
Semantic Transformation of Web Services

David Bell, Sergio de Cesare, and Mark Lycett

Brunel University,

Uxbridge, Middlesex

UB8 3PH, United Kingdom

{david.bell, sergio.decesare, mark.lycett}@brunel.ac.uk

Abstract. Web services have become the predominant paradigm for the devel-

opment of distributed software systems. Web services provide the means to

modularize software in a way that functionality can be described, discovered

and deployed in a platform independent manner over a network (e.g., intranets,

extranets and the Internet). The representation of web services by current indus-

trial practice is predominantly syntactic in nature lacking the fundamental se-

mantic underpinnings required to fulfill the goals of the emerging Semantic

Web. This paper proposes a framework aimed at (1) modeling the semantics of

syntactically defined web services through a process of interpretation, (2) scop-

ing the derived concepts within domain ontologies, and (3) harmonizing the

semantic web services with the domain ontologies. The framework was vali-

dated through its application to web services developed for a large financial

system. The worked example presented in this paper is extracted from the se-

mantic modeling of these financial web services.

1 Introduction

Web services have become the predominant paradigm for the development of distrib-

uted software systems. Web services provide the means to modularize software in a

way that functionality can be described, discovered and invoked in a platform inde-

pendent manner over a network (e.g., intranets, extranets and the Internet). Notwith-

standing the architectural advantages of such a paradigm, the representation of web

services by current industrial practice is predominantly syntactic in nature lacking the

fundamental semantic underpinnings required to fulfill the goals of the emerging Se-

mantic Web.

Within a Semantic Web context web services require precise semantic representa-

tions, normally achieved through the use of ontologies, in order to provide the neces-

sary relationships with domain models and ultimately mappings to the real world ob-

jects that such models refer to. As a consequence, syntactic web services already de-

scribed in languages like the Web Services Description Language (WSDL) require

semantic transformations and subsequent integration with domain ontologies [1].

The de facto standard languages for describing, publishing and invoking web ser-

vices are currently WSDL, Universal Description, Discovery and Integration (UDDI),

and Simple Object Access Protocol (SOAP), respectively. Although such languages

provide the technical means for achieving cross-platform distributed software deploy-

ment, they are not sufficient to achieve a level of semantic expression necessary for

machines to automatically relate web services to other resources and in doing so dis-

cover the services required for composing and choreographing the intended behavior

[2]. In relation to the Semantic Web and its goals, syntactically defined web services

represent legacy applications which need to be conceptually reengineered in order to

extract the semantics (i.e., precise meaning) of the intended behavior and the underly-

ing domain concepts such behavior utilizes. This conceptual reengineering can be

referred to as semantic transformation. The ultimate result of semantic transformation

is a set of ontological models which would allow an agent (typically a software agent)

to navigate through a semantic network which contains references to all types of web

resources including available services.

This paper presents a framework aimed at (1) modeling the semantics of syntacti-

cally defined web services through a process of interpretation, (2) scoping the derived

concepts within domain ontologies, and (3) harmonizing the semantic web services

with the domain ontologies. The framework was validated through its application to

web services developed for a large financial system. The worked example presented in

this paper is extracted from the semantic modeling of these financial web services.

2 Lack of Semantics in Web Services

Web services are a fundamental part of the emerging Semantic Web. Web services are

self-contained and self-describing modular Web applications that can be published,

located, and invoked across a network (IBM) and capable of supporting interoperable

machine-to-machine interaction (World-Wide Web Consortium). A web service has

an interface described in a machine-processable format. It is through this interface that

a web service communicates with other software applications. Although the tools and

methods required to develop web services have matured over recent years, there exists

limited support in the area of the semantic representation of web services and their

integration with other web resources [3]. Such a need is motivated by the machine-

processable nature of all Semantic Web resources. In order for web services to be

automatically discovered, selected and composed, it is necessary for a software agent

to autonomously navigate the Semantic Web in search of services satisfying specific

criteria. Such criteria are generally defined in terms of what a service provides (i.e.,

output) and what a service requires (i.e., input). For a software agent to recognize such

elements, both inputs and outputs should preferably be expressed or typed with refer-

ence to ontological models which semantically map to the resources (including do-

main objects and web services) of the Semantic Web. With such models all web re-

sources would be represented through interrelated web ontologies, thus facilitating the

integration of web services with the whole of the Semantic Web.

Currently the scenario just described is not implemented. Web services are primar-

ily adopted in industry as a means to develop architecturally sound information sys-

tems. Web services as they are typically developed today do not support the necessary

semantic precision and “machine-processability” for software agents to automatically

navigate through the future Semantic Web and pinpoint those services which can suit

specific requirements. As this research shows, web services developed in industry

today are mostly syntactic in nature. This is simply demonstrated by the elementary

typing of the services’ input and output parameters. Such parameters are normally

typed in relation to traditional programming language types such as strings, integers

and floats. Such types do not map directly to web resources such as books, flights,

bank accounts and people. As such a software agent searching for a flight booking

service would unlikely find a service with an input parameter typed by an ontologi-

cally represented ‘flight’ class, but would most probably find many services with ge-

neric string input parameters. Such syntactic representations work in a semantically

poor environment based on WSDL, UDDI and SOAP, however they would not be

able to scale up to the requirements of the Semantic Web as described above.

More recently serious and important attempts have been undertaken to define lan-

guages for semantically representing web services. Initiatives such as OWL-S and

WSDL-S are an important step forward. OWL-S, for example, defines a high level

ontology for web services. OWL-S is based on OWL (Web Ontology Language) and

as such provides the basis for the possible semantic integration between web services

and other web resources. In the presence, however, of a vast amount of syntactic web

services developed to date, service ontologies like OWL-S are necessary but not suffi-

cient to resolve the problem of how to integrate these technical services within the

emerging Semantic Web. In addition, much of the current research assumes the exis-

tence of ontology for composition or discovery [4]. A framework for systematically

transforming syntactic web services into semantic web services is required to support

these assumptions. The remainder of this paper will present such a framework and

exemplify it within the context of a financial services example.

3 Framework

3.1 Underlying philosophy and concepts

A framework has been developed for deriving semantic content from syntactic web

services and representing such semantics in ontological models. The framework is

based on the principles of content sophistication described by Partridge [5] and Daga

et al. [6]. Content sophistication represents a process for improving the semantic con-

tents of legacy systems along several dimensions and representing such improvements

in technology-agnostic conceptual models. The framework proposed in this paper

provides the basis for interpreting the semantics of syntactic web services in a similar

fashion. In fact in order to achieve the claimed benefits of the Semantic Web, it is

necessary for web services to be semantically well defined and related to other types

of web resources [7]. In this sense it is not exaggerated to state that, for the Semantic

Web, syntactic descriptions of services developed today represent the 'legacy of the

future'.

At the heart of the framework is the adoption of ontology to drive the derivation of

semantic content from syntactic web services. From a philosophical perspective ontol-

ogy can be defined as a set of things whose existence is acknowledged by a particular

theory or system [8]. Such ‘things’ include both types (such as the class of Bank Ac-

counts) and individual elements (such as John Smith’s Bank Account). The adoption of

such a definition is important because, when compared with more computationally

orientated definitions of ontology (for example, Gruber [9] states that “an ontology is

a specification of a conceptualization”), there is an explicit reference to a system’s

ontic commitment (i.e., things whose existence is acknowledged or recognized). This

leads to representations that are more closely mapped to real world objects. Such

mapping or reference [10] is essential to ontological modeling. The meaning of a sign,

used, for example, to denote a service or a parameter, becomes well understood when

it is possible to identify the thing(s) the sign refers to.

The focus of the framework presented in this section is the discovery of the seman-

tics underlying a service description in its fundamental parts (mainly name and pa-

rameters). This process of concept discovery, called interpretation, identifies those

real world objects that individual service parts ontologically commit to (or refer to).

The semantics that are unraveled in this way are then represented in technology-

agnostic domain and service ontology models.

The framework addresses the following objectives: (1) Derivation of semantics

from previously developed web service syntactic descriptions; (2) Representation of

the derived semantics in ontological models; and (3) Integration of models of semantic

web services with models of other web resources. These objectives define the scope of

the framework. A process was defined in order to achieve the objectives listed above.

It is beyond the scope of this paper to describe in detail how the ontological models

derived from the framework can be used by a semantic web search facility to discover

and compose services.

3.2 Framework Process and Artifacts

The process, which drives the discovery and representation of semantic content from

technical web services, is summarized in Table 1. The process is iterative and its out-

come (defined in terms of ontological models) outlives one specific reengineering

project. The framework’s ongoing mission is to develop (within and across domains)

interlinked ontological models for the Semantic Web. These models represent simul-

taneously all types of resources including service offerings. The process consists of

three main activities: service interpretation, concept scoping and harmonization. These

activities have been adapted from the Content Sophistication process presented by

Daga et al. [6]. As a whole the process takes in technical service descriptions and

produces ontological representations. The individual process activities also require

and produce artifacts which progressively lead to achieving the ontological models.

Table 1. Process for deriving semantic content from web services.

Activities Description Input Artifacts Output

Artifacts

Service
interpretation

A service description is broken
down into its fundamental parts

(e.g., name, input and output
parameters). Each part is inter-
preted in order to represent its

ontic commitment.

� Web service
descriptions

(e.g., WSDL
code)

� Individual ser-
vice ontic com-

mitment models

Concept
scoping

The concepts represented in the
service ontic commitment models
are either mapped to pre-existing

ontologies or assigned to newly
developed ones.

� Service ontic
commitment
models

� Domain ontolo-
gies

� Objects incor-
porated or map-
ped to ontologi-

cal domain
models

Harmonization Services are represented within
ontological models and related to

other domain objects.

� Service ontic
commitment

models
� Domain ontolo-
gies

� Extended or
specialized do-

main ontology
� Service ontol-

ogy

3.3 Interpretation

The first activity is Service Interpretation. This activity works on service descriptions

with limited or no explicit semantic underpinning. The descriptions are normally rep-

resented in the form of a service name with input and output parameters. The parame-

ters themselves are named and typed. For example, in WSDL a typical service de-

scription can be found as a combination of service signatures and data type defini-

tions.

Interpretation is aimed at representing the service’s ontic commitment. This means

unbundling and making as explicit as possible the real world (business) objects that

the service descriptions recognize the existence of. In fact interpretation is defined as

“the act of clarifying or explaining the meaning” of something (Collins Concise Dic-

tionary 2001, p.761). Analogously identifying the real world objects that a service

commits to is an act of clarifying the meaning of service descriptions.

Interpretation produces Service Ontic Commitment (SOC) models adopting the Ob-

ject paradigm [6]. The Object paradigm, not to be confused with the Object-Oriented

paradigm, was specifically designed for business modeling and is quite effective in

precisely representing real-world semantics. Precise representation, in this case, refers

to being able to clearly identify the mappings between the representation and the rep-

resented. It is beyond the scope of this paper to describe the Object paradigm in detail.

It is sufficient to note that this paradigm models all “things” (including classes, indi-

viduals and relationships) as objects with a four-dimensional extension. The paradigm

is attribute-less unlike more traditional paradigms (e.g., entity-relationship or object-

oriented).

3.4 Concept Scoping

Concept Scoping is aimed at allocating the “committed” objects of the SOC models to

pre-existing ontological models or, in the case of a newly explored domain, to newly

developed ontologies. There are various ways in which content scoping can occur.

With reference to an ontology language like OWL new objects (such as classes, prop-

erties and individuals) can be incorporated into an ontology as exemplified in Table 2.

Table 2. Methods of incorporating identified classes, properties and individuals.

Object Type Method of Incorporation
Class Define the class (a) in a newly developed ontology without any

relation to pre-existing ontologies, (b) as a subclass of a class
defined in a pre-existing ontology, (c) as an instance of a class

defined in a pre-existing ontology and (d) as equivalent to a pre-
existing class

Property types Same as for classes

Individuals Instantiate a class

3.5 Harmonization

Web services are resources which provide agents (human or software) with business

offerings whose instantiations produce real world effects. Web services can use other

web resources and can produce new resources. In this sense services will become an

integral part of the Semantic Web and as such should be modeled similarly and in

relation to other types of web resources. Harmonization is aimed at overcoming the

traditional divide that is generally adopted between static and dynamic resources. The

argument here is that if distinct types of representations are used for web services and

other resource types, the necessary integration and semantic binding between them

would become more difficult to resolve. Ontological models, which simultaneously

represent all types of web resources, provide the benefit of facilitating the semantic

discovery and composition of web services by software agents [11]. Agents would be

able to traverse semantic graph lattices (or networks) in which services would be asso-

ciated with the objects they use, transform and produce.

Harmonization uses the SOC models produced by Service Interpretation and the

domain ontologies used in Concept Scoping to produce domain ontologies which

incorporate service representations. The output artifact is represented in an ontology

language such as OWL.

4 Financial Services Case

The research is grounded in a financial services case study which provides: (1) An

external validity to the data that is seeding both the framework design process and

subsequent scenario based usage analyses; (2) Less bias in that the software services

being analyzed are the result of a service-orientation plan that did not encompass

semantic web motivations; (3) A likely future industrial application of semantic web

technology as tools and techniques mature and are accepted within such a commercial

context.

M-Bank is a leading European bank with both retail and treasury banking opera-

tions. The case being investigated resides in the treasury operation. Web services are

used to support the reuse of functionality within a core processing system. This func-

tionality comprises the management of trade cash flows and the rate fixing process.

Trades may live for up to several decades and involve the transfer of cash between the

two contracted parties involved in the trade (monthly, quarterly, etc.). Over time,

fixing rates are applied to trades allowing the resulting cash flow to be calculated. It is

the fixing rates and the cash flow schedules that are of interest to the trader, as these

changes have both a funding and hedging impact. Web services were used to allow

the spreadsheet trading console to interact with the operational system that holds the

cash flows and fixing rates.

5 Semantic Transformation Applied

The framework presented in this paper was applied to web services described in

WSDL. The WSDL code specified about 50 operations with relative parameters. Each

operation provides externally accessible offerings and as such can be considered web

services in their own right. The worked example presented in this section represents an

extract of the semantic transformation carried out. This example refers to two web

services. The first getRateSet returns the interest rate that has been fixed for a given

trade settlement. The second web service is called getSchedule and returns the sched-

ule of actual and projected settlements at a given point in time. The service receives as

input reference to the trade and provides as output a table comprising of start and end

dates of settlements, date in which the interest rate will be fixed (decided) for a spe-

cific settlement, currency, fixed rate, the notional amount of the settlement and the

actual interest. From a semantic perspective such a representation has high levels of

implicit meaning which need to be extracted and explicitly modeled. Tables 3 and 4

summarize the services.

Table 3. getRateSet web service.

Service name: getRateSet
Description This service provides the interest rate that has been fixed for

a given settlement.

Input parameters getRateSetSoapIn: String

Output parameters getRateSetSoapOut: String

Table 4. getSchedule web service.

Service name: getSchedule
Description This service provides the schedule of all settlements related

to a given trade.

Input parameters getScheduleSetSoapIn: String

Output parameters getScheduleSetSoapOut: String

5.1 Interpretation

As the diagrams of Figures 1 show, each part of a service can be unbundled and

mapped to real world objects that clearly define the part’s semantics. Figure 1 specifi-

cally refers to the getRateSet web service. Additionally for the interpretation of get-

Schedule, the service name refers to the classes Trades and Schedules, and the tempo-

rally organize relationship. Its input parameter, getScheduleSoapIn, relates to Trades

and its output parameter, getScheduleSoapOut, relates to Start Dates, End Dates, Rate

Fixing Dates, Currencies, Interest Rates, Notional Amounts and Interest.

The object paradigm, as stated previously, helps in this unbundling process given

that all objects are explicitly revealed. The Service Ontic Commitment models shown

here explicitly highlight those objects (in this case classes) that the individual elements

of the services recognize the existence of, hence referring to such objects. Even rela-

tionships, such as applied to are represented as “committed” objects. This type of

representation is similar to OWL in which relationships are explicitly represented as

properties.

Fig. 1. Interpretation of getRateSet service name, input and output parameters.

5.2 Content Scoping

Content scoping allocates the objects identified in the Service Ontic Commitment

models to domain ontologies. Within this example it is assumed that a decision was

taken to develop a financial ontology and to allocate all objects to such a model. How-

ever classes such as Dates, Start Dates and End dates are typical candidates of classes

that are most likely to be scoped within the context of previously existing ontologies.

In this case a Time ontology would most probably contain the definition of a Date

class. As such it would be advisable to refer to such a class and subtype it with classes

such as Start Dates and End Dates.

Figure 2 illustrates a first-cut ontological model derived from the previous interpre-

tation phase.

getRateSet
SoapIn

Dates

Currencies

refers to

refers to
Interest
Rates

getRateSet-
SoapOut

getRateSet
(service
name)

Settlements

applied to

Interest
Rates

refers to

Dates

Start Dates End Dates Rate Fixing Dates

Interest

Notional

Amounts

determined on

Interest Rates
begin on end on

function of

Settlement

Periods

Schedules

applied to

temporal

whole-parts

Settlements
temporally

organize

temporal

whole-parts

TradesCurrencies expresses in

Fig. 2. First-cut financial domain ontology.

Dates

Start Dates End Dates Rate Fixing Dates

Interest

Notional

Amounts

determined on

Interest Rates
begin on end on

function of

Settlement

Periods

Schedules

applied to

temporal

whole-parts

Settlements

ServiceProfile

<<OWL-S>>

getScheduleSoapIn

hasInput

<<OWL-S>>

getSchedule

<<instanceOf>>

getScheduleSoapOut

hasOuput

<<OWL-S>>

InputParameter

<<OWL-S>>

OutputParameter

<<OWL-S>>

<<instanceOf>>

temporally

organize

temporal

whole-parts

Trades

<<typedBy>>

Currencies expresses in

<<instanceOf>>

<<typedBy>>

<<typedBy>>

<<typedBy>>

<<typedBy>>

<<typedBy>>

<<typedBy>>

<<typedBy>>

 Fig. 3. Harmonized model.

5.3 Harmonization

In harmonization the web services are combined with the domain ontology. Ontologi-

cally this enables an explicit mapping between a service (with its parts) and the do-

main it serves. Figure 3 illustrates the harmonization model derived from the previous

interpretation and content scoping.

6 Conclusion

This paper presented a framework for enabling the semantic transformation of syntac-

tically defined web services. The framework defines an ontologically-based process in

which syntactic service descriptions are interpreted to derive the objects that the ser-

vices ontologically commit and refer to. The models produced by the interpretation

phase are then used to scope the objects identified. These objects are either scoped to

pre-existing web domain ontologies or used to develop new ontologies. Finally, the

web services themselves are integrated with the domain ontologies. The final integra-

tion provides the basis for an effective semantic merging between all types of web

resources and, as a consequence, facilitate the task of a software agent to navigate

among various and semantically interlinked web services and domain objects (such as

books, flights, etc.).

References

1. K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan, "Dynamic discovery and coordina-

tion of agent-based semantic Web services," Internet Computing, IEEE, vol. 8, pp. 66-73,

2004.

2. A. Paar, "Semantic software engineering tools " in Companion of the 18th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and appli-

cations Anaheim, CA, USA ACM Press, 2003 pp. 90-91

3. S. Staab, W. van der Aalst, V. R. Benjamins, A. Sheth, J. A. Miller, C. Bussler, A. Maed-

che, D. Fensel, and D. Gannon, "Web services: been there, done that?," Intelligent Sys-

tems, IEEE [see also IEEE Intelligent Systems and Their Applications], vol. 18, pp. 72-

85, 2003.

4. S.A. McIllraith, D.L. Martin , "Bringing Semantics to Web Services" Intelligent Systems,

IEEE, vol. 18, pp. 90-93, 2003.

5. C. Partridge, Business Objects: Re-Engineering for Reuse. Oxford: Butterworth-

Heinemann, 1996.

6. A. Daga, S. de Cesare, M. Lycett, and C. Partridge, "An Ontological Approach for Re-

covering Legacy Business Content," in Proceedings of the 38th Hawaii International

Conference on System Sciences. Los Alamitos, CA: IEEE Computer Society, 2005.

7. D. Fensel and O. Lassila, "The semantic web and its languages," Intelligent Systems and

Their Applications, IEEE [see also IEEE Intelligent Systems], vol. 15, pp. 67-73, 2000.

8. T. Honderich, Oxford Companion to Philosophy. Oxford: Oxford University Press, 1995.

9. T. R. Gruber, "A translation approach to portable ontology specifications," Knowledge

Acquisition, vol. 5, pp. 199-220, 1993.

10. G. Frege, The foundation of Arithmetic: A logico-mathematical enquiry into the concept

of number, 1884.

11. J. Hendler, "Agents and the Semantic Web," Intelligent Systems, IEEE [see also IEEE

Intelligent Systems and Their Applications], vol. 16, pp. 30-37, 2001.

