lower priority whose service is to be resumed after the
higher priority customer is served. While in the case of no preemption the highest
priority customer goes to the head of the queue and waits until the current service

is completed.

1.3.4 Number of Servers.

A system may have a single server or a group of servers providing service to the

customers. Increasing the number of service channels helps to decrease the waiting

time. Given a number of service channels they may operate in parallel being able to

serve customers simultaneously. It is generally assumed that the service mechanisms

of the parallel channels operate independently of each other. An arrival who finds

more than one free server may choose any one of them for receiving service. If he

17



finds all the servers busy, he joins a queue common to all the servers, the first

customer in the common queue goes to the server who becomes free first.

1.3.5 System Capacity.

This is the maximum number of customers allowed at any time in the system. A
system may have an infinite capacity that is; the queue in front of the server(s) may
grow to any length, in this case the system is called a delay system. In the case of a
finite capacity this may be because of space or time limitation. The system has to be
specified by the number of customers available, so that an arrival may not be able to

join the system when the system is full, in this case the system is called a loss system.
1.3.6 Service Stages

The customers may proceed through one stage or several stages to complete their
service before departing the system. In the case of multistage queuing systems, the
customer enters a queue waits for service, gets served and departs the service station
to enter a new queue for another service, and so on. In some multistage queuing
systems recycling or feedback may be allowed, this case is common in manufacturing
processes, where parts that do not meet quality standards are sent back for

reprocessing.

1.4 Background Probability Theory

1.4.1 The concept of a Random Variable

Let T be the sample space associated with some experiment E. A random or stochastic

variable, X, is a function that assigns a real number, X (¢), to each element re T .

Queuing systems provide many examples of random variables. For example, X (¢),

may represent the number of customers in the system at time .
1.4.2 Stochastic Processes

Let ¢ be a parameter assuming values in a set 7, and let X (¢#) represent a random or

stochastic variable for every re T . The family or collection of random variables

18



{X (), te T} is called a stochastic process. The parameter or index ¢ is generally
interpreted as time and the random variable, X (¢), as the state of the process at time ¢.

The elements of T are time points, or epochs, and 7T is a linear set, countable or

uncountable. (Methi 2003).

The stochastic process {X (z),re T} is said to be a discrete-time process, if 7 is

countable. If 7 is an interval of the real line (uncountable) then the stochastic process

is said to be a continuous-time process.

The state space of the process denoted by S is the set of all possible values that the

random variable X (z) can assume; this set may be countable or uncountable. In

general, a stochastic process may be put into one of four broad categories:
(i) discrete-time and discrete state space.

(ii) discrete-time and continuous state space.

(iii) continuous -time and discrete state space.

(iv) continuous -time and continuous state space.

In queuing systems many examples of stochastic processes can found. For example,

the X (¢#) might be the number of customers that arrive before a service counter by
time #; then {X (¢),r >0} is of the type (iii) above. If X (n) represents the waiting time

of the n™ arrival; then {X(n), n=0,1,2,...} is of type (ii) above.
1.4.3 Markov Chains

A discrete state space process is often referred to as a chain. A process such as (i)
above is a discrete-time chain, and a process such as (iii) is a continuous-time chain.

A stochastic process { X (), t >0} is called a Markov chain, if for every x, € S

Pr{Xn =X, | X}’l—l = x}’l—l"“’XO = Xo}
:PI'{Xn =X, | Xn—l :xn—l}
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The transition probability from state j to state k can be defined as the conditional

probability

P (m)=Pr{X,=kIX, =/} kjeS

1.4.4 Birth-Death Process

The birth-death process is a special case of a continuous-time Markov process where
the states represent the current size of a population and where the transitions are

limited to births and deaths.

When a birth occurs, the process goes from state k to k+1. When a death occurs, the

process goes from state k to state k—1. The process is specified by birth rates

4 }i-0.1.. and deathrates {4,},_, , ...

1.4.5 Transient and Steady-State Conditions of Birth-Death Processes

The variation in the probability of state k is the difference between the probabilities of

moving into and out of state k.

The state-transition diagram of the birth-death process is shown in figure 1.2.

Ao A At M
H1 Mz Hk Mice1

Figure 1.2: The state-transition diagram of the birth-death process
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Assuming that Pi(¢) is the probability that at time # the process is in state k.

dP, (1)
dt

Variation of flow =

Ingoing flow = 4P, ,(t) + 44, P, (t)
Outgoingflow =4, P, (t)+ 1, P, (t)

A steady state condition means that the state probabilities do not depend on the time
any more. Fort — oo, the birth-death process may reach a steady-state (equilibrium)
condition. If a steady-state solution exists, then all probabilities are constant and

hence the steady-state solution is characterized by:

tim 9F® _

0 k=012,...
t—e0  (dt

We denote the steady state probability that the system is in state k(ke N) by p,,
which is defined by

p, =lim P, (z)
So we arrive at the following steady-state flow equations:

0=4p—Aypo k=0
0=—(4 +)p; + APy + M Pt k=1

So, if k=0, then p, =ﬁp0.lfk:1,then 2 Ak Do» and so on.
Y2

i i,

These equations can be recursively solved to obtain the following:

k1A
Pe =Poll—

i=0 My

Furthermore, since the p, are probabilities, the normalization condition ) p, =1can
k=0

be used to get
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k=1i=0 t; 11

1.4.6 Relevant Probability Distributions

1.4.6.1 Bernoulli Distribution

The Bernoulli distribution, is a discrete probability distribution, which takes value 1
(success) with probability p and value O (failure) with probability ¢ =1— p . Therefore

it has a probability mass function,
PX =i)=p'd-p", i=0,1
The expected value of a Bernoulli random variable X is E(X) = p , and its variance is
o’ (X)=p-p).
1.4.6.2 Exponential Distribution
A random variable X has an exponential distribution with parameter &, if and only if

its probability density is given by

)= {ae‘”” t>0

0 otherwise

The expected value of an exponential random variable X is E(X ):l , and its
a

. . 1
variance is, 0°(X)=—.
(24

The exponential distribution is a continuous probability distribution, it is usually used
to represent the time between events that happen at a constant average rate, for

instance, arrivals in queueing theory.

An important property of an exponential random variable X with parameter ¢ is the

memoryless property. This property states that for all x>0 and >0,
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P(X>x+t1X>t)=P(X>x)=e"
The exponential distribution is the only continuous distribution with this property.

1.4.6.3 Poisson Distribution

A random variable X has a Poisson distribution with parameter A , if and only if its

probability distribution is given by

n

P(X :n):ﬂ—'e—‘, n=0,12,...
n.

For the Poisson distribution
EX)=0*(X)=A

Assuming the number of occurrences in some time interval to be a Poisson random
variable is equivalent to assuming the time between successive arrivals follows an

exponentially distributed random variable.

In queueing theory assuming that arrivals follow a Poisson distribution, is equivalent
to assuming that the inter-arrival times (the time between arrivals) are exponentially

distributed.

1.4.7 Laplace and Laplace-Stieltjes Transform

The Laplace transform of a function f(¢), defined for all real numbers ¢ >0, is the
function F(s), defined by:

F(s)=L{f ()} = [ f(t)dr
0

Laplace-Stieltjes Transforms are a generalization of Laplace transforms to functions
that are not necessarily Riemann integrable. This generalization is desirable when we

are dealing with random variables that have a concentration of probability at a point.

Let f(tr) be a real valued function with domain [0,). The Laplace-Stieltjes transform

of f(#) denoted by L(s), is defined by
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L(s) = [ df (z)
0

We say that L(s) exists if the above integral converges for at least one value of s.

1.4.8 Probability Generating Function

Suppose X is a random variable which assumes non-negative integer values 0, 1, 2,...

and let P, =P(X =n), n=0,1,2,... with iPn =1, then the probability generating
n=0

function of X is defined as

P(t)= SPt" =Y P(X =n)t" = E(t*)

n=0 n=0

Generating functions are used in a manner similar to Laplace transform, but for

functions of discrete variables.

1.5 Symbols, Terminologies and Queue Notations

Kendall (1953) introduced a shorthand notation to characterize a range of queueing

models. It is a three-part code A/B/C, where:

» A denotes the distribution of the interarrival time.

» B denotes the distribution of the service times.

» C denotes the number of servers.

For A and B the following abbreviations are very common:

« M (Markov): denotes the exponential interarrival and service time distribution
with probability distribution function A(t)=1-¢*and probability density

function a(r)=Ae ¥, where 1> 0 is a parameter.

¢ D (Deterministic): all values are from a deterministic “distribution” and equal

a constant, i.e. (constant interarrival or service time).
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% G (General): general distribution, not further specified. In most cases at least

the mean and the variance are known.

% E, (Erlang-k): Erlangian Distribution with k phases (k >1). For the Erlang-k

distribution which is usually used for modelling telephone call arrivals at a

central office. The probability distribution function is

k=1 Y
A(Z) — 1_ e*k‘ut z (kﬂ‘l‘)
=0 J

Where x>0 is a parameter.

% H, (Hyper-k): Hyperexponential distribution with k phases. Here the density

function is

A=) q(1—e)

i=1

Where @ >0, g, >0, ie{l..k} are parameters and furthermore Zl;zlq ;=1

must hold.

Kendall's notation has been considerably extended by Lee (1966), to allow it to
represent a wide variety of queueing systems, a queue then is represented by a
sequence A/B/C/D/E, where D denotes the maximum size of the waiting line in the
finite case (if D = <o then this letter is omitted) and E denotes the service discipline
used (FIFO, LIFO and so forth). If E is omitted this means that the service discipline
is FIFO.

Thus, the notation M/M/1 denotes a queue or model system with FIFO service, a
single server, an infinite waiting line, the customer interarrival times are iid
(independent and identically distributed) and exponentially distributed with parameter
A where the customer service times are also iid and exponentially distributed with

parameter /.
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1.6 General Relationships in Queueing Theory

There are certain useful relationships in queueing theory that hold for G/G/c queues.
1.6.1 Traffic Intensity (Server Utilization)

Assuming A, is the average rate of customers entering the system and 4, is the

average rate of serving customers and c is the number of servers in the system, then

the quantity p = i, is called the traffic intensity (also called the utilization factor or
cH

server utilization), p gives the fraction of time that the server is busy.

Obviously, in order for the steady-state conditions to exist it is required that 4 <cu
(p <1). This is the stability condition for the M/M/c systems. When the average

number of arrivals in to the system is more than the maximum number of customers

the system can serve, i.e. A>cu (p>1) this means that the queue size never settles

down, and there is no steady state.

When the arrival rate equals the maximum average service rate of the system, i.e
p =1, the randomness will prevent the queue from ever emptying out and allowing
the server to catch up, and this causes the unbounded growth of the queue. In this
case the steady state does not exist unless arrivals and service are deterministic and

perfectly scheduled.
1.6.2 The Symbol o(Af)

The notation o(g(x))as x — x,, refers to any function that (as x — x,,) decays to zero

at least as rapidly as g(x) [where g(x)>0], that is

o(g(x))

=k <o (Leonard, 1975)
8(x)

lim
X—X()

As the standard mathematical "little 0" notation will be used, this denotes

tim 240 _ g
At—0 At

26



For example, if o(Ar)=(At)“, a>2 then lim @an° _ lim (An)“™" =0.

Ar—0 At At—0

By using this notation we ignore negligible terms which do not have any impact on

the final results.
1.6.3 Little's Formula

As already pointed out, the number of customers queued in front of an arriving
customer clearly gives an indication of the time the arriving customer has to wait in
order to be served (Frode, 1998). In Little's law this fact is considerable, it establishes
a relationship between the average number of customers in the system, the mean

arrival rate and the mean customer response time in the steady state.

Little’s law is a general result holding even for G/G/1 queues; it also holds with other
service disciplines other than FIFO. It states that "the average number of customers in
a queueing system is equal to the average arrival rate of customers to that system,

times the average time spent in that system". (Leonard, 1975).

Assuming that A is the mean arrival rate, L is the expected number of customers in

the system, L, is the expected number of customers in the queue, W is the expected
waiting time in the system and W, is the expected waiting time in the queue. Little's

formulas are; L =AW and L, = ﬂWq

It’s clear from the previous formulas that to evaluate the average waiting time in the
system/queue, it’s enough to know the arrival rate and the mean number of customers

in the system/queue, and vice versa.

Eilon's Proof of this formula is mentioned in (Methi, 2003).
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1.7 Performance Measures

There are a number of performance indicators in the analysis of queueing models that
measure the performance of the system, some of these measures are of interest to the
customer looking for service at the queue, such as; mean response time and the mean
number of customers in the queue. Other measures of interest to the service provider

include; the server utilization and the service cost.
The most relevant performance measures in the analysis of queueing models are:

« The mean response time which is the mean time a customer spends in the

system, i.e. the waiting time plus the service time, W .

% The mean number of customers in the system, L (including the one or those in

service).

% The mean time spent in the queue, W, .
++» The mean number of customers in the queue, Lq .

% The mean utilization of system facility, p. The utilization gives the fraction of

time that the server is busy.

Having such information about the system enables the service centre owner to
determine the values of appropriate measures of effectiveness in the system and

develop an optimal system (according to some criterion).

1.8 Server Vacations

A vacation in a queueing context is a period when the server is not available for
providing service. Arrivals coming during the vacation can go into service only after
the server returns from vacation. There are many situations that lead to a server
vacation, i.e. machine breakdowns, systems maintenance and cyclic servers (where

the server serves more than one queue in the system or serves more than one system).

Doshi (1986) discussed different types of vacation models:
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The single vacation model, in this model there is exactly one vacation after the
end of each busy period. If the server comes back from this vacation, it does not
go for another vacation even if the system is still empty at that time. This type of
vacation may arise from cases like maintenance in production systems, the

maintenance can be considered a vacation.

The multiple vacation model, this type of vacation may arise from cases like
maintenance in computer and communication systems where processors in a
computer and communication systems do considerable testing and maintenance
besides doing their primary functions (processing telephone calls, receiving and
transmitting data, etc.). The maintenance work required is divided into short
segments. Whenever the customers are absent, the processor does a segment of the
maintenance work. When the system is idle, the server takes a vacation (works on
a maintenance segment). Upon return from a vacation, the server starts service
only if it finds K or more customers waiting in the queue, if the number waiting is

less than K then it goes on another vacation (maintenance segment).

The limited service vacation model in which the server takes a vacation on

becoming idle or after having served m consecutive customers, or after time 7.

The way that the server provides service in the system is related with the vacation

type. In his survey Doshi (1986) mentioned some of the service models as the

following:

R/
°

Gated service, in this case, as soon as the server returns from the vacation it places
a gate behind the last waiting customer. It then begins to serve only customers
who are within the gate, based on some rules of how many or for how long it

could serve.

Exhaustive service, in this case, the server serves customers until the system is

emptied, then it leaves for a vacation.

Limited service, in this case, a fixed limit of K is placed on the maximum number
of customers that can be served before the server goes on vacation. The server
leaves for vacation either: (i) when the system is empty, or (ii) when K customers

have been served.
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Since Doshi’s survey many researchers have studied queueing systems with different
kinds of vacations, e.g., Tian, Zhang and Cao (1989), LaMaire (1992), Igaki (1992),
Madan and Saleh (2001), Tian and Zhang (2002), Chang, Takine, Chae and Lee
(2002), Choi and Kim (2003), Arumuganathan and Jeyakumar (2005), Chang and
Takine (2005), Madan and Choudhury (2005), Madan, Al-Rawi and Al-Nasser (2005)
and Banik, Gupta and Pathak (2007).

1.9 Random Breakdowns

In queueing systems in which the server is a machine such as networks,
communication systems, and computer systems, it is realistic to assume that the server
may suddenly break down and hence it will not be able to provide service again until
it is repaired. The breakdowns occur at random and the repair time could follow an

exponential, general, deterministic etc. distribution.

Although, in his survey, Doshi (1986), considered machine breakdowns as a server
vacation we can consider that vacations may take place when a human server in the
system may like to take a pause or may leave the system for an uncertain period of
time from time to time, the breakdowns occur suddenly when an electronic or a
mechanical server is providing service. Obviously, vacations and breakdowns both

affect a system’s efficiency adversely.

Several authors have studied queueing systems subject to breakdowns. They produced
mathematical results in terms of the queue size distribution at a random point of time,
average queue length at a random point of time, average waiting time for a customer,
waiting time cost for a customer, cost for the system’s idle time and many other
performance measures of the system’s efficiency. We refer the reader to Avi-Itzhak
and Naor (1963), Kulkarni and Choi (1990), Federgruen and So (1990), Jayawardene
and Kella (1996), Aissani and Artalejo (1998), Wang, Cao and Li (2001), Madan,
Abu-Dayyah and Gharaibeh (2003a), Wang, Chiang and Ke (2003) and, Wang
(2004).
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In recent years, a significant amount of work has been done on queues with random
breakdowns by several authors, e.g., Vinck and Bruneel (2006), Senthil and
Arumuganathan (2010) and, Jain and Jain (2010).

When a system suddenly stops functioning due to a failure, most of the papers
available in the literature assume that the repair process on the system starts
immediately. However, we will analyze a queueing model where there is a possible
delay in starting the repair process with the aim of determining the effect of this delay

on the efficiency of the system. This again is a very realistic assumption in real life.

1.10 The Supplementary Variable Technique

According to the exponentially distributed inter-arrival and service times of the
MIM/1 queue, it is possible to model the queue size process N(t) by a Markov process.
If the arrival process and/or the service process fails to be memoryless then we can
not model the queue size process N(f) by a Markov process. The supplementary
variable technique was introduced by Cox (1955). Keilson and Kooharian (1960) have
indicated that this technique was used later by many researchers e.g., Henderson

(1972), Choi, Hwang and Han (1998) and, Methi (2003).

This technique is an important one to obtain a transient solution of Non-Markovian
systems. Inclusion of a supplementary variable enables one to write down the
differential equations, as in the case of a Markovian system. To illustrate the
supplementary variable technique we assume that the service times are distributed
according to a general probability density function. Then the N(f) process becomes
intractable due to the missing Markov property. So we introduce a new random
variable X(f) denoting the elapsed service time or the remaining service time for the
customer in service at time f By augmenting the state description by the
supplementary variable it can be shown that the compound two-dimensional
stochastic process (N(f); X (f)) becomes a Markov process. More on supplementary

variable method can be seen in (Methi, 2003).
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The supplementary variable method is a simple and convenient way compared with
the other methods such as the embedded Markov chain approach (Leonard, 1975) and
residual life approach (Bose, 2002).

1.11 The M™/G/1 Queueing System

MMGn represents a single-server queuing system, where the customers arrive in
groups according to a compound Poisson process with the batch size iid random
variable X. The service times of the individual customers are considered to be
generally distributed. The queue discipline is service in the order of arrival between
batches; that is, all customers in the n™ batch are served before the first customer in
the (n+1 )th batch and the service order within a batch is random or units within a

batch are pre-arranged for the purpose of the service. (Methi, 2003).

1.12 Literature Review and the Current Work

It is a realistic situation that the server is unavailable to serve the customers during
occasional periods of time. If the server is human, it is normal that they may have to
stop for a rest. The periods for which the server is unavailable to serve the customers
according to a known schedule or pre-agreed policy is said to be the server vacation

period.

Starting with Gaver (1962), vacation queues have been researched by a number of
people including; Mitrani and Avi-Itzhak (1968), Fuhrmann (1984), Fuhrmann &
Cooper (1985), Doshi (1985), Servi (1986), Blondia (1989), Chatterjee and
Mukherjee (1990), Selvam and Sivasankaran (1994), Madan (2000a), Alfa (2003),

Wang and Li (2008), to mention some.

An extensive survey on queueing systems with vacations can be found in Doshi
(1986). Most of the previous studies are based on the well-known decomposition
property discovered by Levy and Yechiali (1975) and further studied by Keilson and

Servi (1987). This result is one of the most significant results of the research on
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vacation models and it states that the steady- state waiting time is the sum of two
independent random variables. One is the waiting time and the other is the
equilibrium residual time in a vacation. Madan (2000b), (2001) considered Bernoulli
vacation models for two phase heterogeneous service as proposed by Keilson and
Servi (1986) under certain modifications. Madan and Abu Al-Rub (2004) studied the
single server queue with optional phase type server vacations based on exhaustive

deterministic service and a single vacation policy.

Due to its wide applications the single arrival queueing systems M/G/1 have been
studied by numerous researchers, we refer the reader to Madan and Baklizi (2002), Ke

(2003b), Artalejo and Choudhury (2004) and Kella, Zwart and Boxma (2005).

It is more realistic to assume the arrivals occur in batches, rather than individuals, for
example, the compound Poison arrival case. The single server M*/G/1 queue with
batch arrivals, where M denotes a compound Poisson process, have been studied by
numerous authors including, Lucantoni (1991), Choi, Kim, Shin and Pearce (2001),

Al-Jararha and Madan (2003) and, Lee, Baek and Jeon (2005).

More recently, most of the studies have been devoted to batch arrival vacation models

under different vacation policies because of its interdisciplinary character.

Numerous researchers have studied batch arrival queues with vacation time, we refer
the reader to Baba (1986), Borthakur and Choudhury (1997), Frey and Takahashi
(1999), Altman and Yechiali (2006) and, Choudhury (2007). Lee and Srinivasan
(1989) considered a control policy on a MMG/1 with multiple vacations. In1994,
Lee, Lee and Chae have dealt with M™/G/1 with multiple vacations and N-policy.
The N-policy vacation queue model means that the server is turned on when N or
more customers are present, and off only when the system is empty. After the server
is turned off, the server will not operate until at least N customers are present in the
system. Choudhury (2000) has introduced the server setup period to the MYMGn
system and shown that the departure point queue size distribution is the convolution

of the distribution of three independent random variables.

Chae, Lee and Ahn (2001) proposed an alternative approach, called the arrival time
approach (ATA), to understand various M/G/1-type queues with generalized

vacations. They showed, by an example, that the steady-state queue size distribution
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of an M™/G/1 with multiple vacations at an arbitrary time can be decomposed into
those of an ordinary M™/G/1 and the number of customers during the vacation

period.

Choudhury and Madan (2004) studied a batch arrival queue, where the concept of a
Bernoulli schedule along with a vacation time are introduced for a two phase
heterogeneous queueing system and obtained the queue size distribution at a departure
epoch as a classical generalization of the well-known Pollaczek— Khinchine formula
for this type of model. The same year, Madan, Al-Nasser and Al- Masri (2004),

considered the batch arrivals queue with optional re-service.

Hur and Ahn (2005) studied a single server queueing system whose arrival stream is a
compound Poisson process and service times are generally distributed. They
considered three types of idle period, threshold, multiple vacations, and single
vacation. For each model, they assumed after the idle period, the server needs a

random amount of setup time before resuming service.

In recent years, a significant amount of work has been done on batch arrival queues
with vacations and batch arrival queues with random breakdowns by several authors.
We mention a few recent papers, Ke (2007a), Choudhury, Tadj and Paul (2007),
Atencia, Bounza, and Moreno (2008), Maraghi, Madan and Darby-Dowman (2009
and 2010), Jain and Upadhyaya (2010) and finally the current researchers, Khalaf,
Madan and Lucas (2010, 2011a, 2011b, 2001 1¢c and (2012).

1.13 Research Objectives

Vacations may take place when a human server in the system wishes to take a pause
or leave the system for an uncertain period of time from time to time. Breakdowns
may occur suddenly when an electronic or a mechanical server is providing service.
Obviously, vacations and breakdowns both affect a system’s efficiency adversely.
Several authors have studied such systems and produced mathematical results in
terms of the queue size distribution at a random point of time, average queue length at

a random point of time, average waiting time for a customer, waiting time cost for a
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customer, cost for the system’s idle time and many other performance measures of the

system’s efficiency.

In most of the systems mentioned in the literature, the server joins the system
immediately after the completion of a vacation period. However, it is a realistic
assumption that there is a delay in re-joining the system. In this research we study
queueing systems in which the server takes an optional extended vacation before re-

joining the system.

Similarly, when a system suddenly stops functioning due to a failure, most of the
papers available in the literature assume that the repair process on the system starts
immediately. However, we analyze a queueing model with delay in starting the repair
process with the aim of determining the effect of delay on the efficiency of the

system. This again is a very realistic assumption.

Recently Maraghi (2008) has studied some queueing systems with vacations and
breakdowns. All these research papers assume no server delay in joining the system
after completion of a vacation period and no delay in starting the repair process after a
breakdown occurs. Our aim is to generalize not only some of the work done by

Maraghi (2008) but also some other systems studied earlier by other authors.

In addition to extended vacations and delay in starting the repair process, we
introduce the idea of a stand-by server in some of the systems. There are some
systems in the queueing literature, e.g., Madan (1995), where a stand-by server is
employed in the system when the main server is under repair. However, we study a
new system which employs a stand-by server(s) not only during the repairs of a server

but also during the period of vacation of the server.
Therefore, this research is conducted with the following objectives:

1. To determine the steady-state behavior of batch arrival queueing systems with
Bernoulli schedule general vacations followed by a further optional extended

vacation, random breakdowns general delay and general repairs.

2. To determine the steady-state behavior of batch arrival queueing systems with

Bernoulli schedule general vacations, random breakdowns general repairs and
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a stand-by server who’s service time follows an exponential distribution

during vacation periods and repair times of the main server.

3. To determine the steady-state behavior of batch arrival queueing systems with
Bernoulli schedule general vacations, random breakdowns general repairs,
general delay and a stand-by server who’s service time follows an exponential

distribution during vacation.

4. To determine the steady-state behavior of batch arrival queueing systems with
Bernoulli schedule general vacations followed by a further optional extended
vacation, random breakdowns, general repairs and an exponential stand-by

service time distribution during repairs.

1.14 Research Methodology

The following are the commonly employed methods of solving a queueing model:

The method of recursive solution.
Generating function approach.
Laplace-Steiltjes transformation approach,

Integral equation approach.

A

Matrix-geometric method.
6. Supplementary variable technique.

We propose to use primarily methods 1, 2, 3 and 6 in our work.

1.15 Outline of Forthcoming Chapters

The following chapters represent the way the research progressed. In chapter two we
present the basic queueing model which forms the starting point for later
investigations in the dissertation which we develop for different queueing systems.
The basic model is based on the work of Maraghi, et. al. (2010). However we give
details of solving the equations and all the steps from the specification of the first

probability equations to the final closed form solution of the queue size at a random
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epoch, the mean waiting time in the system and the mean waiting time in the queue,
etc. Giving such details avoids showing repeatedly the same equations in later
chapters. In the basic model we consider the batch arrival queueing system MMGn
in which after any service completion the server has the option to leave for a vacation
with probability p or continue service with probability 1 — p. The server may suffer a
random breakdown and if so the repair process on the system starts immediately.

Although the customers arrive in batches, they are served one by one.

In chapter three we consider that the server may go on an extended vacation after the
original vacation is completed with probability r or re-joins the system to serve the
customers directly after the vacation with probability1- r. Moreover we assume that
when the server breaks down, it does not enter the repair process immediately and

there is a delay time waiting for the repair to start.

In chapter four a stand-by server has been added to the basic model. The stand-by
server is assumed to serve the costumers during the vacation periods and repair

periods of the main server.

Chapter five studies an MYMGn queuing system with Bernoulli schedule server
vacations. The server serves only one customer at a time and it may suffer from
random breakdowns. It is assumed that there is a delay time before starting the repair
process after the server's random breakdown. The system deploys a stand-by server

during the vacation period.

In chapter six we study the MMGn queueing system with Bernoulli scheduled
vacations. In this chapter the server may go on an extended vacation after the original
vacation is completed with probability r or rejoin the system to serve the customers
directly after the vacation with probability 1—- r. In addition to vacations and extended
vacations, the system may suffer from random breakdowns from time to time. The
repair process starts immediately after the breakdown. The system deploys a stand-by

server only during the repair period.

For all models investigated, we assume that the service times, vacation times,
extended vacation times, delay times and repair times have different general
(arbitrary) distributions while the stand-by service times and the breakdown times

follow exponential distributions.
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The conclusions and contributions of this research with suggestions for further

research are presented in chapter seven.

»<
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Glossary of Notations, Definitions and Abbreviations

In the rest of this dissertation we consider the following list of notations and

definitions:

Notations Definitions
Probability that at time ¢, there are n
(n 2 0) customers in the queue
P (t,x) excluding the customer in service and the

elapsed service time of this customer is
X.

P.(t)=]P (t.x)dx

Probability that at time ¢, there are n
(n > 0) customers in the queue excluding

the customer in service irrespective of
the value of x.

P (x)=1im P, (¢, x)

The steady state probability
corresponding to P, (¢,x).

P =1limP (1)

The steady state probability
corresponding to P ().

P(x,2)=37z"P(x), P()=%7"P,
n=0 n=0

The probability generating function of
the queue size when the server is active.

V,(t,x)

Probability that at time ¢, there are n
(n=0) customers in the queue and the

server is on vacation with elapsed
vacation time x.

V ()= [V, (t, x)dx

Probability that at time ¢, there are n
(n=0) customers in the queue and the

server is on vacation irrespective of the
value of x.

V,(x)=limV,(t,x)

The steady state probability
corresponding to V. (z,x).
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v, =limV, (1)

The steady state probability
corresponding to V (7).

V()= 2,00, V=2,

n=0 n=0

The probability generating function of
the queue size when the server is on
vacation.

R (1,x)

Probability that at time ¢, there are n
(n=0) customers in the queue, and the
server is under repair with elapsed repair
time x.

R (t)=R (1, x)dx

Probability that at time ¢, there are n
(n=0) customers in the queue and the
server is under repair irrespective of the
value of x.

R (x)=limR (t,x)

The steady state probability
corresponding to R (t,x) .

R =limR, (1)

[—>00

The steady state probability
corresponding to R (7).

R,(x,2)=Yz'R(x), R ()=37'R,
n=0 n=0

The probability generating function of
the queue size when the server is under
repair.

Q(t)

Probability that at time ¢, there are no
customers in the system and the server is
idle but available in the system.

lim () = Q

The steady state probability
corresponding to Q(¢) .

D (t,x)

Probability that at time ¢, there are n
(n=0) customers in the queue, and the
server is inactive due to a system
breakdown and is waiting for repairs to
start with elapsed delay time x.

D, (t)=]D, (t,x)dx

Probability that at time ¢, there are n
(n>0) customers in the queue and the

server is waiting for repairs to start
irrespective of the value of x.
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D, (x)=lim D, (z,x)

The steady state probability
corresponding to D (,x).

D, =limD (1)

t—o0

The steady state probability
corresponding to D (¢).

D,(x,2)=%z'D,(x), D,(2)=3%z'D,
n=0 n=0

The probability generating function of
the queue size when the server is waiting
for a repair to start (on delay).

E (t,x)

Probability that at time ¢, there are n
(n=0) customers in the queue, and the
server is on an extended vacation with
elapsed extended vacation time x.

E () =[E (t,x)dx

Probability that at time ¢, there are n
(n=0) customers in the queue and the
server is on an extended vacation
irrespective of the value of x.

E (x)=limE, (1,x)

The steady state probability
corresponding to E (¢, x).

E =LmE, (1)

The steady state probability
corresponding to E (7).

E,(x2)=Y7'E(x), E()=37E,
n=0 n=0

The probability generating function of
the queue size when the server is on an
extended vacation.

C)=Y7",

n=l

The probability generating function of
the batch arrival size.

5,(2)

The probability generating function of
the queue length no matter what the state
of the system is.

G(x), g(x)

The distribution function and the density
function respectively of the service
times.

B(x), b(x)

The distribution function and the density
function respectively of the vacation
times.
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The distribution function and the density

H(x), h(x
(), h(x) function respectively of the repair times.
The distribution function and the density
function respectively of the delay times.
W(x), w(x)
The distribution function and the density
F(x), f(x) function respectively of the extended
vacation times.
G The Laplace-Stieltjes transform of the
(@) service times G(x).
B (b) The Laplace-Stieltjes transform of the
vacation times B(x).
H b The Laplace-Stieltjes transform of the
®) repair times H (x) .
W' (b) The Laplace-Stieltjes transform of the
delay times W(x).
o The Laplace-Stieltjes transform of the
®) Extended vacation times F'(x).
E() The average size of the batches of the
arriving customers.
The mean vacation time.
EWV)
The mean repair time.
E(R)
The mean delay time.
E(D)
The mean extended vacation time.
E(eV)
The second factorial moment of the batch
E(I(I-1)) size of arriving customers.
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The second moment of the vacation

E(Vz) times.

The second moment of the repair times.
E(R?)

The second moment of the delay times.
E(D?)

The second moment of the extended
E(eV?) vacation times.

»><
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Chapter Two: The Basic Mathematical Model: An M™*Y/G/1
Queue with Bernoulli Schedule, General Vacation Times,
Random Breakdowns and General Repair Times

2.1 Introduction

Several research results have been published including a study of the MYG/1
queuing system with vacations and the M"/G/1 queuing system with random
breakdowns. We refer the reader to Ke (2001), Niu, Shu and Takahashi (2003),
Choudhury (2003a) and, Xu, Bao and Tian (2007).

In recent years many authors have studied batch arrival queueing systems. Choudhury
and Madan (2005) analyzed a two-stage batch arrival queueing system assuming that
the server vacation is the modified Bernoulli schedule vacation under an N-policy.
Kumar and Arumuganathan (2008) also studied the batch retrial queueing systems
with general vacation time under a Bernoulli schedule but with two phases of
heterogeneous service. Chang and Ke (2009) investigated an MMG/1 retrial queueing
system with a modified vacation policy by applying the supplementary variable

technique.

In this chapter we introduce the basic mathematical model of the batch arrival
queueing system M™/G/1 in which, after every service completion the server has the
option to leave for a vacation with probability p or continue service with probability 1
— p. Moreover, we assume that the server may breakdown randomly, and the repair
process starts immediately after the breakdown. Although customers arrive at the
service station in batches of variable size, they are served one by one. We assume that
the service times, vacation times and repair times are generally distributed while the

breakdown times are exponentially distributed.

This basic model will be used in further chapters to develop queueing systems with
different assumptions which lead to new contributions of knowledge in queueing

theory.
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The general equations of this chapter are based on the work of Maraghi, et. al. (2010)
but are suitably modified for use by us in our extensions to various queueing models.

The procedure described for solving these problems is the work of the current author.

The rest of this chapter is organized as follows: the assumptions underlying the
mathematical model are given in section 2.2. In section 2.3 all the steady state
equations governing the basic mathematical system are formulated. In section 2.4 the
supplementary variable technique is used to solve the equations of section 2.3 to find
the queue size distribution at a random epoch. The average queue size and the average

waiting time are given in section 2.5.

2.2 Assumptions

We consider a batch arrival queueing system, where customers arrive at the system

according to a compound Poisson process in batches whose size is a random variable
X with batch arrival rate 4 . Letc, =Pr[X =1i], then Ac,Atis the probability that during
a short time interval (¢,z+ Ar)a batch of size i (i=1,2,3,...) arrives at the system.

More details about the batch arrival queueing systems can be found in (Methi, 2003).

Although the customers arrive in groups, the single server can serve only one
customer at a time based on the (FCFS) discipline. The service times are assumed to

follow a general distribution. Let G(x) and g(x) be the distribution function and the

density function of the service time respectively. The conditional probability of a

service completion during the interval, (x,x+ Ax], given that the elapsed service time

is x, is given by u(x)Ax, so that u(x)=g(x)/(1-G(x)) and, therefore
g(x) = u(x)exp(—[ u(s)ds).

0
The derivation of g(x) is given in appendix A, (A.1).

Once the server completes a service it can go on a vacation of a random length of time

with probability p, or stay in the system providing service with probability 1— p. The

vacation times are assumed to follow a general distribution.
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Let B(x) and b(x) be the distribution function and the density function of the

vacation time respectively. The conditional probability of a vacation completion

during the interval, (x,x+ Ax], given that the elapsed vacation time is x, is given by

S (x)Ax, so that B(x) =b(x)/(1-B(x)) which implies b(x)= S(x) exp(—f B)dv).

The system may breakdown at random, and breakdowns are assumed to occur
according to a Poisson stream with mean breakdown rate & >0. Further we assume
that once the system breaks down, the customer whose service is interrupted goes to
the head of the queue. Once the system breaks down, its repairs start immediately.
The duration of repairs follows a general (arbitrary) distribution with distribution

function H (x) and density function z(x) . Let y(x)Ax be the conditional probability

of a completion of repair during the interval (x,x+ Ax] given that the elapsed repair

time is x, so that y(x) = h(x)/(1— H (x)) implies h(x)=y(x) exp(—f y(t)dt).

We assume that all stochastic processes involved in the system are independent of

each other.

2.3 Equations Governing the General Mathematical Model

According to the assumptions mentioned in the previous section, the following set of

equations represent the queueing system we study in this chapter

P.(t+At,x+Ax) = (1- AAH)(1 - u(x)Ax)(1— @A) P, (t, x)
Q2.1

" n—=i

+ﬂic P_(t,x)At n=>1
B(t+At,x+Ax)=(1~- AAD(1— p(x)Ax)(1— oA P, (t,x) 2.2)

V (t+At,x+Ax) = (1- AAD) (1 - ,B(x)Ax)Vn(t,x)+ﬂicV t.x)Ax  n=1  (23)

V,(t+At, x+ Ax) = (1- A1 - B(x)Ax)V, (¢, x) 2.4)
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R (t+At,x+Ax)=(1-AAr)(1- y(x)AX)R, (t,x) + ﬂic.R (t, x)At n>1 2.5

" tn—i
i=l

R, (t+At,x+ Ax) = (1-AAH)(1— y(x)Ax)R, (¢, x) (2.6)

0t +A1) = (1- AADQ() +(1- p)]oPo (1, 2) () Atdx
0
- i 2.7)
+ [ R, (6, 0)y(x) Atdx + [V, (8, %) B(x) Ardx
0 0

A full explanation of equations (2.1) to (2.7) is given in appendix B, (B.1).

Subtracting and adding a term P, (¢, x+ Ax) to the LHS in equation (2.1), then dividing

by At(Ax)and taking limits as At — 0 (Ax — 0), we get

% P (t,x)+ ai P (t,x)=—(A+ u(x)+ )P (t,x)+ ﬂi c¢,P_.(t,x) (2.8)
X i=1

taking limit as ¢ — oo, this yields

aip" (X)=—(A+ p(X)+ P () +AXc,P_(x) n=1 2.9)
X i=1

Subtracting and adding a term P, (#,x+ Ax) to the LHS in equation (2.2), then dividing

by At(Ax)and taking limits as At — 0(Ax — 0), we get

aiPO (x)=—(A+ u(x)+a)P,(x) (2.10)
b

By following the same process we set out to get equations (2.9) from equations (2.1),

and equation (2.10) from (2.2). From equations (2.3) to (2.6) we get respectively

9 V, () ==(4+B(x)V, (x)+ ﬂi ¢V, (x) nzl (2.11)

ox el

aa—xVo (x)=—(A+ B(x)V, (x) (2.12)

47



aiRn(x) +(A+Y())R, (x) = ﬂf ¢R_(x) n=1 (2.13)
X i=1

;Ro (x) =—(A+ y(x)R,(x)=0 2.14)
X

Dividing equation (2.7) by At and taking limit as At — 0 , we obtain

aazQ(t) =-J0+ IRO (t, )y (x)dx

i} (2.15)
+ [Vy 6,0 B)dx+ (1= p) [ Py (1, x) a(x)dx
0 0
taking limits as # — oo, we get
0=—20 +[R, () ¥(x)dx+ ]V, (0 f(x)dx+(1 - p)] P,(x)u(x)dx (2.16)
The following boundary conditions are used to solve the above equations
Pn (0) = (1 - p).[Pll+1 (X)ﬂ(x)dx"l' IKHI (x)ﬂ(x)dx
o 0 (2.17)
+IR11+1 (x)j/(x)dx-‘rﬂ'anQ nZO
0
V,(0)= pTPn (X)u(x)dx, n=0 (2.18)
0
R (0)= aT P (x)ydx=aP_, n21 (2.19)
R,(0)=0 (2.20)

A full explanations of the boundary conditions (2.17) to (2.20) are given in appendix
B, (B.2).
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2.4 Distribution of the Queue Length at any Point of Time

To solve equations (2.9), to (2.14), for a closed form solution we follow the procedure

set out below.

We multiply equation (2.9) by z", and sum over n from 1 to oo, and add it to

equation (2.10) resulting in the following equation

aqu (x,2)+ (A= AC(2) + u(x) + )P, (x,2)=0 2.21)
X

Following a similar process, from equations (2.11) and (2.12), (2.13) and (2.14), we

get respectively
aa_xv'f (x,2)+ (A= AC(2) + BV, (x,2) =0 (2.22)
9 R, (.2 + (A= AC(2)+ )R, (x.2) =0 (223)
ox

Multiplying equation (2.17) by z"*', and summing over n from 0 to oo, results in
2P, (0,2) =

(1= p)[ P, (x. )ty + [V, (6, ) B)dx+ [ Ry (v, 2)y(0)dx + AC()Q  (224)
0 0 0
- [(1 = )| Byu(x)dx+ [Vo(x) Bx)dx + [ Ry (x)7(x)dx }
0 0 0

Using equation (2.16) to replace

— {(1— p)IPO () u(x)dx+ IVO (x) B(x)dx+ IRO(x)y(x)dx J by — A0, we have
0 0 0

2P,(0,2) = (1= p)[ P, (x, D)0k + [V, (x, 2) B(x)dx
o 0 (2.25)
+ IRq (x, 2)y(x)dx + AQ(C(z)—1)
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Next we multiply equation (2.18) by z"and sum over n from 0 to o, to obtain

V,(0,2) = p] P, (x, 2)iu(x)dx (2.26)

Similarly, multiplying (2.19) by z" and summing over n from O to oo, adding to
(2.20), we obtain

R (0,2) = az[ P, (x, 2)dx = 0zP, () 2.27)

Integrating equation (2.21) from O to x yields

—(/1—/1(‘(:)4-(1),:—?/1(1)111
0

P (x,2)=P (0,2)e (2.28)
Where P (0,z)is given by equation (2.25).

Let a = A—AC(z)+ « . Integrating equation (2.28) by parts with respect to x yields

P.(2)="P, (0, {#J (2.29)

Where G'(a) = [e *7““**dG(x) is the Laplace-Stieltjes transform of the service
0

times G(x).
The details of integrating equation (2.28) by parts is given in appendix A, (A.2).

Multiplying both sides of equation (2.28) by x#(x) and integrating over x we get
[P, (x, 2)u(x)dx = P,(0,2)G " (a) (2.30)
0

Using equations (2.30) and (2.26) we get
V.(0,2)= pP,(0,2)G (a) (2.31)

likewise, integrating equation (2.22) from O to x, we obtain
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x

—(A=AC(2)x—] B(t)dt

V. (x,2)=V,(0,2)e 0 (2.32)
Substituting for V, (0,z) from (2.31) in equation (2.32) we get

x
—(A=AC(2))x=|[ B(t)dt

V. (x,2)= pP(0,2)G (a) e 0 (2.33)
Let m=A-AC(z) . Integrating equation (2.33) by parts with regard to x yields

pP,(0,2)G (a) (1- B (m))

m

V,(2)= (2.34)

Where B"(m)= J‘e‘(’l‘mz”de(x) is the Laplace-Stieltjes transform of the vacation
0
times B(x).

Multiplying equation (2.33) by #(x) and integrating over x we get
qu(x, 2)B(x)dx = pP,(0,2)G (a)B" (m) (2.35)
0

Integrating equation (2.23) from O to x, yields

(A=A x~[p)dr
R,(x,z) =R,(0,2)e 0 (2.36)

Substituting for R, (0,2) from (2.27) and (2.29) in equation (2.36) we obtain

azP (0,2)(1- G (a)) e froa
e

R (x,2) = (2.37)
a
Integrating equation (2.37) by parts with respect to x we obtain
ozP. (0, )\1-G (@)\l—H (m
R (2)= i 2 @) (m) (2.38)

am
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=3

Where H™ (m) = J‘e"(’HC(””‘dH (x)is the Laplace-Stieltjes transform of the repair
0

times H (x) .

Multiplying both sides of equation (2.37) by y(x) and integrating over x we obtain

oo ’ 1—G* *
[ R, (. yp(o)dx = ack, 0.2 - @’ om (2.39)
0
Now using equations (2.30), (2.35) and (2.39) in equation (2.25) yields
—amQ
P(0,2)= * e —— (2.40)
" de=G @i=p+ pB (m))-ell-G (@)H (m)
Substituting foqu(O, Z) in equation (2.29), (2.34) and (2.38) we get
P ()= : ml-G@) (2.41)
e -G (@)l- p+ pB (M) - az(l- G (@))H" (m)
—apQG'(a) (1-B' (m))
V()= _ A _ _ 2.42
() alz—G (a)l- p+ pB (m)))-z(1-G (a))H (m) (242
R@= S (243)

=G (a)l- p+ pB'(m)))-azll -G (@) H (m)

Let S, (2) be the p.g.f (probability generating function) of the queue length no matter

what the state of the system is, i.e. S (2) =P (2)+V (2)+R (2).
Then adding equations (2.41), (2.42) and (2.43) we obtain

_—0l-G"@lm+ali-H m))-ap06 @ [1-B m)
alz-G @1- p+ pB (m)))- el - G (@) )" (m)

S,(2) (2.44)

The normalization condition S, (1) +Q =1, is used in order to determine Q.
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Because of the indeterminate form (0/0 form) of S_(z), when z =1, then L’Hopital’s

rule is applied on equation (2.44) to obtain

lim S,,(2) =
z—1

ﬂE(I)Q(l - G*(a)XI +aE(R))+ padE()QE(V)G (&) (2.45)

all- pG* (@ AE(DEW))- AE(D1-G (@) |1+ eER))- all - G (@)

Where C(1) =1, C’(1) = E(I) is the average size of the batches of the arriving
customers, B* (0) =1, B* (0)= AE(1)E(V), H*(0)=1, and H* (0)=AE(I)E(R).

Hence, adding Q to the right hand side of equation (2.45) and equating to 1 we obtain

1 ER) 1
- - —— — 2.46
> )+ @ E(R)+pE(V)j ( )

0 :I—ZE(I)(

Equation (2.46) gives the probability that the server is idle. From equation (2.46) the

utilization factor, p of the system is given by

—+ E*(R) —i—E(R)+pE(V)j (2.47)
oG (o) G (o)

,0=/1E(1)[

The details of applying L’ Hopital’s rule on equation (2.44) and the steps to obtain Q
are given in appendix A, (A.3).

2.5 The Mean Length of the Queue and the Mean Waiting Time

To find L, , the steady state average queue length, where L, = diS ¢(2) , we note
Z z=1

that this formula is of the 0/0 form, we write S, (z)given in (2.44) as
S g (z)=N(z)!/ D(z) where N(z) and D(z) are the numerator and denominator of the
right hand side of (2.44) respectively. Then using L'Hopital's rule twice we obtain

L, =lim D'(z)N"(z) - N'Z(Z)D”(z)
-l 2(D'(2))

(2.48)
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The details of obtaining equation (2.48) is given in appendix A, (A.4).
Finding the required derivatives at z = 1 we have
N'(1)= Q/IE(I)((I - G*(a))(1+ OE(R))+ O@E(V)G*(a)) (2.49)
N'() =
0UE) ol -G (@) E®?)
+ 2G*,(a)(l +aE(R)+ opG (@)E(V?)—2pE(V) (G*(a) + aG*,(a)D (2.50)

+QAE(I(I - 1))(apG*(a)E(V) + (1 -G (@) )((1 + aE(R))))
+ 2a/1E(1)Q(1 - G*(a))E(R)

D)= —ﬂE(I)(ap(E(V)G*(a) + (1 - G*(a))(l + aE(R)))+ oG () (2.51)

D’(1) = ~(AE(1)2G" (@)|apE(V?) - aE(RY) - 2p(V))

—AE(I(I - 1))((1 - G*(a))ﬁ +aE(R) + apG*(a)E(V)))
i (2.52)
—2(AE(1))*G" (a)(1+ aE(R) — opE(V))

- 2/1E(1)[1 + aE(R)(l - G*(a))+ aG” (a)J ~a(AE(1)*E(R?)

Where E(Vz)is the second moment of the vacation times, E(Rz) is the second
moment of the repair times, E(I(I—1))is the second factorial moment of the batch

size of arriving customers, and Q has been found in (2.46).

Substituting for N'(1), N"(1), D'(1), and D"(1) from (2.49), (2.50), (2.51), and (2.52)

into (2.48) we obtain Lq in a closed form. Further, the mean waiting time of a

customer can be found using Little's law W, =L,/ A.

The work detailed here is now further extended in the forthcoming chapters.

»<
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Chapter Three: An M/G/1 Queue with Bernoulli Schedule,
General Vacation Times, General Extended Vacation Times,
Random Breakdowns, General Delay Times and General
Repair Times

3.1 Introduction

Queuing systems with server vacations and/or random system breakdowns have been
studied by numerous researchers as we mentioned earlier. For more papers in this area
we refer the reader to Choudhury and Borthakur (2000), Takine (2001), Choudhury
(2002), Madan, Abu-Dayyah and Saleh (2002), Anabosi and Madan (2003), Madan
and Al-Rawwash (2005), Katayama and Kobayashi (2006), Madan and Choudhury
(2006), Liu, Xu and Tian (2007), Ke (2007b), and Wang and Li (2010), to mention a

few.

In most of the papers including the ones mentioned above the authors assume that
whenever the system breaks down the repair process starts immediately. It is quite
common that as a result of a sudden breakdown, the system may have to wait for
repairs to start. We term the time the server spends waiting for repairs to start as

'delay time'.

Also most of the analyses in the past have assumed that just after the vacation period
is over, the server immediately rejoins the system and starts providing service to the
waiting customers. However, in many real life situations, the server may have to take
an extended vacation due to a variety of reasons including illness, personal

engagement or the need to attend to some other task.

As in the basic model, we study an M™/G/1 queuing system with Bernoulli schedule
server vacations. The server serves one customer at a time and it may suffer from

random breakdowns.

The first new assumption in this chapter is that the repair process does not necessarily
start immediately after a breakdown, thus there may be a delay before starting repairs.

The second new assumption in this chapter is that the server may go on an extended
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vacation after the original vacation is completed with probability r or rejoins the

system to serve customers directly after the vacation with probability 1-r.

We assume that the service times, vacation times, extended vacation times, repair
times and delay times each have a general distribution while the breakdown times are

exponentially distributed.

It is the first study of a queueing system with five general distributions. From our
literature review we find that the maximum number of general distributions

considered in most queueing systems to be three.

This chapter is organized as follows: the mathematical model is given in section 3.2.
In section 3.3 all the equations representing the mathematical system in its steady
state are formulated. The supplementary variable technique is used in this section to
obtain the closed form of the p.g.f of the queue length. The mean size of the queue
and the mean waiting time in the queue are given in section 3.4. This along with three
particular cases are given in section 3.5. The three cases are used to show the
relationship between this work and previous works done by other researchers.

Numerical and graphical illustrations are given in section 3.6.

3.2 Mathematical Model

We now extend the basic model of chapter two to account for delay times and
extended vacation times. When the system breaks down, there is a potential delay

before the repairs start. Let W (x) be the distribution function of the delay time which
follows a general distribution, and w(x)its density function. Let @(x)Ax be the
conditional probability of a completion of a delay during the interval (x,x+ Ax] given

that the elapsed delay time is x, so that @(x)=w(x)/(1-W(x))and, therefore

w(x) = () exp(—i P(t)dr).

After a vacation period the server has the option of taking an extended vacation. We
assume that with probability r the server takes an extended vacation and with

probability 1—r the server rejoins the system immediately after completion of a
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vacation. Let F(x) and f(x) be the distribution function and the probability density

function respectively of the extended vacation time which follows a general

distribution. Let #(x)Ax be the conditional probability of a completion of an extended

vacation during the interval (x,x+ Ax] given that the elapsed extended vacation time

is x, so that 8(x) = f(x) /(1 - F(x)) and, therefore f(x)=6(x) exp(—f G(t)dr).
0

3.3 Equations Governing the System and the Distribution of Length

of the Queue at any Point of Time

According to the assumptions mentioned in the previous section we now introduce the

following new equations to account for delays and extended vacations,

D, (t+At,x+Ax) = (1- AAt)(1—@(x)Ax)D,, (1, x) + ﬂ.anciDn_,. t,x)At n=>1 (3.1

i=l1

Dy(t+At,x+Ax)=0 (3.2)

E, (t+At,x+Ax) =(1-AA)(1-O()AD)E, (t,x) + ﬂic'E

i n—i
i=1

t, At n>1 (3.3)
E (1 +At, x + Ax) = (1— AAD(1 - B(x)AX)E, (1, x) (3.4)

Ot +Ar)=(1-AAHQ@) +(1- p)]: P, (t,x)u(x)Atdx + ]:Ro(t, x)y(x)Atdx
. L ’ (3.5)
+ (1= Vy(t, %) B(x) Atdx+ [ E, (1, 0)8(x) Atdx

A full explanation of equations (3.1) to (3.5) is given in appendix B, (B.3).

Subtracting and adding a term D, (#, x + Ax) to the LHS in equation (3.1), then
dividing by At and taking limits as Ar — 0, then taking limit as # — oo, this yields

aiD”oc) +(A+@(x)D, (x) = quDﬂ_i (x) n=l (3.6)
X i=1
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From equation (3.2) we get

iD(,(x) =0 (3.7
ox

Following the same process from equations (3.3), (3.4) and (3.5) we obtain

respectively
aiEn () +(A+O0)E, (1) =AY ¢.E, ,(x) n=1 (3.8)
X i=1
ai E, (x)=—(A+6(x)E,(x) 3.9)
X

A0 = [ Ry(x)y(x)dx + (1= p)[ B (x)p(x)dx
L " (3.10)
+ (1= 1) [ Vo) B(x)dx + [ Ey (x)0(x)dx

Thus the equations governing this system are (3.6) to (3.10), and (2.9) to (2.16).

The following boundary conditions are used to solve the above differential equations

P,(0) = (1= p)[ P (0ps(x)dx+ (1=1)[ V.., () B(x)dx

+IE,M (0)O(x)dx + IR”H (Oy(x)dx+Ac, 0 n>0 o
V,(0)= pIPn Ouxdx, 10 (3.12)

E (0)= rIVn (NB()dx  n=0 (3.13)

D,(0)= aI P (vydx=aP., n>1 (3.14)
R.(0)= IDn(x)(o(x)dx, n>0 (3.15)
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D,(0)=R,(0)=0 (3.16)

A full explanations of the boundary conditions (3.11) to (3.16) are given in appendix
B, (B4).

We multiply equation (3.6) by z", and sum over n from 1 to o, add this to equation

(3.7) and after simplification we obtain the following equation

0

a—Dq(x,z)+(/1—/1C(z)+¢)(x))Dq(x,z) =0 (3.17)
X

Following the same process from equations (3.8) and (3.9) we obtain

aiEq(x,z)+(/1—/1C(z)+B(x))Eq(x,z):0 (3.18)
X

Multiplying equation (3.11) by z"*!, and summing over n from 0 to o, we obtain
2P, (0,2) = (1= p) [ P, (x, () + A=) [V, (x, ) B(x)dx+ [ R, (x, ) () + [ E,, (x, 2)0(x)dx
0 0 0 0

+AC(2)Q~| (1= p) [ By (x) p(x)dx++(1=1) [V (x, 2) B(x) i+ [ Eg (x)0(x)x+ [ Ry (x,2) p(x)dx
0 0 0 0

Using equation (3.10) from the above equation we obtain

2P, (0,2) = (1= p)[ P, (x, D(x)dx + (1= ]V, (x, 2) B(x)dlx

+ IRq(x, 2)y(x)dx + IEq(x, 2)0(x)dx + A0(C(z) - 1) .
Multiplying equation (3.12) by z" and summing over n from 0 to o , we obtain
V,(0,z2)= p]: P, (x, 2) i(x)dx (3.20)
0
Following the same process with equations (3.13), (3.14) and (3.15) we get
respectively
E,(0,2) = rIVq(x, 2) B(x)dx 3.21)
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D,(0,z)=0zP,(2) (3.22)

R, (0,2)= J'Dq (x, 2)@(x)dx (3.23)
0
Integrating equation (3.17) from O to x, yields

—(/'L—/'LC(z))x—)j((p(t)dt
D, (x,2)=D,(0,2)e 0 (3.24)

Substituting for D, (0,z) from (3.22) in equation (3.24) we get

—(/'L—/'LC(z))x—}(qJ(t)dt
D, (x,z) = azP,(2)e 0 (3.25)

Integrating equation (3.25) by parts with respect to x we obtain

=w5@m—wﬁm)

m

D,(z) (3.26)

Where W (m) = J‘e_(’1 ~ACEDY g (x)is the Laplace-Stieltjes transform of the delay
0

time W(x).

Substituting for £, (z) from equation (2.29) yields

_ P, (0.0(1-G"@fi-w"om)

am

(3.27)

D,(2)

Multiplying equation (3.25) by ¢(x) and integrating over x then substituting for F,(z)

from equation (2.29) we obtain

P, (0.2)1-G" @ W (m)

a

j D, (x,2)@(x)dx = (3.28)
0

From equations (3.23) and (3.28) we obtain
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azP, (0, (1= G (@)W (m)

a

R (0,2)=

(3.29)

Note that R (0,z) given in equation (3.29) is different from the one given in equation

(2.27), and will affect equation (2.36), where substitution for R (0,z) from (3.29) in

(2.36) gives

ozP, (0,z)(1—G*(a))W*(m) —M—ﬂaz»x—g y(ndi
= e

a

R, (x.2)
Integrating equation (3.30) by parts with respect to x we obtain

P, 0.9(1-G" @W* mli-H"m)

Rq(Z)z am

Multiplying equation (3.30) by #(x) and integrating over x we obtain

azP, (0, 2)1-G" (@ W (m)H" (m)

a

J.Rq (x, 2)y(x)dx=
0

Integrating equation (3.18) from O to x, yields

7(/17/1C(z))x;f9(1)d1
0

E (x,2)=E (0,2)e

Substituting for E_(0, z) from (3.21) and (2.35) we obtain

. . —(l—ﬂ,C(z))x—f 0(1)dt
E, (x,2)=rmpP,(0,2)G (a)B (m)e 0

Integrating equation (3.34) by parts with regard to x results in

_ P, (0, 2)G (a)B"(m )(1 ~-F (m))

E,(2) -

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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Where F~ (m)= J.e_(’i_’w(Z))xdF (x) is the Laplace-Stieltjes transform of the
0

Extended vacation time F(x).

Multiplying equation (3.34) by #(x) and integrating over x we get
[E,(x.0)8(x)dx = pP,(0,2)G" (@)B" (m)F " (m) (3.36)
0

Using equations (2.30), (2.35), (3.32) and (3.36) in equation (3.19) we obtain

P (0,z)=
—amQ (3.37)
alz—G (@)1- p+ pB (m)1=r+rF (m)))- ozl -G (@)W (m)H " (m)

Substituting for P,(0,z) from equation (3.37) in equations (2.29), (2.34), (3.27),

(3.31) and (3.35), we obtain

P (2)=
~mQ(1-G"(a)) (3.38)
alz—G @1- p+ pB ()L - r + rF" (m))))- ozl - G (@)W (m)H (m)

V,(2)=
—aQpG'(a) (1- B (m)) (3.39)
alz—G (a)(1— p+ pB" (m)(1—r+rF" (m))))-oz(l-G" (@)W (m)H" (m)

D,(x)=
—0a(l-G (@))1-W" (m)) (3.40)
alz—G (@)l- p+ pB (m)(l—r+rF* (m)))-oz(l-G (@)W (m)H" (m)

R, (2) =

—0a&(l-G (@W (m)1-H  (m)) (3.41)
alz—G @1- p+ pB (m)L—r+ rF" (m))))- cz(l-G (@ W' (m)H " (m)

E,(2)=
—aQrpG (a)B" (m)(1- F" (m)) (3.42)
alz—G (a)1— p+ pB" (m)(1—r+rF"(m))))-0z(l-G" (@)W (m)H " (m)
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3.4 The Distribution of the Queue Length at any point of time

In this chapter the probability generating function p.g.f S, (z) is given by

S,(2)=P(2)+V,(2)+E/(2)+D,(2)+R(2)
Then adding equations (3.38) to (3.42) we obtain

S,(2)=

—Q(l—G*(a)Xm+ az(l—F*(m)H*(m)))—anG*(a)(l—B*(m)(l—r+rw*(m)))(3-43)
alz-G*@i-p+ pB 1= r+rE" ()~ acll - G* (@ W (m)H (m)

The normalization condition S, (1) + Q =1is used in order to determine Q.

Because of the indeterminate form of S (1), L’Hopital’s rule is applied twice on

equation (3.43), to achieve

lim S, (z) =

z—1

QﬂE(I)((l -G (a))(l +a(E(D)+ER))+ap G (o) (E(V) + rE(eV)))
— apAE(DG (@)(E(V) + rE(eV)) - AED\ - G* (@)1 + A E(D) + E(R))) + oG ()

(3.44)

Now adding Q to lin} §,(z) given in equation (3.44) and equating to 1 and simplifying

we obtain
Q =
4
1—/1E(1)[ 1 + E*(D ) | E*(R) —i—E(D)—E(R)+ p(E(V)+rE(eV))J G:43)
oG () G (o) G () @
From equation (3.45) the traffic intensity p is given by
p=
;LE(I)[ 1 + E*(D ) | E*(R) —l—E(D)—E(R)+p(E(V)+rE(eV))j (3.46)
oG () G (o) G () @
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We substitute the value of Q from equation (3.45) into equation (3.43), which enables

us to determinate S, (z) .

3.5 The Average Queue Size and the Average Waiting Time

Following the procedure as set out in chapter two, we carry out the derivatives of the

numerator and denominator of the right hand side of (3.46) at z =1, we have

N'1)=

) ) (3.47)
00((1- G (@) )1+ A ED) + E(R))) + apQ G~ (@) (E(V) + rE(eV)))

N'()=

@2(Q)(a(1—G*(a))(E(D2) +E(R*)+2E(D)E(R))

+ ZG*,(a)(1+a(E(D) +ER))+apG (@)E(V?) +rE(eV?) +2rE(V)E(eV))
—2p(E(V)+ rE(eV))(aG*,(aHG*(a)D (349)
+AQ((1- G (@) 1+ a(E(D) + E(R)) + apG (@) (E(V) + rE(eV)))
+2a0®(1-G" (@) \E(D)+ E(R))

D)=
~d((1- G"(@))1+ A ED) + E(R))) + apG (a)(E(V) + rE(eV))) (3.49)
+aG (@)
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D'(l)=

— DG (@)op(EV?) +rE(eV?) + 2kE(V)E(eV))- 2 p(E(V) + rE(eV))
—aE(D*)+ E(R*)+2E(D)E(R)))- ad*(E(D) + E(R*)+ 2E(D)E(R))
~A(-6" @)1+ A E(D) + ER))+ apG™ (@)(E(V) + rE(eV))) (3.50)

- 2<1>2G""(a)(1 +a(E(D)+ER))—ap(E(V)+rE(eV)))

- 2<1>(1+ oG’ (@) + all-G* (@) ED)+ E(R)))

Where A= AE(I(I-1)) and & =AE{) .

The mean waiting time of a customer can be found using Little's Law W, =L, /A.

The average size of the system can be found using the known relation L=L_ +p.

The average time the customer spends in the system, namely the mean response time
(the time in the queue plus the service time) can be found by the other version of

Little's Law, W=L/A.

3.6 Particular Cases

3.6.1 Case 1: No Delay for Repairs to Start

Once the system breaks down, its repairs start immediately and there is no delay time.

Welet E(D)=0 and w’ (m) =1 then from the main results we obtain

S, ()=

—Q(l—G*(a)Xm + az(l— H*(m)))— aQpG’ (a) (1— B (m )(1— r+ rF*(m))) (3.51)
ale -G @\ p+ pB )1 =1+ rF* (m)))- azll - G* (@) )1 * (m)

Q:I—/iE(I)[ 1 + E*(R) —l—E(R)+ p(E(V)+rE(eV))j (3.52)
aG (@) G'(a) @
N =00(1-G (@))1+ aER)+ ap G (@) (E(V) + rE(eV))) (3.53)
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N’(1) =

0°0(all -G (@) ER) + 26" (@)1 +  E(D) + E(R))
+ apG*(a)(E(VZ) +rE(eV?) + 2rE(V)E(eV)) (3.54)

—2p(E(V)+ rE(eV))(aG*,(a) + G*(a))j + 2an1>(1 - G*(a))E(R)

+A0((1- G (@) )1+ ER)) + apG (@) (E(V) + rE(eV)))

D)=

,, 3.55
—d((1- G (@))1+ aER)) + apG' (@)E(V) + rE(eV)))+ oG’ (@) 5->3)
D) =-°G" (@)ap(E(V?) + rE(eV>) + 2rE(V) E(eV))
—2p(E(V)+rE(eV))- aE(R®))- o E(R?)
~A1-G" @)1+ aE(R)+ apG” (@)(E(V) + rE(eV))) (3.56)

- 2<I>2G*’(05)(1+ QE(R)—op(E(V)+rE(eV)))

- 2@(1 + OtG*,(a) +a(-G (a))E(R))

3.6.2 Case 2: No Extended Vacation

Once the vacation ends the server returns to service immediately and there is no
extended vacation. We let =0 and F *(m) =1 then from the main results of this

chapter we obtain

B —Q(l—G*(a))(m+az(l—W*(m)H*(m)))—anG*(a)(l—B*(m))

I ale—G (@)1= p+ pB"(m))- a2l -G (@ W m)H" (m)
Q=1—ﬂE(1)[ L I NI, —i—E<D>—E<R)+pE<V>j (3.58)
oG (@) G G @
N' M) =00(1- G (@))1+a(E(D) + EQR))+ ap G (@) E(V)) (3.59)

66



N"(1) =

d°0lall - G* (@) E(D*) + E(R*) + 2E(D)E(R))

+ 2G*,(05)(1 +a(E(D)+ E(R)))+ apG ()E(V?)
’ (3.60)

—2pE(V)(aG () +G (a))j

+AQ((1-G' @)1+ a(ED) + E(R)) + apG (@EV))
+200®(1 - G" (@) \E(D) + E(R))

D'(1)=-0((1 - G" (@) N1+ A ED) + ER)) + apG () EV))+aG (@) (3.61)

D'l =

—®°G (@) pEV?) - 2pE(V) - a|E(D*) + E(R*) + 2E(D)E(R)))

—a®>(E(D*) + E(R*) + 2E(D)E(R))

~All-6 @)1+ aED) + E®)) + apG (@) EV)) (3.62)

- 2<I>2G*,(05)(1 +a(E(D) + E(R))- apE(V))

- 2@(1 +oG' (@) + all- G (@)\E(D) + E(R))j

The results obtained in (3.51), to (3.56) agree with the results given in Khalaf, et.al.
(2011a).

3.6.3 Case 3: No Delay for Repairs to Start and No Extended Vacation

If there is no delay time we let E(D)=0 and W*(m) =1, so we consider there is no

extended vacation time we let r =0 and F *(m) =1 then from the main results we

obtain
$ ()= —Q(l—G$(Ia)Xm+05z(1— H*(m)))—anG*:(a)(l—lB*(m)) 3.6%)
I alz-G" @)1= p+ pB"(m))-acll-G™ (@) )" (m)
0= 1—/1E(1)[ U LEB® 1 prys pE(V)j (3.64)
oG (@) G o
N'() = 00((1- G" @)1+ aE(R) + ap G (@) E(V)) (3.65)
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N'(1) = CIDZQ(a(l _G(@)E(RY) +2G" (@E®R)

+opG ()E(V?) -2 pE(V)(aG*,(a) + G*(a)jj

+A0(1- G @)1+ aER)) + apG (@) E(V))
+200®(1- G*(@))E(R))

D'()=-0(1- G (@)1 + GER)) + apG () E(V)) + oG ()

D'(1) =—®°G" (@)(apE(V*)~2pE(V) ~ 0E(R?))

—a(IDZE(Rz)—2(/1E(I))2G*,(0:)(1+ GE(R) - apE(V))
~A(-G" @)1+ aER))+ apG (@) EV))

_2<I>(1+0:G*,(0:) + a(l—G*(a))E(R)j

(3.66)

(3.67)

(3.68)

The results obtained in (3.63) to (3.68) agree with the results given by Maraghi, et. al.

(2.10).

3.7 A Numerical Example

In order to verify the validity of the results of this chapter, we consider the service

times, vacation times, delay times, extended vacation times and repair times to be

exponentially distributed. All values were chosen arbitrarily in order that the stability

conditions are satisfied.

In table 3.1 we choose the following values:

u=17,5=5 y=4, 1=2,a=2, p=0.5,r=0.5, E(I)=1and E(I(I-1))=0, we

consider that @ takes the values 5, 6, 7 and 8, while ¢ takes the values 3, 5, 7 and 9.
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Table 3.1: Some queue performance measures values computed
whenu=7, f=5, y=4, 1=2, =2, p=0.5,r=0.5

6 @ P ) L, w, L w
3 0.919 0.081 129653 6.4826 13.8843 6.9422
5 5 0.8429  0.1571 52961  2.6481 6.139  3.0695
7 0.8102 0.1898  3.9598  1.9799 4.77 2.385
9 0.7921 02079 34142  1.7071 42063  2.1031
3 09024 0.0976 10.5094 5.2547 11.4118 5.7059
6 5 0.8262 0.1738  4.6522 23261 54784  2.7392
7 0.7935 02065 3.5256  1.7628 43191  2.1595
9 0.7754 02246  3.0555 1.5278  3.8309 1.9155
3 0.8905  0.1095 9.223 4.6126 10.1157  5.0579
; 5 0.8143  0.1857 42703  2.1352  5.0846  2.5423
7 0.7816 02184  3.2622  1.6311  4.0438  2.0219
9 0.7635 02365  2.8361 1.418 3.5996  1.7998
3 0.8815 0.1185 84378 42189 93194  4.6597
5 0.8054  0.1946  4.0184  2.0092  4.8238  2.4119
8 7 0.7727 02273  3.0861 1.543 3.8588  1.9294
9 0.7546 02454  2.6885  1.3442 3.443 1.7215

It is clear from table 3.1 that increasing the value of ¢ or & decreases the traffic

intensity, the average queue length and the average response time, while the server

idle time increases. All the trends shown by this table are as expected.

The following graphs show the effect of the new contributions of this chapter (the

delay times and the extended vacation times).

In figures 3.1 and 3.2 we consider the first four rows of table 3.1.

In figure 3.1 the horizontal axis represents the delay rate ¢ and the vertical axis

represents the mean response time W.

In figure 3.2 the horizontal axis represents the extended vacation rate € and the

vertical axis represents the mean number of customers in the system L.
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Figure 3.1: the effects of the delay rate on the mean
response time
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Chapter Four: On a Batch Arrival Queuing System
Equipped with a Stand-by Server During Vacation Periods
and the Repairs Times of the Main Server

4.1 Introduction

In this chapter we study the basic model introduced in chapter two with an additional
significant assumption that the system deploys a stand-by server during the vacation

period and the repair period of the main server.

Madan (1995) studied the steady state behavior of a queuing system with a stand-by
server to serve customers only during the repair period. In that work repair times were
assumed to follow an exponential distribution. In this chapter we consider both
vacations and breakdowns with the additional assumption of deployment of a stand-
by server during the vacation periods and repair periods. Most importantly, we
assume that the service times, vacation times, repair times have different general
(arbitrary) distributions while the breakdown times and the stand-by service times

follow exponential distributions.

This chapter is arranged as follows: section 4.2 gives the mathematical model that we
study in this chapter. Equations governing the system and their solutions to find the
distribution of the length of the queue at any point of time are given in section 4.3.
The mean length of the queue and the mean waiting and response times are given in
section 4.4. In section 4.5, we consider three numerical examples to illustrate the

application.

4.2 Mathematical Model

We consider the mathematical model in chapter two and add the assumption that a
stand-by server starts to serve the customers when the original server is on vacation or
under repair. We assume that the stand-by service time distribution follows an
exponential distribution with stand-by service rate 6 >0 and mean stand-by service

time 1/6.
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4.3 Equations Governing the System and the Distribution of the

Queue Length at any point of time

Considering that there is a stand-by server to serve the customers for every main
server interruption, results in changes to some of the equations governing the basic
system in chapter 2. From chapter 2, equations (2.1) and (2.2) and the following

equations represent the system described in the previous section

V. (t+At, x+Ax) = (1- AAD(1 - B(x)Ax)1— oAtV (¢, x)

n 4.1
+AD eV, (6. x)Ax+ ALY, (1, %) n>1 (1)
V,(t+ At,x+ Ax) = (1- AAt)(1— B(x)Ax)(1— ALV, (¢, x) 4.2)
R, (t+At,x+Ax) = (1- AAt)(1 - y(x)Ax)(1- SAr)R (¢, x)
n 4.3)
+AD R, (1, XA+ AR, (1,x)  n=1
R,(t+At,x+Ax) = (1-AA1)(1— u(x)Ax)(1 - AR, (¢, x) “4.4)

Following the same process in deriving equations (2.9) and (2.10) from (2.1) and (2.2)

respectively, from equations (4.1) to (4.4) we get respectively

s_xvn(x) =—(A+ LX)+ OV, (x)+ /121: ¢V, () +V,,, (%), nz1 4.5)
a%vo () =—(A+ B(x) + )V, (x) + V,(x) (4.6)
a’g}i’c) =—(A+Y(x)+ OR, (x)+ /12 c¢R_(X)+3R,, (x) n>1 4.7)
% =—(A+y(x)+ O)R, (x) + OR, (x) 4.8)

From chapter two the relevant equations for the assumptions of this model are (2.9),

(2.10) and (2.16).
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The boundary conditions given in equations (2.17) to (2.20) will be used to solve the

above equations by following the same process as for the basic model.

Multiplying equation (4.5) by z" , summing over n from 1 tooe and adding to (4.6) we

obtain
0 o
a—Vq (x,2)+(A-AC(2)+ f(x)+ 5——)Vq (x,2)=0 4.9)
X z
Using the same process, from (4.7) and (4.8) we obtain

aqu(x, D+(A-AC(2) + 7(x)+5—é)Rq (x,2)=0 (4.10)
X Z

Let w=A—-AC(z)+9J— ° and integrating equation (4.9) from 0 to x, we get
z

—a)x—fﬂ(t)dt
V,(x,2)=V,(0,2)e  ° 4.11)

Integrating equation (4.11) by parts with respect to x and using equation (2.31) to

substitute for V, (0, z) we obtain

PP, (0,G (@) (1-B" (@)

V()= 4.12)
w
Multiplying equation (4.11) by #(x) and integrating over x we obtain
[V, (x.0)B(x)dx = pP,(0,2)G" (@)B" (@) (4.13)
0
Integrating equation (4.10) from O to x, we obtain
—cax—f y(t)dt
R (x.2)=R, (0.2 0 (4.14)

Integrating equation (4.14) by parts with regard to x and using equations (2.27) and

(2.29) to substitute for R, (0,z) we obtain
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aw

R,(2) = azP, (0, z)[(l ~G@li-H *(w))J

Multiplying equation (4.14) by ¥(x) and integrating over x we obtain

1-G (a)
a

.[R’I (x,2)Y(x)dx = 0zP, (O,Z)( JH*((O)
0

Now using equations (4.13), (4.16) and (2.30) in equation (2.25), to obtain

—amQ
alz-G (@l1- p+ pB"(@))- -G (@) (@)

F,(0,2)=

From equations (4.17), (2.29), (4.12) and (4.15) we obtain

~moll-G" ()
ale-G"@\i- p+ pB (@) acll-G" (@) (@)

Fy(2)=

—amQpG'(a) (1~ B ()
aol: -G (@)1- p+ pB (@) ))- azoll-G" () JH " (@)

V()=

R ()= —amQ(l-G" (@ 1-H" ()
T -G @i- p+ pB (@)~ el -G (@) JF (@)

In this chapter the p.g.f S, (z)is givenby S (2)=F, (2)+V, (2)+ R (2).
Then adding equations (4.18), (4.19) and (4.20) we obtain

_-moli-G @)+ al-H (@) -amopG @) (1-B @)
aolz -G (@)1- p+ pB (@) )-azall-G" (@) JH ()

$,(2)

The normalization condition S, (1) + Q =1is used in order to determine Q.

(4.15)

(4.16)

@.17)

(4.18)

4.19)

(4.20)

@.21)
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Because of the indeterminate form of S_ (1), L’Hopitals rule is applied twice on

equation (4.21), to obtain

N’(2)
D"(z)

S,()= hnll (4.22)

where double primes in (4.22) denote the second derivative at z = 1. Finding the

derivatives at z = 1 we have
N’() =-20AE(I)(AE(I) - 5)((1 -G (a)Xl + aE(R))+ C(pG* (a)E(V)) 4.23)

D’(1) = 2(AE(I) - 5)((1 - G*(a))(/iE(l) +a(1+(AEUI) - S6)E(R))) 424

—ali- pUAE() - 6)G (@EW))
Therefore,

Q =
a(l— p(AE(I) - 5)G*(a)E(V))— (1—G* (a))(/iE(l) +a(1+(AE(I)-90)E(R))) (4.25)
AER\-G" (@) )+ G @)1+ psEWV)))

From equation (4.25) we can find the utilization factor p , where p=1-0.

As a particular case if we assume that there is no stand by server this means that

0=0, m=a=A1-AE(I) then from the main results we obtain

_—01-G @)m+eeli-H m)-a0pG’ @) (1-B (m)

S, (2) (4.26)
‘ ale-G" @i p+ pB"(m))-acll-G" (@) 1" (m)
Q=1—/1E(I)[ 1 1, E®) —E(R)+pE(V)J 4.27)
oG (@) @ G (a)

This is exactly the case of the basic model in chapter two equations (2.44) and (2.46).
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4.4 The Mean Length of the Queue and the Mean Waiting Time

To find L, , the average queue length in the steady state, where L, = diZSq(z) , We

2=l
note that this formula is of the 0/0 form, then using L'Hopital's rule four times we

obtain

L, =lim?2 ‘@N M(Z):N ’2(Z)D"(z)
7zl 3(D (Z))

4.28)

Where the treble primes denote the third derivative. N”(1) and D"(1)are given in

equations (4.23) and (4.24) respectively, and
N"(1)=

—3QA\P(1—G* (a))(1+ 0E(R))-60¥Y®*G" (a)(1+ aE(R))
—3Q<1>(1—G*(a))(9(1+ GE(R))+20%WE(R) + 0¥ *E(R* ))

+3pQE(V)EG" (@)29% - ah J+ 60pQ®>FEV)G” (@) 4.29)
~30p0dG  (@)(P2EV?) + QE(V))

D”(1) =

3(1 -G (@) pE(V)lP)(zqfcb —aQ)+ 6(I>Z‘PG*/(0()
+ 3(1 - G*(a))(A‘P + Q)+ 604‘1’2(1 - G*(a))E(R)

- Sa‘Pp[2G* ()PYE(V) - G*(a)(E(VZ)‘PZ + QE(V))j (4.30)

+ 3ol + ‘PE(R))(Q(I - G*(a))+ 209G (a)j

+ 304‘1’(1 - G*(a)X‘PZE(RZ) + QE(R))

Where Q = (AE(I(I —1))+20), ¥ =AE(I)-96, A=AE(I(I-1)) and PAE(I).
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4.5 A Numerical Example

In order to verify the validity of the results of this chapter, we consider the service
times, vacation times, stand-by service times and repair times are all exponentially
distributed. We show the effect of the new parameter § (the stand-by service rate) on
the utilization factor, the server idle time, the average length of the queue and the
average response time of the customers. All values were arbitrary chosen in order that

the stability conditions are satisfied.

4.5.1 Example 1

In this example it is considered that there is no stand by server equipped in the
system, i.e. 6 =0. Moreover we consider that u =5, y=15,1=2, f=7,
E(I)=1and E(I(I -1))=0, while p takes the values 0.25, 0.5 and 0.75 and &

takes the values 1, 2 and 3.

Table 4.1: Some queue performance measures values computed
when(6=0, u=5, y=15,A=2, =17)

o p p [0 L, W, L w
0.25 0.4981 05019 04978 02489  0.9959  0.498
1 0.5 0.5695  0.4305 0.6942 03471 12638  0.6319

0.75 0.641 0.359 09688  0.4844  1.6097  0.8049

0.25 0.5248 04752  0.6118  0.3059 1.1366  0.5683
2 0.5 0.5962 04038 0.8413  0.4207 1.4375  0.7188
0.75 0.6676 03324  1.1695  0.5847 1.8371  0.9186

0.25 0.5514 04486  0.7393  0.3697 1.2908  0.6454
3 0.5 0.6229 03771 1.0092 05046  1.6321 0.816
0.75 0.6943  0.3057 1.4053  0.7026  2.0995 1.0498

Since we assume that 6 =0 then we have the particular case we mentioned in section

4.3, table 4.1 shows the same results as found in Maraghi, et al. (2010) in table 1.
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4.5.2 Example 2

In this example we assume that the arrivals occur in batches of size 3 or 4 with
equally likely probability. This means that the probability generating function of the

batch size will be given by
C(z)=0.5(z" +z*)

C'(2)=0.5322+47%) = C)=EUI)=35
C"(2)=0.5(62+122%) = C" ()= E(I(I-1))=0.5(6+12)=9
See Bose (2002) for more details.

Moreover we consider that A =2, y=5, a=1, f=7, p=0.25, while y takes the

values 5, 6 and 7 and J takes the values 3, 4 and 5. In table 4.2 some queue

performance measures values are given.

Table 4.2: Some queue performance measures values computed
when1=2, y=5a=1, =7, p=0.25

U ) P 0 L, W, L w
3 04494  0.5506 100.2372 50.1186 100.6865 50.3433
5 4 04232 05768 152796 7.6398  15.7029  7.8514
5 0.4 0.6 1.2752 0.6376  1.6752  0.8376
3 0.3905 0.6095 81.4748 40.7374 81.8653 40.9327
6 4 0.3695 0.6306 11.5505 5.7753  11.9199 5.96
5 03504  0.6496 04615 02307 0.8119  0.4059

(O8]

0.3473  0.6527 70.7303 353651 71.0776  35.5388
7 4 0.3295  0.6705 94764 47382 9.8059 4.903
0.3135  0.6865 0.0692 0.0346 0.3827 0.1914

W

4.5.3 Example 3

In this example we choose the following
values: u=7, y=3, =2, a=2, p=0.5, E(l)=1and E(I(I-1))=0, and we
consider that f takes the values 6,7 and 9 while ¢ takes the values 0, 1 and 3. In

table 4.3 some queue performance measures values are given
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Table 4.3: Some queue performance measures values computed
when(u=7, y=3,A=2, a=2, p=0.5)

b ) P 0 L, W, L w
0 0.6429 0.3571 1.5587 0.7794 2.2016 1.1008
6 1 0.5455 0.4545 0.8552 0.4276 1.4007 0.7003
3 0.4186 0.5814 0.4265 0.2132 0.8451 0.4225
0 0.619 0.381 1.4048 0.7024 2.0238 1.0119
7 1 0.5306 0.4694 0.8064 0.4032 1.3371 0.6685
3 0.4127 0.5873 0.4142 0.2071 0.8269 04134

0.5873  0.4127 1.2357  0.6178 1.823 09115
9 1 05103  0.4897  0.7474  0.3737 1.2577  0.6288
04044  0.5956 03972 0.1986  0.8015  0.4008

From tables 4.1, 4.2 and 4.3 we note that increasing the value of & or p increases the

traffic intensity, the average queue length and the average response time while the

server idle time decreases.

Increasing the value of S, u or § decreases the traffic intensity, the average queue

length and the average response time, while the server idle time increases. These

trends are as expected.

»<
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Chapter Five: On an M“/G/1 Queueing System with
Random Breakdowns, Server Vacations, Delay Times and a
Stand-by Server

5.1 Introduction

In this chapter we extend the basic model introduced in chapter two with two
additional significant assumptions. The first assumption is that the repair process does
not start immediately after a breakdown, consequently there is a delay time before
starting repairs. The second assumption is that the system deploys a stand-by server

during the vacation period.

In chapter three the concept of the delay times was introduced with the concept of
extended vacation times, but in this chapter we do not consider extended vacations.
The queueing system studied in chapter four introduced a stand by server who works
during the repair process and during the vacation period. In this chapter the stand-by

server works only during the vacation period.

The service times, vacation times, repair times and delay times are assumed to follow
different general arbitrary distributions while the service times of the stand-by server

follow an exponential distribution.

This chapter is organized as follows: section 5.2 gives the assumptions underlying the
mathematical model under investigation. Equations governing the system and the
queue size distribution at a random epoch are formulated in section 5.3. Two special
cases are discussed in section 5.4. The average length of the queue and the average
waiting time are given in section 5.5. In section 5.6 we consider a numerical example

and use MathCAD to illustrate the results of our application.
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5.2 Mathematical Model

In this chapter we consider the mathematical model of chapter two, its features were a
batch arrival queueing system, Bernoulli scheduled general vacations, general service
times, random breakdowns and general repair times. The new contribution in this
chapter is that we assume that there is a stand-by server similar to the one in the
model of chapter four but this time the stand-by server serves the customers only
during the vacation period, and not during the repair process. Moreover, we assume

that there is a delay time waiting for repairs to start.

We recall that; the service times are generally distributed with distribution

function G(x). The vacation times have a general distribution with distribution
function B(x). We assume that breakdowns occur according to a Poisson distribution
with mean breakdown rate @ >0. W(x) is the distribution function of the delay
times which follow a general distribution. The duration of repairs follows a general
(arbitrary) distribution with distribution function H (x). The stand-by service time

follows an exponential distribution with stand-by service rate § > 0.

5.3 Equations Governing the System and the Distribution of the
Queue Length at any Point of Time

The equations governing the system of this chapter are a combination of equations
from chapter two, where we introduced the basic model, from chapter three where
there was a delay time waiting for the repair process to start and from chapter four,

where the stand-by server is available in the system.

From chapter two the equations appropriate for this system are the equations of the
service probabilities (2.9), (2.10) the equations of the repair probabilities (2.13),
(2.14) and the equation of the idle server probabilities (2.16). From chapter three the
necessary equations are the delay time probabilities (3.6) and (3.7). From chapter four
we use equations (4.5) and (4.6) which are related to the stand-by server during the
vacation. The set of the equations mentioned above are the differential equations

governing the system we study in this chapter.
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The boundary conditions used to solve the equations in the previous paragraph are a

mixture of the boundary conditions in chapters two and three. These conditions are

(2.17), (2.18), (3.14), (3.15) and (3.16).

All the equations mentioned in the previous paragraphs are listed in appendix A,

(A.5).

The results of the equations and the boundary conditions we considered from chapter

two results in
P.(2)=P,0. z)[ﬂJ
J
and
IPq (x, u(dx = P,(0,2)G" (@)

Which are given in equations (2.29) and (2.30) respectively.

From the equations and conditions we take from chapter three we get

_ P, 0,9(1-G" @Ji-w"on)

am

D,(2)

2P, (0, 1= G @ W" (m)li - H" (m))

am

R, (2)=

P, (0,2)(1-G (@)W (m)H  (m)
a

[R, (x. p(x)dx =

Which are given in equations (3.27), (3.31) and (3.32) respectively.

As a result of the equations taken from chapter four we get

pP,0.9G @ (1-B (@)
B [

V,(2)

and

5.1

(5.2)

(5.3)

54)

(5.5)

(5.6)
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[V, (. 2)B(0dx= pP,(0,2)G™ (@)B" () (5.7)
0

These are respectively equations (4.12) and (4.13).

To find P, (0, z) we need to re solve equation (2.25) given by

2P,(0,2) = (1= p)[ P, (x, () + [V, (x, 2) fx)dx

+ [ R, (x, )y(x)dx + AQ(C(2)~ 1) (5.8)

Using equations (5.2), (5.5) and (5.7) in equation (5.8) we obtain

—amQ

P (0,2)= - —— EN— (5.9)

o a(Z—G (a)(l—p+pB (w)))—az(l—G (a))W (m)H (m)

From equation (5.9) equations (5.1), (5.3), (5.4) and (5.6) become respectively
P(z)= -mQ(l-G' (@) 5.10
/(2 alz-G (@)l- p+ pB' (@)))- 0zl -G (@)W (m)H" (m) (5.10)
D)= - Qaz(l*—G' @lt-w’ (m)) - S
ale -G @l- p+ pB (@)~ ezl - G (@ W (m)H" (m)
R, (2) = i —(IZQ(l—G*' (a))W'(m)(l—fI'(m)l i (5.12)
alz-G @li- p+pB (@))- -G (@ W m)H" (m)

V,(2)= —amQpG (@ (1~ B (@) (5.13)

aolz-G (a)l- p+pB (@) -awz(l-G (@)W (m)H" (m)
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In this chapter the p.g.f S, (z) is given by S, (z) =P, (2)+V,(2)+ D,(2) + R (2) , s0

adding equations from (5.10) to (5.13) we obtain

S,(2) =

—0ll- G @)+ all =W i m) - ampG” (@ (1-B" (@) (5.14)
aalz-G @li- p+ pB'(@)-a @l -G"@W " m)

The normalization condition S, (1) + Q =1is used in order to determine Q.

As in chapter four, for z =1, §, (1) is in the indeterminate of 0/0 form. Therefore, we

apply L’ Hopital's rule twice on equation (5.14), to obtain

N’(2)

S )=l 5.15
., im —> ) (5.15)
Finding the derivatives at z = 1we have
N'()=
—20AE(D)(AE(I) - 5)((1 - G*(a))(l +a(E(D) + E(R))) (5.16)
+ paG' (@EWV))
D’ () =2AE(AE(I) - 5)(1 -G (a))(l +a(E(D)+E(R)))
—20(AE(1)-8)G" (a)(1— pE(V )(AEI) - b)) o1
Therefore, adding Q to equation (5.15) and equating to 1 and simplifying we get
o AED1-G @)1+ adED)+ ER)  pEV)AEW)-8)-1
oG (@)(1+6 pE(V)) (1+8 pE(V)) (5.18)

From equation (5.18) we can find the utilization factor, p, where p=1-0Q .
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5.4 Particular Cases

5.4.1 Casel: No Stand-by Server

If we assume there is no stand by server this means that § =0, m = & , then from the

main results we obtain

_—0ll-G" @ )m+eli-w* ) H" (m))- a0pG” (@) (1~ B (m))

S - * * * % £
o ale=G @\1-p+ pB"(m))-az(1-G" @ W )" (m) o1
Q:l—/iE(I)( i + E*(D) + E*(R) —i—E(D)—E(R)-FPE(V)J (5.20)
oG (@) G(@) G() « '

The results obtained in equations (5.19) and (5.20) agree with the results given in
Khalaf, et al. (2011a).

5.4.2 Case 2: No Delay and no Stand-by Server

If we consider that repairs start immediately after the breakdown and there is no stand
by server this means that E(D)=0, W*(a)) =1, 6 =0, m = ¢ then from the main

results we obtain,

_—0-6"@)m+acli-H m)-a0p6" @ (1-B"(om)

S g k @ -
lI(Z) a(z—G (a)(l—p+ pB (m)»—az(l_G (Cl))H (m) (5.21)
1 ER) 1
=1-AE( -——-E(R EWV
¢ ()(aG*<a>+G*<a> o FRTPE )J (5.22)

The results obtained in equations (5.21) and (5.22) agree with the results by Maraghi,
et. al. (2010).
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5.5 The Mean Length of the Queue Size and the Mean Waiting Time

To find the average queue size and consequently the mean waiting time, we follow
the procedure as set out in chapter four, section 4.4. Finding the required derivatives

of equation (5.14) at z =1, we obtain

N”() = —3QlP(1—G*(a))(A(1+ (E(D)+E(R)))+20®(E(D)+ E(R))
+a(d>2(E(D2)+ E(R?) +2E(D)E(R))))

-30®(1+a(E(D)+ E(R)))(Q(I—G*(a))+ 20¥G" (0{)}

(5.23)
+6p0d°> E(V)‘P(G*(a) + aG*,(a)j
—3p0aG ()E(V)(AY +PQ)-3p0adG () P2E(V?)
D”(1)=
3(1 + ch*,(a) - p‘PG*(a)E(V)J(ch‘P —aQ)
+ (1—G*(a))(3A‘11 +30Q)+ 3042(1—6*(a))+ 3aCI>(A+2CI>)G*/(a)
+ 30{‘{’(— 2 pCIJ‘PG*,(a)E(V) + pG*(a)(E(Vz W24 QE(V))J 504

+3ac1>(A+2cI>)(1—G*(a))(E(D)+ E(R))
+60d’YG" (a)(E(D)+ E(R))

+30&P(1—G*(a)XCI>2(E(D2 )+ E(R? )+2E(D)E(R))+ AED)+ E(R)))
Where Q = (AE(I(I -1))+28), ¥ =AE(I)-5, A=AE(I(I-1)) and & = AE().

N”(1) and D’(1)are given in equations (5.16) and (5.17) respectively.
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5.6 A Numerical Example

In order to verify the validity of the results of this chapter, we present the following

two examples:

5.6.1 Example 1

In this example the second particular case (no stand-by server) will be considered and

the delay times are assumed to have a k- Erlang distribution then:

. k
W*(m)z(kL)k,

(m+ko)

b

E(D)="1
4

Var(D)=—"
ke

and E(D?)=

(k+1)

k(p2

All the k- Erlang distribution equations are taken from Allen (1990).

It is assumed that the service times, vacation times and repair times are all

exponentially distributed.

We consider the following

values:

u=7, A=2,a=2,B=5y=4,p=05,

E(I)=1and E(I(I-1))=0. The delay rate ¢ takes the values 2, 4 and 6, while &

takes the values 3, 5 and 7.

Table 5.1: Some queue performance measures values computed when the delay times
follow the k-Erlang distribution and
u=7, A=2,a=2,=5y=4,p=0.5

k [ Y 0 L, W, L w
2 09143  0.0857 13.7032 6.8516 14.6175 7.3087
3 4 07714 02286 33976 1.6988  4.169  2.0845
6 07238 02762 24082 12041  3.132 1.566
2 09143  0.0857 13.481 6.7405 143952 7.1976
5 4 07714 02286 33768 1.6884  4.1482  2.0741
6 0.7238 02762 24005 12002 3.1243  1.5622
2 09143  0.0857 13.3857 6.6929 143 7.15
7 4 07714 02286 33679 1.6839 4.1393  2.0696
6 07238 02762 23972 1.1986  3.121 1.5605
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5.6.2 Example 2

In this example we assume that the arriving batches are of size 2, then
C(z)=7"

C()=2z=C(M)=E(I)=2
C'(2)=2 = C'O)=EU(-1)=2.

The delay times follow a Hyperexponential distribution (H,), with two phases
(k =2), the probability of the first phase is p, =0.3 and the probability of the second

phase is p, = 0.7, the mean of the first phase (¢, =2 ), the mean of the second phase

(@, =3), thus
Ep)=3P 293,07 _09+14 e
= @, 2 3 6
03 07

2 oy
E(D*)=2 —=2 + =0.306.
P2y ( 9j

The repair times are assumed to have a k- Erlang distribution, with three phases

(k =3) then:

(k+1) 4
2 3}/

5 .

E(R)=". Var(R)=——=—— and E(R")=
/4 ky

2 3 2

We consider the service times to be exponentially distributed with service rate

4 =17 and vacation times are exponentially distributed with vacation rate f=9.

Moreover we assume that

y=2, A=2,, a=2 and p=0.5, and that § takes the values 0, 1 and 3, while
y takes the values 2, 3,4 and 7.

All values were arbitrarily chosen in order that the stability conditions are satisfied.
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Table 5.2: Some queue performance measures values computed when the delay times have
Hyperexponential distribution, and the repair times have k- Erlang distribution

) 7 p 0 L, W, L w
2 09014  0.0986 13.9042 69521  14.8056  7.4028
0 3 0.8062  0.1938 55188 27594  6.325  3.1625
4 0.7585 02415 38724 19362  4.631 23155
7 0.6973 03027 25682  1.2841 32655 1.6328
2 0.854  0.146  8.9989  4.4995 98529  4.9264
1 3 0.7637 02363 43426 21713 51063  2.5531
4 0.7186 02814  3.1876 15938 39062  1.9531
7 0.6606 03394 2.1972  1.0986  2.8579  1.4289
2 0.7726 02274 54294 27147 6202  3.101
3 3 0.691 0309  3.1283  1.5642  3.8193  1.9097
4 0.6502 03498 24194 12097 3.0696  1.5348
7 05977 0.4023  1.7525 0.8762 23502  1.1751

Tables 5.1 and 5.2 show that increasing the value of k, ¢, 6 or ¥ decreases the

traffic intensity, the average queue length and the average response time while the

server idle time increases. These trends are as expected.

In the next graphs, graph 5.1 shows the effect of the stand-by service rate 6 on the

mean number of customers in the queue, where we consider that y = 2

Graph 5.2 shows the effect of the repair rate ¥ on the mean waiting time in the

system, where we consider that 6 = 1 (the second four rows in table 5.2).
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Figuie 5.1: the eftect of the stand-by service rate on the mean
nmmber of ensromears in the qnane
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Chapter Six: On a Batch Arrival Queue with General
Vacations Followed by a Further Optional Extended
Vacation, Random Breakdowns, and an Exponential Stand-
by Server during General Repair Times

6.1 Introduction

In this chapter we study a batch arrival queueing system where after every service
completion, the server has the option to go on a vacation of random length with

probability p or continue serving with probability 1— p. The server may go on an

extended vacation after the original vacation completion with probability r or rejoins
the system to serve the customers directly after the vacation with probability1—r. In
addition to vacations and extended vacations, the system may suffer from random
breakdowns from time to time. A stand-by server is available in addition to the main
server. The stand-by server provides service to customers only during the repair
process. The service times, vacation times, extended vacation times and repair times
are assumed to follow general arbitrary distributions while the stand-by service times

follow an exponential distribution.
The study of this chapter generalizes the results obtained by Madan (1995).

This chapter is arranged as follows: section 6.2 gives the mathematical model and
equations governing the system. In section 6.3 we derive the distribution of the queue
length at any point of time. Some special cases have been discussed in section 6.4.
The average queue size and the average waiting time are derived in section 6.5. In
section 6.6 we consider two numerical examples and use MathCAD to illustrate the

results of our applications.

6.2 Mathematical Model and Equations Governing the System

The basic mathematical model of chapter two is considered in this chapter with two
more assumptions. The first assumption is that we assume that the server may go on

an extended vacation as defined in chapter three. The second added assumption is that
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we assume that the system is equipped with a stand-by server who works during the
repair process. This means that the equations governing the system when the main
server serves the customers or the main server is on the normal vacation will be the
same equations as for the basic model because in this case the extended vacation time

or stand-by service time will not effect the probabilities P, (¢, x) or V, (¢,x), so from the

basic model in chapter two we use the differential equations (2.9), (2.10), (2.11) and
(2.12).

From chapter three we consider the differential equations related to the extended
vacation i.e. equations (3.8), (3.9) and the differential equation of the idle server
probabilities (3.10). Finally from chapter four we use the differential equations in the
case where the server is under repair and where there is a stand by server to serve the

customers, these are equations (4.7) and (4.8).

The boundary equations used to solve the above equations are a combination from
chapters two and three. These boundary conditions are (2.18), (2.19), (2.20), (3.11)
and (3.13).

All the equations mentioned in the previous paragraphs are listed in appendix A,
(A.6).

6.3 The Distribution of the Queue Length at any Point of Time

According to the set of equations and the boundary conditions mentioned in section

6.2, and following the equations taken from chapter two we have
1-G°
P,(2)=P,(0, z)(—(“)j ©.1)
a
[P, (x, yu(x)dx = P,(0,2)G " (a) 6.2)
0

_ PR 0,96 @ (1-B"(m)

m

V, ()

(6.3)
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[V, (x, 2 ()dx = pP,(0,2)G" (@)B" (m)
0

From the equations taken from chapter three we have

_ mpF, (0, )G (a)B’ (m)(l— F' (m))

m

E,(2)

JE,(x.9()dx = 1pP, 0.2)G" (@B (m)F (m)
0

And from the equations of chapter four we get

aw@

Rq (2)= aqu (0, Z)[ (1 -G" (a)Xl - H*(a)))J

1-G ' (a)
a

qu (x,2)y(x)dx = azP, (O,Z)[ jH*(w)
0

6.4)

(6.5)

(6.6)

(6.7)

(6.8)

Now we need to find F,(0,z) given in equation (3.19) by using equations (6.2), (6.4),

(6.6) and (6.8), we obtain

—amQ

B, 0,2)=

from equation (6.9) equations (6.1), (6.3), (6.5), and (6.7) become respectively

~mQ(l-G"(a))

alz—G @)1= p+ pB m)1=r+1F* m))))-ezll- G () JH (@)

R](Z) = a(

v (o ~a0pG' (@) [1-8"(m)
q

=G (a)(l- p+ pB (m)l-r+rF (m))))-az(l-G (a))H " (w)

alz=G @i p+ pB* m)1=r+F" (m)))-cll-G" (@) JH " (@)

—aQmG (@B 1= F" (m))

E, (2)=

ale-G* @i-p+ pB (m)1=r+rF* (m))))-azl-G" () )" ()

(6.9)

(6.10)

(6.11)

(6.12)
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—amQlI-G @ 1- H" @)
aol:—G @\l-p+pB (m)l=r+rF"(m)))-cz 0\l-G" () JH" ()

R,(2)= (6.13)

In this chapter the p.g.f S (z) is givenby S (z)=F,(2)+V, (2)+ D, (2)+R (2).
Then adding equations (6.10), (6.11), (6.12) and (6.13) we obtain

Sy(2)=

—m0ll -G (@) Jw+ ozl - H' (@) - aap0G (@)1~ B )1 - 1= F*(m))) (614
aole—G @l—p+ pB m)i—r+F" m)))-az ol -G (@) " ()

The normalization condition S, (1)+Q =11is used to determine Q.

Because of the indeterminate form of S (1), L’Hopital’s rule is applied twice on

equation (6.14), to obtain

s, (0 =1im g 8 (6.15)
Finding the derivatives at z = 1 we obtain
N"(1) = 20AEDAED) - )1 - G (@) )1+ aE(R))
+ paG @(EV) + rE(eV))) ©10
D) =2QEWD) - )= G (@) JAEW) + & + aAEI) - HER)) 61

—20(AE(I) - 5)(1 - p/lE(I)G*(a)(E(V) + rE(eV)))
Therefore, adding Q to equation (6.15) and equating to 1 and simplifying we get

JED(1-G" (@)
AER\-G"(@)+G (@)

(6.18)
N a(l — pAE(DG ()(E(V) +rE(eV))— (1— G (a)X1+ (AE(I)— 5)E(R)))

AER\-G"(@)+G* @)

From equation (6.18) we can find the utilization factor, p, where p =1-0.
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6.4 Particular Cases

6.4.1 Case 1: No Extended Vacation

Once the server finishes the original vacation it starts to serve the customers
immediately and there is no extended vacation time. We let r = 0, then from the main

results we obtain

5,(0=2 moll - G*fa)XaH ozl - 1:1*(0))))— aa)pQG:(a)(l —f*(m)) 6.19)
a a)(z -G (a)(l —p+pB (m )»— az a)(l -G (a))H (w)
S EDI-G' @)
CadERI-6" @)+ 6 (@)
. oll- pAE(DG (@EWV)~(1-G" (@) )1+ AE1) - H)ER)))
AER-G*(@)+G @)

(6.20)

6.4.2 Case 2: No Stand-by Server

If we assume there is no stand by server this means that § =0, m = & , then from the

main results we obtain

Sy(2)=

—Q(I—G*(a)Xm+az(l—H*(m)))— apQG' (a)(l—B*(m)(l—r(l—F*(m)))) (6.21)
alz=G @l1-p+ pB m)1=r+rF"(m)))-ccl1-G" (@) " (m)

Q=1—/1E(I)[ 1 L E*(R) -E(R)+ p(E(V)+rE(eV))J (6.22)
aG () ¢ G (o)

6.4.3 Case 3. No Extended Vacation and no Stand-by Server

If we consider that services start immediately and there is no stand by server this

means that, r =0, § =0, m = « using this in the main results of this chapter, we get,
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= 0ll-G"@)m+ el - H ) - ap0G” (@)1 - B (m))

S = 6.23
D= c-G"@li- p+ pB"m)))- a1 -G" (@) )" (m) (©23)

Q=1—/1E(I)[ LI W ICY —E(R)+pE(V)J (6.24)
oG (@) a@ G'(a)

The results obtained in equations (6.23) and (6.24) agree with the results by Maraghi,
et. al. (2010).

6.5 The Mean Length of the Queue Size and the Mean Waiting Time

To find L, , the steady state of the average queue length and because the formula

d

L g = d_ S g (z)| isin an indeterminate form, we have to use L'Hopital's rule four
Z

z=1

times to obtain

L, =lim D"(z)N"(z): N"z(z)D"(Z)
ol 3(D(2))

(6.25)

Where N”(1) and D’(1)are given in equations (6.16) and (6.17) respectively, and
N"(l)=

~30%(1+ aE(R))(A(l— G (@))+20°G" (a)j

- 3Qc1>(1— G (a))(g(1+ E(R))+2a¥E(R) + O&PZE(RZ)) (6.26)

+3pOd(E(V)+ rE(eV)){ZCID‘P(G*(a) +aG (a)j —aQG" (05)}

_3p0a¥G (@)@ EW?) +rE (V) + 2iEV)E(V) )+ A(EWV) + rE(eV)))
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D"(1)=

320¥ - aQ)(H ch*'(a) - p®G (a)(E(V)+ rE(eV)))

+(3AY +30Q)(1- G (2))+ 301+ YER))1-G" ()

-~ 305‘1’(2 pCIDZG*’(a)(E(V) +rE(eV)) (6.27)
— pG (@)D (E(WV>)+rE(eV )+ 2rE(V)E(eV))+ A(E(V) + rE(eV))))
13000G" (@) + 3 (E(R)(2® +A)+ E(RHP J1-G ()

+ 6aCI>‘PG*’(a)(1+ E(R)Y)

Where
Q=(AEI(I-1))+28), Y=AE(I)-J6, A=AE(II-1)) and ®=AE().

6.6 A Numerical Example

In this section we illustrate some numerical results to show the effect of the new
contributions (the extended vacation times and the stand-by service times) on the
performance measures of the system. To illustrate the results of this chapter
numerically we consider the service times, vacation times, stand-by service times and
repair times to be exponentially distributed. All values were chosen arbitrarily in

order that all stability conditions are satisfied.

6.6.1 Example 1

In this example it is assumed that the extended vacation times follow a
Hyperexponential distribution (Hyper-k, H,), with two phases (k =2), the
probability of the first phase is p, =0.4 and the probability of the second phase is
p, =0.6, the mean of the first phase (6, =3), the mean of the second phase

(6, =4), thus
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Eev)y=L 4 P2 04 065033
6 6, 3 4

1 2

Eevi)y=2 L4 Lo :2(%+%J:0.1638 :
@) (@, 9 16

All the Hyperexponential distribution ( H, ) equations are taken from Allen (1990).

Moreover itisassumed that A=3, u=7,y=4, a=1, p=0.5, r=0.5,
E(I)=1and E(I(I-1)) =0, we consider that § takes the values 6, 7 and, 8 and §
takes the values O, 1 and 2.

Table 6.1: Some queue performance measures values computed when
A=3, u=7,y=4, a=1, p=0.5, r=0.5

B 5 P o) L, w, L 1%
0 0.9982 0.0018 569.2825 189.7608 570.2807 190.0936
6 1 0.9638 0.0362 23.8405 7.9468 24.8043 8.2681
2 0.9316 0.0684 9.3192 3.1064 10.2509 3.417

0 09625 0.0375 25.7738 85913  26.7363 89121
7 1 09293  0.0707 11.3994  3.7998 123287  4.1096
2 0.8983  0.1017  5.7771 1.9257 6.6754 22251

0 09357 0.0643 143487  4.77829 152844  5.0948
8 1 09034  0.0966  7.9323 2.6441 8.8358 2.9453
2 0.8733  0.1267  4.3683 1.4561 5.2416 1.7472

6.6.2 Example 2

In this example we consider that the extended vacation times follow an exponential
distribution. It is considered that =7, A=2, @ =2,0=3, y=5,r=0.5, p=0.5,
E(I)=1and E(I(I-1))=0 , while @ takes the values 2, 3, and 4 and S takes the

values 5,7, and 9.
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Table 6.2: Some queue performance measures values computed when

(u=7,A=2,¢=2,6=3, y=5r=0.5, p=0.5)

yi] 6 P 0 L, w, L w
2 07256  0.2744  3.7293  1.8647 44549  2.2275
5 3 0.6545  0.3455 24135 12068  3.068 1.534
4 0.6189  0.3811 1.9865 0.9932 2.6054  1.3027
2 0.6768  0.3232 2.8976 14488 3.5744 1.7872
7 3 0.6057 0.3943 19152 09576 25209  1.2605
4 0.5701 04299 1.5874  0.7937 2.1575 1.0787
2 0.6497  0.3503  2.5494 12747  3.1991  1.5996
9 3 0.5786 04214  1.6997 0.8498 22783  1.1391
4 0.543 0.457 1413 0.7065 1.956 0.978

Tables 6.1 and 6.2 show that increasing the value of 6, f or @ decreases the traffic

intensity, the average queue length and the average response time while the server idle

time increases. These trends are as expected.

»<
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Chapter Seven: Conclusions and Future Work

7.1 Conclusions

In this research we investigated the batch arrival queuing system M™/G/1, with
random breakdowns and Bernoulli scheduled vacations where after completion of the

service of a customer the server may take a vacation with probability p or stay in the
system to serve customers with probabilityl—p. We investigated this system by

extending it in many directions. In each chapter we added more than one new
assumption. In this way we developed a different, more advanced queuing system. A
number of queuing systems developed by many authors are special cases of our
systems. In each chapter our goals were to find the closed form solution of important
performance measures including the intensity parameter (the utilization factor), the
mean idle time, the mean number of customers in the queue, the mean number of
customers in the system, the mean waiting time in the queue and the mean response

time.

The supplementary variable technique has been used to solve the system of equations.
The elapsed service time, elapsed vacation time, elapsed repair time, elapsed delay
time and the elapsed extended vacation time have been introduced as supplementary

variables.

In chapter two we described the basic mathematical model. This was introduced to
avoid duplicating these fundamental equations in later chapters. For the next four
chapters we added new assumptions to the basic model and developed a new

queueing system.

In chapter three we considered the basic model with two added assumptions. The first
assumption is that after a breakdown occurs the server does not enter the repair
process immediately instead it may have to wait for a period of time called the “delay
time”, until it starts being repaired. The second assumption is that when the server
finishes a vacation period it does not enter the system immediately to start serving the

customers. The server can wait for an extra period of time for possible required
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actions before the first service. We call this period of time the “extended vacation

time” where we introduced this term for the first time.

The stand-by server available during any interruption is the new contribution added to
the basic model and analyzed in chapter four. In this chapter we study the batch
arrival queuing system assuming that there is a stand-by server to serve the customers

during the vacation time and during the repair process.

In chapter five we developed chapter two by adding a stand-by server to serve the
customers during the vacation times. Moreover in this chapter it is assumed that when
the server breaks down it does not enter the repair process immediately, where there is

a delay time waiting for repairs to start.

Finally in chapter six the basic model was extended by adding two more assumptions,
where it is assumed that the server can go on an extended vacation immediately after
the original vacation. The system in chapter six is equipped with a stand-by server to

serve the customers during the repair process.

Throughout all the four chapters (from chapter three to six), we conclude that
increasing the delay rate and extended vacation rate increases the server idle time and
decreases the mean waiting time, the mean response time, the mean number of
customers in the system and the value of traffic intensity. Also we conclude that
increasing the stand-by service rate decreases the server idle time and increases the
traffic intensity, mean waiting time, mean response time and mean number of

customers in the system.

Although the conclusions are in accordance with what is expected systematically and
logically, much work went into the details of establishing the closed form solutions
and to determine the critical values of performance measures of each system studied.
Consequently we expect that our work will greatly help system designers in their
decision regarding the system parameter and that this work provides new knowledge

in queueing theory.
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7.2 Future Work

The researchers suggest the following queueing systems to be developed according to

the results found in this research:

(1) Batch arrival queueing system with random breakdowns, Bernoulli scheduled
general vacation times, general service times, general extended vacation times,
general delay times, general repair times and general stand-by server works
during every main server interruption. In this case all the new systems
introduced in this research investigation (from chapter two to chapter six)

would be special cases of this system.

(2) Batch arrival queueing system with random breakdowns, server Bernoulli
schedule vacation, general service times and general delay times where the
server provides two phases of heterogeneous service and the rates of

breakdowns are different in every service breakdown.

(3) Batch arrival queueing system with server Bernoulli schedule vacation,
general service times, general extended vacation times, random breakdowns,

general delay times and two types of general repairs.

(4) Batch arrival queueing systems with random breakdowns and server vacations
based on multiple vacation policy or N-policy with general service times,

general delay times and general extended vacation times.

»<
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Appendix A

A.1 Explanation of Obtaining g(x)

g

HO= 60
[ (s)ds =~ In(1-G(5)]
N _ (1-G() _

{ﬂ(s)ds—ln(l_ G(O)J G(0)=0
e Z(1-Gw)

—fu(ﬂds —?/J(S)ds

—HU(x)e’ =—g(x) = gx)=ux)ye"’

A.2 Details of Integrating Equation (2.28) by Parts

—dX—JE,U(t)dt

[P (x,0)dx= [P 0,0 * dx
0 0

—]ry(z)dz *fﬂ(’)’h
Let u=e¢e? =>du=—p(x)e’® dx
= _1 —ax
Let dv=e""dx =>yv=—-o=e"
a
[udv =uv—[vdu

oo

x ’fﬂ(’)’h x
o —ax—[u(r)de _e*”«te 0 oo 1 ~ —[u(r)de
Je ° dyx=|———| —[| = ux)e"® dx
0 a of d

0

—T/J(z)dz 1 1 o

! [ edG(x) =

1= 1
=Z—Z£eﬂ(x)e° dx=——— Z(1—G(a))
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A.3 Details of Applying L.’Hopital’s Rule on Equation (2.44) to Obtain Q in
Chapter Two

A.3.1 Applying L’Hopital’s to Find lil’Ill S,(2)

-0(1- G*(a)){m +oz(1- H*(m))}— apQG (a) (1 - B*(m)) _N@
alz=G (@i p+pB'(m))-zl-G"(@)H (m)  D(2)

$,(2) =

N(z)=-0(1-G (a)fm+oz(1— H' (m)}- apQG~(a) (L= B' (m))

N'(z)= —Q(— G*/(a)a'j(m+05z(l— H (m)))- Q(l—G*(a)(m#a(l—H*(m))+05z(—H*/(m)m')j

’

— pQd’G" (a) (1= B*(m))- pQaG" (a)a’ (- B" (m))- pQaG (a) (— B (m)m'j

’

N =-0(1-G" (a){m'+ a(—H*,(m)m')j — pQaG’ (a) (— B (m)m'j

N'()=-0(1-G" (@) )= AE(I) - cAE(D)E(R))+ pQaG’ () AE(DE(V)
= AE(NQ( -G (@) 1+ aE(R))+ padE(QG’ (@) E(V)

D(z) = a(z - G*(a)(l -p+ pB*(m)))— az(l - G*(a))H*(m)
D) =dz-G @- p+ pB (m)))+ a(l - G*/(a)a'(l —p+pB (m))- G*(a)( pB*/(m)m'D
—all-G (@) (m)- az(— G*/(a)a')H*(m) —all-G @ mym’

D) =d(l-G (a)+ a(l _G" (@d -G (@) pB*/(m )m')

_ell-G @)+ oG (@ - ali—G @)H

D' =all- pG* (@ AE(DEWV))- AED)(1- G (@))1+eER)) -l - G ()

AE(DO(1 -G () 1+ 0E(R))+ padE(DQG (@) E(V)
all- pG (@) AE(EW))-AED1-G (@) )1+ aE(R)) - all - G ()

lim Sq(z) =
z—1
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A.3.2 Finding Q
linllSq(z)+Q =1

AE(DO(L -G (@) N1+ aE(R))+ padE(NQG () E(V)
all- pG" (@) AE(EW))- AED)1-G (@)1 + aE(R)) -l - G (@)
oG ()0
all- pG (@) AE(HEWV))- AE(D(1-G (o) 1+ aE(R)) - 21 - G ()

0- all- pG (@) AEDEW))- AED (-G (@) 1+ aE(R))- ol - G~ ()

+0=1

aG (@)
_ o oG (@AE)EV)
oG (@) oG’ (@)
~ lE(I)[ I eE®) G _aG*(Qf)E(R)J+ —a_ a6 @
oG () oG (o) oG (o) aG (o) oG () oG (@)
1 E(R) 1
=— - -—- 1
Q=-pAE(I)E(V) ﬂE(I){aG*(a) + @ @ E(R)j+
1 E(R) 1
=1-AE( ———E(R E
0 AE( )[QG*(Q)J’_G*(Q) p (R)+p (V)j
Where
The expression Its value when z =1
C(2) 1
C'(z) E()
a=A-AC(2)+a a
da_ v -2z —AE(I)
dz
m=A—-AC(2) 0
dm , ,
—=m =-AC"(2) —AE(I)
dz
B (m) 1
dB"(m) _dB"(m)_ dm B (0)(= AC"(0)) = (= E(V))(= AE(D)
dz dm dz = AE()EV)
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H' (m) 1

dH*(m):dH*(m)Xd_m (- AC’(0))= AE(I)E(R
! e H (0)(—AC’(0))= AE(I)E(R)

A.4 Details of Obtaining Equation (2.48)

d

Lq :d_ZSq(Z) .
N(z)
S (7) =% N1=0 & D(1)=0
D=5 (VD) ()=0)
dS,(z) _D(z).N(2)-N(z)D'(z) _0
= = 2 0
dz (D(2) 0

By L'Hopital's rule for the first time
d(D(z).N'(2) = N(2)D'(z)) _ D(z).N"(2)=N(z2)D"(z) _0
d(D2))) - 2D(2).D'(z) 0
By L'Hopital's rule for the second time
d(D(2).N"(2) = N(z)D"(z)) _ D(z).N"(z)+D(z).N"(2) - N'(2)D"(z) = N(2) D" (2)
d(2D(2).D'(z)) - 2D'(2).D'(z)+2D(2).D"(z)
L —lim D'(z)N"(z2)-=N'(z2)D"(z)
¢ 2(D'(z))

A.5 Equations Governing the System Studied in Chapter Five

The set of the differential equations governing chapter five are as follows

ad

S R =-A+ e+ Pk, (x)+/1i§:;ciPn_i (x) n=l 2.9)
aa_xPO (¥) = —(A+ () + @) P, (x) (2.10)

aa—an () + A+ 7R, (x) = {ZIC,RM x) n>1 2.13)

aa—xRO (1) = (A + YR, () = 0 2.14)
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AQ = [ Ry (x)y(x)dx+ [V, () f(x)dx+ (1= p) [ By (x)p(x)dx (2.16)
0 0 0
a n
—D,(x)+(A+ @)D, (x)=AD ¢,D, ;(x) n=1 (3.6)
i=1

ox

%Do(x) =0 3.7
aiVn(x) =—(A+ LX)+ )V (x)+ ﬂi ¢V _(x)+V , (%), nx1 4.5)
X i=1

0
a—xVo(X) =—(A+ () + )V, (x) + V,(x) (4.6)
The set of the boundary conditions of chapter five are as follows

P.(0)=(1- p)[ P, (X)) + [V, () B(x)dx
0 0

) 2.17)
+ fRM (x)y(x)dx+ Ac,,,0 nz0
0
V.(0)= p[P,()pux)dr,  n>0 2.18)
0
D,(0) = aT P (0di=aP_, n=l (3.14)
0

R (0)= [D,()@(x)dx, n=0 (3.15)

0
D,(0)=R,(0)=0 (3.16)
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A.6 Equations Governing the System Studied in Chapter Six

The set of the differential equations of chapter six are as follows

aiP”(x) =—(A+p(X)+ P (X)+AXc,P_(x) n=1
X i=1

iPo (x) = —(A+ u(x) +a) P, (x)
ox

ai V. (x)==(A+ B(x)V, (x)+ ﬂi ¢V, (%) n>1
X i=1
0
e Vy(x) = =(A+ B(x)V, (x)
X

aiE” (X)+(A+O0(x)E, (x)= ﬂi ¢,E (x) n21
X i=1

i E,(x)= —(A+ O(x)E,(x)
ox

A0 = [ Ry(x)y(x)dx + (1= p)[ B (x)p(x)dx

+(- r)]o V, (x) B(x)dx + TEO (x)0(x)dx

aRa"(x) =—(A+y(x)+ )R, (x)+ ;LZn:CiRn_f(x) +OR (X)) n=1
* i=1
% = —(A+7(x)+ O)R, (x) + IR, (x)

X

The set of the boundary conditions of chapter six are as follows

P,(0) = (1= p)[ P, (0ps(x)dx+ (1=1)[ V.., () B(x)dx

+_[En+l(x)9(x)dX+IRn+l (x)}/(x)dx-i_ﬂcn-#lQ n 2 O
0 0

2.9)

(2.10)

@2.11)

2.12)

(3.8)

(3.9)

(3.10)

%)

(4.8)

(3.11)
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E (0)=r]V.(0Bxdx  n=0
%GthTﬂ(ﬂﬂuyk, n=0

0
R(O)=a]P_ (xydx=aP_ n>1

R,(0)=0

»><

(3.13)

2.18)

(2.19)

(2.20)
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Appendix B
B.1 Full Explanation of the System Equations in Chapter Two

B.1.1 Equation (2.1)

P (t+At,x+ Ax) = (1- AAN) (1 — u(x)Ax)(1 - aAt) P, (t, x)

+AD P (t,0Ar n>1
i=1

By connecting the system probabilities at time ¢ (x) with those at time 1+ Af (x+Ax)
by considering P, (t+ At,x+ Ax)which means the probability that at time 7+At,
there are n (n > 0) customers in the queue excluding the customer in service and the

elapsed service time of this customer is x+Ax. Then we have the following two

mutually exclusive cases:

(1) At time ¢, there are n customers in the queue excluding the customer in service
and the elapsed service time of this customer is xand there is no arrival, no
service completion and no breakdown during (¢,f+ At) . This case has the joint
probability (1—AAH)(1— u(x)At)(1—aAt)P,(t,x) .

(2) At time ¢, there are n—i customers in the queue excluding the customer in
service and the elapsed service time of this customer is x and a batch of size i

customers arrives at the system during (¢,7+ At). This case has the probability

/12 c,P_.(t,x)At.
i=1

B.1.2 Equation (2.2)
P (t+At,x+ Ax) = (1- AAD(1 - p1(x)Ax)(1— a@Af) Py (1, x)

By connecting the system probabilities at time ¢ with those at time ¢+ At by
considering P, (t+ At, x + Ax) which means the probability that at time z+A¢, there

are no customers in the queue excluding the customer in service and the elapsed

service time of this customer is x +Ax . Then we have only the following case:
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(1) At time ¢, there are no customers in the queue excluding the customer in
service and the elapsed service time of this customer is xand there is no

arrival, no service completion and no breakdown during (¢, + A¢). This case

has the joint probability (1—AA7)(1— u(x)Ax)(1—aAt)P,(t,x).

B.1.3 Equation (2.3)

i’ n—i

V. (t+At,x+ Ax) = (1 - AAD) (1 - B(x)Ax)V, (¢, x) + ﬂi ¢V _(t,x)Ax n>1

By connecting the system probabilities at time ¢ with those at time ¢+Af¢ by
considering V (z+ At,x+ Ax) which means the probability that at time ¢+ At, there
are n (n=0) customers in the queue and the server is on vacation with elapsed

vacation time x+ Ax . Then we have the following two mutually exclusive cases:

(1) At time ¢, there are n (n > 0)customers in the queue and the server is on

vacation with elapsed vacation time x and there is no arrival and no vacation

period completion during (z,#+At). This case has the joint probability
(1= AAn(1 = B)AVV, (1, %)
(2) At time ¢, there are n—i customers in the queue and the server is on vacation

with elapsed vacation time xand a batch of size I customers arrives at the

system during (¢,#+ At). This case has the probability /12(: V _.(t,x)At.

i’ n—i
i=1

The same explanation can be considered to explain equations (2.5), (3.1) and

(3.3), bearing in mind the state of the server in each equation.

B.1.4 Equation (2.4)
V,(t+ At x+ Ax) = (1— A1 = B(x)Ax)V, (1, %)

By connecting the system probabilities at time ¢ with those at time f+Af¢ by

considering V, (t + At, x + Ax) which means the probability that at time ¢+ At, there
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are no customers in the queue and the server is on vacation with elapsed vacation time

x+ Ax . Then we have the following case:

(1) At time ¢, there are no customers in the queue and the server is on vacation
with elapsed vacation time x and there is no arrival, no vacation period

completion during (¢,t+A¢). This case has the joint probability

(1-=AA0)(A - B(x)Ax)V, (1, x) .

The same explanation can be considered to explain equations (2.6) and (3.4), bearing

in mind the state of the server in each equation.

B.1.5 Equation (2.7)

Ot + A1) = (1= AADQ() + (1 - p)TE)(t, X)) Ardx
0

+ ]:RO (t, X)Y(x)Ardx + ]:VO (1, x) B(x)Atdx
0 0

By connecting the system probabilities at time ¢ with those at time f+Af¢ by
considering Q(# + At) which means the probability that at time 7+ At, there are no

customers in the system and the server is idle but available in the system. Then we
have the following four mutually exclusive cases:

(1) At time ¢, there are no customers in the system and the server is idle but
available in the system and there is no arrival during (¢, + At). This case has
the probability (1—AA1)Q(r).

(2) At time ¢, there are no customers in the queue excluding the customer in the
service and the server completes the service of this customer and decides to
stay in the system and not to go on vacation during (¢,f+ A¢). This case has

the probability (1— p) j P,(t, x) pu(x) Atdx .
0
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(3) At time ¢, there are no customers in the system and the server is broken down
under repairs and the repair process completed during (¢,¢+ A¢). This case has

the probability j Ry (t,x)7(x)Atdx .
0

(4) At time ¢, there are no customers in the system and the server is on vacation
and the vacation period completed during (z,#+At). This case has the

probability j V, (¢, x) B(x)Atdx .
0

For the M™/G/1 queueing system we have:

P(no arrivalduring (,7 + At)) =1— AAt + o(At) =1— AAt

P(a batch of size i arrives during (¢,¢ + Ar)) = Ac,At + o(At) = Ac,At

P(more than one batch arrives during (¢, + At)) = 0o(At)

P(no arrival completes his service during (¢,¢ + At)) =1— u(x) +o(At) =1— u(x)At
P(one arrival completes his service during (¢,1 + At)) = u(x) + o(At) = u(x)At

P(more than one arrival complete his service during(¢, + At)) = o(At)
For more details about the above probabilities see Kashyap & Chaudhry (1988).

B.2 Full Explanation of Boundary Conditions in Chapter Two

B.2.1 Boundary Condition in Equation (2.17)

PO)=(01- p)]: P (x)u(x)dx+ ]:V”+1 (x)B(x)dx+ ]:R”+1 (x)y(x)dx + Ac,,,Q n=0

P (0) =1lim P,(z,0)is the probability that at time ¢ there are n customers in the queue
1—00

excluding the customer in the service given that the elapsed service time of this

customer is O ( the service just started). Then we have the following four mutually

exclusive cases:

(1) At time ¢ there are (n+1) customers in the queue excluding the customer

being served given that the elapsed service time of this customer is x, and the
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server completes serving this customer, does not go on vacation and starts

serving the next customer in the queue. This case has the probability
(1= p)f P (Op()dx.
0

(2) At time ¢ there are (n+1) customers in the queue and the server is on vacation

given that the elapsed vacation time is x . The vacation is just completed. This
case has the probability J.V,M(x) B(x)dx .
0

(3) At time ¢ there are (n+1) customers in the queue and the server is broken

down and under repairs given that the elapsed repair time is x . The repair is

just completed. This case has the probabilityJ.R,M(x) y(x)dx .
0

(4) At time ¢ there are no customers in the system, the server is idle, available in

the system and a batch of size (n+ 1) customers arrive at the system. This case

has the probability Ac,,,Q .

B.2.2 Boundary Condition in Equation (2.18)
V,(0)= p[ P ()pu(x)dx,  n20
0

V (0)=1imV, (z,0) is the probability that at time ¢, there are n (n>0) customers in

the system and the server is on vacation given that the elapsed vacation time is 0, this

means that the vacation has just started. Then we have only the following case:

(1) At time ¢ there are n customers in the queue excluding the customer being served
given that the elapsed service time of this customer is x and the server completes
serving this customer and goes on vacation. This case has the probability

PI P, (x)u(x)dx .
0
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B.2.3 Boundary Condition in Equation (2.19)

n>1

n-1

R,(0)=a[ P, (x)dx=aP,
0

R (0)=1im R, (2,0) is the probability that at time ¢, there are n (n>0) customers in

the system and the server is down and under repair given that the elapsed repair time

is 0, this means that the repair has just started. Then we have only the following case:

(1) At time ¢ there are (n—1) customers in the queue excluding the customer

being served given that the elapsed service time of this customer is x at the
moment the server breaks down i.e. during the service of this customer. This

n—-1"°

case has the probability aJ. P_ (x)dx=caP,
0

The same explanation can be considered in equation (3.14), bearing in mind the state

of the server in each equation.

B.2.4 Boundary Condition in Equation (2.20)
R,(0)=0

R,(0) is the probability that at time ¢, there are no customers in the system and the

server is broken down and under repair given that the elapsed repair time is 0. This
cannot happen because we assume that the server breaks down when it is providing

service. This means that this probability is O.

B.3 Full Explanation of the System Equations (3.1) to (3.5)

B.3.1 Equations (3.1) and (3.3)

D, (t+At,x+ Ax) = (1- AAt)(1 - @p(x)Ax)D, (¢, x) + ﬂi ¢,D

i=1

E (t+At,x+Ax)=(1-AAr)(1-0(x)Ax)E, (t,x)+ ﬂic E (t,x)At n=>1
i=1

(t,x)At n21

n—

i~n—i
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See section B.1.3.

B.3.2 Equation (3.2)

D,(t+At,x+Ax)=0

D,(t+ At,x+ Ax) is the probability that at time 7+ At, there are no customers in the

system and the server is down and waiting for repair to start(on delay) given that the

elapsed delay time is x+ A x. This cannot happen because we assume that the server

breaks down when it is providing service( at least one customer in the system). This

means that this probability is 0.
B.3.3 Equation (3.4)

E (t+At,x+ Ax) = (1= AA)(1— O(x)Ax)E, (t, x)

See section B.1.4.
B.3.4 Equation (3.5)

Ot+At)=1-AADQ@) + (1- p)]: B, (t, x)(x)Atdx + ]:RO (t, x)y(x)Atdx

+(- r)]: V, (t, x) B(x)Atdx + ]: E,(t,x)0(x)Atdx

The explanations of the first three terms (1— AAH)Q(t), (1- p)TPU(t, X)U(x)Atdx and
0

[R (1, x)7(x)Atdx are given in B.1.5.
0

The explanations of the last two terms in equation (3.5) are respectively as following
(1) At time ¢, there are no customers in the system, the server is on vacation and
the vacation period completes and the server does not go on an extended

vacation  during  (t,t+At). This case has the probability

a- r)]: V, (t, x) B(x)Atdx .
0
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(2) At time ¢, there are no customers in the system, the server is on extended
vacation and the extended vacation period completes during (¢,7#+ At). This

case has the probability IE()(I, X)B(x)Atdx .
0

B.4 Full Explanation of the System Boundary Conditions in Chapter
Three

B.4.1 Equation (3.11)

P,(0) = (1= p)[ By Ou(0dx + (1= ) [V, (0 B(0)dx

+[E,, (000 dx + [ R,., () y(x)dx+ A, , 0 n20
0 0

The explanations of the terms (1- p)J. P, (x)u(x)dx, J.R”+1 (x)Y(x)dx and Ac,,,Q are
0 0
given in section B.2.1. The explanations of the other two terms are as the following

(1) At time ¢ there are (n+1) customers in the queue, the server just finished the

original vacation and does not go on an extended vacation. This case has the

probability (1- r) j V. (0)B(x)dx .
0

(2) At time ¢ there are (n+1) customers in the queue and the server is on an
extended vacation given that the elapsed extended vacation time isx. The

extended vacation is just completed. This case has the probability

]:E,M(x)ﬁ(x)dx .
0
B.4.2 Equation (3.12)
V,0)=p] B,(undx,  n>0
0
See B.2.2.
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B.4.3 Equation (3.13)
E (0)=r[V.(0)Bx)dx n=0

E (0) is the probability that at time ¢, there are n (n > 0) customers in the system and

the server is on extended vacation given that the elapsed extended vacation time is O,
this means that the extended vacation just started. Then we have only the following

case:

(1) At time ¢ there are n customers in the system the server just finished the
original vacation and goes on an extended vacation. This case has the

probability rJ.V”(x) B(x)dx
0

B.4.4 Equation (3.14)

See B.2.3

B.4.5 Equation (3.15)

R.(0)=[D,(x)@(x)dx, n=0
0

R (0) is the probability that at time ¢, there are n (n > 0) customers in the system and

the server is broken down and under repair given that the elapsed delay time is O this

means that the repairs just started. Then we have only the following case:

(1) At time ¢ there are n customers in the system, the server is broken down waiting
for repairs to start (on delay) and the delay period just finished to start the repairs.

This case has the probability IDn(xW(x)dx .
0

B.4.6 Equation (3.16)
D,(0)=R,(0)=0
See B.2.4.

»<
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Appendix C
Professional MATHCAD 2001 Sheets

Mathcad is computer software that simplifies calculations by combining equations in

a presentable format. It can be used as an intelligent calculator making it easy to keep

track of the most complex calculations for verification and validation. All the

Mathcad templates used to find the numerical answers in this dissertation are listed in

this appendix.
C.1 Chapter Three MATHCAD Work

A=2 0:=5 B:=5 yi=4 oa:=2 p=05 0:=3 r=05
G(a) := 1 2
+7 X:B Y:—2 Z:e
B
E(R) = R elr?) < E(D) = D
¢= -6 1 2 1
do Ri= — M= = D=
v ¥ N
1 D R 1
=12 = -D-R+p(X+1Z
Q [a-0<a>+c<a>+c<a> « e )}

n:=QA[(1-G(a)[l+aD+R)]+o-pGa)(X +r1Z)]

E(V) = X

E(eV) =Z

NI = Q-kz-[a-(l - G(a)(K+M+2DR)+2g[l+a(D+R)]-2p(X + rZ)(G(a) + a-g) + o-p-G(at)(2-1ZX + Y+ 1r-W)]

N2 := 2:QA-aD + R) (1 - G(a))

di=-A[opGo)(X+r1Z)+(1-Ga)[l+a(D+R)]]+ a-G(o)

Dl = A2G(0) [0 -p-(Y + 1W + 2.0X Z) = 2:p4X + 1Z) — a(K+ M + 2DR) ] - ¢ A2(K + M + 2D R)

D2 := —2-12-g-[ l+a(D+R)-—ap(X+r1Z)]-2A[1l+a(D+R)(l-G(a)) + a-g]

D:= DI + D2 N:= NI + N2
p=1-Q dN-nD
Lq:= 5
2d
L:=1Lq+ WL
= p =
= 0919 =0.081
P Q Lq = 12.9653

Wq = 6.4826 L = 13.8843

E(eVz) =W

W = 6.9422
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C.2 Chapter Four MATHCAD Work

A=2 B:=7 8:=3 Y:=5 o:=1 p:=0.25
1 1
o) = Xi=— R:=—
Gl oa+5 B Y
) el
g::d—G((x) Yi=— )
do BZ Y

_of1-pA-9GmX]-(1-Gap{r+afl+(A-R]]
o[ 3R(1 = G(e) + Ga)(1 + p-3-X) ]

Q:

n:=-2Q®(® -3) (1 -Ga))(1+aR)+o-pGlar)X]

N1:=3QA-Y(1-G()(1+aR)-6QY¥ <I>2‘g‘(1 +aR) -3QP(1- G((x))l:Q (1+aR)+2a¥ R+ (x“{-’z»M:I

N2:=3-pQX ¥ G(o) »(2»<1>2 - (x»A) +6:0pQOZW X g — 30pQb-Ga) »(\yz»w Q »x)

d:=2A-9{(1-Ga)[A+all+A-§R]]-afl-p(h-3 Gla)X]]

Dli= 3.1 = G0)-pX B) 2B — 00 Q) + 6D°W g+ 31 — G AP +B Q)+ 60W2(1 - Goy) R

D2:=3a¥ »pl:Z»g»CID ¥ X - G(0) »(Y»‘{-’z +Q xﬂ +30(1+ ¥R {Q (1 - G(a)) + 2D ¥ g] + 30 (1 - G(aw)) »(‘{-’Z»M +Q R)

N:=NI1+N2 dN-nD
D:=DI1+D2 Lq::—2
3d
=1- L
P Q L:=Lq+p Wq::—q
A
p =0.4494 Q=0.5506
Lq=100.2372

Wq=50.1186

R)=R
ER) E(Rz) =M
E(I-1)=T
T:=9
Q:=AT+298 A:=AT P :=A\A
L= 100.6865 W =50.3433
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C.3 Chapter Five MATHCAD Work

Ai=2 B:=9 y=2 a:=2 p:=05 3:=0 E(V) =X E(V2)=Y E(D) =D E(D2)=Z ER) =R E(R2)=M
a) = A=1 T:=0
Gle) o+7 X:=—l D:=0.383 R:=—l
p Y
d Y:= i Z:=0.306 M:= i
g:=—G(a) 2 2 Yi=LA-3 Q=AT+23 A=AT D :=AA
dou B 3y
Q= (1 -G@) {1 +a(D+R)] pXW -1

o-G(a) (1 +8-pX) 1+38pX
n:i=-2Qd Y [(1-Ga)[l+a(D+R)]+ paGa)X]
n=-0.553
2
Nl:=-3QW¥ (1- G((x))[A-(l +D+R)+2a®P(D+R)+ (x-[<I> (Z+M+ 2-D-R):|] -3QP[1+aD+R)I[Q(1-Gl) +2P ¥ g]

N2i= 6p-QD2 X W (G(o) + 0) — 3-p Qe G() XA + D Q) = 3-pQosh -Glor) B2y

d=2P ¥ (1-Gla)[l+a(D+R)]-20¥ -Gla)(l - pX¥)

d=-0.6135

Dl:i=3(1+®g— p¥ -Ga) X)(2PW¥ —0Q)+ (1 - G)-BAY + 3D Q) +30Q (1 - Ga) +3-0-D(A+2D) g
[ [v?+ax]] 2
D2:=30%¥{2pP V¥ gX+pGo)\Y¥ +Q X ]+30PD(A+2P)(1-G)(D+R)+60P ¥ g(D+R)

D3:=3a¥ (1- G((x))-I:<I>2-(Z+ M+ 2DR)+A(D+ R)]

D:=Dl1+ D2+ D3 N:=NI1+ N2 L dN-nD
qi= —
2
N =-0.759 3d
p=1-Q D = 27.5494
L:=Lg+ w L
=Lq =
p x Weu Lq
LY
p=09014 Q= 0.0986 Lq= 13.9042 Wq = 6.9521 L = 14.8056 W = 7.4028

121



C.4 Chapter Six MATHCAD Work

8:=0 p=05 r:=05 E(V) =X

Z:=0.2833

W = 0.1638 M:=

1-pAGa)(X+1Z)—(1-G(aw)[1+(A-dR]

A:=3 Bi=6 y:=4
Gl =
() a+7
g::d—G(oc)
do
0 A1 - G(w)
T a8R(1 -G(n) + G(a)]

SR (1 - G(a) + G(at)

n:=-2QAMA-8[(1-G(a)(l+aR)+poGa)(X+r1Z)]

N1:=-3Q(A-98)(l+aR) -(Z-Xz-g) —-3QA(1— G(oc))-l:2-5-(l +R)+2a(A-8) R+ a(r— S)Z-M:I

E(Vz) =Y E(eV) = Z

E(R) =R E(Rz)

N2:=3.pQA(X + rZ)[2h(h - 8)(G(a) + ot -g) — 2-:0-3-G(a)] — 3-p-Qa<(A — &) -G(oc)-l:lz-(Y+ W+ 21X -Z)]

d:=2AA-8)(1-G(o) —2aA-8[1-pAGa)X+r1Z)]+20(h-38)(l-Ga)) +20a(A— 5)2-(1 - G(a)) R

D1:=6A18(1-G(a)) + 6 [A(A-8) —ad][l+Ag—pAGa)(X+1Z)]+3a(k-29 -I:—Z-p-lz-g-(X +r17) + p-G(oc)-I:XZ-(Y+ rW+ 21X -Z)]]

D2:= 6081+ (A -8 R]R(I - Ga)) + 6--8hg+30(h— ) -I:Z-X-R + ML — 5)2] (1= G(a)) + 60 A (A= 8)g[1+RA=-8)]

D:=DI + D2

p=1-Q

Li=Lg+p W=
p = 0.9982 Q= 18107 x 10_3

N:= NI + N2

==

L dN-nD
g=2n— 2D
3d2
Lq
Wq=—
97
Lq = 569.2825 Wq = 189.7608

»><

L = 570.2807

W = 190.0936
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