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The present work explores the ubiquitous morphological changes in crystallizing systems with

increasing thermodynamic driving force based on a novel dynamic density functional theory. A

colloidal ‘soft’ material is chosen as a model system for our investigation since there are careful

colloidal crystallization observations at a particle scale resolution for comparison, which allows for

a direct verification of our simulation predictions. We particularly focus on a theoretically

unanticipated, and generic, morphological transition leading to progressively irregular-shaped single

crystals in both colloidal and polymeric materials with an increasing thermodynamic driving force. Our

simulation method significantly extends previous ‘phase field’ simulations by incorporating a minimal

description of the ‘atomic’ structure of the material, while allowing simultaneously for a description of

large scale crystal growth. We discover a ‘fast’ mode of crystal growth at high driving force, suggested

before in experimental colloidal crystallization studies, and find that the coupling of this crystal mode

to the well-understood ‘diffusive’ or ‘slow’ crystal growth mode (giving rise to symmetric crystal growth

mode and dendritic crystallization as in snowflakes by the Mullins–Sekerka instability) can greatly

affect the crystal morphology at high thermodynamic driving force. In particular, an understanding of

this interplay between these fast and slow crystal growth modes allows us to describe basic

crystallization morphologies seen in both colloidal suspensions with increasing particle concentration

and crystallizing polymer films with decreasing temperature: compact symmetric crystals, dendritic

crystals, fractal-like structures, and then a return to compact symmetric single crystal growth again.
Introduction

The formation of diverse ‘soft’ materials composed of synthetic

and biological polymers, small molecule ‘gelator’ molecules, as

well as colloid particles and nanoparticles frequently involves

structures formed by crystallization under far from equilibrium

conditions so that the study of non-equilibrium crystallization

lies at the heart of soft matter physics. A truly amazing diversity

of structures can be formed in this way, and an equally diverse

range of physical properties can be obtained by varying the

thermodynamic ordering conditions; a fundamental theoretical

and experimental challenge in this field is then to learn how to

harness this structural polymorphism to create functional

materials. The potential of this approach to material science

fabrication is evidenced by numerous examples in the biological

world (abalone, the exoskeleton of insects, etc.) where truly

remarkable and tuneable (even locally tuneable) material prop-

erties can be achieved using essentially a single ordering mole-

cule. There are evident ramifications of this capacity to tailor

material properties in relation to the search for advanced mate-

rials for diverse applications.
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Increasing the thermodynamic driving force for crystallization

is normally thought to involve a progressive change in crystal

morphology from symmetric single crystal growth at ‘near equi-

librium’ or a low thermodynamic driving force to the formation of

symmetric dendrites at an intermediate driving force, followed by

polycrystalline spherulitic solidification at a high driving force.1

However, recent work has indicated a theoretically unanticipated

morphological transition between symmetric and disordered

dendrites (‘seaweed’) in the intermediate driving force regime

where the growth patterns remain single crystals.2,3 In particular,

this cooling-induced change in crystal morphology in near two-

dimensional polymer films was rationalized by hypothesizing

a progressive reduction in the anisotropy of the interfacial free

energy upon cooling.4 We address this phenomenon computa-

tionally using a relatively simple dynamical density functional

theory that allows for a description of large scale crystal growth,

while accounting for the molecular scale of the crystallizing

species. Our simulations indeed indicate that increasing the ther-

modynamic driving force gives rise to an effective reduction of the

growth anisotropy, which we explain as arising from a dynamic

broadening of the interface accompanying a competition between

diffusive and non-diffusive crystal growth modes. Moreover, the

interplay between these growth modes allows us to also describe

basic crystallization morphologies seen in colloidal suspensions

for increasing particle concentration: compact symmetric crystals,

dendritic crystals, fractal-like structures, and then a return to

compact symmetric single crystal growth again.

The key to our exploratory computational study of the

evolution of crystal structure and growth dynamics upon varying
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the thermodynamic driving force is the adaptation of a minimal

field theoretic model of crystalline solidification that incorpo-

rates the discrete particle structure of the crystallizing species,

represented by periodic solutions of a time-averaged particle

density field, whose evolution is governed by diffusion, and an

appropriate free energy governing the ordering process. For

simplicity, we focus on the crystallization of spherical particles

and colloidal measurements,5 although many of the general

trends are expected to be broadly applicable to other fluids, even

polymeric materials, as discussed below.

Numerous theoretical methods have been previously intro-

duced to describe colloidal crystal growth, including adapta-

tions6,7 of the classical Wilson–Frenkel (WF) type crystal growth

model, cluster dynamics,8 a simple field theoretical model,9 and

density functional theory (DFT).10,11 Using a WF based

approach,6 Russel et al.7 have identified some essential patterns

in the kinetics of crystal growth that any theory should reproduce

(i) a diffusion-controlled or ‘slow’ growth mode that can account

for the three dimensional (3D) dendritic structures observed in

experiments on monodisperse colloids in microgravity7,12 and (ii)

a ‘fast’ growth mode in which solidification takes place without

an appreciable density change. A transition from (i) type growth

towards (ii) with increasing supersaturation has also been

observed in a simplified field theory that relies on a (non-

conserved) structural order parameter coupled to a diffusive

(conserved) density field.9 The classical DFT, which is a true

microscopic theory, is able to predict crystal structure, elasticity,

etc. A recent extension of the DFT, the dynamical density

functional theory (DDFT), has been used to address crystalli-

zation kinetics in 2D.11 Past DDFT computations have been

limited to only a few hundred particles so that the potential of

this promising method has not yet been tested.

We extend DDFT type simulations to a system size (�13 000

particles) sufficient to address the structures encountered in two-

dimensional colloidal crystal aggregation.5,13–15 This development

is based on an adaptation of the phase-field crystal (PFC) method

of Elder et al.,16,17 an approach that relies on a relatively simple

free energy functional. We show below that this new method is

able to reproduce the full range of morphologies observed in

Skjeltorp’s colloidal crystallization experiments, where the driving

force for crystallization was varied by increasing the particle

concentration.5 We find that we are able to interpret these

measurements in terms of changes in the growth mechanisms

identified in our simulations. Morphology changes at a fixed

particle concentration where the temperature is lowered are also

considered to explore how increasing driving force through

progressive undercooling affects crystal morphology. We again

find that increasing the crystallization driving force leads to

a progressive change in crystal morphology from symmetric

crystal growth to symmetric dendritic growth, and finally to more

disordered dendritic growth. This alternative mode of changing

crystal morphology provides insights into previous crystallization

measurements in thin polymer films2 and phase-field simulations

of crystal growth intended to model these phenomena.1
The phase-field crystal (PFC) model

The PFC model is a DDFT type approach that relies on time-

averaged particle densities. Starting from the Ramakrishnan–
1790 | Soft Matter, 2011, 7, 1789–1799
Yussouff free energy functional,18 and performing specific

simplifications, one arrives to the familiar Brazovskii/Swift–

Hohenberg19,20 form of the free energy of ordering systems,

F ¼
ð

dr

�
j

2

h
3þ

�
1þ V2

�2
i
jþ j4

4

�
; (1)

that exhibits a characteristic length scale, which in the present

context corresponds to an energetic preference for a well-defined

inter-particle distance. In this model, 3 defines the temperature

relative to the critical temperature, while j ¼ (r � rL
ref)/rL

ref/

(3BS)1/2 is the reduced density of colloidal particles, defined

relative to a reference liquid of particle density rL
ref. Here BS¼K/

(rL
ref kBT), while K is the bulk modulus of the crystal, kB the

Boltzmann’s constant, and T the temperature. (The term ‘particle

density’ is used here for the surface density of colloidal particles

in the two-dimensional system: r ¼ number of particles per unit

area in our two dimensional simulations.)

To model the time evolution of crystal growth, we follow

a DDFT approach previously applied to colloidal systems,11 and

adopt a diffusive equation of motion with a mobility Mr ¼ r0D/

(kBT), where D is the self-diffusion coefficient of the particles and

r0 is the particle density in the initial liquid. In dimensionless

form:

vj

vs
¼ V2dF

dj
þ z; (2)

where s ¼ tBS[1 + (r0 � rL
ref)/rL

ref]D/R2 is the dimensionless time

scaled with the mobility specified above, whereas t is the

dimensional time and R is the size-scale (see Appendix A). Here z

stands for a conserved noise characterized by the fluctuation–

dissipation correlator hz(r,s)z(r0,s0)i ¼ �aV2d(r � r0)d(s � s0),
where a controls the magnitude of the thermal fluctuations

relative to the free energy barriers.21 This type of equation of

motion is expected to be a good approximation in colloidal

suspensions where particle density relaxes diffusively via the

Brownian motion of the particles.

The equation of motion has been solved numerically in

a parallel environment on a rectangular grid by a semi-implicit

fully spectral algorithm (see ref. 22), which is based on an

operator-splitting technique. Periodic boundary conditions have

been used at the perimeter of the rectangular simulation

domains. Details about the choice of material parameters and the

conditions under which the computations are performed are

explained in Appendix A.

The PFC model at a fixed temperature involves two basic

parameters, 3 and a, that are related to the compressibility of the

liquid, the bulk modulus of the crystal, the diameter of the

particles and the density rL
ref of the reference liquid.23 The

solution also depends on the initial particle density j0 of the

fluid. This model has been used successfully to address elasticity

and grain boundaries,16 the anisotropies of interfacial free ener-

gies,24–26 dendritic and eutectic growth,22,27,28 glass formation,21

polymorphism,29,30 heteroepitaxy,27,29 and colloidal patterning,23

among others. While it is a microscopic approach, it has the

advantage over other classical microscopic techniques, such as

molecular dynamics simulations, that the time evolution of the

system can be studied on the many orders of magnitude longer

diffusive timescale, so that the long-time behaviour and large-

scale crystalline structures become accessible.
This journal is ª The Royal Society of Chemistry 2011



The PFC method has been used recently to model colloidal

crystal aggregation and patterning in 2D and 3D.23,30 It predicts

a first-order transition between the homogeneous liquid and the

2D hexagonal structure17,23 (see the phase diagram in Fig. 6). Our

simulations indicate that melting takes place by vacancy gener-

ation and/or grain boundary melting (see Fig. 7). The freezing

after quenching at low supersaturations happens either via direct

crystal nucleation from the liquid and subsequent growth (see

Fig. 8 and 9) or via crystallization from an amorphous precursor

at large supersaturations.23 These findings are in a remarkable

agreement with analogous experiments on colloidal systems,31,32

where the appearance of the hexatic phase (of short-range atomic

order and quasi-long-range orientational order) predicted by the

Kosterlitz–Thouless–Nelson–Halperin–Young theory33 could

not be observed. This may have several reasons (finite-size effect,

hard-core potential, etc.; see discussion in Appendix C), never-

theless, the model and experiment seem to be in a reasonable

agreement.

Results and discussion

Morphology vs. driving force

We first illustrate the nature of the ordering process the PFC

model predicts and then focus on understanding the physical

causes of the morphology changes seen when progressively

increasing the thermodynamic driving force. The neglect of

thermal fluctuations results in the growth of crystals with

a perfect six-fold symmetry, but the introduction of noise into the

equation of motion breaks this symmetry leading to a randomi-

zation in the growth morphology. Representative single-crystal

structures obtained by free growth with noise associated with

thermal fluctuations (a ¼ 10�2) are shown as a function of the

initial reduced particle density of the liquid in Fig. 1. The crystal

growth was initiated through introducing a seed (a small

hexagonal cluster of seven particles at the centre of the
Fig. 1 Single crystal growth morphologies in the presence of noise ((a–d) (a

crystals by Skjeltorp,5 with the permission of the APS; ª APS 1987). The d

�0.505; �0.504; and �0.5035). In the case of the simulations, the coarse-grain

The fractal dimensions of the single crystal aggregates evaluated from the slop

and Rg is its radius of gyration) are: (a) fd¼ 2.012� 0.3%; (b) 1.967� 0.3%; (c)

slope. The fast growth mode is recognizable via the lack of a (dark) depletion z

computations have been performed on a 2048� 2048 rectangular grid. The for

mm particles), a size comparable to that of Skjeltorp’s images.5
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simulation box) and the driving force for the crystalline ordering

transition was varied by changing the initial particle density of

particles in the fluid. The images in Fig. 1 clearly indicate that

increasing the supersaturation [defined here as S ¼ (j0 � jL
e)/

(jS
e � jL

e), where jS
e and jL

e are the reduced particle densities

of the equilibrium solid and liquid phases, respectively] at first

gives rise to slowly growing faceted hexagonal crystals, followed

by dendritic and fractal-like crystal patterns, and then more

irregular or ‘‘porous’’ crystals form at still high particle densities.

We emphasize that each of the patterns exhibits long range order

within these crystals. These are crystals rather than polycrystals.

As mentioned previously, this pattern of behaviour has been

observed in numerous measurements on crystal growth with

increasing driving force and we examine the origin of this

progressive morphology change in our model. [We note that

Fig. 1(a)–(d) show the spatial distribution of the coarse-grained

particle density, ~j (i.e., the locally averaged particle density),

which has been obtained by two-dimensional FIR (Finite

Impulse Response) filtering,34 the solution j(r) of eqn (2). ~j is the

analogue of the coarse-grained density used in conventional field

theoretic models of crystallization.9 Due to coarse-graining, the

peaks of j(r), which represent the individual particles in the

crystalline region, cannot be seen in these ~j maps.]

One can expect on general grounds that this progressive

morphology change has something to do with some change in the

interfacial dynamics induced by the increase in the thermody-

namic driving force of crystallization. We next turn off the noise

(set a ¼ 0 in our calculations) so that we can focus on the

essential growth modes involved. Noise-free crystal growth

morphologies arising from our model are illustrated in Fig. 2.

With increasing supersaturation, we first observe the formation

of slowly growing faceted hexagonal crystals (Fig. 2a), corre-

sponding to growth under near-equilibrium conditions. This

morphology is clearly apparent in the growth pattern with noise

(see Fig. 1). This regime is followed by faceted six-fold dendrites
¼ 10�2) the PFC theory (top) and experiment (bottom) (e–h): 2D colloid

riving force increases from left to right (in the simulations: j0 ¼ �0.52;

ed particle density map (obtained by 2D FIR filtering, see text) is shown.

e of the plot log (N) vs. log (Rg) (N is the number of particles in the cluster

1.536� 0.9%; (d) 1.895� 0.3%. The error is the standard deviation of the

one at the interface, whose presence is indicative to the slow mode. These

mer corresponds to�13 000 particles, or 118 mm� 118 mm (assuming 1.1

Soft Matter, 2011, 7, 1789–1799 | 1791



Fig. 2 Single crystal growth morphologies as predicted by the PFC

model at 3 ¼ �0.75, while increasing reduced particle density (j0) in the

absence of noise (a¼ 0). The coarse-grained particle density map (¼local

average particle density, obtained by 2D FIR filtering, see text) is shown.

Note the dark diffusion field ahead of the slowly growing faceted inter-

faces and the lack of such field at the fast growing broader interfaces. The

reduced initial particle densities were as follows: (a) j0 ¼ �0.53; (b)

�0.5035; (c) �0.503375; (d) �0.503355; (e) �0.50335; and (f) �0.5032.

The computations have been performed on a 2048 � 2048 rectangular

grid. (g) Dimensionless distance of the tip from the centre vs. dimen-

sionless time as a function of initial liquid density.

Fig. 3 Single crystal growth morphologies as predicted by the PFC

model at j0¼�0.503, while decreasing the temperature in the absence of

noise (a ¼ 0). The coarse-grained particle density map (¼local average

particle density, obtained by 2D FIR filtering, see text) is shown. Note the

dark diffusion field ahead of the slowly growing faceted interfaces and the

lack of such field at the fast growing broader interfaces. The respective

values of the temperature parameter were as follows: (a) 3 ¼ �0.6; (b)

�0.748; (c) �0.7488; (d) �0.74889; (e) 0.7489; and (f) �0.749. The

computations have been performed on a 2048 � 2048 rectangular grid.
(Fig. 2b–d), and then by a fast-growing compact hexagonal

morphology at high supersaturations (Fig. 2e and f) having

a broad non-faceted interface. In all these morphologies, the

colloid particles are arranged on a 2D hexagonal crystal lattice.

The change in growth anisotropy is also reflected in the rounding

of corners with increasing driving force. Comparable morpholog-

ical transitions are observed if the reduced particle density is kept

constant and the temperature parameter 3 is changed (see Fig. 3);

so this progressive change in morphology generally arises with

increasing thermodynamic driving force through supersaturation
1792 | Soft Matter, 2011, 7, 1789–1799
or undercooling. What is the origin of these changes? A closer

examination of the growth kinetics of noiseless growth patterns

provides the necessary clues.

The kinetics of crystal growth is most basically monitored by

simply tracking the overall size of the crystal growth pattern. We

use the tip position of the crystal pattern to define the growth front

position and the distance of this point from the growth centre of

the crystal pattern to characterize the change in growth kinetics

with thermodynamic driving force (Fig. 2g). For the ‘near equi-

librium’ and low driving force case, we find a parabolic growth

law (x f s1/2), while we find an essentially linear relationship (x f

s) at high driving forces. For intermediate driving forces, there is

initially a roughly constant growth velocity at first in a growth

regime where the crystals have a compact shape, but this kinetics

changes over to a continuously decreasing velocity in the regime

where the faceted dendrites emerge. The crossover time separating

these distinct growth regimes increases with increasing thermo-

dynamic driving force.

‘Fast’ and ‘slow’ growth modes

We next examine the microscopic structure of the crystal–fluid

interface at low and high driving forces to understand this
This journal is ª The Royal Society of Chemistry 2011



dramatic change in growth kinetics and crystal growth

morphology. Some basic properties of the interfacial geometry

under these variable growth conditions are summarized in Fig. 4.

In particular, reduced particle density maps (the spatial varia-

tions of the local number density) are displayed in Fig. 4a and b,

whereas the cross-interfacial variation of the coarse-grained

particle density (the locally averaged particle density), ~j is pre-

sented in Fig. 4c and d. The time evolution of the coarse-grained

particle density field, ~j, across the interface is shown in Fig. 4e

and f.

The faceted interface seen at low supersaturations is relatively

sharp (Fig. 4a) and an extended density depletion zone builds up

ahead of this growing front (Fig. 4c and e). This leads to crystal

growth having a progressively decreasing velocity (v f s�1/2, see

red curve in Fig. 2g), indicative of the front propagation being

controlled by the rate of particle diffusion. This mode can be

identified with the ‘slow’ mode described by Russel et al.7 and is

also responsible for the appearance of the dendritic structures
Fig. 4 Two modes of interface propagation: (a) faceted growth mode

(j0 ¼ �0.53) with a sharp interface (‘‘slow’’ mode); (b) non-faceted

growth mode (j0¼�0.5032) with a more diffuse interface (‘‘fast’’ mode).

(c and d) The local (solid) and the coarse-grained (dashed) particle

density profiles at the growth front for the two modes. x is the distance

from the centre of the particle, along the horizontal centre line of the

cluster. Note the broader interface for the fast mode and the higher

density of the growing crystal for the slow mode. Time evolution of the

coarse-grained density profile for (e) the slow and (f) the fast modes. Note

the substantially reduced density difference between the solid and liquid

phases in the latter case.
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shown in Fig. 2b–d where the same ‘diffusive’ growth kinetics is

exhibited. These patterns represent a colloidal suspension

analogue of the Mullins–Sekerka type diffusional instability

leading to dendritic crystals in molecular fluids.35,36

In contrast to the sharp and faceted solid–liquid interface

observed at near-equilibrium, a non-faceted interface that

extends to several particle layers occurs (see Fig. 4b and d) at

high driving forces. This feature is accompanied by a weak, but

well defined particle depletion zone that is localized near the

solid–liquid interface (Fig. 4f). This distinct type of front prop-

agates with a constant velocity (see grey line in Fig. 2g). An

essential clue into the physics underlying this relatively fast

crystal growth mode is provided by Fig. 4d and f, which show

that crystal crystals grown under these strong thermodynamic

driving conditions have a substantially reduced density than

those grown closer to equilibrium conditions. The crystal density

somehow dynamically adjusts itself to be nearly equal to the

initial particle concentration in the liquid! The net effect of this

interfacial broadening is physically in line with the heuristic

suggestion by Kyu and co-workers that increasing the thermo-

dynamic driving force has the effect of a progressive reduction in

the effective anisotropy of the interfacial free energy,4 although

this effect is not an equilibrium phenomenon in our simulations,

as we discuss below.

The dramatic interfacial broadening and lower density crystal

growth effect seem to be caused by the trapping of defects in the

growing crystal. This dynamic density adjustment (trapping)

mechanism in crystal growth is well established in the rapid

solidification of alloys where this phenomenon is associated with

solute trapping,37,38 making this mode of crystal growth an

analogue of the fast or ‘‘diffusionless’’ crystal mode defined by

Russel et al.7 We believe, furthermore, that this is the first

demonstration of such a dynamic trapping of a conserved field in

simulations based on microscopic theory. The next question is

how these distinct slow and fast growth modes contribute to the

progressive morphology changes seen in Fig. 1.

A basic difference in the slow and fast growth modes is their

stability against diffusional instability induced finger growth. As

noted before, interfaces growing by the slow growth mode are

prone to the Mullins–Sekerka type instability, while the fast

mode does not exhibit this type of interface branching instability.

Remarkably, the two growth modes may coexist at the perimeter

of the same single crystal (Fig. 2d and e, and 3d and e). The fast

mode apparently has a regularizing effect on the growing

dendrites in this regime of crystal growth, whereas the slow mode

gives rise to the formation of sharp facets on the lateral sides of

the dendrites. The evolving pattern structure with a change in

driving force suggests that the local ‘choice’ between the two

modes is caused by differences in the local crystallography (front

orientation relative to crystal lattice). Progressive particle

depletion ahead of the front starts to develop normally at the

centre of faces, and the diffusive mode usually prevails once

present. For weak depletion, however, the depleted zones remain

localized and the crystal growth due to the fast mode is able to

outrun this depletion front on both sides, leading to fluid pockets

trapped into the solid. The frozen result of this phenomenon is

apparent in the periodic pattern of crystal defects that can be

clearly seen in the noise free crystal pattern in Fig. 2e and 3e,

corresponding to fast mode crystal growth.
Soft Matter, 2011, 7, 1789–1799 | 1793



Density trapping

We next verify the impression that the crystal density in the fast

growth regime is approaching the particle density of the liquid so

that there is so much defect in the crystal (excess vacancy

concentration as the lattice constant does not seem to change

perceptibly) that hardly any volume change occurs upon crys-

tallization. If this effect is generally true for fast crystal growth,

then its observation should provide a clear means of identifying

fast mode crystal growth. We see in Fig. 5a that increasing the

thermodynamic driving force for crystallization through an

increase of the density causes the interface density to approach

the initial density of the liquid. Next, we further quantify this

interesting effect characterizing this peculiar fast mode growth.

The respective partition coefficient, defined in analogy to the

partition coefficient in binary alloys,k ¼ ~jsol/~jliq, increases from

k0 ¼ jS
e/jL

e ¼ 0.649 towards 1, where ~jsol and ~jliq are the

reduced particle densities for the solid and liquid phases at the

solidification front, while jS
e ¼ �0.4228 and jL

e ¼ �0.6514 are

the coexisting solid and liquid densities. The PFC results for the

velocity dependence of the partition coefficient and the theoret-

ical models by Aziz,37 k ¼ (k0 + v/vD)/(1 + v/vD), and by Jackson

et al.,38k ¼ k0
1/(1 + v/vD), are in a qualitative agreement (Fig. 5b).

Here vD is the characteristic trapping velocity. In the range

investigated, the PFC results can be fitted fairly well by k0 ¼
0.641 � 0.002 and vD ¼ 0.159 � 0.004 or by k0 ¼ 0.641 � 0.002

and vD ¼ 0.128 � 0.003, respectively, where the errors are

standard deviations of the fitted parameters. The transition from

the fully diffusion-controlled case (v � vD) to the fully dif-

fusionless case (v [ vD) is accompanied by about a two orders of

magnitude increase in the crystal growth velocity, justifying the

term ‘fast’ crystal growth mode.
Fig. 5 Quantitative characterization of density trapping in the cases

displayed in Fig. 1. (a) Coarse-grained solid and liquid densities at the

growth front vs. velocity, v. (b) Partition coefficient, k, vs. velocity. (c)

Interface thickness, d, and diffusion length, dD, vs. velocity. (d) Partition

coefficient, k, vs. the interface thickness, d.

1794 | Soft Matter, 2011, 7, 1789–1799
Dynamic interface broadening

Remarkably, there is also a dynamic broadening (also termed as

kinetic roughening) of the interface region with increasing v (see

Fig. 5c), a phenomenon observed recently for colloidal systems.39

An interesting consequence of this dynamic interface broadening

is a reduction of the growth anisotropy with increasing driving

force (see Fig. 2–4). This phenomenon is analogous to the drastic

reduction of the growth anisotropy due to kinetic roughening

found in the interface dynamics of the Ising model40 and other

critical systems. Such a relationship between the interface

thickness and anisotropy is common, when approaching the

critical point of a phase transition. (As in other models with

a critical point, in the PFC model the interface thickness

increases while the anisotropy decreases23,26,30 upon approaching

the critical point). The usual rationale for this behaviour is that

the properties of a broad interface are less sensitive to the relative

orientation between the crystal and its surface than in the case of

a sharp interface (see e.g. the isotropic broad-interface equilib-

rium crystallites near the critical point, and the hexagonal faceted

crystals of a sharp interface far from it in Fig. 10).

The observed interfacial broadening is expected to enhance

dynamic density adjustment (trapping), since broadening of the

solid–liquid interface is known to yield enhanced solute trap-

ping.41 Indeed, we see a roughly linear relationship between k and

d (Fig. 5d). This scaling relation for k should be useful in esti-

mating the extent of dynamic interface broadening. As expected

from theory,37,38 dynamic trapping of density becomes significant

when the diffusion length dD becomes comparable to the inter-

face thickness d. (The diffusion length is defined as

dD ¼ A=Dj ¼ f
ð
ðj0 � ~jÞdng=maxðj0 � ~jÞ, where n is a spatial

coordinate perpendicular to the solid–liquid interface. The inte-

gral represents the particle deficit ahead of the growth front,

given by the area A enclosed between the ~j(n) and j(n) ¼ j0

curves, while Dj ¼ max(j0 � ~j) is the maximum local depletion

at the front relative to j0.) Indeed, the intersection of the d(v) and

dD(v) curves yields v z 0.1 (Fig. 5c), which is comparable to the

vD data obtained by fitting the theoretical expressions to the

observed partition coefficients.42
Emergence of complex crystal growth forms

These observations imply that ‘fractal geometry’ crystal growth

forms arise as a consequence of a fluctuation-induced local

selection between the fundamental slow and fast crystal growth

modes. Initially, the crystallites grow with the fast mode at high

thermodynamic driving force, but fluctuations disrupt the

uniformity of the density distribution along the crystal perimeter,

and then trigger an uneven particle depletion, which in turn

breaks up the originally smooth front into fast travelling tips and

slow diffusion-controlled regions. The tip trajectories become

erratic due to the fluctuations, leading to fractal morphology.

This fast mode branching instability evidently involves a distinct

mechanism from the Mullins–Sekerka diffusive instability that

applies for the slow diffusive mode of crystal growth.

The porous clusters form, when the fluctuation-induced defect

trapping is prevalent and when noise representing the thermal

fluctuations is also present (see Fig. 1). Under these conditions,
This journal is ª The Royal Society of Chemistry 2011



the fast mode evidently does not have a regularizing effect of the

shape of the crystal growth pattern, as in the symmetric crystals

shown in Fig. 2e and f, or 3e and f. The morphologies in Fig. 1

show a striking resemblance to the experimental images by

Skjeltorp5 of colloidal crystals grown under relatively low and

high supersaturation in our simulations. The present model

provides a unified description of these conspicuous changes in

crystal morphology with thermodynamic driving force. As

a further quantification of the morphological changes in Fig. 1

and to better compare with the observations by Skjeltorp,5 we

determined the bulk fractal dimension fd for the clusters shown in

Fig. 1. The retrograde variation of fd as a function of supersat-

uration nicely accords with Skjeltorp’s estimates.5 The compar-

ison with his measurements appears to be quantitative.
Broader implications

Finally, we discuss some of the broader implications of our

results for understanding crystal growth in other materials. For

our colloidal crystal growth study, the time evolution of the

ordered crystal growth pattern (i.e., the particle density) follows

diffusive dynamics. In a conventional coarse-grained phase-field

type formulation, the situation addressed here corresponds to

coupling of a non-conserved crystal–liquid order parameter to

a coarse-grained particle density field, which follows diffusive

dynamics. A similar situation occurs during the freezing of

a binary alloy or in thermal transport controlled solidification,

where the structural order parameter monitoring the crystal–

liquid transition is coupled either to the concentration field or the

temperature field, both following diffusive dynamics. On the

basis of the formal mathematical similarity of these problems we

expect our results to be relevant to a broad class of crystallizing

systems. For example, the progressive change of crystal

morphology seen in Fig. 1–3 upon increasing the thermodynamic

driving force can rationalize the change observed in the crystal-

lization morphology of ultrathin polystyrene films from hexag-

onal crystals at low undercooling to symmetric dendrites and

then progressively disordered dendrites (‘seaweed’) with

decreasing crystallization temperatures.1,2 The latter structure is

known to form only at small anisotropies (of both the kinetic

coefficient and the interfacial free energy). A possible mechanism

for achieving a low effective anisotropy is via forming a large

number of randomly oriented crystallites at the growth front, as

indeed happens in many cases.1,43 However, polycrystalline

growth is apparently not the only mechanism of this morphology

change. Taguchi et al.2 have shown that polystyrene crystals

grown under similar conditions grow as single crystal, despite the

increasingly irregular nature of the crystal growth upon

increased cooling. The heuristic interpretation of Xu et al.4 of this

change of crystal growth morphology with undercooling as

arising from a progressive change in the surface tension anisot-

ropy also has merit, although no mechanism accounting for such

an explanation was provided in their work. The present paper

provides the missing conceptual link: dynamic broadening of the

interface indeed leads to the assumed change in the anisotropy of

the interfacial free energy, while trapping of the relevant

conserved quantity removes the propensity for branching. As

pointed out earlier, the attendant growth of ‘dynamic heteroge-

neity’ (large dynamic mobility associated transient local
This journal is ª The Royal Society of Chemistry 2011
ordering) in glass-forming and other complex fluids can give rise

to a tendency towards disorderly polycrystalline growth1,43 and

impurities44 can have a similar effect. These factors are important

in the ultimate limit of this type of disorganized crystal

growth,1,43 the polycrystalline spherulites, where the randomness

of the nucleation process during the course of growth restores the

isotropy of the crystallization growth pattern.

The present ‘atomistic’ field theoretic model of crystal growth

is able to describe the observed progressive changes in growth

morphology in colloidal crystal growth from compact symmetric

crystal growth patterns to the formation of symmetric dendrites

and finally disordered seaweed-like crystals at progressively large

supersaturation. The same effect is seen upon lowering temper-

ature so these morphology changes are characteristic of

increasing the thermodynamic driving force for crystallization.

By reducing the noise strength in our calculations, we are able to

locate the essential cause of this morphology evolution with the

strength of thermodynamic driving. We find that two distinct

modes of crystal growth underlie the growth dynamics. First,

there is the well-established ‘slow’ mode of crystal growth, which

is subject to the well known Mullins–Sekerka instability: the

crystal growing into the undercooled/supersaturated liquid

develops fingers as part of its surface runs out ahead of the rest

due to local interfacial fluctuations that initiate the process and

the higher crystal growth rate engendered by the interface

curvature. This type of diffusional instability is well known in

molecular fluids and is the general origin of dendrite patterns

forming in both colloidal fluids and fluid melts.7,12

Experiments on dendritic growth in a variety of systems

indicate a progressive transformation of symmetric dendritic

growth to irregularly shaped crystal patterns at high thermody-

namic driving forces. We find this mode of crystal growth

involves a ‘fast’ mode of crystal growth that occurs when crystal

growth becomes too rapid to allow for the build-up of the

diffusion field ahead of the crystal growth front. This ‘fast’ mode

of crystal growth is normally much faster than the slow diffusive

mode and is characterized by a crystal density that is similar to

the particle density in the liquid. This means that the defect

(vacancy) density within the resulting crystals is relatively high.

The fast mode can mix with the slow mode in response to the time

evolution of the particle depletion field ahead of the crystal

growth front leading to significant effects on the crystal

morphology: at relatively strong driving force conditions, there

can be a stochastic switching between the fast and slow growth

modes that can cause the crystal growth to take the form of

highly branched ‘fractal’ structures, while retaining long range

crystal order. Very similar crystal patterns have been seen in

polymer films with increasing thermodynamic driving and we

suggest that the same type of fast and slow mode competition is

responsible for the morphology changes with driving force

observed in these systems.

At extremely high undercooling or supersaturation, we expect

these single crystal morphologies to ultimately give way to poly-

crystalline crystal growth due to lattice defects quenched into the

solid that lead to the formation of new grains oriented differently at

the growth front, as discussed in our previous work.1,43 Thus,

strong thermodynamic driving ultimately restores the ‘symmetric’

nature of crystal growth pattern for both single crystal and poly-

crystalline growth forms. For single crystal growth, this terminal
Soft Matter, 2011, 7, 1789–1799 | 1795



shape is determined by the kinetic anisotropy, while for poly-

crystalline growth the growth shape is isotropic (spherical in three

dimensions or circular in near two dimensions), as the local growth

anisotropy is randomized by the formation of grains with random

orientation at interface of the growing crystal. At a late stage of this

disorderly crystal growth, where this randomization effect becomes

fully developed, the maximum growth rate direction of crystal

growth is then along a direction perpendicular to the spherical

envelope of the spherulitic polycrystal.1,43 Non-equilibrium crystal

growth morphologies reflect the interplay between thermodynamic

and kinetic anisotropies in the particle interactions that encode the

ultimate crystal morphology, allowing for a significant control of

morphology by tuning the growth conditions.
Appendix A. Conditions for the PFC simulations

The input parameters of the model can be combined into two

independent dimensionless quantities, 3 and a. These are

dimensionless similarity parameters, such as the Reynolds or

P�eclet numbers. Accordingly, a solution obtained for a single set

(3, a) corresponds to an infinite set of choices of the material

properties/conditions. The magnitude of a is related to measur-

able quantities as follows: a¼ 2(rL
refkT)2/(3K2rL

refRd), where K is

the dimensional bulk modulus of the crystal, d is the number of

dimension, rL
ref is the number density of the reference liquid,

while R is the size-scale, i.e., the magnitude of a depends on K,

rL
ref, T, and R. Taking some typical values corresponding to the

hard-disc system at a density of rL
ref ¼ 0.8 and crL

refkT ¼ 0.0645

(K ¼ 1/c, where c is the compressibility), one obtains a ¼
0.007 z 0.01, close to the magnitude, we have used in our

computations. This choice of a ensures also that on the timescale

of the simulations we do not observe homogeneous nucleation.

This is advantageous as we wish to study the large-scale growth

forms observed by Skjeltorp. (At high nucleation rates, the

impingement of a large number of small crystallites would prevent

us from observing large-size growth forms.) The parameter 3 can

be related to the expansion coefficients of the two-particle direct

correlation function, and via them to the compressibility of the

liquid and the bulk modulus of the solid. Considering these rela-

tionships, and Hall’s equations of state for the fluid and crystalline

phases of the hard-sphere system,46 one obtains 3 z �0.45 to

�0.56 in the density range of crystal–liquid coexistence. This

indicates that the hard-sphere colloidal systems fall farther from

the critical point than the noble gas Ar, characterized by 3 z
�0.13 to �0.27 deduced by Elder and Grant.17 To our under-

standing, the relevant data for Skjeltorp’s experimental 2D system

are not available therefore we cannot make a similar estimate. The

faceting observed in experiments implies a large negative value for

3. We note that the qualitative behaviour is very similar for 3 z
�0.5 and �0.75, thus we believe our choice is reasonable for

qualitative modelling of colloidal systems. A recent work has

explored the behaviour of the PFC model at far larger distances

from the critical point, and interpreted the PFC approach in this

range as a reasonable model of foams.47
Fig. 6 The j < 0 section of the B/SH/PFC phase diagram predicted in

2D using the single-mode approximation.17 The blue circles denote the

points in which simulations have been performed. Note the critical point

at jc ¼ 0 and 3c ¼ 0.
Appendix B. The PFC phase diagram in 2D

In 2D, the deterministic (zero noise strength) PFC model predicts

the following stable phases:17 a homogenous disordered (fluid)
1796 | Soft Matter, 2011, 7, 1789–1799
phase, an ordered hexagonal (crystalline) phase, and a striped

phase (see Fig. 6). The state points at which our simulations have

been performed and the relevant phase boundaries are indicated

in Fig. 6 in reduced temperature and particle density units. The

deterministic Brazovskii/Swift–Hohenberg/PFC models (which

are equivalent so far as the equilibrium properties are concerned)

lead to mean-field critical exponents24 that are independent of

dimensionality. Results from deterministic PFC simulations for

the interface thickness and line tension in 2D are consistent with

this.30 Adding noise to the equation of motion is expected to

change the position of the critical point and to drive the system

into different universality classes depending now on dimension-

ality. It has been shown by Brazovskii using the self-consistent

Hatree approximation that the fluctuations destroy the mean-

field instability and lead to a weakly first-order transition19,20,48 as

confirmed by more accurate renormalization calculations.49
Appendix C. Melting and freezing in 2D in the PFC
model

Melting

According to Kosterlitz, Thouless, Halperin, Nelson, and

Young, melting of 2D crystals happens in two steps by second

order phase transitions at two distinct temperatures. In the first

step, melting is driven by thermally activated dislocation pairs

that dissociate and transform the crystal into an orientationally

ordered hexatic phase, while in the second step this orientational

order is destroyed by dissociation of free dislocations into dis-

clinations that drives the system into the disordered liquid state.33

Computer simulations for the hard-disc system seem to support

the prediction that melting in 2D systems occurs as a two-stage

process:33 first, there is a transition from a crystal to a hexatic

phase having long range orientational correlations and then to

a liquid phase where the local orientational correlations are lost.

However, there is no consensus on the order of these transitions.

Some works indicate a continuous transition for the first stage

and a first-order transition for the second stage, while others

claim the situation is the other way around. While the situation

regarding melting is not fully resolved, we can make some

comments on this phenomenon based on our PFC simulations.
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There is no indication for the formation of the hexatic phase in

the PFC model. This might be viewed as a possible weakness of

the model. However, the hexatic phase has been found elusive

both experimentally and in simulations:33 apparently finite-size

effects and the type of interaction potential influence its

appearance, some studies imply that it is metastable, and it is

worth noting that the validity of the Mermin–Wagner theorem

that excludes the long-range crystalline order in 2D is restricted

to only non-hard core pair-potentials,50,51 i.e., we cannot a priori

exclude that an infinite 2D crystalline phase may exist both in

hard-disc type colloids and in the PFC model. (We stress that the

present paper addresses crystalline aggregation after quenching,

not melting close to equilibrium.) Whether the hexatic phase can

be observed in near-equilibrium studies of melting within the

PFC model is an open question. The hexatic phase might remain

unobservable if the time averaging inherent in the PFC washes

out the structural features so that the hexatic phase is essentially

indistinguishable from the fluid phase.

Our preliminary simulations for near equilibrium melting

suggest the nucleation of melting via vacancy generation for

single crystals and grain boundary melting for the polycrystalline

state (Fig. 7). This accords with results, obtained with a hard-

core repulsive interaction.52
Freezing

In experiments on 2D colloids, freezing after quenching occurs

by direct nucleation of the 2D crystallites without the appearance

of the hexatic phase,31 signalling a first-order transition. In other
Fig. 7 Melting in the PFC model. Initial state: single crystal (left) and

polycrystalline state (right). (3 ¼ �0.25, a ¼ 0.1, j0 ¼ �0.27, a 1452 �
1452 fraction of a 4840 � 2092 grid is shown.)

Fig. 8 Homogeneous crystal nucleation and growth in 2d colloidal

systems at relatively high supersaturation. Left: experiment,15 with the

permission of the APS; ª APS 1985; right: PFC simulation with noise. (3¼
�0.75, a ¼ 0.012, j0 ¼ �0.5038, a 1495� 1495 fraction of a 2048 � 2048

grid is shown.)

This journal is ª The Royal Society of Chemistry 2011
works, 2D crystal nucleation happens by a two-step process via

an amorphous precursor.32 The present model recovers this

complex behaviour,23,30 specifically, at small undercoolings direct

crystal nucleation is observed from the fluid, while at the large

undercoolings and noise strengths, we observe the formation of

an amorphous phase preceding the formation of the crystal (and

as in the experiments the spatial decay of the bond-order corre-

lation function excludes the appearance of the hexatic phase23).

At the noise strength, we have chosen for the present study, there

is no homogeneous nucleation on the timescale of the simulations.

Alternatively, we can choose the noise strength so that on the

timescale of the simulation we see nucleation events. Indeed, with

increased noise strength (e.g., a ¼ 0.1), we see the homogeneous

nucleation of the crystalline phase, and the patterns forming have

again a striking similarity to the experiments (Fig. 8). At lower

supersaturations one needs larger noise strength to observe nucle-

ation on the timescale accessible for simulations. However, the time

evolution of morphology from chain-like aggregates to faceted

crystallites follows the sequence seen in experiments (Fig. 9).
Appendix D. Growth anisotropy, equilibrium shapes
and anisotropy of the interfacial free energy

Growth anisotropy occurs as interplay of several factors: (i)

anisotropy of the interfacial free energy, (ii) anisotropy of the
Fig. 9 Homogeneous crystal nucleation and growth in 2d colloidal

systems at reduced supersaturation. Left: experiment,15 with the permis-

sion of the APS; ª APS 1985; right: PFC simulation with noise. (3 ¼
�0.75, a ¼ 0.5, j0 ¼ �0.6, a 733 � 733 fraction of a 1024 � 1024 grid is

shown.)
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kinetic coefficient that describes the attachment rate of particles

to the crystal, and (iii) diffusional instabilities.

The equilibrium shapes (that minimise the contribution from

the interfacial term to the free energy to a 2D crystal of given

area) have been obtained by placing a seven particle cluster into

the simulation box and letting it grow until establishing equi-

librium (see Fig. 10). The initial liquid density has been chosen so

that the expected crystalline fraction obtained from the lever rule

is X ¼ 0.3. As expected from computer simulations and various

theoretical treatments,23,26,30,53,54 the interface thickness diverges

at the critical point in Fig. 6, while the anisotropy increases with

increasing distance from the critical point.
Fig. 10 Equilibrium shape vs. temperature (3) as predicted for a crys-

talline fraction of X z 0.3 (see the respective points in Fig. 6). (a) 3 ¼
�0.1; (b) �0.2; (c) �0.3; (d) �0.325; (e) �0.35; and (f) �0.4. The coarse-

grained (FIR filtered) reduced particle density maps are shown. Note that

the interface thickness decreases while the anisotropy increases with an

increasing distance from the critical point (from left to right). The

computations have been performed on a 1024 � 1024 rectangular grid.

Equilibration has been performed in a period of 106 dimensionless time

steps.
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The anisotropy of the equilibrium interfacial free energy pre-

dicted by the PFC model has been discussed extensively in

previous work.17,23–26,30 It has also been shown in a multiscale

analysis relying on a small-3 expansion of the free energy that the

anisotropy of the interfacial free energy originates from different

cross-interfacial variations of the amplitudes for the dominant

Fourier modes (density waves), whose wave vectors are among

the first reciprocal lattice vector star but have different orienta-

tional relationship to the interface normal.24,25 These results refer

to the deterministic case (zero noise strength). In this case, the

Brazovskii/Swift–Hohenberg/PFC models (which are equivalent

so far as the equilibrium properties are concerned) lead to mean-

field critical exponents24 that are independent of dimensionality.

Our noiseless numerical results obtained for the interface thick-

ness and line tension in 2D are consistent with this result.30

As the PFC method is a true atomistic model (DFT), the

numerical simulations automatically incorporate factors (i)–(iii),

besides, elasticity, surface reconstruction, etc. As a result, simi-

larly to other atomistic approaches as molecular dynamics,

separation of the individual effects is difficult. Regarding these

difficulties we are left with general considerations, when inter-

preting growth anisotropy, such as the observation that a broad

interface is more forgiving to the relative orientation between the

interface and the crystal than an interface sharp on the atomistic

scale, a phenomenon demonstrated by simulations within the 2D

Ising model.40
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