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Abstract

In the work we study different dynamic volatility models. We consider the
family of ARCH and GARCH models to compare the performance of the
models using both unconditional coverage Kupiec’s test and the test of con-
ditional coverage proposed by Christoffersen. In-sample estimation proce-
dure and out-of-sample evaluation will be based on General Electric stock
market closing daily prices (January 2, 2008 - December 31, 2010).

We consider different volatility models augmented with news analytics data
to examine the impact of news intensity on stock volatility. First we consider
two types of GARCH models: augmented with volume and augmented
with news intensity. Based on empirical evidences for some of FTSE100
companies it will be shown that the GARCH(1,1) model augmented with
volume does remove GARCH and ARCH effects for the most of the com-
panies, while the GARCH(1,1) model augmented with news intensity has
difficulties in removing the impact of log return on volatility.

Then we compare GARCH model with jumps and GARCH–Jumps model
augmented with news intensity using likelihood ratio test.

The study shows that the problem of examining the impact of news inten-
sity on volatility is far more sophisticated than it might seem at first sight.
Some hypothesists and suggestions for future work are proposed in the final
chapter.
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Chapter 1

Introduction

In this work we focus on the stock volatility and some adequate models of
its dynamics. GARCH models are used by many researchers and practition-
ers to generate volatility forecasts. GARCH models give useful and quite
reliable estimates of the conditional stock variance. Since the appearance,
the ARCH and GARCH models proved their effectiveness. It is known that
one of advantages of the ARCH and GARCH models is simple parameteri-
zation.

On the other hand, this models cannot capture the asymmetric effect dis-
covered by Black (1976). This effect occurs when an unexpected drop in
price (bad news) increases predictable volatility more than an unexpected
increase in price (good news) of similar magnitude. This effect suggests that
a symmetry constraint on the conditional variance function in past is inap-
propriate. So we are going to apply some asymmetric models (including
EGARCH, GJR-GARCH and Threshold GARCH). To validate the calibrated
model we will use out-of-sample evaluation procedure.

Since GARCH model cannot explain observed changes in stock volatility,
the question is what are the core factors driving its behavior. In our quest we
will rely on the Mixture of Distribution Hypothesis (MDH). MDH suggests
that the stock volatility is closely related to the information frequency. We
are going to analyze the impact of news on stock volatility by considering
two types of models:

1. Augmented GARCH models. Augmented GARCH models allows us to
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indirectly test the Mixture of Distribution Hypothesis (MDH). We use
two different proxy for the mixing variable

• Following the study of Lamoureux and Lastrapes Lamoureax and
Lastrapes [1990] we will suppose that trading volume can be con-
sidered as a proportional proxy for information arrivals to the
market. We will show that once contemporaneous volume is in-
cluded as an exogenous variable in the model, the GARCH per-
sistence effect diminishes.

• Kalev and al. (2004), Cousin and Launois [2006] considered the
”daily number of press releases on a stock” (news intensity) as
the most appropriate explanatory variable in the basic equation
of GARCH model. Following their studies we will examine the
GARCH model with news intensity using news analytics data
from Raven Pack, one of the biggest providers of news analytics
in the world.

2. GARCH–Jumps Model augmented with news analytics data.

To calibrate this models we will use two types of input data: stock prices
(source: Yahoo!Finance); news sentiment scores (source: RavenPack News
Scores.

The work is organized as follows.

Chapter 2 provides a brief review of the literature about ARCH and GARCH
models, the relation between information and conditional volatility.

Chapter 3 introduces notation and describes two methods of calibration
of models: the maximum likelihood estimator and generalized moments
method.

Chapter 4 presents a short introduction to volatility measurement.

In the chapter 5 one can find description of the family of ARCH and GARCH
models. Asymmetric GARCH models also are presented. Empirical study
consists of in-sample estimation and out-of-sample forecast evaluation of
VaR to estimate predictive properties of the models.

Chapter 6 of the work presents augmented GARCH models. Empirical re-
sults are obtained based on two different data sets: stock prices and Raven
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Pack news wires.

Chapter 7 presents two different GARCH models with jumps. We will con-
sider the problem of calibration of the models and give some empirical re-
sults.

Chapter 8 concludes and provides some perspectives for future research.
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Chapter 2

Literature Review

It is well-known that financial data are usually serial dependent. Moreover,
distribution of the data is often heavy-tailed, asymmetric and therefore not
Gaussian and volatility changes over time. The ARCH model was intro-
duced by R. Engle (Engle [1982]). The model describes quite well the styl-
ized facts of financial data and is also relatively simple and stationary. R. En-
gle called his model autoregressive conditionally heteroskedastic – ARCH,
because the conditional variance (squared volatility) is not constant over
time and shows autoregressive structure. This model is a convenient way
of modelling time-dependent conditional variance. Some years later, Boller-
slev [1986] generalized this model as the GARCH model (Generalized Au-
toregressive Conditional Heteroscedasticity).

Since the appearance, the ARCH and GARCH models proved their effec-
tiveness. It is clear that one of advantages of the ARCH and GARCH models
is simple parametrization. On the other hand, this models cannot capture
the asymmetric effect discovered by Black in the paper Black [1976]. This
feature was also confirmed by Kenneth R. French, G. William Schwert and
Robert F. Stambaugh French et al. [1987], D. Nelson Nelson [1990], and G.
William Schwert Schwert [1990], among others.

This effect occurs when an unexpected drop in price (bad news) increases
predictable volatility more than an unexpected increase in price (good
news) of similar magnitude. This effect suggests that a symmetry constraint
on the conditional variance function in past innovations is inappropriate.
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To capture the asymmetric effects a few models were introduced. The most
commonly used asymmetric GARCH models are:

1. Exponential GARCH (EGARCH) model (Nelson [1991]);

2. The Quadratic GARCH (QGARCH) model (Sentana [1995]);

3. The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model
(Glosten et al. [1993]);

4. The Threshold GARCH (TGARCH) model (Zakoian [1994]).

There are well-known empirical studies of the positive contemporaneous
correlation between trading volume and price volatility. In the paper Kar-
poff [1987] one can find the review of previous research on the relation be-
tween price changes and trading volume in financial markets. It cites about
20 papers that examine this relation in financial markets including equi-
ties, futures, currencies, and Treasury bills. Some of these papers also docu-
ment an asymmetry in the relation; positive price shocks are associated with
larger volumes than negative price shocks.

Trading volume is one of the most favored proxies for news arrivals. It can
be explained by the following way: the more specific news arrives about a
given stock (or company), the more investors will interpret the effects of that
news differently, and thus the more investors will have an incentive to trade
as their expectations about future returns diverge. There are several theo-
retical models which have been proposed to explain this relationship, for
example, ”asymmetric information” model, ”differences in opinion” model,
the sequential information arrival hypothesis, and the ”mixture of distribu-
tions” model.

Mixture of Distribution Hypothesis (MDH) was proposed for the first time
by Clark (Clark [1973]). It assumes that the joint distribution of daily return
and volume can be modeled as a mixture of multivariate normal distribu-
tions.1 The main idea of MDH is that returns on financial assets are gener-
ated from a mixture of distributions in which the stochastic mixture variable

1Although volume is a non-negative variable whereas a normal variable could take neg-
ative values, it can be assumed that volume is normal distributed. It follows from the facts
that stocks of analyzed companies are usually highly liquid, means of volumes are large
quantities (e.g. more than 107 for HSBC), and 6 sigma point is typically above zero.
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is considered to be the rate of arrival of information flow into the market.
Specifically, they are contemporaneously dependent on an underlying mix-
ing variable that represents the flow of information. As a consequence, the
variance of returns at a given interval is expected to be proportional to the
rate of information arrival at the market. The development of MDH can be
found in the papers Epps and Epps [1976], and Tauchen and Pitts [1983].

The paper Lamoureax and Lastrapes [1990] examine the validity of MDH
for daily stock returns. It exploits the implication of the MDH that the
volatility of daily price increments is positively related to the rate of daily
information arrival. They suggest the daily trading volume as a measure of
the amount of information flowing into the market every day. The authors
used daily trading volume as a proxy for mixing variable and showed that
ARCH and GARCH coefficients vanish if volume is included as an explana-
tory variable in the GARCH model.

Lamoureux and Lastrapes (Lamoureax and Lastrapes [1990]) used daily
trading volume as a proxy for the mixing variable. They showed that the
introduction of volume as an exogenous variable in the conditional vari-
ance equation eliminates the persistence of GARCH effects as measured by
the sum of the GARCH parameters.

After the work of Lamoureax and Lastrapes [1990], a number of papers
studying this issue have been appeared. However, the findings are not
consistent. For example, the paper Sharma et al. [1996] tests for the Gen-
eralized Autoregressive Conditional Heteroscedasticity (GARCH) effects in
stock market indicator returns using the NYSE daily return and volume data
for four years. The study shows that the market indicator returns are best
described by the simple GARCH model (without volume as a mixing vari-
able). Moreover, it was shown that the inclusion of volume as a proxy for
information arrival in the conditional variance model does not necessary
lead to the decrease of the GARCH effects.

In the paper Arago and Nieto [2005] investigate the issue for market index
data for nine countries. It was found that volume effects do not cancel out
GARCH effects at the country index level. In the paper Arago and Nieto
[2005] unexpected trading volume uses as a proxy variable for the informa-
tion flow. It was shown that the inclusion of trading volume does not reduce
the persistence of conditional volatility.

On the other hand, there are some papers with findings analogous to Lam-
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oureax and Lastrapes [1990]. For example, Pagunathan and Peker Ragu-
nathan and Peker [1997] a strong contemporaneous effect of trading volume
on volatility in the Sydney Futures Exchange. In the paper Miyakoshi [2002]
one can find that the inclusion of the trading volume variable in EGARCH
models eliminates the ARCH/GARCH effect for individual stocks as well
as for the index on the Tokyo Stock Exchange. Bohl and Henke (2003) ex-
amine Polish stock markets and obtain similar results.

The paper Xiao et al. [2009] examines the quantitative relationship between
volume and volatility in the Australian Stock Market. The authors study in-
teraction of GARCH and volume effects on the entire available data for the
Australian All Ordinaries Index. They showed that GARCH model testing
and estimation is impacted by trading volume. In the paper the daily trad-
ing volume was used as a proxy for information arrival time. It is shown
that the daily trading volume have significant explanatory power regarding
the variance of daily returns. They also studied the impact of firm size on
volatility. It was shown that the actively traded stocks with larger number
of information arrivals per day have a larger impact of volume on the vari-
ance of daily returns, while low trading volume and small firm lead to a
higher persistence of GARCH effects in the estimated models.

Thus, it is still interesting to investigate this issue with a new proxy variable
for the information flow. One of them might be the news intensity (the
number of news about a company at the day t is called the news intensity at
the day t). There are not so much studies tried to examine relation between
flows of information and stock (or market) volatility. One of the reason for
that is the difficulty to find good empirical proxy of information arrivals.

Different measures of information arrivals were employed in variety of em-
pirical studies in order to test the impact of the rate of information on the
market volatility:

• macroeconomic news, Ederington and Lee [1993];

• the number of daily newspaper headlines and earnings announce-
ments, Berry and Howe [1993];

• the number of specific stock market announcements, Mitchell and
Mulherin [1994].

It was written in the paper Kalev et al. [2004] that ”the use of unconditional
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volatility measures such as absolute daily market returns in these studies
often generates weak or inconclusive results regarding the news-volatility
relation”. Indeed, a news intensity is known to be quite noisy, and the pres-
ence of conditional heteroscedasticity in the returns time-series may signif-
icantly destroys the quality of the results.

It is worth mentioning the paper Andersen [1996] in which it was shown
that different types of news have a different impact on the conditional stock
volatility.

In the paper of Kalev et al. [2004] it was used firm-specific announcements
as a proxy for information flows. It was shown that there exists a positive
and significant impact of the arrival rate of the selected news variable on
the conditional variance of stock returns on the Australian Stock Exchange
in a GARCH framework. They split all their press releases into different
categories according to their subject.

Some authors have worked specifically on the French market (Cousin and
Launois [2006]).
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Chapter 3

Preliminaries

3.1 Notation

Let X be a random variable defined on a probability space (Ω,Σ, P ). Let F
be the cumulative distribution function of X :

F (x) := P (X ≤ x).

The mean of the random variable X (or the expected value of X) can be
defined as

µ = E(X) =

∫
R
xdF (x). (3.1)

If the integral (3.1) exists, i.e. the random variable X has the mean µ, then
the variance of X is defined by

σ2 = V ar(X) = E((X − µ)2), (3.2)

the variance is defined as the average squared deviation of each number
from its mean.

Standard deviation of X is the square of the variance:

σ =
√
V ar(X).
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The variance measures how spread out a distribution is. The variance is the
one of the most used volatility measures.

Consider the case when X is a discrete random variable. Let x1, . . . , xN be a
population of the length N . Then the population mean is defined as

µ =
1

N

N∑
i=1

xi.

The population variance is defined by

σ2 =
1

N

N∑
i=1

(xi − µ)2.

When we are dealing with some empirical data, it is difficult or impossible
to know exactly distribution of a random variable X . So we can not apply
(3.1) to find the value of the variance of X . Then usually the variance is
estimated based on a sample.

Let y1, . . . , yn be a sample (i.e. finite number of realizations of a discrete or
continuous random variable X). Then the sample mean

ȳ =
1

n

n∑
i=1

yi

is estimator of the mean of the random variable X .

To estimate the variance V ar(X) of the random variable X we can use two
estimators.

1. The variance of the sample

s2
n =

1

n

n∑
i=1

(yi − ȳ)2.

Note that E(s2
n) = n−1

n
σ2.

2. The unbiased estimator of the variance

s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2.
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Unbiased means that E(s2) = σ2, i.e. the expected value of the sample
estimator coincides with the theoretical value of the variance.

Consider a random variable X distributed normally with mean µ and vari-
ance σ2, X ∼ N (µ, σ2). About 68% of values drawn from a normal distribu-
tion are within one standard deviation s away from the mean; about 95% of
the values lie within two standard deviations; and about 99.7% are within
three standard deviations. This fact is known as the 68-95-99.7 rule, or the
empirical rule, or the 3-sigma rule. To be more precise, the probability of
that X lies between µ− nσ and µ+ nσ is given by

P (µ− nσ ≤ X ≤ µ+ nσ) = Φ(n)− Φ(−n), (3.3)

where
Φ(x) :=

1√
2π

∫ x

−∞
exp−t

2/2 dt.

3.2 Calibration of models

3.2.1 The maximum likelihood estimator

In this subsection we will shortly describe this method as well as its short-
comings and advantages. We can refer the reader to the paper Le Cam [1990]
for a deep study and a related bibliography.

We will use maximum likelihood for calibration the GARCH model in
Chapter 5.

Let
x1, x2, . . . , xn (3.4)

be a vector of observations of length n. We suppose that xi are realizations of
a random variable ζ with an unknown distribution density f . It is assumed
that the density f(·) belongs to a parameterized family of distributions

F := {f(·|θ) : θ ∈ Θ}.

Denote θ∗ the vector of the true values of parameters. We need to find θ0 so
that θ0 would be close to θ∗ as much as possible in some sense.
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The joint density function for observation sequence (3.4) is

f(x1, . . . , xn|θ) = f(x1|θ) · f(x2|θ) · . . . · f(xn|θ) =
n∏
t=1

f(xt|θ).

Let us to view the likelihood function as a probability density for θ, and to
think of f(x1, . . . , xn|θ) as the conditional density of θ given x1, . . . , xn:

L(θ|x1, . . . , xn) = f(x1, . . . , xn|θ).

The function L(θ|x1, . . . , xn) is called the likelihood function.

We need to find θ0 ∈ Θ that maximizes the likelihood function
L(θ|x1, . . . , xn) over all θ ∈ Θ, given x1, . . . , xn. In many cases it is much
easy to maximize the logarithm value of the function:

logL(θ|x1, . . . , xn) =
n∑
t=1

log f(xt|θ). (3.5)

The function (3.5) is called the log-likelihood function.

There are many models in which a maximum likelihood estimator can be
found as an explicit function of the observed data x1, . . . , xn, i.e. in Gaussian
case.

However, for the most models there is not closed-form solution to the max-
imization problem

logL(θ|x1, . . . , xn)→ max
θ∈Θ

, (3.6)

and a maximum likelihood estimation has to be found numerically using
optimization methods.

The maximum likelihood estimator θ0 is defined by

θ0 = arg max
θ∈Θ

logL(θ|x1, . . . , xn).

Thus we are choosing θ to maximize the probability of occurrence of the
observation x1, . . . , xn.

We point out some attractive asymptotic properties of the maximum-
likelihood estimator:
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1. Consistency: the maximum likelihood estimator θ0 converges in prob-
ability to the value θ∗ being estimated, i.e. θ0→θ∗ as the number of
observations n tends to∞.

2. Asymptotic normality: as the sample size increases, the distribution
of the MLE tends to the Gaussian distribution with mean θ and covari-
ance matrix equal to the inverse of the Fisher information matrix. (see
e.g. Myung and Navarro [2005]).

3. Efficiency, i.e., it achieves the Cramér–Rao lower bound when the
sample size tends to infinity. This means that no asymptotically un-
biased estimator has lower asymptotic mean squared error than the
MLE.

It is worth noting that in many cases problem (3.6) is non-convex and, thus,
finding its exact solution is in principle a difficult task. Optimization meth-
ods may include gradient climbing algorithms such as Newton-Raphson
and EM algorithm.

Moreover, local minima are indeed a problem: different initial sets of pa-
rameters yield a different local minimum. But the problem is not only mul-
tiple local minima, also that quite often solutions are in the boundary of the
feasible parameter space, e.g. some variances of the noises are estimated to
have value zero. We will encounter this problem in Chapter 7.

3.2.2 Generalized moments method

Sometimes we do not know the shape of the distribution function of the
data, but we can assume which of parameterized set of functions our dis-
tribution belongs to. In such cases the maximum likelihood estimation can
not be apply, but the generalized moment method can be useful.

Let y1, y2, . . . , yn be a sample from a distribution governed by parameter
θ. A function e(y) is said to be sample statistic if it is a function of sample
observations y1, y2, . . . , yn alone.

We say that an estimator e(y) is unbiased if E(e(y)) = θ. If E(e(y)) 6= θ then
the value E(e(y))− θ is the bias of the estimator e(y).
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An estimator e(y) is said to be minimum variance unbiased if it is unbiased
and for every any other unbiased estimator e∗ of θ we have Var(e(y)) ≤
Var(e∗(y)).

We say that an estimator e(y) is consistent if e(y) converges to θ in probabil-
ity as n→∞.

First we consider classical moment methods. Classical moment methods is
a simple method for estimating unknown parameters in different statistical
models.

Let θ ∈ Rm be a vector of parameters (moments) that characterize the dis-
tribution of random variable y. Let the distribution function of the random
variable y belongs to parameterized family of distributions {F (·, θ) : θ ∈
Θ}. The k-th moment (if it exists) of distribution of random variable y is
defined as

mk(θ) = E(yk) =

∫
R
ykdF (y, θ). (3.7)

If we have sample observations y1, y2, . . . , yn (considered as n independent
random variables), then we can find k-th sample moment as follows

m̂k =
1

n

n∑
i=1

yki (3.8)

Suppose we know the values some of the moments m̂k, k ∈ I , where I ⊂ N,
|I| = k. The main idea of method of moments is to estimate unknown
parameters θ by matching ”theoretical” moments (3.7) and sample moments
(3.8) of the same orders:

mk(θ) = m̂k, k ∈ I. (3.9)

In general, method of moments estimators are consistent whenever the Law
of Large Numbers ensures that the sample moments in the data-generating
process converge in probability to the corresponding population moments.

The classical method of moments can be applied if m = k := |I|. It follows
from the fact that the number of unknown parameters is equal to the num-
ber of equations in (3.9) that the system (3.9) has a solution. If m < k then
(3.9) does not have a solution.
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The first idea is to exclude k − m equations and then apply the classical
method of moments. The question is which of equations must be discard?
The generalized method of moments technique uses all k moment condi-
tions by weighting them, i.e. it chooses an estimator that balances each mo-
ment condition against the others. A GMM estimator may satisfy no one
moment condition, but it may come close to satisfying them all.

Let data be a finite number of realizations of the process xt, t = 1, 2, . . . , N .
Let the model satisfy the moment conditions:

E(f(xt, θ
∗)) = 0 (3.10)

where xt ∈ Rr is an vector of observable variables, θ∗ ∈ Rm is a vector of
true value of parameters and f : Rr × Rm → Rk is a vector valued function.
We assume that on the parameter space E(f(xt, θ)) = 0 if and only if θ = θ∗.

Sample analogue of (3.10) can be written as

gN(θ) =
1

N

N∑
t=1

f(xt, θ).

Suppose that we have a sequence of k × k positive semi definite matrix
WN converging to a positive definite matrix W0. Then, GMM estimator is
defined as

θ̂ = arg inf
θ

(g′N(θ)WN gN(θ)).

GMM does not guarantee an efficient estimator, but it does provide a consis-
tent estimator, and its weighting scheme is more efficient than the simpler
unweighted scheme Ravi et al. [2002].

We refer readers to the paper Hall [2004] for more details.
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Chapter 4

Volatility

4.1 What is volatility

Volatility can be described as the relative rate at which the price of a security
moves up and down. Volatility may be found by calculating the annualized
standard deviation of daily change in price. Usually volatility describes the
behavior of a financial instrument for a specified period of time, i.e. 1 day
or 30 days or 90 days.

The measurement of the volatility of a financial instrument may be based
on historical prices over the specified period. In this case it is obvious that
the last observations the most recent price are needed to get more precise
prediction of this behavior. It is supposed that if the price of a stock moves
up and down rapidly over short time periods, then it has high volatility.
And vice-versa: if the price has small changes or almost never changes, it
has low volatility.

If we consider the problem option pricing then there are several variables
that are of interest in financial engineering. They include

• the current asset price,

• the strike price,

• time to maturity,
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• the risk free rate,

• volatility.

The first four of them are known. Their values can be directly obtained
or derived from current market data. The volatility of a stock is the only
variable that can not be so easily found.

4.2 Volatility measurement

4.2.1 Variance

It is supposed that volatility is a measure of the range (dispersion) of an
asset price about its mean value over a certain amount of time. Then it
follows that volatility is connected to the variance of an asset price. A stock
is said to be volatile if the price will vary greatly over time. Conversely,
a less volatile stock will have a price that will deviate relatively little over
time.

The variance measures how spread out a distribution is. The variance is the
one of the most used volatility measures.

4.2.2 Heteroscedasticity

A sequence of random variables is said to be heteroscedastic, if the random
variables have different variances. Heteroskedasticity is one of the most im-
portant concept in finance. It is connected with the fact that market returns
of an individual stock or index returns, returns of commodity and energy
markets almost always exhibit heteroskedasticity.

Heteroskedasticity can be one of two following forms:

• A process is said to be unconditionally heteroscedastic if unconditional
variances are not constant. It is known that stock or bond returns
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demonstrate heteroscedastic behavior. The prices exhibit non-constant
volatility, but periods of low or high volatility are generally not known
in advance.

• A process is said to be conditionally heteroscedastic if conditional vari-
ances are not constant. Oil prices exhibit unconditional heteroscedas-
ticity. The prices tend to have higher volatilities during the Summer
than during other seasons.

If a process is unconditionally heteroscedastic, then it is necessarily condi-
tionally heteroscedastic. The converse is not true. If a process is not uncon-
ditionally heteroscedastic or not conditionally heteroscedastic, it is said to
be unconditionally homoscedastic or conditionally homoscedastic, respec-
tively.

In finance, a variety of models are used for conditionally heteroscedastic
processes. These include

• autoregressive conditional heteroscedastic (ARCH) models;

• generalized ARCH (GARCH) models

• regime-switching models; and

• stochastic volatility models.

White test White [1980] is one of well-known methods to test for the pres-
ence of heteroscedasticity.

One can use also Engle Test for Conditional Heteroscedasticity (see e.g. Tsay
[2005]).

4.3 Risk estimation

4.3.1 Risk measures

Risk measures:
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1. Value-at-Risk;

2. Tail conditional expectation;

3. Expected shortfall;

4. Entropic risk measure;

5. Superhedging price.

One of the most well-known risk measures is Value-at-Risk.

Given α ∈ (0, 1], the real number q is said to be α-quantile of the random
variableX under the probability distribution P if one of the three properties
is satisfied:

1. P (X ≤ q) ≥ α ≥ 1− P (X ≤ q);

2. P (X ≤ q) ≥ α and P (x ≥ q) ≥ 1− α;

3. FX(q) ≥ α and FX(q−) ≤ α, where FX is the cumulative distribution
function of X , and FX(q−) = limX→q, X<q F (x).

Jorion (Jorion [2001]) defines Value-at-Risk of an asset as ”the quantile of
the projected distribution of gains and losses over the target horizon. If α is
selected confidence level, VaR corresponds to the 1− α lower-tail level”:

Definition 1 Given α ∈ (0, 1], we define the Value-at-Risk (VaR) at level α of the
random X with distribution P as negative of the quantile q+

α of X , i.e.

V aRα(X) = − inf{x : P (X ≤ x) ≥ α}.

For instance, with 95% confidence level, VaR should be such that it exceeds
5% of the total number of observations in the distribution.

Even though V aR is one of the most commonly used risk measures, it does
not satisfy certain properties which are considered to be desirable in any
risk measure. These properties are described next.
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4.3.2 Properties of coherent risk measures

Denote Ωt = {ω} the set of all states of the world at the moment t. We
suppose that all elements of the set Ω at the end of period t is known, but
the probabilities of states are unknown.

Let X denotes the final worth (at the moment t) of a position for each ele-
ment ω ∈ Ωt. X is a random variable. Denote G the set of all risks, i.e. the
set of all real-valued functions defined on Ω.

It is supposed that any mapping ρ : G→ R defined on G with range in R is
a measure of risk.

A risk measure satisfying the following properties is called coherent.

Axiom 1 (Monotonicity) For all X, Y ∈ G such that X ≤ Y , we have

ρ(X) ≥ ρ(Y ).

Axiom 2 (Positive homogeneity) For all α ≥ 0 and all X ∈ G, we have

ρ(αX) = αρ(X).

Axiom 3 (Subadditivity) For all X, Y ∈ G, we have

ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

The property 3 is based on the principle of diversification that states that the
risk of portfolio always less or equal to risk of it parts.

Axiom 4 (Translation invariance) For all X ∈ G and all α ∈ R, we have

ρ(X + α) = ρ(X)− α.

In particular, if α = ρ(X) then ρ(X + ρ(X)) = 0 for every X ∈ G. The prop-
erty 4 states that adding cash amount to the initial position, one decreasing
the risk measure on the same value.
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VaR does not satisfy the sub-additivity property and therefore is not coher-
ent risk measure.

In the next subsection, we look at the most common method of computing
the Value at Risk.

4.3.3 Variance-Covariance Method

This approach is based on the assumption that the underlying market fac-
tors have a (multivariate) normal distribution. Then, under some additional
assumptions, it is possible to find the distribution of assets (or portfolio)
profits and losses. The distribution will be normal as well. Then we can use
standard properties of the normal distribution (see (3.3)) to find the loss that
equals or exceeds α percent of the time, i.e. V aR(α).

If a probability of α% is used to find 1-day V aR, then V aR is equal to f(α)
times the standard deviation of changes in portfolio value:

V aRt(α) = Mt−1f(α)σt,

where Mt−1 is amount of money invested at the moment t − 1, f(α) is de-
fined in Table 4.1, and σt is estimated volatility (standard deviation) at the
moment t.

Table 4.1: The values of the multiplication factor at the formula for VaR
estimation for different confidence levels

α 0.5% 1% 2.5% 5% 10% 25%
f(α) 2.5758 2.3263 1.9600 1.6449 1.2816 0.6745

4.3.4 Capital Requirements for Market Risk

Despite that VaR models have some shortcomings, they have been accepted
by banking regulators as a tools for calculating capital requirements for mar-
ket risk. The current regulatory framework was set up in the 1988 Basle
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Capital Adequacy Accord. The document presents minimum capital re-
quirements for banks’ credit risk exposure.

In 1996 American bank regulatory agency release a settlement to the Ac-
cord. One of the approach proposed in the settlement (known as ”internal
models”) is based on the Value-at-Risk estimates calculated on the basis of
bank’s internal risk measurement model using VaR at level 0.01 with 10-day
horizon.

According to the settlement, a bank’s market risk capital requirement at day
t, MRCt, has to be

MRCt = St max

{
1

60

60∑
i=1

V aRt−i(10, 1), V aRt(10, 1)

}
+ SRt,

where

• V aRi(10, 1) denotes VaR at level 0.01 with 10-day horizon at the day i,

• St is a regulatory multiplication factor, which depends on the accuracy
of bank’s VaR model. It calculates based on the number of times that
daily trading losses exceed the corresponding bank’s VaR estimates
over the last 250 trading days (see Table 4.2).

• SRt is an additional capital charge.

Table 4.2: The values of the regulatory multiplication factor

Number of Excep-
tions (Out of 250
Trading Day

0-4 5 6 7 8 9 10 and more

Scaling Factor, St 3.00 3.40 3.50 3.65 3.75 3.85 4
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Chapter 5

The Family of ARCH and GARCH
models

5.1 Introduction

It is well-known that financial markets and investors react nervously to im-
portant news, economic crises, wars, political disorders or natural disasters.
In such periods prices of financial assets may fluctuate very much. It means
that the conditional variance for the given past

V ar(Xt|It−1) := V ar(Xt|Xt−1, Xt−2, . . .)

is not constant over time and the processXt is conditionally heteroscedastic.
In the other words, volatility

σt =
√
V ar(Xt|It−1)

changes over time. Understanding the nature of such time dependence is
very important for many macroeconomic and financial applications, e.g. ir-
reversible investments, option pricing, asset pricing etc. Models of condi-
tional heteroscedasticity for time series have a very important role in todayı́s
financial risk management and its attempts to make financial decisions on
the basis of the observed price asset data Pt in discrete time. Prices Pt are be-
lieved to be non-stationary so they are usually transformed in the so-called
log–returns

Xt = logPt − logPt−1
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Log returns are supposed to be stationary, at least in periods of time that are
not too long. Very often in the past it was suggested that (Xt) represents a
sequence of independent identically distributed random variable, in other
words, that prices evolve like a random walk. Samuelson suggested model-
ing speculative prices in the continuous time with the geometric Brownian
motion. Discretization of that model leads to a random walk with inde-
pendent identically distributed Gaussian increments of log return prices in
discrete time. This hypothesis was rejected in the early sixties. Empirical
studies based on the log return time series data of some US stocks showed
the following observations, the so-called stylized facts of financial data:

1. serial dependence are present in the data;

2. volatility changes over time;

3. distribution of the data is heavy-tailed, asymmetric and therefore not
Gaussian.

These observations clearly show that a random walk with Gaussian incre-
ments is not a very realistic model for financial data. It took some time
before R. Engle found a discrete model that described very well the previ-
ously mentioned stylized facts of financial data, but it was also relatively
simple and stationary so the inference was possible. The ARCH model was
introduced by Engle [1982]. Engle called his model autoregressive condi-
tionally heteroscedastic – ARCH, because the conditional variance (squared
volatility) is not constant over time and shows autoregressive structure.
This model is a convenient way of modeling time-dependent conditional
variance. Some years later, Bollerslev [1986] generalized this model as the
GARCH model (Generalized Autoregressive Conditional Heteroscedastic-
ity).

5.2 ARCH Model

The primary idea is to use the rolling standard deviation to estimate the
variance of the return. This is the standard deviation calculated using a
fixed number of the most recent observations, for example 22 business days
of data. It assumes that the variance of tomorrow’s return can be describe as



5.2 ARCH Model 25

an equally weighted average of the squared residuals from the last 22 days.
The assumption of equal weights seems unrealistic, since the more recent
events must be more relevant and therefore should have higher weights.
The ARCH model proposed by Engle [1982] let these weights be parameters
to be estimated. Thus, the model allowed the data to determine the best
weights to use in forecasting the variance.

Let Xt be the log return of a particular stock or the market portfolio from
time t− 1 to time t. Let It−1 denotes the past information set containing the
realized values of all relevant variables up to time t− 1.

Suppose investors know the information in It−1 when they make their in-
vestment decision at time t− 1. Then the relevant expected return µt to the
investors is the conditional expected value of Xt, given It−1, i.e.

µt = E(Xt|It−1).

The relevant expected volatility σ2
t to the investors is conditional variance

of Xt, given It−1, i.e.
σ2
t = V ar(Xt|It−1).

Then
εt = Xt − µt

is the unexpected return at time t.

In the paper Engle and Ng [1993] εt is treated as a collective measure of news
at time t. A positive εt (an unexpected increase in price) suggests the arrival
of good news, while a negative εt (an unexpected decrease in price) suggests
the arrival of bad news. Further, a large value of |εt| implies that the news
is ”significant” or ”big” in the sense that it produces a large unexpected
change in price.

Engle Engle [1982] suggests that the conditional variance σ2
t can be modeled

as a function of the lagged ε’s. That is, the predictable volatility is depen-
dent on past news. The most detailed model he develops is the q-th order
autoregressive conditional heteroscedasticity model, the ARCH(q).

Let (un) be a sequence of i.i.d. random variables such that ut ∼ N(0, 1). A
process (εt) is said to be the ARCH(q) process if

εt = σtut, t ∈ Z, (5.1)
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where (σt) is a nonnegative process such that

σ2
t = α0 +

q∑
i=1

αiε
2
t−i,

where α0, α1, . . . , αq are constant parameters. The effect of a return shock i
periods ago (i ≤ q) on current volatility is governed by the parameter αi.
Normally, one would expect that αi < αj for i > j ≥ 1. That is, the older the
news, the less effect it has on current volatility. In an ARCH(q) model, old
news which arrived at the market more than q periods ago has no effect at
all on current volatility.

5.3 GARCH(p, q) Model

5.3.1 Model Description

Bollerslev (Bollerslev [1986]) generalizes the ARCH(q) model to the
GARCH(p, q) model in the following way.

Let (un) be a sequence of i.i.d. random variables such that ut ∼ N(0, 1).

A process (εt) is said to be the generalized autoregressive conditionally het-
eroscedastic or GARCH(p, q) process if

εt = σtut, t ∈ Z, (5.2)

where (σt) is a nonnegative process such that

σ2
t = α0 + α1ε

2
t−1 + . . .+ αqε

2
t−q + β1σ

2
t−1 + . . .+ βpσ

2
t−p =

= α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j (5.3)

and
αi > 0, i = 0, . . . , q, βj > 0, j = 1, . . . , p. (5.4)

The conditions (5.4) on parameters ensure strong positivity of the condi-
tional variance (5.3).
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Let B denotes the lag-operator, i.e.

Byt = yt−1, B
k = B(Bk−1).

Then we can write (5.3) in the following way:

σ2
t = α0 + α(B)ε2t + β(B)σ2

t (5.5)

where
α(B) = α1B + α2B

2 + . . .+ αqB
q,

β(B) = β1B + β2B
2 + . . .+ βpB

p.

Suppose that the roots of the characteristic equation

1− β1x− β2x
2 − . . .− βpxp = 0

lie outside the unit circle and the process (εt) is stationary. Then we can
write (5.3) as

σ2
t =

α0

1− β(B)
+

α(B)

1− β(B)
ε2t = α∗0 +

∞∑
i=1

δtε
2
t−i, (5.6)

where α∗0 = α0

1−β1 , and δi are coefficient of Bi in expansion of α(B)
1−β(B)

.

It follows from (5.6) that the GARCH(p, q) process can be considered as an
ARCH process of infinite order with a fractional structure of the coefficients.

From (5.2) it is obvious that the GARCH(1,1) process is weakly stationary if
the process (σ2

t ) is weakly stationary. So if we want to study the properties
and higher order moments of GARCH(1,1) process it is enough to do so for
the process (σ2

t ).

It was mentioned by Bollerslev [1992] GARCH(1,1) is more preferable in
most cases as compared to GARCH(p, q). We recall that a process (εt) is
said to be the generalized autoregressive conditionally heteroscedastic or
GARCH(1,1) process if εt = σtut, t ∈ Z, where (σt) is a nonnegative process
such that

σ2
t = ω + αε2t−1 + βσ2

t−1.

In the model, α reflects the influence of random deviations in the previous
period on σt, whereas β measures the part of the realized variance in the
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previous period that is carried over into the current period. The sizes of
the parameters α and β determine the short-run dynamics of the resulting
volatility time series. Large GARCH error coefficients, α, mean that volatil-
ity reacts intensely to market movements. Large GARCH lag coefficients,
β, indicate that shocks to conditional variance take a long time die out, so
volatility is persistent.

We will use a GARCH model of order 1 since it has been shown to provide
a abstemious representation of the conditional variance. GARCH(1,1) was
carefully tested (see e.g. the survey Bollerslev [1992]). Also Hansen and
Lunde (Hansen and Lunde [2001]) ”found no evidence that a GARCH(1,1)
is outperformed by more sophisticated models” for prediction of variance
of stock returns.

5.3.2 Maximum likelihood estimation of GARCH model

To calibrate the GARCH(p, q) model we can use different methods including
the least-square estimator or generalized moment method, but in this work
we will apply the maximum likelihood approach.

The subsection describes quasi-maximum likelihood estimation (QML) of
model (5.2), (5.3), (5.4). The vector of model parameters is

θ = (α0, α1, . . . , αq, β1, . . . , βp)
T .

Since the errors are assumed to be conditionally i.i.d. normal, maximum
likelihood is a natural choice to estimate the unknown parameters, θ. We
will assume that θ belongs to the set

Θ := {(α0, α1, . . . , αq, β1, . . . , βp)
T : α0 ≥ 0, αi > 0, βj > 0}.

Denote
θ∗ = (α∗0, α

∗
1, . . . , α

∗
q , β

∗
1 , . . . , β

∗
p)
T

the vector of the true values of parameters. The aim is to find θ∗ that maxi-
mize a QML function given an observation sequence

ε0, . . . , εn

of length n.
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Define the sequence (σ̃1, . . . , σ̃n) by recursion:

σ̃2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ̃
2
t−j, 1 ≤ t ≤ n,

where ε1−q, . . . , ε0 and σ̃1−p, . . . , σ̃0 are an initial values of ε’s and σ’s respec-
tively.

Given the initial values, the Gaussian quasi-likelihood function can be writ-
ten as follows

Ln(θ) = Ln(θ; ε1, . . . , εn) =
n∏
t=1

1√
2πσ̃2

t

exp

(
− ε2t

2σ̃2
t

.

)
The optimal estimation of θ is defined by

θ̃ = arg max
θ∈Θ

Ln(θ) = arg max
θ∈Θ

Fn(θ),

where

Fn(θ) := −
n∑
t=1

(
ε2t
σ̃2
t

+ log σ̃2
t

)
is log quasi-likelihood function (constant terms are ignored).

MATLAB code one can find in Appendix B. Standard error of estimates of
parameters were obtained using the statistical environment R.

• Function GARCHrun.m

1. loads the file with input data;

2. runs function GARCHcalibration.

• Function GARCHcalibration is a function with two input parameters

1. array of input data;

2. initial values of model parameters.

Function GARCHcalibration uses iteratively the functions garchMax-
likelihood and MATLAB function fminsearch to find the optimal val-
ues of model parameters.

• Function garchMaxlikelihood has two input arguments
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1. array of input data;

2. values of model parameters omega, alpha, beta.

The output of the function is the value of maximum likelihood func-
tion of the GARCH model with given parameters and input data.

5.4 Asymmetric GARCH models

The asymmetric effect was mentioned for the first time by Black in the paper
Black [1976] and was also studied by Kenneth R. French, G. William Schwert
and Robert F. Stambaugh (French et al. [1987]), D. Nelson (Nelson [1990]),
and G. William Schwert (Schwert [1990]).

To capture the asymmetric effects a few models were introduced since then.
In this section we will describe the the following most commonly used
asymmetric GARCH models:

1. Exponential GARCH (EGARCH) model;

2. The Quadratic GARCH (QGARCH) model;

3. The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model;

4. The Threshold GARCH (TGARCH) model.

We will consider the problem of calibration of this models as well.

5.4.1 EGARCH Model

Exponential GARCH (EGARCH) model can be defined by D. Nelson as fol-
lows Nelson [1991]:

log(σ2
t ) = α0 +

q∑
i=1

(
γi
εt−i
σt−i

+ αi

∣∣∣∣ εt−iσt−i

∣∣∣∣)+

p∑
j=1

βj log(σ2
t−j),

where α0, αi, βj , γi are parameters.
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The EGARCH model is asymmetric because the levels of εt−i

σt−i
’s are included

with coefficients γi, which are typically negative. Thus positive return
shocks generate less volatility than negative return shocks.

The paper Engle and Ng [1993] pointed out that

1. The EGARCH model allows good news and bad news to have a dif-
ferent impact on volatility, while the standard GARCH model does
not;

2. The EGARCH model allows big news to have a greater impact on
volatility than the standard GARCH model.

EGARCH(1,1) model can be written as

log(σ2
t ) = α0 + β log(σ2

t−1) + γ
εt−1

σt−1

+ α1
|εt−1|
σt−1

,

where α0, α1, β, γ are parameters.

5.4.2 QGARCH model

The Quadratic GARCH (QGARCH) model was invented and studied by
Sentana in 1995 Sentana [1995]. The model captures the asymmetric effects
of positive and negative shocks. QGARCH(1,1) model may be defined as
follows.

Let (un) be a sequence of i.i.d. random variables such that ut ∼ N(0, 1).

A process (εt) is said to be QGARCH(1,1) process if

εt = σtut, t ∈ Z, (5.7)

where (σt) is a nonnegative process such that

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + γ1εt−1 (5.8)

and
α0, α1, β1, γ1 > 0. (5.9)

Note that QGARCH model can be reduced to the well-studied GARCH(1,1)
model for γ = 0, and the model captures the leverage effect for γ < 0.
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5.4.3 GJR–GARCH model

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model was de-
veloped by Glosten, Jagannathan and Runkle in 1993 Glosten et al. [1993].
The model is similar to QGARCH in the sense of capturing of asymmetry in
the ARCH process.

As it is above let (un) denotes a sequence of i.i.d. random variables such
that ut ∼ N(0, 1).

A process (εt) is said to be GJR–GARCH(1,1) process if

εt = σtut, t ∈ Z, (5.10)

where (σt) is a nonnegative process such that

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + γ1ε

2
t−1χt−1, (5.11)

where α0, α1, β1, γ1 > 0 and

χt−1 = 0 if εt−1 ≥ 0, and χt−1 = 1 if εt−1 < 0. (5.12)

5.4.4 Threshold GARCH model

The Threshold GARCH (TGARCH) model was studied by Zakoian in 1994
(Zakoian [1994]). TGARCH model is indeed similar to GJR–GARCH models
defined in the previous subsection. The specification of TGARCH model is
one on conditional standard deviation instead of conditional variance. Here
is definition of the model. A process (εt) is said to be TGARCH(1,1) process
if

εt = σtut, t ∈ Z, (5.13)

where (σt) is a nonnegative process such that

σt = α0 + α+ε+t−1 + α−ε−t−1 + β1σt−1, (5.14)

where

ε+t−1 =

{
εt−1, if εt−1 ≥ 0,

0, if εt−1 < 0.
(5.15)

and

ε−t−1 =

{
εt−1, if εt−1 ≤ 0,

0, if εt−1 > 0.
(5.16)
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5.4.5 Calibration of Asymmetric Models

Given an observation sequence

ε0, . . . , εn

of length n, define the sequence (σ̃1, . . . , σ̃n)

1. in EGARCH(1,1) model by

log(σ̃2
t ) = α0 + β log(σ̃2

t−1) + γ
εt−1

σ̃t−1

+ α1
|εt−1|
σ̃t−1

,

where α0, α1, β, γ are estimated (unknown) parameters;

2. in QGARCH(1,1) model by

σ̃2
t = α0 + α1ε

2
t−1 + β1σ̃

2
t−1 + γ1εt−1

where α0, α1, β1, γ1 > 0 are estimated (unknown) parameters;

3. in GJR-GARCH(1,1) model by

σ̃2
t = α0 + α1ε

2
t−1 + β1σ̃

2
t−1 + γ1ε

2
t−1χt−1,

where α0, α1, β1, γ1 > 0 are estimated (unknown) parameters and χt−1

is defined in (5.12).

4. in Threshold GARCH(1,1) model by

σ̃t = α0 + α+ε+t−1 + α−ε−t−1 + β1σ̃t−1,

where α0, α+, α−, β1 are estimated (unknown) parameters and ε+t−1,
ε−t−1 are defined in (5.15), (5.16).

If we assume that the likelihood function is Gaussian, then the log-
likelihood function can be written as

Fn(θ) := −
n∑
t=1

(
ε2t
σ̃2
t

+ log σ̃2
t

)
(constant terms are ignored). The maximum likelihood estimator of θ is
defined by

θ̃ = arg max
θ∈Θ

Fn(θ).
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It is worth noting that estimates obtained by maximizing the log likelihood
of a normal distribution are strongly consistent (although they are not ef-
ficient). Recall that an estimator has the property of strong consistency if
parameter estimates converge to the true parameters (even assuming the
wrong conditional distribution).

If the GARCH model correspond the true data process, then the parameters
of the GARCH model are chosen such that the conditional expectation of
the generalized error 0. The normal distribution has the property that these
parameters will correspond to those of the original data process even if the
conditional distribution is incorrect.

The assumption that the errors are conditionally normal has some advan-
tages: estimation is quite simple and parameters are consistent for the true
parameters. But the alternative (non–normal) distributions are more useful
in application to Value-at-Risk in which case the choice of density may lead
to a better prediction capacity.

Some researchers estimate GARCH models assuming an alternative distri-
bution (see, for example Bollerslev [1987]). It gave a better approximation
to the conditional distribution of the standardized returns. Moreover, in the
case of MLE, the estimates are fully efficient.

5.5 Empirical Study

5.5.1 Data Description

The data set we analyzed in this work is stock market closing daily prices
of the General Electric Company (GEC.L)

The sample period is from January 2, 2008 to December 31, 2010. Total num-
ber of observations is 757. Data set are taken from UK Stock Market FTSE100
and downloaded from Yahoo!Finance site. The sample is divided in twelve
parts for two purposes:

• In-sample estimation procedure. The twelve parts of observations are
used as in-sample data. The first data set consists of data from January
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2, 2008 to December 31, 2009. The i-th data set represents data from
the first day of i-th month of 2008 to the last day of i − 1-th month
of 2010. The twelfth data set is from January 2, 2009 to December 31,
2010. We will estimate parameters of models on each of this data sets.
In-sample data sets are listed in Table A.

• Out-of-sample evaluation. The remaining observations (from January
2, 2010 to December 31, 2010) are used as out-of-sample for forecast
evaluation purposes. We will use the parameters obtained on previous
step to estimate predictive properties of models. We divide the data
set (from January 2, 2010 to December 31, 2010) on twelve one-month
length parts. The data of i-th month of 2010 will be used to estimate
the forecast properties of model which parameters was obtained based
on i-th in-sample data set. Out-of-sample data sets are determined in
Table A.2.

Table 5.1 shows some descriptive statistics of stock prices of the GE com-
pany. Figure 5.1 presents the General Electric prices movement during the
period from January 2, 2008 to December 31, 2010.

Table 5.1: Descriptive statistics of General Electric company stock market
closing daily prices (January 2, 2008 - December 31, 2010)

Form To Size Mean Std. dev. Min Max
02/01/2008 31/12/2010 757 19.29868 7.514138 6.66 38.43

Due to significant changes in the level of prices from date to date, it is more
appropriate to base volatility measures on percentage return, rather than
absolute price movement. Returns are calculated by

rt = 100 log
pt
pt−1

,

where pt and Pt−1 are closing price on dates t and t − 1 respectively. The
reason for using natural logarithm of trading volume is to improve the nor-
mality of the series in order to better fit into the GARCH-type models.

The descriptive statistics of GE stock log returns in Table A.3 shows the styl-
ized fact that the returns series is not close to normality as reflected by kur-
tosis value. Returns ranges from -13.68411 to 17.98444 and mean of returns
is not statistically different from zero at 5% level. Historical movement of
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Figure 5.1: Historical movement of General Electric stock market closing
daily prices (January 2, 2008 - December 31, 2010)

the GE log returns one can find in Figure 5.2. Time series of returns appears
to show the signs of ARCH effects in that the amplitude of the returns varies
over time. Figure 5.4 presents the histogram of the GE log returns during
the period.

The positive skewness implies that returns distribution has a higher prob-
ability of earning positive returns. Kurtosis value is 7.708553 and this is
much larger than 3. This shows that for our returns series, the distribution
has fatter tails and sharper peaks at the center compared to the normal dis-
tribution (see Fig. 5.4). That behavior is known to occur in financial markets
often.

The Jarque–Bera test statistics was also found to have a high value at signif-
icant 1% level and therefore we have to reject the null hypothesis of normal-
ity. Shapiro–Wilk W test also rejects the hypothesis of normal distribution
of the data.

We used the test of the white noise process given by the Ljun-Box-Pierce
portmanteau test statistics in order to test the hypothesis of independence.
The first-order autocorrelations of our series are small and statistically non-
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Figure 5.2: Historical movement of log returns of the General Electric stock
market closing daily prices (January 2, 2008 - December 31, 2010)

significant and returns do not have first-order autocorrelations. The com-
puted statistical values of Ljung-Box-Pierce for lags 10 and 20 for our re-
turns series (denoted by Q(10) and Q(20) respectively) are relatively large.
The Q(10) and Q(20) test statistic reject the null hypothesis of uncorrelated
price changes, suggesting a slowly decaying autoregressive effect. Thus, the
null hypothesis of strict white noise is rejected.

5.5.2 Empirical results

Kupiec’s test.

Since the late 1990’s a variety of tests have been proposed that can be used
to estimate the accuracy of a VaR model. To compare the performance of
models, in this work we will use the approach developed by Kupiec Kupiec
[1995].

The idea is quite simple. This tests are concerned with whether or not the
reported V aR is violated more (or less) than α100% of the time. Kupiec
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Figure 5.3: The rolling standard deviation of log returns of the General Elec-
tric stock market closing daily prices (January 2, 2008 - December 31, 2010),
with 21 days rolling window

finds a proportion of failures that examines how many times an asset’s V aR
is violated over a given span of time. If the number of violations differs
considerably from α100% of the sample, then the accuracy of the underlying
risk model is called into question.

Denote by yt the actual losses at the day t. Consider the event that the loss
on a portfolio exceeds its reported V aR (estimated by a model), V aRt, i.e.
yt > V aRt. Let {It}, 1 ≤ t ≤ T , be the sequence with

It =

{
1, if yt > V aRt,

0, if yt ≤ V aRt.
(5.17)

Denote by

N =
T∑
t=1

It (5.18)

the number of such violations.
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Figure 5.4: Histogram of log returns of the General Electric stock market
closing daily prices (January 2, 2008 - December 31, 2010)

Kupiec’s test statistic has the form Kupiec [1995]

L = 2log

((
1−N/T

1− α

)T−N (
N/T

α

)N)

The intervals of non-rejection for some α is given in Table 5.2.

Table 5.2: The intervals of non-rejection regions for Kupiec’s test

α T = 250 T = 500 T = 750 T = 1000

5% 7 ≤ N ≤ 19 17 ≤ N ≤ 35 25 ≤ N ≤ 49 38 ≤ N ≤ 64

1% 1 ≤ N ≤ 6 2 ≤ N ≤ 9 3 ≤ N ≤ 13 5 ≤ N ≤ 16

Christoffersen Christoffersen [1998] points out that the problem of deter-
mining the accuracy of a V aR model can be reduced to the problem of de-
termining whether the sequence of violations, {It}, 1 ≤ t ≤ T , satisfies two
properties:

1. Unconditional coverage property. The unconditional coverage property
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places a restriction on how often V aR violations may occur. The prob-
ability of realizing a loss in excess of the reported V aRt must be pre-
cisely α100% or in terms of the previous notation, P (It+1(α)) = α.
If it is the case that losses in excess of the reported V aR occur more
frequently than 100% of the time then this would suggest that the re-
ported V aR measure systematically understates the portfolio’s actual
level of risk. The opposite finding of too few V aR violations would
alternatively signal an overly conservative V aR measure.

2. Independence property. The independence property places a strong re-
striction on the ways in which these violations may occur. Specifically,
any two elements of the hit sequence, It+j(α), It+k(α) must be inde-
pendent from each other.

The group of competing GARCH models (ARCH, GARCH, TGARCH, GJR-
GARCH) are estimated using quasi-maximum likelihood method.

Table A.4 presents autocorrelations, partial autocorrelations, and Portman-
teau (Q) statistics. It shows that there is no autocorrelation in GE stock re-
turns time series. Therefore, we do not include autoregressive and moving
average terms in mean equation. We will assume

µ = E(rt).

The MATLAB code one can find in Appendix B.

Standard error of estimates of parameters were obtained using the statistical
environment R.

In Appendix A one can find

• ARCH(1) model parameters’s estimation of returns for the GE stock
market closing daily prices (January 2, 2008 - December 31, 2010), σ2

t =
α0 + α1ε

2
t−1, Table A.5 and Table A.6;

• GARCH(1,1) model parameters’s estimation of returns of the GE com-
pany closing daily prices (January 2, 2008 - December 31, 2010, σ2

t =
ω + αε2t−1 + βσ2

t−1, Table A.7 and Table A.8;
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• Threshold GARCH(1,1) model parameters’s estimation of returns of
the GE company closing daily prices (January 2, 2008 - December 31,
2010), σt = α0 + α+ε+t−1 + α−ε−t−1 + β1σt−1, Table A.9;

• GJR–GARCH(1,1) model parameters’s estimation of returns of the GE
company closing daily prices (January 2, 2008 - December 31, 2010),
σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + γ1ε

2
t−1χt−1, where χt−1 = 0 if εt−1 ≥

0, and χt−1 = 1 if εt−1 < 0, Table A.10 and Table A.11.

Notice that the coefficients sum up to a number less than one, which is re-
quired to have a mean reverting variance process. Since the sum is very
close to one, this process only mean reverts slowly.

Figure shows the values of conditional variance of General Electric stock
market closing daily prices, based on 1-year GARCH model, 1-day predic-
tion.

Figure 5.5: Prediction of conditional variance of General Electric stock mar-
ket closing daily prices (January 2, 2008 - December 31, 2009), based on 1-
year GARCH model

Thus, Tables A.5, A.6, A.7, A.8, A.9, A.10, A.11 present estimated parameters
for ARCH, GARCH, TGARCH, GJR-GARCH models for all 24 in-sample
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datasets (Table A). Using these estimated parameters, we can forecast the
one day ahead volatility for each day of out-of-sample datasets (Table A.2).
To do so we put the values of the estimated parameters in the formula
for their respective models. For example, to predict the value of σt using
Threshold GARCH(1,1) model we have to substitute the estimated values
of parameters α0, α+, α− and β1 in the equation of TGARCH(1, 1) model at
time t = k, 1 ≤ k ≤ 21:

σk = α0 + α+ε+k−1 + α−ε−k−1 + β1σk−1,

where ε+k−1 and ε−k−1 are positive and negative part of the value of the
squared return of the previous day respectively. Further the value of vari-
ance σk at time k is used to forecast the volatility at time k + 1 using out-of-
sample data set (out-of-sample data sets are determined in Table A.2):

σk+1 = α0 + α+ε+k + α−ε−k + β1σk.

Thus, we can forecast volatility for up to 21st day. The same way is used for
the volatility forecast by ARCH(1, 1), GARCH(1, 1), GJR − GARCH(1, 1)
models.

The same procedure we use for volatility forecast for each of 12 out-of-
sample datasets. Hence volatility is forecasted for 251 days from 04/01/10
to 31/12/10 using each of 4 models, for all of 12 out-of-sample datasets.

Then V aRt(α), 506 ≤ t ≤ 757 is calculated by

V aRt(α) = f(α) · σt,

where α = 0.05 or 0.01 is confidence level and σt is estimated volatility for
the day t.

Thus VaR is forecasted using different models for the whole of the out of
sample period of 251 days from date 04/01/10 to 31/12/10.

The values of V aRt(α) can be used for the purpose of judging the perfor-
mance of the volatility models. To apply the unconditional coverage of Ku-
piec Kupiec [1995] it is necessary to find the number of violations by using
(5.17). Non-rejection region one can find in the Table 5.2.

Number of VaR violations of each model for 1-year length of in-sample
datasets is given in Table 5.3 and Table 5.4. Number of VaR violations of
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each model for 2-year length of in-sample datasets is given in Table 5.5 and
Table 5.6.

Table 5.3 and Table 5.4 show that for 95% and 99% confidence level respec-
tively, all models calibrated on 1-year dataset cannot be rejected.

Table 5.3: Numbers of failures with 95% confidence level, 1-year length of
dataset

Model Length Conf Failures Freq %
ARCH(1,1) 1 year 95% 8 251 3.17
GARCH(1,1) 1 year 95% 9 251 3.57
GJR-GARCH 1 year 95% 10 251 3.98
TGARCH 1 year 95% 10 251 3.98

Table 5.4: Numbers of failures with 99% confidence level, 1-year length of
dataset

Model Length Conf Failures Freq %
ARCH(1,1) 1 year 99% 2 251 0.79
GARCH(1,1) 1 year 99% 3 251 1.19
GJR-GARCH 1 year 99% 3 251 1.19
TGARCH 1 year 99% 3 251 1.19

Table 5.5: Numbers of failures with 95% confidence level, 2-year length of
in-sample dataset

Model Length Conf Failures Freq %
ARCH(1,1) 2 year 95% 1 251 0.40
GARCH(1,1) 2year 95% 1 251 0.40
GJR-GARCH 2 year 95% 1 251 0.40
TGARCH 2 year 95% 2 251 0.79

On the other hand, Table 5.5 and Table 5.6 show that for 95% and 99% con-
fidence level, all models calibrated on 2-year dataset must be rejected, since
they over predict the risk and the models falls out of the non-rejection re-
gion.

Christoffersen’ s interval forecast test
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Table 5.6: Numbers of failures with 99% confidence level, 2-year length of
in-sample dataset

Model Length Conf Failures Freq %
ARCH(1,1) 2 year 99% 0 251 0.00
GARCH(1,1) 2year 99% 0 251 0.00
GJR-GARCH 2 year 99% 0 251 0.00
TGARCH 2 year 99% 0 251 0.00

Christoffersen (1998) proposed a test of conditional coverage. He extends
the Kupiec’s test to examines whether the probability of an exception on
any day depends on the outcome of the previous day.

Thus Christoffersen’s test not only covers the violation rate but the indepen-
dence of exception also. If the model is accurate, then an exception today
should not depend on whether or not an exception occurred on the previous
day.

Define an indicator variable

It =

{
1, if violation occurs in the day t,

0, if no violation occurs in the day t,

i.e. It gets a value of 1 if V aR is exceeded and value of 0 if V aR is not
exceeded.

Denote by nij the number of days when condition It = j occurred assuming
that condition It = i occurred on the previous day.

To illustrate, the outcome can be displayed in a table:

It−1 = 0 It−1 = 1

It = 0 n00 n10 n00 + n10

It = 1 n01 n11 n01 + n11

n00 + n01 n10 + n11 N

Let
Π0 =

n01

n00 + n01

, Π1 =
n11

n10 + n11

, Π =
n01 + n11

n00 + n01 + n10 + n11
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Thus, n11 presents the number of consecutive exceptions, Πi is the proba-
bility of an exception assuming a state i on the previous day, and Π is the
probability of an exception regardless of the previous dayı́s state. The prob-
abilities are calculated from the observed data.

The test statistic for independence of exception is likelihood-ratio:

LR = −2 log
(1− Π)n00+n10Πn01+n11

(1− Π0)n00Πn01
0 (1− Π1)n10Πn11

1

(5.19)

LR is also χ2(1)-distributed. If the value of the LR statistic is lower than the
critical value of χ2(1) distribution, the model passes the test. Higher values
lead to rejection of the model.

As an example, consider again the ARCH model results at 95% confidence
level. The contingency table can be presented as follows

It−1 = 0 It−1 = 1

It = 0 235 7 235

It = 1 7 1 8

235 8 250

In addition, we need to find the probabilities

Π0 =
4

235 + 7
= 0.032089, Π1 =

1

7 + 1
= 0.1250, Π =

7 + 1

235 + 7 + 7 + 1
= 0.0320

Plugging this data into the likelihood ratio statistic we obtain the test value:

LR = −2 log
(1− 0.0320)235+70.03207+1

(1− 0.032089)2350.0320897(1− 0.1250)70.12501
= 1.3873

The critical value is the 95% percentile of the χ2(1) distribution with one
degree of freedom, 3.84. As the test statistic value remains below the critical
value, the model is accepted.

Table A.12 shows the input data for calculating the LR statistics for each
models and confidence level.
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Table 5.7 shows that for 95% and 99% confidence level, all models calibrated
both on 1-year and on 2-year dataset cannot be rejected.

Table 5.7: Christoffersen’s independence test resuls

Model Length Conf LR Critical Value
ARCH(1,1) 1 year 95% 1.3873 3.84 Accepted
GARCH(1,1) 1 year 95% 0.6724 3.84 Accepted
GJR-GARCH 1 year 95% 0.8336 3.84 Accepted
TGARCH 1 year 99% 0.8336 6.63 Accepted
ARCH(1,1) 1 year 99% 0.0323 6.63 Accepted
GARCH(1,1) 1 year 99% 0.0729 6.63 Accepted
GJR-GARCH 1 year 99% 0.0729 6.63 Accepted
TGARCH 1 year 99% 0.0729 6.63 Accepted
ARCH(1,1) 2 year 95% 0.0080 3.84 Accepted
GARCH(1,1) 2 year 95% 0.0080 3.84 Accepted
GJR-GARCH 2 year 95% 0.0080 3.84 Accepted
TGARCH 2 year 95% 0.0323 3.84 Accepted
ARCH(1,1) 2 year 99% 0.0000 6.63 Accepted
GARCH(1,1) 2 year 99% 0.0000 6.63 Accepted
GJR-GARCH 2 year 99% 0.0000 6.63 Accepted
TGARCH 2 year 99% 0.0000 6.63 Accepted

5.5.3 Summary

Backtesting procedure shows that the ARCH(1), GARCH (1, 1),
TGARCH(1,1) and GJR-GARCH (1, 1) models calibrated on datasets of 1-
year length (January 2, 2009 - December 31, 2009) under the normal distri-
bution performed well forecasting VaR both at 95% and 99% in 2010 year.

However, for 95% and 99% VaR estimations all the ARCH(1), GARCH (1,
1), TGARCH(1,1) and GJR-GARCH (1, 1) models calibrated on datasets of
2-year length (January 2, 2008 - December 31, 2009) underestimated the risk
and should be rejected.

It can be explained by huge difference in the level of volatility in 2008 crisis
year compare with the one in 2009 year. The conclusion is that the ARCH(1),
GARCH (1, 1), TGARCH(1,1) and GJR-GARCH (1, 1) models are highly
sensitive to dataset they are calibrated on.
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Chapter 6

Augmented GARCH Models

6.1 News Analytics

6.1.1 Introduction

Many investment companies in the U.S. and Europe have been using news
analytics to improve the quality of its business. Interest in news analytics
is related to the ability to predict changes of prices, volatility and trading
volume on the stock market Tetlock [2007].

News analytics uses some methods and technics of data mining Kantardzic
[2003] and relies on methods of computer science, artificial intelligence (in-
cluding algorithms for natural language processing), financial engineering,
mathematical statistics and mathematical modeling. News analytics soft-
ware signalize traders about the most important events or send their output
data directly to automated trading algorithms, which take into account this
signals automatically during the trade.

This chapter is a short review of the tools, methods and providers of news
analytics and mostly based on the book Mitra and Mitra [2011].
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6.1.2 What is the News Analytics?

News analytics can be described as a measurement of the following quanti-
tative and qualitative characteristics of news:

1. The nature of news (it determines the impact of news (positive or
negative), i.e. how news affects stock prices change; it is believed that
positive news about the company leads to a growth in the stock prices
of its shares, and negative, on the contrary, can leads to decreasing);

2. The impact of news (it is characterized by the influence of news on
the scale of the changes caused by the news);

3. The relevance (describes how the events, described in a news report,
are connected with the trader’s interest security);

4. The novelty (shows how much news is informative, usually it is in-
versely correlated with the number of references to events that are
written in this news report, with other news).

News analysis is a relatively new tool designed to improve the trading
strategies of investors. It is closely connected with the theory of behavioral
finance and in some sense, is contrary to the classical economic theory.

Indeed, the famous ”efficient markets hypothesis” states Samuelson [1965]
that any available information is already reflected in share prices. This con-
dition makes it impossible to attempt to outperform the market in a long
period of time through the use of information available on the market. On
the other hand, in the modern world, the intensity level of various news
agencies is so high (for example, Thomson Reuters has more than 4000 mes-
sages per day) that the trader is unable on its own to handle this information
flow. Events that are potentially change the situation on the stock exchange,
may be lost or omitted in a huge stream of news. In this context, it is un-
likely that at any one time all traders will be equally informed of all events
affecting the price of certain stocks. That is why the news analytics is an
effective tool to gain advantage over other market participants.

Knowing the characteristics of news in numerical indices one can use them
in mathematical and statistical models and automated trading systems.
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Currently, the tools of the news analytics have been increasingly used by
traders in the U.S. and Europe.

The process of news analysis in information systems is automated and usu-
ally includes the following steps:

1. collecting news from different sources;

2. preliminary analysis of news;

3. analysis of news-related expectations (sentiments), taking into account
the current market situation;

4. designing and using of quantitative models.

The process of news analytics is described in more details in the following
sections.

It worth be noted that managers of investment funds rarely use tools of
news analytics, since they usually create investment portfolios for a long
period of time, and in this case portfolio management does not suggest a
frequent resale of securities.

6.1.3 Data Sources

News data can be obtained from various sources:

• News sources of news agencies. Until recently, the news had been
spread by printed sources, radio, television and it was quite difficult
to obtain an overall picture of the news flow. The Internet has changed
the process of news analysis; the using of tagging and indexing has
made possible their automatic processing.

• Pre-news is a raw information material which is used in the prepara-
tion of news by reporters. It can be obtained from different primary
sources, for example, SEC reports, court documents, reports of var-
ious government agencies, business resources, company reports, an-
nouncements, industrial, and macroeconomic statistics.
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• Social media (blogs, social networks, etc.). The quality of news from
this type of sources can be vary highly, and this information is often
useless. However, you can keep track (evaluate) the mood of a large
number of these messages and apply results in trade strategies.

In addition, the financial news can be classified in terms of their expecta-
tions. Expected news come out at a scheduled time and often their contents
can be predicted on the basis of pre-news. They have a structured format
and generally include numeric data, which is convenient for automated
analysis (e.g., usually all companies publish annual or quarterly financial
reports in the same time). Macroeconomic reports have a strong influence
on liquid markets (foreign exchange, futures, government bonds) and are
widely used in the automatic trading. Speed and accuracy of processing of
such information are important technological requirements. Reports of in-
comes and losses affect directly the change in stock prices and are widely
used in trading strategies.

The main difficulties of the processing of financial information are associ-
ated with unexpected news, since the time of their appearance is unknown
and, often they have a unstructured text format and do not contain numeric
data. They are difficult to process quickly and efficiently, but they may con-
tain information about the causes and consequences of the event. To ana-
lyze unexpected news one can use the artificial intelligence systems based
on methods of natural language processing.

6.1.4 Pre–Analysis of News

News analytics evaluates the relevance, nature, novelty and the importance
of news. The results of processing of news information are used to create
signals for investors and traders. These signals can be combined with fore-
casts from other primary or processed sources.

6.1.5 Providers of News Analytics

In the world there are more than 50 providers of economic news.
Bloomberg, Dow Jones and Thomson Reuters are the three largest of them.
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About 200 agencies are involved in providing of financial analytics.

The most well-known providers of news analytics and data are:

• RavenPack ( http://www.ravenpack.com/) is one of the leading
providers of real-time news analysis services. The company special-
izes in linguistic analysis of large volumes of news in real time from
news providers. RavenPack News Scores measures the news senti-
ment and news flow of the global equity market based on all major
investable equity securities. News scores include analytics on more
than 27,000 companies in 83 countries and covers over 98% of the in-
vestable global market. All relevant news items about companies are
classified and quantified according to their sentiment, relevance, topic,
novelty, and market impact; the result is a data product that can be
segmented into many distinct benchmarks and used in various appli-
cations. RavenPack is working with news feeds from the company
Dow Jones.

• Media Sentiment (www.mediasentiment.com/) has a resource library
of nearly 2,000,000 articles and it regularly searches and analyzes out-
put from 6,000+ sources in near-real time to bring investors updated
news media sentiment about publicly traded companies, both quickly
and effortlessly.

• Thomson Reuters News Analytics (http://thomsonreuters.com) auto-
matically analyzes news providing improved buy/hold/sell signals
within milliseconds. The system can scan and analyze stories on thou-
sands of companies in real-time and feed the results into your quanti-
tative strategies. With its ability to track news sentiment over time,
Thomson Reuters News Analytics provides a more comprehensive
understanding of a companyı́s news coverage, helping to guide trad-
ing and investment decisions. It delivers unparalleled insight into a
companyı́s market reputation, giving money managers a unique ad-
vantage. Reuters NewsScope and Sentiment Analysis are new software
products, which provide financial news (interest rates, consumer price
indices, etc.). These programs are designed for use in automated trad-
ing.

In the work we will use the Raven Pack sources of news analytics data. One
can found the example of extract from the data in Table 6.1.
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Table 6.1: Extracts from Raven Pack news analytics data

TIMESTAMP UTC: 2010-01-21 21:20:08.297
COMPANY: JP/7203 (Toyota Motor Corp.)
RP COMPANY ID: CEC128
RELEVANCE: 100
EVENT CATEGORY: product-recall
EVENT SENTIMENT (ESS): 29
NOVELTY (ENS): 100
NOVELTY ID (ENS KEY): D9592AD7D8E718...
COMPOSITE SENTIMENT (CSS): 50
WORD/PHRASE LEVEL (WLE): 50
PROJECTIONS BY COMPANY (PCM): 50
EDITORIALS & COMMENTARY (ECM): 50
REPORTS CORP ACTIONS (RCM): 50
VENTURE, CORPORATE, M& A (VCM): 50
NEWS IMPACT PROJECTION (NIP): 34
RP STORY ID: D9592AD7D8E71...

6.2 Augmented GARCH Models

6.2.1 Description of the Models

Recent studies on the volatility of stock returns have been dominated by
time series models of conditional heteroscedasticity and have found strong
support for ARCH-GARCH-type effects. However, ARCH-GARCH-type
models do not provide a theoretical explanation of volatility or what, if any,
the exact contributions of information flows are in the volatility-generating
process. One theoretical explanation is the mixture of distribution hypoth-
esis (MDH) advanced by Clark [1973], Epps and Epps [1976], Tauchen and
Pitts [1983], and Lamoureax and Lastrapes [1991]. The MDH argues that
the variance of returns at a given interval is proportional to the rate of in-
formation arrival. As a result, volatility clustering could be a reflection of
the serial correlation of information arrival frequencies. All traders simulta-
neously receive the new price signals and the shift to a new equilibrium is
immediate and there will be no intermediate partial equilibrium.

The MDH relies on the following assumptions:
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• returns and corresponding trade volumes are jointly independently
distributed with finite variance (Harris [1987]);

• the number of events occurring each day is stochastic.

Some of empirical studies, including a pioneer work for the US stock market
by Lamoureax and Lastrapes [1990], have found evidence that the inclusion
of trading volumes in GARCH models for returns results in a decrease of
the estimated persistence, or even causes it to disappear. However, the re-
sults from other research indicated that trading volume contributes some
information to the returns process, while their results also show persistence
in volatility even after incorporate volume effects. These research paper in-
clude the futures market by Najand and Yung in Najand and Yung [1991].

If the parameters α, β of GARCH(1,1) model are positive, then shocks to
volatility persist over time. The sum α + β of these parameters reflects the
degree of persistence. Denote by δit the ith intraday equilibrium price incre-
ment in day t. Lamoureux and Lastrapes Lamoureax and Lastrapes [1990]
suggest that the innovation upon stock returns is a linear combination of
intraday price movements, i.e.,

εt =
nt∑
i=1

δit,

nt is the number of information flows within day t. Thus, Lamoureux and
Lastrapes (Lamoureax and Lastrapes [1990]) consider εt = rt − µt−1 as an
aggregation of price innovations from information flows into the market.
Note that they do not differentiate on the type of information flows into the
market.

Assume δit is independent identically distributed with mean zero and vari-
ance σ2 and suppose that nt is large. Then it follows from the central limit
theorem that εt|nt is asymptotically distributed as N (0, σ2nt). Then

Ωt := E(ε2t |nt) = σ2nt. (6.1)

Suppose that nt’s are serially correlated:

nt = a+ b(L)nt−1 + ut, (6.2)

where a is a constant, b(L) is a lag polynomial of order q, i.e. b(L)nt−1 =∑q
k=1 bknt−k, ut is a white noise.
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Substituting representation (6.2) into equation (6.1), we get

Ωt = σ2a+ b(L)Ωt−1 + σ2ut. (6.3)

Equation (6.3) describes the conditional variance of returns is depends on
lagged conditional variances and a white noise term. It motivated Lam-
oureax and Lastrapes [1990] to use additive GARCH-Volume model. As
it was mentioned by Lamoureux and Lastrapes Lamoureax and Lastrapes
[1990], equation (6.3) captures GARCH-type persistence in conditional vari-
ance. However, in the paper (Bauer and Nieuwland [1995]) it was pointed
out that the link between (6.3) and GARCH model is not at all straightfor-
ward.

The question is what is the best proxy for nt?

Trading volumes can be good proxies for news arrivals. It follows from the
intuitive fact that the more company news arrives, the more investors will
interpret the impact of the news differently, and thus the more investors will
have an impetus to trade as their expectations about future returns differ.

Lamoureux and Lastrapes (Lamoureax and Lastrapes [1990]) suppose that
volume can be considered as a proportional proxy for information arrivals
to the market. Volume acts as a mixing variable, i.e. εt is assumed to be ran-
dom draws upon alternative distributions, with variances depending upon
information available at the time. It leads to a model (6.4), (6.5), where Vt is
the volume of trade that occurs in time t.

Following the studies by previous authors, we are trying to estimate four
alternative augmented GARCH models of volatility.

We will examine the following alternative GARCH models:

1. GARCH model augmented with volume.

We will consider a process (εt) such that

εt = σtut, t ∈ Z, (6.4)

where (σt) is a nonnegative process such that

σ2
t = ω + αε2t−1 + βσ2

t−1 + γVt, (6.5)
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where Vt = vt/v
∗ is the scaled trade volume of the stock at the day t

(vt is daily trade volume of the stock at the day t and v∗ = maxt vt),
ω > 0, α, β ≥ 0, α + β < 1 and γ are parameters of the model.

2. GARCH model augmented with lagged volume.

We will consider a process (εt) such that

εt = σtut, t ∈ Z, (6.6)

where (σt) is a nonnegative process such that

σ2
t = ω + αε2t−1 + βσ2

t−1 + γVt−1, (6.7)

where Vt−1 is the scaled trade volume for the company in day t − 1,
ω > 0, α, β ≥ 0, α + β < 1 and γ are parameters of the model.

3. GARCH model augmented with news intensity.

Let rt and r∗t denote the log return of the company and log return of
FTSE100 index at interval t respectively. We will consider a process
(εt) = rt − (θ1 + θ2r

∗
t ) such that

εt = σtut, t ∈ Z, (6.8)

where (σt) is a nonnegative process such that

σ2
t = ω + αε2t−1 + βσ2

t−1 + γnt, (6.9)

where nt is the number of all relevant news for the company released
at the day t, ω > 0, α, β ≥ 0, α + β < 1, γ, θ1 and θ2 are parameters of
the model.

4. GARCH model augmented with lagged news intensity.

Let rt and r∗t denote the log return of the company and log return of
FTSE100 index at interval t respectively. We will consider a process
(εt) = rt − (θ1 + θ2r

∗
t ) such that

εt = σtut, t ∈ Z, (6.10)

where (σt) is a nonnegative process such that

σ2
t = ω + αε2t−1 + βσ2

t−1 + γnt−1, (6.11)

where nt−1 is the number of all relevant news for the company released
at the day t− 1, ω > 0, α, β ≥ 0, α + β < 1, γ, θ1 and θ2 are parameters
of the model.



6.2 Augmented GARCH Models 56

The first model is the model with contemporaneous trade volume. The sec-
ond model is the model with lagged trade volume. The third model is the
models with contemporaneous news intensity and the forth is with lagged
news intensity. The number of news about a company at the day t is called
the news intensity at the day t.

Empirical results can be found in the section 6.3. It will be shown that

• the GARCH(1,1) model augmented with volume Vt removes GARCH
and ARCH effects for most of the FTSE100 companies.

• the GARCH(1,1) model augmented with lagged volume Vt−1 does not
remove GARCH and ARCH effects.

• the GARCH(1,1) model augmented with the news intensity nt does
not necessary remove GARCH and ARCH effects; however, using
likelihood ratio test it will be shown that the model performs better
than both the ”pure” GARCH model for most of the FTSE100 compa-
nies.

• the GARCH(1,1) model augmented with the lagged news intensity nt−1

does not remove GARCH and ARCH effects.

6.2.2 Maximum likelihood estimation of augmented
GARCH models

To calibrate the GARCH(1, 1) model we can use different methods including
the least-square estimator or generalized moment method, but in this work
we will apply the maximum likelihood approach.

One can generalized models (6.4)–(6.5), (6.6)–(6.7), (6.8)–(6.9) in the follow-
ing way.

Let (εt) be a process such that

εt = σtut, t ∈ Z, (6.12)

where (σt) is a nonnegative process such that

σ2
t = ω + αε2t−1 + β1σ

2
t−1 + f(st, µ), (6.13)
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where st is an exogenous time series, f(·, µ) : R → R is a continuous func-
tion with a vector of parameters µ, ω > 0, α, β ≥ 0, α + β < 1 and µ are
parameters of the model.

The subsection describes quasi-maximum likelihood estimation (QML) of
model (6.12), (6.13)

The vector of model parameters is

θ = (ω, α, β, µ)T .

We will assume that θ belongs to the set

Θ := {(ω, α, β, µ)T : ω > 0, α > 0, β > 0 ∈ R}.

Denote
θ∗ = (ω∗, α∗, β∗, µ∗)T

the vector of the true values of parameters. The aim is to find θ∗ that maxi-
mize a QML function given an observation sequence

ε0, . . . , εn

of length n.

Define the sequence (σ̃1, . . . , σ̃n) by recursion:

σ̃2
t = ω + αε2t−1 + βσ̃2

t−1 + f(st, µ), 1 ≤ t ≤ n,

where ε0 and σ̃0 are an initial values of ε’s and σ’s respectively.

Given the initial values, the Gaussian quasi-likelihood function can be writ-
ten as follows

Ln(θ) = Ln(θ; ε1, . . . , εn) =
n∏
t=1

1√
2πσ̃2

t

exp

(
− ε2t

2σ̃2
t

.

)
The optimal estimation of θ is defined by

θ̃ = arg max
θ∈Θ

Ln(θ) = arg max
θ∈Θ

Fn(θ),

where

Fn(θ) := −
n∑
t=1

(
ε2t
σ̃2
t

+ log σ̃2
t

)
is log quasi-likelihood function (constant terms are ignored).
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6.3 Empirical Study

6.3.1 GARCH(1,1) Model with Volume

The aim of this section is to examine the impact of trading volume using
GARCH approach suggested by Lamoureax and Lastrapes [1990].

1. Data description

Our sample covers a period ranging from July 5, 2005 to July 5, 2008 (i.e. 750
trading days). Our sample is composed of the 92 UK stocks that were part
of the FTSE100 index in the beginning of 2005 and which survived through
the period of 6 years. We have deleted 8 stocks. In this work we will present
empirical results of only 5 company from the FTSE100. We focus our atten-
tion only on five companies traded on London Stock Exchange: AVIVA plc,
BP, BT Group plc, Lloyd Banking Group, HSBC HLDG.

Daily stock closing prices (the last daily transaction price of the security),
as well as daily transactions volume (number of shares traded during the
day) are obtained from Yahoo Finance database. Results similar to one’s
presented in the chapter can be verified for all FTSE100 companies.

Table 6.2 provides preliminary descriptive statistics for the stock prices log
returns and trading volumes.

Table 6.3 presents

• the list of stocks,

• the Kiefer-Salmon skewness test statistic (S)

• the Kiefer-Salmon kurtosis statistic (K)

• the Kiefer-Salmon joint statistic for normality (S+K)

• p-value of the Shapiro-Wilk statistic (marginal significance level)

• the Box-Ljung Q-statistic, constructed for maximum lag of 20.
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Table 6.2: Descriptive statistics of five companies traded on London Stock
Exchange

Company T Period Mean Std.Dev. Skew. Kurt. Vol.Mean
Aviva 750 05/06/2005-

05/06/2008
0.0001 0.0135 -0.3142 4.6735 1.12E+07

BP 750 05/06/2005-
05/06/2008

0.0003 0.0121 0.0252 3.4093 7.76E+07

BT
GROUP

750 05/06/2005-
05/06/2008

0.0004 0.0134 0.4950 6.1042 4.46E+07

Lloyds 750 05/06/2005-
05/06/2008

0.0000 0.0121 -0.2210 6.7680 3.26E+07

HSBC 750 05/06/2005-
05/06/2008

-0.0001 0.0089 -0.0854 5.0921 4.13E+07

Table 6.3: Empirical properties of daily log returns and volumes for the five
stocks in the sample

Company S K SW(p) Q(20)
AVIVA 0.0005 0.0000 0.9778 1292.7818
BP 0.7759 0.0376 0.9969 1730.2602
BT GROUP 0.0000 0.0000 0.9667 549.1024
Lloyds 0.0135 0.0000 0.9489 939.2284
HSBC 0.3361 0.0000 0.9746 1942.3059

It is well-known that S and K are χ2(1)-distributed, and K + S is χ2(2)-
distributed.

Based on the results presented in Table 6.3 one can conclude that the null
hypothesis of normality is rejected for all stocks but BP.

The Box-Ljung Q-statistic tests for serial correlation in the daily volume se-
ries. It shows that there is no autocorrelation of log returns.

Consistent with the findings in Lamoureux and Lastrapes Lamoureax and
Lastrapes [1990], we find that the p-values of Shapiro-Wilk statistic of log
returns for all five companies are close to zero. We may conclude that all
series are non-normal.
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2. Empirical results

The GARCH model of Bollerslev [1986] provides a flexible and parsimo-
nious approximation to conditional variance dynamics. Maximum likeli-
hood estimates of ”pure” GARCH(1,1) model (without Volume) for log re-
turns of closing daily prices are presented in Table 6.4. Using GARCH esti-
mates, Table 6.4 shows that the coefficients of the model are highly signifi-
cant and volatility persistence, i.e. α + β, is more than 0.9. It provides clear
evidence of GARCH effect.

Table 6.4: Maximum likelihood estimates of ”pure” GARCH(1,1) model
(without Volume) for log returns of closing daily prices, σ2

t = ω + αε2t−1 +
βσ2

t−1

Company α β α+ β LLF1

AVIVA 0.1209 0.8549 0.9758 2794.08
BP 0.0515 0.9208 0.9723 2867.78
BT GROUP 0.0770 0.8683 0.9454 2786.33
Lloyd 0.1230 0.8609 0.9839 2874.06
HSBC 0.1232 0.8568 0.9800 3112.39

The estimates of GARCH model with volume (6.4), (6.5) are presented in
Table 6.5. The results show us that daily trading volume has significant
explanatory power regarding the conditional volatility of daily log return
for 3 of 5 companies (AVIVA, BP and BT Group). For Lloyds Group and
HSBC Group there are not any changes in the level of persistence α + β
compare to the results for the ”pure” GARCH model.

The same contradictory picture is held for other FTSE100 companies. Once
volume Vt is included as an explanatory variable in the equation, for many
of FTSE100 companies the sum of α+β is significantly less than correspond-
ing results in Table 6.4. One can see that once contemporaneous volume is
included as an exogenous variable in the model, the impact of log return on
volatility diminishes for most of FTSE100 companies.

Let us remind that Vt = vt/v
∗, where vt is daily trade volume of a stock at

the day t and v∗ = maxt vt.

The estimates of γ in Table 6.5 for all five stocks are comparable with the
square of unconditional standard deviation of the stocks (see Table 6.2).
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Table 6.5: Maximum likelihood estimates of GARCH(1,1) model with Vol-
ume for log returns of the closing daily prices, σ2

t = ω + αε2t−1 + βσ2
t−1 + γVt

Company α β γ α+ β LLF2

AVIVA 0.2309 0.0012 1.22E-03 0.2321 2794.92
BP 0.1617 0.0000 7.19E-04 0.1617 2875.73
BT GROUP 0.1618 0.0000 9.38E-04 0.1618 2862.26
Lloyds 0.0928 0.8573 7.97E-05 0.9501 2883.04
HSBC 0.1387 0.8065 2.58E-05 0.9453 3118.81

To estimate the impact of lagged volume on volatility persistence in GARCH
model, we consider a nonnegative process εt = σtut, such that

σt = ω + αε2t−1 + β1σt−1 + γVt−1, (6.14)

where Vt−1 is the scaled trade volume for the company in day t − 1, ω > 0,
α, β ≥ 0, α + β < 1 and γ are parameters of the model.

The results presented in Table 6.12 show that there are no evidence of van-
ishing effect of log return on volatility. Moreover, estimates of parameters
α, β are close to corresponding ones in Table 6.4.

Table 6.6: Maximum likelihood estimates of GARCH(1,1) model with
Lagged Volume for log returns of the closing daily prices, σ2

t = ω + αε2t−1 +
βσ2

t−1 + γVt−1

Company α β γ α+ β LLF3

AVIVA 0.1150 0.8683 3.55E-05 0.9832 2794.78
BP 0.0516 0.9208 3.41E-11 0.9723 2867.78
BT GROUP 0.0761 0.8803 2.40E-11 0.9564 2867.22
Lloyds 0.0514 0.9208 3.32E-11 0.9721 2790.64
HSBC 0.1181 0.8574 1.20E-05 0.9755 3113.12

Note that the GARCH model (the null model) is a special case of the
GARCH model augmented with volume (the alternative model). There-
fore, to compare the fit of two models it can be used a likelihood ratio test
(see e.g. Cox and Hinkley [1974]). It is the most common approach to test-
ing problem. The test was introduced by Neyman and Pearson in 1928. It
compares the maximum likelihood under the alternatives with that under
the hypothesis. Let us remind the main idea of the test. Let the likelihood
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function of θ is
LF (x, θ) = pθ(x),

i.e. the probability density (or probability) of x considered as a function of θ.
It is widely considered a (relative) measure of support that the observation
x gives to the parameter θ. Then the likelihood ratio compares the best
explanation the data provide for the alternatives with the best explanations
for the hypothesis. The likelihood ratio is a function of the data x, therefore
it is a statistic. The likelihood-ratio test rejects the null hypothesis if the
value of this statistic is too small. We must compare the value of likelihood
ratio to a critical value to decide whether to reject the null model in favor of
the alternative model.

Results of likelihood ratio test for GARCH model (null model) and GARCH
model augmented with volume (alternative model) one can find in Table
6.7. For four of five companies the alternative model is preferable with con-
fidence level of 1%.

Table 6.7: Results of the likelihood ratio test for GARCH model and
GARCH model augmented with volume

Company LLF1 LLF2 2(LLF2 − LLF1) χ2(1), 1% Null Hyp.
AVIVA 2794.08 2794.92 1.70 6.64 accepted
BP 2867.78 2875.73 15.89 6.64 rejected
BT Group 2786.33 2862.26 151.87 6.64 rejected
Lloyds 2874.06 2883.04 17.96 6.64 rejected
HSBC 3112.39 3118.81 12.84 6.64 rejected

Results of likelihood ratio test for GARCH model (null model) and GARCH
model augmented with lagged volume (alternative model) one can find in
Table 6.8. For four of five companies the alternative model is rejected with
confidence level of 1%.

Figure 6.1 presents the volatility forecast of GARCH model and GARCH
model with Volume for HSBC stock market closing daily prices.
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Table 6.8: Results of the likelihood ratio test for GARCH model and
GARCH model augmented with lagged volume

Company LLF1 LLF3 2(LLF3 − LLF1) χ2(1), 1% Null Hyp.
AVIVA 2794.08 2794.78 1.42 6.64 accepted
BP 2867.78 2867.78 0.00 6.64 accepted
BT Group 2786.33 2790.64 8.63 6.64 rejected
Lloyds 2874.06 2874.64 1.15 6.64 accepted
HSBC 3112.39 3113.12 1.45 6.64 accepted

6.3.2 Monte Carlo simulation for likelihood ratio statistic

One of possible ways of testing one model against another one is to form the
likelihood ratio statistic. This test has been discussed in the papers Lee and
Brorsen [1997] and Kim et al. [1998]. In this subsection we use this approach
to test the GARCH-volume model against GARCH model (as well as the
GARCH-lagged-volume model against GARCH model).

Let H0 denote the GARCH-volume model and H1 denote the GARCH
model. Let εt be a random variable that has a mean and a variance con-
ditionally on the information set It−1.

Denote the corresponding log likelihood functions by LLFH0(ε; θ0) and
LLFH1(ε; θ1), respectively.

We will consider the test statistic defined by

LR = 2(LLFH0(ε; θ̃0)− LLFH1(ε; θ̃1)). (6.15)

While the asymptotic null distribution of (6.15) is unknown, it can be ap-
proximated by Monte Carlo simulation.

We can assume that the GARCH-volume model is the null model and that
θ̃0 is the true parameter. Using Monte Carlo approach we will generate N
realizations of T observations

ε(i) = (ε
(i)
t )Tt=1, i = 1, . . . , N,

from this model. Then we will estimate both models and calculates the
value of (6.15) using each realization ε(i).
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Figure 6.1: Volatility forecast of GARCH model and GARCH model
with Volume for HSBC stock market closing daily prices (05/06/2005-
05/06/2008)

Ranking the N values gives an empirical distribution with which one com-
pares the original value of (6.15). The true value of θ̃0 is unknown, but the
approximation error due to the use of θ̃0 as a replacement vanishes asymp-
totically as T →∞.

If the value of (6.15) is more or equal to the 100(1 − α)% quantile of the
empirical distribution, the null model is rejected at significance level α. As
it was mentioned in Lee and Brorsen [1997] the models under comparison
need not have the same number of parameters, and the value of the statistic
can also be negative. Reversing the roles of the models, it can be possible to
test GARCH models against GARCH-volume model.

We present the results of the Monte Carlo simulation for the likelihood ratio
statistic to compare

1. the GARCH model and the GARCH model with volume,

2. the GARCH model and the GARCH model with lagged volume

on the finite sample performance of the MLE estimator. In particular, we
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study the significance of the MLE estimators of the parameters of the vari-
ance equation (equations (6.5) and (6.7)).

1. Monte Carlo test results for GARCH model with volume

The data-generating model is defined by equations (6.4) and equation (6.5)
given before. Notice that the error term in the mean equation is drawn from
a normal distribution with mean zero and variance that changes over time
according to equation (6.5).

Finally, we have set the number of trials N in each Monte Carlo experiment
to 500.

MATLAB code is presented in Appendix B. The experiment took more than
10 hours on standard PC.

• Function MC Volume Sim Head.m

1. loads two files with input data (log returns and volumes);

2. runs function MC GARCH Volume simulation.m for N = 500
times;

3. outputs of the function MC Volume sim head.m are mean and
variance of LLF ratio statistic, as well as means and variances of
all parameters of GARCH model with volume (ω, α, β, γ).

• Function MC GARCH Volume simulation.m is a function with input
parameters

1. arrays of input data (log returns and volumes);

2. initial values of model parameters.

Function MC GARCH Volume simulation.m simulates the sequence of
ε’s. Based on Equation (6.5) it uses iteratively MATLAB function ran-
dom(’normal’,0,1) to get a sequence of ε’s.

The results of the Monte Carlo simulation are presented below.

Figures 6.2 and 6.3 illustrate the empirical distribution of parameters α and
β of GARCH model with Volume for HSBC, respectively.
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Figure 6.2: Histogram of parameter α of GARCH model with Volume for
HSBC (Monte Carlo simulation runs N = 500 times)

Results of likelihood ratio test for GARCH model and GARCH model aug-
mented with volume one can find in Table 6.9. For four of five companies
the alternative model H1 is rejected with confidence level of 10%. Moreover,
the Monte Carlo simulation shows that almost all parameters of GARCH-
volume model are significant at least with confidence level of 25%.

2. Monte Carlo test results for GARCH model with lagged volume

Now we present the results of the Monte Carlo simulation for the likeli-
hood ratio statistic to compare GARCH model and GARCH-volume-lagged
model. In particular, we study the significance of the MLE estimators of the
parameters of the variance equation (equations (6.7)).

The data-generating model (i.e. GARCH model with lagged volume) is de-
fined by equations (6.6) and equation (6.7) given before. Notice that the
error term in the mean equation is drawn from a normal distribution with
mean zero and variance that changes over time according to equation (6.7).

Finally, we have set the number of trials N in each Monte Carlo experiment
to 500. Given that not always the program that solves the model numerically
will achieve convergence, the final number of (valid) trials is less than 500.
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Figure 6.3: Histogram of parameter β of GARCH model with Volume for
HSBC (Monte Carlo simulation runs N = 500 times)

This happens particularly in the GARCH model with lagged volume.

MATLAB code is presented in Appendix.

The results of the Monte Carlo simulation are presented below. Results
of likelihood ratio test for GARCH model augmented with lagged volume
against GARCH model are presented in Table 6.10. For all of five companies
the GARCH model augmented with lagged volume do not perform better
than alternative model H1 (GARCH model) with confidence level of 10%.
Moreover, the Monte Carlo simulation shows that almost all parameters of
GARCH-volume model are significant at least with confidence level of 25%.

Figures 6.4 and 6.5 present histograms of parameters α and β of GARCH
model with Volume for HSBC, respectively.
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Table 6.9: Monte Carlo results for GARCH(1,1) model with Volume. Val-
ues in parenthesis are standard deviations. The symbols ˘, ˆ and ∗, indicate
if the parameter estimation is significant with levels of 5%, 10% and 25%
respectively.

Company ω α β γ LLF Ratio
AVIVA 2.81E-05* 0.1920 0.3186ˆ 2.02E-3* 3.5217

(1.70E-05) (0.2888) (0.1715) (1.77E-3) (1.1906)
BP 1.58E-05* 0.0694˘ 0.2809 1.87E-4* 9.1958*

(1.04E-05) (0.0282) (0.3265) (1.20E-4) (2.3943)
BT GROUP 8.75E-06˘ 0.0421* 0.1309 4.69E-4˘ 8.5014*

(1.84E-05) (0.0294) (0.2086) (1.66E-4) (3.6952)
Lloyds 1.56E-07ˆ 0.1506˘ 0.8505˘ 1.57E-5˘ 13.9909*

(6.44E-08) (0.0358) (0.0337) (7.37E-6) (6.0937)
HSBC 2.14E-07ˆ 0.1024˘ 0.8822˘ 1.14E-5˘ 10.0327*

(5.18E-08) (0.0242) (0.0268) (4.12E-6) (3.0207)

6.3.3 GARCH(1,1) Model Augmented with News Intensity

1. Data Description

Our sample covers a period ranging from July 5, 2005 to July 5, 2008 (i.e. 750
trading days). Our sample is composed of the 92 UK stocks that were part
of the FTSE100 index in the beginning of 2005 and which survived through
the period of 6 years. We have deleted 8 stocks. In this work we will present
empirical results of only 5 company from the FTSE100. We focus our at-
tention only on five companies traded on London Stock Exchange: AVIVA,
BP, BT Group, Lloyd Banking Group, HSBC. Daily stock closing prices (the
last daily transaction price of the security) are obtained from Yahoo Finance
database. Table 6.2 provides preliminary descriptive statistics for the stock
prices log returns and trading volumes.

All news analytics data were given by Raven Pack News Analytics (RPNA).
RPNA is a news sentiment analysis service that provides a look into the
sentiment of more than 28,000 publicly traded companies worldwide. Each
score is a weighed balance of sentiment in articles published by professional
newswires (such as Dow Jones and Reuters) and hundreds of financial sites,
online newspapers and even blogs.
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Table 6.10: Monte Carlo results for GARCH(1,1) model with Lagged Volume.
Values in parenthesis are standard deviations. The symbols ˘, ˆ and ∗, indi-
cate if the parameter estimation is significant with levels of 5%, 10% and
25% respectively.

Company ω α β γ LLF Ratio
aviva 1.97E-06 0.1408* 0.8560* 4.87621E-5ˆ 1.3769

(2.63E-06) (0.0306) (0.0299) (2.92E-5) (1.6562)
BP 7.07E-06˘ 0.0838* 0.8902* 7.25E-11 0.0144

(2.31E-06) (0.0164) (0.0221) (7.24E-11) (1.0436)
BT 1.08E-05* 0.1050˘ 0.8651˘ 9.25E-11˘ 0.0921

(5.02E-06) (0.0289) (0.0387) (1.46E-11) (0.8643)
lloyd 3.34E-06ˆ 0.1017˘ 0.8970˘ 9.75E-11˘ 1.0327

(1.30E-06) (0.0190) (0.0180) (1.51E-11) (1.0486)
hsbc 3.57E-07 0.1405˘ 0.8565˘ 7.19E-5* 3.9909

(6.52E-07) (0.0331) (0.0311) (3.02E-5) (2.6708)

For each news wire, we have got the following fields (Table 6.1): time stamp,
company name, company id, relevance of the news, event category, event
sentiment, novelty of the news, novelty id, composite sentiment score of the
news, word/phrase level score, projections by company, editorials & com-
mentary, reports corp actions, news impact projection, story ID. Company,
relevance score, composite sentiment score are the main fields of interest.
One piece of news can of course concern several companies, industries and
subjects. To avoid any redundancy and duplicate announcements that do
not bring any additional information value, we restrict the sample to news
released with high relevance score (more or equal to 90). We do not elimi-
nate all news releases with the same headlines and lead paragraphs, since it
is supposed that the number of the same news published by different news
agencies reflects the importance of the news.

For example, there was more than 8000 financial BP news releases with rel-
evance ≥ 90 over the whole sample period.

Figure 6.6 shows the evolution over time of the total daily number of news
wires for BP company.

Figure 6.7 displays the evolution over time of the rolling mean of the num-
ber of news wires with 5-days window.
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Figure 6.4: Histogram of parameter α of GARCH model with lagged Vol-
ume for AVIVA company (Monte Carlo simulation runs N = 500 times)

One can see that there is no any clear trend both in Figure 6.6 and Figure
6.7. It could indicate that the news time-series is rather stationary and re-
duce the risk of dummy results due to a possible simultaneous increase over
time of the stock volatility. Some periods have rate of news intensity below
the average (e.g. holidays, Christmas time). On the other hand, one can
witnessed the increase of the rate at the periods of the quarterly reports and
releases of the intermediate figures and earnings of companies.

One can see a clear presence of weekly seasonality in the data. For exam-
ple, Figure 6.8 shows that the average number of British Petroleum’ news
announcements released during the week-end is much lower than the one
of the other weekdays. The same picture is held for all FTSE100 companies
indeed. Since that we exclude all weekend news from our analysis.

Figure 6.9 shows the evolution of the frequency of announcements arrivals
throughout the day (at New-York’s time) for BP company. There are picks
at 9 am and 4 pm, and the activity seems to be globally more sustained in
the morning than in the afternoon. The ”lunch drop” is easily recognizable.



6.3 Empirical Study 71

Figure 6.5: Histogram of parameter β of GARCH model with lagged Vol-
ume for AVIVA company (Monte Carlo simulation runs N = 500 times)

2. Empirical Results

The estimates of GARCH model with news intensity (6.8), (6.9) are pre-
sented in Table 6.11. The results show us that daily news intensity has some
explanatory power regarding the conditional volatility of daily log return.
Once news intensity nt is included as an explanatory variable in the equa-
tion, the sum of α + β is less than corresponding results in Table 6.4. One
can see that once contemporaneous news intensity is included as an exoge-
nous variable in the model, the GARCH effect slightly diminishes for some
companies (BP and HSBC Group).

To estimate the impact of lagged news intensity on volatility persistence in
GARCH model, we consider a nonnegative process εt = σtut, such that

σ2
t = ω + αε2t−1 + β1σ

2
t−1 + γnt−1, (6.16)

where nt−1 is the news intensity for the company in day t−1, ω > 0, α, β ≥ 0,
α + β < 1 and γ are parameters of the model.

The results presented in Table 6.12 show that there are no evidence of van-
ishing GARCH effect. Moreover, estimates of parameters α, β are close to
corresponding ones in Table 6.4.



6.3 Empirical Study 72

Figure 6.6: The dynamics of British Petroleum’ news announcements

Results of likelihood ratio test for GARCH model (null model) and GARCH
model augmented with news intensity (alternative model) one can find in
Table 6.13. For all five companies the alternative model is preferable with
confidence level of 1%.

Results of likelihood ratio test for GARCH model (null model) and GARCH
model augmented with lagged news intensity (alternative model) one can
find in Table 6.14. For all five companies the alternative model is rejected
with confidence level of 1%.

Figure 6.10 presents the volatility forecast performed by GARCH model and
GARCH model with Volume for HSBC stock market closing daily prices.

6.3.4 Monte Carlo simulation for GARCH model with news
intensity

We will use the test proposed in Lee and Brorsen [1997] and Kim et al. [1998].
The latter authors suggested it for testing the GARCH model against the
autoregressive stochastic volatility model or vice versa.
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Figure 6.7: The rolling mean of the number of British Petroleum’ news an-
nouncements, 5-days window (January 3, 2005 – December 31, 2007)

Let H0 be the GARCH-news model and H1 the GARCH one. The test is
based on the log likelihood ratio

LR = 2(LLFH0(ε; θ̃0)− LLFH1(ε; θ̃0)).

where LLFH1(ε; θ̃1) and LLFH0(ε; θ̃0) are the maximized likelihood function
under the GARCH model and under the GARCH-news model, respectively.

The asymptotic distribution of LR is unknown. Therefore we can use an em-
pirical distribution constructed by simulation. We use the LR as test statis-
tic in a Monte Carlo hypothesis test. Unfortunately the true parameters are
unknown. Here, only a consistent estimate of the parameters is available.
When the parameters must be estimated, Monte Carlo hypothesis tests are
no longer exact, but still asymptotically valid; see Kim et al. [1998].

Note that in Chen and Kuan [2002] proposed yet another method based on
the pseudo- score, whose estimator under the null hypothesis and assuming
the customary regularity conditions is asymptotically normally distributed.
This result forms the basis for a χ2-distributed test statistic (see Chen and
Kuan [2002] for details).

Results of small-sample simulations in Malmsten [2004] indicate that the
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Figure 6.8: The average number of British Petroleum’ news announcements
released per day in week

pseudo-score test tends to be oversized. Furthermore, the Monte Carlo
likelihood ratio statistic seems to have consistently higher power than the
encompassing test, which suggests that the former rather than the latter
should be applied in practice.

The data-generating model is defined by equations (6.8) and equation (6.9)
given before. Notice that the error term in the mean equation is drawn from
a normal distribution with mean zero and variance that changes over time
according to equation (6.9).

We present the results of the Monte Carlo simulation for the likelihood ratio
statistic to compare

1. the GARCH model and the GARCH model with news intensity,

2. the GARCH model and the GARCH model with lagged news intensity

on the finite sample performance of the MLE estimator. In particular, we
study the significance of the MLE estimators of the parameters of the vari-
ance equation (equations (6.9) and (6.11)).
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Figure 6.9: The average number of British Petroleum’ news announcements
released during the day

1. Monte Carlo test results for GARCH model with news intensity

The data-generating model is defined by equations (6.8) and equation (6.9)
given before. Notice that the error term in the mean equation is drawn from
a normal distribution with mean zero and variance that changes over time
according to equation (6.9).

Finally, we have set the number of trials N in each Monte Carlo experiment
to 500. Given that not always the program that solves the model numerically
will achieve convergence, the final number of (valid) trials is less than 500.
This happens particularly in the GARCH-volume model.

MATLAB code is presented in Appendix B. The experiment took more than
14 hours on standard PC.

• Function MC News sim head.m

1. loads files with input data (arrays of log returns of the company
stocks, log returns of of FTSE100 index, arrays of numbers of
news per day);

2. runs function MC GARCH News simulation.m forN = 500 times;
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Table 6.11: Maximum likelihood estimates of GARCH(1,1) model with
news intensity for log returns of the closing daily prices, (εt) = rt−(θ1+θ2r

∗
t ),

σ2
t = ω + αε2t−1 + βσ2

t−1 + γnt

Company α β γ θ1 θ2 α+ β LLF4

AVIVA 0.0001 0.9562 2.24E-06 -4.36E-04 1.2086 0.9563 2963.51
BP 0.0010 0.1428 5.39E-06 -1.17E-04 0.9814 0.1437 3086.74
BT GROUP 0.0811 0.7595 8.36E-06 1.23E-05 0.7568 0.8406 2944.74
Lloyds 0.1500 0.8109 4.39E-06 7.38E-05 0.9655 0.9609 3134.81
HSBC 0.1448 0.1343 3.68E-06 -4.16E-04 0.8534 0.2791 3309.99

Table 6.12: Maximum likelihood estimates of GARCH(1,1) model with
Lagged news intensity for log returns of the closing daily prices, (εt) =
rt − (θ1 + θ2r

∗
t ), σ2

t = ω + αε2t−1 + βσ2
t−1 + γnt−1

Company α β γ θ1 θ2 α+ β LLF5

AVIVA 0.1178 0.8076 5.80E-12 -5.51E-04 1.1715 0.9254 3039.36
BP 0.0199 0.9494 2.94E-13 1.25E-04 0.9325 0.9694 3113.03
BT GROUP 0.0863 0.7105 1.12E-20 1.43E-05 0.8129 0.7968 2907.11
Lloyds 0.1366 0.8380 1.76E-14 3.51E-05 0.9716 0.9746 3113.29
HSBC 0.1544 0.7830 3.08E-24 -1.14E-05 0.7704 0.9375 3306.47

3. outputs of the function MC News sim head.m are mean and vari-
ance of LLF ratio statistic, as well as means and variances of all
parameters of GARCH model with news intensity (ω, α, β, γ).

• Function MC GARCH News simulation.m is a function with input pa-
rameters

1. arrays of input data (arrays of log returns of the company stocks,
log returns of of FTSE100 index, arrays of numbers of news per
day);

2. initial values of model parameters.

Function MC GARCH Volume simulation.m simulates the sequence of
ε’s. Based on Equation (6.9) it uses iteratively MATLAB function ran-
dom(’normal’,0,1) to get a sequence of ε’s.

The results of the Monte Carlo simulation are presented below.
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Table 6.13: Results of the likelihood ratio test for GARCH model and
GARCH model augmented with news intensity

Company LLF1 LLF4 2(LLF4 − LLF1) χ2(3), 1% Null Hyp.
AVIVA 2794.08 2963.51 338.88 7.82 rejected
BP 2867.78 3086.74 437.94 7.82 rejected
BT Group 2786.33 2944.74 316.83 7.82 rejected
Lloyds 2874.06 3134.81 521.51 7.82 rejected
HSBC 3112.39 3309.99 395.21 7.82 rejected

Table 6.14: Results of the likelihood ratio test for GARCH model and
GARCH model augmented with lagged news intensity

Company LLF1 LLF5 2(LLF5 − LLF1) χ2(3), 1% Null Hyp.
AVIVA 2794.08 3039.36 490.57 7.82 rejected
BP 2867.78 3113.03 490.50 7.82 rejected
BT Group 2786.33 2907.11 241.57 7.82 rejected
Lloyds 2874.06 3113.29 478.46 7.82 rejected
HSBC 3112.39 3306.47 388.17 7.82 rejected

Figures 6.11 present the histogram of LL ratio for HSBC.

Results of likelihood ratio test for GARCH model and GARCH model aug-
mented with news intensity one can find in Table 6.15. For four of five com-
panies the alternative model H1 is rejected with confidence level of 10%.
Moreover, the Monte Carlo simulation shows that almost all parameters of
GARCH-news model are significant at least with confidence level of 25%.

2. Monte Carlo test results for GARCH model with lagged news intensity

Now we present the results of the Monte Carlo simulation for the likelihood
ratio statistic to compare GARCH model and GARCH-lagged-news model.
In particular, we study the significance of the MLE estimators of the param-
eters of the variance equation (equations (6.7)).

The data-generating model (i.e. GARCH model with lagged volume) is de-
fined by equations (6.6) and equation (6.7) given before. Notice that the
error term in the mean equation is drawn from a normal distribution with
mean zero and variance that changes over time according to equation (6.7).
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Figure 6.10: Volatility forecast by GARCH model and GARCH model with
news intensity for HSBC stock market closing daily prices (05/06/2005-
05/06/2008)

Finally, we have set the number of trials N in each Monte Carlo experiment
to 500. MATLAB code is presented in Appendix B. The computations took
more than 14 hours on standard PC.

The results of the Monte Carlo simulation are presented below. Results of
likelihood ratio test for GARCH model and GARCH model augmented with
lagged news intensity one can find in Table 6.16. For all of five companies the
alternative model H1 (GARCH model) is not rejected with confidence level
of 10%. However, the Monte Carlo simulation shows that almost all param-
eters of GARCH-volume model are significant at least with confidence level
of 10%. Figures 6.12 present the histogram of LL ratio for HSBC.

3. Conclusion

The results show us that daily trading volume does have significant ex-
planatory power regarding the conditional volatility of daily log return.
Based on empirical study for stocks of some of FTSE100 companies we may
conclude that once contemporaneous volume is included as an exogenous
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Figure 6.11: Histogram of log likelihood ratio for GARCH model with news
intensity for HSBC (Monte Carlo simulation runs N = 500 times)

variable in the model, the GARCH effect diminishes for most of the FTSE100
companies.

However, the results presented in Table 6.12 show that there are no evi-
dence of vanishing GARCH effect for the GARCH(1,1) model augmented
with lagged volume Vt−1.

Then we merely reproduce the methodology commonly used in the liter-
ature (see Kalev et al. [2004] and Janssen [2004]). It sums up to insert the
number of daily announcements concerning a stock into the equation of its
variance in a GARCH (1,1) model. The estimation of the latter after inclu-
sion of the variable NBN (daily number of news releases) converges for all 5
stocks. It was shown that the GARCH(1,1) model augmented with the news
intensity nt (the number of daily announcements) does not necessarily re-
move GARCH and ARCH effects.

However, the likelihood ratio test shows that the GARCH(1,1) model aug-
mented with the news intensity performs better than both the GARCH
model.

Then we use the Monte Carlo simulation of likelihood ratio test discussed



6.3 Empirical Study 80

Table 6.15: Monte Carlo results for GARCH(1,1) model with news intensity.
Values in parenthesis are standard deviations. The symbols ˘, ˆ and ∗, in-
dicate if the parameter estimation is significant with levels of 5%, 10% and
25% respectively.

Company ω α β LLF Ratio
AVIVA 6.87E-06˘ 0.1209˘ 0.8549˘ 7.5696

(2.79E-7) (7.22E-4) (9.33E-5) (15.9179)
BP 5.11E-06˘ 0.0515˘ 0.9208˘ 70.8573˘

(9.32E-8) (5.07E-3) (2.33E-2) (14.2960)
BT Group 1.32E-05ˆ 0.0770˘ 0.8683˘ 83.5708ˆ

(8.98E-7) (4.02E-3) (7.55E-7) (28.7227)
Lloyds 4.91E-06˘ 0.1230˘ 0.8609˘ 25.1883*

(5.93E-8) (9.44E-5) (2.33E-7) (13.6620)
HSBC 2.72E-06˘ 0.1232˘ 0.8568˘ 114.4146ˆ

(2.96758E-10) (1.1669E-6) (7.33481E-5) (43.9317)

in the papers Lee and Brorsen [1997] and Kim et al. [1998]. This approach
has been used for testing the augmented GARCH models against GARCH
model. In particular, we study the significance of the MLE estimators of the
parameters of the variance equation

Results of likelihood ratio test for GARCH model and GARCH model aug-
mented with volume show that for four of five companies the alternative
model (GARCH model) is rejected with confidence level of 10%. Moreover,
the Monte Carlo simulation shows that almost all parameters of GARCH-
volume model are significant at least with confidence level of 25%.

Then we have presented the results of the Monte Carlo simulation for the
likelihood ratio statistic to compare GARCH model and GARCH-volume-
lagged model. The results of the Monte Carlo simulation show that for all
of five companies the GARCH model augmented with lagged volume do
not perform better than alternative model (GARCH model) with confidence
level of 10%. However, the Monte Carlo simulation shows that almost all
parameters of GARCH-volume model are significantly different from zero
at least with confidence level of 25%.

Results of likelihood ratio test for GARCH model and GARCH model aug-
mented with news intensity show that for four of five companies the al-
ternative model (GARCH model) is rejected with confidence level of 10%.
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Figure 6.12: Histogram of log likelihood ratio for GARCH model with news
intensity for HSBC (Monte Carlo simulation runs N = 500 times)

Moreover, the Monte Carlo simulation shows that almost all parameters of
GARCH-news model are significant at least with confidence level of 25%.

Monte Carlo simulation of likelihood ratio test for GARCH model and
GARCH model augmented with news intensity show that for four of five
companies the alternative modelH1 is rejected with confidence level of 10%.
Moreover, the Monte Carlo simulation shows that almost all parameters of
GARCH-news model are significant at least with confidence level of 25%.

The results of the Monte Carlo simulation for GARCH model and GARCH
model augmented with lagged news intensity show that we can not reject
the alternative model H1 (GARCH model) with confidence level of 10% for
all five companies. However, the Monte Carlo simulation shows that al-
most all parameters of GARCH-volume model are significant at least with
confidence level of 10%.
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Table 6.16: Monte Carlo results for GARCH(1,1) model with Lagged news
intensity. Values in parenthesis are standard deviations. The symbols ˘, ˆ
and ∗, indicate if the parameter estimation is significant with levels of 5%,
10% and 25% respectively.

Company ω α β γ LLF Ratio
AVIVA 6.87E-06˘ 0.1209˘ 0.8549˘ 6.87E-06˘ 11.71714179

(2.80E-20) (7.22E-16) (9.34E-15) (2.80E-20) (1.46E+01)
BP 5.11E-06˘ 0.0515˘ 0.9208˘ 5.11E-06˘ 31.62763573

(9.33E-21) (5.07E-16) (2.33E-15) (9.33E-21) (7.87E+00)
BT Group 1.32E-05˘ 0.077˘ 0.8683˘ 1.32E-05˘ 14.98114309

(8.99E-20) (4.03E-16) (7.56E-15) (8.99E-20) (1.16E+01)
Lloyds 4.91E-06˘ 0.123˘ 0.8609˘ 4.91E-06˘ 22.65617058

(5.94E-20) (9.45E-16) (2.33E-15) (5.94E-20) (2.43E+01)
HSBC 2.72E-06˘ 0.1232˘ 0.8568˘ 2.72E-06˘ 13.42066052

(2.97E-20) (1.17E-15) (7.33E-15) (2.97E-20) (1.61E+01)
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Chapter 7

GARCH models with Jumps

7.1 GARCH model with Jumps

7.1.1 Model Description

GARCH-Jump model was proposed and studied in Maheu and McCurdy
[2004]. This paper proposes a model of conditional variance of returns im-
plied by the impact of different type of news.

Let Xt be the log return of a particular stock or the market portfolio from
time t − 1 to time t. Let It−1 denote the past information set containing the
realized values of all relevant variables up to time t − 1. Suppose investors
know the information in It−1 when they make their investment decision
at time t − 1. Then the relevant expected return µt to the investors is the
conditional expected value of Xt, given It−1, i.e.

µt = E(Xt|It−1).

The relevant expected volatility σ2
t to the investors is conditional variance

of Xt, given It−1, i.e.
σ2
t = V ar(Xt|It−1).

Then
εt = Xt − µt

is the unexpected return at time t.
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In GARCH–Jump model it is supposed that news process have two separate
components (normal and unusual news), which cause two types of innova-
tion (smooth and jump-like innovations):

εt = ε1,t + ε2,t. (7.1)

These two news innovations have a different impact on return volatility. It
is assumed that the first component ε1,t reflects the impact of unobservable
normal news innovations, while the second one ε2,t is caused by unusual
news events.

The first term in (7.1) reflects the impact of normal news to volatility:

ε1,t = σtut, t ∈ Z,

where (un) be a sequence of i.i.d. random variables such that ut ∼ N (0, 1),
(σt) is a nonnegative GARCH(1,1) process such that

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

and α0, α1, β1 > 0. Note that E(ε1,t|It−1) = 0.

The second term in (7.1) is a jump innovation with E(ε2,t|It−1) = 0. The
component ε2,t is a result of unexpected events and is responsible for jumps
in volatility.

The distribution of jumps is assumed to be Poisson distribution. Let λt be
intensity parameter of Poisson distribution. Denote nt a number of jumps
occurring between time t− 1 and t. Then conditional density of nt is

P (nt = j|It−1) =
exp(−λt)λjt

j!
, j = 0, 1, . . . . (7.2)

We suppose that the intensity parameter λt conditionally varies over time.
It is assumed that the conditional jump intensity λt = E(nt|It−1), i.e. the
expected number of jumps occurring between time t − 1 and t conditional
on information It−1, has dynamics

λt = λ0 + ρλt−1 + γ1ζt−1. (7.3)

The process (7.3) is called an autoregressive conditional jump intensity and
was proposed in the paper Chan and Maheu [2002]. The model based on
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the assumption that the conditional jump intensity is autoregressive and re-
lated both to the last period’s conditional jump intensity and to an intensity
residual ζt−1. The intensity residual ζt−1 is defined as

ζt−1 = E(nt−1|It−1)− λt−1 =
∞∑
j=0

jP (nt−1 = j|It−1)− λt−1.

Here E(nt−1|It−1) is the expected number of jumps occurring from t − 2 to
t−1, and λt−1 is the conditional expectation of numbers of jumps nt−1 given
the information It−2 available at the moment t− 2. Thus

ζt−1 = E(nt−1|It−1)− E(nt−1|It−2)

i.e. ζt−1 represents the change in the econometrician’s conditional forecast
of nt−1 as the information set is updated from t− 2 to t− 1. It is easy to see
that E(ζt|It−1) = 0, i.e. ζt is a martingale difference sequence with respect to
It−1, and therefore E(ζt) = 0, Cov(ζt, ζt−i) = 0 for all i > 0.

Denote Yt,k the size of k-th jump that occur from time t− 1 to t, 1 ≤ k ≤ nt.
In the model it is supposed that the jump size Yt,k is realization of normal
distributed random:

Yt,k ∼ N (θ, δ2).

Then the cumulative jump size Jt from t − 1 to t is equal to the sum of all
jumps occurring from time t− 1 to t:

Jt =
nt∑
k=1

Yt,k.

The jump innovation ε2,t defined by

ε2,t = Jt − E(Jt|It−1).

It follows from
E(Jt|It−1) = θλt

that

ε2,t =
nt∑
k=1

Yt,k − θλt.

Therefore we have
E(ε2,t|It−1) = 0.
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7.1.2 Maximum Likelihood Estimation of GARCH Model
with Jumps

The subsection describes quasi-maximum likelihood estimation (QML) of
GARCH model with Jumps. The vector of model parameters is

Θ = (α0, α1, β1, δ, θ, a, b, c)
T .

We will assume that θ belongs to the set

S := {(α0, α1, β1, δ, θ, a, b, c)
T : α0 ≥ 0, α1 > 0, β1 > 0}.

Denote
Θ∗ = (α∗0, α

∗
1, β

∗
1 , δ
∗, θ∗, a∗, b∗, c∗)T

the vector of the true values of parameters. The aim is to find Θ∗ that maxi-
mize a QML function given an observation sequence

ε0, . . . , εn

of length n.

Define the sequence (σ̃1, . . . , σ̃n) by recursion:

σ̃2
t = α0 + α1ε

2
t−1 + β1σ̃

2
t−1.

If we assume that the likelihood function is Gaussian, then the log-
likelihood function can be written as (see e.g. Chan and Maheu [2002]):

Fn(Θ) :=
n∑
t=1

log f(εt|It−1,Θ),

where

f(εt|It−1,Θ) =
∞∑
j=0

exp(−λ̃t)λ̃jt
j!

f(εt|nt = j, It−1,Θ) (7.4)

and

f(εt|nt = j, It−1,Θ) =
1√

2π(σ̃2
t + jδ2)

exp

(
−(εt + θλt − θj)2

2(σ̃2
t + jδ2)

)
. (7.5)
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The sequence of λ̃t is defined by recursion:

λ̃t = a+ bλ̃t−1 + cζt−1,

where
ζt−1 = E(nt−1|It−1)− λ̃t−1,

and

E(nt−1|It−1) =
∞∑
j=0

jP (nt−1 = j|It−1) =

=
∞∑
j=0

j
f(εt|nt−1 = j, It−2,Θ)P (nt−1 = j)|It−2)

f(εt|It−2,Θ)
=

=

∑∞
j=1

exp(−λ̃t−1)λ̃jt−1

j!
1√

2π(σ̃2
t−1+jδ2)

exp
(
− (εt−1+θλt−1−θj)2

2(σ̃2
t−1+jδ2)

)
f(εt−1|It−2,Θ)

(7.6)

The maximum likelihood estimator of Θ is defined by

Θ∗ = arg max
Θ∈S

Fn(Θ).

Since the densities (7.5) has an infinite sum, it is impossible to use them for
parameters’ estimation. There are two ways of using equation (7.5):

• taking a finite Taylor expansions of (7.5);

• truncation of the sum (7.5), i.e. limitation of the number of terms in
the sum.

MATLAB code for calibration the GARCH model with jumps is in Ap-
pendix B. It is should be noted that the calibration problem is non convex
and surface of optimized function has a highly complex relief. As it was
mentioned in Chapter 3, finding its exact solution is a difficult task. We
faced with difficulties when calibrate process via MATLAB function fmin-
search. In particular, the calibration process is not robust and extremely
sensitive to the choice of a starting point. For this reason, we do not include
any empirical results for the GARCH model with jumps (the case of autore-
gressive jump intensity). However, if we would assume that jump intensity
is constant over time then the calibration process converges. MATLAB code
for calibration of the GARCH model with constant jump intensity also can
be found in Appendix B.
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7.1.3 Empirical Results

We use the data set described in Section 6.3. Dataset includes the daily stock
closing prices of five companies traded on London Stock Exchange: AVIVA,
BP, BT Group, Lloyd Banking Group, HSBC.

Table 6.2 shows preliminary descriptive statistics for the stock prices log
returns.

Table 7.1 shows the maximum likelihood estimates of GARCH(1,1) model
with Jumps (with constant jump intensity, i.e. it is assumed that b = c = 0)
for log returns of the closing daily prices of the five companies for 3 years
(July 5, 2005 - July 5, 2008).

Table 7.1: Maximum likelihood estimates of GARCH(1,1) model with
Jumps for log returns of the closing daily prices

Company α β δ θ λ α+ β LLF6

AVIVA 0.1247 0.8248 1.44E-02 -9.66E-03 0.9496 0.9495 2804.88
BP 0.0918 0.7919 1.02E-02 4.95E-04 0.8837 0.8837 2875.06
BT Group 0.0406 0.9332 1.87E-02 1.05E-03 0.9738 0.9738 2825.57
Lloyds 0.1262 0.8464 1.45E-02 4.11E-04 0.9726 0.9726 2899.96
HSBC 0.1335 0.8278 1.56E-02 -6.52E-04 0.9613 0.9613 3126.34

Figure 7.1: GARCH model and GARCH model with Jumps performance for
BP stock market closing daily prices (January 5, 2005 - December 31, 2010)
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7.2 Individual Stock Volatility Modelling With
GARCH–Jumps Model Augmented With
News Analytics Data

7.2.1 Model description

We are going to analyze the impact of news process intensity on stock
volatility by extending GARCH-Jump models proposed and studied in Ma-
heu and McCurdy [2004].

Let Xt be the log return of a particular stock or the market portfolio from
time t− 1 to time t. Let It−1 denotes the past information set containing the
realized values of all relevant variables up to time t − 1. Suppose investors
know the information in It−1 when they make their investment decision
at time t − 1. Then the relevant expected return µt to the investors is the
conditional expected value of Xt, given It−1, i.e.

µt = E(Xt|It−1).

The relevant expected volatility σ2
t to the investors is conditional variance

of Xt, given It−1, i.e.
σ2
t = V ar(Xt|It−1).

Then
εt = Xt − µt

is the unexpected return at time t. Following Maheu and McCurdy [2004]
we suppose that news process have two separate components: normal and
unusual news,

εt = ε1,t + ε2,t. (7.7)

The first term in (7.7) reflects the impact of normal news to volatility:

ε1,t = σtut, t ∈ Z,

where (un) be a sequence of i.i.d. random variables such that ut ∼ N(0, 1),
(σt) is a nonnegative process such that

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

and
α0, α1, β1 > 0.
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The second term in (7.7) reflects the result of unexpected events and describe
jumps in volatility:

ε2,t =
Nt∑
k=1

Yt,k − θλt,

where Yt,k ∼ N (θ, δ2), Nt is a Poisson random variable with conditional
jump intensity

λt = a+ bλt−1 + cζt−1 + ρ1n
+
t−1 + ρ2n

−
t−1,

where ζt−1 = E(Nt−1|It−1) − θλt−1, and n+
t−1, n

−
t−1 is the number of positive

and negative news from t − 2 to t − 1 respectively. Therefore we directly
take into account the qualitative data of news intensity and news sentiment
score (source: RavenPack News Scores).

7.2.2 Empirical results

Table 7.2 presents maximum likelihood estimates of GARCH(1,1)–Jumps
model augmented with news intensity for log returns of the closing daily
prices for the five companies (January 5, 2005 - December 31, 2010). It shows
that ρ1 < ρ2 for all companies, i.e. the impact of the number of negative
news on the growth of jump intensity much higher than one’s of positive
news.

Table 7.2: Maximum likelihood estimates of GARCH(1,1)–Jumps model
augmented with news intensity for log returns of the closing daily prices

Company α β δ θ λ ρ1 ρ2 LLF7

AVIVA 0.12 0.82 1.4E-02 -9.7E-03 0.14 0.011 0.12 2876.37
BP 0.09 0.79 1.0E-02 4.9E-04 0.58 0.032 0.42 3239.31
BT Group 0.04 0.93 1.9E-02 1.0E-03 0.26 0.03 0.42 2835.06
Lloyds 0.13 0.85 1.4E-02 4.1E-04 0.20 0.04 0.13 2909.35
HSBC 0.13 0.83 1.6E-02 -6.5E-04 0.06 0.00 0.01 3128.33

Note that the GARCH model with jumps (the null model) is a special case of
the augmented GARCH-Jumps model (the alternative model). Therefore, to
compare the fit of two models it can be used a likelihood ratio test (see e.g.
Cox and Hinkley [1974]). Results of likelihood ratio test are in Table 7.3. For
tree of five companies the alternative model is preferable with confidence
level 5%.
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Table 7.3: Results of the likelihood ratio test for the GARCH model with
jumps and the augmented GARCH-Jumps model

Company LLF6 LLF7 2(LLF7 − LLF6) χ2(2), 5% Null Hyp.
AVIVA 2804.89 2876.37 142.96 5.99 rejected
BP 2875.06 3239.31 728.50 5.99 rejected
BT Group 2825.58 2835.06 18.96 5.99 rejected
Lloyds 2899.97 2909.35 18.77 5.99 rejected
HSBC 3126.34 3128.33 3.98 5.99 accepted

7.3 Summary

In the chapter we have examined two GARCH models with jumps. First we
consider the well-known GARCH model with jumps proposed in Maheu
and McCurdy [2004]. Then we introduced the GARCH–Jumps model aug-
mented with news intensity and obtained some empirical results. The main
assumption of the model is that jump intensity might change over time and
that jump intensity depends linearly on the number of positive and nega-
tive news. It is not clear whether news adds any value to a jump-GARCH
model. However, the comparison of the values of log likelihood shows
that the GARCH–Jumps model augmented with news intensity performs
slightly better than ”pure” GARCH or the GARCH model with Jumps.
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Chapter 8

Summary and future work

8.1 Summary and contributions

The first part of the thesis compares the performance of different GARCH
models using backtesting procedures based on unconditional coverage test
(Kupiec’s test) and the test of conditional coverage.

The data set we have analyzed in this part of the work is the stock market
closing daily prices of General Electric Company (GEC.L). The sample pe-
riod is from January 2, 2008 to December 31, 2010. Data set are taken from
UK Stock Market FTSE100 and downloaded from Yahoo!Finance site. The
sample is divided in twelve parts for two purposes: in-sample estimation
procedure and out-of-sample evaluation. Using the Jarque–Bera test statis-
tics with 1% level we reject the null hypothesis of normality of log return
series. Shapiro–Wilk W test also rejects the hypothesis of normal distribu-
tion of the data.

It was shown that the ARCH(1), GARCH (1, 1), TGARCH(1,1) and GJR-
GARCH (1, 1) models calibrated on data sets of 1-year length (January 2,
2009 - December 31, 2009) under the normal distribution performed well.
However, for 95% and 99% VaR estimations all the ARCH(1), GARCH (1,
1), TGARCH(1,1) and GJR-GARCH (1, 1) models calibrated on datasets of
2-year length (January 2, 2008 - December 31, 2009) underestimated the risk
and was rejected. It might be explained by huge difference in the level of
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volatility in 2008 crisis year compare with the one in 2009 year.

The second part of the work tries to evaluate the impact of news on stock
volatility. There are not so much research works studying quantitative im-
pact of news on stock volatility. It is worth to be mentioned the pioneering
works Kalev et al. [2004] and Janssen [2004]. In the second of the papers
the author examines impact of news releases on index volatility, while in
our work we analyze the impact on stock volatility following study of Kalev
et al. [2004]. However, we restrict our choice by some of the FTSE100 com-
panies, while Kalev et al. [2004] considered some French companies.

In the Chapter 5.5 we have tried to study different GARCH models aug-
mented with news analytics data. The main goal was to examine the im-
pact of news intensity on stock volatility. Based on empirical evidences for
some of FTSE100 companies it has been shown shown that the GARCH(1,1)
model augmented with volume does remove GARCH and ARCH effects
for most of the FTSE100 companies, while the GARCH(1,1) model aug-
mented with news intensity has difficulties in removing the effects. It has
been shown that the GARCH(1,1) model augmented with the news inten-
sity nt (the number of daily announcements) does not necessarily remove
GARCH and ARCH effects. However, the likelihood ratio test has shown
that the GARCH(1,1) model augmented with the news intensity performs
better than the ”pure” GARCH model.

This study uses Monte Carlo hypothesis tests with the log likelihood ratio
as the test statistic. We use Monte Carlo methods to obtain the probabil-
ity of a larger value of the test statistic under the null hypothesis. Based
on the maximum likelihood estimation technique, we estimate two compet-
ing time series models (GARCH model and augmented GARCH models) of
daily prices of five FTSE100 company. Using Monte Carlo hypothesis tests,
we conclude that

• for 4 of 5 companies the GARCH-volume model cannot be rejected,
while the GARCH model is rejected;

• for all companies, the GARCH-lagged-volume model must be re-
jected;

• for 4 of 5 companies, the GARCH-news model cannot be rejected,
while the GARCH model is rejected;



8.2 Future work 94

• for 3 of 5 companies, the GARCH-lagged-news model cannot be re-
jected, while the GARCH model is rejected.

Then we compare GARCH model with jumps and GARCH–Jumps model
augmented with news intensity using likelihood ratio test.

To calibrate the models we have used the Maximum Likelihood Estimation
(MLE) and Quasi Maximum Likelihood Estimation (QMLE) methods. The
volatility models are calibrated on the software package MATLAB. We used
RavenPack news analytics data.

8.2 Future work

The study has shown that the problem of examining the impact of news
intensity on stock volatility is far more sophisticated than it might seem at
first sight. The empirical results show that there are no strong arguments in
support of hypothesis of impact of news intensity on volatility. It might be
occur due the following causes:

• an additional preprocessing of news analytics data is required;

• the models do not take into account macro economics news;

• it could be seen the splash of volatility in 2008, while news intensity
has not been changing very much over the whole period;

• news intensity might not affect volatility directly, although jumps in
returns could be caused by news releases.

The work may be considered as a preliminary work on the problem of eval-
uation of impact of news on stock volatility. Based on the research it can be
suggested some directions of future work.

• The first problem is to develop a GARCH-type model with news ana-
lytics data for prediction VaR with better performance than the ”pure”
GARCH model.
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• It is worth considering the problem of mutual dependence of volatility
and news intensity.

• The problem of calibration of augmented models (e.g. GARCH–Jumps
models) is difficult due to its non convexity and noisiness (the problem
was mentioned in Chapter 7). We can try to use different solvers for
global optimization or to develop new algorithms.

Future work may be also associated with the study of

• Markov – Switching GARCH models. The idea is to estimate a model that
permits regime switching in the parameters caused by movements of
news intensity. It is a generalization of the GARCH model and per-
mits a different persistence in the conditional variance of each regime.
Thus, the conditional variance in each regime accommodates volatility
clustering, nesting the GARCH model as special case.

• HMM – GARCH Model. The model is similar to the previous one, but
it is supposed that the process is a hidden Markov process. We will
suppose that the hidden states in HMM are ”somehow” connected
with observable sequence of the news sentiment score and parameters
of GARCH model are state-dependant.

There are some evidences (see e.g. Mitra and Mitra [2011]) that effect of
news on prices is short-term, therefore it is more likely that we need tick by
tick data to examine impact of news on stock volatility.
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Appendix A

Tables
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ID dataset From To Size
0 02/01/2008 31/12/2010 577
1yy 02/01/2008 31/12/2009 505
2yy 01/02/2008 02/02/2010 505
3yy 04/03/2008 04/03/2010 505
4yy 03/04/2008 05/04/2010 505
5yy 01/05/2008 04/05/2010 505
6yy 03/06/2008 03/06/2010 505
7yy 02/07/2008 02/07/2010 505
8yy 01/08/2008 03/08/2010 505
9yy 02/09/2008 01/09/2010 505
10yy 01/10/2008 01/10/2010 505
11yy 30/10/2008 01/11/2010 505
12yy 28/11/2008 01/12/2010 505
1y 02/01/2009 31/12/2009 252
2y 01/02/2009 02/02/2010 252
3y 04/03/2009 04/03/2010 252
4y 03/04/2009 05/04/2010 252
5y 01/05/2009 04/05/2010 252
6y 03/06/2009 03/06/2010 252
7y 02/07/2009 02/07/2010 252
8y 01/08/2009 03/08/2010 252
9y 02/09/2009 01/09/2010 252
10y 01/10/2009 01/10/2010 252
11y 30/10/2009 01/11/2010 252
12y 28/11/2009 01/12/2010 252

Table A.1: In-sample data sets
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ID dataset From To Size
A 04/01/2010 02/02/2010 21
B 03/02/2010 04/03/2010 21
C 05/03/2010 05/04/2010 21
D 06/04/2010 04/05/2010 21
E 05/05/2010 03/06/2010 21
F 04/06/2010 02/07/2010 21
G 06/07/2010 03/08/2010 21
H 04/08/2010 01/09/2010 21
K 02/09/2010 01/10/2010 21
L 04/10/2010 01/11/2010 21
M 02/11/2010 01/12/2010 21
N 02/12/2010 31/12/2010 21

Table A.2: Out-of-sample data sets
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ID dataset Size Mean Std.dev. Min Max Skew Kurt
0 756 -.092 3.05 -13.68 17.98 .05 7.71
1yy 504 -.177 3.53 -13.68 17.98 .11 6.33
2yy 505 -.148 3.53 -13.68 17.98 .099 6.34
3yy 505 -.144 3.53 -13.68 17.98 .096 6.33
4yy 505 -.142 3.51 -13.68 17.98 .086 6.46
5yy 505 -.114 3.47 -11.81 17.98 .174 6.29
6yy 505 -.122 3.51 -11.81 17.98 .177 6.05
7yy 505 -.133 3.51 -11.81 17.98 .188 6.05
8yy 505 -.108 3.56 -11.81 17.98 .169 6.09
9yy 505 -.124 3.50 -11.81 17.98 .179 6.12
10yy 505 -.088 3.37 -11.81 17.98 .175 6.70
11yy 505 -.037 3.19 -11.81 17.98 .147 7.27
12yy 505 -.010 2.96 -11.38 17.98 .333 8.21
1y 253 -.019 3.55 -11.38 17.98 .362 6.56
2y 253 .143 3.32 -11.31 17.98 .576 7.61
3y 253 .353 2.86 -8.76 17.98 1.05 9.44
4y 253 .217 2.29 -8.76 6.82 -.094 4.31
5y 253 .128 2.11 -6.23 6.70 .09 3.81
6y 253 .059 2.13 -6.24 6.70 .165 4.03
7y 253 .078 2.10 -6.23 6.70 .230 4.05
8y 253 .072 1.97 -5.96 6.64 .151 3.93
9y 253 .050 1.93 -5.97 6.64 .258 4.083
10y 253 .003 1.82 -5.97 6.64 .101 4.36
11y 253 .044 1.75 -5.97 6.64 .102 4.81
12y 253 .0123 1.72 -5.97 6.65 -.0151 4.65

Table A.3: Descriptive statistics of log returns of GE stock market closing
daily prices
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LAG Auto. corr PAC Q Prob > Q

1 -0.016 -0.016 0.19481 0.6589
2 0.023 0.0228 0.59748 0.7418
3 0.0066 0.0074 0.63086 0.8893
4 0.0414 0.0412 1.9398 0.7468
5 -0.0683 -0.0675 5.4942 0.3586
6 0.0676 0.0642 8.9892 0.1742
7 0.0126 0.0167 9.1113 0.2448
8 -0.0441 -0.0478 10.601 0.2253
9 -0.0595 -0.0572 13.32 0.1486
10 0.0874 0.0795 19.19 0.0379

Table A.4: The autocorrelations, partial autocorrelations and Portmanteau
(Q) statistics for GE log returns of the closing daily prices
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ID dataset α1 α0 LLF
0 .45318247* .00056253* 1623.207

(.0501394) (.0000239)
1yy .43468087* .0007765* 1001.271

(.0648449 ) (.0000455 )
2yy .43616612* .00077712* 1003.371

(.0651583) (.0000451 )
3yy .42863965* .00078176* 1003

(.064351 ) (.0000454 )
4yy .45254544* .00075293* 1008.561

(.0658052 ) (.0000432 )
5yy .47683755* .0007063* 1018.169

(.0669086 ) (.0000434 )
6yy .42417881* .00076458* 1006.906

(.0637027 ) (.000049 )
7yy .41995754* .00076729* 1006.732

(.0632787 ) (.0000492)
8yy .42054099* .00076523* 1007.755

(.0632339 ) (.0000488 )
9yy .43315058 .00075466 1009.334

(.0641537 ) (.0000478 )
10yy .45160768* .00068607* 1031.405

(.0623002 ) (.0000412 )
11yy .51300839* .0005694* 1066.638

(.0639891 ) (.0000341 )
12yy .54630221* .00049519* 1099.165

(.0649232 ) ( .000033 )

Table A.5: ARCH(1) model estimates of returns for the GE stock market
closing daily prices, 2-year length data sets, (January 2, 2008 - December 31,
2010), σ2

t = α0 + α1ε
2
t−1.

Standard errors appear in parentheses.
* Statistically significant at 5% assuming that returns are conditionally nor-
mally distributed.
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ID dataset α1 α0 LLF
1y 0.47094295* 0.00077797* 504.4978

(.0897237 ) ( .000082 )
2y 0.46953273* 0.0006858* 521.5608

(.0825078 ) (.0000643 )
3y .5176217* .00052667* 551.1712

(.0765507) (.0000478 )
4y .10449969 .00050226* 596.7184

(.0727847 ) (.0000412 )
5y .11002752 .00039972* 625.2793

(.0834146 ) (.0000394 )
6y .09713145 .00040447* 625.1935

(.083599 ) (.000038 )
7y .07077441 .00040942* 626.681

(.0770472 ) (.0000378)
8y .13831818 .00035463* 637.3311

(.085816 ) (.0000343 )
9y .14835698 .00032495* 647.6595

(.0802731 ) (.0000297)
10y .0690674 .00030922* 662.8278

(.0744808 ) (.0000273 )
11y .05540686 .00030167* 667.6224

(.0500281 ) (.0000232 )
12y .00300171 .00029302* 679.7484

(.0498605) (.0000234 )

Table A.6: ARCH(1) model estimates of returns for the GE stock market
closing daily prices, 1-year length data sets (January 2, 2008 - December 31,
2010), σ2

t = α0 + α1ε
2
t−1

Standard errors appear in parentheses.
* Statistically significant at 5% assuming that returns are conditionally nor-
mally distributed.
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ID dataset ω α β α+ β LLF
0 .0000117* 0.091613* 0.89478462* 0.98639762 1718.774

(4.11e-06 ) (.0166542 ) (.017231 )
1yy .0000208* 0.11774579 0.86870348 0.98644927 1052.985

(9.13e-06 ) (.0258138 ) (.0270232 )
2yy .0000261* 0.1123373* 0.86790682* 0.98024412 1053.44

(1.00e-05 ) (.0257945) ( .0282388 )
3yy .0000108* 0.07642264* 0.91316292* 0.98958556 1057.965

(4.50e-06 ) (.0120821 ) (.0115348 )
4yy .0000126* 0.10249227* 0.88411541* 0.98660768 1074.261

(4.26e-06 ) (.0149669 ) (.0141541 )
5yy .0000167 0.15243927* 0.84018656* 0.99262583 1091.03

(6.04e-06 ) (.0365819 ) (.0334933 )
6yy .0000142* 0.12991837* 0.86236451* 0.99228288 1074.575

(5.65e-06 ) (.0292203 ) (.0281027 )
7yy .0000146* 0.13769394* 0.85413146* 0.9918254 1075.705

(5.70e-06 ) (.0329878 ) (.0314031)
8yy .0000144* 0.13433309* 0.85729065* 0.99162374 1077.227

(5.75e-06 ) (.0325279 ) (.0311362 )
9yy 9.75e-06* 0.09679123* 0.8932116* 0.99000283 1082.436

(4.67e-06 ) (.0259928 ) (.0268273 )
10yy 8.20e-06* 0.08806305* 0.90025755* 0.9883206 1107.475

(4.04e-06 ) (.0225051 ) (.0241458 )
11yy 9.60e-06* 0.0896181* 0.89576975* 0.98538785 1134.459

(4.23e-06 ) (.0225954 ) (.0249585 )
12yy 8.82e-06* 0.08074322* 0.90290047* 0.98364369 1163.586

( 4.00e-06 ) (.0195418 ) (.0231342 )

Table A.7: GARCH(1,1) model estimation of returns of the GE company
closing daily prices, 2-year length of datasets, (January 2, 2008 - December
31, 2010), σ2

t = ω + αε2t−1 + βσ2
t−1

Standard errors appear in parentheses.
* Statistically significant at 5% assuming that returns are conditionally nor-
mally distributed.
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ID dataset ω α β α+ β LLF
1y -0.00049865 0.11066711* 0.89575842* 1.00642553 536.262

(6.53e-06 ) (.0398877) (.0380215 )
2y 0.00150529 0.09006688* 0.89169194* 0.98175882 550.0163

(9.54e-06 ) (.0398533 ) (.0465566 )
3y 0.00069579 0.12899038* 0.84032848* 0.96931886 575.7954

(.0000106 ) (.0401374 ) (.0490059 )
4y 0.00231659 0.01650656* 0.98261196* 0.99911852 612.3225

(1.79e-06 ) (.0074601 ) (.0099026 )
5y 0.00147233 0.09654812* 0.86018358* 0.95673170 633.1722

(.0000121 ) (.043362 ) (.0598358 )
6y 0.00106784 0.10907783* 0.84420851* 0.95328634 633.1432

(.0000127) (.0437474 ) (.0592344 )
7y 0.00077362 0.10472511* 0.84419683* 0.94892194 634.908

(.0000126 ) (.0427512 ) (.0595142)
8y 0.00136975 0.08322212* 0.85573793* 0.93896005 641.8829

(.0000147 ) (.0382842 ) (.0653853 )
9y 0.00050821 0.09019922* 0.83197183* 0.92217105 652.0249

(.0000174 ) (.0412902 ) (.0750523 )
10y 0.00069545 0.07540999* 0.84374419* 0.91915418 667.5812

(.000016 ) (.036644 ) (.0744698)
11y 0.00070645 0.0703* 0.83669513* 0.90699513 672.6497

(.0000167 ) (.0345722 ) (.0783554 )
12y 0.00054304 0.06192434* 0.86216198* 0.92408632 685.4497

(.0000144 ) (.0295961 ) (.0701283 )

Table A.8: GARCH(1,1) model estimation of returns of the GE company
closing daily prices, 1-year length of datasets, (January 2, 2008 - December
31, 2010), σ2

t = ω + αε2t−1 + βσ2
t−1

Standard errors appear in parentheses.
* Statistically significant at 5% assuming that returns are conditionally nor-
mally distributed.
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Dataset ID α0 α+ α− β1 LLF
0 0.000554 0.047521* 0.135362* 0.908928* 1732.939

(.0007157 ) (.0125592) (.0244669 ) (.0182362 )
1y .0000208 0.048771* 0.138605* 0.930055* 541.7385

(.0014961 ) ( .0148612 ) (.0471608 ) (.0280554 )
2y 0.000200 0.017903 0.107432* 0.942072* 555.6529

(.0015109 ) ( .0106075 ) (.0357879 ) (.0255355 )
3y 0.000377 0.074240* 0.158485* 0.895850* 577.8982

(.0013158 ) (.0204521 ) (.0413718 ) ( .033684 )
4y -0.000026 0.027466* 0.038922* 0.972819* 612.0834

(.0013032 ) (.0029056 ) (.0306135 ) (.0178327 )
5y 0.001379 0.117877* 0.136405* 0.837491* 634.7368

(.0011526 ) (.027686 ) (.0624604 ) (.0677835)
6y 0.001002 0.067946* 0.137234* 0.875547* 636.0632

(.001122 ) (.0220407 ) (.053377 ) (.0528859 )
7y 0.001294 0.096650* 0.144320* 0.846322* 637.2429

(.0011547) (.0385069) (.059806 ) (.0610073 )
8y 0.001303 0.066769* 0.125496* 0.859332* 644.9564

(.0011155) (.0136125 ) (.0487081 ) (.0547106 )
9y 0.001346 0.062836* 0.120286* 0.859621* 654.6672

(.0010978 ) (.021556 ) (.0469466 ) (.0563033 )
10y 0.001456 -0.062297* 0.090683* 0.906351* 673.0868

(.0010509 ) (.0176594) (.0253895 ) (.0347344 )
11y 0.001524 0.002831 0.111050* 0.868877* 676.6295

(.0010059 ) (.0086602 ) (.0450289 ) (.0531347 )
12y 0.001402 0.020156* 0.102713* 0.870911* 688.3637

(.0010174 ) (.0079958 ) (.0369986 ) (.0535984 )

Table A.9: Threshold GARCH(1,1) model estimation of returns of the GE
company closing daily prices (January 2, 2008 - December 31, 2010), σt =
α0 + α+ε+t−1 + α−ε−t−1 + β1σt−1

Standard errors appear in parentheses.
* Statistically significant at 5% assuming that returns are conditionally nor-
mally distributed.
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DatasetID α0 α1 β1 γ1 LLF
0 0.0001 0.1190* 0.8902* -0.0592* 1720.4640

(.0008329 ) (.0242256 ) (.0222389 ) (.0225011 )
1yy -0.0019 0.1479* 0.8632* -0.0648 1053.8720

(.0012853 ) ( .0379002) (.0331379 ) (.0389331 )
2yy 0.0013 0.1530* 0.8616* -0.0878* 1055.0530

( .0012947 ) (.0426398 ) (.0357976 ) (.0421753 )
3yy 0.0011 0.0887* 0.9282* -0.0609* 1059.9700

(.0012317 ) (.0128993 ) (.0124403 ) (.0199828 )
4yy 0.0005 0.1330* 0.9027* -0.1068* 1078.6960

(.0011372 ) (.0236991 ) (.0139189 ) (.0300345 )
5yy 0.0005 0.1675* 0.8946* -0.1504* 1097.8390

(.0010362 ) ( .0443843 ) (.0274805 ) (.0424582 )
6yy 0.0003 0.1499* 0.9115* -0.1498* 1083.4730

(.0010526 ) (.0363991 ) (.0233486 ) (.0358784 )
7yy 0.0005 0.1554* 0.9055* -0.1506* 1084.2460

(.0010551 ) (.0393737 ) ( .0257752 ) (.0376036 )
8yy 0.0001 0.1504* 0.9086* -0.1479* 1086.2130

(.0010413) (.0387997 ) (.024837 ) (.0374164 )
9yy -0.0003 0.1172* 0.9284* -0.1208* 1091.4110

(.0010046 ) ( .0308649 ) (.020328 ) (.0310307 )
10yy 0.0001 0.1136* 0.9277* -0.1154* 1116.6760

(.0009482 ) (.0292088 ) (.0198916 ) (.0292727 )
11yy 0.0001 0.1055* 0.9260* -0.0992* 1140.5850

(.0009273 ) (.0271074 ) (.0202897 ) (.0277119 )
12yy 0.0002 0.1044* 0.9255* -0.0959* 1169.5120

(.0008879 ) (.0251986 ) (.0196989 ) (.026294 )

Table A.10: GJR–GARCH(1,1) model estimation of returns of GE company
closing daily prices (January 2, 2008 - December 31, 2010), 2-year lengh of
datasets, σ2

t = α0 + α1ε
2
t−1 + β1σ

2
t−1 + γ1ε

2
t−1χt−1, where χt−1 = 0 if εt−1 ≥

0, and χt−1 = 1 if εt−1 < 0
Standard errors appear in parentheses.
* Statistically significant at 5% assuming that returns are conditionally nor-
mally distributed.
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DatasetID α0 α1 β1 γ1 LLF
1y -0.0015 0.1576* 0.9160* -0.1271* 541.3910

(.0014732 ) (.0639027 ) (.0346217 ) (.0558179 )
2y 0.0007 0.1220* 0.9217* -0.1123* 553.7450

(.0015879 ) (.0524979 ) (.0367099 ) (.0490246 )
3y 0.0002 0.1433* 0.8947* -0.1076* 577.7362

(.001435) (.0479758 ) (.0378663 ) ( .0470933)
4y 0.0017 0.0335* 0.9872* -0.0450 613.2887

(.0013037 ) (.0167137 ) (.0083994 ) (.0295633 )
5y 0.0015 0.0623* 0.9434* -0.0424 633.7611

(.0012378 ) (.0360488 ) (.0345582 ) (.0377764 )
6y 0.0006 0.0987* 0.9505* -0.1140* 636.2532

(.0012845 ) (.0306063 ) (.0257079 ) (.0350878 )
7y 0.0006 0.1305* 0.8814* -0.0913 636.2303

(.0012032 ) (.0627152 ) (.0560835 ) (.0585258 )
8y 0.0011 0.1109* 0.8879* -0.0863 643.6099

(.0011415 ) (.0531542 ) (.0543036 ) (.0505297 )
9y 0.0004 0.1147* 0.8756* -0.0882 653.5250

(.0011445 ) (.0566202 ) (.0599397 ) ( .0532909 )
10y 0.0002 0.0918* 0.9321* -0.1766* 675.8738

(.0010541) (.0210626 ) (.025575 ) (.0295376 )
11y 0.0005 0.0908* 0.9211* -0.1530* 677.6904

(.0010187 ) (.0266322 ) (.0352009 ) (.0324703 )
12y 0.0004 0.0911* 0.8951* -0.1346* 687.9426

(.0010443 ) (.0332124 ) (.0446269 ) (.0482576 )

Table A.11: GJR–GARCH(1,1) model estimation of returns of GE company
closing daily prices (January 2, 2008 - December 31, 2010), 1-year length of
datasets, σ2

t = α0 + α1ε
2
t−1 + β1σ

2
t−1 + γ1ε

2
t−1χt−1, where χt−1 = 0 if εt−1 ≥

0, and χt−1 = 1 if εt−1 < 0
Standard errors appear in parentheses.
* Statistically significant at 5% assuming that returns are conditionally nor-
mally distributed.
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Model Length Conf Failures n00 n01 n10 n11 Π0 Π1 Π

ARCH(1,1) 1 year 95% 8 235 7 7 1 0.032089 0.1250 0.0320
GARCH(1,1) 1 year 95% 9 232 9 9 0 0.0373 0.0000 0.0360
GJR-GARCH 1 year 95% 10 232 10 10 0 0.0413 0.0000 0.0397
TGARCH 1 year 99% 10 232 10 10 0 0.0413 0.0000 0.0397
ARCH(1,1) 1 year 99% 2 246 2 2 0 0.0081 0.0000 0.0080
GARCH(1,1) 1 year 99% 3 244 3 3 0 0.0121 0.0000 0.0120
GJR-GARCH 1 year 99% 3 244 3 3 0 0.0121 0.0000 0.0120
TGARCH 1 year 99% 3 244 3 3 0 0.0121 0.0000 0.0120
ARCH(1,1) 2 year 95% 1 248 1 1 0 0.0040 0.0000 0.0040
GARCH(1,1) 2 year 95% 1 248 1 1 0 0.0040 0.0000 0.0040
GJR-GARCH 2 year 95% 1 248 1 1 0 0.0040 0.0000 0.0040
TGARCH 2 year 95% 2 246 2 2 0 0.0081 0.0000 0.0080
ARCH(1,1) 2 year 99% 0 250 0 0 0 0.0000 0.0000 0.0000
GARCH(1,1) 2 year 99% 0 250 0 0 0 0.0000 0.0000 0.0000
GJR-GARCH 2 year 99% 0 250 0 0 0 0.0000 0.0000 0.0000
TGARCH 2 year 99% 0 250 0 0 0 0.0000 0.0000 0.0000

Table A.12: Auxiliary data for the independence test
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Appendix B

Programme Code

GARCH model

% GARCHrun.m
% input set of log returns
smp = load('hsba_r.txt');
% initial values of model parameters
startParams = [6.87E-06 0.1209 0.8549];

% optimal values of parameters maximizing the likelihood function
parameters_GARCH = GARCHcalibration (smp, startParams);
LLF_GARCH=-garchMaxlikelihood(smp,parameters_GARCH);

% GARCHcalibration.m

function parameters = GARCHcalibration (rets, startParams)
% set of parameters of function fminsearch
options=optimset('MaxFunEvals',500,'Maxiter',500,'Display','iter');

function f = mns_aux(params)
f = garchMaxlikelihood (rets,params);

end

% optimal values of parameters maximizing the likelihood function
parameters = fminsearch(@mns_aux, startParams, options);
end
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%garchMaxlikelihood.m (GARCH Likelihood function)
function y = garchMaxlikelihood (rets, startParams)

% initial values of parameters
omega=startParams(1);
alpha=startParams(2);
beta=startParams(3);

% length of the input array
n=length(rets);
if ((omega<0) || (alpha<0) || (beta<0))

y=intmax;
return;

end

vart(1)=var(rets); % variance at the day 1, \sigma(1)ˆ2
y=-log(vart(n))-(rets(n)ˆ2/vart(n));

% the values of variance are computing iteratively
for cnt=2:n

vart(cnt)=omega+alpha*rets(cnt-1)ˆ2+beta*vart(cnt-1);
y=y-log(vart(cnt))-(rets(n)ˆ2/vart(cnt));

end

y=-y; % the final value of likelihood function
end

%GARCH_sim_head.m
% it simulates a given GARCH process

% input values of log returns
smp = load('hsba_log_return_1.txt');

% input values of parameters of GARCH model
Params = [2.83903e-06 0.13817 0.84335];

% length of the input array (period of time)
T = length(smp);
%T = 755;
% simulation
v = GARCHsimulation ( smp, T, Params);

% the plot
plot(v);
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% GARCHsimulation.m
% given parameters of GARCH model and values of log returns
% it returns the array of values of variance

function v = GARCHsimulation ( smp, T, params)

% parameters of GARCH model
omega_ = params (1); alpha_ = params (2); beta_ = params (3);
w(1)=sqrt(var(smp));

for i=2:T
% the main equation of GARCH model
w(i) = sqrt(omega_ + alpha_ *smp(i-1)ˆ2+ beta_ *w(i-1)ˆ2);

end
v=w;
end

GARCH model augmented with news intensity

%head_news.m
% it runs calibration of GARCH model augmented with news intensity

% parameters of a net of initial points of the search by fminsearch
I1=9;
I2=5;
I3=5;

% load input arrays of log returns of the company stocks
smp=load('aviva_r.txt');

% load input arrays of log returns of of FTSE100 index
ftse =load('r_ftse.txt');

% load input arrays of numbers of news per day
news_intensity =load('aviva_news.txt');

% it finds the optimal values of parameters
% maximizing likelihood function
param=GARCHrunALLnews(I1,I2,I3,smp,ftse,news_intensity);
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% GARCHrunALLnews.m
% it chooses the "best" initial points for fminsearch
% by iterating through the net of points
% defined by I1, I2, I3

function z = GARCHrunALLnews (I1,I2,I3, smp_1, ftse, volume)
value_min=0;
for i=9:I1

for j=0:(I2-1)
for k=0:(I2-j-1)

for l=4:I3
a1=10ˆ(-i);
a2=j/I2+0.0001;
a3=k/I2+0.0001;
a4=10ˆ(-l); a5=0.0001; a6=1.0;
startParams = [a1 a2 a3 a4 a5 a6];

parameters = GARCHcalibration_news ...
(smp_1, ftse, volume, startParams);

value = garchMaxlikelihood_news ...
(smp_1, ftse, volume, parameters);

if (value<value_min)
value_min=value;
z = parameters;

end;
end;

end;
end;

end;

% GARCHcalibration_news.m

function parameters = GARCHcalibration_news ...
(rets, ftse, volume, startParams)

% set of parameters of function fminsearch
% options=...
%optimset('MaxFunEvals',5000,'Maxiter',500, 'Display','iter');

function f = mns_aux(params)
f = garchMaxlikelihood_news(rets, ftse, volume, params);

end

% optimal values of parameters maximizing the likelihood function
parameters = fminsearch(@mns_aux, startParams);
%parameters = fminsearch(@mns_aux, startParams,options);
end
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% garchMaxlikelihood_news.m
% Likelihood function of GARCH model augmented with news intensity

function y = garchMaxlikelihood_news ...
(rets, ftse, volume, startParams)

% initial values of parameters
omega=startParams(1);
alpha=startParams(2);
beta=startParams(3);
gamma=startParams(4);
theta1 = startParams(5);
theta2 = startParams(6);

% length of the input array
n=length(rets);
if ((omega<0) || (alpha<0) || (beta<0) || (gamma<0) )

y=intmax;
return;

end

% variance sigma(1)
vart(1)=var(rets);
y=-log(vart(1))-(rets(1)ˆ2/vart(1));

% the values of variance are computing iteratively
for cnt=2:n

vart(cnt)=omega+alpha*(rets(cnt-1)-...
theta1-theta2*ftse(cnt-1))ˆ2+ ...
beta*vart(cnt-1)+gamma*volume(cnt);

y=y-log(vart(cnt))-...
((rets(cnt)-theta1-theta2*ftse(cnt))ˆ2/vart(cnt));

end

% the final value of likelihood function
y=-0.5*(y-log(2*pi));
end
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GARCH model with Jumps (the case of constant jump intensity)

%GARCHrun_Jumps_Const.m
% it runs calibration of GARCH model with jumps
% (the case of constant jump intensity)

% load input arrays of log returns of the company stocks
smp=load('hsba_r.txt');

% initial values of model parameters
startParams = [1.17E-06 0.122 0.86 5.119E-03 1.67E-03 0.39];

% it finds the optimal values of parameters
% maximizing likelihood function
parameters = GARCHcalibration_Jumps_Const(smp, startParams);

the final value of likelihood function
LLF_Jumps = -garchMaxlikelihood_Jumps_Const (smp, parameters);

%params_Null=[2.72E-06 0.1232 0.8568 0 0 0];
%LLF_Jumps_Null =- garchMaxlikelihood_Jumps_Const (smp, params_Null);

% GARCHcalibration_Jumps_Const.m

function parameters = ...
GARCHcalibration_Jumps_Const (rets, startParams)

% set of parameters of function fminsearch
options=optimset('MaxFunEvals',1000,'Maxiter',1000);

function f = mns_aux(params)
f = garchMaxlikelihood_Jumps_Const(rets, params);

end

% optimal values of parameters maximizing the likelihood function
parameters = fminsearch(@mns_aux, startParams, options);
end
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% garchMaxlikelihood_Jumps_Const.m
% Likelihood function of GARCH model with Jumps
% (the case of constant jump intensity)

function y = garchMaxlikelihood_Jumps_Const(rets, startParams)
% initial values of parameters
omega=startParams(1);
alpha=startParams(2);
beta=startParams(3);
delta=startParams(4);
theta=startParams(5);
lambda=startParams(6);

n=length(rets); % length of the input array
if ((omega<0) || (alpha<0) || (beta<0) )

y=intmax;
return;

end

vart(1)=var(rets); % variance \sigma(1)ˆ2
f=0;
fact=1;
for j=0:20

f=f+(lambdaˆj)*exp(-((rets(1)+theta*lambda-theta*j)ˆ2)/...
(2*(vart(1)+j*deltaˆ2))-lambda)*...
((2*pi*(vart(1)+j*deltaˆ2))ˆ(-0.5))*(factˆ(-1));

fact=fact*(j+1);
end

y=log(f);

% the values of variance are computed iteratively
for cnt=2:n

vart(cnt)=omega+alpha*(rets(cnt-1))ˆ2+beta*vart(cnt-1);
f=0;
fact=1;
for j=0:20

f=f+(lambdaˆj)*exp(-((rets(cnt)+theta*lambda-theta*j)ˆ2)/...
(2*(vart(cnt)+j*deltaˆ2))-lambda)*...
((2*pi*(vart(cnt)+j*deltaˆ2))ˆ(-0.5))*(factˆ(-1));

fact=fact*(j+1);
end
y=y+log(f);

end

y=-y; % the final -value of likelihood function
end
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%GARCH_sim_JUMP_head.m
% it simulates a given GARCH-Jumps process

% input values of log returns
smp_1=load('BP_r.txt');

% input values of parameters of GARCH-Jumps model
Params = [7.09e-06 0.15 0.84 1.6202E-02 -1.08E-02 0.12];

% length of the input array (period of time)
T=length(smp_1);

% simulation
v = GARCH_sim_JUMP( smp_1 ,T, Params);

% the plot of simulated variance
plot(v);

% GARCH_sim_JUMP.m
% given parameters of GARCH-Jumps model and values of log returns
% it returns the array of values of variance

function v = GARCH_sim_JUMP ( smp_1 ,T,params)

% parameters of GARCH-Jumps model
omega_ = params (1); alpha_ = params (2);
beta_ = params (3); delta_=params(4);
theta_=params(5); lambda_=params(6);
w(1)=sqrt(var(smp_1));
for i =2:T

jumpnb = poissrnd ( lambda_,1 );
jump =...

normrnd( theta_ *( jumpnb - lambda_), sqrt(jumpnb)*delta_);
% the main equation of GARCH model

w(i) = sqrt(omega_ + alpha_ *(smp_1(i-1)-jump)ˆ2+ beta_ *w(i-1)ˆ2);
end
v=w;
end



117

GARCH model with Jumps

%GARCHrun_Jumps.m
% it runs calibration of GARCH model with jumps

% load input arrays of log returns of the company stocks
smp=load('BP_r.txt');

% initial values of model parameters
startParams = [0.000001 0.1 0.9 0.05 0 0 1 0];

% it finds the optimal values of parameters
% maximizing likelihood function
parameters = GARCHcalibration_Jumps(smp, startParams);

% the final value of likelihood function
value_final = garchMaxlikelihood_Jumps (smp, parameters);

% GARCHcalibration_Jumps.m

function parameters = GARCHcalibration_Jumps (rets, startParams)

% set of parameters of function fminsearch
options=optimset('MaxFunEvals',1000,'Maxiter',1000);

function f = mns_aux(params)
f = garchMaxlikelihood_Jumps(rets, params);

end

% optimal values of parameters maximizing the likelihood function
parameters = fminsearch(@mns_aux, startParams, options);
end

% garchMaxlikelihood_Jumps.m
% Likelihood function of GARCH model with Jumps

function y = garchMaxlikelihood_Jumps(rets, startParams)

% initial values of parameters
omega=startParams(1);
alpha=startParams(2);
beta=startParams(3);
delta=startParams(4);
theta=startParams(5);
a=startParams(6);
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b=startParams(7);
c=startParams(8);

% length of the input array
n=length(rets);
if ((omega<0) || (alpha<0) || (beta<0) )

y=intmax;
return;

end

lambda=3; %initial value of jump intensity
vart(1)=var(rets); % variance \sigma(1)ˆ2

f=0;
fact=1;
for j=0:10

f=f+(lambdaˆj)*exp(-((rets(1)+...
theta*lambda-theta*j)ˆ2)/(2*(vart(1)+j*deltaˆ2))...
-lambda)*((2*pi*(vart(1)+j*deltaˆ2))ˆ(-0.5))*...
(factˆ(-1));

fact=fact*(j+1);
end

y=log(f);

for cnt=2:n
vart(cnt)=omega+alpha*(rets(cnt-1))ˆ2+beta*vart(cnt-1);
z=(f- (exp(-((rets(cnt-1)+...

theta*lambda)ˆ2/vart(cnt-1))-lambda))*...
((2*pi*vart(cnt-1))ˆ(-0.5)))/f;

% autoregression for computing of the jump intensity
lambda=a+b*lambda+c*(z-lambda);

f = 0;
fact = 1; %factorial
for j=0:10

f = f+(lambdaˆj)*exp(-((rets(cnt)+theta*lambda-theta*j)ˆ2)/...
(2*(vart(cnt)+j*deltaˆ2))-lambda)*...
((2*pi*(vart(cnt)+j*deltaˆ2))ˆ(-0.5))*(factˆ(-1));

fact=fact*j;
end
y=y+log(f);

end

% the final value of likelihood function
y=-y;
end
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GARCH–Jumps Model augmented with news analytics data

% GARCHrun_Jumps_News.m
% calibration of GARCH-Jumps model augmented with news intensity

% input set of log returns
smp=load('hsba_r.txt');

% the input file with the number of positive news per day
volume1=load('hsba_ncss_pos.txt');

% the input file with the number of negative news per day
volume2=load('hsba_ncss_neg.txt');

% initial values of model parameters
startParams = [6.87E-06 0.1209 0.8549 0 0 0 0 0];

% optimal values of parameters maximizing the likelihood function
parameters = ...
GARCHcalibration_Jumps_News (smp,volume1,volume2,startParams);

% the final value of likelihood function at the optimal point
value_Jumps_Const = - ...
garchMaxlikelihood_Jumps_News (smp,volume1,volume2,parameters);

%params_Null=[2.21E-06 0.1335...
%0.8278 1.5563E-02 -6.5240E-04 0.0570 0.00158 0.00561];
%LLF_Jumps_Null =- ...
%garchMaxlikelihood_Jumps_News (smp,volume1,volume2,params_Null);

% GARCHcalibration_Jumps_News.m

function parameters = ...
GARCHcalibration_Jumps_News (rets, volume1, volume2, startParams)

% set of parameters of function fminsearch
options=optimset('MaxFunEvals',500000,'Maxiter',10000);

function f = mns_aux(params)
f = ...

garchMaxlikelihood_Jumps_News (rets,volume1,volume2,params);
end

% optimal values of parameters maximizing the likelihood function
parameters = fminsearch(@mns_aux, startParams, options);
end
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% garchMaxlikelihood_Jumps_News.m
% Likelihood function of ...
% GARCH-Jumps model augmented with news intensity ...
% (the case of constant jump intensity)

function y = ...
garchMaxlikelihood_Jumps_News (rets,volume1,volume2,startParams)

% initial values of parameters
omega=startParams(1); alpha=startParams(2);
beta=startParams(3); delta=startParams(4);
theta=startParams(5); lambda=startParams(6);
rho1=startParams(7); rho2=startParams(8);

n = length(rets); % length of the input array
if ((omega<0) || (alpha<0) || (beta<0) )

y=intmax;
return;

end

vart(1)=var(rets); % variance \sigma(1)ˆ2
f=0;
fact=1;
for j=0:20

f=f+(lambdaˆj)*exp(-((rets(1)+ theta*lambda-theta*j)ˆ2)/...
(2*(vart(1)+j*deltaˆ2))-lambda)*...
((2*pi*(vart(1)+j*deltaˆ2))ˆ(-0.5))*(factˆ(-1));

fact=fact*(j+1);
end

y=log(f);

for cnt=2:n
% the values of variance are computed iteratively
vart(cnt)=omega+alpha*(rets(cnt-1))ˆ2+beta*vart(cnt-1);
f=0;
fact=1;
for j=0:20

f=f+(lambda+rho1*volume1(cnt)+rho2*volume2(cnt))ˆj...

*exp(-((rets(cnt)+theta*(lambda+rho1*volume1(cnt)+rho2*...
volume2(cnt))-theta*j)ˆ2)/(2*(vart(cnt)+j*deltaˆ2))...
-(lambda+rho1*volume1(cnt)+rho2*volume2(cnt)))*...
((2*pi*(vart(cnt)+j*deltaˆ2))ˆ(-0.5))*(factˆ(-1));

fact=fact*(j+1);
end
y=y+log(f);

end
y=-y; % the final value of likelihood function
end
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Monte Carlo simulation (GARCH model with volume)

% input values of log returns
smp=load('lloyd_r.txt');

% load input arrays of volumes of news per day
volume =load('Lloyd_volume.txt');

% input values of parameters of GARCH model
Params = [1.13E-07 0.0928 0.8573 2.26E-13];

% length of the input array (period of time)
T = length(smp);

% the number of MC runs
N=500;

for j=1:N
% simulation
w=MC_GARCH_Volume_simulation ( smp, volume, T, Params);

for s=1:T
e(s) = w(s)*random('normal',0,1);
end

% smp_new=e;
smp_new=e;

startParams = [1.13E-07 0.0928 0.8573 2.26E-13];
startParams_garch = [4.91E-06 0.1230 0.8609];

% optimal values of parameters maximizing the likelihood function
parameters_GARCH_Volume =...

GARCHcalibration_volume (smp_new, volume, startParams);
omega(j)=parameters_GARCH_Volume(1);
alpha(j)=parameters_GARCH_Volume(2);
beta(j)=parameters_GARCH_Volume(3);
gamma(j)=parameters_GARCH_Volume(4);
LLF_GARCH_Volume(j)=...
-garchMaxlikelihood_volume(smp_new,volume,parameters_GARCH_Volume);
parameters_GARCH = GARCHcalibration (smp_new, startParams_garch);
LLF_GARCH(j)=-garchMaxlikelihood (smp_new, parameters_GARCH);
LL_Ratio(j)=2(LLF_GARCH_Volume(j)-LLF_GARCH(j));
end

mean_omega=mean(omega);
mean_alpha=mean(alpha);
mean_beta=mean(beta);
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mean_gamma=mean(gamma);
mean_LLF=mean(LLF_GARCH_Volume);
var_omega=var(omega);
var_alpha=var(alpha);
var_beta=var(beta);
var_gamma=var(gamma);
var_LLF=var(LLF_GARCH_Volume);
var_LL_Ratio_lloyd=var(LL_Ratio);
mean_LL_Ratio_lloyd=mean(LL_Ratio);

% the plot
hist(LL_Ratio,40);
hist(alpha,20);
hist(beta,20);
hist(gamma,30);
boxplot(alpha);
boxplot(beta);
boxplot(gamma);
pctl = 100*(0:0.05:1);
ypctl = prctile(gamma,pctl);
zpctl = [pctl;ypctl];
zpctl;

% MC_GARCH_Volume_simulation.m
% given parameters of GARCH model and values of log returns
% it simulates the array of values of variance
function v = MC_GARCH_Volume_simulation ( smp, volume, T, params)

% parameters of GARCH model
omega_ = params (1); alpha_ = params (2);
beta_ = params (3); gamma_=params (4);

w(1)=sqrt(var(smp));

for i=2:T
% the main equation of GARCH model

w(i) = sqrt(omega_ + ...
alpha_ *smp(i-1)ˆ2*(random('normal',0,1))ˆ2+...

beta_ *w(i-1)ˆ2 + gamma_ *volume(i));
end
v=w;
end
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Monte Carlo simulation (GARCH model with news intensity)

%MC_News_sim_head.m
% Monte Carlo simulation

% load input arrays of log returns of the company stocks
smp=load('aviva_r.txt');

% load input arrays of log returns of of FTSE100 index
ftse =load('r_ftse.txt');

% load input arrays of numbers of news per day
news_intensity =load('aviva_news.txt');

% input values of parameters of GARCH-news model
Params = [4.1157E-11 0.0001 0.9562 2.24E-06 -4.36E-04 1.2086];

% length of the input array (period of time)
T = length(smp);

% the number of MC runs
N=500;

for j=1:N
% simulation
w=MC_GARCH_News_simulation( smp, ftse, news_intensity, T, Params);

for s=1:T
e(s) = w(s)*random('normal',0,1);
end

smp_new=e;

startParams = Params;

% optimal values of parameters maximizing the likelihood function
parameters_GARCH_news = ...

GARCHcalibration_news (smp_new, ftse, news_intensity, startParams);
parameters_GARCH = [6.87E-06 0.1209 0.8549];

omega(j)=parameters_GARCH(1);
alpha(j)=parameters_GARCH(2);
beta(j)=parameters_GARCH(3);
gamma(j)=parameters_GARCH(1);
theta1(j)=parameters_GARCH(2);
theta2(j)=parameters_GARCH(3);

LLF_GARCH_Volume(j)=-garchMaxlikelihood_news...
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(smp_new, ftse, news_intensity, parameters_GARCH_news);

LLF_GARCH(j)=-garchMaxlikelihood (smp_new, parameters_GARCH);
LL_Ratio(j)=2(LLF_GARCH_Volume(j)-LLF_GARCH(j));
end

mean_omega_aviva=mean(omega);
mean_alpha_aviva=mean(alpha);
mean_beta_aviva=mean(beta);
mean_gamma_aviva=mean(gamma);
mean_theta1_aviva=mean(theta1);
mean_theta2_aviva=mean(theta2);
mean_LLF_aviva=mean(LLF_GARCH_Volume);
var_omega_aviva=var(omega);
var_alpha_aviva=var(alpha);
var_beta_aviva=var(beta);
var_gamma_aviva=var(gamma);
var_theta1_aviva=var(theta1);
var_theta2_aviva=var(theta2);
var_LLF_aviva=var(LLF_GARCH_Volume);
var_LL_Ratio_aviva=var(LL_Ratio);
mean_LL_Ratio_aviva=mean(LL_Ratio);

% MC_GARCH_News_simulation.m
% given parameters of GARCH model and values of log returns
% it simulates the array of values of variance

function v = ...
MC_GARCH_News_simulation ( smp, ftse, volume, T, params)

% parameters of GARCH model
omega_ = params (1); alpha_ = params (2);
beta_ = params (3); gamma_=params (4);
theta1_ = params (5); theta2_ =params (6);

vart(1)=sqrt(var(smp));

for i=2:T
% the main equation of GARCH model
vart(i)=sqrt(omega_ +alpha_ *(smp(i-1)-...
theta1_ - theta2_ *ftse(i-1))ˆ2*(random('normal',0,1))ˆ2+ ...
beta_ *vart(i-1)ˆ2+gamma_ *volume(i));

end
v=vart;
end
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