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ABSTRACT 

This research investigates a batch arrival queueing system with a Bernoulli scheduled 

vacation and random system breakdowns. It is assumed that the repair process does 

not start immediately after the breakdown. Consequently there maybe a delay in 

starting repairs. After every service completion the server may go on an optional 

vacation. When the original vacation is completed the server has the option to go on 

an extended vacation. It is assumed that the system is equipped with a stand-by server 

to serve the customers during the vacation period of the main server as well as during 

the repair process.  

The service times, vacation times, repair times, delay times and extended vacation 

times are assumed to follow different general distributions while the breakdown times 

and the service times of the stand-by server follow an exponential distribution.   

By introducing a supplementary variable we are able to obtain steady state results in 

an explicit closed form in terms of the probability generating functions. Some 

important performance measures including; the average length of the queue, the 

average number of customers in the system, the mean response time, and the value of 

the traffic intensity are presented. 

The professional MathCad 2001 software has been used to illustrate the numerical 

results in this study. 
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Table of Standard Notations for Queueing Systems 

 

 

Notation Definition 

λ  The mean arrival rate (average number of customers arriving per 

unit time). 

 

µ  The mean service rate (average number of customers served per unit 

time). 

 

L The expected number of customers in the system. 

qL  The expected number of customers in the queue. 

W The expected waiting time in the system. 

qW  The expected waiting time in the queue. 

ρ  Traffic intensity denoting the fraction of time that the server is busy. 

���� 

 

 

 

 



12 

 

CHAPTER ONE: PRELIMINARIES 

1.1 Introduction 

Queueing systems are concerned with providing services. In such a system customers 

arrive at a service centre looking for service of some kind and depart after such 

service has been provided. It is a usual phenomenon that when a customer arrives the 

server may be busy providing service, therefore the arriving customers have to join 

the waiting line until they receive the service. 

We identify  three main features of the service centre: the customers’ population, the 

waiting line and, the server(s). 

The basic queueing model is shown in figure 1.1 below:  

 

Queueing theory is an important branch of Mathematics in applied probability based 

on statistical distributions, calculus, matrix theory and complex analysis. It can also 

be classified as part of applied stochastic processes and decision science. A systematic 

analysis of a queueing system is crucial for the management to take efficient 

decisions. It helps to gain full utilization of a system, minimize its idle time, and 

streamline costs of operating the system. 

Figure 1.1: The basic queueing model 
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Queueing Theory is a mathematical study of a queue, from it we can find specific 

answers for common questions such as how long the customer waits before service 

commences? How long should a customer spend in the system to complete their 

service? What is the average number of customers in the queue or/and in the system at 

any point of time? And how many servers should the service centre employ to get the 

best performance from the system. 

Thus answers to questions about the mean waiting time in the queue, the mean system 

response time (waiting time in the queue plus service time), mean utilization of the 

service facility, distribution of the number of customers in the queue, distribution of 

the number of customers in the system and so forth need to be found.  

There are a lot of situations in real life where waiting in a queue is required and 

essential. Queuing theory has applications in many fields; below we briefly describe 

some situations in which queueing theory is important. 

� The Internet Server 

Many customers are connected to the main internet server. What is the acceptable 

number of customers connected to the internet per unit of time so that the internet 

provides a reasonable response rate? What happens when the number of 

customers increases? Is the capacity of the main frame computer sufficient?  

� Traffic Lights 

We need to schedule traffic lights according to the time of the day such that the 

queues are acceptable. 

� Parking  

In order to avoid overcrowding in front of a shopping mall, it is necessary to 

investigate what size and number of parking places to be provided. 
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� Call Centers of any Company 

The call center has a team structure to answer questions by phone, where each 

team helps customers from a specific region only. How long do customers have to 

wait before an operator becomes available? Is the number of incoming telephone 

lines enough? Are there enough operators? How many customers do not get their 

call answered?  

 

1.2 Historical background 

The history of queueing theory goes back more than a century. According to Bhat 

(2008), the first paper on the subject seems to be Johannsen’s paper "Waiting Times 

and Number of Calls" (an article published in 1907 and reprinted in the Post Office 

Electrical Engineers Journal, London, October, 1910). From the point of view of an 

exact treatment, the method used in this paper was not mathematically exact, 

therefore, the paper that has historical importance is Erlang’s (1909), "The Theory of 

Probabilities and Telephone Conversations". During the next 20 years Erlang’s papers 

contain some of the most important techniques and concepts in queuing theory; for 

instance the notion of statistical equilibrium and the method of formulating the 

balance of state equations (later called Chapman-Kolmogorov equations). 

"In 1915 Tore Olaus Engset developed the Engset formula before the breakthroughs 

of A. K. Erlang in 1917. The unpublished Engset’s report "Om beregningen av 

vælgere i et automatisk telefonsystem" (1915) was published later in (1918)" for more 

details see (Myskja, 1998). 

Molina (1927) published his paper "Application of the Theory of Probability to 

telephones Trunking Problems". One year later, Fry (1928) published his book 

"Probability and Its Engineering Uses" which expanded much of Erlang’s earlier 

work.  

During the next two decades several mathematicians became interested in these 

problems and developed general models which could be used in more complex 

situations. 
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The first use of the term "queueing system" occurred in 1951 in the Journal of the 

Royal Statistical Society, when D.C. Kendall published his article "Some Problems in 

the Theory of Queues". Of course, there were a huge number of articles on the subject 

much earlier (some used the word "queue" but not the word "queueing"). 

The same author who introduced the term queueing systems introduced an A/B/C 

queueing notation in 1953 and this has further been extended by Lee in 1966.  

Finch (1958), studied the effect of the waiting room size on the performance measures 

of simple queues. The first textbook on queueing theory was published in 1958, 

"Queues, Inventories, and Maintenance" by P. M. Morse.  In this year Haight (1958) 

introduced the concepts of bulking and parallel queues and White and Christie (1958) 

were the first to consider server breakdowns. The proof of the very famous formula in 

queueing theory, Little's formula (so called because it was first proved by John Little) 

was published in 1961.   

Since Leonard (1961) published his first paper entitled "Information Flow in Large 

Communication Nets", the use of queueing for computer performance evaluation 

became an important class of queuing theory applications. Various studies have been 

published since that time including; Allen (1967), Fishman (1974), Forest, Mani, 

Richard and Fernando (1975), Leonard (1976), Stephen (1983), Lazowska, Zahorjan 

and Sevcik (1986) and (1996) and Walrand (1988) to mention some.   

In 1967, Skinner considered what is now called the M/G/1 queueing system, but in a 

different context. Since that time several authers have studied the M/G/1 queue e.g., 

Jacob and Madhusoodanan (1987), Choi and Park (1990), Cao (1994), Madan (1994), 

Atencia, Fortes, Moreno and Sanchez (2006), to mention a few. 

Markovian queueing systems, subject to more than one type of service, have been 

studied by Beja and Teller (1975). Further studies related to this area appeared later, 

we refer to Sen and Jain (1990), Madan (1991), Gail, Hantler and Taylor (1992), 

Whitt (1999), Hur and Paik (1999), Ke. (2003a), Bocharov, Manzo and 

Pechinkin(2005) and,  Mishra and Yadav (2009). 

 Neuts (1981) introduced the matrix analytic method. As editor of communications in 

Statistics: Stochastic Models, he promoted a large variety of queueing models. Other 
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workers in the matrix analytic area included; Neuts (1984) and (1989), Ramaswami 

(1990), Alfa (2002), Lothar and Dieter (2005) and, very recently Madan (2011). 

During the last 30 years, a lot of important books on queueing theory and its 

applications have been published including  Borovkov (1984),  Kashyap and 

Chaudhry (1988), Nelson (1995), Bunday (1996), Gross and Harris (1998),  Daigle 

(2005), Anisimov (2008) and, Mark (2010) to mention a few. 

 

1.3 Characterization 

In most cases, a queuing system is specified by stating the following six basic 

characteristics about it:  

1.3.1 Input Pattern or Arrival Process of Customers 

The arrival process means the manner in which the arrivals occur. It is specified by 

the interarrival time between any two consecutive arrivals. Usually the interarrival 

times are assumed to follow a common distribution and are independent of each other. 

The input pattern indicates the behaviour of the customers when arriving at the 

service system. Some customers may wait for a long time patiently, other customers 

are less patient and leave after a while. For instance, patients who visit the hospital to 

have an appointment with their doctor, if the doctor is not available then some of them 

will leave and possibly rebook their appointment. It is also very important to know if 

the customers arrive in batches or one by one. 

1.3.2 Service Time Patterns. 

The pattern of service times is the manner in which the service is rendered. It is 

specified by the time taken to complete a service. It is assumed usually that the 

service times follow a common distribution and are independent of each other and 

independent of the interarrival times. The most common distributions that the service 

times may have are deterministic and exponential distributions. Service times may 

also be dependent on the queue length. 
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1.3.3 Service Discipline 

The service discipline indicates the manner in which the units are taken from the 

queue and allowed into service. Customers may be served in groups or one by one. 

The most known disciplines are: 

� FIFO: (First in, First out): the usual queue discipline is first come first served 

(FCFS), a customer that finds the service centre busy goes to the end of the queue. 

� LIFO: (Last in, First out): or last come first served (LCFS), a customer that finds 

the service centre busy proceeds immediately to the head of the queue, this 

customer will be served next, given that no further customers arrive.  

� Random Service: also called (SIRO) the customers in the queue are served in a 

random order. 

� Round Robin (RR): every customer gets a time slice. If the servicing of a 

customer is not completed at the end of this time then the customer is preempted 

and returned to the queue to be served according to the FCFS discipline. 

� Priority Disciplines: every customer has a (static or dynamic) priority, the server 

selects the customers with the highest priority according to their time of arrival at 

the system. This scheme can use preemption or no preemption. In the preemption 

case the customer with the highest priority is allowed to enter service and stop the 

service of a customer with lower priority whose service is to be resumed after the 

higher priority customer is served. While in the case of no preemption the highest 

priority customer goes to the head of the queue and waits until the current service 

is completed. 

1.3.4 Number of Servers. 

A system may have a single server or a group of servers providing service to the 

customers. Increasing the number of service channels helps to decrease the waiting 

time. Given a number of service channels they may operate in parallel being able to 

serve customers simultaneously. It is generally assumed that the service mechanisms 

of the parallel channels operate independently of each other. An arrival who finds 

more than one free server may choose any one of them for receiving service. If he 
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finds all the servers busy, he joins a queue common to all the servers, the first 

customer in the common queue goes to the server who becomes free first.  

1.3.5 System Capacity. 

This is the maximum number of customers allowed at any time in the system. A 

system may have an infinite capacity that is; the queue in front of the server(s) may 

grow to any length, in this case the system is called a delay system.  In the case of a 

finite capacity this may be because of space or time limitation. The system has to be 

specified by the number of customers available, so that an arrival may not be able to 

join the system when the system is full, in this case the system is called a loss system. 

1.3.6 Service Stages 

The customers may proceed through one stage or several stages to complete their 

service before departing the system. In the case of multistage queuing systems, the 

customer enters a queue waits for service, gets served and departs the service station 

to enter a new queue for another service, and so on.  In some multistage queuing 

systems recycling or feedback may be allowed, this case is common in manufacturing 

processes, where parts that do not meet quality standards are sent back for 

reprocessing. 

 

1.4 Background Probability Theory 

1.4.1 The concept of a Random Variable 

Let T be the sample space associated with some experiment E. A random or stochastic 

variable, X, is a function that assigns a real number, )(tX , to each element Tt ∈ . 

Queuing systems provide many examples of random variables. For example, )(tX , 

may represent the number of customers in the system at time t.  

1.4.2 Stochastic Processes 

Let t be a parameter assuming values in a set T, and let )(tX  represent a random or 

stochastic variable for every Tt ∈ . The family or collection of random variables 
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}),({ TttX ∈  is called a stochastic process. The parameter or index t is generally 

interpreted as time and the random variable, )(tX , as the state of the process at time t.  

The elements of T are time points, or epochs, and T is a linear set, countable or 

uncountable. (Methi 2003). 

The stochastic process }),({ TttX ∈  is said to be a discrete-time process, if T is 

countable. If T is an interval of the real line (uncountable) then the stochastic process 

is said to be a continuous-time process. 

 The state space of the process denoted by S is the set of all possible values that the 

random variable )(tX  can assume; this set may be countable or uncountable. In 

general, a stochastic process may be put into one of four broad categories: 

(i) discrete-time and discrete state space. 

(ii) discrete-time and continuous state space. 

(iii) continuous -time and discrete state space. 

(iv) continuous -time and continuous state space. 

In queuing systems many examples of stochastic processes can found. For example, 

the )(tX  might be the number of customers that arrive before a service counter by 

time t; then }0),({ ≥ttX  is of the type (iii) above. If )(nX  represents the waiting time 

of the n
th 

arrival; then ,...}2,1,0),({ =nnX  is of type (ii) above. 

1.4.3 Markov Chains  

A discrete state space process is often referred to as a chain. A process such as (i) 

above is a discrete-time chain, and a process such as (iii) is a continuous-time chain. 

A stochastic process }0),({ ≥ttX  is called a Markov chain, if for every Sx
i
∈    

}|Pr{

},...,|Pr{

11

0011

−−

−−

===

===

nnnn

nnnn

xXxX

xXxXxX
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The transition probability from state j to state k can be defined as the conditional 

probability 

SjkjXkXnP nnjk ∈=== − ,}|Pr{)( 1  

1.4.4 Birth-Death Process 

The birth-death process is a special case of a continuous-time Markov process where 

the states represent the current size of a population and where the transitions are 

limited to births and deaths. 

When a birth occurs, the process goes from state k to k+1. When a death occurs, the 

process goes from state k to state 1−k . The process is specified by birth rates 

∞= ...1,0}{ iiλ  and death rates ∞= ...2,1}{ iiµ . 

1.4.5 Transient and Steady-State Conditions of Birth-Death Processes 

The variation in the probability of state k is the difference between the probabilities of 

moving into and out of state k.  

The state-transition diagram of the birth-death process is shown in figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: The state-transition diagram of the birth-death process 
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Assuming that Pk(t) is the probability that at time t the process is in state k. 

dt

tdPk )(
 flow ofVariation =

 

)()(flow Ingoing 1111 tPtP kkkk ++−− += µλ
 

)()(flow Outgoing tPtP kkkk µλ +=  

A steady state condition means that the state probabilities do not depend on the time 

any more. For ∞→t , the birth-death process may reach a steady-state (equilibrium) 

condition.  If a steady-state solution exists, then all probabilities are constant and 

hence the steady-state solution is characterized by: 

,...2,1,00
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lim ==
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k
dt

tdPk

t  

We denote the steady state probability that the system is in state )( Νkk ∈  by kp , 

which is defined by 
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k

t
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So we arrive at the following steady-state flow equations: 
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These equations can be recursively solved to obtain the following: 
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Furthermore, since the kp  are probabilities, the normalization condition 1
0
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∞
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be used to get  
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1.4.6 Relevant Probability Distributions  

1.4.6.1 Bernoulli Distribution 

The Bernoulli distribution, is a discrete probability distribution, which takes value 1 

(success) with probability p and value 0 (failure) with probability pq −= 1 . Therefore 

it has a probability mass function,   

1,0,)1()( 1 =−== − ippiXP ii        

The expected value of a Bernoulli random variable X is pXE =)(  , and its variance is 

)1()(2 ppX −=σ . 

1.4.6.2 Exponential Distribution 

A random variable X has an exponential distribution with parameter α , if and only if 

its probability density is given by 

( )


 >

=
−

otherwise0

0te
tf

tαα
 

The expected value of an exponential random variable X is 
α

1
)( =XE  , and its 

variance is, 
2

=
α

σ
1

)(2 X . 

The exponential distribution is a continuous probability distribution, it is usually used 

to represent the time between events that happen at a constant average rate, for 

instance, arrivals in queueing theory. 

An important property of an exponential random variable X with parameter α  is the 

memoryless property. This property states that for all 0and   0 ≥≥ tx ,  
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The exponential distribution is the only continuous distribution with this property. 

1.4.6.3 Poisson Distribution 

A random variable X has a Poisson distribution with parameter λ , if and only if its 

probability distribution is given by 

,...2,1,0,
!

)( === − ne
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nXP
n

λλ
         

 

For the Poisson distribution 

.)()( 2 λσ == XXE  

Assuming the number of occurrences in some time interval to be a Poisson random 

variable is equivalent to assuming the time between successive arrivals follows an 

exponentially distributed random variable. 

In queueing theory assuming that arrivals follow a Poisson distribution, is equivalent 

to assuming that the inter-arrival times (the time between arrivals) are exponentially 

distributed. 

1.4.7 Laplace and Laplace-Stieltjes Transform 

The Laplace transform of a function )(tf , defined for all real numbers 0≥t , is the 

function F(s), defined by:    

∫==
∞

−

0

)()}({)( dttfetfLsF st
       

Laplace-Stieltjes Transforms are a generalization of Laplace transforms to functions 

that are not necessarily Riemann integrable. This generalization is desirable when we 

are dealing with random variables that have a concentration of probability at a point.  

Let f(t) be a real valued function with domain ),0[ ∞ . The Laplace-Stieltjes transform 

of  f(t) denoted by L(s), is defined by 
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We say that L(s) exists if the above integral converges for at least one value of s. 

1.4.8 Probability Generating Function 

Suppose X is a random variable which assumes non-negative integer values 0, 1, 2,… 

and let ...,2,1,0),( === nnXPPn  with 1
0

=∑
∞

=n
nP , then the probability generating 

function of X is defined as 
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Generating functions are used in a manner similar to Laplace transform, but for 

functions of discrete variables. 

 

1.5 Symbols, Terminologies and Queue Notations 

Kendall (1953) introduced a shorthand notation to characterize a range of queueing 

models. It is a three-part code A/B/C, where: 

� A denotes the distribution of the interarrival time. 

� B denotes the distribution of the service times. 

� C denotes the number of servers.  

For A and B the following abbreviations are very common: 

� M (Markov): denotes the exponential interarrival and service time distribution 

with probability distribution function tetA λ−−=1)( and probability density 

function teta λλ −=)( , where 0>λ  is a parameter.  

� D (Deterministic): all values are from a deterministic “distribution” and equal 

a constant, i.e. (constant interarrival or service time). 
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� G (General): general distribution, not further specified. In most cases at least 

the mean and the variance are known. 

� kE  (Erlang-k): Erlangian Distribution with k phases ( 1≥k ). For the Erlang-k 

distribution which is usually used for modelling telephone call arrivals at a 

central office. The probability distribution function is 

                                ∑−=
−
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−
1

0 !

)(
1)(

k

j

j
tk

j
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µµ
 

Where 0>µ  is a parameter.  

� kH  (Hyper-k): Hyperexponential distribution with k phases. Here the density 

function is 

                               )1()(
1

t
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i

i
ieqtA

ω−

=

−=∑  

Where }...1{,0,0 kiqii ∈>>ω  are parameters and furthermore 1
1

=∑ =

k

j jq  

must hold. 

Kendall's notation has been considerably extended by Lee (1966), to allow it to 

represent a wide variety of queueing systems, a queue then is represented by a 

sequence A/B/C/D/E, where D denotes the maximum size of the waiting line in the 

finite case (if ∞=D  then this letter is omitted) and E denotes the service discipline 

used (FIFO, LIFO and so forth). If E is omitted this means that the service discipline 

is FIFO.  

Thus, the notation  M/M/1 denotes a queue or model system with FIFO service, a 

single server, an infinite waiting line, the customer interarrival times are iid 

(independent and identically distributed) and exponentially distributed with parameter 

λ  where the customer service times are also iid and exponentially distributed with 

parameter µ .   
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1.6 General Relationships in Queueing Theory 

There are certain useful relationships in queueing theory that hold for G/G/c queues. 

1.6.1 Traffic Intensity (Server Utilization) 

Assuming  λ , is the average rate of customers entering the system and µ , is the 

average rate of serving customers and c is the number of servers in the system, then 

the quantity 
µ

λ
ρ

c
= , is called the traffic intensity (also called the utilization factor or 

server utilization), ρ gives the fraction of time that the server is busy. 

Obviously, in order for the steady-state conditions to exist it is required that µλ c<  

( 1<ρ ). This is the stability condition for the M/M/c systems. When the average 

number of arrivals in to the system is more than the maximum number of customers 

the system can serve, i.e. µλ c>  ( 1>ρ ) this means that the queue size never settles 

down, and there is no steady state.  

When the arrival rate equals the maximum average service rate of the system, i.e 

1=ρ , the randomness will prevent the queue from ever emptying out and allowing 

the server to catch up, and this causes the unbounded growth of the queue.  In this 

case the steady state does not exist unless arrivals and service are deterministic and 

perfectly scheduled. 

1.6.2 The Symbol )( to ∆  

The notation 0 as))(( xxxgo →  refers to any function that ( 0 as xx → ) decays to zero 

at least as rapidly as g(x) [where g(x)>0], that is 

∞<=
→

k
xg

xgo

xx )(

))((
lim

0                                 

(Leonard, 1975) 

As the standard mathematical "little o" notation will be used, this denotes 

0
)(

lim
0

=
∆

∆

→∆ t

to

t  



27 

 

For example, if 2,)()( ≥∆=∆ atto
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By using this notation we ignore negligible terms which do not have any impact on 

the final results. 

1.6.3 Little's Formula 

As already pointed out, the number of customers queued in front of an arriving 

customer clearly gives an indication of the time the arriving customer has to wait in 

order to be served (Frode, 1998). In Little's law this fact is considerable, it establishes 

a relationship between the average number of customers in the system, the mean 

arrival rate and the mean customer response time in the steady state. 

Little’s law is a general result holding even for G/G/1 queues; it also holds with other 

service disciplines other than FIFO. It states that "the average number of customers in 

a queueing system is equal to the average arrival rate of customers to that system, 

times the average time spent in that system". (Leonard, 1975). 

Assuming that λ  is the mean arrival rate, L is the expected number of customers in 

the system, qL  is the expected number of customers in the queue, W is the expected 

waiting time in the system and  qW  is the expected waiting time in the queue. Little's 

formulas are; WL λ= and qq WL λ=  

It’s clear from the previous formulas that to evaluate the average  waiting time in the 

system/queue, it’s enough to know the arrival rate and the  mean number of customers 

in the system/queue, and vice versa. 

Eilon's Proof of this formula is mentioned in (Methi, 2003). 
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1.7 Performance Measures 

There are a number of performance indicators in the analysis of queueing models that 

measure the performance of the system, some of these measures are of interest to the 

customer looking for service at the queue, such as; mean response time and the mean 

number of customers in the queue. Other measures of interest to the service provider 

include; the server utilization and the service cost. 

The most relevant performance measures in the analysis of queueing models are: 

� The mean response time which is the mean time a customer spends in the 

system, i.e. the waiting time plus the service time, W . 

� The mean number of customers in the system, L  (including the one or those in 

service). 

� The mean time spent in the queue, qW . 

� The mean number of customers in the queue, qL . 

� The mean utilization of system facility, ρ . The utilization gives the fraction of 

time that the server is busy. 

Having such information about the system enables the service centre owner to 

determine the values of appropriate measures of effectiveness in the system and 

develop an optimal system (according to some criterion). 

 

1.8 Server Vacations 

A vacation in a queueing context is a period when the server is not available for 

providing service. Arrivals coming during the vacation can go into service only after 

the server returns from vacation. There are many situations that lead to a server 

vacation, i.e. machine breakdowns, systems maintenance and cyclic servers (where 

the server serves more than one queue in the system or serves more than one system). 

Doshi (1986) discussed different types of vacation models: 
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� The single vacation model, in this model there is exactly one vacation after the 

end of each busy period. If the server comes back from this vacation, it does not 

go for another vacation even if the system is still empty at that time. This type of 

vacation may arise from cases like maintenance in production systems, the 

maintenance can be considered a vacation.  

� The multiple vacation model, this type of vacation may arise from cases like 

maintenance in computer and communication systems where processors in a 

computer and communication systems do considerable testing and maintenance 

besides doing their primary functions (processing telephone calls, receiving and 

transmitting data, etc.). The maintenance work required is divided into short 

segments. Whenever the customers are absent, the processor does a segment of the 

maintenance work. When the system is idle, the server takes a vacation (works on 

a maintenance segment). Upon return from a vacation, the server starts service 

only if it finds K or more customers waiting in the queue, if the number waiting is 

less than K then it goes on another vacation (maintenance segment). 

� The limited service vacation model in which the server takes a vacation on 

becoming idle or after having served m consecutive customers, or after time T. 

The way that the server provides service in the system is related with the vacation 

type. In his survey Doshi (1986) mentioned some of the service models as the 

following: 

� Gated service, in this case, as soon as the server returns from the vacation it places 

a gate behind the last waiting customer. It then begins to serve only customers 

who are within the gate, based on some rules of how many or for how long it 

could serve. 

� Exhaustive service, in this case, the server serves customers until the system is 

emptied, then it leaves for a vacation. 

� Limited service, in this case, a fixed limit of K is placed on the maximum number 

of customers that can be served before the server goes on vacation. The server 

leaves for vacation either: (i) when the system is empty, or (ii) when K customers 

have been served. 
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Since Doshi’s survey many researchers have studied queueing systems with different 

kinds of vacations, e.g., Tian, Zhang and Cao (1989), LaMaire (1992), Igaki (1992), 

Madan and Saleh (2001), Tian and Zhang (2002), Chang, Takine, Chae and Lee 

(2002), Choi and Kim (2003), Arumuganathan and Jeyakumar (2005), Chang and 

Takine (2005), Madan and Choudhury (2005), Madan, Al-Rawi and Al-Nasser (2005) 

and Banik, Gupta and Pathak (2007). 

 

1.9 Random Breakdowns 

In queueing systems in which the server is a machine such as networks, 

communication systems, and computer systems, it is realistic to assume that the server 

may suddenly break down and hence it will not be able to provide service again until 

it is repaired. The breakdowns occur at random and the repair time could follow an 

exponential, general, deterministic etc. distribution. 

Although, in his survey, Doshi (1986), considered machine breakdowns as a server 

vacation we can consider that vacations may take place when a human server in the 

system may like to take a pause or may leave the system for an uncertain period of 

time from time to time, the breakdowns occur suddenly when an electronic or a 

mechanical server is providing service.  Obviously, vacations and breakdowns both 

affect a system’s efficiency adversely. 

Several authors have studied queueing systems subject to breakdowns. They produced 

mathematical results in terms of the queue size distribution at a random point of time, 

average queue length at a random point of time, average waiting time for a customer, 

waiting time cost for a customer, cost for the system’s idle time and many other 

performance measures of the system’s efficiency. We refer the reader to Avi-Itzhak 

and Naor (1963), Kulkarni and Choi (1990), Federgruen and So (1990), Jayawardene 

and Kella (1996), Aissani and Artalejo (1998), Wang, Cao and Li (2001), Madan, 

Abu-Dayyah and Gharaibeh (2003a), Wang, Chiang and Ke (2003) and, Wang 

(2004).  
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In recent years, a significant amount of work has been done on queues with random 

breakdowns by several authors, e.g., Vinck and Bruneel (2006), Senthil and 

Arumuganathan (2010) and, Jain and Jain (2010). 

When a system suddenly stops functioning due to a failure, most of the papers 

available in the literature assume that the repair process on the system starts 

immediately. However, we will analyze a queueing model where there is a possible 

delay in starting the repair process with the aim of determining the effect of this delay 

on the efficiency of the system.  This again is a very realistic assumption in real life.  

  

1.10 The Supplementary Variable Technique 

According to the exponentially distributed inter-arrival and service times of the 

M/M/1 queue, it is possible to model the queue size process N(t) by a Markov process. 

If the arrival process and/or the service process fails to be memoryless then we can 

not model the queue size process N(t) by a Markov process. The supplementary 

variable technique was introduced by Cox (1955). Keilson and Kooharian (1960) have 

indicated that this technique was used later by many researchers e.g., Henderson 

(1972), Choi, Hwang and Han (1998) and, Methi (2003). 

This technique is an important one to obtain a transient solution of Non-Markovian 

systems. Inclusion of a supplementary variable enables one to write down the 

differential equations, as in the case of a Markovian system. To illustrate the 

supplementary variable technique we assume that the service times are distributed 

according to a general probability density function.  Then the N(t) process becomes 

intractable due to the missing Markov property. So we introduce a new random 

variable X(t) denoting the elapsed service time or the remaining service time for the 

customer in service at time t. By augmenting the state description by the 

supplementary variable it can be shown that the compound two-dimensional 

stochastic process (N(t); X (t)) becomes a Markov process. More on supplementary 

variable method can be seen in (Methi, 2003). 
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The supplementary variable method is a simple and convenient way compared with 

the other methods such as the embedded Markov chain approach (Leonard, 1975) and 

residual life approach (Bose, 2002). 

 

1.11 The M
[X]

/G/1 Queueing System 

M
[X]

/G/1 represents a single-server queuing system, where the customers arrive in 

groups according to a compound Poisson process with the batch size iid random 

variable X. The service times of the individual customers are considered to be 

generally distributed. The queue discipline is service in the order of arrival between 

batches; that is, all customers in the n
th

 batch are served before the first customer in 

the ( 1+n )
th

 batch and the service order within a batch is random or units within a 

batch are pre-arranged for the purpose of the service. (Methi, 2003). 

 

1.12 Literature Review and the Current Work                   

It is a realistic situation that the server is unavailable to serve the customers during 

occasional periods of time. If the server is human, it is normal that they may have to 

stop for a rest. The periods for which the server is unavailable to serve the customers 

according to a known schedule or pre-agreed policy is said to be the server vacation 

period.  

Starting with Gaver (1962), vacation queues have been researched by a number of 

people including; Mitrani and Avi-Itzhak (1968), Fuhrmann (1984), Fuhrmann & 

Cooper (1985), Doshi (1985), Servi (1986), Blondia (1989), Chatterjee and 

Mukherjee (1990), Selvam and Sivasankaran (1994), Madan (2000a), Alfa (2003), 

Wang and Li (2008), to mention some.  

An extensive survey on queueing systems with vacations can be found in Doshi 

(1986). Most of the previous studies are based on the well-known decomposition 

property discovered by Levy and Yechiali (1975) and further studied by Keilson and 

Servi (1987). This result is one of the most significant results of the research on 
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vacation models and it states that the steady- state waiting time is the sum of two 

independent random variables. One is the waiting time and the other is the 

equilibrium residual time in a vacation. Madan (2000b), (2001) considered Bernoulli 

vacation models for two phase heterogeneous service as proposed by Keilson and 

Servi (1986) under certain modifications. Madan and Abu Al-Rub (2004) studied the 

single server queue with optional phase type server vacations based on exhaustive 

deterministic service and a single vacation policy. 

Due to its wide applications the single arrival queueing systems M/G/1 have been 

studied by numerous researchers, we refer the reader to Madan and Baklizi (2002), Ke 

(2003b), Artalejo and Choudhury (2004) and Kella, Zwart and Boxma (2005). 

It is more realistic to assume the arrivals occur in batches, rather than individuals, for 

example, the compound Poison arrival case. The single server M[X]/G/1 queue with 

batch arrivals, where M[X] denotes a compound Poisson process, have been studied by 

numerous authors including, Lucantoni (1991), Choi, Kim, Shin and Pearce (2001), 

Al-Jararha and Madan (2003) and, Lee, Baek and Jeon (2005). 

More recently, most of the studies have been devoted to batch arrival vacation models 

under different vacation policies because of its interdisciplinary character. 

Numerous researchers have studied batch arrival queues with vacation time, we refer 

the reader to Baba (1986), Borthakur and Choudhury (1997), Frey and Takahashi 

(1999), Altman and Yechiali (2006) and, Choudhury (2007). Lee and Srinivasan 

(1989) considered a control policy on a M
[X]

/G/1 with multiple vacations. In1994, 

Lee, Lee and Chae have dealt with M
[X]

/G/1 with multiple vacations and N-policy. 

The N-policy vacation queue model means that the server is turned on when N or 

more customers are present, and off only when the system is empty. After the server 

is turned off, the server will not operate until at least N customers are present in the 

system.  Choudhury (2000) has introduced the server setup period to the M
[X]

/G/1 

system and shown that the departure point queue size distribution is the convolution 

of the distribution of three independent random variables.  

Chae, Lee and Ahn (2001) proposed an alternative approach, called the arrival time 

approach (ATA), to understand various M/G/1-type queues with generalized 

vacations. They showed, by an example, that the steady-state queue size distribution 
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of an M[X]/G/1 with multiple vacations at an arbitrary time can be decomposed into 

those of an ordinary M
[X]

/G/1 and the number of customers during the vacation 

period. 

Choudhury and Madan (2004) studied a batch arrival queue, where the concept of a 

Bernoulli schedule along with a vacation time are introduced for a two phase 

heterogeneous queueing system and obtained the queue size distribution at a departure 

epoch as a classical generalization of the well-known Pollaczek– Khinchine formula 

for this type of model. The same year, Madan, Al-Nasser and Al- Masri (2004), 

considered the batch arrivals queue with optional re-service. 

Hur and Ahn (2005) studied a single server queueing system whose arrival stream is a 

compound Poisson process and service times are generally distributed. They 

considered three types of idle period, threshold, multiple vacations, and single 

vacation. For each model, they assumed after the idle period, the server needs a 

random amount of setup time before resuming service. 

In recent years, a significant amount of work has been done on batch arrival queues 

with vacations and batch arrival queues with random breakdowns by several authors. 

We mention a few recent papers, Ke (2007a), Choudhury, Tadj and Paul (2007), 

Atencia, Bounza, and Moreno (2008), Maraghi, Madan and Darby-Dowman (2009 

and 2010), Jain and Upadhyaya (2010) and finally the current researchers, Khalaf,  

Madan and Lucas (2010, 2011a, 2011b, 20011c and (2012). 

 

1.13 Research Objectives 

Vacations may take place when a human server in the system wishes to take a pause 

or leave the system for an uncertain period of time from time to time. Breakdowns 

may occur suddenly when an electronic or a mechanical server is providing service.  

Obviously, vacations and breakdowns both affect a system’s efficiency adversely.  

Several authors have studied such systems and produced mathematical results in 

terms of the queue size distribution at a random point of time, average queue length at 

a random point of time, average waiting time for a customer, waiting time cost for a 
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customer, cost for the system’s idle time and many other performance measures of the 

system’s efficiency. 

In most of the systems mentioned in the literature, the server joins the system 

immediately after the completion of a vacation period. However, it is a realistic 

assumption that there is a delay in re-joining the system. In this research we study 

queueing systems in which the server takes an optional extended vacation before re-

joining the system. 

Similarly, when a system suddenly stops functioning due to a failure, most of the 

papers available in the literature assume that the repair process on the system starts 

immediately. However, we analyze a queueing model with delay in starting the repair 

process with the aim of determining the effect of delay on the efficiency of the 

system.  This again is a very realistic assumption. 

Recently Maraghi (2008) has studied some queueing systems with vacations and 

breakdowns. All these research papers assume no server delay in joining the system 

after completion of a vacation period and no delay in starting the repair process after a 

breakdown occurs. Our aim is to generalize not only some of the work done by 

Maraghi (2008) but also some other systems studied earlier by other authors.   

In addition to extended vacations and delay in starting the repair process, we 

introduce the idea of a stand-by server in some of the systems. There are some 

systems in the queueing literature, e.g., Madan (1995), where a stand-by server is 

employed in the system when the main server is under repair.  However, we study a 

new system which employs a stand-by server(s) not only during the repairs of a server 

but also during the period of vacation of the server.  

Therefore, this research is conducted with the following objectives: 

1. To determine the steady-state behavior of batch arrival queueing systems with 

Bernoulli schedule general vacations followed by a further optional extended 

vacation, random breakdowns general delay and general repairs.  

2. To determine the steady-state behavior of batch arrival queueing systems with 

Bernoulli schedule general vacations, random breakdowns general repairs and 
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a stand-by server who’s service time follows an exponential distribution 

during vacation periods and repair times of the main server. 

3. To determine the steady-state behavior of batch arrival queueing systems with 

Bernoulli schedule general vacations, random breakdowns general repairs, 

general delay and a stand-by server who’s service time follows an exponential 

distribution during vacation. 

4. To determine the steady-state behavior of batch arrival queueing systems with 

Bernoulli schedule general vacations followed by a further optional extended 

vacation, random breakdowns, general repairs and an exponential stand-by 

service time distribution during repairs.  

 

1.14 Research Methodology  

The following are the commonly employed methods of solving a queueing model:  

1. The method of recursive solution. 

2. Generating function approach. 

3. Laplace-Steiltjes transformation approach,  

4. Integral equation approach. 

5. Matrix-geometric method. 

6. Supplementary variable technique. 

We propose to use primarily methods 1, 2, 3 and 6 in our work.  

 

1.15 Outline of Forthcoming Chapters 

The following chapters represent the way the research progressed.  In chapter two we 

present the basic queueing model which forms the starting point for later 

investigations in the dissertation which we develop for different queueing systems. 

The basic model is based on the work of Maraghi, et. al. (2010). However we give 

details of solving the equations and all the steps from the specification of the first 

probability equations to the final closed form solution of the queue size at a random 
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epoch, the mean waiting time in the system and the mean waiting time in the queue, 

etc. Giving such details avoids showing repeatedly the same equations in later 

chapters. In the basic model we consider the batch arrival queueing system M
[X]

/G/1 

in which after any service completion the server has the option to leave for a vacation 

with probability p or continue service with probability 1 − p. The server may suffer a 

random breakdown and if so the repair process on the system starts immediately. 

Although the customers arrive in batches, they are served one by one.  

In chapter three we consider that the server may go on an extended vacation after the 

original vacation is completed with probability r or re-joins the system to serve the 

customers directly after the vacation with probability r−1 . Moreover we assume that 

when the server breaks down, it does not enter the repair process immediately and 

there is a delay time waiting for the repair to start.  

In chapter four a stand-by server has been added to the basic model. The stand-by 

server is assumed to serve the costumers during the vacation periods and repair 

periods of the main server.  

Chapter five studies an M
[X]

/G/1 queuing system with Bernoulli schedule server 

vacations. The server serves only one customer at a time and it may suffer from 

random breakdowns.  It is assumed that there is a delay time before starting the repair 

process after the server's random breakdown. The system deploys a stand-by server 

during the vacation period.  

In chapter six we study the M
[X]

/G/1 queueing system with Bernoulli scheduled 

vacations. In this chapter the server may go on an extended vacation after the original 

vacation is completed with probability r or rejoin the system to serve the customers 

directly after the vacation with probability r−1 . In addition to vacations and extended 

vacations, the system may suffer from random breakdowns from time to time. The 

repair process starts immediately after the breakdown. The system deploys a stand-by 

server only during the repair period.  

For all models investigated, we assume that the service times, vacation times, 

extended vacation times, delay times and repair times have different general 

(arbitrary) distributions while the stand-by service times and the breakdown times 

follow exponential distributions.  
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The conclusions and contributions of this research with suggestions for further 

research are presented in chapter seven. 
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Glossary of Notations, Definitions and Abbreviations 

In the rest of this dissertation we consider the following list of notations and 

definitions: 

 

Notations Definitions 

),( xtP
n

 

Probability that at time t, there are n 

)0( ≥n  customers in the queue 

excluding the customer in service and the 

elapsed service time of this customer is 

x. 

dxxtPtP
nn ∫=

∞

0

),()(  

Probability that at time t, there are n 

)0( ≥n customers in the queue excluding 

the customer in service irrespective of 

the value of x. 

),(lim)( xtPxP
n

t
n

∞→
=  

The steady state probability 

corresponding to ),( xtP
n

. 

)(lim tPP
n

t
n

∞→
=  

The steady state probability 

corresponding to )(tP
n

. 

∑=∑=
∞

=

∞

= 00

)(,)(),(
n

n

n

q
n

n

n

q
PzzPxPzzxP

 

The probability generating function of 

the queue size when the server is active. 

),( xtV
n

 

Probability that at time t, there are n 

)0( ≥n  customers in the queue and the 

server is on vacation with elapsed 

vacation time x. 

dxxtVtV
nn ∫=

∞

0

),()(  

Probability that at time t, there are n 

)0( ≥n  customers in the queue and the 

server is on vacation irrespective of the 

value of x. 

),(lim)( xtVxV
n

t
n ∞→

=  

The steady state probability 

corresponding to ),( xtV
n

. 
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)(lim tVV
n

t
n ∞→

=  
The steady state probability 

corresponding to )(tV
n

. 

∑∑
∞

=

∞

=

==
00

)(,)(),(
n

n

n

q
n

n

n

q VzzVxVzzxV
 

The probability generating function of 

the queue size when the server is on 

vacation. 

),( xtR
n

 

Probability that at time t, there are n 

( 0≥n ) customers in the queue, and the 

server is under repair with elapsed repair 

time x. 

dxxtRtR
nn ∫=

∞

0

),()(  

Probability that at time t, there are n 

( 0≥n ) customers in the queue and the 

server is under repair irrespective of the 

value of x. 

),(lim)( xtRxR
n

t
n

∞→
=  

The steady state probability 

corresponding to ),( xtR
n

. 

)(lim tRR
n

t
n

∞→
=  

The steady state probability 

corresponding to )(tR
n

. 

∑=∑=
∞

=

∞

= 00

)(,)(),(
n

n

n

q
n

n

n

q
RzzRxRzzxR

 

The probability generating function of 

the queue size when the server is under 

repair. 

)(tQ  

Probability that at time t, there are no 

customers in the system and the server is 

idle but available in the system. 

QtQ
t

=
∞→

)(lim  
The steady state probability 

corresponding to )(tQ . 

),( xtD
n

 

Probability that at time t, there are n 

( 0≥n ) customers in the queue, and the 

server is inactive due to a system 

breakdown and is waiting  for repairs to 

start with elapsed delay time x. 

dxxtDtD
nn ∫=

∞

0

),()(  

Probability that at time t, there are n 

)0( ≥n  customers in the queue and the 

server is waiting for repairs to start 

irrespective of the value of x. 
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),(lim)( xtDxD
n

t
n ∞→

=  
The steady state probability 

corresponding to ),( xtD
n

. 

)(lim tDD
n

t
n

∞→
=  

The steady state probability 

corresponding to )(tD
n

. 

∑=∑=
∞

=

∞

= 00

)(,)(),(
n

n

n

q
n

n

n

q
DzzDxDzzxD

 

The probability generating function of 

the queue size when the server is waiting 

for a repair to start (on delay). 

),( xtE
n

 

Probability that at time t, there are n 

( 0≥n ) customers in the queue, and the 

server is on an extended vacation with 

elapsed extended vacation time x. 

dxxtEtE
nn ∫=

∞

0

),()(  

Probability that at time t, there are n 

( 0≥n ) customers in the queue and the 

server is on an extended vacation 

irrespective of the value of x. 

),(lim)( xtExE
n

t
n

∞→
=

 

The steady state probability 

corresponding to ),( xtE
n

. 

)(lim tEE
n

t
n

∞→
=  

The steady state probability 

corresponding to )(tE
n

. 

∑=∑=
∞

=

∞

= 00

)(,)(),(
n

n

n

q
n

n

n

q
EzzExEzzxE

 

The probability generating function of 

the queue size when the server is on an 

extended vacation. 

∑
∞

=

=
1

)(
n

n

nczzC  
The probability generating function of 

the batch arrival size. 

)(zSq
 

The probability generating function of 

the queue length no matter what the state 

of the system is. 

)(),( xgxG
 

The distribution function and the density 

function  respectively of the service 

times. 

)(),( xbxB  

The distribution function and the density 

function respectively of the vacation 

times. 
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)(),( xhxH
 

The distribution function and the density 

function respectively of the repair times. 

 

)(),( xwxW
 

The distribution function and the density 

function respectively of the delay times. 

)(),( xfxF
 

The distribution function and the density 

function respectively of the extended 

vacation times. 

)(*
aG

 

The Laplace-Stieltjes transform of the 

service times )(xG . 

)(* bB
 

The Laplace-Stieltjes transform of the 

vacation times B(x). 

)(* bH  
The Laplace-Stieltjes transform of the 

repair times )(xH . 

)(* bW
 

The Laplace-Stieltjes transform of the 

delay times W(x). 

)(* bF
 

The Laplace-Stieltjes transform of the 

Extended vacation times )(xF . 

)(IE  
The average size of the batches of the 

arriving customers. 

)(VE  

The mean vacation time. 

 

)(RE  

The mean repair time. 

 

)(DE  

The mean delay time. 

 

)(eVE  

The mean extended vacation time. 

 

))1(( −IIE  

The second factorial moment of the batch 

size of arriving customers. 
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)( 2VE
 

The second moment of the vacation 

times. 

 

)( 2RE
 

The second moment of the repair times. 

 

)( 2DE
 

The second moment of the delay times. 

 

)( 2
eVE

 

The second moment of the extended 

vacation times. 
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Chapter Two: The Basic Mathematical Model: An M
[X]

/G/1 

Queue with Bernoulli Schedule, General Vacation Times, 

Random Breakdowns and General Repair Times 

 

2.1 Introduction 

Several research results have been published including a study of the M
[X]

/G/1 

queuing system with vacations and the M[X]/G/1 queuing system with random 

breakdowns. We refer the reader to Ke (2001), Niu, Shu and Takahashi (2003), 

Choudhury (2003a) and, Xu, Bao and Tian (2007). 

In recent years many authors have studied batch arrival queueing systems. Choudhury 

and Madan (2005) analyzed a two-stage batch arrival queueing system assuming that 

the server vacation is the modified Bernoulli schedule vacation under an N-policy. 

Kumar and Arumuganathan (2008) also studied the batch retrial queueing systems 

with general vacation time under a Bernoulli schedule but with two phases of 

heterogeneous service. Chang and Ke (2009) investigated an M
[X]

/G/1 retrial queueing 

system with a modified vacation policy by applying the supplementary variable 

technique.  

In this chapter we introduce the basic mathematical model of the batch arrival 

queueing system M[X]/G/1 in which, after every service completion the server has the 

option to leave for a vacation with probability p or continue service with probability 1 

− p. Moreover, we assume that the server may breakdown randomly, and the repair 

process starts immediately after the breakdown. Although customers arrive at the 

service station in batches of variable size, they are served one by one. We assume that 

the service times, vacation times and repair times are generally distributed while the 

breakdown times are exponentially distributed. 

This basic model will be used in further chapters to develop queueing systems with 

different assumptions which lead to new contributions of knowledge in queueing 

theory. 
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The general equations of this chapter are based on the work of Maraghi, et. al. (2010) 

but are suitably modified for use by us in our extensions to various queueing models. 

The procedure described for solving these problems is the work of the current author.  

The rest of this chapter is organized as follows: the assumptions underlying the 

mathematical model are given in section 2.2. In section 2.3 all the steady state 

equations governing the basic mathematical system are formulated. In section 2.4 the 

supplementary variable technique is used to solve the equations of section 2.3 to find 

the queue size distribution at a random epoch. The average queue size and the average 

waiting time are given in section 2.5. 

 

2.2 Assumptions  

We consider a batch arrival queueing system, where customers arrive at the system 

according to a compound Poisson process in batches whose size is a random variable 

X with batch arrival rate λ . Let ]Pr[ iXci == , then tci∆λ is the probability that during 

a short time interval ),( ttt ∆+ a batch of size ...),3,2,1( =ii arrives at the system. 

More details about the batch arrival queueing systems can be found in (Methi, 2003). 

Although the customers arrive in groups, the single server can serve only one 

customer at a time based on the (FCFS) discipline. The service times are assumed to 

follow a general distribution. Let )(and)( xgxG  be the distribution function and the 

density function of the service time respectively.  The conditional probability of a 

service completion during the interval, ],,( xxx ∆+ given that the elapsed service time 

is x, is given by xx ∆)(µ , so that ))(1/()()( xGxgx −=µ  and, therefore 

))(exp()()(
0

∫−=
x

dssxxg µµ . 

 The derivation of )(xg  is given in appendix A, (A.1). 

Once the server completes a service it can go on a vacation of a random length of time 

with probability p, or stay in the system providing service with probability p−1 . The 

vacation times are assumed to follow a general distribution. 
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Let )(and)( xbxB  be the distribution function and the density function of the 

vacation time respectively. The conditional probability of a vacation completion 

during the interval, ],,( xxx ∆+ given that the elapsed vacation time is x, is given by 

xx ∆)(β , so that ))(1/()()( xBxbx −=β  which implies ))(exp()()(
0

∫−=
x

dvvxxb ββ .  

The system may breakdown at random, and breakdowns are assumed to occur 

according to a Poisson stream with mean breakdown rate 0>α . Further we assume 

that once the system breaks down, the customer whose service is interrupted goes to 

the head of the queue. Once the system breaks down, its repairs start immediately. 

The duration of repairs follows a general (arbitrary) distribution with distribution 

function )(xH  and density function )( xh .  Let xx ∆)(γ  be the conditional probability 

of a completion of repair during the interval ],( xxx ∆+  given that the elapsed repair 

time is x, so that ))(1/()()( xHxhx −=γ  implies
 

))(exp()()(
0

∫−=
x

dttxxh γγ .  

We assume that all stochastic processes involved in the system are independent of 

each other. 

 

2.3 Equations Governing the General Mathematical Model 

According to the assumptions mentioned in the previous section, the following set of 

equations represent the queueing system we study in this chapter 

1),(

),()1)()(1)(1(),(

1

≥∆+

∆−∆−∆−=∆+∆+

∑
=

− ntxtPc

xtPtxxtxxttP

n

i

ini

nn

λ

αµλ

                               (2.1) 

),()1)()(1)(1(),( 00 xtPtxxtxxttP ∆−∆−∆−=∆+∆+ αµλ                                  (2.2) 

1),(),())(1)(1(),(
1

≥∆+∆−∆−=∆+∆+ ∑
=

− nxxtVcxtVxxtxxttV
n

i

ininn λβλ       (2.3)                                      

),())(1)(1(),( 00 xtVxxtxxttV ∆−∆−=∆+∆+ βλ                                     (2.4) 
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1),(),())(1)(1(),(
1

≥∆+∆−∆−=∆+∆+ ∑
=

− ntxtRcxtRxxtxxttR
n

i

ininn λγλ        (2.5) 

),())(1)(1(),(
00

xtRxxtxxttR ∆−∆−=∆+∆+ γλ                                    (2.6) 

∫∫

∫
∞∞

∞

∆+∆+

∆−+∆−=∆+

0

0

0

0

0

0

)(),()(),(

)(),()1()()1()(

tdxxxtVtdxxxtR

tdxxxtPptQtttQ

βγ

µλ

                                 (2.7) 

A full explanation of equations (2.1) to (2.7) is given in appendix B, (B.1). 

Subtracting and adding a term ),( xxtP
n

∆+ to the LHS in equation (2.1), then dividing 

by )( xt ∆∆ and taking limits as )0(0 →∆→∆ xt , we get 

),(),())((),(),(
1

xtPcxtPxxtP
x

xtP
t

n

i
ininnn ∑

=
−+++−=

∂

∂
+

∂

∂
λαµλ          (2.8) 

taking limit as ∞→t , this yields 

1)()())(()(
1

≥∑+++−=
∂

∂

=
−

nxPcxPxxP
x

n

i
ininn

λαµλ                                      (2.9) 

Subtracting and adding a term ),(0 xxtP ∆+ to the LHS in equation (2.2), then dividing 

by )( xt ∆∆ and taking limits as )0(0 →∆→∆ xt , we get 

)())(()( 00 xPxxP
x

αµλ ++−=
∂

∂
                                                    (2.10) 

By following the same process we set out to get equations (2.9) from equations (2.1), 

and equation (2.10) from (2.2). From equations (2.3) to (2.6) we get respectively 

   

1)()())(()(
1

≥++−=
∂

∂
∑

=

− nxVcxVxxV
x

n

i

ininn λβλ
                               

 (2.11) 

)())(()( 00 xVxxV
x

βλ +−=
∂

∂
                                                 (2.12) 
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1)()())(()(
1

≥=++
∂

∂
∑

=

− nxRcxRxxR
x

n

i

ininn λγλ                                   (2.13) 

0)())(()( 00 =+−=
∂

∂
xRxxR

x
γλ                                             (2.14) 

Dividing equation (2.7)  by t∆ and taking limit as 0→∆t , we obtain 

∫∫

∫
∞∞

∞

−++

+−=
∂

∂

0

0

0

0

0

0

)(),()1()(),(

)(),()(

dxxxtPpdxxxtV

dxxxtRQtQ
t

µβ

γλ

                           (2.15)  

taking limits as ∞→t , we get 

∫−+∫+∫+−=
∞∞∞

0
0

0
0

0
0

)()()1()()()()(0 dxxxPpdxxxVdxxxRQ µβγλ                       (2.16) 

The following boundary conditions are used to solve the above equations 

0)()(

)()()()()1()0(

1

0

1

0
1

0
1

≥++

+−=

+

∞

+

∞

+

∞

+

∫

∫∫

nQcdxxxR

dxxxVdxxxPpP

nn

nnn

λγ

βµ

                                
(2.17) 

0,)()()0(
0

≥= ∫
∞

ndxxxPpV nn µ                                            (2.18) 

1)()0(
0

11
≥∫ ==

∞

−−
nPdxxPR

nnn
αα                                       (2.19) 

0)0(
0

=R                                                                        (2.20) 

A full explanations of the boundary conditions  (2.17) to (2.20) are given in appendix 

B, (B.2). 
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2.4 Distribution of the Queue Length at any Point of Time 

To solve equations (2.9), to (2.14), for a closed form solution we follow the procedure 

set out below.   

We multiply equation (2.9) by nz , and sum over n from 1 to ∞ , and add it to 

equation (2.10) resulting in the following equation 

0),())()((),( =++−+
∂

∂
zxPxzCzxP

x
qq

αµλλ                                            (2.21) 

Following a similar process, from equations (2.11) and (2.12), (2.13) and (2.14), we 

get respectively  

0),())()((),( =+−+
∂

∂
zxVxzCzxV

x
qq βλλ                                                  (2.22) 

0),())()((),( =+−+
∂

∂
zxRxzCzxR

x
qq γλλ                                                 (2.23) 

Multiplying equation (2.17) by 1+n
z , and summing over n from 0 to ∞ , results in 














++−−

+++−

=

∫∫∫

∫∫∫

∞∞∞

∞∞∞

0

0

0

0

0

0

000

)()()()()()()1(

)()(),()(),()(),()1(

),0(

dxxxRdxxxVdxxxPp

QzCdxxzxRdxxzxVdxxzxPp

zzP

qqq

q

γβµ

λγβµ    (2.24) 

Using equation (2.16) to replace 














++−− ∫∫∫

∞∞∞

0

0

0

0

0

0 )()()()()()()1( dxxxRdxxxVdxxxPp γβµ  by Qλ− , we have 

)1)(()(),(

)(),()(),()1(),0(

0

00

−++

+−=

∫

∫∫

∞

∞∞

zCQdxxzxR

dxxzxVdxxzxPpzzP

q

qqq

λγ

βµ

                                    

(2.25) 
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Next we multiply equation (2.18) by n
z and sum over n from 0 to  ∞ , to obtain 

∫=
∞

0

)(),(),0( dxxzxPpzV
qq

µ                                                  (2.26) 

Similarly, multiplying (2.19) by n
z and summing over n from 0 to ∞ , adding to 

(2.20), we obtain 

)(),(),0(
0

zzPdxzxPzzR
qqq

αα =∫=
∞

                                                 (2.27) 

Integrating equation (2.21) from 0 to x yields 

∫−+−−

=

x
dttxzC

qq
ezPzxP 0

)())((

),0(),(
µαλλ

                                                (2.28) 

Where ),0( zP
q

is given by equation (2.25). 

Let αλλ +−= )(zCa . Integrating equation (2.28) by parts with respect to x yields 








 −
=

a

aG
zPzP

qq

)(1
),0()(

*

                                                              (2.29) 

Where ∫
∞

+−−=
0

))((* )()( xdGeaG xzC αλλ  is the Laplace-Stieltjes transform of the service 

times )(xG . 

The details of integrating equation (2.28) by parts is given in appendix A, (A.2). 

Multiplying both sides of equation (2.28) by )(xµ  and integrating over x we get 

)(),0()(),( *

0

aGzPdxxzxP
qq

=∫
∞

µ                                                         (2.30) 

Using equations (2.30) and (2.26) we get 

)(),0(),0( *
aGzpPzV

qq
=                                                      (2.31) 

likewise, integrating equation (2.22) from 0 to x, we obtain 
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∫−−−

=

x
dttxzC

qq
ezVzxV 0

)())((

),0(),(
βλλ

                                                 (2.32) 

Substituting for ),0( zVq  from (2.31) in equation (2.32) we get 

∫−−−

=

x
dttxzC

qq
eaGzpPzxV 0

)())((
* )(),0(),(

βλλ

                                               (2.33) 

Let )(zCm λλ −= . Integrating equation (2.33) by parts with regard to x yields 

( )
m

mBaGzpP
zV

q

q

)(1)(),0(
)(

** −
=                                                  (2.34) 

Where ∫
∞

−−=
0

))((* )()( xdBemB
xzCλλ  is the Laplace-Stieltjes transform of the vacation 

times B(x). 

Multiplying equation (2.33) by )(xβ  and integrating over x we get 

)()(),0()(),( **

0

mBaGzpPdxxzxV qq =∫
∞

β                                                    (2.35) 

Integrating equation (2.23) from 0 to x, yields 

∫−−−

=

x
dttxzC

qq ezRzxR 0

)())((

),0(),(

γλλ

                                              (2.36) 

Substituting for
 

),0( zRq  from (2.27) and (2.29) in equation (2.36) we obtain 

 
( ) ∫−−−−

=

x
dttxzC

q

q
e

a

aGzzP
zxR 0

)())((
* )(1),0(

),(
γλλα

                                     (2.37) 

Integrating equation (2.37) by parts with respect to x we obtain 

( )( )
ma

mHaGzzP
zR

q

q

)(1)(1),0(
)(

** −−
=

α
                                            (2.38) 
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Where ∫
∞

−−=
0

))((*
)()( xdHemH

xzCλλ is the Laplace-Stieltjes transform of the repair 

times )(xH . 

Multiplying both sides of equation (2.37) by )(xγ  and integrating over x we obtain 

 
( )

a

mHaGzzP
dxxzxR

q
q

)()(1),0(
)(),(

**

0

−
=∫

∞ α
γ                                          (2.39) 

Now using equations (2.30),  (2.35) and (2.39) in equation (2.25) yields  

( )( ) ( ) )()(1)(1)(
),0(

****
mHaGzmpBpaGza

amQ
zPq

−−+−−

−
=

α
                       (2.40)  

Substituting for ),0( zPq  in equation (2.29), (2.34) and (2.38) we get 

( )
( )( ) ( ) )()(1)(1)(

)(1
)(

****

*

mHaGzmpBpaGza

aGmQ
zPq

−−+−−

−−
=

α
                           (2.41) 

( )
( )( ) ( ) )()(1)(1)(

)(1)(
)(

****

**

mHaGzmpBpaGza

mBaapQG
zVq

−−+−−

−−
=

α
                           (2.42) 

( )( )
( )( ) ( ) )()(1)(1)(

)(1)(1
)(

****

**

mHaGzmpBpaGza

mHaGzQ
zRq

−−+−−

−−−
=

α

α
                          (2.43) 

Let )(zS
q  be the p.g.f (probability generating function) of the queue length no matter 

what the state of the system is, i.e. )()()()( zRzVzPzS
qqqq

++= . 

Then adding equations (2.41), (2.42) and  (2.43) we obtain 

( ) ( )( ) ( )
( )( ) ( ) )()(1)(1)(

)(1)()(1)(1
)(

****

****

mHaGzmpBpaGza

mBaapQGmHzmaGQ
zSq

−−+−−

−−−+−−
=

α

α
                 (2.44) 

The normalization condition 1)1( =+ QS
q , is used in order to determine Q.  
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Because of the indeterminate form (0/0 form) of )(zS
q , when z = 1,  then L’Hopital’s 

rule  is applied on equation (2.44) to obtain 

( )( )
( ) ( )( ) ( ))(1)(1)(1)()()()(1

)()()()(1)(1)(

)(lim

***

**

1

ααααλλαα

ααλααλ

GREGIEVEIEpG

GVQEIEpREGQIE

zSq
z

−−+−−−

++−

=
→

           (2.45)              

Where )()1(,1)1( IECC =′= is the average size of the batches of the arriving 

customers, 1)0(* =B , )()()0(* VEIEB λ=′ , 1)0(* =H , and )()()0(* REIEH λ=′ . 

Hence, adding Q to the right hand side of equation (2.45) and equating to 1 we obtain 
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Equation (2.46) gives the probability that the server is idle. From equation (2.46) the 

utilization factor, ρ  of the system is given by 
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The details of applying L’Hopital’s rule on equation (2.44) and the steps to obtain Q 

are given in appendix A, (A.3). 

 

2.5 The Mean Length of the Queue and the Mean Waiting Time 

To find
q

L  , the steady state average queue length, where
1

)(
=

=
z

qq zS
dz

d
L , we note 

that this formula is of the 0/0 form, we write )(zSq given in (2.44) as 

)(/)()( zDzNzSq = where N(z) and D(z) are the numerator and denominator of the 

right hand side of (2.44) respectively. Then using L'Hopital's rule twice we obtain 
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The details of obtaining equation (2.48) is given in appendix A, (A.4). 

Finding the required derivatives at 1=z we have 
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Where )(
2

VE is the second moment of the vacation times, )(
2

RE  is the second 

moment of the repair times, ))1(( −IIE is the second factorial moment of the batch 

size of arriving customers, and Q has been found in (2.46). 

Substituting for N′(1), N′′(1), D′(1), and D′′(1) from (2.49), (2.50), (2.51), and (2.52) 

into (2.48) we obtain  qL  in a closed form. Further, the mean waiting time of a 

customer can be found using Little's law λ/qq LW = .  

The work detailed here is now further extended in the forthcoming chapters. 

���� 
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Chapter Three: An M
[X]

/G/1 Queue with Bernoulli Schedule, 

General Vacation Times, General Extended Vacation Times, 

Random Breakdowns, General Delay Times and General 

Repair Times 

 

3.1 Introduction 

Queuing systems with server vacations and/or random system breakdowns have been 

studied by numerous researchers as we mentioned earlier. For more papers in this area 

we refer the reader to Choudhury and Borthakur (2000), Takine (2001), Choudhury 

(2002), Madan, Abu-Dayyah and Saleh (2002), Anabosi and Madan (2003), Madan 

and  Al-Rawwash (2005), Katayama and Kobayashi (2006), Madan and Choudhury 

(2006), Liu, Xu and Tian (2007), Ke (2007b), and Wang and Li (2010), to mention a 

few.  

In most of the papers including the ones mentioned above the authors assume that 

whenever the system breaks down the repair process starts immediately. It is quite 

common that as a result of a sudden breakdown, the system may have to wait for 

repairs to start. We term the time the server spends waiting for repairs to start as 

'delay time'. 

Also most of the analyses in the past have assumed that just after the vacation period 

is over, the server immediately rejoins the system and starts providing service to the 

waiting customers. However, in many real life situations, the server may have to take 

an extended vacation due to a variety of reasons including illness, personal 

engagement or the need to attend to some other task.   

As in the basic model, we study an M[X]/G/1 queuing system with Bernoulli schedule 

server vacations. The server serves one customer at a time and it may suffer from 

random breakdowns.  

The first new assumption in this chapter is that the repair process does not necessarily 

start immediately after a breakdown, thus there may be a delay before starting repairs. 

The second new assumption in this chapter is that the server may go on an extended 
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vacation after the original vacation is completed with probability r or rejoins the 

system to serve customers directly after the vacation with probability r−1 .   

We assume that the service times, vacation times, extended vacation times, repair 

times and delay times each have a general distribution while the breakdown times are 

exponentially distributed.  

It is the first study of a queueing system with five general distributions. From our 

literature review we find that the maximum number of general distributions 

considered in most queueing systems to be three. 

This chapter is organized as follows: the mathematical model is given in section 3.2. 

In section 3.3 all the equations representing the mathematical system in its steady 

state are formulated. The supplementary variable technique is used in this section to 

obtain the closed form of the p.g.f of the queue length. The mean size of the queue 

and the mean waiting time in the queue are given in section 3.4. This along with three 

particular cases are given in section 3.5. The three cases are used to show the 

relationship between this work and previous works done by other researchers. 

Numerical and graphical illustrations are given in section 3.6.  

 

3.2  Mathematical Model 

We now extend the basic model of chapter two to account for delay times and 

extended vacation times. When the system breaks down, there is a potential delay 

before the repairs start. Let )(xW  be the distribution function of the delay time which 

follows a general distribution, and )(xw its density function. Let xx ∆)(ϕ  be the 

conditional probability of a completion of a delay during the interval ],( xxx ∆+  given 

that the elapsed delay time is x, so that ))(1/()()( xWxwx −=ϕ and, therefore 

∫−=
x

dttxxw
0

))(exp()()( ϕϕ . 

 After a vacation period the server has the option of taking an extended vacation. We 

assume that with probability r the server takes an extended vacation and with 

probability r−1  the server rejoins the system immediately after completion of a 
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vacation. Let )(xF  and )(xf  be the distribution function and the probability density 

function respectively of the extended vacation time which follows a general 

distribution. Let xx ∆)(θ  be the conditional probability of a completion of an extended 

vacation during the interval ],( xxx ∆+  given that the elapsed extended vacation time 

is x, so that ( ))(1/)()( xFxfx −=θ  and, therefore ))(exp()()(
0
∫−=
x

dttxxf θθ . 

 

3.3 Equations Governing the System and the Distribution of Length 

of the Queue at any Point of Time 

According to the assumptions mentioned in the previous section we now introduce the 

following new equations to account for delays and extended vacations,  

1),(),())(1)(1(),(
1

≥∆+∆−∆−=∆+∆+ ∑
=

− ntxtDcxtDxxtxxttD
n

i

ininn λϕλ         (3.1) 
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=∆+∆+ xxttD                                              (3.2) 
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xtExxtxxttE ∆−∆−=∆+∆+ θλ                          (3.4)  
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               (3.5) 

A full explanation of equations (3.1) to (3.5) is given in appendix B, (B.3). 

Subtracting and adding a term ),( xxtDn ∆+ to the LHS in equation (3.1), then 

dividing by t∆ and taking limits as 0→∆t , then taking limit as ∞→t , this yields 

1)()())(()(
1

≥=++
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∂
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− nxDcxDxxD
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n
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ininn λϕλ                                (3.6) 
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From equation (3.2) we get 

0)(0 =
∂

∂
xD

x
                                                           (3.7) 

Following the same process from equations (3.3), (3.4) and (3.5) we obtain 

respectively     
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Thus the equations governing this system are (3.6) to (3.10), and (2.9) to (2.16). 

The following boundary conditions are used to solve the above differential equations 
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1)()0(
0

11 ≥== ∫
∞
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ndxxxDR nn ϕ                                                   (3.15)                                   
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0)0()0( 00 == RD                                                               (3.16)                                         

A full explanations of the boundary conditions (3.11) to (3.16) are given in appendix 

B, (B.4). 

We multiply equation (3.6) by nz , and sum over n from 1 to ∞ , add this to equation 

(3.7) and after simplification we obtain the following equation 

0),())()((),( =+−+
∂

∂
zxDxzCzxD

x
qq ϕλλ                         (3.17)     

Following the same process from equations (3.8) and (3.9) we obtain 
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x
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Multiplying equation (3.11) by 1+nz , and summing over n from 0 to ∞ , we obtain 
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Using equation (3.10) from the above equation we obtain 

)1)(()(),()(),(

)(),()1()(),()1(),0(

00

00

−+∫+∫+

∫−+∫−=

∞∞

∞∞

zCQdxxzxEdxxzxR

dxxzxVrdxxzxPpzzP

qq

qqq

λθγ

βµ
                   (3.19)  

Multiplying equation (3.12) by nz and summing over n from 0 to  ∞ , we obtain 

∫
∞

=
0

)(),(),0( dxxzxPpzV qq µ                                          (3.20) 

Following the same process with equations (3.13), (3.14) and (3.15) we get 

respectively 

∫=
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qq
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)(),0( zzPzD qq α=                                                        (3.22)                                                
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Integrating equation (3.17) from 0 to x, yields 
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Substituting for ),0( zDq  from (3.22) in equation (3.24) we get 
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Integrating equation (3.25) by parts with respect to x we obtain 
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Where ∫
∞

−−=

0

))((* )()( xdWemW
xzCλλ is the Laplace-Stieltjes transform of the delay 

time W(x). 

Substituting for )(zPq  from equation (2.29) yields 
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Multiplying equation (3.25) by )(xϕ and integrating over x then substituting for )(zPq  

from equation (2.29) we obtain 
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From equations (3.23) and (3.28) we obtain  
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Note that ),0( zR
q

 given in equation (3.29) is different from the one given in equation 

(2.27), and will affect equation (2.36), where substitution for ),0( zR
q

 from (3.29) in 

(2.36) gives 

( ) ∫−
=

−−−
x

dttxzC
q

q e
a

mWaGzzP
zxR 0

)())((**
)()(1),0(

),(

γλλα
                        (3.30) 

Integrating equation (3.30) by parts with respect to x we obtain 
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Multiplying equation (3.30) by )(xγ  and integrating over x we obtain 

( )
a

mHmWaGzzP
dxxzxR

q
q

)()()(1),0(
)(),(

***

0

−
=∫

∞ α
γ                             (3.32) 

Integrating equation (3.18) from 0 to x, yields 
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Substituting for ),0( zEq  from (3.21) and (2.35) we obtain 
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Integrating equation (3.34)  by parts with regard to x results in 
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Where ∫
∞

−−=

0

))((* )()( xdFemF xzCλλ  is the Laplace-Stieltjes transform of the 

Extended vacation  time )(xF . 

Multiplying  equation (3.34) by )(xθ  and integrating over x we get  
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Using equations (2.30), (2.35), (3.32) and (3.36) in equation (3.19) we obtain                                        
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Substituting for ),0( zP
q

 from equation (3.37) in equations (2.29), (2.34), (3.27), 

(3.31) and (3.35), we obtain 
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3.4 The Distribution of the Queue Length at any point of time 

In this chapter the probability generating function p.g.f )(zSq  is given by 

)()()()()()( zRzDzEzVzPzS qqqqqq ++++=  

Then adding equations (3.38) to (3.42) we obtain 
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The normalization condition 1)1( =+ QSq is used in order to determine Q.  

Because of the indeterminate form of )1(qS , L’Hopital’s rule is applied twice on 

equation (3.43), to achieve 
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Now adding Q to )(lim
1

zSq
z→

given in equation (3.44) and equating to 1 and simplifying 

we obtain 
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From equation (3.45) the traffic intensity ρ is given by 
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We substitute the value of Q from equation (3.45) into equation (3.43), which enables 

us to determinate )(zSq . 

3.5 The Average Queue Size and the Average Waiting Time 

Following the procedure as set out in chapter two, we carry out the derivatives of the 

numerator and denominator of the right hand side of (3.46) at 1=z , we have 
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  Where  E(I)and))1(( λλ =Φ−=Λ IIE   . 

The mean waiting time of a customer can be found using Little's Law λ/qq LW = . 

The average size of the system can be found using the known relation ρ+=
q

LL . 

The average time the customer spends in the system, namely the mean response time 

(the time in the queue plus the service time) can be found by  the  other version of  

Little's Law, λ/LW = .         

 

3.6 Particular Cases 

3.6.1 Case 1: No Delay for Repairs to Start 

Once the system breaks down, its repairs start immediately and there is no delay time. 

We let 0)( =DE  and 1)(* =mW  then from the main results we obtain 
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3.6.2 Case 2: No Extended Vacation  

Once the vacation ends the server returns to service immediately and there is no 

extended vacation. We let 0=r  and 1)(* =mF  then from the main results of this 

chapter we obtain 
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( )( )( ) )()()())()((1)(1)1( *** αααααα GVEpGREDEGD ++++−Φ−=′      (3.61) 
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The results obtained in (3.51), to (3.56) agree with the results given in Khalaf, et.al. 

(2011a). 

 

3.6.3 Case 3: No Delay for Repairs to Start and No Extended Vacation  

If there is no delay time we let 0)( =DE  and 1)(* =mW , so we consider there is no 

extended vacation time we let 0=r  and 1)(* =mF  then from the main results we 

obtain 
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( )( )( ) )()()()(1)(1)1( *** αααααα GVEpGREGD +++−Φ−=′                      (3.67) 
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The results obtained in (3.63) to (3.68) agree with the results given by Maraghi, et. al. 

(2.10). 

            

3.7 A Numerical Example  

In order to verify the validity of the results of this chapter, we consider the service 

times, vacation times, delay times, extended vacation times and repair times to be 

exponentially distributed. All values were chosen arbitrarily in order that the stability 

conditions are satisfied. 

In table 3.1 we choose the following values: 

,5.0,5.0,2,2,4,5,7 ======= rpαλγβµ 0))1((and1)( =−= IIEIE , we 

consider that θ  takes the values 5, 6, 7 and 8, while ϕ  takes the values 3, 5, 7 and 9. 
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Table 3.1: Some queue performance measures values computed 

when 5.0,5.0,2,2,4,5,7 ======= rpαλγβµ  

θ  ϕ  ρ  Q  
qL  qW  L  W  

5 

3 0.919 0.081 12.9653 6.4826 13.8843 6.9422 
5 0.8429 0.1571 5.2961 2.6481 6.139 3.0695 

7 0.8102 0.1898 3.9598 1.9799 4.77 2.385 
9 0.7921 0.2079 3.4142 1.7071 4.2063 2.1031 

        

6 

3 0.9024 0.0976 10.5094 5.2547 11.4118 5.7059 

5 0.8262 0.1738 4.6522 2.3261 5.4784 2.7392 
7 0.7935 0.2065 3.5256 1.7628 4.3191 2.1595 

9 0.7754 0.2246 3.0555 1.5278 3.8309 1.9155 

        

7 

3 0.8905 0.1095 9.223 4.6126 10.1157 5.0579 

5 0.8143 0.1857 4.2703 2.1352 5.0846 2.5423 

7 0.7816 0.2184 3.2622 1.6311 4.0438 2.0219 

9 0.7635 0.2365 2.8361 1.418 3.5996 1.7998 

        

 3 0.8815 0.1185 8.4378 4.2189 9.3194 4.6597 

8 

5 0.8054 0.1946 4.0184 2.0092 4.8238 2.4119 

7 0.7727 0.2273 3.0861 1.543 3.8588 1.9294 

9 0.7546 0.2454 2.6885 1.3442 3.443 1.7215 

 

It is clear from table 3.1 that increasing the value of θϕ or  decreases the traffic 

intensity, the average queue length and the average response time, while the server 

idle time increases. All the trends shown by this table are as expected.  

The following graphs show the effect of the new contributions of this chapter (the 

delay times and the extended vacation times). 

In figures 3.1 and 3.2 we consider the first four rows of table 3.1.  

In figure 3.1 the horizontal axis represents the delay rate  ϕ  and the vertical axis 

represents the mean response time W.  

In figure 3.2 the horizontal axis represents the extended vacation rate θ  and the 

vertical axis represents the mean number of customers in the system L. 
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Chapter Four: On a Batch Arrival Queuing System 

Equipped with a Stand-by Server During Vacation Periods 

and the Repairs Times of the Main Server 

 

4.1 Introduction 

In this chapter we study the basic model introduced in chapter two with an additional 

significant assumption that the system deploys a stand-by server during the vacation 

period and the repair period of the main server.   

Madan (1995) studied the steady state behavior of a queuing system with a stand-by 

server to serve customers only during the repair period. In that work repair times were 

assumed to follow an exponential distribution. In this chapter we consider both 

vacations and breakdowns with the additional assumption of deployment of a stand-

by server during the vacation periods and repair periods.   Most importantly, we 

assume that the service times, vacation times, repair times have different general 

(arbitrary) distributions while the breakdown times and the stand-by service times 

follow exponential distributions.  

This chapter is arranged as follows: section 4.2 gives the mathematical model that we 

study in this chapter. Equations governing the system and their solutions to find the 

distribution of the length of the queue at any point of time are given in section 4.3. 

The mean length of the queue and the mean waiting and response times are given in 

section 4.4. In section 4.5, we consider three numerical examples to illustrate the 

application. 

 

4.2 Mathematical Model  

We consider the mathematical model in chapter two and add the assumption that a 

stand-by server starts to serve the customers when the original server is on vacation or 

under repair. We assume that the stand-by service time distribution follows an 

exponential distribution with stand-by service rate 0>δ  and mean stand-by service 

time δ/1 . 
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4.3 Equations Governing the System and the Distribution of the 

Queue Length at any point of time 

Considering that there is a stand-by server to serve the customers for every main 

server interruption, results in changes to some of the equations governing the basic 

system in chapter 2. From chapter 2, equations (2.1) and (2.2) and the following 

equations represent the system described in the previous section 
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Following the same process in deriving equations (2.9) and (2.10) from (2.1) and (2.2) 

respectively, from equations (4.1) to (4.4) we get respectively 
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From chapter two the relevant equations for the assumptions of this model are (2.9), 

(2.10) and (2.16). 
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The boundary conditions given in equations (2.17) to (2.20) will be used to solve the 

above equations by following the same process as for the basic model. 

Multiplying equation (4.5) by
n

z  , summing over n from 1 to∞ and adding to (4.6) we 

obtain 

0),())()((),( =−++−+
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x
qq

δ
δβλλ                             (4.9) 

Using the same process, from (4.7) and (4.8) we obtain 
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Let 
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δλλω −+−= )(  and integrating equation (4.9) from 0 to x, we get 

∫
=

−−
x

dttx

qq ezVzxV 0

)(

),0(),(

βω

                                                   (4.11) 

Integrating equation (4.11) by parts with respect to x and using equation (2.31) to 

substitute for ),0( zV
q

we obtain  
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Multiplying equation (4.11) by )(xβ  and integrating over x we obtain   
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Integrating equation (4.10) from 0 to x, we obtain 

∫
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Integrating equation (4.14) by parts with regard to x and using equations (2.27) and 

(2.29) to substitute for ),0( zR
q

we obtain 
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 Multiplying equation (4.14) by )(xγ  and integrating over x we obtain   
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Now using equations (4.13), (4.16) and (2.30) in equation (2.25), to obtain 
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From equations (4.17), (2.29), (4.12) and (4.15) we obtain 
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In this chapter the p.g.f )(zSq is given by )()()()( zRzVzPzS qqqq ++= . 

Then adding equations (4.18), (4.19) and  (4.20) we obtain 
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The normalization condition 1)1( =+ QSq is used in order to determine Q.  
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Because of the indeterminate form of )1(qS , L’Hopitals rule  is applied twice on 

equation (4.21), to obtain  
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where double primes in (4.22) denote the second derivative at 1=z . Finding the 

derivatives at 1=z we have 
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From equation (4.25) we can find the utilization factor ρ , where Q−= 1ρ . 

As a particular case if we assume that there is no stand by server this means that  

0=δ , )(IEm λλω −==  then from the main results we obtain 
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This is exactly the case of the basic model in chapter two equations (2.44) and (2.46).  
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4.4 The Mean Length of the Queue and the Mean Waiting Time  

To find qL  , the average queue length in the steady state, where
1

)(
=

=
z

qq
zS

dz

d
L , we 

note that this formula is of the 0/0 form, then using L'Hopital's rule four times we 

obtain 
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Where the treble primes denote the third derivative. )1(N ′′  and )1(D ′′ are given in 

equations (4.23) and (4.24) respectively, and 
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Where E(I)and))1((,)(),2))1((( λλδλδλ Φ−=Λ−=Ψ+−=Ω IIEIEIIE . 
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4.5 A Numerical Example 

In order to verify the validity of the results of this chapter, we consider the service 

times, vacation times, stand-by service times and repair times are all exponentially 

distributed. We show the effect of the new parameter δ (the stand-by service rate) on 

the utilization factor, the server idle time, the average length of the queue and the 

average response time of the customers. All values were arbitrary chosen in order that 

the stability conditions are satisfied. 

4.5.1 Example 1 

In this example it is considered that there is no stand by server equipped in the 

system, i.e. 0=δ . Moreover we consider that ,7,2,15,5 ==== βλγµ  

0))1((and1)( =−= IIEIE ,  while p takes the values 0.25, 0.5 and 0.75 and α  

takes the values 1, 2 and 3. 

Table 4.1: Some queue performance measures values computed 

when ( )7,2,15,5,0 ===== βλγµδ  

α  p  ρ  Q  qL  qW  L  W  

1 

0.25 0.4981 0.5019 0.4978 0.2489 0.9959 0.498 

0.5 0.5695 0.4305 0.6942 0.3471 1.2638 0.6319 

0.75 0.641 0.359 0.9688 0.4844 1.6097 0.8049 

    

2 

0.25 0.5248 0.4752 0.6118 0.3059 1.1366 0.5683 

0.5 0.5962 0.4038 0.8413 0.4207 1.4375 0.7188 

0.75 0.6676 0.3324 1.1695 0.5847 1.8371 0.9186 

    

3 

0.25 0.5514 0.4486 0.7393 0.3697 1.2908 0.6454 

0.5 0.6229 0.3771 1.0092 0.5046 1.6321 0.816 

0.75 0.6943 0.3057 1.4053 0.7026 2.0995 1.0498 

Since we assume that 0=δ then we have the particular case we mentioned in section 

4.3, table 4.1 shows the same results as found in Maraghi, et al. (2010) in table 1. 
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4.5.2 Example 2 

In this example we assume that the arrivals occur in batches of size 3 or 4 with 

equally likely probability. This means that the probability generating function of the 

batch size will be given by 

( )435.0)( zzzC +=  

 

See Bose (2002) for more details.

 

Moreover we consider that 25.0,7,1,5,2 ===== pβαγλ ,  while µ takes the 

values 5, 6 and 7 and δ  takes the values 3, 4 and 5. In table 4.2 some queue 

performance measures values are given. 

Table 4.2: Some queue performance measures values computed 

when 25.0,7,1,5,2 ===== pβαγλ  

µ  δ  ρ  Q  qL  qW  L  W  

5 

3 0.4494 0.5506 100.2372 50.1186 100.6865 50.3433 

4 0.4232 0.5768 15.2796 7.6398 15.7029 7.8514 

5 0.4 0.6 1.2752 0.6376 1.6752 0.8376 

        

6 

3 0.3905 0.6095 81.4748 40.7374 81.8653 40.9327 

4 0.3695 0.6306 11.5505 5.7753 11.9199 5.96 

5 0.3504 0.6496 0.4615 0.2307 0.8119 0.4059 

        

7 

3 0.3473 0.6527 70.7303 35.3651 71.0776 35.5388 

4 0.3295 0.6705 9.4764 4.7382 9.8059 4.903 

5 0.3135 0.6865 0.0692 0.0346 0.3827 0.1914 
 

4.5.3 Example 3 

In this example we choose the following 

values: ,5.0,2,2,3,7 ===== pαλγµ 0))1((and1)( =−= IIEIE , and we 

consider that β takes the values 6, 7 and 9 while δ  takes the values 0, 1 and 3. In 

table 4.3 some queue performance measures values are given 

 

( )
( ) ( ) 91265.0))1(()1(1265.0)(

5.3)()1(435.0)(

2

32

=+=−=′′⇒+=′′

==′⇒+=′

IIECzzzC

IECzzzC
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Table 4.3: Some queue performance measures values computed 

when ( )5.0,2,2,3,7 ===== pαλγµ  

β  δ  ρ  Q  qL  qW  L  W  

6 
0 0.6429 0.3571 1.5587 0.7794 2.2016 1.1008 

1 0.5455 0.4545 0.8552 0.4276 1.4007 0.7003 

3 0.4186 0.5814 0.4265 0.2132 0.8451 0.4225 

    

7 
0 0.619 0.381 1.4048 0.7024 2.0238 1.0119 

1 0.5306 0.4694 0.8064 0.4032 1.3371 0.6685 

3 0.4127 0.5873 0.4142 0.2071 0.8269 0.4134 

    

9 
0 0.5873 0.4127 1.2357 0.6178 1.823 0.9115 

1 0.5103 0.4897 0.7474 0.3737 1.2577 0.6288 

3 0.4044 0.5956 0.3972 0.1986 0.8015 0.4008 

 

From tables 4.1, 4.2 and 4.3 we note that increasing the value of α or p increases the 

traffic intensity, the average queue length and the average response time while the 

server idle time decreases. 

Increasing the value of  µβ ,  or δ  decreases the traffic intensity, the average queue 

length and the average response time, while the server idle time increases. These 

trends are as expected.  

� 
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Chapter Five: On an M
(X)

/G/1 Queueing System with 

Random Breakdowns, Server Vacations, Delay Times and a 

Stand-by Server 

 

5.1 Introduction  

In this chapter we extend the basic model introduced in chapter two with two 

additional significant assumptions. The first assumption is that the repair process does 

not start immediately after a breakdown, consequently there is a delay time before 

starting repairs. The second assumption is that the system deploys a stand-by server 

during the vacation period.   

In chapter three the concept of the delay times was introduced with the concept of 

extended vacation times, but in this chapter we do not consider extended vacations. 

The queueing system studied in chapter four introduced a stand by server who works 

during the repair process and during the vacation period. In this chapter the stand-by 

server works only during the vacation period. 

The service times, vacation times, repair times and delay times are assumed to follow 

different general arbitrary distributions while the service times of the stand-by server 

follow an exponential distribution.  

This chapter is organized as follows: section 5.2 gives the assumptions underlying the 

mathematical model under investigation. Equations governing the system and the 

queue size distribution at a random epoch are formulated in section 5.3. Two special 

cases are discussed in section 5.4. The average length of the queue and the average 

waiting time are given in section 5.5.  In section 5.6 we consider a numerical example 

and use MathCAD to illustrate the results of our application. 
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5.2 Mathematical Model 

In this chapter we consider the mathematical model of chapter two, its features were a 

batch arrival queueing system, Bernoulli scheduled general vacations, general service 

times, random breakdowns and general repair times. The new contribution in this 

chapter is that we assume that there is a stand-by server similar to the one in the 

model of chapter four but this time the stand-by server serves the customers only 

during the vacation period, and not during the repair process. Moreover, we assume 

that there is a delay time waiting for repairs to start. 

We recall that; the service times are generally distributed with distribution 

function )(xG . The vacation times have a general distribution with distribution 

function )(xB . We assume that breakdowns occur according to a Poisson distribution 

with mean breakdown rate 0>α . )(xW  is the  distribution function of the delay 

times which follow a general distribution. The duration of repairs follows a general 

(arbitrary) distribution with distribution function )(xH . The stand-by service time 

follows an exponential distribution with stand-by service rate 0>δ . 

 

5.3 Equations Governing the System and the Distribution of the 

Queue Length at any Point of Time 

The equations governing the system of this chapter are a combination of equations 

from chapter two, where we introduced the basic model, from chapter three where 

there was a delay time waiting for the repair process to start and from chapter four, 

where the stand-by server is available in the system. 

From chapter two the equations appropriate for this system are the equations of the 

service probabilities (2.9), (2.10) the equations of the repair probabilities (2.13), 

(2.14) and the equation of the idle server probabilities (2.16). From chapter three the 

necessary equations are the delay time probabilities (3.6) and (3.7). From chapter four 

we use equations (4.5) and (4.6) which are related to the stand-by server during the 

vacation. The set of the equations mentioned above are the differential equations 

governing the system we study in this chapter.  
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The boundary conditions used to solve the equations in the previous paragraph are a 

mixture of the boundary conditions in chapters two and three. These conditions are 

(2.17), (2.18), (3.14), (3.15) and (3.16). 

All the equations mentioned in the previous paragraphs are listed in appendix A, 

(A.5). 

The results of the equations and the boundary conditions we considered from chapter 

two results in 
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∞

µ                                           (5.2) 

Which are given in equations (2.29) and (2.30) respectively. 

From the equations and conditions we take from chapter three we get 
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Which are given in equations (3.27), (3.31) and (3.32) respectively. 

As a result of the equations taken from chapter four we get 
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ω
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)()(),0()(),( **

0
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These are respectively
 
equations (4.12) and (4.13).  

To find ),0( zP
q

we need to re solve equation (2.25) given by
 

)1)(()(),(

)(),()(),()1(),0(

0

00

−++

+−=

∫

∫∫

∞

∞∞

zCQdxxzxR

dxxzxVdxxzxPpzzP

q

qqq

λγ

βµ

                               (5.8)
            

 

Using equations (5.2), (5.5) and (5.7) in equation (5.8) we obtain 
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From equation (5.9) equations (5.1), (5.3), (5.4) and (5.6) become respectively 
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In this chapter the p.g.f )(zSq  is given by )()()()()( zRzDzVzPzS qqqqq +++= , so 

adding equations from (5.10) to (5.13) we obtain 
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The normalization condition 1)1( =+ QSq is used in order to determine Q.  

As in chapter four, for 1=z , )1(qS is in the indeterminate of 0/0 form. Therefore, we 

apply L’Hopital's rule twice on equation (5.14), to obtain 
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Finding the derivatives at 1=z we have 

( ) ( ) ( )( )(
))()(

)()(1)(1)()(2

)1(

*

*

VEGp

REDEGIEIEQ

N

αα

ααδλλ

+

++−−−

=′′

                        (5.16) 

( )( ) ( )( )

( ) ( )( )δλαδλα

ααδλλ

−−−−

++−−=′′

)()(1)()(2

)()(1)(1)()(2)1(

*

*

IEVpEGIE

REDEGIEIED

                      (5.17) 

Therefore, adding Q to equation (5.15) and equating to 1 and simplifying we get 
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From equation (5.18) we can find the utilization factor, ρ , where Q−= 1ρ  . 

 

 

 



85 

 

5.4 Particular Cases 

5.4.1 Case1: No Stand-by Server 

If we assume there is no stand by server this means that  0=δ , ω=m , then from the 

main results we obtain  
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The results obtained in equations (5.19) and (5.20) agree with the results given in 

Khalaf, et al. (2011a). 

 

5.4.2 Case 2: No Delay and no Stand-by Server 

If we consider that repairs start immediately after the breakdown and there is no stand 

by server this means that 0)( =DE , 1)(* =ωW , 0=δ , ω=m  then from the main 

results we obtain, 
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The results obtained in equations (5.21) and (5.22) agree with the results by Maraghi, 

et. al. (2010). 
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5.5 The Mean Length of the Queue Size and the Mean Waiting Time  

To find the average queue size and consequently the mean waiting time, we follow 

the procedure as set out in chapter four, section 4.4. Finding the required derivatives 

of equation (5.14) at 1=z , we obtain 
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Where E(I) and))1((,)(),2))1((( λλδλδλ =Φ−=Λ−=Ψ+−=Ω IIEIEIIE .

 

)1(N ′′  and )1(D ′′ are given in equations (5.16) and (5.17) respectively. 
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5.6 A Numerical Example  

In order to verify the validity of the results of this chapter, we present the following 

two examples:  

 

5.6.1 Example 1  

In this example the second particular case (no stand-by server) will be considered and 

the delay times are assumed to have a k- Erlang distribution then: 

2

2
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All the k- Erlang distribution equations are taken from Allen (1990).  

It is assumed that the service times, vacation times and repair times are all 

exponentially distributed.  

We consider the following values: ,5.0,45,2,2,7 ====== pγβαλµ  

0))1((and1)( =−= IIEIE . The delay rate ϕ  takes the values 2, 4 and 6, while k  

takes the values 3, 5 and 7. 

 

Table 5.1: Some queue performance measures values computed when the delay times 

follow the k-Erlang distribution  and  
5.0,45,2,2,7 ====== pγβαλµ  

k  ϕ  ρ  Q  
qL  qW  L  W  

3 
2 0.9143 0.0857 13.7032 6.8516 14.6175 7.3087 
4 0.7714 0.2286 3.3976 1.6988 4.169 2.0845 

6 0.7238 0.2762 2.4082 1.2041 3.132 1.566 
        

5 
2 0.9143 0.0857 13.481 6.7405 14.3952 7.1976 
4 0.7714 0.2286 3.3768 1.6884 4.1482 2.0741 

6 0.7238 0.2762 2.4005 1.2002 3.1243 1.5622 

        

7 

2 0.9143 0.0857 13.3857 6.6929 14.3 7.15 

4 0.7714 0.2286 3.3679 1.6839 4.1393 2.0696 

6 0.7238 0.2762 2.3972 1.1986 3.121 1.5605 
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5.6.2 Example 2 

In this example we assume that the arriving batches are of size 2, then 
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The delay times follow a Hyperexponential distribution ( kH ), with two phases 

( 2=k ), the probability of the first phase is 3.01 =p  and the probability of the second 

phase is 7.02 =p , the mean of the first phase ( 21 =ϕ ), the mean of the second phase 

( 32 =ϕ ), thus 
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The repair times are assumed to have a k- Erlang distribution, with three phases 

)3( =k  then: 
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We consider the service times to be exponentially distributed with service rate 

7=µ and vacation times are exponentially distributed with vacation rate 9=β .  

Moreover we assume that 

5.0and2,,2,2 ==== pαλγ , and that δ  takes the values 0, 1 and 3, while  

γ  takes the values 2, 3, 4 and 7. 

All values were arbitrarily chosen in order that the stability conditions are satisfied.  
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Table 5.2: Some queue performance measures values computed when the delay times have 
Hyperexponential distribution, and the repair times have k- Erlang distribution 

 

δ  γ  ρ  Q  qL  qW  L  W  

0 

2 0.9014 0.0986 13.9042 6.9521 14.8056 7.4028 

3 0.8062 0.1938 5.5188 2.7594 6.325 3.1625 

4 0.7585 0.2415 3.8724 1.9362 4.631 2.3155 

7 0.6973 0.3027 2.5682 1.2841 3.2655 1.6328 

         

1 

2 0.854 0.146 8.9989 4.4995 9.8529 4.9264 

3 0.7637 0.2363 4.3426 2.1713 5.1063 2.5531 

4 0.7186 0.2814 3.1876 1.5938 3.9062 1.9531 

7 0.6606 0.3394 2.1972 1.0986 2.8579 1.4289 

         

3 

2 0.7726 0.2274 5.4294 2.7147 6.202 3.101 

3 0.691 0.309 3.1283 1.5642 3.8193 1.9097 
4 0.6502 0.3498 2.4194 1.2097 3.0696 1.5348 

7 0.5977 0.4023 1.7525 0.8762 2.3502 1.1751 

Tables 5.1 and 5.2 show that increasing the value of δϕ ,,k  or γ  decreases the 

traffic intensity, the average queue length and the average response time while the 

server idle time increases.  These trends are as expected.  

In the next graphs, graph 5.1 shows the effect of the stand-by service rate δ  on the 

mean number of customers in the queue, where we consider that 2=γ  

 Graph 5.2 shows the effect of the repair rate γ  on the mean waiting time in the 

system, where we consider that 1=δ (the second four rows in table 5.2). 
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Chapter Six: On a Batch Arrival Queue with General 

Vacations Followed by a Further Optional Extended 

Vacation, Random Breakdowns, and an Exponential Stand-

by Server during General Repair Times 

 

6.1 Introduction  

In this chapter we study a batch arrival queueing system where after every service 

completion, the server has the option to go on a vacation of random length with 

probability p or continue serving with probability p−1 . The server may go on an 

extended vacation after the original vacation completion with probability r or rejoins 

the system to serve the customers directly after the vacation with probability r−1 . In 

addition to vacations and extended vacations, the system may suffer from random 

breakdowns from time to time. A stand-by server is available in addition to the main 

server. The stand-by server provides service to customers only during the repair 

process.  The service times, vacation times, extended vacation times and repair times 

are assumed to follow general arbitrary distributions while the stand-by service times 

follow an exponential distribution. 

The study of this chapter generalizes the results obtained by Madan (1995). 

This chapter is arranged as follows: section 6.2 gives the mathematical model and 

equations governing the system. In section 6.3 we derive the distribution of the queue 

length at any point of time. Some special cases have been discussed in section 6.4.  

The average queue size and the average waiting time are derived in section 6.5. In 

section 6.6 we consider two numerical examples and use MathCAD to illustrate the 

results of our applications. 

 

6.2 Mathematical Model and Equations Governing the System 

The basic mathematical model of chapter two is considered in this chapter with two 

more assumptions. The first assumption is that we assume that the server may go on 

an extended vacation as defined in chapter three. The second added assumption is that 
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we assume that the system is equipped with a stand-by server who works during the 

repair process. This means that the equations governing the system when the main 

server serves the customers or the main server is on the normal vacation will be the 

same equations as for the basic model because in this case the extended vacation time 

or stand-by service time will not effect the probabilities ),( xtPn or ),( xtVn , so from the 

basic model in chapter two we use the differential equations (2.9), (2.10), (2.11) and 

(2.12). 

From chapter three we consider the differential equations related to the extended 

vacation i.e. equations (3.8), (3.9) and the differential equation of the idle server 

probabilities (3.10). Finally from chapter four we use the differential equations in the 

case where the server is under repair and where there is a stand by server to serve the 

customers, these are equations (4.7) and (4.8). 

The boundary equations used to solve the above equations are a combination from 

chapters two and three. These boundary conditions are (2.18), (2.19), (2.20), (3.11) 

and (3.13). 

All the equations mentioned in the previous paragraphs are listed in appendix A, 

(A.6). 

6.3 The Distribution of the Queue Length at any Point of Time 

According to the set of equations and the boundary conditions mentioned in section 

6.2, and following the equations taken from chapter two we have 
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From the equations taken from chapter three we have 
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And from the equations of chapter four we get  

( )( )












 −−
=

ω

ω
α

a

HaG
zzPzR qq

)(1)(1
),0()(

**

                                                   (6.7) 

)(
)(1

),0()(),( *
*

0

ωαγ H
a

aG
zzPdxxzxR qq 












 −
=∫

∞

                                            (6.8) 

Now we need to find ),0( zPq  given in equation (3.19) by using equations (6.2), (6.4), 

(6.6) and (6.8), we obtain 
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from equation (6.9) equations (6.1), (6.3), (6.5), and (6.7) become respectively  
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In this chapter the p.g.f )(zSq  is given by  )()()()()( zRzDzVzPzS qqqqq +++= . 

Then adding equations (6.10), (6.11), (6.12) and  (6.13) we obtain 
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The normalization condition 1)1( =+ QSq is used to determine Q.  

Because of the indeterminate form of )1(qS , L’Hopital’s rule  is applied twice on 

equation (6.14), to obtain 
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Finding the derivatives at 1=z we obtain 
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Therefore, adding Q to equation (6.15) and equating to 1 and simplifying we get 
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From equation (6.18) we can find the utilization factor, ρ , where Q−= 1ρ . 
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6.4 Particular Cases 

6.4.1 Case 1: No Extended Vacation  

Once the server finishes the original vacation it starts to serve the customers 

immediately and there is no extended vacation time. We let 0=r , then from the main 

results we obtain 
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6.4.2 Case 2: No Stand-by Server 

If we assume there is no stand by server this means that  0=δ , ω=m , then from the 

main results we obtain 
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6.4.3 Case 3. No Extended Vacation and no Stand-by Server 

If we consider that services start immediately and there is no stand by server this 

means that, 0=r , 0=δ , ω=m using this in the main results of this chapter, we get, 
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The results obtained in equations (6.23) and (6.24) agree with the results by Maraghi, 

et. al. (2010). 

 

6.5 The Mean Length of the Queue Size and the Mean Waiting Time 

To find qL  , the steady state of the average queue length and because the formula 
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Where 

E(I)and))1(( ,)(),2))1((( λλδλδλ =Φ−=Λ−=Ψ+−=Ω IIEIEIIE . 

 

6.6 A Numerical Example 

In this section we illustrate some numerical results to show the effect of the new 

contributions (the extended vacation times and the stand-by service times) on the 

performance measures of the system. To illustrate the results of this chapter 

numerically we consider the service times, vacation times, stand-by service times and 

repair times to be exponentially distributed. All values were chosen arbitrarily in 

order that all stability conditions are satisfied. 

 

6.6.1 Example 1 

 In this example it is assumed that the extended vacation times follow a 

Hyperexponential distribution (Hyper-k, kH ), with two phases ( 2=k ), the 

probability of the first phase is 4.01 =p  and the probability of the second phase is 

6.02 =p , the mean of the first phase ( 31 =θ ), the mean of the second phase 

( 42 =θ ), thus 
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All the Hyperexponential distribution ( kH ) equations are taken from Allen (1990).  

Moreover  it is assumed  that 5.0,5.0,1,4,7,3 ====== rpαγµλ , 

0))1((and1)( =−= IIEIE , we consider that β  takes the values 6, 7 and, 8 and δ  

takes the values 0, 1 and 2.  

Table 6.1: Some queue performance measures values computed when 

5.0,5.0,1,4,7,3 ====== rpαγµλ   

β  δ  ρ  Q  qL  qW  L  W  

6 
0 0.9982 0.0018 569.2825 189.7608 570.2807 190.0936 
1 0.9638 0.0362 23.8405 7.9468 24.8043 8.2681 

2 0.9316 0.0684 9.3192 3.1064 10.2509 3.417 
        

7 

0 0.9625 0.0375 25.7738 8.5913 26.7363 8.9121 

1 0.9293 0.0707 11.3994 3.7998 12.3287 4.1096 

2 0.8983 0.1017 5.7771 1.9257 6.6754 2.2251 

        

8 

0 0.9357 0.0643 14.3487 4.7829 15.2844 5.0948 

1 0.9034 0.0966 7.9323 2.6441 8.8358 2.9453 

2 0.8733 0.1267 4.3683 1.4561 5.2416 1.7472 

 

6.6.2 Example 2 

In this example we consider that the extended vacation times follow an exponential 

distribution. It is considered that ,5.0,5.0,5,3,2,2,7 ======= prγδαλµ  

0))1((and1)( =−= IIEIE  , while θ  takes the values 2, 3, and 4 and β  takes the 

values 5, 7, and 9. 
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Table 6.2: Some queue performance measures values computed when 

( )5.0,5.0,5,3,2,2,7 ======= prγδαλµ  

β  θ  ρ  Q  qL  qW  L  W  

5 

2 0.7256 0.2744 3.7293 1.8647 4.4549 2.2275 

3 0.6545 0.3455 2.4135 1.2068 3.068 1.534 

4 0.6189 0.3811 1.9865 0.9932 2.6054 1.3027 

    

7 

2 0.6768 0.3232 2.8976 1.4488 3.5744 1.7872 

3 0.6057 0.3943 1.9152 0.9576 2.5209 1.2605 

4 0.5701 0.4299 1.5874 0.7937 2.1575 1.0787 

    

9 

2 0.6497 0.3503 2.5494 1.2747 3.1991 1.5996 

3 0.5786 0.4214 1.6997 0.8498 2.2783 1.1391 

4 0.543 0.457 1.413 0.7065 1.956 0.978 

 

Tables 6.1 and 6.2 show that increasing the value of βδ ,  or θ  decreases the traffic 

intensity, the average queue length and the average response time while the server idle 

time increases. These trends are as expected.  

 

� 
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Chapter Seven: Conclusions and Future Work 

 

7.1 Conclusions 

In this research we investigated the batch arrival queuing system M[X]/G/1, with 

random breakdowns and Bernoulli scheduled vacations where after completion of the 

service of a customer the server may take a vacation with probability p or stay in the 

system to serve customers with probability p−1 . We investigated this system by 

extending it in many directions. In each chapter we added more than one new 

assumption. In this way we developed a different, more advanced queuing system. A 

number of queuing systems developed by many authors are special cases of our 

systems. In each chapter our goals were to find the closed form solution of important 

performance measures including the intensity parameter (the utilization factor), the 

mean idle time, the mean number of customers in the queue, the mean number of 

customers in the system, the mean waiting time in the queue and the mean response 

time. 

The supplementary variable technique has been used to solve the system of equations. 

The elapsed service time, elapsed vacation time, elapsed repair time, elapsed delay 

time and the elapsed extended vacation time have been introduced as supplementary 

variables. 

In chapter two we described the basic mathematical model. This was introduced to 

avoid duplicating these fundamental equations in later chapters.  For the next four 

chapters we added new assumptions to the basic model and developed a new 

queueing system. 

In chapter three we considered the basic model with two added assumptions. The first 

assumption is that after a breakdown occurs the server does not enter the repair 

process immediately instead it may have to wait for a period of time called the “delay 

time”, until it starts being repaired. The second assumption is that when the server 

finishes a vacation period it does not enter the system immediately to start serving the 

customers. The server can wait for an extra period of time for possible required 
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actions before the first service. We call this period of time the “extended vacation 

time” where we introduced this term for the first time. 

The stand-by server available during any interruption is the new contribution added to 

the basic model and analyzed in chapter four. In this chapter we study the batch 

arrival queuing system assuming that there is a stand-by server to serve the customers 

during the vacation time and during the repair process. 

In chapter five we developed chapter two by adding a stand-by server to serve the 

customers during the vacation times. Moreover in this chapter it is assumed that when 

the server breaks down it does not enter the repair process immediately, where there is 

a delay time waiting for repairs to start.   

Finally in chapter six the basic model was extended by adding two more assumptions, 

where it is assumed that the server can go on an extended vacation immediately after 

the original vacation. The system in chapter six is equipped with a stand-by server to 

serve the customers during the repair process.  

Throughout all the four chapters (from chapter three to six), we conclude that 

increasing the delay rate and extended vacation rate increases the server idle time and 

decreases the mean waiting time, the mean response time, the mean number of 

customers in the system and the value of traffic intensity. Also we conclude that 

increasing the stand-by service rate decreases the server idle time and increases the 

traffic intensity, mean waiting time, mean response time and mean number of 

customers in the system. 

Although the conclusions are in accordance with what is expected systematically and 

logically, much work went into the details of establishing the closed form solutions 

and to determine the critical values of performance measures of each system studied. 

Consequently we expect that our work will greatly help system designers in their 

decision regarding the system parameter and that this work provides new knowledge 

in queueing theory.  
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7.2 Future Work  

The researchers suggest the following queueing systems to be developed according to 

the results found in this research: 

(1) Batch arrival queueing system with random breakdowns, Bernoulli scheduled 

general vacation times, general service times, general extended vacation times, 

general delay times, general repair times and general stand-by server works 

during every main server interruption. In this case all the new systems 

introduced in this research investigation (from chapter two to chapter six) 

would be special cases of this system. 

 

(2) Batch arrival queueing system with random breakdowns, server Bernoulli 

schedule vacation, general service times and general delay times where the 

server provides two phases of heterogeneous service and the rates of 

breakdowns are different in every service breakdown. 

 

 

(3) Batch arrival queueing system with server Bernoulli schedule vacation, 

general service times, general extended vacation times, random breakdowns, 

general delay times and two types of general repairs.  

 

(4) Batch arrival queueing systems with random breakdowns and server vacations 

based on multiple vacation policy or N-policy with general service times, 

general delay times and general extended vacation times. 

 
� 
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Appendix A 
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A.3 Details of Applying L’Hopital’s Rule on Equation (2.44) to Obtain Q in 

Chapter Two 
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A.3.2 Finding Q 

( )( )
( ) ( )( ) ( ) 1

)(1)(1)(1)()()()(1

)()()()(1)(1)(

1)(lim

***

**

1

=+
−−+−−−

++−

=+
→

Q
GREGIEVEIEpG

VEQGIEpREGQIE

QzSq
z

ααααλλαα

ααλααλ

( ) ( )( ) ( )
( ) ( )( ) ( )

)(

)(

)()(

)()(

)(

)(

)(

)(

)(

1
)(

)(

)()()(

)(

)(

)(1)(1)(1)()()()(1

1
)(1)(1)(1)()()()(1

)(

*

*

**

*

*

*

**

*

*

*

*

***

***

*

αα

αα

αα

α

αα

αα

αα

α

αα

α

αα
λ

αα

λαα

αα

α

αα

ααααλλαα

ααααλλαα

αα

G

G

GG

REG

G

G

G

RE

G
IE

G

VEIEpG

G

G

GREGIEVEIEpG
Q

GREGIEVEIEpG

QG

+
−

+







−−+−

−=

−−+−−−
=

=
−−+−−−

 

1)(
1

)(

)(

)(

1
)()()(

**
+







−−+−−= RE

G

RE

G
IEVEIEpQ

αααα
λλ  









+−−+−= )()(

1

)(

)(

)(

1
)(1

**
VpERE

G

RE

G
IEQ

αααα
λ   

Where 

The expression Its value when 1=z  
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A.4 Details of Obtaining Equation (2.48) 
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A.5 Equations Governing the System Studied in Chapter Five 

The set of the differential equations governing chapter five are as follows 

1)()())(()(
1

≥∑+++−=
∂

∂

=
− nxPcxPxxP

x

n

i
ininn

λαµλ                                      (2.9) 

)())(()(
00

xPxxP
x

αµλ ++−=
∂

∂
                                                    (2.10) 

1)()())(()(
1

≥=++
∂

∂
∑

=
− nxRcxRxxR

x

n

i

ininn λγλ                                   (2.13) 

0)())(()( 00 =+−=
∂

∂
xRxxR

x
γλ                                             (2.14) 
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∫∫∫
∞∞∞

−++=
0

0

0

0

0

0 )()()1()()()()( dxxxPpdxxxVdxxxRQ µβγλ                                (2.16) 

1)()())(()(
1

≥=++
∂

∂
∑

=
− nxDcxDxxD

x

n

i

ininn λϕλ                                (3.6) 

0)(0 =
∂

∂
xD

x
                                                           (3.7) 

1),()()())(()( 1

1

≥++++−=
∂

∂
+

=

−∑ nxVxVcxVxxV
x

n

n

i

ininn δλδβλ        (4.5) 

)()())(()( 100 xVxVxxV
x

δδβλ +++−=
∂

∂

                                                     
(4.6) 

 The set of the boundary conditions of chapter five are as follows 

0)()(

)()()()()1()0(

1

0

1

0
1

0
1
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+

∞

+

∞

+

∞

+

∫
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nQcdxxxR

dxxxVdxxxPpP

nn

nnn
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βµ

                                
(2.17) 

0,)()()0(
0

≥= ∫
∞

ndxxxPpV nn µ                                            (2.18) 

1)()0(
0

11 ≥== ∫
∞

−− nPdxxPD nnn αα                                            (3.14)                                        

            0,)()()0(
0

≥∫=
∞

ndxxxDR nn ϕ                                                   (3.15)                                           

0)0()0(
00

== RD                                                               (3.16) 
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A.6 Equations Governing the System Studied in Chapter Six 

The set of the differential equations of chapter six are as follows 

1)()())(()(
1

≥∑+++−=
∂

∂

=
−

nxPcxPxxP
x

n

i
ininn

λαµλ                                      (2.9) 
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x
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∂

∂
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∂
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The set of the boundary conditions of chapter six are as follows 
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Appendix B 

B.1 Full Explanation of the System Equations in Chapter Two 

B.1.1 Equation (2.1) 

1),(

),()1)()(1)(1(),(

1

≥∆+

∆−∆−∆−=∆+∆+

∑
=

− ntxtPc

xtPtxxtxxttP

n

i

ini

nn

λ

αµλ

                                

By connecting the system probabilities at time t (x) with those at time tt ∆+ )( xx ∆+  

by considering ),( xxttP
n

∆+∆+ which means the probability that at time tt ∆+ , 

there are n )0( ≥n  customers in the queue excluding the customer in service and the 

elapsed service time of this customer is xx ∆+ . Then we have the following two 

mutually exclusive cases: 

(1) At time t, there are n customers in the queue excluding the customer in service 

and the elapsed service time of this customer is x and there is no arrival, no 

service completion and no breakdown during ),( ttt ∆+ . This case has the joint 

probability ),()1)()(1)(1( xtPttxt
n

∆−∆−∆− αµλ . 

(2)  At time t, there are in −  customers in the queue excluding the customer in 

service and the elapsed service time of this customer is x and a batch of size i 

customers arrives at the system during ),( ttt ∆+ . This case has the probability 

txtPc in

n

i

i ∆−
=

∑ ),(
1

λ . 

B.1.2  Equation (2.2) 

 

),()1)()(1)(1(),( 00 xtPtxxtxxttP ∆−∆−∆−=∆+∆+ αµλ  

By connecting the system probabilities at time t with those at time tt ∆+  by 

considering ),(0 xxttP ∆+∆+ which means the probability that at time tt ∆+ , there 

are no customers in the queue excluding the customer in service and the elapsed 

service time of this customer is xx ∆+ . Then we have only the following case: 



111 

 

(1) At time t, there are no customers in the queue excluding the customer in 

service and the elapsed service time of this customer is x and there is no 

arrival, no service completion and no breakdown during ),( ttt ∆+ . This case 

has the joint probability ),()1)()(1)(1(
0

xtPtxxt ∆−∆−∆− αµλ . 

B.1.3  Equation (2.3)

 

1),(),())(1)(1(),(
1

≥∆+∆−∆−=∆+∆+ ∑
=

− nxxtVcxtVxxtxxttV
n

i

ininn λβλ      

By connecting the system probabilities at time t with those at time tt ∆+  by 

considering ),( xxttV
n

∆+∆+ which means the probability that at time tt ∆+ , there 

are n )0( ≥n  customers in the queue and the server is on vacation with elapsed 

vacation time xx ∆+ . Then we have the following two mutually exclusive cases: 

(1) At time t, there are n )0( ≥n customers in the queue and the server is on 

vacation with elapsed vacation time x  and there is no arrival and no vacation 

period completion during ),( ttt ∆+ . This case has the joint probability 

),())(1)(1( xtVxxt
n

∆−∆− βλ . 

(2)  At time t, there are in −  customers in the queue and the server is on vacation 

with elapsed vacation time x and a batch of size I customers arrives at the 

system during ),( ttt ∆+ . This case has the probability txtVc in

n

i

i ∆−
=

∑ ),(
1

λ . 

The same explanation can be considered to explain equations (2.5), (3.1) and 

(3.3), bearing in mind the state of the server in each equation. 

B.1.4  Equation (2.4)

 

),())(1)(1(),( 00 xtVxxtxxttV ∆−∆−=∆+∆+ βλ  

By connecting the system probabilities at time t with those at time tt ∆+  by 

considering ),(
0

xxttV ∆+∆+ which means the probability that at time tt ∆+ , there 
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are no customers in the queue and the server is on vacation with elapsed vacation time 

xx ∆+ . Then we have the following case: 

 

(1) At time t, there are no customers in the queue and the server is on vacation 

with elapsed vacation time x  and there is no arrival, no vacation period 

completion during ),( ttt ∆+ . This case has the joint probability 

),())(1)(1(
0

xtVxxt ∆−∆− βλ . 

The same explanation can be considered to explain equations (2.6) and (3.4), bearing 

in mind the state of the server in each equation. 

 

B.1.5  Equation (2.7)

 

∫∫

∫
∞∞

∞

∆+∆+

∆−+∆−=∆+

0

0

0

0

0

0

)(),()(),(

)(),()1()()1()(

tdxxxtVtdxxxtR

tdxxxtPptQtttQ

βγ

µλ

 

By connecting the system probabilities at time t with those at time tt ∆+  by 

considering )( ttQ ∆+ which means the probability that at time tt ∆+ , there are no 

customers in the system and the server is idle but available in the system.  Then we 

have the following four mutually exclusive cases: 

(1) At time t, there are no customers in the system and the server is idle but 

available in the system and there is no arrival during ),( ttt ∆+ . This case has 

the probability )()1( tQt∆− λ . 

(2) At time t, there are no customers in the queue excluding the customer in the 

service and the server completes the service of this customer and decides to 

stay in the system and not to go on vacation during ),( ttt ∆+ . This case has 

the probability ∫
∞

∆−
0

0 )(),()1( tdxxxtPp µ . 
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(3) At time t, there are no customers in the system and the server is broken down 

under repairs and the repair process completed during ),( ttt ∆+ . This case has 

the probability ∫
∞

∆
0

0 )(),( tdxxxtR γ . 

(4) At time t, there are no customers in the system and the server is on vacation 

and the vacation period completed during ),( ttt ∆+ . This case has the 

probability ∫
∞

∆
0

0 )(),( tdxxxtV β .  

 

For the M[X]/G/1 queueing system we have: 

)()),during( service his complete arrival  one than more(

)()()()),( during service his completes arrival  one(

)(1)()(1)),( during service his completes arrival  no(

)()),( during arrivesbatch  one than more(

)()),( during arrives  size ofbatch  a(

1)(1)),( during arrival  no(

totttP

txtoxtttP

txtoxtttP

totttP

tctotctttiP

ttottttP

ii

∆=∆+

∆=∆+=∆+

∆−=∆+−=∆+

∆=∆+

∆=∆+∆=∆+

∆−=∆+∆−=∆+

µµ

µµ

λλ

λλ

  

 

For more details about the above probabilities see Kashyap & Chaudhry (1988). 

 

B.2 Full Explanation of Boundary Conditions in Chapter Two 

B.2.1  Boundary Condition in Equation (2.17) 

0)()()()()()()1()0( 1

0

1

0

1

0

1 ≥+++−= +

∞

+

∞

+

∞

+ ∫∫∫ nQcdxxxRdxxxVdxxxPpP nnnnn λγβµ

 

)0,(lim)0( tPP n
t

n
∞→

= is the probability that at time t there are n customers in the queue 

excluding the customer in the service given that the elapsed service time of this 

customer is 0 ( the service just started). Then we have the following four mutually 

exclusive cases: 

(1) At time t there are )1( +n  customers in the queue excluding the customer 

being  served given that the elapsed service time of this customer is x, and the 
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server completes serving this customer, does not go on vacation and starts 

serving the next customer in the queue. This case has the probability 

∫
∞

+−
0

1 )()()1( dxxxPp n µ . 

(2) At time t there are )1( +n  customers in the queue and the server is on vacation 

given that the elapsed vacation time is x . The vacation is just completed. This 

case has the probability ∫
∞

+

0

1 )()( dxxxVn β  . 

(3) At time t there are )1( +n  customers in the queue and the server is broken 

down and under repairs given that the elapsed repair time is x . The repair is 

just completed. This case has the probability ∫
∞

+

0

1 )()( dxxxRn γ  . 

(4) At time t there are no customers in the system, the server is idle, available in 

the system and a batch of size )1( +n customers arrive at the system. This case 

has the probability Qcn 1+λ . 

 

B.2.2 Boundary Condition in Equation (2.18) 

0,)()()0(
0

≥= ∫
∞

ndxxxPpV nn µ  

)0,(lim)0( tVV
n

t
n

∞→
=  is the probability that at time t, there are n )0( ≥n  customers in 

the system and the server is on vacation given that the elapsed vacation time is 0, this 

means that the vacation  has just started. Then we have only the following case: 

(1) At time t there are n customers in the queue excluding the customer being served 

given that the elapsed service time of this customer is x and the server completes 

serving this customer and goes on vacation. This case has the probability

  

∫
∞

0

)()( dxxxPp n µ . 
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 B.2.3  Boundary Condition in Equation (2.19)
 

1)()0(
0

11 ≥== ∫
∞

−− nPdxxPR nnn αα  

)0,(lim)0( tRR n
t

n
∞→

=  is the probability that at time t, there are n )0( ≥n  customers in 

the system and the server is down and under repair  given that the elapsed repair time 

is 0, this means that the repair has just started. Then we have only the following case: 

(1) At time t there are )1( −n  customers in the queue excluding the customer 

being served given that the elapsed service time of this customer is x at the 

moment the server breaks down i.e. during the service of this customer. This 

case has the probability

  
∫
∞

−− =
0

11 )( nn PdxxP αα . 

The same explanation can be considered in equation (3.14), bearing in mind the state 

of the server in each equation. 

 

B.2.4 Boundary Condition in Equation (2.20)
  

0)0(
0

=R
 

)0(
0

R  is the probability that at time t, there are no customers in the system and the 

server is broken down and under repair  given that the elapsed repair time is 0. This 

cannot happen because we assume that the server breaks down when it is providing 

service. This means that this probability is 0. 
 

 

B.3 Full Explanation of the System Equations (3.1) to (3.5)

 

B.3.1 Equations (3.1) and (3.3) 

 

1),(),())(1)(1(),(
1

≥∆+∆−∆−=∆+∆+ ∑
=

− ntxtEcxtExxtxxttE
n

i

ininn λθλ  

1),(),())(1)(1(),(
1

≥∆+∆−∆−=∆+∆+ ∑
=

− ntxtDcxtDxxtxxttD
n

i

ininn λϕλ
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See section B.1.3. 

B.3.2 Equation (3.2) 

 

0),(
0

=∆+∆+ xxttD  

),(
0

xxttD ∆+∆+  is the probability that at time tt ∆+ , there are no customers in the 

system and the server is down and waiting for repair to start(on delay) given that the 

elapsed delay time is xx ∆+ . This cannot happen because we assume that the server 

breaks down when it is providing  service( at least one customer in the system). This 

means that this probability is 0. 
 

B.3.3 Equation (3.4)

 

),())(1)(1(),( 00 xtExxtxxttE ∆−∆−=∆+∆+ θλ  

See section B.1.4. 

B.3.4  Equation (3.5)

 

∫∫

∫∫
∞∞

∞∞

∆+∆−+

∆+∆−+∆−=∆+

0

0

0

0

0

0

0

0

)(),()(),()1(

)(),()(),()1()()1()(

tdxxxtEtdxxxtVr

tdxxxtRtdxxxtPptQtttQ

θβ

γµλ

 

The explanations of the first three terms )()1( tQt∆− λ , ∫ ∆−
∞

0
0

)(),()1( tdxxxtPp µ  and 

∫ ∆
∞

0
0

)(),( tdxxxtR γ  are given in B.1.5.  

The explanations of the last two terms in equation (3.5) are respectively as following  

(1) At time t, there are no customers in the system, the server is on vacation and 

the vacation period completes and the server does not go on an extended 

vacation during ),( ttt ∆+ . This case has the probability 

∫
∞

∆−
0

0 )(),()1( tdxxxtVr β . 
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(2) At time t, there are no customers in the system, the server is on extended 

vacation and the extended vacation period completes during ),( ttt ∆+ . This 

case has the probability ∫
∞

∆
0

0 )(),( tdxxxtE θ .  

  

B.4 Full Explanation of the System Boundary Conditions in Chapter 

Three 

B.4.1 Equation (3.11)

 

 

0)()()()(

)()()1()()()1()0(

1

0

1

0

1

0

1

0

1

≥+++

−+−=

+

∞

+

∞

+

∞

+

∞

+

∫∫

∫∫

nQcdxxxRdxxxE

dxxxVrdxxxPpP

nnn

nnn

λγθ

βµ

 

The explanations of the terms QcdxxxRdxxxPp nnn 1

0

1

0

1  and  )()(,)()()1( +

∞

+

∞

+ ∫∫− λγµ  are 

given in section B.2.1. The explanations of the other two terms are as the following 

(1) At time t there are )1( +n  customers in the queue, the server just finished the 

original vacation and does not go on an extended vacation. This case has the 

probability ∫
∞

+−
0

1 )()()1( dxxxVr n β  . 

(2) At time t there are )1( +n  customers in the queue and the server is on an 

extended vacation given that the elapsed extended vacation time is x . The 

extended vacation is just completed. This case has the probability 

∫
∞

+

0

1 )()( dxxxEn θ  . 

B.4.2 Equation (3.12) 

0,)()()0(
0

≥= ∫
∞

ndxxxPpV nn µ  

See B.2.2. 
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B.4.3 Equation (3.13) 

0)()()0(
0

≥∫=
∞

ndxxxVrE
nn

β  

)0(
n

E  is the probability that at time t, there are n )0( ≥n  customers in the system and 

the server is on extended vacation given that the elapsed extended vacation time is 0, 

this means that the extended vacation  just started. Then we have only the following 

case: 

(1) At time t there are n customers in the system the server just finished the 

original vacation and goes on an extended vacation. This case has the 

probability

  
∫
∞

0

)()( dxxxVr n β  

B.4.4 Equation (3.14) 

See B.2.3 

B.4.5 Equation (3.15) 

0,)()()0(
0

≥∫=
∞

ndxxxDR nn ϕ  

)0(nR  is the probability that at time t, there are n )0( ≥n  customers in the system and 

the server is broken down and under repair given that the elapsed delay time is 0 this 

means that the repairs just started. Then we have only the following case: 

(1) At time t there are n customers in the system, the server is broken down waiting 

for repairs to start (on delay) and the delay period just finished to start the repairs. 

This case has the probability

  
∫
∞

0

)()( dxxxDn ϕ . 

B.4.6 Equation (3.16) 

0)0()0(
00

== RD  

See B.2.4. 

� 
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 Appendix C 

Professional MATHCAD 2001 Sheets  

Mathcad is computer software that simplifies calculations by combining equations in 

a presentable format. It can be used as an intelligent calculator making it easy to keep 

track of the most complex calculations for verification and validation. All the 

Mathcad templates used to find the numerical answers in this dissertation are listed in 

this appendix.  

C.1 Chapter Three MATHCAD Work 

 

M
2

γ
2

:= D
1

φ
:= K

2

φ
2

:=

Q 1 λ
1

α G α( )⋅

D

G α( )
+

R

G α( )
+

1

α
− D− R− p X r Z⋅+( )⋅+





⋅−:=

n Q λ⋅ 1 G α( )−( ) 1 α D R+( )⋅+[ ]⋅ α p⋅ G α( )⋅ X r Z⋅+( )⋅+[ ]⋅:=

N1 Q λ
2

⋅ α 1 G α( )−( )⋅ K M+ 2 D⋅ R⋅+( )⋅ 2 g⋅ 1 α D R+( )⋅+[ ]⋅+ 2 p⋅ X r Z⋅+( )⋅ G α( ) α g⋅+( )⋅− α p⋅ G α( )⋅ 2 r⋅ Z⋅ X⋅ Y+ r W⋅+( )⋅+[ ]⋅:=

N2 2 Q⋅ λ⋅ α⋅ D R+( )⋅ 1 G α( )−( )⋅:=

d λ− α p⋅ G α( )⋅ X r Z⋅+( )⋅ 1 G α( )−( ) 1 α D R+( )⋅+[ ]⋅+[ ]⋅ α G α( )⋅+:=

D1 λ
2

− G α( )⋅ α p⋅ Y r W⋅+ 2 r⋅ X⋅ Z⋅+( )⋅ 2 p⋅ X r Z⋅+( )⋅− α K M+ 2 D⋅ R⋅+( )⋅−[ ]⋅ α λ
2

⋅ K M+ 2 D⋅ R⋅+( )⋅−:=

D2 2− λ
2

⋅ g⋅ 1 α D R+( )⋅+ α p⋅ X r Z⋅+( )⋅−[ ]⋅ 2 λ⋅ 1 α D R+( )⋅ 1 G α( )−( )⋅+ α g⋅+[ ]⋅−:=

D D1 D2+:= N N1 N2+:=

ρ 1 Q−:=
Lq

d N⋅ n D⋅−

2d
2

:=

L Lq ρ+:= W
L

λ
:=

Wq
Lq

λ
:=

ρ 0.919= Q 0.081=
Lq 12.9653= Wq 6.4826= L 13.8843= W 6.9422=

λ 2:= θ 5:= β 5:= γ 4:= α 2:= p 0.5:= φ 3:= r 0.5:= E V( ) X= E V
2( ) Y= E eV( ) Z= E eV

2( ) W=

G α( )
7

α 7+
:=

X
1

β
:= Y

2

β
2

:= Z
1

θ
:= W

2

θ
2

:=

E R( ) R= E R
2( ) M= E D( ) D= E D

2( ) K=

g
α

G α( )
d

d
:=

R
1

γ
:=
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C.2 Chapter Four MATHCAD Work 

 

Λ λ T⋅:= Φ λ A⋅:=

Q
α 1 p λ δ−( )⋅ G α( )⋅ X⋅−[ ]⋅ 1 G α( )−( ) λ α 1 λ δ−( ) R⋅+[ ]⋅+[ ]⋅−

α δ R⋅ 1 G α( )−( )⋅ G α( ) 1 p δ⋅ X⋅+( )⋅+[ ]⋅
:=

n 2− Q⋅ Φ⋅ Φ δ−( )⋅ 1 G α( )−( ) 1 α R⋅+( )⋅ α p⋅ G α( )⋅ X⋅+[ ]⋅:=

N1 3− Q⋅ Λ⋅ Ψ⋅ 1 G α( )−( )⋅ 1 α R⋅+( )⋅ 6 Q⋅ Ψ⋅ Φ
2

⋅ g⋅ 1 α R⋅+( )⋅− 3 Q⋅ Φ⋅ 1 G α( )−( )⋅ Ω 1 α R⋅+( )⋅ 2 α⋅ Ψ⋅ R⋅+ α Ψ
2

⋅ M⋅+ ⋅−:=

N2 3 p⋅ Q⋅ X⋅ Ψ⋅ G α( )⋅ 2 Φ
2

⋅ α Λ⋅−( )⋅ 6 α⋅ p⋅ Q⋅ Φ
2

⋅ Ψ⋅ X⋅ g⋅+ 3 α⋅ p⋅ Q⋅ Φ⋅ G α( )⋅ Ψ
2

Y⋅ Ω X⋅+( )⋅−:=

d 2 λ δ−( )⋅ 1 G α( )−( ) λ α 1 λ δ−( ) R⋅+[ ]⋅+[ ]⋅ α 1 p λ δ−( )⋅ G α( )⋅ X⋅−[ ]⋅−[ ]⋅:=

D1 3 1 G α( ) p⋅ X⋅ Ψ⋅−( )⋅ 2 Φ⋅ Ψ⋅ α Ω⋅−( )⋅ 6 Φ
2

⋅ Ψ⋅ g⋅+ 3 1 G α( )−( )⋅ Λ Ψ⋅ Φ Ω⋅+( )⋅+ 6 α⋅ Ψ
2

⋅ 1 G α( )−( )⋅ R⋅+:=

D2 3− α⋅ Ψ⋅ p⋅ 2 g⋅ Φ⋅ Ψ⋅ X⋅ G α( ) Y Ψ
2

⋅ Ω X⋅+( )⋅− ⋅ 3 α⋅ 1 Ψ R⋅+( )⋅ Ω 1 G α( )−( )⋅ 2 Φ⋅ Ψ⋅ g⋅+[ ]⋅+ 3 α⋅ Ψ⋅ 1 G α( )−( )⋅ Ψ
2

M⋅ Ω R⋅+( )⋅+:=

N N1 N2+:=
D D1 D2+:= Lq

d N⋅ n D⋅−

3d
2

:=

ρ 1 Q−:=
L Lq ρ+:= Wq

Lq

λ
:=

W
L

λ
:=

ρ 0.4494= Q 0.5506=
Lq 100.2372= Wq 50.1186= L 100.6865= W 50.3433=

λ 2:= β 7:= δ 3:= γ 5:= α 1:= p 0.25:= E V( ) X= E V
2( ) Y= E R( ) R=

E R
2( ) M=

E I( ) Α= E I I 1−( )( ) T=

G α( )
5

α 5+
:= X

1

β
:= R

1

γ
:=

A 3.5:= T 9:=

M
2

γ
2

:=
g

α
G α( )

d

d
:= Y

2

β
2

:= Ψ λ A⋅ δ−:= Ω λ T⋅ 2 δ⋅+:=
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C.3 Chapter Five MATHCAD Work 

 

Q
Φ− 1 G α( )−( )⋅ 1 α D R+( )⋅+[ ]⋅

α G α( )⋅ 1 δ p⋅ X⋅+( )⋅

p X⋅ Ψ⋅ 1−

1 δ p⋅ X⋅+
−:=

n 2− Q⋅ Φ⋅ Ψ⋅ 1 G α( )−( ) 1 α D R+( )⋅+[ ]⋅ p α⋅ G α( )⋅ X⋅+[ ]⋅:=

n 0.553−=

N1 3− Q⋅ Ψ⋅ 1 G α( )−( )⋅ Λ 1 D+ R+( )⋅ 2 α⋅ Φ⋅ D R+( )⋅+ α Φ
2

Z M+ 2 D⋅ R⋅+( )⋅ ⋅+ ⋅ 3 Q⋅ Φ⋅ 1 α D R+( )⋅+[ ]⋅ Ω 1 G α( )−( )⋅ 2 Φ⋅ Ψ⋅ g⋅+[ ]⋅−:=

N2 6 p⋅ Q⋅ Φ
2

⋅ X⋅ Ψ⋅ G α( ) α g⋅+( )⋅ 3 p⋅ Q⋅ α⋅ G α( )⋅ X⋅ Λ Ψ⋅ Φ Ω⋅+( )⋅− 3 p⋅ Q⋅ α⋅ Φ⋅ G α( )⋅ Ψ
2

⋅ Y⋅−:=

d 2 Φ⋅ Ψ⋅ 1 G α( )−( )⋅ 1 α D R+( )⋅+[ ]⋅ 2α Ψ⋅ G α( )⋅ 1 p X⋅ Ψ⋅−( )⋅−:=

d 0.6135−=

D1 3 1 Φ g⋅+ p Ψ⋅ G α( )⋅ X⋅−( )⋅ 2 Φ⋅ Ψ⋅ α Ω⋅−( )⋅ 1 G α( )−( ) 3 Λ⋅ Ψ⋅ 3 Φ⋅ Ω⋅+( )⋅+ 3 α⋅ Ω⋅ 1 G α( )−( )⋅+ 3 α⋅ Φ⋅ Λ 2 Φ⋅+( )⋅ g⋅+:=

D2 3 α⋅ Ψ⋅ 2− p⋅ Φ⋅ Ψ⋅ g⋅ X⋅ p G α( )⋅ Y Ψ
2

⋅ Ω X⋅+( )⋅+ ⋅ 3 α⋅ Φ⋅ Λ 2 Φ⋅+( )⋅ 1 G α( )−( ) D R+( )⋅+ 6 α⋅ Φ
2

⋅ Ψ⋅ g⋅ D R+( )⋅+:=

D3 3 α⋅ Ψ⋅ 1 G α( )−( )⋅ Φ
2

Z M+ 2 D⋅ R⋅+( )⋅ Λ D R+( )⋅+ ⋅:=

D D1 D2+ D3+:= N N1 N2+:=
Lq

d N⋅ n D⋅−

3d
2

:=

N 0.759−=

ρ 1 Q−:= D 27.5494=

L Lq ρ+:= W
L

λ
:=

Wq
Lq

λ
:=

ρ 0.9014= Q 0.0986= Lq 13.9042= Wq 6.9521= L 14.8056= W 7.4028=

λ 2:= β 9:= γ 2:= α 2:= p 0.5:= δ 0:= E V( ) X= E V
2( ) Y= E D( ) D= E D

2( ) Z= E R( ) R= E R
2( ) M=

G α( )
7

α 7+
:= A 1:= T 0:=

X
1

β
:= D 0.383:= R

1

γ
:=

Y
2

β
2

:= Z 0.306:= M
4

3γ
2

:=
g

α
G α( )

d

d
:= Ψ λ A⋅ δ−:= Ω λ T⋅ 2 δ⋅+:= Λ λ T⋅:= Φ λ A⋅:=
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C.4 Chapter Six MATHCAD Work 

 

Q
λ− 1 G α( )−( )⋅

α δ R⋅ 1 G α( )−( )⋅ G α( )+[ ]⋅

1 p λ⋅ G α( )⋅ X r Z⋅+( )⋅− 1 G α( )−( ) 1 λ δ−( ) R⋅+[ ]⋅−

δ R⋅ 1 G α( )−( )⋅ G α( )+
+:=

n 2− Q⋅ λ⋅ λ δ−( )⋅ 1 G α( )−( ) 1 α R⋅+( )⋅ p α⋅ G α( )⋅ X r Z⋅+( )⋅+[ ]⋅:=

N1 3− Q⋅ λ δ−( )⋅ 1 α R⋅+( )⋅ 2 λ
2

⋅ g⋅( )⋅ 3 Q⋅ λ⋅ 1 G α( )−( )⋅ 2 δ⋅ 1 R+( )⋅ 2 α⋅ λ δ−( )⋅ R⋅+ α λ δ−( )
2

⋅ M⋅+ ⋅−:=

N2 3 p⋅ Q⋅ λ⋅ X r Z⋅+( )⋅ 2 λ⋅ λ δ−( )⋅ G α( ) α g⋅+( )⋅ 2 α⋅ δ⋅ G α( )⋅−[ ]⋅ 3 p⋅ Q⋅ α⋅ λ δ−( )⋅ G α( )⋅ λ
2

Y r W⋅+ 2 r⋅ X⋅ Z⋅+( )⋅ ⋅−:=

d 2 λ⋅ λ δ−( )⋅ 1 G α( )−( )⋅ 2 α⋅ λ δ−( )⋅ 1 p λ⋅ G α( )⋅ X r Z⋅+( )⋅−[ ]⋅− 2 α⋅ λ δ−( )⋅ 1 G α( )−( )⋅+ 2 α⋅ λ δ−( )
2

⋅ 1 G α( )−( )⋅ R⋅+:=

D1 6 λ⋅ δ⋅ 1 G α( )−( )⋅ 6 λ λ δ−( )⋅ α δ⋅−[ ]⋅ 1 λ g⋅+ p λ⋅ G α( )⋅ X r Z⋅+( )⋅−[ ]⋅+ 3 α⋅ λ δ−( )⋅ 2− p⋅ λ
2

⋅ g⋅ X r Z⋅+( )⋅ p G α( )⋅ λ
2

Y r W⋅+ 2 r⋅ X⋅ Z⋅+( )⋅ ⋅+ ⋅+:=

D2 6 α⋅ δ⋅ 1 λ δ−( ) R⋅+[ ]⋅ R⋅ 1 G α( )−( )⋅ 6 α⋅ δ⋅ λ⋅ g⋅+ 3 α⋅ λ δ−( )⋅ 2 λ⋅ R⋅ M λ δ−( )
2

⋅+ ⋅ 1 G α( )−( )⋅+ 6 α⋅ λ⋅ λ δ−( )⋅ g⋅ 1 R λ δ−( )⋅+[ ]⋅+:=

D D1 D2+:= N N1 N2+:=
Lq

d N⋅ n D⋅−

3d
2

:=

ρ 1 Q−:=

L Lq ρ+:= W
L

λ
:=

Wq
Lq

λ
:=

ρ 0.9982= Q 1.8107 10
3−

×= Lq 569.2825= Wq 189.7608= L 570.2807= W 190.0936=

λ 3:= β 6:= γ 4:= α 1:= δ 0:= p 0.5:= r 0.5:= E V( ) X= E V
2( ) Y= E eV( ) Z= E eV

2( ) W=

E R( ) R= E R
2( ) M=

G α( )
7

α 7+
:= X

1

β
:= Z 0.2833:=

R
1

γ
:=

W 0.1638:= M
2

γ
2

:=
Y

2

β
2

:=
g

α
G α( )

d

d
:=
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