NONLINEAR FINITE ELEMENT TREATMENT OF BIFURCATION IN THE
POST-BUCKLING ANALYSIS OF THIN ELASTIC PLATES AND SHELLS

A Thesis Submitted for the Degree of Doctor of Philosophy
by

Tim Richard Bangemann

Department of Mathematics & Statistics, Brunel University

April 1995



Acknowledgements

I would like to express my deepest gratitude to Professor L. S. D. Morley FRS
for introducing me into and teaching me about the field of finite elements and its
engineering applications. Many thanks for the superb guidance, continuous encour-
agement and optimistic attitude which I enjoyed throughout the course of research
work as well as the huge amount of freedom I was given in order to lead it to a
successful completion.

My deep appreciation is directed to Professor J. R. Whiteman for making all
necessary arrangements for the completion of this thesis.

Special acknowledgements are directed to Dr D. J. Allman of the Defence Re-
search Agency in his role as a technical co-ordinator and for the interesting discus-
sions and his helpful co-operation.

Thanks to Dr M. K. Warby and Dr S. Shaw as well as other colleagues at BICOM
for the time, companionship and help they have given me.

Also, I would like to thank Dr N. Herrmann from the University of Hanover for
enabling my trip to the UK in the first place and Dr S. A. Matar for giving me the
idea and convincing me to do a PhD.

A thousand thanks for the support I have received from Jack, Michael, Giovanni
and other friends over the last few years. A special thank you goes to Roshi.

A simple thank you is not sufficient for expressing my gratitude towards my
family who always stood behind me and without whose support it would never have

been possible for me to accomplish this work.

The Procurement Executive of the Ministry of Defence under Strategic Research

Programme AS011D02 is specially acknowledged for providing the financial support.



Abstract

The geometrically nonlinear constant moment triangle based on the von Kirman
theory of thin plates is first described. This finite element, which is believed to be
the simplest possible element to pass the totality of the von Kirman patch test,
is employed throughout the present work. It possesses the special characteristic of
providing a tangent stiffness matrix which is accurate and without approximation.

The stability of equilibrium of discrete conservative systems is discussed. The
criteria which identify the critical points (limit and bifurcation), and the method of
determination of the stability coefficients are presented in a simple matrix formu-
lation which is suitable for computation. An alternative formulation which makes
direct use of higher order directional derivatives of the total potential energy is also
presented.

Continuation along the stable equilibrium solution path is achieved by using
a recently developed Newton method specially modified so that stable points are
points of attraction. In conjunction with this solution technique, a branch switching
method is introduced which directly computes any intersecting branches. Bifurca-
tional buckling often exhibits huge structural changes and it is believed that the
computation of the required switch procedure is performed here, and for the first
time, in a satisfactory manner. Hence, both limit and bifurcation points can be
treated without difficulty and with continuation into the post buckling regime. In
this way, the ability to compute the stable equilibrium path throughout the load -
deformation history is accomplished.

Two numerical examples which exhibit bifurcational buckling are treated in de-
tail and provide numerical evidence as to the ability of the employed techniques
to handle even the most complex problems. Although only relatively coarse finite
element meshes are used it is evident that the technique provides a powerful tool for
any kind of thin elastic plate and shell problem.

The thesis concludes with a proposal for an algorithm to automate the compu-

tation of the unknown parameter in the branch switching method.
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Chapter 1

Introduction

1.1 Background and motivation

Many problems in engineering are concerned with the calculation of stresses and
displacements in thin elastic plates and shells which are flat and curved structures,
respectively, for which the thicknesses are much smaller than the remaining dimen-
sions.

These kinds of thin-walled structural components are used e.g. in high-performance
flight-vehicle structures and pose difficult problems for the structural analyst. In
many applications, service loads cause the structure to operate in the geometrically
nonlinear regime, and even when load levels vary slowly, dynamic events such as
snap-through or buckling can occur.

Hence, there are situations where nonlinear effects must be incorporated for a
realistic assessment of structural response. In general, it is possible to identify five

areas where nonlinear stress analysis may be necessary, c.f. Hinton [He92):

1. direct use in design for both ultimate load and serviceability limit states (high
technology industry requires high performance and efficient components, e.g.

in aerospace, automobile or nuclear industries);

2. use in the assessment of erxisting structures whose integrity may be in doubt
due to visible damage (cracking etc), special loadings not envisaged at the

design state or concern over corrosion or general ageing;

1
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3. use to help to establish the causes of a structural failure;

4. use in research to help establish simple ‘code-based’ methods of analysis and
design, to help understand basic structural behaviour and to test the validity

of proposed ‘material models’;

5. use in the simulation of materials processing and manufacturing, e.g. metal

forming, glass forming and casting process.

Note that in the present work nonlinearity always means geometrical nonlinearity;
material nonlinearities are not discussed.

Analytical solutions for nonlinear problems are scarcely obtainable and are re-
stricted to essentially one-dimensional problems. Thus, the need to develop ap-
proximating numerical techniques in order to solve the governing differential equa-
tions becomes imperative. The Rayleigh-Ritz energy method and the finite difference
method were the first methods to be employed for this purpose but since the advent
of powerful computers, the solution cost is no longer such an obstacle and the finite
element method has overshadowed all other approximating numerical methods for
the solution of nonlinear thin plate and shell problems.

Modern finite element methods of computational structural mechanics employ
discrete idealizations, based on appropriate physical laws, to characterize real con-
tinuous systems for numerical calculation. In particular, a discrete system for the
prediction of the static equilibrium paths of elastic structures under varying loads
is generally derived using the principle of conservation of energy. The behaviour of
such a system is governed by nonlinear equilibrium equations, formulated in terms
of the nodal finite element variables, with an imbedded parameter corresponding
to a physical quantity such as the intensity of the applied loading. Solutions of
these equations, for varying values of the parameter, represent points on the static
equilibrium paths of a discrete system.

While a rigorous analysis of the complex phenomena of nonlinear thin plate and
shell problems must account for dynamic effects, the desire to apply existing static
analysis methods to general structural configurations has led to the development of
techniques for following equilibrium solution paths past critical stability points and
through regimes of unstable equilibrium. A number of these techniques are discussed
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by Riks [Rik84a]. By tracing equilibrium solution paths through regimes of stable
and unstable equilibrium, a qualitative understanding of transient dynamic events
can often be obtained.

Now it is well known that points of stable equilibrium paths of a conservative sys-
tem are the local minima of a continuously differentiable potential energy function;
other stationary points correspond to states of unstable equilibrium. The transition
from stable to unstable equilibrium occurs at a singular point where the Hessian
matrix of second derivatives of the potential energy has a zero eigenvalue. These
points signify bifurcation or limit point behaviour of an equilibrium path, and this
has important implications for the subsequent physical behaviour of a system. An
essential requirement of a satisfactory solution technique, therefore, is to locate and
identify singular points on a stable equilibrium path.

A very extensive literature on the numerical solution of nonlinear equations with
singular points is available in mathematical publications, as shown by the reviews of
Mittelmann and Weber [MW80], Allgower [All81] and Allgower and Georg [AG92].
But numerical methods for nonlinear problems in engineering applications have de-
veloped independently. In the field of structural mechanics a common approach for
calculating solution paths of nonlinear equilibrium equations has evidently evolved,
¢f. Riks [Rik79], [Rik84a)], Crisfield [Cri91] and Hinton [He92]. The system of equa-
tions is augmented by an extra equation incorporating a new parameter, usually
taken as an approximation to the arc length of the solution path; the original natu-
ral parameter of the equations is treated as an unknown variable to be determined.
At limit points this procedure leads to an augmented set of equations whose Hessian
matrix is nonsingular and so the standard Newton-Raphson method may be used to
calculate local solution points. The Hessian matrix of the augmented equations used
in the arc length method remains singular at bifurcation points, however, and diffi-
culties of convergence then arise in the numerical solution of the equations. Special

techniques for accurate location of limit points and bifurcation points are, hence, of

great importance.
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1.2 Aims and objectives

Keeping all the above in mind and being aware of the problems one can encounter by
employing the standard Newton-Raphson method - convergence is often very slow
or the method fails due to numerical errors in computation - a basic methodology
is now sought for efficient calculation of the stable equilibrium paths of discrete
conservative systems with singular points. A first step in this direction has been
made by Allman [All89a). In his paper, the governing system of nonlinear equations
is not augmented by an extra equation, as in the popular arc length method, so that
intrinsic properties of symmetry or bandedness of the associated Hessian matrix
may be readily exploited in a numerical solution. Points on stable equilibrium
paths are located reliably by a generalization of Newton’s method, c¢f. Allman
[A1184], which converges only to minima in applications to find stationary points of
a function of several variables; stable equilibrium paths are therefore preferentially
followed. This simulates the behaviour of a real continuous system, with a varying
natural parameter such as an applied load, where unstable equilibrium states are
unattainable.

As discussed earlier, most finite element codes are capable of computing nonlinear
deformation paths as long as the path is sufficiently smooth. In case of bifurcations,
however, there are difficulties in the direct computation of intersecting branches.
The reason for this is that, although the underlying theory is reasonably well estab-
lished, the switch procedures which enable these computations have not yet been
implemented into the finite element codes in a satisfactory manner.

Therefore, the general objective is to provide a careful finite element implemen-
tation of the works by Koiter [Koi45] and Allman [Al84] , [AlI89b] , [All89a] by
following the stable equilibrium path throughout the load-deformation history, s.e.

to be able to perform the following four steps with repetition:
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1. follow stable equilibrium path

RN

4. continue from critical point 2. locate crmca.l point
in an orderly fashion precisely

N

3. identify critical point

The emphasis in the present work is given to the continuation from bifurcation
points since no generally valid method has been developed for this. Limit points can
be handled without difficulty by employing the arc length technique as mentioned

earlier.

1.3 Strategy
In order to make it feasible to follow the above mentioned steps, use is made of:

1. Allman’s solution technique;

this is the generalized Newton-Raphson method by Allman [All89a], as men-

tioned earlier, which is discussed in detail in Chapter 6.

2. Adaptive step size criteria;
the critical point is located precisely with help of a step size adaption technique

which decreases the step size whenever the tangent stiffness matrix is no longer

positive definite.

3. Rederivation of Koiter’s work by Allman,;
the rederivation of the classical criteria by Koiter [K0i45] in a computationally
simple form is also due to Allman [AlI89b]. These criteria precisely define the
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nature of the critical point, i.e. a clear distinction is made between a limit
point, a symmetric bifurcation point and an asymmetric bifurcation point.
Further criteria are available to assess the stability of equilibrium. Since then,
Allman’s work has been rewritten by Bangemann [Ban92] into a more con-
venient matrix form for computation which is presented in Chapter 5. The
proper evaluation of critical points requires higher order derivatives of the po-
tential energy function. Currently, this presents a formidable task since for
most finite elements even the tangent stiffness matrix consisting of the sec-
ond derivatives of the potential energy function is an approximation, i.e. there

are serious doubts about the sensibility of even attempting to calculate higher

derivatives.

4. Development of the geometrically nonlinear constant moment triangle finite
element by Morley,
the problem of calculating higher order derivatives of the potential energy
function is overcome by making use of the geometrically nonlinear constant
moment triangle finite element by Morley, c.f. [Mor91], which is discussed in
more detail in Chapter 4. The triangle is based on the Hu-Washizu variational
principle and has constant strains and constant moments within each element.
It is a fundamental element which passes the von Kirman geometrically non-
linear patch test. Most importantly for the present work, the geometrically
nonlinear constant moment triangle allows a ready and accurate calculation of
all directional derivatives of the potential energy function and, thus, enables

determining the type of critical points exactly.

5. Branch switching method,
once the critical point has been identified, a branch switching method as pre-

sented in Chapter 6 can be employed to enable entering the post critical regime.

It should be mentioned here that the intention of the present work is not to
derive the most accurate results for a particular problem or problems. Rather, the

emphasis is on developing a methodology and the numerical examples are used to

exhibit this.
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For setting the scene, in Chapter 2 relevant plate and shell theories are dis-
cussed with the introduction of tensor notation. Of special interest here is the von
Karman nonlinear plate theory. The concept of practical components which enables
the conversion of curvilinear tensor connectors into physically realistic orthogonal
displacement components is made extensive use of in the current work and is there-
fore drawn attention to. The finite element method both in the linear and nonlinear
theory is presented in Chapter 3 with a more detailed examination of the geomet-
rically nonlinear constant moment triangle finite element, which is used throughout
the thesis, following in Chapter 4. Chapter 5 investigates the stability of equilib-
rium of discrete conservative systems and provides a rewrite of Koiter’s [Koi45] and
Allman’s [All89b]) works in a convenient matrix form suitable for finite element com-
putation whereby the stability of critical points is determined by so-called stability
coefficients. An equivalent formulation for determining the stability coefficients is
based on a report by Morley [Mor94] and makes direct use of higher order directional
derivatives. The various calculations required are discussed in Chapter 6. Here, All-
man’s solution technique is described and some computational aspects such as e.g.
step length adaption are considered. For the continuation from bifurcation points a
branch switching method is presented which has been developed during the course of
the current research work. This method has been applied successfully at bifurcation
points in order to enter the post buckling regime on the stable equilibrium path. Nu-
merical applications follow in Chapter 7 where two problems are examined in detail
with concluding discussions: firstly, a square flat plate under uniaxial compression
and, secondly, a cylindrical panel under biaxial compression. Chapter 8 concludes
the thesis by summarizing the achievements of the present work and also gives some

thought regarding future developments.



Chapter 2

Thin elastic shell and plate

theories

2.1 Introduction

There exist many thin shell theories. Plates are shells with zero curvature and,
therefore, plate theories can easily be derived from shell theories. Most of the shell
theories are based on the well-known Love-Kirchhoff hypothesis which states that
the entire deformation of the structure is described by the deformation of its middle
surface. In this chapter, first equations regarding the geometry and deformation of
the middle surface are looked at with the introduction of some basic concepts of
tensor analysis. Then, Love’s first approximation of the strain energy and Koiter’s
relevant results are given. Details are presented of Marguerre’s theory for thin shal-
low shells and the von Kérman nonlinear theory for thin plates which is of special
importance to the present work. Finally, the concept of practical components is in-
troduced. With the help of this notation, curvilinear tensor connectors which are not
immediately useful in engineering applications, are converted into physically realis-
tic orthogonal displacement components. The presented thesis carries on from the

work by Providas [Pro90] and, thus, makes use of the same theoretical background.

Due to this, similarities to [Pro90] may be found.

8
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2.2 Geometry of the undeformed middle surface

Let z*, i = 1,2,3 describe a fixed, right-handed Cartesian coordinate system in
three-dimensional space with e; being the corresponding unit vectors. Also, con-
sider £, a = 1,2 to represent an arbitrary curvilinear coordinate system on the
undeformed middle surface. Then the undeformed middle surface is completely de-

scribed by the position vector

r=1ze, ' = z'(£%) . (2.2.1)

The base vectors which are tangent to the coordinate curves £* are

or
Foq = 52—; . (2.2.2)

The above summation convention which is employed throughout the current work

makes use of the following:

o Latin indices have range 3 and the summation convention applies to repeated

indices in any position;
o Greek indices have range 2 and the summation convention applies to repeated

indices in mixed positions;

¢ Primed Greek indices have range 2’ and the summation convention applies to

repeated indices in any position.

Commas preceding a subscript indicate partial differentiation with respect to coor-

dinates z* or £%, as specified at the time.

The distance between two neighbouring points is defined by
(ds)? = anp d€* d€P (2.2.3)
with
Gof = Ta " T B (2.2.4)

being the covariant or first fundamental tensor of the undeformed middle surface.
Here, the vector dot-product is applied in the usual way. The contravariant compo-

nents of the metric tensor are defined by

a°"\ axg = 63 (2.2.5)
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where 63 is the Kronecker-delta. The normal vector n to the undeformed middle

surface is

1

n =2 ePr, x rg (2.2.6)

where X denotes the vector cross-product and the right-hand screw rule is employed.
£qp and £%P are respectively the covariant and contravariant components of the two-

dimensional permutation tensor where

11 22

€11 = €99 = € = ¢ = 0
€12 = —€31 = a (2.2.7)
el2 = _g21 —\}—E
and @ = |a,g| is the determinant of the metric tensor. The curvature or second
fundamental tensor b,g is defined by
bop = —n - r.p (2.2.%)

where the sign convention is adopted from Sanders [San63], i.¢. giving positive cur-
vature to a sphere when the surface normal n points outwards. (‘ontravariant and

mixed variant components of the symmetric tensor b,z are then

bf = by, e,

bg = bxg a** = b axg . (2.2.9)

These ways of raising or lowering indices are standard procedures in tensor theory.
The invariant quantity, t.e. a quantity which remains invariant against coordinate

transformations, related to b,gs is the Gaussian curvature

b1
K=-=3 (b263 — bSb2) (2.2.10)

where b = |b,g| is the determinant of the curvature tensor.

The Christoffel symbols have proved useful in tensor analysis. The Christoffel

svibols of the first and second kind are defined respectively by
l <) )
Fnd‘w = E ( QAB~.a + Ay 3 — Anp A ) (m.'_.l 1)

and

o

[7; = Tapra' . (2.2.12)
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Christoffel symbols are used for covariant differentiation. It is prudent to note here

that they do not form tensors. They are symmetric with respect to the first two

subscripts and only the third index can be raised or lowered as with tensors.
Covariant derivatives of two-dimensional vectors and tensors, e.g. v = v°r,

and b,p, with reference to £~ coordinates are

bop v = bap~y — brgla, — barl3, . (2.2.13)

Note that there exist similar expressions for contravariant and mixed variant and
higher order tensors, c.f. e.g. Niordson [Nio85]. It is evident that when considering a
scalar quantity, the ordinary and covariant differentiations are identical, c.g. w, =
W |-

Two well-known formulae should be stated here, the Gauss formula
rog = lagfa — bapn (2.2.14)

and the Weingarten formula

n, = bar . (2.2.15)

Hence, the geometry of the undeformed middle surface is specified completely by its
first and second fundamental tensors. These two tensors should satisfy the Gauss
equation and the Mainardi-Codazzi equation which entail the integrability conditions
for the above mentioned equations (2.2.14) and (2.2.15). The Gauss equation states
that

Ropyu = barbpy — bapubsr = K €ap €y (2.2.16)

where Rapgy, is the Riemann-Christoffel tensor. and the Mainardi-Codazzi equation
18

bag |y = ban I8 - (2.2.17)

2.3 Deformation of the middle surface

Under the deformation of a shell we understand that a material point of the unde-
formed middle surface with coordinates {"' moves to a position on the middle surface

of the deformed shell. Here we assume that the curvilinear coordinate net deforms
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with the body and, hence, the new position can be specified with the same £>. The

new position vector is given by
F=r+u (2.3.18)
where
u = u’r, + wn (2.3.19)
is resolved with respect to r , and n of the undeformed middle surface. Here, the u®
denote the in-plane displacements and w is the deflection or normal displacement.
Partial differentiation of ¥ in equation (2.3.18) gives (with help of the Weingarten

formula, equation (2.2.13), and equation (2.3.19)) base vectors, tangent to the de-

formed coordinate curve £%, as
Fo = (80 + v o +wb))ry + (wa — vPbog)n . (2.3.20)

The metric / first fundamental tensor of the deformed middle surface is

dop = T o T g (2.3.21)
and the unit normal vector
- | -
B = S8 FaxFg . (2.3.22)

The curvature / second fundamental tensor of the deformed middle surface is
bop = —R-Fop - (2.3.23)

Recalling the equations for the geometry of the shell it can thus be said that the
deformed middle surface has its equivalent equations to those given for the unde-
formed middle surface. Components corresponding to the deformed geometry are
denoted with a tilde.

Equation (2.3.20) can be used for establishing various quantities. These include
the surface vector ¢, describing rotations in the undeformed directions £ of the

normal to the middle surface (sign convention as in [San63] )
b0 = —N-Tg = -wye + bogtt® = —w, + bBug . (2.3.24)
The asymmetric surface tensor is

lag = Fa'Tp = Gap + Ugla + whap - (2.3.25)
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The skew-symmetric part w,g is called the rotation tensor in the middle surface and
is defined by

1 1
Wag = -é(lﬁa — 1ag) = i(uﬁ'a -Uglg) . (2.3.26)
The invariant
1 1
¢ = 5e%wap = 2eug s (2.3.27)

is called the rotation about the normal to the middle surface.

For the deformation of the middle surface there exist two measures. Firstly, the

strain tensor
1, .
Tap = 3 (Gap — @ap) (2.3.28)

and, secondly, the curvature change tensor
Ko = bap — bag . (2.3.29)

Note that 9,3, ko can be expressed in terms of u®, w, ¢, and ¢ and covariant
derivates with respect to the undeformed middle surface. These are, however, usually
simplified by neglecting various terms. For alternative definitions of kg see Koiter

[Koi66] and Pietraszkiewicz [Pie84].

2.4 First approximation shell theories

Many existing shell theories are based on the Love-Kirchhoff assumptions which

state that

1. the transverse normal stress component can be neglected in comparison with

the other stress components;

2. normals to the undeformed middle surface move to normals on the deformed

middle surface and suffer no extensions.

Therefore, under these assumptions it is evident that the deformed state of a shell is
determined entirely by the deformed configuration of its middle surface and, hence,
an initially three dimensional problem is reduced to a two dimensional problem. If it

is additionally assumed that the strains are small then the equations describing the
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deformation of the middle surface simplify considerably. In this category of small-
strain theories there are several subclasses. There is no generally accepted shell
theory for each subclass. Also, as there is no agreement on the best approximation
form for k.3, many different theories exist and are employed.

Koiter [K0i60] makes use of the assumptions that

1. the shell is elastic, homogeneous and of an isotropic material;

2. the thickness h is constant with 7"; <€ 1, where R is the smallest principal

radius of curvature of the undeformed configuration;

3. 7 € 1 where 7 is the largest principal strain (strains small everywhere in the
shell).

Under these assumptions the strain energy per unit area (strain energy density)

equals approximately the sum of the extensional and bending energies per unit area,

t.e.
1 h?
V=V,+V-= §H°‘ﬁ"“(7ap7,\,, + T5Ka8%m) (2.4.30)
where
HoB s — 1E112 (Va"ﬁa’\“ + 1-v ; z (a“’\aﬁ“ + a®#af*)),
-V
HoBM = pgPeds = gobud o gruel - ghow (2.4.31)

Here, H®F*# is the elastic moduli tensor, E is Young’s modulus and v is Poisson’s
ratio. Equation (2.4.30) is known as Love’s first approximation. From this the

symmetric contravariant strain resultant tensor

NoB = ai"ﬂ = HoBMy, (2.4.32)

and the symmetric contravariant strain couple tensor

2
MoP = ai"p _ % HoBMy, (2.4.33)
(]

are obtained. Equations (2.4.32) and (2.4.33) form the linear constitutive equations.
In his work Koiter [K0i60] states that “.. the Love’s so-called first approximation
for the strain energy, as the sum of stretching or extensional energy and bending or

flexural energy, is a consistent first approximation, and that no refinement of this
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first approximation is justified, in general, if the basic Love-Kirchhoff assumptions
(or equivalent assumptions) are retained..”, and in another place “.. the relative error
in this approximation does not exceed %; or % whichever of these may be critical.”
Here L is the smallest wavelength of the deformation pattern of the middle surface.

Interpreting these results it becomes clear that they are valid for both geomet-
rically linear and nonlinear shell theories and that it is permitted to add terms of

the type b)vxs to Ko without affecting Love’s first approximation’s accuracy. By

defining

= maz (’Il, : :'//___ V1) (2.4.34)

where d is the distance of a point from the lateral shell boundary it can be stated

that the error in the first approximation of strain energy is of order 62, i.e. O(6?).

2.5 Marguerre’s theory for thin shallow shells

Geometrically nonlinear theories in the presence of finite rotations are associated
with many complexities and are, thus, usually avoided. The shallow shell theories are
the members of the simplest possible category of small strain theories. Marguerre’s

theory underlies the following assumptions:
1. ¥, small compared to w;
2. ¢, (bending rotations) moderate;

3. ¢ (rotation about the normal to the surface) small such that

1 1
Yap = ) ( ¥a |B + ug la ) + bapw + '2'w.aw.ﬁ ’

Kag = —Wlag - (2.5.35)

If the shell is nearly flat and parallel to the z*-plane then the approximations by
Sanders [San63] can be used, where

bap = -2 lag >
Uy = Uy + 24w, (2.5.36)

Us .

Q

w



Here, z = z3, U, are the in-plane displacements (in the directions of £ projected

on the z%-plane) and Us the normal displacement (in the direction z3) such that

1
Yag = 3 (Ualg +Usla + 2awp + zpwa + wawg)

Kap —w |ag - (2.5.37)

The differential equations of equilibrium in the horizontal and vertical directions are

then given by

Nflg +p* = 0,
Q%la +(2lap +wlag) N**
+ (2o + wa )N*Plg +p = O, (2.5.38)
MPlg -Q* = 0,

where Q“ denotes the transverse shear stress resultants, whereas p® and p are the
intensities of horizontal and vertical surface loads, respectively. The third equation
in (2.5.38) can be used to substitute Q“ into the second equation in (2.5.38), thereby
reducing the number of equations from three to two.

If it is now assumed that the boundary of the undeformed middle surface is a
smooth curve C with no corner points (and hence no concentrated forces), then the

boundary conditions to be applied become

Napiip or U, ,
d -~
{Q° 4+ (2a + wa ) N*P}ig + % ( M®Pt,iig) or w,  (2.5.39)

M®Pii iig or @oi® ,

where use is made of

t'\aal )

= %y , flaq = #Gq) , (2.5.40)

in which t and i are the unit tangent and unit normal to C, respectively, and s is a
length parameter taken positive in the anticlockwise sense. All the above equations

agree with those of Washizu [Was82] when transformed into Cartesian coordinates

zt.
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2.6 The von Kiarman nonlinear theory for thin plates

Plates are shells with zero curvature. Therefore, they have flat middle surfaces
when undeformed. If a plate is considered with small thickness compared to its
other dimensions and if the z@-plane coincides with the undeformed middle surface,
then putting b, = 0 gives rise to von Karman’s theory derived as a special case
of Marguerre’s theory. Again, the usual assumptions apply, i.e. the Love-Kirchhoff
hypothesis is presumed to be valid, also the strains are assumed to be small, the ¢,
are moderate. The term ¢ is small and w is allowed to be several times larger than

the thickness but small compared to other dimensions.

The strain tensor in the von Kirman theory is hence defined by
1
Yap = 2 (talg tugla +wawg), (2.6.41)
and the curvature change tensor is
Kag = —Wlap - (2.6.42)

Thus, the differential equations of equilibrium reduce to

i
()

N°F|g +p°

M g +wlap N*® + woN** | +p = 0. (2.6.43)

The boundary conditions on C, assuming that C has continuously turning tangent,

to be applied become

N"ﬁng or u, ,
d
(Q° + wa N )ng + = (M%Ptang) or w, (2.6.44)

M“‘Gnanﬁ or ¢,n° .

In the original paper of Theodore von Kdrman [vK10] the equilibrium equations
are given in terms of w and a stress function for the middle surface stresses, see
also Timoshenko and Woinowsky-Krieger [TWK59], Timoshenko and Gere [TG61),
Novozhilov [Nov53] and Niordson [Nio85] for works from the point of view of me-
chanics and e.g. Berger [Ber77) for a thorough mathematical treatment. For the

purpose of the current work (nonlinear constant moment triangle) a displacement
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formulation of equilibrium equations is more appropriate. Ciarlet [Cia80] gives a
mathematical justification of von Kirmén’s two-dimensional approximation in re-
lation to three-dimensional elasticity equations and also proves the equivalence of
the original derivation to the displacement formulation presented here. In the case
of { = 2%, the covariant differentiation in equations (2.6.41), (2.6.42) and (2.6.43)
is substituted with ordinary differentiation as in Washizu [Was82]. For the present
work it is of importance to know that, for sufficiently large compressive forces along
the lateral surface of the plate, the von Kirman equations and, indeed, the Mar-
guerre equations may possess several distinct solutions, which correspond to the

experimentally observed buckling phenomenon, c.f. [Ber77).

2.7 Practical components of surface vectors and ten-

SOrs

Vector and tensor components with respect to arbitrary curvilinear coordinates £
are not useful in engineering applications as they represent quantities not capable
of physical measurement. Morley [Mor87] introduces so-called practical components
which are a useful and more versatile alternative to the traditional concept of physi-
cal components originally defined by McConnell [McC31] and Truesdell [Tru53]. The
symbols developed A%, g' have the property that, in products with surface vectors
and tensors referred to the coordinates £, they give at once physically significant

components measured in the directions of an orthogonal set of unit vectors t,» which

is orientated as required with respect to the coordinates £°.

ty ey

ra

Figure 2.1. Base and unit orthogonal tangent

vectors at a point of the surface.
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Consider, here, § to be the angle between the base vectors ry and ry and A
the angle between the arbitrarily orientated vectors tirandr,;. Witha, =|r, |

denoting the magnitude of the vector r 4, it can then be shown that

to = hSir,, (2.7.45)
where
1 sin(B+X) N sin A
hll - " ’ hll = ———,
oy sin 3 a3 sin B8
A) cos A
p, = _cos(B+A) h2, = .
2 aysinf ' ¥ aysingf (2.7.46)
Similarly,
ro = h® ty (2.7.47)
where
hY' = aj cosA h¥ = oy sin A
h' = azcos(B+A) hY = aysin(B+ ). (2.7.48)

The symbols hS, and hg' exhibit an ordered algebra which is a natural extension to

that of tensor theory. Some of their properties are

he' = aup h? , K3 = a®Phg

he hg = 65 , b KS, = &3, (2.7.49)

aop = hY hg' , a®f = n2, hf, .

Practical components of vectors and tensors referred to the undeformed middle sur-

face of a shell or plate readily follow. For example,

Ut = hg: Ua » Ya'f! = hg: hg, Yapf » Ka'g! = hg: hg, Kaf »
Ny = h3 B8 N°P | Mog = h3 b M, (2.7.50)

with inverses

e = h% Uat ) Vap = he' hg Ya'f' » Kaf = 54 hg Ka'f' »
N°® = 2 h, Nawg, M®® = b3 B, Mopr . (2.7.51)

The contravariant elasticity moduli tensor in equation (2.4.31) may be written

Haﬂl\ll - h:, S, hi, h:, Ha:ﬁox“l N (2.7.52)
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where

Eh 1-v

HOIBIAI“I = 1—:——V—2- {u 6a'ﬁ’ 6/\;“1 + ——2—— (601'/\’ 651“1 + 6a’u’ (Sgl,\l)} (2.7.-'—)3')

with é,/5 being an alternative form of the Kronecker delta. The H,r5), defines
the elasticity tensor for an isotropic plate with reference to a pair of middle surface
Cartesian coordinates.

On the boundary C of the middle surface of an undeformed shell or plate it is
feasible to orientate the orthogonal unit vectors t;» and tys such that they coincide
with the normal n and tangent t vectors, respectively. In accordance with this, the

third equation in (2.5.39), for example, may be written
Myy = WY by MP = M i, qig or v = hi da = da 1° . (2.7.54)

In general, the widely used convention for suffices n and t (or s) to denote quantities
referred to normal and tangential directions at the boundary is directly equivalent

with the use of suffices 1’ and 2/, c.g.

Uy = Up ,
u2l = 'U,g N (2.7.55)

N]’a’ Uyt = Nn Uy, + Nnt Uy .
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Linear and nonlinear finite

element analyses

3.1 Introduction

In Chapter 2 some classical differential equations were presented. Solving these
equations analytically has not been possible except for very simple cases with spe-
cific boundary conditions and/or simple geometry. The simplest examples of all are
the plane stress and bending problems in the linear theory, c.f. Timoshenko and
Woinowsky-}frieger [TWKS59]. The first approximation theory allows independent
and accurate reductions of linear shell differential equations. In this way, differential
equations describing membrane or inextensional bending actions are obtained with-
out mixing them. Analytical solutions of such reduced equations for cylinders and
spheres can be found in Fliigge [Fli73]. Exact inextensional bending solutions for
real shells whose surfaces are described by an arbitrary polynomial are given by Mor-
ley and Mould [MM87] with additional numerical results presented by Bangemann
[Ban92].

Nonlinear plate and shell differential equations are very complicated. Thus,
analytical solutions are restricted to essentially one-dimensional plate problems, e.g.
uniformly loaded circular plates and infinitely long strips, c.f. Mansfield [Man89).

In engineering applications the solutions of the above mentioned equations are

a prerequisite for further work in which a non-analytical course of proceedings is

21
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sought. This leads to the need to develop approximating numerical methods for the
solution of thin plate and shell differential equations. The two methods used in the
early stages for this purpose were the Rayleigh-Ritz energy method and the finite
difference method. Since the advent of powerful computers, however, the finite ele-
ment method (FEM) has overshadowed all the other numerical techniques. All these
applicable numerical methods possess the common feature of replacing the original
problem, described in terms of differential equations in the unknown continuous
functions, by a suitable formulation including algebraic equations in the discrete
values of the unknowns at a finite number of points, i.e. the continuum model is
approximated by a discrete model. In the beginning the finite element method was
for a long time used for mainly solving linear problems in structural mechanics and
few worked on the finite element analysis of thin plates and shells with material
and/or geometric nonlinearities. This then changed and in the last two decades the
finite element method has been extended and used widely for nonlinear problems.
In this chapter the finite element method is presented. First, a general introduc-
tion to the FEM is given. Then, different finite elements are discussed. Implications
of the method’s application in the geometrically nonlinear analysis of thin plates
and shells follow and the chapter concludes with a short note on convergence and

the patch test.

3.2 The finite element method

A common problem occurring in continuum mechanics is that of solving a set of

differential equations

' A](V) ‘

av) =4 A _ o e (3.2.1)
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with boundary conditions

[ Bi(v) |

B(v) = ¢ Balv) » = 0 on 9N (3.2.2)

\ ° J

where €2 represents the space occupied by the continuous body, 9 is the boundary
of this continuous body, A and B denote specific differential operators and v is
the unknown function. Normally, a reformulation of the above problem is possible
and leads to that of finding the unknown function v that minimizes the integral

functional

m= /ﬂ F(v,vy,.)de + /a _E(v, Vi, -.)d00 (3.2.3)

where F' and E are appropriate operators. The subscript preceeded by a comma
indicates differentiation with respect to independent variables, e.g. Cartesian co-
ordinates z*. Integral functionals of the above form can be derived directly from
the principle of minimum potential energy, the principle of minimum complemen-
tary energy and other variational principles, c.f. Washizu [Was82] for a complete
treatment.

In the finite element analysis, which was first developed in the 1950’s, c.f. Turner
et al. [MJTT56], the continuous body is divided into a number of fictitious elements
of finite magnitude (finite elements). Each element has a domain 2° and a boundary
00¢, part of which may coincide with a part of 9§2. The use of the superscript © is
introduced here to represent the local element level and for distinguishing between

local and global levels. In each element the unknown function v is approximated by
Ve V= Z N,ai = Na° (3.2.4)

where N, are so-called shape functions prescribed in terms of the independent vari-
ables and a® represents the vector with the unknown element nodal connector quan-
tities (element degrees of freedom). If the assumption is made that the N, are
chosen such that v satisfies the minimum continuity requirements in each element

and across interelement boundaries as well as boundary conditions, then the func-
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tional in equation (3.2.3) can be approximated by

M
M= eg( /ﬂ F(Na®,..)dQ + /a _ B(Nat,..)do0) (3.2.5)

where M is the total number of elements used to model the continuum. The only
unknown quantities here are the nodal connectors in the whole model denoted by a,
say, which make up the total degrees of freedom. Therefore, the problem of finding
v that minimizes equation (3.2.3) is transferred to the problem of finding v that

minimizes equation (3.2.5) with respect to a.

The functional II attains a minimum/stationary value where

§T = 0. (3.2.6)

The fundamental lemma of the calculus of variations, c.f. Courant and Hilbert

[CH53], applied on this then leads to a discrete form of equilibrium equations

Ka=p (3.2.7)
where
M M
K=Y K , p=) p°. (3.2.8)
ex1 e=1

Here, K denotes the coefficient matrix and p is the right hand side column vector.
Therefore, we can summarize that the finite element method can be described

by the following step-by-step procedure:

1. Discretization of the problem into elements in such a way that the body is
separated into a number of finite elements using imaginary lines by stipulating
that element connections can be found at a discrete number of nodal points

on the element boundaries.

2. Forming the element coefficient matrices K¢, which can be derived directly

through the various energy theorems.

3. Assemblage of the global coefficient matrix K using the element coefficient

matrices already calculated.

4. Assemblage of the right hand side column vector p.
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5. Solving the global coefficient equation Ka = p with boundary conditions for

unknown a.

6. Use of the solution for a in order to find secondary variables if required.

The most popular finite elements in structural analysis are based on a displacement
formulation where ¥ represents the assumed displacement field, a is the nodal dis-
placement connection vector, K the stiffness matrix and p is the loads vector. For
linear problems K is always constant and should be symmetric and positive definite.
Equation (3.2.7) can then be solved uniquely by employing a numerical technique
such as Gaussian elimination or Cholesky factorization. For nonlinear problems K
depends on a and is in general not symmetric. Equation (3.2.7) must then normally
be solved through the use of a numerical iterative technique. Here, the tangent
stiffness matrix Kr obtained from the second variation of I with respect to a (Hes-
sian matrix) is required. It is prudent to note that Kr is in general symmetric and
depends on a. In the current work a lot of attention is given to the definiteness of
Kr as it is of great importance in the structural stability analysis. Also it is noted
that p is independent of a in both linear and nonlinear problems, i.e. conservative
problems are treated.

Other finite elements in common use include elements derived by using the prin-
ciple of minimum complementary energy or equilibrium models. Here, ¥V represents
the assumed stress field over each element and a is the unknown generalized force
connector. Approximate solutions tend to be overflexible (overstiff solutions with
conforming displacement models based on minimum potential energy principle).
Mized finite elements are usually derived through generalized variational principles.
V¥ may represent both stress and displacement fields and a may consist of both force
and displacement connectors. The elements may be overstiff or overflexible. One
drawback is that the coefficient matrix may be indefinite and, hence, they are not
preferred for nonlinear problems. Each of these models has its own advantages and
disadvantages but a displacement formulation is preferred, c.f. Zienkiewicz [Zie77)

and Cook [Coo81).
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3.3 Plate and shell finite elements

Finite elements exist in various shapes. They can lie flat on a plane or be curved.
If flat they can have straight or curved sides. They can be one-dimensional, two-
dimensional or three-dimensional. The best choice of element depends, on pref-
erence, on the geometry of the structure, the physical behaviour of the structure
and the resources available. In Chapter 2 the Love-Kirchhoff hypothesis was stated
and explained. With help of this the reduction of an initially three-dimensional
problem to a two-dimensional problem was achieved. Thus, it allows the use of two-
dimensional elements to model the middle surface of thin plates and shells. Although
not of direct relevance to the present work, it is worth noting that the relaxation
of the Love-Kichhoff assumption that normals remain normal to the middle plane
after deformation extends the applicability to thick plates. Finite elements derived
using this theory are known as Reissner-Mindlin elements.

Common finite elements to be used for thin plate problems are common flat
elements which are either triangles or rectangles, or isoparametric elements, i.e.
elements in which the displacements and geometry are interpolated to the same
order, usually curvilinear triangles or quadrilaterals. In the linear theory, these
elements are either membrane elements (for the solution of plate stretching problems)
or bending elements (for the solution of plate bending problems).

Four thin plate elements are relevant to the present work. The constant strain
triangle by Turner et al. [MJTT56], which is the first finite element ever developed.
It is a membrane triangle with linearly varying in-plane displacements. The con-
stant moment triangle by Hellan [Hel67] and Herrmann [Her67] is an element that
corresponds to the constant strain triangle in the bending analysis of plates. It is a
mixed finite element model and has a constant bending moment field with a linear
representation of the deflection within each element. The degrees of freedom are
taken as the nodal deflection at the vertices and the normal bending moment at
the midpoints of each side. The main drawback of the element is the indefiniteness
of its stiffness matrix. The displacement version of the constant moment triangle
by Morley [Mor71] is an equilibrium element and provides an alternative derivation

based on the theorem of minimum potential energy. In this way, a positive definite
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stiffness matrix is obtained. The deflections vary quadratically and are expressed in
terms of the nodal deflections at the vertices and the rotations at the midpoints of
each side. No definite agreement has been found in rating the performance of this el-
ement. Irons and Loikkanen [IL83] and Kikuchi [Kik86), following on from the work
of Dawe [Daw72], classify it as over-flexible in the linear thin plate analysis, whereas
Morley and Mould [MM87] find it to perform extremely well for linear thin shell
problems. The geometrically nonlinear constant moment triangle possesses connec-
tors which are identical to those obtained by the superposition of the constant strain
triangle and the displacement version of the constant moment triangle as described
above. This element is used throughout the present work and is discussed in detail
in Chapter 4.

Shells are curved structures and, therefore, no effective separation of membrane
and bending actions is possible in both linear and nonlinear theories. There are
various options for modelling thin shells. Curved elements based on either a shallow
or deep shell theory possess the advantages that it may be possible to represent
the actual curvature of the middle surface exactly and that the desired coupling of
membrane and flexural actions is attained within each element. On the other hand,
their derivation is formidable and their use is very expensive. Additionally they are,
in general, not able to reproduce rigid body movements without straining. Curved
degenerated elements obtained through the use of the isoparametric concept are the
elements most widely used today. They are solid three-dimensional elements but
there is the danger that the large number of simultaneous equations may become ill-
conditioned. The coupling between membrane and bending actions is accomplished
through inter-element continuity, c.f. Cook [Coo81]. The lower-order displacement
elements are prone to membrane locking and, hence, overstiff solutions and slow
convergence might be the consequence. Higher order elements can be derived so
as to exclude membrane locking but the formulation is expensive. Therefore, they
are not suitable for the nonlinear analysis since the recomputation of the stiffness
matrices may be very expensive. Flat facet elements are simple to formulate and
capable of rigid body movements without straining. They require a minimum of
input data and are easy to mix with other types of elements. For the purposes

of the present work they are preferred because their use in the nonlinear analysis
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is cheap due to the simplicity of their stiffness matrices. In general, however, their
performance is poor and, thus, a fine mesh is required for accurate results when shells
with significant membrane actions are analysed. Most flat facet elements utilize a
constant strain field to represent the actual membrane strains. If the geometry is not
simple, a large number of elements is needed to reduce physical idealization errors. If
displacement based elements are used, displacement compatibility between adjacent
elements which do not lie in the same plane is violated (often true for a planar array
of elements). This arises because of the different orders of the displacement fields in

available membrane and bending elements.

3.4 Developments in the geometrically nonlinear

analysis

Thin elastic plates are highly flexible in bending and thin elastic shells undergo
deflections which are often larger than their thickness. If accuracy is required and
the study of post buckling behaviour is of interest then geometrically nonlinear
effects must be considered in the finite element formulation. Geometrical nonlin-
earities enter into the analysis because of extra nonlinear terms added into the
strain-displacement relations and the effect of deformation on the equilibrium equa-
tions. The earliest nonlinear finite element formulations were simple extensions of
linear analyses developed for specific applications on an intuitive basis. Today there
are three well-known finite element approaches for the solution of geometrically non-
linear thin plate and shell problems, c.f. Mattiasson [Mat83] for a comprehensive

review:
1. total Lagrangian formulation;
2. updated Lagrangian formulation;
3. co-rotational formulation.

In the total Lagrangian formulation, all static and kinematic finite element vari-
ables are referred to the initial, stress-free state of the structure, whereas in the
updated Lagrangian formulation all variables are referred to the last calculated de-

formed configuration. The co-rotational formulation was developed independently
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by many. It has also been given various names, e.g. ‘natural approach’, c.f. Argyris
et al. [JHAS79], or ‘convected coordinate formulation’, c.f. Hinton [He92]. This is
a geometrically nonlinear formulation in which a local Cartesian coordinate system
is attached to the element and is allowed to rotate continuously with the element as
the deformation proceeds. The main characteristic, hence, is the separation of the
element rigid body movements from the local deformations which occur within the
finite element itself. This approach entails the separation of large nonlinearities (as-
sociated with the connectors) from the smaller local nonlinearities appearing within
the element. The equilibrium equations are derived by considering the deformation
of the element relative to the current position of the moving Cartesian system in
its undeformed shape prior to the transformation to global coordinates. In the case
of small strains local nonlinearities are often ignored and geometrical nonlinearities
are introduced solely through the transformation from local to global coordinates.
It should be mentioned here that the total and updated Lagrangian formulations
are based on the corresponding well-established theories from nonlinear continuum
mechanics, c.f. Bathe et al. [KJBW75], and should, therefore, yield the same nu-
merical results as they are theoretically equivalent (provided that the transformation
from local to global level is performed correctly in the updated Lagrangian formula-
tion). The advantage of the updated Lagrangian formulation and the co-rotational
formulation over the total Lagrangian formulation is that, in case of small strains,
there is increased difficulty in solving geometrically nonlinear problems as rotations
are allowed to become larger. This is because finite rotations are nonaccumula-
tive quantities, i.e. they do not comply with vector addition as is explained e.g.
by Malvern [Mal69). The motion of individual elements for thin plates and shells
consists to a large extent of rigid body movements. Therefore, rigid body rotations
may be eliminated and deformation rotations relative to local coordinates become

smaller quantities.

3.5 Convergence and patch test

Validation of the approximate computed results is accomplished by proving that

the results converge towards the exact solution of the problem when the mesh is
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refined. Most of the finite elements employed today do not satisfy the inter-element
continuity requirement for convergence as the minimum C! continuity demands a
high-order displacement polynomial representation and many degrees of freedom.
Elements violating this condition are called nonconforming elements as opposed
to conforming elements. Experience has shown, unexpectedly, that nonconforming
elements can perform even better than their conforming counterparts.

The patch test, first introduced by Irons et al. [BCIZ65], provides a means
to check whether the solution obtained in using a given element converges to the
correct answer, when the mesh is arbitrarily refined. Considering a patch of finite
elements containing at least one internal node, i.e. a node completely surrounded
by elements, the element then passes the patch test if the computed results for the
internal point coincide with the exact theoretical values. For simple finite elements
already known to pass the patch test, the patch test is usually employed as an aid
to verify the computer program or code.

A finite element based on a nonlinear theory should ideally be capable of repro-

ducing exactly the following physical actions:

three translational rigid body movements;

three rotational rigid body movements;

three independent constant states of membrane strain v,g;

two independent constant states of curvature Kqq and a constant curvature

state K, satisfying the integrability condition (k12)? = K11K22;

all the above actions in any possible combination.

It is prudent to note that the geometrically nonlinear constant moment triangle,
which is used throughout the present work and discussed in more detail in Chapter
4, is based on the von Kérmain nonlinear plate theory as described in Chapter 2 and
passes the totality of the nonlinear von Kirmdn patch tests for constant strain and

curvature, c.f. Providas [Pro90].
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The geometrically nonlinear

constant moment triangle

4.1 Introduction

A great number of finite elements suitable for solution of geometrically nonlinear
problems of thin plate and shells are based on either the updated Lagrangian formu-
lation or the co-rotational formulation. When the local nonlinearities are ignored,
linear equations are obtained on the local level which makes the formulation eas-
ier. Therefore, the introduction of geometrical nonlinearities through transformation
from element to system level extends the applicability. Evidently, there is a restric-
tion upon the size of the finite elements and that, in case local nonlinearities are
disregarded, patch test solutions cannot be covered exactly.

Therefore, the geometrically nonlinear constant moment triangle, which is a flat
triangular element and is itself based on a geometrically nonlinear theory, has been
developed by Morley [Mor91] with the hope that in this way no restrictions upon
mesh size exist anymore and that more reliable solutions are obtained for a coarser
mesh. This flat triangular element, derived through the total Lagrangian method,
is based on the von Kirmdn geometrically nonlinear theory, which was discussed
in Chapter 2, and passes the totality of the nonlinear von Karmdn patch tests for
constant strain and curvature, c.f. [Pro90]. It is the simplest possible geometrically

nonlinear finite element which is accurate for the solution of general problems for
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thin plates and shells (moderate ¢, and small ¢). The element has constant stresses
and constant moments and its connection properties are identical to those of the el-
ement obtained by the superposition of the constant strain triangle by Turner et al.
[MJITT56) and the displacement version of the constant moment triangle by Morley
[Mor71] in the linear analysis. It is an equilibrium element which in its displace-
ment formulation is a nonconforming finite element, i.e. interelement continuity is
violated, but is believed to be equally important as the constant strain triangle and
the constant moment triangle in the linear finite element analysis. In particular,
from the mathematical viewpoint, existence of the nonlinear triangle introduces a
new basis from which to consider convergence and accuracy of approximate solutions
when using nonconforming finite elements.

In this chapter the geometry of the triangle is described first of all. Then,
equations from the von Kdrmdn theory are stated, followed by the finite element
derivation of the geometrically nonlinear constant moment triangle for which, in the
concluding section, a matrix formulation suitable for finite element computation is

presented.

4.2 Geometry of the flat triangle

The undeformed middle surface of the flat triangle is described by the position vector
r = z'(6%) e; (4.2.1)

where z* denote the Cartesian coordinates in the space with reference frame of unit
vectors e; and the £ are oblique rectilinear coordinates aligning with sides 1 and 2
of the triangle, c.f. Figure 4.1.

In the sequel use is made of £ such that
' =z} @ (4.2.2)
where zj- gives the magnitude of z* at vertex j. The natural base vectors along {*

are

ro = T & (4.2.3)

where

) =z} - 5 'y = zh - z5 . (4.2.4)
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€2

(0,0) side2 (1,0)

fl

Figure 4.1. Geometry of the triangle.

Covariant components defined as in Chapter 2 are

1
an = (), az = (h)?, a1z = 2 h2 (4.2.5)

where [; is the length of side ¢ and

I

(h)? + (R)* - (),
s = ()’ + ()’ - (h)*, (4.2.6)
i = (3) + (h)? - ()*.

L2

The determinant of a,g is
a = det (ang) = 4 A® (4.2.7)
where A denotes the area of the triangle. Alternatively, A can be calculated from
16 A? = liglys + laals + laiha - (4.2.8)

The unit vector orthogonal to the undeformed middle surface defined as in Chapter
2is
n=n'e (4.2.9)

where

(z.‘z‘:’z - x?,z?‘ ) (4.2.10)
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and the remaining components follow by cyclic permutation of the superscripts.

The triangle is enclosed by the boundary C consisting of straight lines (sides of the

triangle). Tedious algebra yields values of h®
as in Table 4.1.

[

, and hg' important for computation

side 1 | side 2 | side 3 side 1 | side 2 | side 3
M| —o5 | ok | (M| -8 o ¥
hi T‘ﬁ; - ZIA Tlﬁ; hy 0 '“2124 '2134
| 0 | & |-k M| -% ] b | -R
Bl -+ 0 | 2 e 0| | &

Table 4.1. A%, and h' values along triangle sides.

4.3 Equations from the von Karman nonlinear theory
Recalling the strain and curvature equations

1
-2-(11'0'” + uﬁ’a + woaw'ﬁ) ’

YaBf =
Kaf = ~—Wag (4.3.11)
with displacement vector
U = U'e; = u,a®* + wn, (4.3.12)

constant curvature states associated with inextensional bending prevail when y,5 =
0, leading to a system of three differential equations which upon elimination of the

u,, reduces to a single differential equation

(%12)* = Kn1kaz = 0. (4.3.13)

Satisfaction of this equation guarantees that strains 7,4 are integrable.
For constant stress resultants N°? and constant stress couples M9 the von

Kérmén differential equations of equilibrium reduce to

(- ]

p* = 0,

—KkagN®? +p = 0, (4.3.14)

where p® and p denote the surface and out-of-plane loads, respectively.
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Consistent with the above, a Hu-Washizu functional Il for the energy can be

set up as

1 h?
e =3 ./A Ham“('hﬂ'hu + SKapKru ) dA

12
- *w)dA
[ (o)
1
- /A{'Yaﬁ - 5("01.[3 + Uga + w'aw,ﬁ)}N“ﬁdA
- /A(naﬁ + wag) M®® dA

—/ {Nl'a’(ua'—ﬁa')“"Ri(wn“'bi)
Ck
+Vir(w — @) + My (1 — é1r) } ds
- /C (Nitiar + Riw; + Viw + Miudy )ds,  (43.15)
T

c.f. [Was82]. Here, A denotes the area of the element, R; is the concentrated normal
force at the i’th corner R; = M\, — M[,, where the superscripts * and ~ refer
to values calculated at positions st = lim.o(s + ¢€), s7 = lim_o(s — ¢), with ¢ a
small positive scalar and Vj/ is the Kirchhoff force which under the assumption of
constant NP and M*P becomes Vjr = Nyiqiw o. The term C = Ck + Cr describes
the total element boundary with Cx being the part of the boundary where kine-
matic conditions are prescribed and Cr is the part of the boundary where tractions
are prescribed. The only subsidiary condition to be satisfied is ¢ = —w .. All
independent primary quantities u,, w and K,pg are subject to arbitrary variation as
well as the Lagrange multipliers N®8, M®®, Nyio1, Ri, Vi1, Myni. The digi(s), w(s)
and $y(s) represent prescribed displacements and rotation quantities on Ck with
w! being the prescribed displacement w at vertex i. Analogously, Ny,.., V}i and
M., are the tractions prescribed on Ct with R} being the prescribed concentrated

load in direction of n at corner .
Putting
éllg = 0 (4.3.16)

gives all fundamental equations which underlie the displacement formulation of the

von Kérmén theory. Note that the subsidiary condition

$ = -wy (4.3.17)
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is determined from

¢al = —hg,‘w,a = —~W o - (4.3.18)

The von Kirmdn patch test refers to displacements u, and w which provide
constant values for v4p and kog. This entails the requirements for displacements
Uy to be complete cubic polynomials, whereas the displacement w has the form of
a complete quadratic polynomial. The terms u, and w can be written in either
Cartesian coordinates, c.f. Allman [All82], or alternatively in oblique coordinates,

c.f. Morley [Mor91] and Providas [Pro90].

4.4 The geometrically nonlinear constant moment

triangle

The triangle has 12 connectors, c.f. Figure 4.2. These are recognizably identical with
those from the linear analysis with the superposition of the constant strain triangle
of Turner et al. [MJTT56) and the displacement version of the constant moment
triangle of Morley [Mor71].

The geometrically nonlinear constant moment triangle passes the totality of the
von Kirmén patch tests for constant strain and constant curvature in the sense
that recovery over the patch domain is achieved of displacement w with attendant
curvatures Ko = —Wwqog and bending rotations ¢, = —w,, while recovery of dis-
placements u, is restricted to their connector positions with recovery of the constant

strains 9o limited to integrated averages taken over the triangle.
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5
Ua3, W3 ¢l'5 Ual, W
side2

Figure 4.2 Connectors for the geometrically nonlinear

constant moment triangle.

It is readily observed that for passing the patch test the u, and w must be
cubic and quadratic polynomials, respectively. On the interelement boundaries, the
in-plane displacements %, and the deflection % vary linearly whereas the normal
rotation ¢, is assumed to be constant along each side. The modified generalized

Hu-Washizu variational principle with the constant strain tensor J,g is defined by

_ 1 1 /1
fop = 5 [ 1e0dh = 7 [ 5(vap + upa + wawp)dd (4419

where A is the element area. In the distributions for the assumed cubically varying
U, it is found that the terms £'€(€' — €7) (no sum) and £'¢2€3 are superfluous
to the calculation of 9,3 and hence also to the design of the non-linear triangle
which accordingly is proceeded on the basis that the distributions of u, and w
are all quadratically varying. These quadratically varying distributions of u, and
w when substituted into the weak form of the strain/displacement relations give
constant strains y,8 Which are identical with those from equation (4.4.19). The first
variation of the Hu-Washizu functional then reduces to a statement of virtual work
and the remaining finite element formulation proceeds in conventional manner.
Considering the boundary conditions, if sidel coincides with part of the patch

boundary, it is then appropriate to prescribe as contributions to the boundary con-
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ditions at connectors 2, 4 and 3, c.f. . Figure 4.2, the quantities

1

EllNl"l‘ or u;Q ’
1 . *
Ell 172 O Ugegp ,
1

- 0
'2-11N1111 or uy.qg ,

1
EllN;lzl or u;,3 ’ (4.4.20)

1

- * 1 » =
Mllzl - llNllll(§¢ll4 - ‘1—211K1120)

- 1 - = 1 = =
—h N {7 (w3 — w3) — —hk3} or wj,
20, 6
* * 1 - 1 -
—Mllzl - llNllll(-2'¢ll4 + '1—211K112:)
1
6
- 1 » » -

ll{Mlql + E(ll)2K2I2INllll} or ¢ll4l N

*® l L *® - L
—11N1'2'{E(w2 —w3)+ Zhryp} or w3,

where an asterisk denotes magnitude at the solution or increment point depending

on the case.

4.5 Matrix formulation

A matrix procedure which sets up the left hand side of the nonlinear equations of
equilibrium as well as the tangent stiffness matrix is presented in a way convenient

for finite element computing in Morley [Mor91] as in the following.

Let
a = (uTwT&T)T (4.5.21)
with
u = (unun U1z g2 U3 U3 )T ,
w = (wwyws) (4.5.22)
k = (KiKaka)T,

where the connectors of u are as in Figure 4.2. Also,

:
( T
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(4.5.23)

The finite element derivation described in the prequel reveals that the .5 be

expressed by

1 1
+§(w1 - wz)(wy— w3) + §(2nu + 2K22 — 3Kk12) ,

m =
Y22 =
Y12 =
so that
where
B
By
B«
Since

it follows that

DO =

N}

1
'2-( 12 — Y13 + uz — U23)

v = Béu + B,éw + B,éx

(2 000 -2 0
0 0 0 2 0 -2 )
\ 0110 -1 -1
2(‘!171 - w3) 0 —2(‘!1)1 - w3)
0 2(11)2 - w3) —2(102 - w3)
wy; — w3 w) - w3 —w —w2+2w3
- 1
K1 + K22 K11 -2K12
K22 K11 + K22 —2K12
K12 K12 K+ K22 — 3K1g |
B, ,w = 6B,w,
Bk = 6B.x ,

1
4 = Bu + %wa+ =Bk .

2

1 1
U1 — w3 + 5( w; — w3)? + 5‘1{(1411)2 + 2611822 — 2(K12)*}

1 1
uz2 — u23 + 5(102 - w3)? + ﬂ{('czz)2 + 2531822 — 2(%12)%}

(4.5.24)

(4.5.25)

., (4.5.26)

(4.5.27)

(4.5.28)
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The practical components for the strains and curvatures are as defined in Table 4.1

so that

L

’yalal = hz:hggﬁaﬁ ’

Karpr = h%hGKap . (4.5.29)
With
v
LA S P
. Ty

Kllll

K = 4 Ky - (4.5.30)

K1l2l )

this becomes in matrix notation

v = Hv,

k' = Hk, (4.5.31)

where H is the matrix containing the practical components used for transformation

between local oblique and global systems and is given by

r -

hl,h},  h3,h2, 2h1,h3,
H = | h}hl hihZ 2h3,h3, (4.5.32)

i h'*}lh%l h¥1h2' h}'h2' + ’l%lh;' ]

which has the inverse

[ hVRL AFRY 2hMR¥
H™! = | al'al’ A2R2  2h)A¥ . (4.5.33)
| 'Ry AFR RYRY +hYR

Introducing the further notations

Ny
Ngogl ?
| Nz

NI

-

(

M,
M' = 4 lezl } N (4-5-34)
| My
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with
Eh
D' = —3 1 0 (4.5.35)
sym 2(1 - v?)

b -l

appropriate to a triangle made of isotropic material with £ the Young’s modulus, v

the Poisson’s ratio and h the thickness, it then follows that
N = HIN' , M = HTM' (4.5.36)

with inverses

N = HYN, M = HHYM (4.5.37)

which allows the constitutive relations to be written as

1 _ Y t_ Py et
N =Dy , M = 12Dn
2
N=H'DHy =Dy , M= %Dn (4.5.38)
where
D =H'D'H. (4.5.39)

Using the reduced Hu-Washizu functional, the total strain energy II is written as

1 -
o= 5/A/( NB3.5 + M kop)dA
A T hZ T
= E(—y D~y + T Dk)
1 1
aTKsga (4.5.40)

2

1 1 h
= %[(uTBT 4+ K-TBZ‘)D(BII + §wa + EBEK.) + -13 KTDN]

where Kgg is the symmetrical matrix

BTDB iB’DB,  1BTDB,
Ksg = A i1BTDB, 1BTDB. : (4.5.41)
sym 1B.7DB, + %D |

Taking a variation 611 gives

= A(67D7+fl‘—;5n”’nn)

1
2
= 6aTK& (4542)

1 h?
= A{(6u"BT + 6wTBT + 6x"B])D(Bu + ;B.w + 3Bex) + -l—26nTDn}
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where K is the asymmetrical stiffness matrix

B’DB 1BTDB,  1BTDB, |
= T
K = A} BIDB 1IBTDB, iBTDB, : (4.5.43)
| BTDB 1BTDB, 1B.’DB, + 4D

The column matrix Ka now gives the left hand side of the nonlinear equations of

equilibrium, i.e. the generalized forces, taken with respect to the variations éa’ as

[ BTN |
Ka = A{ ,BZ:N ) (4.5.44)
\ BIN+M ‘
( N1 A
Nl2
N12
N22
_(Nll +N22) :
Aﬁ _(N'22 + Nl?) L

(w1 — w3)N'! + (w2 — w3) N2
(wg — w3)N22 + (wy — w3) N2
—(wy — w3)N'! = (wg — w3) N2 — (w; + w — 2w3)N'?
S (NProp + Nr2) + M
L(NPrap + N22kyy) + M2
| §{-N"k1 - N22xy3 + N(kq1 + K22 — 3K12)} + 2M'? |

The tangent stiffness matrix is derived by first writing
BIDy = BIN = Beuw,
BTDy = BIN = Bg«x , (4.5.45)

where Bg,, and Bg, are the symmetric geometric stiffness matrices

[ N1 N2 —(NM 4 N13)
Bg, = N (N4 N'?) :
| sym NM 4 N2 4 2N?
[ N1 N N2 IN12
Bg. = Tli N2 9N12 . (4.5.46)
| sym _9(NT' 4 N2 4 3N'2) |
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Therefore

$BIN = Bg,éw,
éBTN

Bg, 6% . (4.5.47)

The second variation §2II of equation (4.5.40) gives

h?
81 = A(69TDv + 6vDév + ﬁcﬁnTDén) (4.5.48)

which can be written as

8%l = éal K7 ba (4.5.49)

where Kr is the symmetrical tangent stiffness matrix

BTDB BTDB, BTDB, ]
Kr =4 BIDB, + Bgu BIDB, . (4.5.50)
T 2
| sym B{DB, + Bg« + 4D |

The connectors u,j, w;, Kop in equations (4.5.21) and (4.5.22) are readily trans-
formed to the global connectors U}, d114, P15, P106 of shell space first by noting
equations (4.3.12) and (4.2.3) which give

Uoj = 2 U} (4.5.51)

where the zfa are defined in equations (4.2.4) and by noting equations (4.2.9) which
give
w; = a'U} (4.5.52)

where the n' are defined by equations (4.2.10). The x,p are then transformed by

4A 123 P l23 _ ha
o= v A O A O O
l I3 I3 ha
K2 = "‘¢1'5 + —-4’1'6 + {(,1;2 + 0 )2} 1 - aa)—g}wz - W% )
l
K12 = ¢ve + == ——-wz - 2w3 , (4.5.53)

0BT )

where the relationships are obtained through the finite element derivation.
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On the general theory of the
stability of equilibrium of

discrete conservative systems

5.1 Introduction

The general theory of the stability of equilibrium of conservative svstems was founded
by Koiter in his now celebrated dissertation ‘On the stability of elastic equilibrium’
[Ko0i45]. The energy criterion for stability of equilibriuin of a conservative system re-
quires that the total potential energy, consisting of the sum of internal and external
energy, has a local minimum. This forms the basis of Koiter's work. He assumes that
the total potential energy can be expanded in a Taylor’s series in ascending powers
of the displacements (and their derivatives) of an elastic body and his analysis pro-
ceeds, by investigation of a sequence of minimum problems, to establish the basic
results accepted today. While his early formulation relates specifically to continuous
conservative systems, it is possible to adapt it to obtain a perturbation analysis of
a discrete conservative system with a finite number of variables, as encountered in
present computer techniques like the finite element method.

In contrast to the perturbation methods, there exists another class of solution
techniques where the governing nonlinear equations of a discrete conservative system

are solved iteratively at different values of the parameter to find points which define

44
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equilibrium paths. For this type of iterative approach it%s useful to have available
a version of the theory which, from the outset, features a natural parameter of
the system as the independent variable. Modern finite element methods generally
employ solution techniques of this class.

The potential energy function of a discrete conservative system, like that result-

ing from the finite element analysis of elastic plates and shells, may be written
I = II(a,A), (5.1.1)

where the elements of the displacement vector a are taken as the generalized coor-
dinates of the system which describe its state of deformation and A represents the
intensity of the applied loads. Equation (5.1.1) is a more general form of equation
(3.2.5) where X has a specified value. The equilibrium equations follow as usual from

the stationary nature of Il and we may write
f(a,A) = Ka -p =10, (5.1.2)

where

fi(a’A) = r'[,! = 0 b i = 1)"7“ , (5-1-3)

with n denoting the total number of degrees of freedom in the system and the sub-
script ; indicates partial differentiation with respect to the displacement parameter
a;. In general, equation (5.1.2) is nonlinear in a and A. For conservative proportional

loading the load vector p may be expressed as
P = AP, (5.1.4)

where p* is a constant vector of reference loads.

Every solution a of equation (5.1.2) for a given value of A describes an equilibrium
state which can be represented with the point (a,A) in an (n + 1) dimensional
space spanned by the generalized coordinates and the load intensity. The set of
all equilibrium points derived through continuous deformation from the undeformed
state (a = 0,A = 0) define a curve which is referred to as the primary or the
fundamental equilibrium path. It is usual in the solution of nonlinear problems that
for a given value of A more than one equilibrium solution a may exist. This means
that secondary equilibrium paths may exist and usually appear as branches to the
fundamental equilibrium path at bifurcation points.
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Equilibrium paths (or parts of an equilibrium path) can be stable or unstable.
Stable equilibrium configurations are characterized by a positive definite tangent

stiffness matrix (Hessian matrix),

H;; =Kr , 4,57=1,.,n. (5.1.5)

Unstable equilibrium states are characterized by an indefinite II ;;. The transitional
state from a stable to an unstable configuration or vice versa is marked by a singular
Il ;; and it is called critical state. The corresponding point on the equilibrium path
is called singular point or critical point.

In the following, the general theory of the stability of equilibrium of discrete
conservative systems is used for an approach that features a natural parameter, such
as the applied loading of a system, as the independent variable: all results are thus
conveniently established without recourse to any artificial parameters. In section 5.2
the criteria for identifying singular (critical) points, which include bifurcation points
and limit points, and determining their stability are ébtained in a simple matrix
form suitable for computation in the form of so-called stability coefficients. Note
that section 5.2 is based on a report by Bangemann [Ban92] which itself is based on
a paper by Allman [AlI89b]. Section 5.3 is based on a report by Morley [Mor94] and
provides an alternative equivalent formulation for computing the above mentioned

stability coefficients by making direct use of higher order directional derivatives.

5.2 Matrix interpretation of the general theory of the
stability of equilibrium of discrete conservative

systems

5.2.1 Introduction

A derivation of the theory of the stability of equilibrium of discrete conservative
systems is given which conveniently establishes all results in a simple matrix form
suitable for finite element computation. First, the criteria for identifying the type
of a singular point are obtained by an application of the differential calculus to the
equilibrium equations of a system. The stability of equilibrium of a singular point

is then determined by consideration of an increment of the total potential energy



Chapter 5 47

expressed as a Taylor series expansion in terms of differentials of energy, instead
of the equivalent series expansion in terms of displacements and their derivatives
proposed by Koiter.

Critical points can be either limit points or bifurcation points. They are marked
by a singular tangent stiffness matrix. Limit points occur when the tangent to
the load-deflection curve becomes horizontal. Bifurcation points are points on the
solution path from which the solution may proceed along several paths, some stable
and the others unstable.

The results obtained for singular points using the differential theory are, of
course, essentially the same as those of Koiter and other authors; but the present
analysis displays all the basic features by a direct, unified formulation which should

prove useful for practical calculations.

5.2.2 Singular points in discrete conservative systems

The potential energy function of a discrete conservative system is assumed to be a

continuously differentiable form
I =1I(a,A) = I(a,..,anA) (5.2.1)

where the variables a; describe the degrees of freedom and A is the intensity of applied
loading. An equilibrium state of such a system, for a specified value of A, is associated
with a stationary value of the potential energy function II; the corresponding a; are
then functions of the independent variable A which are determined implicitly by the

nonlinear equations of equilibrium from

6l = 0 (5.2.2)
where 5
n H
= 796 . 5.2.3
81l g 3a; 00 (5.2.3)
Consider
=1+ I (5.2.4)
with the strain energy II, given by
n, = 1 TKsga , (5.2.5)

2
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Kgg being the appropriate (n X n)-matrix in the finite element context. The loading

is contained in
Oy = -AA(p*)Ta (5.2.6)

where A is the area considered, A is the loading intensity and p* is the constant

reference load vector.

Altogether we thus get

1
I = 3 a’ Kgga + L* ()T a (5.2.7)

with
L* = —A ). (5.2.8)

The first variation 61l then becomes
611 = 6aTKa + L* (p*)7 6a (5.2.9)
with the appropriate stiffness matrix K, yielding the norlllinear equilibrium equations
I, =Ka+ L*p*=0. (5.2.10)

The second variation 6211 is given by
8% = 6a” K7 éa (5.2.11)

where the symmetric tangent stiffness matrix Kt has eigenvalues (") and corre-
sponding eigenvectors £(") defined relative to an (arbitrary) positive definite sym-

metric matrix T by the equations

Kré®) = 00 T1¢0) (nosumonr),
ENHTTe = 1. (5.2.12)

A minimum point of II corresponds to a state of stable equilibrium of the system and
the associated positive definite matrix Kz has all positive eigenvalues 0(). I the
matrix Kr, evaluated at an equilibrium point, has any negative eigenvalues then the
potential energy function attains local maxima in the directions of the correspond-
ing eigenvectors and this state of the system is one of unstable equilibrium. The

transition from stable to unstable equilibrium occurs when at least one eigenvalue,
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say 01), becomes zero; the matrix K7 is then singular and this point on an equilib-
rium path is accordingly termed a singular point or critical point. Singular points
indicate either that there is a bifurcation of the equilibrium path into alternative,
stable or unstable, branches or that a limit point has been reached. It is therefore
important to detect and calculate singular points in addition to stable points on an
equilibrium path. Attention is restricted here to ‘simple’ singular points on a stable
equilibrium path, i.e. where just one eigenvalue of the matrix Kr is equal to zero,

so that the eigenvalues 8(") are given by
o) > .. >0 > ¢0) = o, (5.2.13)

Consider a differential change d) in the parameter A which produces a differential
change da in the dependent variable a; from equation (5.2.2) the total differentials
d(611) of the equilibrium equations in equation (5.2.10) of a system vanish, so that
d) and da satisfy

d(éT) = 0 (5.2.14)
entailing
Krda + Lp*dr =0 (5.2.15)
with \
oL
= — = - 5.2.16
L=—>3 A ( )
and
da = (day,...,da,)" . (5.2.17)

If K1 is nonsingular, equation (5.2.15) can be solved for the differential da, but a
simple estimate (a; + da;) of the coordinates of a neighbouring point on the equi-
librium path is a good approximation only if d) is sufficiently small. Practical
calculation of points on an equilibrium path requires more sophisticated methods
than merely repeated solutions of equation (5.2.15). At a singular point, however,
equation (5.2.15) cannot be solved, but the nature of the point can be investigated
by forming the components of d(1,,) in the directions of each eigenvector &) of

equations (5.2.12) to obtain a new system of equations

o) (6NT Tda + () Lp*dr = 0. (5.2.18)



Chapter 5 50

Directing attention at the first of these equations, with r = 1 and (") = 0, and

defining the first order stability coefficient p as

b = (g7 Ay (5219)
or, equivalently,
p=(ENT Lp (5.2.20)
shows that
either 4 # 0 and dA =0
or u = 0 and d) indeterminate . (5.2.21)

The first of equations (5.2.21) is the condition for a limit point. Since dA = 0, but

(") # 0 for r > 1 in the remaining (n — 1) equations, it follows that
€ENTTda =0 forall r > 1 (5.2.22)

whence it is deduced that the differential changes in the dependent variables at a

limit point are proportional to the eigenvector £(*), i.e.
da = £()ds (5.2.23)

where ds is a differential amplitude which has, as yet, an unspecified magnitude.
The second of equations (5.2.21) is the condition for a bifurcation point. Now it

follows from equation (5.2.18) that

8(II'¢.

(g(r))T Tda = - -.—(f(r )T ( ))dA forall r > 1 (5.2.24)

6(r)

which implies that the differential da at a bifurcation point takes a more general
form than that given in equation (5.2.23) for a limit point, namely

da = £ ds + bd (5.2.25)

where the components of the vector b = (b1, b, ..., bn)T are
n
b= Y BNED for i =1,..,m, (5.2.26)
r=2

i.e.
b=EgB8, (5.2.27)
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where
0 & —— ¢ (0 )
0 &7 —— M g
0 6(2) L &-(") ﬂ(3)
E = ? > 1,8= : (5.2.28)
I l l
I I |
(2) (n) n
L 0 £ﬂ - n J \ﬂ( ) )

The coefficients B(") are calculated by substituting equation (5.2.25) and equa-
tion (5.2.26) into equation (5.2.24) to obtain, using the second of equations (5.2.12),

3(“ a.)

g = 0(, 767 €T (=522) (5.2.29)

or, in matrix notation,

a(H.m.)

B = @ET (=22 (5.2.30)

where E is as in equations (5.2.28) and the diagona.l: matrix © contains the eigen-

values in the form

(0 0 0 0 — o

0 -5 0 0 —— 0

0 0 -2 0 — 0
e = o (5.2.31)

| [ I

| [ |

|0 0 0 0 —— "R!ﬂ' ]
Therefore, the vector b can be written as

b= E@ET(a(n "')) (5.2.32)

It is necessary to employ a higher order approximation for further investigation of
the bifurcation point and the limit point. This is accomplished by generating the
second total differential d?(611) of equation (5.2.14) and by stipulating that

d*(8T) = 0 (5.2.33)

in order to then get, c.f. equation (5.2.15) and equation (5.2.19),

(ﬂ.a.

d{Krda + (X8ady 4y} = o (5.2.34)



Chagter 5 52

revealing

Kr(@a) + (2Tad) (@) + (9Kr(da)) da

a( 133 az(na.

))d d) + ( Y ))(d,\)2 =0. (5.2.35)

+28(

Here, the term (0Kr(da)) in equation (5.2.35) is defined by

(Mo} || A(Knudyg, - _ (AEgha}  2(Krhab) gy
I

(0Kr(da)) :=

| - I
| (HGZe), | A Dudyda - (AKpdw) | 2(Kpdea)y g, |

(5.2.36)
where K71 has entries
= [Kr);; , 4i=1,.,n. (5.2.37)
Forming now the components of d*(Il ;,) in the directions of the eigenvectors £(7)
and using equations (5.2.12) provides the result, c.f. equation (5.2.35),
(€N d*(Ma) = 60 ()T T (d%)
+ (g (AT a2
+ (€")T (0K1(da)) da
+2(e0)7 s Ze)

] a(na,)
+ (€N () (@A

= 0. (5.2.38)

)} dad

Directing attention, again, at the first of these equations, with r = 1 and 6() = 0,
and substituting equation (5.2.25) for da gives a quadratic equation for calculating
the differential amplitude ds in terms of known quantities d\ and (d?)), namely

A(ds)? + 2Bdsd) + C(d))? = — u(d®)) (5.2.39)

where u is defined in equation (5.2.19) and the second order stability coefficients A,
B and C are

A = (0T (8K (£t))) €M),
= (EM)T (K7 (b))€M + (€T (Hx-
C = (€T (OKx(b))b + 2(e<")T("KT

9Kt -5 QN (5.2.40)

T (M)
)b + (€M) (—535) -
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A proof is given in Appendix A.1 that the stability coefficient A as given in the first
of the equations (5.2.40) coincides with A as in Allman’s notation, c.f. [All89b]. It
is prudent to note also that the coefficient A is identical with the third directional

derivative d(PPP)1I (when taken in the same direction f(‘)) as introduced by Morley
[Mor91],

A = 4o (5.2.41)
c.f. Appendix A.2.

The right hand side of equation (5.2.39) vanishes, of course, for a bifurcation
point, since g = 0, but it plays an important role in the analysis of a limit point as
seen later. There are, in general, two real solutions of equation (5.2.39), provided
B2 > AC, at a simple singular point; one corresponds to a primary ‘fundamental’
path and the other corresponds to a secondary ‘bifurcation’ path. But degenerate
forms of equation (5.2.39) also correspond to types of singular points which often

occur in physical systems.

The three most common types of singular points are

1. an asymmetric bifurcation point, where u = 0, A # 0, B2 > AC, giving two

distinct solutions for ds,
ds = %(-Bi VBT =~ AC )dA (5.2.42)
which are substituted into equation (5.2.25) to obtain the differential da;

2. a symmetric bifurcation point, where u = 0, A = 0, B # 0, giving a degenerate

form of equation (5.2.39)
(2Bds + CdA)dA = 0 (5.2.43)
but there are still two distinct solutions

1,C
ds = -z(F)dx,
0. (5.2.44)

d

The second of equations (5.2.44) means that dA = 0 in the direction of the
bifurcation path at a symmetric bifurcation point and hence equation (5.2.25)

for the differential da reduces to equation (5.2.23) for the limit point, with

e e e g

"
L

et

TR

o 3
e R T



Chapter 5 54

ds indeterminate at this level of approximation. The differential da for the
fundamental path is obtained by substituting the first of equations (5.2.44)
into equation (5.2.25);

3. alimit point, where u # 0, A # 0, dA = 0 (from the first of equations (5.2.21))
giving another degenerate form of equation (5.2.39)

(ds)? = —( % )(d?)) . (5.2.45)

The two solutions of this equation for ds are equal but opposite in sign;
they correspond to points lying on the unique equilibrium path, which closely
bracket the limit point. Note that the existence of real values for ds requires
an appropriate (positive or negative) second order change (d?)) to make the

right hand side of equation (5.2.45) positive.

For convenience of reference the above results are recorded here as the following

criteria for identifying the type of a singular point:

(a) an asymmetric bifurcation point 0, A#0;
(b) a symmetric bifurcation point p = 0,A=0; (5.2.46)

(c) a limit point p # 0, A#£0.

The symmetric bifurcation point, appearing as the second of the criteria in equa-
tions (5.2.46), occurs in two distinct types: stable symmetric and unstable sym-
metric. Additional criteria for identifying these singular points are derived in the

following section.

5.2.8 Stability of equilibrium of singular points

The stability of equilibrium of a simple singular point (a, A) is conditional upon the
total potential energy function attaining a local minimum (stable equilibrium), a
local maximum (unstable equilibrium) or a minimax point (unstable equilibrium).
The natural condition that pertains can be determined by consideration of an in-
crement AlI of the total potential energy expressed as a Taylor series expansion in

terms of the differentials of II, such that

All = M(a+da,r)-TM(a,A)

S W e
S e

s oo
R ot ol o
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= dll(a,)) + -21-'d2n(a,,\) + %d“n(a,,\)
+£d‘n(a,x) + .. (5.2.47)

Here, the value of the natural parameter ) is considered to be fixed at the singular
point, and consequently d\ = 0, (d?)) = 0, etc, but the dependent variable a is
allowed a differential change da, as specified by

da = £ ds (5.2.48)

and higher order differential changes d2a, d3a, d*a, etc as necessary. According to
the reasoning of the previous section the choice of da = £(*)ds correctly applies to
all types of singular points because equation (5.2.25) for bifurcation points reduces
to equation (5.2.23) for limit points if dA\ = 0. The differential change da is also

considered to be limited in magnitude by putting
ds = ¢ (5.2.49)

in equation (5.2.48), where ¢ is a small disturbance parameter. Under these assump-
tions the differentials of energy dIlI, d?Il, etc which appear in equation (5.2.47) are
given by

dll = (ENTI,, e
e = (d%a) M, + ()T Krél) €
P = (d®a)T I, + 3(d%a)T Kr&Me
+(€0)T (9K (€M) €0 € (5.2.50)
d'll = (d%a)T I, + 4(d%)T K7 €W ¢
+ 3(d%a)T K1 (d%a)
+ 6 (d*a)T (9K7(£1))) €0 €
+(€W)T (B(AKT(EL)) (L)) 1) €t

Some of the terms in the expressions of equations (5.2.50) vanish in virtue of equa-

tion (5.2.10) and equations (5.2.12) and it is found that the first three differentials

of energy evaluated at a singular point are

dil = 0,

-5
¥

s A
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o = o0, (5.2.51)
e = Aé,

where the coefficient A is given in the first of equations (5.2.40).
At an asymmetric bifurcation point or a limit point A # 0 according to parts

(a) and (c) of the criteria in equations (5.2.46), so equation (5.2.47) and equa-
tions (5.2.51) show that the increment of the total potential energy is given by

All = %A@ + O0(€e). (5.2.52)

For a sufficiently small value of the disturbance parameter ¢ the increment All is seen
to obey a cubic law close to those types of singular points and hence there is a point
of inflexion of the total potential energy function in the direction of the eigenvector
£€(1), This means that AIl can decrease the total potential energy, so the asymmetric

bifurcation point and the limit point are in a state of unstable equilibrium.

At a symmetric bifurcation point A = 0, according .to part (b) of the criteria in
equations (5.2.46), so equation (5.2.47) and equations (5.2.51) show that the incre-
ment AII of the total potential energy depends principally on the fourth differential
of energy d*II, given in the fourth of equations (5.2.50); using equation (5.2.10) and
equations (5.2.12), this becomes

dll = 3(d%a)7 K7 (d%a)
+ 6 (d%a)T (K7 (£01)) €0 & (5.2.53)
+ (6W)T (A(AKT(£1)))(€M))) €0 €t
This expression involves terms in (d?a) and these are calculated, using the second

of equations (5.2.12) and equation (5.2.48), from
(da)T Tda = (ds)? (5.2.54)
whence, by differentiation,
(d?a)T Tda = (ds)(ds) . (5.2.55)

Equation (5.2.55) read in conjunction with the second of equations (5.2.12) and
equation (5.2.48) shows that (d*a) has the form

(d%a) = £0)(d%) + Z": gt (5.2.56)

r=2

i

"
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where the coefficients c() are determined by substituting equation (5.2.56) into
equation (5.2.35) (with dA = 0, (42A) = 0) and using equation (5.2.12) and equa-
tion (5.2.48), with ds = ¢, to obtain, c.f. Appendix A.3,

0(1,,.) (£(r))T (aKT(E(l))) 6(1) 62 . (5.2.57)

) = _

In matrix/vector notation we hence have with
c = (0,c(2),c(3), vy ) )T (5.2.58)
the form
c = O ET (9K(£(1))) £0) 2 (5.2.59)
where © and E are defined in equation (5.2.31) and equation (5.2.28), respectively.
Thus, equation (5.2.59) can be written as ¢
(d%a) = £0) (d?s) + E@ET (9Kr(£0))) ¢ ¢ . (5.2.60)

Substituting now equation (5.2.60) into equation (5.2.53) gives the fourth differential
of energy as

d‘ll = Dé (5.2.61)

where the coefficient D is found to be, c.f. Appendix A.4,

D = (£0)T (3(OK(£M)) (£1))) €W
+ 3 (E0NT (0K 7(£M)T EO ET (0K (€M) €1) . (5.2.62)

A proof is given in Appendix A.5 that the stability coefficient D as given in equa-
tion (5.2.62) coincides with the stability coefficient D as in Allman’s notation, c.f.
[ALI89Db). It is prudent to note also that the first term of equation (5.2.62) is identi-
cal with the fourth directional derivative d(PPPP)II (when taken in the same direction

8(1)) as introduced by Morley [Mor91]},
(E0N)T (B(OK(EM)) (1)) €0 = dlrrerinT (5.2.63)

c.f. Appendix A.6.
The increment AIl of the total potential energy is obtained from equation (5.2.47),
with dIl = d*I1 = d°I1 = 0, and equation (5.2.62), namely

All = %De‘ +0(). (5.2.64)
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Considering a sufficiently small value of the disturbance parameter ¢ now shows that
the increment AIl obeys a quartic law close to a symmetric bifurcation point. This
implies that the total potential energy function can attain either a local minimum
(stable equilibrium), if D > 0, or a local maximum (unstable equilibrium), if D <
0, in the direction of the eigenvector £(*). The following criteria for determining

stability therefore apply

(a) a symmetric bifurcation point is stableif D > 0 ;

(b) a symmetric bifurcation point is unstable if D < 0 . (5.2.65)

If the coefficients A and D in equations (5.2.40) and equation (5.2.62) are both zero,
it is necessary to evaluate higher order differentials of energy in the expression for
the increment AII of the total potential energy in order to investigate the stability
of equilibrium of a singular point.

A further observation, noted also by Koiter in his continuum analysis, may also
be made regarding applications of the criteria in equations (5.2.65). It is often im-
practical to use more than a few of the eigenvalues and eigenvectors (r = 2,...,n)
to calculate an approximation to D in equation (5.2.62). Consequently, if this ap-
proximation to D is negative, the equilibrium of a singular point is certain to be
unstable in reality. Conversely, a positive value of D, calculated without using a
complete set of eigenvalues and eigenvectors, does not always mean that the equi-
librium is actually stable. In the present work it is preferred to use the complete set
of eigenvectors as for the computation of D the convenient matrix formulation as in

equation (5.2.62) is derived.

5.2.4 Finite element formulation for the geometrically nonlinear

constant moment triangle

The tangent stiffness matrix Kr for the geometrically nonlinear constant moment

triangle is given in equation (4.5.50) as

 BTDB  BTDB, BTDB,
Kr = A BTDB, + Bgu BTDB, . (5.2.66)
sym BTDB, + Bg. + 4D |

R Py
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For the computation of the second order stability coefficients A, B and C the ‘deriva-
tive’ of Kr, the matrix (3K 7(£("))) (taken in the direction of £1)) as defined in
equation (5.2.36), is required. Equation (5.2.66) entails then that (JK(£(1))) be-

comes the symmetric matrix

0 BTDB,, BTDB,
3 . o o
(OKr(a)) = 54 BTDB, + BTDB, BIDB, +BTDB, | , (5.2.67)
| sym ﬁZDB,; + ﬁZDﬁ‘

where the ‘hatted’ matrices are taken in the direction of £() where £(V) = (uTwTxT)T,

c.f. equation (4.5.21).

2
Note that the terms involving (%%1) and (a—f%ﬁl) vanish as Kt is independent
of A and I ,; is linear in A, respectively. Hence equations (5.2.40) for the second
order stability coefficients reduce for the geometrically nonlinear constant moment

triangle to

= ()T (0Kr (£0))) €,
B = (£)7 (8K (b)) €M), (5.2.68)
= ()T (8Kr(b))b .

For the computation of the stability coefficient D the ‘derivative’ of (0K (€M),
the matrix (6(8KT(£(1)))(£(1))) (taken twice in the direction of ¢), is required.
Equation (5.2.67) entails then that (8(OKr(£™))(£(")) becomes the symmetric

matrix
0 0 o |
(A(OK7(EM)) (€M) = 34 BTDB, BIDB, | . (5.2.69)
| sym ﬁIDﬁK ]

where, again, the hatted matrices are taken (twice) in the direction of £1).

The stability coefficient D is computed as in equation (5.2.62) by

D = (£M)T (9(OKT(£1)) (£1))) 1)
+ 3(6ONT (9K(£M)T E@ ET (K (€M) ) . (5.2.70)

It is prudent to note that the second order stability coefficients A, B and C

can be calculated element wise and the result is obtained by then summing up over

e A s

R TP

- B e
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the element contributions, but the second term in the expression for D must be

computed on the global level.

5.3 The geometrically nonlinear constant bending
moment triangle and its repeated directional

derivatives with respect to varied directions

5.3.1 Introduction

A formulation based on the paper by Morley [Mor91] is presented for the matrix
evaluation of repeated directional derivatives with respect to varied directions for the
geometrically nonlinear constant bending moment triangle. With the help of these
directional derivatives the stability coefficients introduced earlier may be computed
and, thus, an alternative way for determining the type and stability of critical points

is provided.

5.3.2 The directional derivative

The directional (Gateauz) derivative dG = dG(a;a) of the operator G = G(a) in
the direction of @ is defined by

G(a + Aa) — G(a)

=l 5.3.1
dG = lim, ) (5.3.1)
where
a=a,az, -, G, a= al, &2, Y &k’ (532)
say. Introducing
a = (ah az, °°°, a’k)T = (uT wT K'T)T (533)
i = (a, G, -, a)T = (@7 & &T)T

c.f. equation (4.5.21), the first scalar g = g(a) with

g= c‘)""‘:'ra ) c= (c1, €2, +--y ck)T (5.3.4)



is considered, where ¢, ¢;, ¢, ..., ¢; are fixed constants. Let g = g(a) where!

g=cla. (5.3.5)

Equations (5.3.1), (5.3.4), (5.3.5) and (5.3.2) then show that the directional deriva-
tive dg = dg(a;a) of g in the direction of a is

dg=g . (5.3.6)
Consider next the matrix G = G(a) with
G=[g,'j] , ,7=1,2,...,k (5.3.7)

where the coefficients g;; = g(a);; are defined similarly as for g(a) in equation (5.3.4)
and let

G = [§i;) (5.3.8)

where the coefficients g;; = §(a)i; are defined similarly as for §(&) in equation (5.3.5).

The directional derivative dG = dG(a;a) of the matrix G in the direction of a is

then
dG =G . (5.3.9)
Moreover, if say
F = G,G:G3 (5.3.10)
then the directional derivative is
dF = G,G,G3 + G1G2G3 + G1G,G; . (5.3.11)

5.3.3 Repeated directional derivatives with respect to varied

directions

In order to denote repeated directional derivatives with respect to varied directions,

it is convenient to replace the second of equations (5.3.3) with

al?) = (&gp)’ &'(f)’ . &i’))T — (ﬁ(P)T w(PT k(P)T)T (5.3.12)

'In the application of the present results to the calculation of stability coefficients as are ex-
pressed by Allman [AlI89b] it is worth noting that § = g,., @i where the comma denotes partial

differentiation with respect to a; and where the repeated index i denotes summation over the range

i=1,...,k
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where p is a prescribed index.
The directional derivative d(P)G of G in the direction of a(?) is then denoted by
PG = G¥ . (5.3.13)
The second directional derivative of e.g. equation (5.3.10) is
dPIF = G]G3G3+G]G2G3+G| G,G3+G1GG3+G|{G,G+G, GG (5.3.14)
where it is evident that
dPIF = dP)F | (5.3.15)
5.3.4 Repeated directional derivatives of the strain vector

The strain vector 4 for the geometrically nonlinear constant moment triangle of

equation (4.5.28) is written
v=Bu+iB,w+ iB.k. (5.3.16)
Equations (4.5.26) and (4.5.27) then imply that
B,w? = B®Pw,  B&®=B"k (5.3.17)

and the equations for repeated directional derivatives with respect to varied direc-
tions become
dP)y = Ba® + B, w4+ Bk |
ey = BW) 4 B
dPerly =0 . (5.3.18)

Note that equations (5.3.17) show that
80wk = BP%@, Bk = BP0, (5.3.19)

which confirms that the sequence of directional differentiation is immaterial, s.e.

d®y = Bal® 4 gg’)w + gg’)n

APl = ¢(P)y, (5.3.20)
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5.3.5 Repeated directional derivatives of the strain energy

The strain energy II as given in equation (4.5.40) is

h?
= —{—yTD-y + —nTDx} (5.3.21)
which has first directional derivative, c.f. equation (4.5.42),
dP1 = A{d?P)yTD + h® d(P)KTDn}
= alP)Ka (5.3.22)

where K is the asymmetrical stiffness matrix

 BTDB !B'DB, IBTDB,
K=A| BIDB iBTDB, 1BIDB, (5.3.23)
B{DB }BDB, i{BIDB,+4D

as in equation (4.5.43).
The second directional derivative of II, c.f. equation (4.5.48), becomes
2
dP)1 = A{dP)4TDYy + d94Tp4P)y 4 %d(?)xTDd(P)K}
= aPTK,.a + aPITK,a(0T (5.3.24)

where the asymmetrical matrix Kj; is given by

r -

0 0 0
- - - ()T
K =4| B9 DB 189"DB, :8Y"DB, (5.3.25)
BY"pB 18"'DB, 18" DB,

and the symmetrical matrix K, is given by

 BTDB BTDB, BTDB,

K:=A| BTDB BTDB, BIDB, : (5.3.26)
BIDB B!DB, BIDB,+ % D

The réle of the geometric stiffness matrices Bgy and Bg, of equations (4.5.45) in the
derivation of the directional derivatives is considered in Appendix A.7. Geometric
stiffness matrices are introduced in computational structural analysis so as to achieve

symmetry of the Hessian, i.e. of the tangent stiffness matrix Kt of equations (4.5.48)

and (4.5.49).
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The third directional derivative II, in a similar way, then becomes

dPaT = A{d)4TDaP)y 4 dP)4Tpgalay 4 d(')—yTDd(W)7}

- é(p)TK3q5(r) +a@TK, a0 4 é(f)TK3pa(’l) (5.3.27)

where K3, is the asymmetrical matrix

0 0 0
Ky =4| B9"DB 8Y"DB, 8”"DB, (5.3.28)
| 89"pB 589"DB, BY"DB,

and the fourth directional derivative of II becomes

AP = A{dPI4TD4(re) 4 dlr)4TDglre) 4 dr)4TDd(99) )
= aPITRL)A0) 4 a@TRP)a0) 4 4T 500 (5.3.29)

»(2)

where, for example, K3, is the asymmetrical matrix

(0 o o |
Kg.;) Al o BS)TDB(s) B(v)TDB(s) ) (5.3.30)

An alternative formulation for the repeated directional derivatives of II with re-

spect to varied directions is given in Appendix A.8 where all matrices are symmetric.

5.3.6 Stability coefficients for Koiter’s criteria

The stability coefficients A, B, C and D, as derived in the prequel and given in
equations (5.2.40) and equation (5.2.62), can now be expressed in terms of the
directional derivatives of the strain energy introduced above by substituting from

equations (5.3.27) and (5.3.29) so that symbolically

A = dlrrrl,
B = dPr]],
C = d»I,
D = dlerer)[] — 2 0(0)(d("")ﬂ)2, (5.3.31)

q=2
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with

AL = 3a(PITK , a(P),
dPPI] = 2a(PITK 3 4(9) 4 aPTK, alP),
dPa9yI = 2aPITK, 400 4 5(9)TK3p§(q),

d(PrrR) ]I = 35(7)TK;”’,) alp) (5.3.32)

where the appropriate substitutions for the &?’) and &Eq) are ascertained from the
previous section or the paper by Allman [All89b]. While the stability coefficients A,
B and C can be calculated element by element and then summed, the summation

term in the last of equations (5.3.31) for D must be calculated on a global basis.
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Calculation of stable

equilibrium paths

6.1 Introduction b

In this chapter the numerical solution of equilibrium equations is elaborated on. In
general, there exist two methods, perturbation methods and continuation methods.
Perturbation methods consist of computer adaptations of Koiter’s work [Koi45)] or
numerical implementations of the analyses by Thompson [Tho63], [Tho70] and the
equivalent results derived by other people. The main characteristic is that they rely
on power series expansion techniques. Hence, perturbation methods yield results
that approximate the equilibrium paths only around a pre-determined solution point
at which the series is taken. Continuation methods do not have this drawback and
are employed in most of the modern finite element codes. The key feature is the
use of iterations to correct an initially predicted solution for a particular point of
the solution space. Many solution points can be calculated by gradually varying an
independent parameter (usually the intensity of the applied loads) and, in this way,
enabling the tracing of the equilibrium path.

The emphasis of the present work lies in the investigation of bifurcation points
(buckling phenomena) rather than limit points (snapping phenomena) as for the
latter methods suitable for finite element computation already exist. Bifurcational
buckling as well as limit points often exhibit huge structural changes and the compu-

66




tation of the required switch procedures between bifurcation paths in earlier works
have not been implemented in a satisfactory manner into finite element codes.

In this chapter, after a note on linear bifurcation analysis, some of the com-
monly used continuation methods for the calculation of stable equilibrium paths
are discussed. Thereafter, a solution technique developed by Allman is described,
where stable equilibrium paths are located reliably by a generalization of Newton'’s
method, c.f. [All84], which converges only to minima in applications to find station-
ary points of a function of several variables. Some important computational aspects
are also considered such as reliably locating critical points. Then, a branch switching
method, which has successfully been applied at bifurcation points in order to enter

the post buckling regime on the stable equilibrium path, is presented.

6.2 Linear bifurcation analysis
l‘ .

)
Buckling takes place when a member or a structure converts membrane strain energy

into strain energy of bending with no change in externally applied load. A critical
condition, at which buckling occurs, exists when it is possible that the deformation
state may change slightly in a way that makes a loss in membrane strain energy
numerically equal to the gain in bending strain energy.

The effects of membrane forces are accounted for by a matrix K¢ that augments
the conventional stiffness matrix Ko. The matrix Kg is called the geometric stiffness
matrix and it is thus defined by the element’s geometry, displacement field, and state

of stress. For the geometrically nonlinear constant moment triangle the matrices Ko

and K¢ are given by

(BTDB 0 0

K, = A o o |, (6.2.1)
| sym %D |
0 o0 o0

Ke = A Bs, O |, (6.2.2)
| sym Bg, |

c.f. equation (4.5.43) in the matrix formulation given in section 4.5.

A bifurcation buckling load is the load for which a reference configuration of the
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structure and an infinitesimally close (buckled) configuration are both possible equi-
librium configurations. As a buckling displacement da takes place from a reference
configuration a, the load does not change. Accordingly,

(Ko + Kg)da = 0, (6.2.3)

or, equivalently,
(Ko + A\ Kg)da =0, (6.2.4)

where K¢, defines the reference state of Kg. Note that here the so-called linear
classical buckling analysis is followed where prebuckling rotations are either ignored
or are zero. Equation (6.2.3) or equation (6.2.4) define a generalized eigenvalue
problem the lowest eigenvalue of which, A, is associated with buckling. The critical
load or buckling load p is then

Por = AaP*, | (6.2.5)

where p* defines the reference state of the loading. The eigenvector da associated
with A, defines the buckling mode. The magnitude of da is indeterminate. There-
fore, da identifies shape but not amplitude.

Thus, the linear bifurcation analysis provides an easy way for calculating critical
loads at which elastic structures buckle. It is to be noted, however, that physically
significant answers can be obtained only for a limited number of problems such as

for perfect structures.

6.3 Commonly used continuation methods and branch

switching

6.3.1 Introduction

There is a plethora of methods that can be employed for the iterative solution of
nonlinear systems. Any of these techniques designed for the solution of nonlinear
algebraic equations can be modified so that applicability in structural analysis in
the form of a continuation method is obtained. This leads to the determination

of a number of points that belong to the solution curve of interest, e.g. the stable
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equilibrium path in the present work. Continuation methods are iterative meth-
ods requiring starting values from a point found on the solution curve in order to
construct an approximation for another point sought on the same solution curve.
This must be done using a step-by-step procedure and, hence, continuation meth-
ods can be classified essentially as predictor-corrector methods where the initially

constructed prediction is corrected by employing the iterative technique at hand.

6.3.2 The Newton-Raphson method

The most popular method for the iterative solution of nonlinear systems is undoubt-
edly the Newton-Raphson method. The equilibrium equations for the finite element
model are as given in equation (3.2.7), Ka = p. This may be rewritten, assuming a

fixed load value, as a set of functions for which the roots are sought,
f(a) = Ka-p=0.. (6.3.6)

Presume that for a given load value at the k’th iteration the approximate solution
ar—1 is known and an approximation (ax—; + éai) closer to the true solution is
sought.

Setting the first order Taylor series expansion at (ax-1 + 6ax) equal to zero gives

the system of linear equations
(K7)k-10ar = — (Kik-135-1 — P) , (6.3.7)

where the subscripts denote the iteration numbers. Equation (6.3.7) is then solved

for the unknown 6a; and a new better approximation for a, is obtained from
a, = a1 + da; . (6.3.8)

The term a, is then substituted into equation (6.3.7) for a further correction and
the procedure carries on until a certain cut-off criterion is satisfied and a solution
point a or a™ is obtained if it is assumed that the calculations were performed for
the m’th increment. The a™ is then used as a first approximation for the (m +1)’th
increment.

The initial starting vector ag for the first iteration increment is ideally chosen

close to the unknown true answer. A common step is to employ a solution vector
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obtained from the linear theory as an initial first guess. This approach is also made
use of in the present work.

The standard Newton-Raphson method as presented above has a quadratic rate
of convergence, provided that the initial guess is close enough to the true solution
and that the tangent stiffness matrix satisfies certain conditions as stated by Ortega
and Rheinboldt [OR70]. The popularity of the Newton-Raphson method is due to
its good convergence properties as well as it being easy to implement into a com-
puter code. The drawbacks, however, can be severe in complex problems. Firstly,
the tangent stiffness matrix K7 requires updating after each iteration, which is com-
putationally extremely costly. The second drawback of the method is, that it may

fail to converge due to numerical errors.

6.3.3 Modified Newton-Raphson methods and Quasi-Newton-
Raphson methods b,

In order to overcome the drawback of the standard Newton-Raphson method of
continuously having to update the tangent stiffness matrix the so-called modified
Newton-Raphson methods have won popularity. The idea here is to update the
tangent stiffness matrix after each increment only rather than after each iteration.
Alternatively, the updating can take place after every s iterations or when conver-
gence becomes too slow. An interesting recent suggestion was made by Forsgren
and Ringertz [FR93] who use both descent directions and directions with negative
curvature. In this way, the applicability is extended to nonconvex problems and the
method seems to provide a useful complement to other existing Newton-Raphson-
type techniques.

Following the same ijective as the modified Newton-Raphson methods, the
quasi-Newton-Raphson methods also try to avoid the costly computation of the in-
verse of the tangent stiffness matrix as well as the slow convergence, which is often
the case with modified Newton-Raphson methods. The idea is the introduction
of a matrix B which behaves in a ‘similar’ way to Kr but is easy to construct.
The most common quasi-Newton-Raphson methods are Broyden’s method, Davi-
don’s method, the DFP method and\the BFGS method. It is not the purpose of
the present work to give detailed descriptions of these methods and, thus, it suf-
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fices here to refer to the works by Dennis and Moré [JEDMT77] for a survey and
Matthies and Strang [MS79] for the first nonlinear finite element implementation of

quasi-Newton-Raphson methods.

6.3.4 Constant arc-length method and its alternative forms

The constant arc-length method was first introduced independently by Riks [Rik72]
and Wempner [Wem71], later developed by Riks [Rik79] and then modified to suit
finite element computations by Crisfield [Cri81] and Ramm [Ram82). The idea of
the constant arc-length method is to add to the standard equilibrium equations
a constraint that depends on the load. In this way, it aims to control both the
displacement and load in order to follow the equilibrium path of the structure. The
resulting main advantage of the method is that the extended system of equations
does not become singular at limit points and, thus, the entry into the post critical
regime of snapping phenomena is made feasible. At l)lifurcation points, however, the
system becomes singular, this being of importance to the present work. A major
disadvantage of the constant arc-length method is that through the introduction of
an additional row and column the otherwise symmetrical (n x n)-matrix loses its
symmetry in the now (n + 1)-dimensional space.

Presuming that it is intended to advance from the (m — 1)’th equilibrium con-
figuration to the m’th equilibrium configuration, the unknown load value §A; to be
added to the structure is approximated using the identity

saTéa + (ué\)? = (ds)® . (6.3.9)

Here, the scaling parameter y is usually taken as 4 = 1 and da; = A, 6a where éa =
((K7)™~1)~1p* is the tangential displacement of unit loading p* and ds fixes the
length of the increment in (n + 1)-dimensional space. The corrections are then made
by employing the Newton-Raphson method. In the constant arc-length method as
suggested by Ramm [Ram82] the iteration path is forced to follow a plane normal
to the tangent t;, say, of the equilibrium path at the solution point and, therefore,

saTéa; + 6\ = 0, i=2,3,.... (6.3.10)

Alternative forms of the constant urc-length method have been developed which
either, instead of the standard Newton-Raphson method, make use of a modified
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Newton-Raphson method or quasi-Newton-Raphson method, or for which equa-
tion (6.3.10) is different. The different Newton-Raphson type techniques are as
described in the prequel and, e.g. , Chang [Cha91] has used the constant arc-length
method in combination with quasi-Newton-Raphson iterations. In the latter case,
instead of following the plane normal to the tangent t; the method could be modified
to follow the plane normal to t;_;. Another alternative is to force all iterates to lie
at a fixed distance from the current solution point, i.e. on a sphere with radius ds
and centre at the current solution point. This method was suggested by Crisfield
[Cri81]. Batoz and Dhatt [BD79] came up with a different approach by introducing
as the additional constraint one which is dependent on the dominant displacement
rather than on the load.

The constant arc-length method and its alternatives hence provide a useful tool
for problems where limit points are encountered but gives no advantages compared
with other mentioned techniques when bifurcations otcur. Another drawback of the
constant arc-length method is that the solution procedure fails in cases for which
KT becomes singular.

A good survey of Newton-Raphson as well as the constant arc-length type tech-
niques is given in the paper by Kouhia [Kou] and in the book by Crisfield [Cri91].
Riks [Rik84] and Kouhia and Mikkola [KM89] concentrate on the constant arc-length

method and its alternative forms.

6.3.5 Convergence criteria

Convergence criteria are important for deciding when an approximate solution is
close enough to the true equilibriating answer. They can be based on displacements
such as the smallness of éa, the sufficiently small magnitude of the residual forces
(K;a; — p), or the energy.

Usually, convergence criteria are based on a scalar norm such as, e.g. , the 2-norm
or Euler norm || a |l2= (% | ai 2). In the present work a convergence criterion is
used that has also been favoured by Bergan and Clough [BC72], [BC73] and Providas
[Pro90] and is based on displacements. For each connector a;, i = 1,..,n the ratio

ba
Gmaz(st)

|,i=1,.,n, (6.3.11)
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is computed. Here, @ynaz(st) denotes the largest magnitude total displacement of the
same type as the current da;. The occurring types in the context of the present
work are in-plane displacements, out-of-plane displacements and rotations in terms

of cartesian components. The iterations are then terminated if

lelloo < € (6.3.12)

where || e ||oo= mazi1<i<n | €; | and ¢ is taken such that desired accuracy is obtained.

In the examples in the present work a value € = 10~7 is common.

6.3.6 Branch switching

Up to this point, attention has been paid only to the following of the equilibrium
path and the encountering of limit points. The task of entering into the post buck-
ling regime beyond bifurcation points is a more complex problem and is discussed
here. Although the underlying theory for the computa;,tion of intersecting branches
is reasonably well established, c.f. the surveys by Mittelmann and Weber [MW80)
and Allgower and Georg [AG92], the switch procedures which enable these compu-
tations have so far not been implemented successfully into finite element codes in a
satisfactory manner. The reasons for this are evident, as all the methods described
above result in singular systems at bifurcation points.

The pioneering work in this area was done by Thurston [Thu69] who used a mod-
ified Newton-Raphson method applied on the differential equations of the problem
at hand. The main drawback of his approach is that for each application a different
system needs to be derived from the underlying theory.

An idea would be to restart the whole iterative process at the crifica.l point and
with help of a good initial guess seek the equilibrium path beyond the singularity.
This has also been suggested by Riks [Rik84] for use with the constant arc-length
method. Practical implementations for this have been made by Kouhia and Mikkola
[KM89] and Kouhia [Kou92] who have accomplished successful branch switchings.
Their achievements, however, are diluted due to problems with regards to robustness,
reliability and economy. The major disadvantage is that computations involve higher
order derivatives of the potential energy functional, for both determining the type of

critical point as well as for finding a suitable starting vector for the continuation from
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the critical point, which are obtained only approximately. All results correspond to
fairly simple problems such as columns and frames and it should be noted as well
that the bifurcations occur to branches where a continuous movement onto the new
equilibrium path is feasible, i.e. no ‘jumps’ take place.

A different approach for branch switching has been suggested by Fujii and
Choong [FC92]. Here, the type of critical point is determined with help of de-
terminants. The branch switching is accomplished by a line search method in the
direction of the tangent of the curve. Successful practical computations are obtained
for simple problems such as frames and trusses. Fujii and Choong achieve jumps
from the critical point to post critical branches. It is prudent to note, however, that
the applicability of the method is confined to problems where these jumps are of
small magnitude. Another drawback is the need for the derivative of the tangent
stiffness matrix as well as an unjustified exchange of a valid equilibrium equation

with an equation determined through the method. |-

An approach has been suggested by Stein et al. [ESO94], whereby an adaptive
finite element analysis is used for buckling problems . It is stated in the paper, how-
ever, that the employed adaptivity concept is not applicable directly at bifurcation
points.

Argyris et al. [JHAS77] have accomplished a branch switching through adding
to the solution vector at the critical point a,q4, say, an increment of the critical
eigenmode £,y with the point at which the deflection is imposed held fixed, i.e.
Bnew = 8od + af,yy- A new eigenvector §,.,, is then computed for this newly calcu-
lated apcw emerging (&,.0, )T K1€cw < 0. The updating of a,.y, is continued until
the tangent stiffness matrix is no longer negative definite, i.e. (£peu)” KT€pew 2 0-
The method provides a limited facility for the treatment of critical points as the
above mentioned procedure is only applicable for bifurcation points with a snap-
through. Also, no proper justification is given with regard to the employment of
the technique. The tangent stiffness matrix used by Argyris et al. is an approxi-
mation and it is noted in their paper that the method is not fully automated and,
thus, needs thorough background knowledge of the derivation of the element used

in order to obtain the best possible results.
\
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6.4 Allman’s solution technique

6.4.1 Introduction

Keeping the above in mind, the objective is to seek a method that follows reliably
the stable equilibrium path and locates accurately the critical point. Once this is
achieved, the critical point can be identified using the criteria derived in equations
(5.2.46) and equations (5.2.65). With help of knowing the type of critical point a
branch switching method is then sought for continuing on the stable equilibrium
path beyond the critical point. A generalized Newton-Raphson method developed
by Allman [All84] is presented, which converges to minima only. This is a most useful
property as it is well known that i)oints on the stable equilibrium path correspond
to minima of the total potential energy. The aim of this section is to merely describe
the method. Computational aspects such as locating the critical point precisely and

continuing from the critical point are discussed in theé sequel.

6.4.2 Calculation of stable equilibrium paths

Stable equilibrium paths of discrete conservative systems are the loci of minima of

a potential energy function II with
I = I(a,)) (6.4.13)
where the vector argument a
a = (G1,.0ey@n)T (6.4.14)

describes the geometry and deformation of the structure while A is a parameter
by which the deformation can be changed. The parameter A is assumed to be
representative of a loading which is induced either by external forces or by prescribed
displacements or by a combination of both.

Accordingly, stable equilibrium paths are solutions of the n nonlinear equilibrium

equations
f=1@N={f}=f) =0, fi=1I, (6.4.15)
\

for which the symmetric positive definite Hessian H, i.e. the tangent stiffness matrix
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K in the finite element context, is given by

H=H@M="[]=1] | .. | |, hij=Tga, = fia; . (6.4.16)

The n eigenvalues §() and eigenvectors £0) of H are taken to satisfy

HED = 00 TE6), (no sum on 1)
(ENTTed) = 1 (6.4.17)

for any positive definite symmetric matrix T. The eigenvalues are therefore all pos-

itive and are arranged such that

Omaz = 00V > 61 > > ¢ > g0) — g . 5 ¢, (6.4.18)

l. .
where 6,4, and 6,,,;, denote respectively the largest and smallest eigenvalues. On an

unstable path there exist some 8() < 0 and so the Hessian matrix is indefinite. At a
simple critical point 8,,,;, = 0 the Hessian matrix is singular. This causes difficulties
for the calculation of these points by the standard Newton method; convergence is
often very slow or the method fails due to numerical errors in computation.

A modification of Newton’s method has been presented by Allman [All84] which
converges only to minima in applications to find stationary points of a continuously
differentiable function of several variables. This property proves to be useful for
the reliable calculation of stable equilibrium paths of discrete conservative systems

because they‘ correspond to minima of the potential energy function.

The iteration to calculate an improvement a(*+1) in a known vector of n variables
al®) is

alktl) = () 4 Aa®) K =0,1,..., (6.4.19)
where the increment Aa(*) is found by solving the system of linear equations
[H(@®,2) + 6 T]Aa® = —4£(a®,)) . (6.4.20)

In equation (6.4.20) the coefficients vy, o and the positive definite matrix T are
chosen, c.f. Allman [All84), as follows: putting v = 2 ensures that the iterative
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method converges to minima only; the linear convergence of the iteration is fastest

if o = 09, an optimum value dependent on the problem, which can be shown to be

00 = VOninOmaz ; (6.4.21)

the positive definite matrix T is initially chosen as the Hessian matrix at the cur-
rent (known) solution point, then a matrix updating algorithm for T improves the
basic linear convergence to superlinear convergence as the next solution point is
approached, i.e. when Aa(¥) becomes small enough. Allman’s criterion | Aa®) i<
€abs + €ret || @(® || is adopted also in the present work with €55, = 2 X 10~ the
absolute accuracy on a machine of ¢ bit word length and for the relative accuracy

€rel = 1072 is found satisfactory.

6.5 Computational aspects

6.5.1 Introduction

The success of the current work is based on the combination of two recent advances:
the above described solution technique by Allman [All89a], and the development
of the geometrically nonlinear constant moment triangle finite element by Morley
[Mor91]. For the proper evaluation of critical points higher order derivatives of the
potential energy function II are essential, but for most finite elements even the com-
putation of the Hessian II ;; is an approximation. Using the geometriéa.lly nonlinear
constant moment triangle, however, allows a ready and accurate calculation of all
directional derivatives of the potential energy function II.

In this section some computational aspects regarding the implementation of All-
man’s method into the MBFEATPS (Morley-Bangemann Finite Element Analysis
of Thin Plates and Shells) finite element code, which has been employed for com-
puting all the results for the present work, are described. Locating the critical point
in a safe manner without overstepping another critical point is of importance. Also,

an additional feature of the code, the step length adaption algorithm, is presented.
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6.5.2 Step length adaption

6.5.2.1 Displacement control

Using displacement control, the displacements in the direction of compression are
prescribed to be of equal magnitude at each point of the compressive edge(s). The
adapted step length is determined by using the following adaption procedure:

1. Let 1D denote the predefined value indicating the IDeal number of iterations

per increment

2. Let ITER denote the value indicating the current number of ITERations per

increment
3. Let STEP denote the value indicating the current STEP length in use

4. During the jteration process, if the current nulnper of iterations exceeds the

ideal number of iterations per increment, halve the step size, i.e.

(STABLE POINT NOT FOUND AND ITER>ID) = STEP =3STEP

5. After the iteration process (i.e. after having found a stable solution point), if
the number of iterations used for the current increment is smaller than the ideal
number of iterations per increment, the step length for the next increment is
the previous step length, multiplied by the ideal number of iterations, divided
by the actual number of iterations used for the current increment, i.e.

(STABLE POINT FOUND AND ITER<ID) = STEP = p}gzSTEP

6.5.2.2 Load control

Using load control, the load is applied such that the resulting displacements in the
direction of compression are of equal magnitude at each point along the compressive
edge(s) (loading of a constrained boundary). The objective of this load control is to
provide identical solutions as for displacement control excepting, of course, where

‘jumps’ occur. The equivalent load increment adaption procedure is then:

1. Let I D denote the predefined value indicating the IDeal number of iterations

per increment
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2. Let ITER denote the value indicating the current number of ITERations per

increment

3. Let INCR denote the value indicating the current load INCRement in use

4. During the iteration process, if the current number of iterations exceeds the
ideal number of iterations per increment, halve the load increment, s.e.

(STABLE POINT NOT FOUND AND ITER>ID) = INCR=31INCR

5. After the iteration process (i.e. after having found a stable solution point), if
the number of iterations used for the current increment is smaller than the ideal
number of iterations per increment, the load increment for the next increment
is the previous load increment, multiplied by the ideal number of iterations,
divided by the actual number of iterations used for the current increment, s.e.

(STABLE POINT FOUND AND ITER< ID )= INCR= {8rINCR

6.5.3 The value of ¢

Recall equation (6.4.21) where the g-value for Allman’s solution technique is given
by

0 = VOminOmaz (6.5.22)

where O;n and Opmas are the smallest and largest eigenvalues of the tangent stiffness
matrix, respectively. Note here, that Opmin and Opqz are actually not known at the
current point and can only be estimated. Instead of using the estimated values for
Opmin and Opas, as Allman [AlI89D] does, the MBFEATPS code uses the smallest
and largest eigenvalues at the previous solution point - 67, and 6F7,. - which are

known exactly and, then, takes o as
o = 0" 07':“ . (6.5.23)

This, however, is not believed to deteriorate the performance of the method signifi-
cantly, and it should also be noted here that it is often found that the value o = 1
is quite adequate, cf. Allman [All89b] and Bartholomew [Bar83].
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6.5.4 Locating the critical point

Unlike in the original method by Allman [All89b], where he makes use of a predictor
to locate singular points, no predictor is used in the MBFEATPS code. Instead,
adapted displacement step lengths or load increments, as described earlier, are ap-
plied as long as the Hessian (tangent stiffness matrix) remains positive definite.
When the Hessian becomes indefinite, the applied step length / load increment is
halved until an appropriate step length / load increment is found leading to a posi-
tive definite Hessian. Hence, checking the positive definiteness of the Hessian at each
iteration prevents overstepping a singular point. This kind of bisection method for
locating the critical point is found to be safe and effective, and the critical point can
be located precisely without any difficulties. For checking the positive definiteness
of the Hessian the NAG-library routine FO1BXF is used. This routine performs the

Cholesky factorization of a real symmetric positive dff_inite matrix.

6.5.5 Identifying the critical point

Once the critical point has been located, it has to be identified. This is done as
described in Chapter 5 where the different stability coefficients u, A, B, C,and D
are calculated using a convenient matrix formulation. For convenience, the criteria

for identifying the type of a critical point as in equations (5.2.46) are repeated here:

(a) an asymmetric bifurcation point pu = 0,A#0;
(b) a symmetric bifurcation point p = 0,A=0; (6524
(c) a limit point: p # 0, A#0.

The symmetric bifurcation point, appearing as the second criteria in equations (6.5.24)
occurs in two distinct types: stable symmetric and unstable symmetric. The follow-

ing criteria for determining stability apply:

(a) a symmetric bifurcation point is stable if D > 0;

(b) a symmetric bifurcation point is unstableif D < 0. (6.5.25)
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6.6 Continuation from critical points

6.6.1 Introduction

Once a critical point has been located and identified the aim is to continue beyond
the singularity. In the past, this has been a formidable task. As discussed earlier,
although the underlying theory is reasonably well established, c.f, e.g. surveys by
Mittelmann and Weber [MW80] and Allgower and Georg [AG92], the required switch
procedures between bifurcation paths have not been implemented previously into

finite element codes in a satisfactory manner.

A branch switching method, here called METHOD A, which has been imple-
mented into the MBFEATPS code and used successfully for getting beyond crit-
ical points is presented. Two other branch switching methods, METHOD B and
METHOD C, are given in Appendix B.1 and Appendix B.2, respectively. METHOD
B is shown in order to present an alternative approach to the branch switching,
whereas METHOD C is mainly of historical importance. The aim of the continua-
tion methods is to produce vectors a$°) and ago) which are then employed as starting
values for continuing from the critical point using Allman’s solution technique. The
methods are presented in algorithmic step-by-step forms. Note that the generalized
eigenvalue problem in the first step of the branch switching methods is solved by
employing the NAG-library routine F02BJF which solves the problem Ax = ABx,

where A and B are real square matrices, using the QZ-algorithm.

6.6.2 Branch switching method METHOD A

METHOD A

1. o At the initial start (from the origin)

(a) Compute the solution vector aj;, of the linear problem with uniform
displacement.

(b) Solve the generalized eigenvalue problem (Ko + AKg) 6a = 0 which
gives the eigenvector £(!) corresponding to the smallest eigenvalue
Amin and determine a; = Apinaj;,. Here, Ko denotes the linear

stiffness matrix and Kg is the geometric stiffness matrix.
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e At the start from a critical point compute the solution vector a; and
the eigenvector 51(;) corresponding to the zero eigenvalue at the critical
point using the employed nonlinear solution technique.

2. Determine the first starting vector a§°’ for the continuation procedure from
the buckling point from
0 »
al® = a} + oy £ (6.6.26)
where the parameter a; determines the proportion of the normalized eigen-

vector ((f},l))ng,l) = 1) to be used.

3. Determine the second starting vector ago) for the continuation procedure from

the buckling point from

al) = a) + a1 @ I (6.6.27)

; .
where the parameter a; determines the difference in the eigenvector to be used

compared to the first starting vector.

4. Use a(o) and a(o) as starting vectors for the continuation procedure and solve
1 2 g p

in the first iteration the system

[ H@®) + T(a™)] Aa = -7 K@)al” - Ap*]  (6.6.28)

where T(ago)) is the Hessian constructed using a§°’.

5. Continue in the ordinary fashion.

6.6.3 Notes on methods

6.6.3.1 On the second starting vector ago)

The choice of the second starting vector a§°’ has been examined closely. The points

to keep in mind are:

1. a bad choice of a§°’ results in divergence and the method does not perform

successfully; |

ﬁ. practically, it is not feasible to construct an ideal second starting vector.
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Therefore, the importance of the second starting vector should be lessened. This is
achieved by eliminating a§°’ after the first iteration, i.e. after the first iteration of the
continuation method a§°) is substituted by the first starting vector a§°’. Evidently,
this suggests to choose a§°’ = a{°’ in the continuation method, which also has proven
to be a good choice, i.e. the first iteration for continuation is an ordinary Newton-

Raphson iteration.

6.6.3.2 On the choice of the parameter a;

Although the branch switching method described in the previous section has proved
to be most powerful, questions regarding the suitable choices of the different param-
eters occurring still exist. Ideally, it is anticipated to present a method with the

following features:

1. all parameters are calculated automatically using problem-dependent param-

eters only;
2. the choices (see 1. above) are ideal choices.

The parameter a; can be eliminated by keeping in mind the above thoughts re-
garding the second starting vector in the continuation method, hence leaving a;
the only unknown parameter to be determined. During the course of the present
work a successful choice for the a; parameter has been found by a trial-and-error
approach while simultaneously monitoring the behaviour of the norm. In Chapter 8
it is suggested that the manually-performed norm-monitoring could be coded and, in
this way, an automated procedure for determining a suitable parameter a; entailing
successful continuation beyond bifurcation points can be set up.

Also, a least squares fit procedure has been incorporated into the code for use
with METHOD A. The algorithm for this procedure is given in Appendix B.3.
With help of this the ideal choice for the parameter a; in equation (6.6.26) is found.
The drawback of this procedure is that the ideal least squares fit-value can only be
computed once a successful first increment has been performed by the continuation
method. Still, once this has been accomplished, a good idea regarding a suitable
choice is given by the magnitude of the value found. Also, if the ideal least squares
fit-value of! has been established for a mesh A, say, the ideal value for another mesh
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B, say, can be determined immediatély using the empirical relationship

of (EM)A. = of (EME,, . (6.6.29)

It should be noted here, however, that the procedure only yields a unique ideal
solution in case of a symmetric or antisymmetric mode shape of the structure. In
case of an asymmetric mode shape a different initial choice for a; will give a different

ideal aj-value calculated using the least squares fit-procedure.

The sign of the initial choice of «; is of importance in the sense that, in this way,
the direction of buckling may be controlled. If additional imperfections are employed
and METHOD A is used, then positive/negative a; give load and deflection values
greater /smaller in magnitude compared with the solution when no imperfections are
applied. This kind of ’stiffness control’ is discussed in more detail in Chapter 7 where

the sign of a; is considered in the context of specimen numerical applications.

t
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Chapter 7

Numerical applications

7.1 Introduction

For the computational work, a comprehensive Fortran 77 code, the Morley- Bangemann
Finite Element Analysis of Thin Plates and Shells code (MBFEATPS), has been de-
veloped during the course of the current work. A program description is given in
Appendix D.1. MBFEATPS has been tested against the MPFEAS ( Morley- Providas
Finite Element Analysis of Shells) code by solving different numerical examples ex-
amined by Providas, c.f. [Pro90], revealing identical results for these problems which,
evidently, are of a less complex nature (limit point problems) than the ones exam-
ined in this chapter (bifurcation point problems). It should be noted here that the
MBFEATPS code has been completely rewritten and is not based on the MPFEAS
code. All calculations make use of double precision variables (accuracy 1.0 x 10714)

and have been performed on Sun-machines on a Unix system.

7.2 Plate problem

7.2.1 Introduction

A square clamped plate under uniaxial compression is investigated. The plate lies in
the z!-z3-plane with out-of-plane direction z3 and is clamped along the boundaries,
but the in-plane displacement is free along the unloaded edges, c.f. Figure 7.1, where
also the material and geometrical data are given and the boundary conditions are
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stated.

The main interest in this work is the physical behaviour of the initially perfectly
flat plate or perfect plate in the sequel. Additional work has also been done on
the use of initial geometrical imperfections. Comparison results are extracted from
Carnoy and Hughes, c.f. [CH83]. It should be mentioned here that Carnoy and
Hughes consider only plates with initial imperfections. Note that in this work the
first critical/buckling point refers to the first nonlinear critical/buckling point and
so forth, whereas the linear buckling is referred to as Euler buckling.

71
3
4 U