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Abstract 

The understanding of cellular metabolism has been an intriguing challenge in 

classical cellular biology for decades. Essentially, cellular metabolism can be viewed as a 

complex system of enzyme-catalysed biochemical reactions that produces the energy and 

material necessary for the maintenance of life. In modern biochemistry, it is well-known that 

these reactions group into metabolic pathways so as to accomplish a particular function in 

the cell. The identification of these metabolic pathways is a key step to fully understanding 

the metabolic capabilities of a given organism. Typically, metabolic pathways have been 

elucidated via experimentation on different organisms. However, experimental findings are 

generally limited and fail to provide a complete description of all pathways. For this reason 

it is important to have mathematical models that allow us to identify and analyze metabolic 

pathways in a computational fashion. This is precisely the main theme of this thesis.  

We firstly describe, review and discuss existent mathematical/computational 

approaches to metabolic pathways, namely stoichiometric and path finding approaches. 

Then, we present our initial mathematical model named the Beasley-Planes (BP) model, 

which significantly improves on previous stoichiometric approaches. We also illustrate a 

successful application of the BP model to optimally disrupt metabolic pathways. The main 

drawback of the BP model is that it needs as input extra pathway knowledge. This is 

especially inappropriate if we wish to detect unknown metabolic pathways. As opposed to 

the BP model and stoichoimetric approaches, this issue is not found in path finding 

approaches. For this reason a novel path finding approach is built and examined in detail. 

This analysis serves us as inspiration to build the Improved Beasley-Planes (IBP) model. 

The IBP model incorporates elements of both stoichometric and path finding approaches. 

Though somewhat less accurate than the BP model, the IBP model solves the issue of extra 

pathway knowledge. Our research clearly demonstrates that there is a significant chance of 

developing a mathematical optimisation model that underlies many/all metabolic pathways.  
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Chapter 1  

Introduction 

1.1      Basic Biology 

The basic unit of life is the cell. All living organisms are made of cells which are 

small membrane-bounded units filled with a concentrated aqueous solution of chemicals, 

called cytoplasm. Each cell is an independent entity, capable of creating copies of itself by 

growing and dividing into two identical daughter cells. The complete characteristics of an 

organism are carried by each of its cells. This information is stored within the DNA 

(deoxyribonucleic acide) molecule. 

 The DNA molecule is a nucleic acid consisting of a double-stranded helix-twisted 

polymer composed of four basic molecular units called nucleotides. Each nucleotide 

comprises a phosphate group, a deoxyribose sugar, and one of four nitrogen bases. The four 

different bases found in DNA are adenine, guanine, cytosine and thymine.  

The DNA molecule encodes the information for building the different parts of the 

cell. This information is located in the genes. A gene consists of a specific segment of DNA 

that specifies how to generate a (number of) protein(s) in a process called expression. 

Proteins are fundamental components of all living cells that are necessary for the proper 

functioning of an organism. In particular many proteins act as enzymes and catalyse 

biochemical reactions. From the biochemical point of view, proteins are composed of linear 

chains of amino acids which are linked together by peptide bonds. There are 20 different 

types of amino acids, each containing an amino group and a carboxyl group. 

The expression of the genes eventually leading to the production of proteins, occurs 

in several stages, and it is often referred as the central dogma of molecular biology, as can 

be observed in Figure 1.1. We briefly describe below the two stages that constitute the 

central dogma. 
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During the first phase, the DNA in the gene is transcribed into messenger ribonucleic 

acid (mRNA). One strand of the DNA double helix is used as a template by the RNA 

polymerase enzyme to synthesise mRNA: a single-stranded complementary copy of the base 

sequence in the DNA molecule. The sequence of mRNA is dictated by the order of the 

nucleotides in the transcribed part of the gene. The base uracil replaces thymine.  

In the translation phase, the mRNA migrates to the cytoplasm. During this step, 

mRNA goes through different types of maturation processes including one called splicing, 

which eliminates the non-coding sequences (introns). Then, the mRNA carries coded 

information to the ribosomes. The function of the ribosome is to take individual amino acids 

and link them in a chain in the right order, based on the sequence of the mRNA. Once the 

amino acids are linked into the chain, they are released from the ribosome and fold into a 

new protein. The correspondence between DNA's four-letter alphabet and a protein's 

twenty-letter alphabet is specified by the genetic code, which relates nucleotide triplets to 

amino acids. Note here that sequences within mRNA may not be translated.  

 
 

 

Figure 1.1: Central dogma in molecular biology 

 

In summary, proteins, which are coded by genes, are involved in almost all 

biological activities. As will become apparent below, proteins are crucial in cellular 

metabolism, which constitutes the main topic of this thesis.   

 



Metabolic pathway analysis via integer linear programming 

Francisco J. Planes                                                                                                                                  May 2008 3

1.2      Cellular metabolism 

Cellular metabolism can be viewed as a complex chemical engine by which the cell 

produces the energy and material necessary for the maintenance of life. This process is 

achieved via a vast number of enzyme catalysed biochemical reactions. As introduced 

above, enzymes are proteins that speed up (catalyse) biochemical reactions so that they 

occur at significant rates.  

In order to better comprehend the intricate functioning of this process, cellular 

metabolism has been commonly organised into metabolic pathways. Traditionally, 

biochemistry has defined metabolic pathways as a sequence of enzyme catalysed reactions 

by which a living organism transforms an initial source compound into a final target 

compound (Nelson and Cox, 2005). These pathways have been elucidated via 

experimentation on different organisms. Different authors refer to these pathways using 

different terms, e.g. consensus pathway (Arita, 2000), annotated pathway (Croes et al., 

2005, 2006), experimentally elucidated pathway (Keseler et al., 2005).  Henceforth, we refer 

to them as experimentally determined pathways.  

Figure 1.2 shows the glycolate degradation pathway by which two molecules of 

glycolate (glyclt) are converted into one molecule of 3-phospho-D-glycerate (3pg) by four 

different enzyme catalysed reactions. The source and target compound, glycolate and 3-

phospho-D-glycerate respectively, are coloured yellow. The numbers associated with each 

arc are the number of molecules of each compound. For example, the enzyme catalysed 

reaction R45 takes two molecules of ubiquinone-8 (q8) and two molecules of glycolate 

(glyclt) and transforms them into two molecules of ubiquinol-8 (q8h2) and two molecules of 

glyoxylate (glx). The numbers in brackets after each reaction label are the number of ticks. 

The number of ticks defines the activity of a biochemical reaction in a particular metabolic 

pathway. R460, for example, whose stoichiometry is 2 glx + h → 2h3oppan + co2, “ticks” 

once in our example pathway, converting two molecules of glyoxylate (glx) and one 

molecule of hydrogen ion (h) into one molecule of 2-Hydroxy-3-oxopropanoate (2h3oppan) 
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and one molecule of carbon dioxide (co2). R45, whose stoichiometry is glyclt + q8 → glx + 

q8h2, “ticks” twice in the glycolate degradation pathway, each time converting one 

molecule of ubiquinone-8 (q8) and one molecule of glycolate (glyclt) into one molecule of 

ubiquinol-8 (q8h2) and one molecule of glyoxylate (glx). Clearly, the number of ticks of a 

biochemical reaction that is not involved in the pathway is zero.  

 

Figure 1.2: Glycolate degradation pathway 

Compounds coloured blue in Figure 1.2 are produced to excess (the total number of 

molecules consumed by the reactions involved in the pathway is less than the total number 

of molecules produced by the reactions involved in the pathway). For example, carbon 

dioxide (co2) is coloured blue because R460 (2 glx + h→ 2h3oppan + co2), which ticks 

once, produces one molecule of co2 and no reaction consumes co2. Thus, co2 is, in 

aggregate (net) terms, produced in the pathway. Similarly, compounds coloured red are 

freely available (the total number of molecules consumed by the reactions involved in the 

pathway is greater than the total number of molecules produced by the reactions involved in 
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the pathway). For example, hydrogen ion (h) is coloured red because R460 (2 glx + h→ 

2h3oppan + co2), which ticks one, consumes one molecule of h, R459 (2heoppan + h + nadh 

→ glyc-R + nadh), which ticks one, consumes one molecule of h and R461 (glyc-R + atp → 

3pg + adp + h), which ticks once, produces one molecule of h. Thus, h is, in aggregate (net) 

terms, consumed in the pathway. Finally, compounds coloured white are balanced (the total 

number of molecules consumed by the reactions involved in the pathway is equal to the total 

number of molecules produced by the reactions involved in the pathway). For example, 

glyoxylate (glx) is coloured white because R45 (glyclt + q8 → glx + q8h2), which ticks 

twice, produces two molecules of glx and R460 (2 glx + h→ 2h3oppan + co2), which ticks 

once, consumes two molecules of glx. Thus, glx is, in aggregate (net) terms, balanced in the 

pathway. 

We should note in passing here that the representation of a metabolic pathway as in 

Figure 1.2 is not usual in the literature or databases that are available. This representation, 

which we developed, enables one to more clearly see a metabolic pathway than the standard 

representations given in the literature/databases. 

Experimental findings have provided insight into metabolic pathways and how 

organisms commonly undertake their mass-energetic requirements (Nelson and Cox, 2005). 

However, such findings have several shortcomings. First and foremost, there are few 

organisms in which the experimentally determined pathway structure is complete. To the 

best of our knowledge, only Escherichia Coli has a full description available, Karp et al., 

2002b. Secondly, experimental findings do not provide an answer as to why the cell makes 

use of a particular pathway (via evolution) and not another different pathway. For example, 

referring to Figure 1.2, one might find different possibilities to convert two molecules of 

glycolate into one molecule of 3-phospho-D-glycerate. In addition, the absence of a general 

logic (or mathematical model) that provides detailed insight into specific metabolic 

pathways makes it difficult to answer other practical questions related to metabolism, such 

as the discovery of novel alternatives pathways for biomedical and pharmacological issues 

or the regulation of different metabolic pathways.    
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 In order to direct the analysis of metabolic pathways towards these fundamental 

questions, computational/mathematical methods emerged in the late 80’s (Seressiotis and 

Bailey, 1986, 1988; Mavrovouniotis, 1992a, 1992b, 1993). Given a set of biochemical 

reactions belonging to a particular organism or cell, different algorithms based on artificial 

intelligence were used to compute meaningful metabolic pathways from a source compound 

to a target compound. However, the set of biochemical reactions was generally too 

incomplete to carry out a valid analysis.   

Early in this century, the availability of the genome sequences, along with the effort 

for storing in metabolic databases (Kanehisa and Goto, 2000; Schomburg et al., 2002; Joshi-

Tope et al., 2003) biochemical reaction data from literature sources, made it possible to draft 

the complete set of biochemical reactions for a particular organism (Schilling et al., 2003; 

Förster et al., 2003; Becker and Palsson, 2005; Feist et al., 2007). Essentially, each 

metabolic gene of a particular organism is assigned a biochemical reaction. As explained 

above, the link between genomes and metabolism is that some (metabolic) genes codes for 

enzymes, which are proteins that catalyse biochemical reactions. This assignment can be 

found directly through experimental methods (e.g. enzyme isolation). However, 

experimental methods are typically time-consuming. For this reason, much effort has been 

expended in finding analytical/computational methods that automatically carry out this task 

(Karp et al., 1999). For example, DNA sequence homology is typically used as a strong 

evidence for the presence of a reaction in an organism. These methods assume that two 

genes (from different organisms) that are homologous (have a similar sequence of 

nucleotides) have the same function. Therefore, should we know the function of one of these 

two genes, we know the function of the other gene. These computational procedures are not 

completely reliable. Indeed, the existence of the inferred reaction is hypothetical until an 

experimental validation is done.  However, they provide a reference for future 

improvements (Palsson, 2006).      

 This process of inferring the set of biochemical reactions for a particular organism is 

usually referred as to metabolic reconstruction. The interaction of the entire set of 
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biochemical reactions is usually characterised as a directed graph and referred to as a 

genome-scale metabolic network. Figure 1.3 shows an example network, represented as a 

bipartite graph, comprising 8 reactions (labelled R1 to R8 respectively) and 8 compounds 

(labelled C1 to C8 respectively). Reaction R3, for example, converts one molecule of C5 

into two molecules of C4, one molecule of C6 and one molecule of C7. Each reaction has a 

specified direction so a reversible reaction contributes two different reactions. For example, 

R6 and R7 are the reverse of each other. We should like to state here that such a network is 

an input data to our research.  

Figure 1.3: An example metabolic network 

The availability of the complete set of biochemical reactions for an organism 

propelled the appearance of computational/mathematical approaches so as to carry out an 
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analysis of metabolic pathways in genome-scale metabolic networks. In Chapter 2 a survey 

of the mathematical/computational approaches reported so far in the literature is provided. 

For the sake of clarity, approaches have been divided into two types: stoichiometric 

approaches and path finding approaches. Essentially, stoichiometric approaches, in contrast 

to path finding approaches, make use of the stoichiometry of the reactions when trying to 

find meaningful metabolic pathways in the metabolic network. The stoichiometry of R2 in 

Figure 1.3, for example, is that one molecule of C2 and two molecules of C3 are converted 

into one molecule of C5. Typically, both types of approaches have focused on determining a 

particular set of pathways in which it is expected to find experimentally determined 

pathways. Although somewhat more emphasised in path finding approaches, little validation 

has been carried out in this respect. As will become apparent in Chapter 2, path finding 

approaches, which are based on graph theory, turn out to be too simplistic to model 

metabolic pathways. In addition, stoichiometric approaches are currently inefficient and 

impractical at the genome-scale, since they are concerned with obtaining a special set of 

pathways and this set explodes in size in a combinatorial fashion as the number of reactions 

in the metabolic network increases. 

1.3      Contribution      

In this thesis a novel mathematical framework based on combinatorial optimisation 

(integer linear programming) to analyse metabolic pathways is presented. As will be shown 

in the thesis, we think that optimisation is a suitable concept to analyze metabolic pathways 

for two reasons: 

- it presents more flexibility to add meaningful biological constraints than typical 

path finding and stoichiometric approaches; 

- it focuses on computing single biologically meaningful metabolic pathways 

instead of particular sets of pathways. This simplifies the analysis and 

computational effort at the genome-scale. 
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In order to validate whether (or not) our mathematical optimisation models produce 

biologically meaningful metabolic pathways, the research has been mainly focused upon the 

problem of recovering experimentally determined metabolic pathways from the metabolic 

network. This problem consists of defining a mathematical optimisation model that, when 

solved, provides a solution identical to a known experimentally determined pathway, given 

the following input data: 

- the metabolic network of a particular organism; 

- the source and target compound of the experimentally determined pathway; 

- and (perhaps) some pathway knowledge. 

Note here that, as we are concerned with investigating whether (or not) there exists a 

mathematical optimisation model that underlies experimentally determined (known) 

metabolic pathways, then to do this, we need to verify whether (or not) the optimal solution 

to our model is equal to the actual pathway. If we use a heuristic algorithm, then we can 

never be sure as to the outcome. For example, if the heuristic solution is equal to the actual 

pathway, we can never be sure if our model is good or it just indicates that our model has 

(by chance) found a non-optimal solution, which is equal to the actual pathway. For this 

reason the solution to our model must guarantee optimality. 

The initial mathematical model for recovering experimentally determined metabolic 

pathways, referred as to the Beasley-Planes (BP) model, is presented in Chapter 3. The BP 

model is fundamentally an stoichiometric approach. It is applied to forty experimentally 

determined pathways of Escherichia Coli, which is a well-known organism in the biological 

world. Although the BP model shows quite good results, the BP model needs to know the 

low presence unbalanced (whether produced to excess or freely available) compounds in the 

experimentally determined pathways. A low presence compound is one that appears in very 

few of the reactions in the metabolic network. The precise numeric definition of a low 
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presence compound is given in Chapter 3. This limitation constrains the scope of the 

approach, as many pathways include low presence unbalanced compounds. 

Chapter 4 presents a practical application of the BP model to best disrupt metabolic 

pathways. We distinguish two cases: the disruption of a single metabolic pathway; and the 

disruption of two (related) metabolic pathways. The study is carried out with ATP producer 

pathways, which have special interest in cancer research. 

 In Chapter 5, we develop a path finding approach based on integer linear 

programming so as to examine in detail the accuracy of such approaches. This approach 

served as inspiration to derive the Improved Beasley-Planes (IBP) model, which is described 

in Chapter 6. Although the IBP model presents slightly worse results with respect to the BP 

model, the IBP model does not need any further knowledge of the experimentally 

determined pathway aside from the source and target compound. 

 Finally, a discussion is carried out in Chapter 7 so as to summarize the conclusions 

and future lines of research. Appendices providing detailed results and presenting full details 

of the forty metabolic pathways we have considered in this thesis are also given.  
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Chapter 2  

Literature Survey  

Advances in the field of genomics have made it possible to draft the complete set of 

biochemical reactions involved in different organisms. Accordingly, a computational 

analysis of metabolic pathways at the genome-scale has become possible. Singular attention 

has been devoted in the literature to stoichiometric approaches and path finding approaches 

to metabolic pathways. Essentially, stoichiometric approaches make use of the stoichiometry 

of the reactions when trying to determine meaningful metabolic pathways. In contrast, path 

finding approaches propose an alternative view based on graph theory in which the 

stoichiometry of the reactions is not considered. 

In this chapter we give an overview of the theory, applications and challenges of 

stoichiometric approaches and path finding approches to metabolic pathways. One point to 

note here is that, given the volume of papers relating to metabolic pathways that have been 

published, it is impossible to review each and every such paper. Rather we have chosen to 

focus on selected papers that seem to us, either from our own reading or from knowledge of 

citations given by others, of especial relevance. 

2.1 Introduction 

Cellular metabolism is a highly complex biological process by which the cell 

produces the energy and material necessary for the maintenance of life. In order to better 

comprehend the intricate functioning of this process, cellular metabolism has been 

commonly organised into metabolic pathways. Traditionally, biochemistry has defined 

metabolic pathways as a sequence of enzyme catalysed reactions by which a living organism 

transforms an initial source compound into a final target compound (Nelson and Cox, 2005). 

These pathways have been elucidated via experimentation on different organisms. A 

comprehensive collection of experimentally determined metabolic pathways are available in 

different electronic databases (Selkov et al., 1996, 1998; Karp et al., 2002a, 2002b).  
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For those organisms in which experimentally determined metabolic pathway 

knowledge is sparse, the complete availability of genome sequence data has enabled 

metabolic pathways to be inferred computationally. A number of qualitative tools have been 

developed to achieve this by assigning identified enzymes to experimentally determined 

(reference) pathways (Karp et al., 1999; Overbeek et al., 2000; Kanehisa et al., 2000). 

However, the scope of these tools is restricted by prior knowledge of experimentally 

determined metabolic pathways and they find difficulties, for example, in the discovery of 

novel alternative metabolic pathways which may be of interest for biotechnological or 

biomedical reasons.  

Advances in genomics have made it possible to draft the entire set of biochemical 

reactions involved in a particular organism or cell, along with their underlying data: 

compounds, stoichiometry, reversibility, enzymes and genes (Schilling et al., 2002; Reed et 

al., 2003). The interaction of the entire set of biochemical reactions and compounds is 

usually characterised as a directed graph and referred to as a genome-scale metabolic 

network. Referring back to Chapter 1, Figure 2.1 shows an example network, represented as 

a bipartite graph, comprising 8 reactions (labelled R1 to R8 respectively) and 8 compounds 

(labelled C1 to C8 respectively). Reaction R3, for example, converts one molecule of C5 

into two molecules of C4, one molecule of C6 and one molecule of C7. Each reaction has a 

specified direction so a reversible reaction contributes two different reactions. For example, 

R6 and R7 are the reverse of each other. Such graph-theoretic representations provide a 

framework for a complete computational search for functional metabolic pathways within 

the genome-scale metabolic network.  
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Figure 2.1: Previous Figure 1.2 in Chapter 1 

Although not explicitly shown as such Figure 2.1 is a bipartite graph, since there are 

no reaction to reaction arcs, nor any compound to compound arcs. Although other graphical 

representations are possible (Deville et al., 2003) we have found the representation shown to 

be the most useful.  

To illustrate approaches to the computational analysis of metabolic pathways 

suppose that we are concerned with finding pathways which convert C1 into C7 in the 

network shown in Figure 2.1. A pathway, as illustrated in Figure 2.2a, will be a subgraph of 

this entire network satisfying the condition that for each reaction node included in the 

subgraph all compound nodes associated with that reaction node (either as an input 

compound or as an output compound) also appear in the subgraph. In Figure 2.2a the 
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subgraph comprises reactions nodes R1, R2 and R3, plus all of their associated compound 

nodes. As one might expect, within the metabolic network there may be more than one 

pathway. Figure 2.2b shows another possible pathway that convert C1 into C7. 

Figure 2.2a 

 

 

Figure 2.2b 

Figure 2.2: Two possible pathways for converting C1 into C7 

However, not each possible pathway will be biologically meaningful, i.e. will have a 

valid biochemical/physiological interpretation in the cell/organism. Thus, approaches to 

metabolic pathways aim to find biologically meaningful metabolic pathways within the 

metabolic network. Clearly, the ability of the approach to find experimentally determined 

pathways will show the reliability of any approach to detect (novel) biologically meaningful 

metabolic pathways. 

Computational/mathematical approaches to metabolic pathways can be conveniently 

divided into two types: stoichiometric approaches and path finding approaches. As will 

become apparent in the following sections, there are two key distinctions between these 

approaches: 

• stoichiometric approaches force pathways to satisfy biologically meaningful 

constraints related to compounds stoichiometry, path finding approaches do not.   
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• path finding approaches search for linear sequences of biochemical reactions 

(directed paths) in the metabolic network from a given source compound to a target 

compound, stoichiometric approaches do not.  

As stoichiometric approaches appeared earlier in the literature, we begin by 

describing these approaches.  

2.2 Stoichiometric approaches 

Stoichiometric approaches aim to find pathways in which the compound nodes 

satisfy a variety of different, but biochemically meaningful, stoichiometric constraints. 

Following the example described above, suppose now we are concerned with the problem of 

finding pathways converting a source compound, C1, into a target compound, C7, such that 

a subset of compounds, for example, C2, C5 and C8, are balanced. Here by balanced we are 

referring to a stoichiometric related balance, namely a compound is balanced if the total 

number of molecules consumed by the reactions involved in the pathway is equal to the total 

number of molecules produced by the reactions involved in the pathway.  

Unbalanced compounds are either, in aggregate (net) terms, produced or consumed. 

Clearly the source compound, C1, must be, in aggregate, consumed (total number of 

molecules of C1 consumed by the reactions involved in the pathway is greater than the total 

number of molecules of C1 produced by the reactions involved in the pathway). Similarly 

the target compound, C7, must be, in aggregate, produced (total number of molecules of C7 

consumed by the reactions involved in the pathway is less than the total number of 

molecules of C7 produced by the reactions involved in the pathway). Note here that, for the 

purposes of illustration, we assume that the source and target compound are different 

compounds.  

The reason to balance a subset of compounds, such as C2, C5 and C8, is that the 

some compounds can be regarded as present in the organism (e.g. cell) as represented by the 

metabolic network (such as in Figure 2.1) purely as intermediate compounds necessary for 
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producing other, more crucial, compounds. Differently, C3, C4 and C6 are 

stoichiometrically unconstrained, i.e. they could be produced, balanced or consumed. They 

represent cofactors as well as other compounds such as water or hydrogen (ions). A cofactor 

is generally defined as a biochemical compound that fulfils the same specific and secondary 

function in a considerable number of reactions.  Cofactors are typically coupled in the 

biochemical reactions: one as input compound and the other as output compound. e.g. atp-

adp. To illustrate this, observe, for instance, the following biochemical reactions: glu-C + 

atp → g6p + adp. Clearly, the principal biotransformation is that converting glu-C (D-

Glucose) into g6p (D-Glucose 6-phosphate). The atp (Adenosine Triphosphate) –adp 

(Adenosine Diphosphate) pair undergoes the specific function of giving a phosphate group 

(-P) to glu-C so that this compound converts into g6p. Thus, atp-adp pair behaves here as a 

cofactor. One point to note here is that the list of cofactors for a given metabolic network 

has not been defined unambiguously. This is due to the fact that some biochemical 

compounds might (or not) behave as cofactors. Indeed, one might find biochemical reactions 

in which atp conducts the principal biotransformation and does not behave as a cofactor. In 

this reaction, for example, atp + h + nmn → nad + ppi, it is not clear atp operates as a 

cofactor.  

Other approaches (Schuster et al., 2000; Schilling et al., 2000) include exchange 

reactions in the metabolic network so as to balance (if necessary) compounds. An exchange 

(transfer) reaction usually involves a physical transportation from the internal organism to 

the external environment. For instance in Figure 2.1 both C4 and C7 have no reactions to 

which they provide input, and hence must both have exchange reactions, namely 

C4→C4(external) and C7→C7(external), otherwise they would build up as the organism 

operates. However, the criteria as to how exchange reactions are included has not been 

unambiguously defined (Klamt and Stelling, 2003). Moreover explicitly adding to Figure 

2.1 compounds such as C4(external) and C7(external) merely (in graph-theoretic terms) 

transfers the problem of unbalanced compounds from the internal compounds {C4,C7} to 

the external compounds {C4(external),C7(external)}, since these external compounds can 



Metabolic pathway analysis via integer linear programming 

Francisco J. Planes                                                                                                                                  May 2008 17

only themselves be balanced by considering other organisms. For the sake of simplicity 

therefore, we will neglect exchange reactions here, assuming that unbalanced compounds 

may be balanced (if necessary) by such reactions.  

In order to consider stoichiometric approaches mathematically let R be the total 

number of reactions in the metabolic network and let tr be the number of ticks of reaction r 

in the pathway under consideration. This variable must take integer values, having the value 

zero if the reaction is not used. The tick variable for a reaction relates to its associated 

stoichiometry. In Figure 2.1, for example, one tick of reaction R3 converts one molecule of 

C5 into two molecules of C4, one molecule of C6 and one molecule of C7. Two ticks of 

reaction R3 converts two molecules of C5 into four molecules of C4, two molecules of C6 

and two molecules of C7; three ticks of reaction R3 converts three molecules of C5 into six 

molecules of C4, three molecules of C6 and three molecules of C7; etc. 

Clearly a particular pathway can be fully represented by its associated tick vector, [t1, 

t2 , ..., tR]. In other works (Schuster et al., 2000; Schilling et al., 2000) the ticks are usually 

referred to as reaction fluxes. Differently, reaction fluxes are allowed to take continuous 

values (whereas ticks take integer values). It is important to note that both reaction fluxes 

and ticks are proportional to the absolute fluxes operating inside the cell. An absolute flux is 

a physiological variable that measures the rate at which the concentration of substrates are 

degraded (and products synthesised) per unit of time in a particular reaction. The absolute 

fluxes depend on many different factors (other pathways, environmental conditions, 

kinetics, etc). Because we are concerned with the structural non-dynamic problem of finding 

pathways, it seems to appropriate to define the tick vector as a discrete (integer valued) 

vector. 

Let scr be the stoichiometric coefficient of compound c in reaction r (defined as, for 

one tick of reaction r, the number of molecules of compound c produced as output minus the 

number of molecules of compound c consumed as input). Then compound c constrained to 

being, in aggregate (net) terms, consumed implies that 
R

r=1
∑ scrtr < 0 must be satisfied. 
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Here, as mentioned above, we are interested in pathways from C1 to C7. In order to 

ensure that the source compound C1 is consumed, pathways in the metabolic network shown 

in Figure 2.1 must satisfy: 

t6 – t1 – t4 – t7 < 0      (2.1) 

A compound c constrained to being, in aggregate (net) terms, produced must satisfy
R

r=1
∑ scrtr > 

0. Hence, in order to ensure that the target compound C7 is produced, pathways in the 

metabolic network shown in Figure 2.1 must satisfy: 

t3 + t8 > 0      (2.2) 

Finally, a compound c constrained to being, in aggregate (net) terms, balanced must satisfy 
R

r=1
∑ scrtr = 0. Hence, in order to ensure that {C2,C5,C8} are balanced, pathways in the 

metabolic network shown in Figure 2.1 must satisfy: 

t1 - t2 = t2 - t3 = t4 + t5 + t7 - t6 - t8 = 0    (2.3) 

Figure 2.3a shows an example pathway that satisfies constraints (2.1)-(2.3). Here 

{C2,C5,C8} are balanced, two of these compounds {C2,C5} being involved in the pathway, 

the other {C8} not being involved. In Figure 2.3a the source and target compounds (C1 and 

C7 respectively) are coloured yellow. Compounds coloured red are (in net/aggregate terms) 

consumed in the pathway and those coloured white are balanced. The numbers in brackets 

after each reaction label are the number of ticks. For example reaction R1 ticks one, thereby 

converting one molecule of C1 into one molecule of C2 and C3. The tick vector for this 

pathway has the value [1, 1, 1, 0, 0, 0, 0, 0].  

The criteria by which the stoichiometric constraints are systematically imposed is 

clearly crucial, as the constraints define the set of possible pathways converting C1 into C7. 

Indeed, different stoichiometric constraints produce a different solution space. Figure 2.3b, 

for example, shows a pathway converting C1 into C7 that satisfies different stoichiometric 

constraints, {C3, C5, C8} balanced. Compounds coloured blue are (in net/aggregate terms) 
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produced in the pathway. Since C2 is not balanced in Figure 2.3b, this pathway would not 

satisfy the stoichiometric constraints defined in equation (2.3).  

 

 

Figure 2.3a 

 

Figure 2.3b 

Figure 2.3: Two possible pathways for converting C1 into C7 

Stoichiometric approaches have focused on the identification of all the pathways that 

satisfy given stoichiometric constraints. The key assumption here is that experimentally 

determined pathways are expected to satisfy the stoichiometric constraints, thus the 

experimentally determined pathway should be found amongst the complete set of pathways 

satisfying the mathematical stoichiometric constraints. 

However, typically the large number of pathways that satisfy the stoichiometric 

constraints means that complete enumeration of these pathways would be computationally 

impracticable. This issue is usually referred to as “combinatorial explosion”, and is 

mentioned further below. Subsequently, as described in the next section, stoichiometric 

approaches have developed to focus on finding a set of pathways capable of spanning the 

complete solution space of pathways defined by the stoichiometric constraints. 
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The next section describes the evolution of this set of pathways from genetically 

independent pathways as proposed by Seressiotis and Bailey, 1986, 1988, to extreme 

pathways as proposed by Palsson and co-workers (Schilling et al., 2000).  

2.2.1 Literature review 

The work of Seressiotis and Bailey, 1986, 1988, constitutes the first stoichiometric 

approach for the computational analysis of metabolic pathways. They developed an 

algorithm based on artificial intelligence concepts so as to find a set of genetically 

independent pathways by the successive addition of reaction steps transforming a source 

compound into a target compound. For a pathway P to be genetically independent it means 

that there exists no other pathway (from source to target) utilising just a subset of the 

enzymes used in P. In their approach compounds involved in the pathway are constrained to 

being balanced, except for the source/target compounds and a cofactor set (although the 

constituents of this set are not clearly defined). They dealt with only a relatively small 

metabolic network (70 reactions, 100 compounds). However, the computational effort 

required of the algorithm prohibited its application to larger networks. 

This work is of importance due to the fact that the concept of genetically independent 

pathways was established. In order to clarify this concept, consider three different pathways 

from the network shown in Figure 2.1 that convert C1 into C7 and satisfy the constraint that 

C2, C5 and C8 are balanced. In terms of their tick vector representation these are: P1 = [1, 1, 

1, 0, 0, 0, 0, 0], P2 = [0, 0, 0, 1, 0, 0, 0, 1] and P3 = [1, 1, 1, 0, 1, 0, 0, 1]. In the approach that 

Seressiotis and Bailey, 1986, 1988, adopted it was wrongly assumed (albeit based on what 

was known at the time) that we have a one-to-one unique association between gene-enzyme 

and enzyme-reaction. In other words one gene is uniquely associated with one enzyme and 

that enzyme in turn is uniquely associated with one reaction. Under this assumption let the 

genes be g1,g2,…,g8 each (by implication) having a unique one-to-one association with 

R1,R2,…,R8 respectively. Thus each metabolic pathway (defined by its corresponding tick 

vector) can be assigned a specific set of genes, referred as to genotypes, namely 
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G1={g1,g2,g3} to P1, G2={g4,g8} to P2 and G3={g1,g2,g3,g5,g8} to P3. Both G1 (associated 

with P1) and G2 (associated with P2) are genetically independent, since in each case no 

subset can generate a pathway from C1 into C7 that satisfies the stoichiometric constraints. 

However G3 (associated with P3) is dependent as it contains a subset, namely G1 (where 

G1⊂G3), that is a pathway from C1 to C7 satisfying the stoichiometric constraints. Hence, 

only P1 and P2 are genetically independent. Notice here that the concept of genetic 

independence differs from the concept of linear independence. Here, P1, P2 and P3 are 

linearly independent, in particular there do not exist scalars α1,α2∈(-∞, +∞) such that P3 = 

α1P1 + α2P2. 

Genetic independence is defined above in relation to whether, or not, a single 

pathway contains a valid subset that is also a pathway. However, since our focus in this 

section is on sets of pathways, it is convenient to define genetic independence here in a 

slightly different way. Let P* be the set of all pathways which satisfy the stoichiometric 

constraints, ρ be a particular pathway belonging to P*, and Gρ be the genotype associated 

with ρ. Then a pathway ρ is genetically independent if and only if: 

there does not exist τ∈P* such that Gτ⊂Gρ 

This condition says that a pathway ρ is genetically independent if there is no other pathway 

τ for which the genotype Gτ is a subset of Gρ. 

In order to clarify the concept of genetically independent pathways, we have 

calculated manually (as not available software to do it) the list of genetically independent 

metabolic pathways  within the metabolic network shown in Figure 2.1 that convert C1 into 

C7, subject to C2, C5 and C8 are balanced. We obtained the three genetically independent 

pathways shown in Figure 2.4. 
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Figure 2.4: Three genetically independent pathways 

Mavrovouniotis, 1992a, 1992b, 1993, presented an algorithm to generate a set of 

genetically independent pathways satisfying a given set of stoichiometric constraints. 

Differently to Seressiotis and Bailey, 1986, 1988, the algorithm successfully deals with 

pathways which comprise multiple sources and targets. However, it requires the 

specification of compound and reaction status (e.g. which compounds must be consumed in 

the pathway). The algorithm was successfully applied to metabolic networks of moderate 

size (250 reactions, 400 compounds). 

After these early approaches, much effort was expended to provide a more 

theoretical foundation to the study of metabolic pathways. Different works on inorganic 

reaction networks (Milner, 1964; Clarke, 1980; Happel and Sellers, 1982, 1989) served as 

inspiration for subsequent stoichiometric approaches. In these approaches the cell is 

(essentially) considered as an open system, consuming nutrients and producing biomass, 

in which enzymatic reactions interact to produce an overall global flux distribution. Let fr 

be the absolute flux of enzymatic reaction r, xc be the concentration of compound c and bc 

be the external flux for compound c, then applying the law of conservation of mass we 

have that dxc/dt = bc + 
R

r=1
∑ scrfr ∀c. 



Metabolic pathway analysis via integer linear programming 

Francisco J. Planes                                                                                                                                  May 2008 23

The compound set is divided into two subsets: internal compounds, I, those 

compounds which cannot traverse the physical boundaries of the cell, and external 

compounds, E, those compounds able to traverse the physical boundaries of the cell. The 

external flux bc is equal to zero for internal compounds, whilst for external compounds it 

can be different from zero.  

The main assumption here is that the concentration of internal compounds remains 

constant over time. This is usually referred to as the pseudo steady state (henceforth PSS) 

condition. Thus, internal compounds satisfy dxc/dt = bc + 
R

r=1
∑ scrfr = 0 ∀c∈I. As bc = 0 ∀c∈I, 

this is 
R

r=1
∑ scrfr = 0 ∀c∈I. We regard the system as being in a PSS condition since, when 

studying aspects of metabolism related to growth, the time constants associated with growth 

are much larger than those associated with individual reaction kinetics (Schilling et al., 

2000). 

In the context of PSS systems, metabolic pathways are regarded as structural 

elementary units in the cell that preserve the steady state equilibrium for the whole cell. 

Interestingly, this view of metabolic pathways provides a link between the dynamic 

(absolute fluxes) and structural (ticks) view of metabolic pathways. Hence the concept of a 

metabolic pathway was redefined to be a set of enzyme catalysed biochemical reactions that 

satisfies two conditions: (i) the PSS condition; and (ii) a simplicity condition. 

A pathway at PSS satisfies the condition that the internal compounds appearing in 

the pathway are stoichiometrically balanced, i.e. 
R

r=1
∑ scrtr = 0 ∀c∈I. Note here that external 

compounds (c∈E) are stoichiometrically unconstrained, i.e. they could be produced, 

consumed or balanced. Indeed, they are not necessarily involved in the pathway.  This is 

fundamentally different from previous approaches (Seressiotis and Bailey, 1986, 1988; 

Mavrovouniotis, 1992a, 1992b, 1993) in which pathways necessarily consumed a source 

compound(s) and produced a target compound(s). 
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In order to define the simplicity condition, the genetic independence condition 

presented by Seressiotis and Bailey, 1986, 1988, was reformulated to develop the non-

decomposability condition. In the early work of Seressiotis and Bailey it was wrongly 

assumed, as mentioned above, that there is a one to one unique association between gene-

enzyme and enzyme-reaction. In the post-genomic era is clear that a gene can express 

different enzymes and different enzymes can catalyse the same reaction. Let Q* be the set of 

all pathways which satisfy the PSS condition, ρ be a particular pathway belonging to Q*, 

and Fρ be the set of reactions involved in pathway ρ. Then, a pathway ρ is non-

decomposable if and only if: 

there does not exist τ∈Q* such that Fτ⊂Fρ  

This condition says that a pathway ρ is non-decomposable if there is no other pathway τ for 

which the reaction set Fτ is a subset of Fρ. Referring to the definition of genetically 

independent pathways above it is clear that this definition for non-decomposable pathways 

and that, are very similar – only one deals with genotypes and the other with reaction sets. 

 In order to illustrate the non-decomposability condition, we present below a non-

decomposable pathway in Figure 2.5 and a decomposable pathway in Figure 2.6. These 

pathways were determined from the example metabolic network shown in Figure 2.1.  We 

assumed that C2, C5 and C8 are internal compounds, while C1, C3, C4, C6 and C7 external 

compounds. The pathway in Figure 2.5 is non-decomposable since no reaction subset 

satisfies the stoichiometric constraints (equations (2.1)-(2.3)) related to internal compounds. 

Instead, pathway in Figure 2.6 can be decomposed into two different sub-pathways 

satisfying the stoichiometric constraints. One of them is precisely the pathway shown in 

Figure 2.5. 
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Figure 2.5: Non-decomposable pathway 

 

Figure 2.6: Decomposable pathway 

2.2.1.1 Elementary flux modes 

Non-decomposable pathways at PSS were termed elementary flux modes (henceforth 

EFMs) by Schuster and co-workers (Schuster and Hilgetag, 1994). The set of EFMs, 

{e1,e2,...,eq}, is finite and unique for a given metabolic network and a given classification of 

compounds as internal or external. In order to clarify this concept we computed (using the 

YANA software package (Schwarz et al., 2005)) the set of EFMs for the example metabolic 

network in Figure 2.1, assuming that {C2,C5,C8} are internal compounds, 

{C1,C3,C4,C6,C7} are external compounds. Note here that algorithms for computing EFMs 

effectively deal with reversibility by allowing reversible reactions to take negative values. 

For this reason it is not necessary to split a reversible reaction into two different reactions, as 

was done with R6 and R7 in Figure 2.1. Subsequently, our input network to YANA included 

the following reactions: {R1, R2, R3, R4, R5, R6, R8}, with R6 reversible. We obtained the 

six elementary flux modes {e1,e2,...,e6} shown in Figure 2.7. In particular, the fifth EFM has 

a negative value for R6, which (for convenience) is depicted here by R7. A SBML file for 

input to YANA containing the network shown in Figure 2.1 is available from 

http://people.brunel.ac.uk/~mastjjb/jeb/network.html.  
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Figure 2.7: The six elementary flux modes 

Different mathematical properties of the set of elementary flux modes were 

presented in a later work (Schuster et al., 2002a). One important characteristic is that all 

pathways at pseudo steady state, whether decomposable or not, can be expressed as a non-

negative linear combination of the set of EFMs, i.e. as
1

q

i=
∑ αiei where α1, α2, ..., αq ≥ 0. 
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An algorithm to compute the complete set of EFMs was outlined in Schuster et al., 

2000. The algorithm was implemented in an open-source program named METATOOL 

(Pfeiffer et al., 1999).  Different improvements to the algorithm can be found in Gagneur 

and Klamt, 2004, and Urbanczik and Wagner, 2005. These algorithms have been shown to 

be effective for networks of small or moderate size. However, the calculation of the 

complete set of EFMs is computationally demanding in that increasing the size of the 

metabolic network causes a combinatorial explosion in the number of modes. For example, 

for a network with 13 reactions and 19 compounds, describing part of the glycolysis 

pathway and the non-oxidative pentose phosphate pathway, the number of EFMs is 14 

(Pfeiffer et al., 1999). However for a network with 112 reactions and 89 compounds, 

describing the central metabolism in E.Coli, the number of EFMs is 2450787 (Kamp and 

Schuster, 2006). An analysis of the combinatorial explosion in the number of EFMs can be 

found in Klamt and Stelling, 2002. 

Different strategies have been suggested in order to overcome the combinatorial 

explosion in EFMs that appears in genome-scale metabolic networks. Schuster et al., 2002b, 

proposed an algorithm to decompose the network into several sub-networks based on the 

connectivity of compounds, where the connectivity is defined by the number of reactions in 

which a compound participates either as an input compound or as an output compound. The 

logic is that if a sufficient number of compounds, initially constrained to be internal 

compounds, are considered external in addition to nutrients and biomass, the system 

disintegrates into subsystems, thereby each internal compound belongs to only one 

subsystem. The compounds defined to decompose the network are those whose connectivity 

is greater than four. The decomposition method was applied to the mycoplasma pneumoniae 

network, resulting in 19 sub-networks, in each of which the EFMs could be computed 

easily. In addition, Dandekar et al., 2003, presented a stochastic optimisation program based 

on the Metropolis algorithm to find the classification of compounds (internal/external) that 

minimises the number of EFMs. The algorithm was applied to the network representing 

glutathione metabolism, 48 different combinations of compounds achieved the minimum 
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number of EFMs. Among these 48 combinations, four combinations had the minimum 

number of external metabolites. One of these four combinations was randomly chosen. This 

method was specifically used to calculate EFMs of the genome-scale network of 

Lactobacillus Plantarum WCFS1 (Teusink et al., 2006), giving insight into the consumption 

of excess ATP under energy excess. 

In the literature the calculation of the set of EFMs has been mostly carried out for the 

analysis of functional portions of metabolic networks with a limited number of reactions. 

We briefly summarise below a number of applications of EFMs in different fields, such as 

metabolic engineering, functional genomics or metabolic diseases. Liao et al., 1996, 

employed EFMs to construct an E.Coli strain that efficiently channelled the metabolic flux 

from carbohydrate to aromatic sugars. Dandekar et al., 1999, studied alternative pathways to 

the classic textbook glycolysis pathway for different organisms. Förster et al., 2003, linked 

EFMs analysis and metabolomics data in order to assign function to orphan genes in a 

simplified network of Saccharomyces Cerevisiae. Poolman et al., 2003, analysed viable 

pathways in the photosynthate metabolism network of the chloroplast stroma under different 

conditions. Carlson and Srienc, 2004 sorted EFMs according to their ATP production for a 

simplified metabolic network of E.Coli. Çakir et al., 2004, evaluated the importance of five 

deficient enzymes in the central network of human red blood cells.  

Special attention has been given in the literature to the methods and algorithms used 

in Petri Net theory due to its inherent simplicity and ability to model metabolic networks. 

Petri Nets are bipartite graphs with two types of nodes: places and transitions, which for 

metabolic networks correspond to compounds and reactions respectively. The edges connect 

places (input compounds) with transitions and transitions with places (output compounds), 

but there are no edges between places or between transitions. The stoichiometric coefficients 

are used as edge weights. A further object, the token, describes the dynamics of a Petri Net. 

The number of tokens in a place stands for the number of molecules of that metabolite 

existing at a given moment. The tokens that exist in the system at a given time describe the 

state of system, usually called marking. The marking changes when a transition “fires”, 
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according to different firing rules. An extensive description of Petri Nets as applied to 

metabolic networks can be found in Zevendei-Oancea and Schuster, 2003, and Koch et al., 

2005. The analysis of T-invariants in Petri Nets has been of particular interest. A T-invariant 

is a particular set of transitions such that, after firing, the original marking is restored. T-

invariants correspond to pathways at PSS in metabolic networks. Analogously, Petri Net 

theory contains methods to obtain a subset of T-invariants called minimal T-invariants, 

which correspond precisely to EFMs in metabolic networks. Colom and Silva, 1991, 

presented an algorithm to compute the set of minimal T-invariants. This algorithm has been 

used to help construct more powerful algorithms for the computation of EFMs.  

2.2.1.2 Extreme pathways 

Schilling et al., 2000, proposed a refined view of the set of EFMs named extreme 

pathways (henceforth EPs). Apart from the PSS and non-decomposability conditions 

defined above, the set of EPs must satisfy the so-called systemic independence condition, 

i.e. no extreme pathway can be written as a non-trivial non-negative linear combination of 

other EPs. So, given a particular set of EFMs, {e1, e2, ..., eq}, this set is systemically 

independent if and only if: 

there does not exist ej⊂{e1, e2, ..., eq} for which ej = 
1,

q

i i j= ≠
∑ αiei where α1, α2, ..., αq ≥ 0 

In addition, the set of internal compounds is divided into two subsets: currency compounds 

and primary compounds. Currency compounds are typical cofactors which are involved in 

energy and redox levels. Primary compounds are the remaining internal compounds in the 

metabolic network. Whilst primary compounds must satisfy the PSS condition, currency 

compounds typically do not. Thus, the principal differences between EPs and EFMs are: 

• EPs: satisfy the systemic independence condition; EFMs: do not 

• EPs: not all internal compounds satisfy PSS; EFMs: all internal compounds satisfy 

PSS 

• the treatment of reversible reactions 
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Interestingly, EPs have been classified into three classes: Types I, II and III. Type I 

EPs are those pathways which produce/consume (in net/aggregate terms) external 

compounds and currency compounds. Type II EPs, also called futile cycles, only 

produce/consume (in net/aggregate terms) currency compounds. Type III EPs, sometimes 

called internal cycles, do not produce/consume (in net/aggregate terms) any external or 

currency compounds. Classic pathways as found in the literature are generally Type I and 

Type II. Type III pathways lack biological interest, as there is not an overall transformation 

in the pathway. 

In order to clarify the classification of EPs, following the example given in Figure 

2.1, suppose C1 and C7 are external compounds; {C2,C5,C8} are primary compounds; and 

{C3,C4,C6} are currency compounds. We computed the set of EPs for this particular 

example using the software package Expa (Bell and Palsson, 2005). We obtained seven EPs. 

Six of these pathways {e1, e2, …, e6} are identical to the six EFMs shown in Figure 2.7, the 

seventh EP e7 is shown in Figure 2.8. Considering Figures 2.7 and 2.8 EPs e1, e3, e4, e5 and 

e6 are Type I EPs, as primary and currency compounds are produced and consumed. EP e2 

illustrates a Type II EP in which only currency compounds {C6} are produced. Finally, EP 

e7 shows a Type III EP, as no primary or currency compounds are produced or consumed.  

 (e7) 

 
Figure 2.8: The seventh extreme pathway 

Note here that EP e7 appears due to the fact that the EP approach splits reversible reactions 

into two reactions, as we did with R6 and R7 in the example metabolic network in Figure 
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2.1. By contrast the EFM approach allows ticks/flux to be negative in reversible reactions. 

This is the reason as to why EP e7 does not appear in the set of EFMs.  

Aside from EP e7, the set of EFMs and EPs turn out to be the same for our particular 

small example. Thus, in this example, the systemic independence condition has no effect. 

One additional point to note here is that, for the sake of simplicity, we have neglected the 

network configuration to compute the set of EPs, whose main difference is the addition of 

exchange fluxes. More as to EFMs and EPs can be found in Palsson et al., 2003, and Papin 

et al., 2004. 

An algorithm to compute the complete set of EPs is outlined in Schilling et al. 

(2000). This algorithm was later implemented in the open-source software called Expa (Bell 

and Palsson, 2005). Wilback and Palsson, 2002, computed the set of EPs for the genome-

scale network of human red blood cell metabolism, which comprises 32 reactions and 39 

compounds.  

As for EFMs, computing the set of EPs suffers a combinatorial explosion when 

applied to larger networks. For example Yeung et al., 2007, estimate that there are 3 x 1018 

EPs in a 904 reaction metabolic network for E. coli. For work attempting to limit the effect 

of this explosion see Schilling et al., 2002, and Yeung et al., 2007. 

Whilst EFMs analysis has been applied for different biotechnological or biomedical 

issues as described above, EPs analysis has usually been focused on elucidating different 

properties of metabolic networks. Papin et al., 2002, calculated the participation of each 

reaction in the set of EPs so as to find essential reactions in the metabolic network for the 

production of individual amino acids in Haemophilus influenzae and for individual amino 

acids and protein production in Helicobacter pylori. In addition, the length of EPs (as 

measured by the number of reactions involved in the pathway) was calculated to study, for 

instance, the minimum number of steps needed to synthesise a given product. Price et al., 

2002, evaluated the redundancy of the metabolic network of Helicobacter pylori to meet its 

biomass objectives under different conditions.  
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2.2.2 Discussion 

Stoichiometric approaches have proposed a novel mathematical definition for 

metabolic pathways. A metabolic pathway is considered here as a set enzyme catalysed 

biochemical reactions that satisfy the PSS and non-decomposability conditions.  

The most important constraints are those resulting from the PSS condition. However, 

the criteria to define whether (or not) a compound is internal has not been clearly stated. 

Indeed, the decision is often modified by authors in the literature depending on the case 

being studied. It is clear that this decision is of crucial importance due to the fact that the set 

of EFMs and EPs changes according to the set of internal compounds.  

Another issue arising here is that of the PSS condition which requires internal 

compounds to be stoichiometrically balanced, i.e. they do not appear as by-products or co-

substrates in the pathway. This does not fully fit with what is known with respect to 

experimentally determined pathways. We examined the PSS condition in ten experimentally 

determined pathways taken from EcoCyc (Karp et al, 2002b). We used the E.Coli model 

presented by Reed et al., 2003, so as to define internal/external compounds. Table 2.1 

summarises the results, showing that only half of the pathways satisfy the PSS condition. 

Thus, there will be a high number of pathways which, as they do not satisfy the PSS 

condition, will never be determined. Indeed, at a more theoretical level, it is not at all clear 

why individual functional pathways in which internal compounds appear as by-products/co-

substrates, thus violating the PSS condition, cannot exist. 
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Pathway Number of 
balanced internal 

compounds 

Number of 
unbalanced internal 

compounds 

Satisfies 
PSS 

condition?
Gluconeogenesis 8 0 Yes 
Glycogen 2 0 Yes 
Glycolysis 9 0 Yes 
Proline biosynthesis 4 0 Yes 
Ketogluconate metabolism 2 0 Yes 
Pentose phosphate 7 1 No 
Salvage pathway  3 1 No 
Tricarboxylic acid (citric acid, 
citrate, TCA, Krebs) cycle 

7 2 No 

NAD biosynthesis 4 3 No 
Arginine biosynthesis 7 1  No 
Total 53 8  

Table 2.1: Pathways examined with respect to unbalanced internal compounds 

One point to note though from Table 2.1 is that, reflecting the PSS condition for the 

entire organism, many (but not all) of the internal compounds are balanced in individual 

pathways, namely 87% (=100×53/(53+8)) of the compounds. It is clear that a significant 

step towards ensuring that the PSS condition is satisfied for the entire organism (regarded as 

the entire set of pathways acting together) can be made if individual pathways themselves 

satisfy the PSS condition with respect to the majority of compounds involved. 

Obviously, the removal of the PSS condition might lead to determination of a high 

number of insignificant metabolic pathways. However, our view is that this condition should 

(somehow) be relaxed so as to include the whole set of meaningful metabolic pathways 

whilst preserving the biological logic of pathways. The addition of novel constraints, 

regulatory (Covert and Palsson, 2003), topological or energetic (Henry et al., 2007), might 

be helpful to avoid meaningless pathways. However it is clear that the algorithms presented 

to date to compute EFMs and EPs do not show much flexibility in terms of adding new 

constraints. The algorithm presented by Schilling et al., 2000, for example, does not directly 

remove Type III pathways and posterior analysis is necessary to eliminate them.  



Metabolic pathway analysis via integer linear programming 

Francisco J. Planes                                                                                                                                  May 2008 34

With respect to the non-decomposability condition, we believe that the idea of 

pathways satisfying a simplicity or independence condition is a fruitful one for refining the 

search for meaningful metabolic pathways. However, to the best of our knowledge, no 

experimental validation has been carried out so as to show independent operation of a non-

decomposable set of enzymes. A further limitation lies in the fact that the non-

decomposability condition is quite sensitive with respect to the PSS condition, as explained 

in Schuster et al., 2002b.  

Assuming that the PSS and non-decomposability conditions are appropriate, the 

main difficulty EFMs and EPs meet is the combinatorial explosion. Even though different 

attempts have been made to reduce the number of pathways found, the number is still too 

high for genome-scale networks to carry out a detailed analysis and interpret the pathways 

obtained, as noted Wiback and Palsson, 2002. This drawback leads us to question the utility 

of attempting to find the complete set of EFMs or EPs. Type III EPs, for example, illustrate 

the fact that every extreme pathway does not necessarily have biological significance. The 

high average values for the length of EPs presented in Papin et al., 2002b, 84 reactions in 

Helicobacter pylori, 46 reactions in Haemophilus influenzae, which stand in sharp contrast 

to the typical length of pathways found in the biochemical literature (generally less than 10 

reactions), also leads us to question the utility of EPs. Therefore, a better strategy might be 

to find a small number (perhaps five to ten) of EPs, or EFMs, under a given optimisation 

criteria. We would make two points here: 

• moving from enumerating a large number of possibilities, to generating a small number 

of possibilities using an optimisation approach, is precisely what has happened with 

regard to path finding approaches to metabolic pathways (as will become apparent in the 

discussion as to these approaches given below).  

• with regard to the optimisation criteria to be adopted this is an open research question 

but there are clear parallels in the literature as to what might be valuable: 
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o maximise (net) ATP production (Meléndez-Hevia et al., 1996,1997; Heinrich et 

al., 1997; Stephani et al., 1998; Stephani and Heinrich, 1998; Ebenhöh and 

Heinrich, 2001) 

o minimise the number of reactions (Meléndez-Hevia and Isidoro, 1985; 

Meléndez-Hevia and Torres, 1988; Meléndez-Hevia, 1990;  Meléndez-Hevia et 

al., 1994,1996; Mittenthal et al., 1998; Ebenhöh and Heinrich, 2003) 

o maximise growth (biomass), as is commonly done in flux balance analysis 

(Kauffman et al., 2003; Price et al., 2004; Lee et al., 2006) 

Note here that to avoid the combinatorial explosion new algorithms will have to be 

developed to find (without excessive enumeration) a small number of EPs, or EFMs, under a 

given optimisation criteria. Here there is a parallel with path finding approaches, since 

algorithms have been developed there that find optimal paths without explicitly enumerating 

all possible paths. 

 In summary, our view is that the mathematical and computational concept of a 

metabolic pathway as proposed by stoichiometric approaches should be re-examined, with 

emphasis placed on generating a small number of pathways via an optimisation approach.  

2.3 Path finding approaches 

Path finding approaches emerged as an alternative methodology to analysis 

metabolic pathways in genome-scale metabolic networks, given the shortcomings presented 

in the stoichiometric approaches. In contrast to stoichiometric approaches, path finding 

approaches do not make use of the reaction stoichiometry. Instead, they focus on the fact 

that there is a (directed) path (containing no cycles) from the source compound to the target 

compound in experimentally determined metabolic pathways. We refer to this directed path 

as the metabolic path for a particular experimentally determined metabolic pathway. Of 

course this path may not be unique, in particular when the pathway is branched. Suppose, 

for illustration, that the subgraph shown in Figure 2.2a (and reproduced in Figure 2.9 below) 
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is the experimentally determined metabolic pathway that converts C1 into C7. Here, for 

example, we have the two paths shown in Figure 2.9. 

Note, as in Figure 2.9, the difference between a (metabolic) pathway and a metabolic 

path. The pathway defines all the reactions/compounds involved. The metabolic path is a 

directed path from the source compound to the target compound in the pathway and may (as 

in both the metabolic paths seen in Figure 2.9) contain only a subset of the 

reactions/compounds involved in the pathway. 

   

Figure 2.9: Two metabolic paths in the metabolic pathway shown in Figure 2.2 

The key assumption behind path finding approaches is that finding directed paths 

between the source compound and the target compound in the entire metabolic network will 

give insight into the intermediate reactions/compounds used in the experimentally 

determined metabolic pathway between the source/target.  

In terms of the experimentally determined metabolic pathway we need only focus on 

the reactions involved in the metabolic path (since for each reaction we know the set of 

compounds involved). Both of the metabolic paths shown in Figure 2.9 involve reactions 

R1, R2 and R3. Since these are the only reactions involved in the metabolic pathway then, 

for this example, knowledge of either of the metabolic paths shown in Figure 2.9 would give 

us complete insight into the underlying experimentally determined metabolic pathway also 

shown in Figure 2.9. Note here that with respect to the stoichiometry of the metabolic 
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pathway shown then, once the set of reactions involved in the pathway are known, it is a 

relatively simple matter (albeit possibly involving some decisions as to which compounds 

should be balanced with respect to production and consumption) to deduce the stoichiometry 

of the pathway. With respect to deciding which compounds might be balanced with respect 

to production and consumption we would note that the intermediate compounds in the 

metabolic path are themselves often balanced compounds. This can be seen, for example, in 

Table 2.1 above where 87% of the internal compounds in ten example pathways are 

balanced. 

The work of Küffner et al., 2000, who showed that there were some 500,000 paths 

from glucose to pyruvate, illustrated that a complete enumeration of paths from the source 

compound to the target compound made very complicated the analysis of the paths, thus a  

more sophisticated approach was needed. Accordingly the focus of path finding work 

moved to defining a suitable distance metric on the directed graph representation of the 

metabolic network and finding the shortest path from the source node to the target node. 

Often approaches in the literature move beyond considering just the shortest path to consider 

the k-shortest paths (for small values of k). For readers unfamiliar with the concept of k-

shortest paths k=1 corresponds to the shortest path; k=2 corresponds to the second shortest 

path; k=3 to the third shortest path; etc.  

In the next section we present a literature review of relevant work dealing with path 

finding in metabolic networks.  

2.3.1 Path finding literature review 

Küffner et al., 2000, described the database of reactions/compounds as a Petri Net 

(bipartite graph), where there are two types of nodes, places (compounds) and transitions 

(reactions). The edges connect places (input compounds) with transitions and transitions 

with places (output compounds). Paths are formed via a “firing rule”. The solution approach 

adopted was a branch and bound algorithm. They found that there were over 500,000 paths 
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from glucose to pyruvate. Their firing rule reduced the total number of paths to 

approximately 80,000. This was reduced to 170 paths by imposing further restrictions. 

Because of the large number of possible paths identified by Küffner et al., 2000, the 

subsequent work reported in the literature has focused on enumerating just a small number 

of paths. We describe these path finding approaches below.  

Arita et al., 2000, proposed the use of a k-shortest path algorithm to find paths in 

metabolic networks, where compounds are represented at the atomic level. They applied 

their approach to a number of example pathways, where “shortest” is interpreted as 

minimising the number of arcs (reactions) involved in the path. For Glycolysis (regarded as 

a path from glucose to pyruvate) they reported that they find some, but not all, of the 

compounds appearing in that pathway. They noted that one advantage of their approach is 

the enumeration of multiple (or in the limit, all) paths. 

McShan et al., 2003, considered metabolic pathways in terms of a biochemical state-

space: compounds define the states and reactions define the state-transitions. The state-

space, compounds, are defined as a vector x = (x1,x2,…,xn) of 145 chemical descriptors. The 

state-transitions, reactions, are considered as transitions between states. Each reaction is 

simplified to only one input and output compound, avoiding side compounds. The cost of 

the transitions is defined as the Manhattan distance of the Δx vector, Δx being defined as the 

difference between the x vectors belonging to the input and output compounds. The problem 

of finding metabolic paths is viewed as searching for a path from an initial state to a 

destination state through a series of transitions. An algorithm (A* search) to minimise the 

cost of the transitions was applied to find metabolic paths. They reported that they found A* 

search to be more efficient than other search techniques they examined such as breadth-first 

or depth-first search. However, no biological validation was carried out to examine the 

accuracy of the approach. 

Dooms et al., 2005, proposed the use of constraint programming to find constrained 

paths in metabolic networks. They cite the PhD thesis of Croes (work later reported in Croes 
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et al., 2005, 2006) and, although their wording is imprecise, it does appears that all 

compound nodes in their approach were assigned a weight proportional to their degree of 

connectivity (number of reactions in which the compound participates), as in Croes et al., 

2005, 2006. One limitation is that in their work they need to know some of the reactions 

participating in the metabolic path that represents the metabolic pathway. In addition, they 

note that their approach cannot guarantee to find the optimal constrained shortest path. 

In Rahman et al., 2005, by comparison to other approaches, there are no reactions 

nodes in the metabolic network, only compound nodes. Edges between any two compounds 

are assigned according to their structural similarity. A breadth-first search algorithm was 

applied to compute the k-shortest paths between an initial source compound and a final 

target compound. In a related work, Rahman and Schomburg, 2006, used a k-shortest path 

approach to identify “load points” and “choke points”. They defined a load value for each 

compound based on the ratio of the number of k-shortest paths passing through it and the 

number of links associated with the compound. They defined a choke value for each 

compound based on the number of k-shortest paths passing through it and the load value. 

Results from their approach were presented for two related bacteria. 

Croes et al., 2005, 2006, presented a path finding approach that utilises connectivity. 

They define connectivity for a compound to be the number of reactions (in the reaction 

database) in which the compound participates (either as an input compound or as an output 

compound). They define connectivity for a reaction node to be one. Node connectivities are 

then taken as the distance metric to be minimised when finding shortest paths. They use a 

depth-first backtracking (tree search) algorithm to find the k-shortest paths (k=1,2,3,4,5) not 

between a source compound and a target compound, but between a source reaction and a 

target reaction. Their view of a metabolic pathway as being between a source reaction and a 

target reaction is not usual in the literature. They systematically (and numerically) compare 

the k-shortest paths they find with a number of metabolic pathways. Their approach, which 

appears to be the most effective of all path finding approaches presented to date in the 

literature, is based on the observation that many of the intermediate compounds in a 
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metabolic path appear to have low connectivity. Evidence presented in Croes et al., 2005, 

2006, indicates that biologically meaningful pathways can be found using k-shortest path 

approaches.  

Although outside the scope of the thesis, note here that path finding approaches are 

broadly used in different biological contexts. In particular, a number of approaches have 

been proposed to detect biologically significant pathways in protein interaction networks 

(Hüffner et al., 2007; Scott et al., 2006; Shlomi et al., 2006; Steffen et al., 2002). Essentially 

these approaches carry out a search for shortest paths where the cardinality of the path (the 

number of nodes it contains) is specified/constrained. Further reading can be found in 

(Aittokallio and Schwikowski, 2006; Bebek and Yang, 2007; Kelley et al., 2003). 

2.3.2 Discussion 

We believe path finding approaches constitute a considerable advance with respect 

to stoichiometric approaches for several reasons: 

- the problem of finding k-shortest paths from a source compound to target 

compound is a well-known problem in graph theory and computationally tractable 

for genome-scale metabolic networks; 

-the problem as to define compounds which are internal or external as required in 

EFMs and EPs is avoided and thus any possible pathway can be determined; 

- computing k-shortest paths according to a suitable distance metric, instead of 

computing all the paths, appears to be a quite logical concept as not necessarily all 

the computed paths will have a biological significance. In addition, the analysis of 

the computed metabolic paths becomes simpler since we usually restrict k to very 

small number. 
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In order to determine biologically significant metabolic paths, the key decision is 

choice of an appropriate distance metric. The distance metric proposed in Croes et al., 2005, 

2006, appears to be the most effective to date presented in the literature. 

One major drawback of path finding approaches however is that they are relatively 

inflexible in terms of adding additional, biologically meaningful, constraints. The biological 

significance of the paths found is implicitly completely determined by the distance metric 

adopted. Currently, for example, even deducing stoichiometric information for a metabolic 

path must be done as a separate stage (e.g. by balancing intermediate compounds in the 

path), once the path has been computed without using stoichiometric information. Being 

able to add biologically based constraints, e.g. stoichiometric, regulatory (Covert and 

Palsson, 2003), topological or energetic (Henry et al., 2007), as an intrinsic part of the path-

finding process, would significantly refine the search for biologically meaningful metabolic 

paths; provided this can be done without excessively complicating the 

algorithmic/computational expense of finding k-shortest paths. 

2.4 Conclusions 

In this chapter computational/mathematical approaches to metabolic pathways 

have been described, reviewed and discussed. For the sake of clarity, approaches were 

divided into two types: stoichiometric approaches and path finding approaches.  

Despite the fact that stoichiometric approaches present a theoretical basis (although 

this is debatable from certain respects), EFMs and extreme pathways find severe difficulties 

when applied to genome-scale networks from both the computational and analytical point of 

view. With regard to approaches of this kind our judgement is that the key research 

challenge is to move from enumeration of all possibilities to generating a small number of 

possibilities using an optimisation approach, and we suggested a number of possible 

optimisation criteria based on parallels in the literature. 
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In contrast to stoichiometric approaches, path finding approaches do enable 

analysis of genome-scale metabolic networks to be performed. With regard to approaches of 

this kind we believe that the key research challenges are choice of an appropriate distance 

metric and addition of biologically based constraints. 

In summary, we think that the mathematical concept of metabolic pathways must 

be re-examined. A first step forward is to understand the underlying mathematical logic of 

experimentally determined metabolic pathways, which will allow us to determine 

(unknown) biologically meaningful metabolic pathways. This is precisely the aim of this 

doctoral thesis, which is fully developed in the following chapters.  
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Chapter 3  

The Beasley-Planes model  

In order to determine biologically meaningful metabolic pathways inside the 

metabolic network, the underlying logic of experimentally determined metabolic pathways 

must be investigated. In this chapter we present a novel mathematical approach, referred as 

to the Beasley-Planes (BP) model, so as to computationally recover experimentally 

determined metabolic pathways inside the metabolic network. The effectiveness of the 

approach was tested in forty experimentally determined pathways of E.Coli.  

3.1 Introduction 

In Chapter 2 we concluded that, in order to search for meaningful metabolic 

pathways inside the metabolic network, the underlying logic of experimentally determined 

pathways must be (somehow) investigated. In this chapter we present our initial 

mathematical approach so as to recover experimentally determined metabolic pathways 

inside the metabolic network. As we described in Chapter 1, the problem of recovering 

metabolic pathways consists of defining a mathematical model that, when solved, provides a 

solution identical to a known experimentally determined pathway, given the following input 

data: 

- the metabolic network of a particular organism; 

- the source and target compound of the experimentally determined pathway; 

- and (perhaps) some pathway knowledge, such as the number of molecules of the 

source or target compound. 
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In order to illustrate the problem, suppose we have the example metabolic network 

shown in Figure 3.1, which, as described in Chapter 1, comprises 8 reactions (labelled R1 to 

R8 respectively) and 8 compounds (labelled C1 to C8 respectively).  

Figure 3.1: Previous Figure 1.2 in Chapter 1 

Assume now that we are concerned with recovering the experimentally determined 

metabolic pathway that converts C1 into C7. Such pathway will be a subgraph of this entire 

metabolic network that has the property that for each reaction node included in the subgraph 

all compound nodes associated with that reaction node (either as an input compound or as an 

output compound) also appear in the subgraph. Clearly, there will be more than one such 

subgraph that converts C1 into C7 within the metabolic network. Figure 3.2a and Figure 

3.2b, for example, show two possible subgraphs converting C1 into C7. 
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Figure 3.2a 

 

 

Figure 3.2b 

Figure 3.2: Two possible subgraphs for converting C1 into C7 

Whilst each subgraph determined inside the metabolic network can essentially be 

regarded as a feasible pathway from a biochemical viewpoint, only one of them will 

correspond to the experimentally determined pathway. The problem of determining 

(recovering) precisely one such subgraph is clearly a highly complex combinatorial 

problem, as the number of possible subgraphs converting a source compound into a target 

compound is very high in genome-scale metabolic networks.  

One further point to note is that, aside from recovering the precise set of reactions 

involved in the experimentally determined pathway, we directly address pathway 

stoichiometry. Indeed, experimentally determined pathways define a unique stoichiometry, 

i.e. the number of ticks for each reaction involved in the pathway. To illustrate this, suppose 

that the subgraph shown in Figure 3.2a is the experimentally determined metabolic pathway 

for converting C1 into C7. Figure 3.3a and Figure 3.3b show two metabolic pathways with 

the same set of reactions as shown in Figure 3.2a. However, they differ in the pathway 

stoichiometry, as R1 ticks once in Figure 3.3a and twice in Figure 3.3b. Suppose, for 

example, that the stoichiometry of experimentally determined pathway for converting C1 

into C7 is that appearing in Figure 3.3a. One can easily observe that the pathway shown in 

Figure 3.3b produces/consumes/balances different compounds in aggregate (net) terms with 
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respect to the pathway shown in Figure 3.3a and thus, the cellular function of the metabolic 

pathway becomes different. Clearly the fact of determining (recovering) the precise 

stoichiometry of experimentally determined pathways introduces an additional 

combinatorial complexity.  

 

Figure 3.3a 

 

Figure 3.3b 

Figure 3.3: Two possible stoichiometries for the example pathway in Figure 3.2a 

We present below our mathematical optimisation model based on integer linear 

programming so as to recover the precise set of reactions involved in a experimentally 

determined metabolic pathway, along with its stoichiometry. Henceforth, this model is 

referred as to the Beasley-Planes (BP) model. Due to the combinatorial complexity of the 

problem, it may happen that some prior pathway knowledge must be introduced into the 

model. Clearly the aim is to recover experimentally determined pathways with the minimal 

use of prior pathway knowledge.  
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3.2 Mathematical model 

3.2.1 Reaction variables and constraints 

In the BP model we have a metabolic network of R reactions (where each reaction 

has a specified direction so a reversible reaction contributes two different reactions to the 

total number R) which collectively involve C different compounds. Suppose we are seeking 

a pathway that transforms QS molecules of source compound S into QT molecules of target 

compound T. A reaction may, or may not, be active in the pathway. So we have the binary 

(zero-one) variable: 

zr = 1 if reaction r is active in the pathway, 0 otherwise (r=1,…,R) 

and the associated tick variable: 

tr the number of ticks of reaction r in the pathway (this must be an integer variable 

(≥0) with value 0 if the reaction not active) 

We need a constraint relating the number of ticks of a reaction to the zero-one 

variable signifying whether the reaction is active or not, this is: 

tr ≤ M1zr   r=1,…,R     (3.1) 

where M1 is a large positive constant that represents the maximum number of ticks of any 

reaction (since zr=1 implies tr ≤ M1). If the reaction does not tick then it must be inactive, so we 

have the constraint: 

zr ≤ tr   r=1,…,R     (3.2) 

3.2.2 Compound variables and constraints 

The BP model involves variables relating to whether compounds are balanced (or 

not). A balanced compound is one where the number of molecules needed (consumed) is 

equal to the number produced. A compound which is balanced can either be active (number 
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of molecules needed = number produced > 0) or inactive (number of molecules needed = 

number produced = 0) in the pathway. Considering Figure 3.3a, for example, the active 

balanced compounds are C2 and C5. 

Let ncr be the number of molecules of compound c needed as input for one tick of 

reaction r and pcr be the number of molecules of compound c produced as output by one tick 

of reaction r. For each compound c (c=1,…,C) define: 

bc=1 if for compound c the number of molecules needed is equal to the number 

produced (i.e. if ∑
=

R

r 1

ncrtr = ∑
=

R

r 1

pcrtr ), 0 otherwise. If bc=1 compound c is balanced.  

ec=1 if for compound c the number of molecules needed is less than the number 

produced (i.e. if ∑
=

R

r 1

ncrtr < ∑
=

R

r 1

pcrtr ), 0 otherwise. If ec=1 compound c is produced to excess, 

since we have “spare” molecules of the compound to be disposed of (in other pathways). 

fc=1 if for compound c the number of molecules needed is greater than the number 

produced (i.e. if ∑
=

R

r 1

ncrtr >∑
=

R

r 1

pcrtr ), 0 otherwise. If fc=1 compound c must be freely available, 

since we need “spare” molecules of the compound that have come from other pathways. 

Considering Figure 3.3a, for example, compound C4 is produced to excess (denoted 

by the blue colouring) and compound C3 is freely available (denoted by the red colouring). 

 We have the constraint: 

bc + ec + fc = 1    c=1,...,C    (3.3) 

In order to link the variables ec and fc to the number of molecules of each compound 

produced we need the constraints. 

ec ≥ ( ∑
=

R

r 1

pcrtr - ∑
=

R

r 1

ncrtr)/M2   c=1,…,C   (3.4) 

ec ≤ 1 + ( ∑
=

R

r 1

pcrtr - ∑
=

R

r 1

ncrtr -1)/ M2  c=1,…,C   (3.5) 
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fc ≥ (∑
=

R

r 1

ncrtr - ∑
=

R

r 1

pcrtr)/M2   c=1,…,C   (3.6) 

fc ≤ 1 + (∑
=

R

r 1

ncrtr - ∑
=

R

r 1

pcrtr -1)/M2  c=1,…,C   (3.7) 

where M2 is a large positive constant. Equation (3.4) forces the zero-one variable ec to be one 

if ∑
=

R

r 1

ncrtr < ∑
=

R

r 1

pcrtr whilst equation (3.5) forces ec to be zero if ∑
=

R

r 1

ncrtr ≥ ∑
=

R

r 1

pcrtr. Equations 

(3.6) and (3.7) are as equations (3.4) and (3.5) but with ncr and pcr interchanged. 

3.2.3 Metabolic constraints 

The above has defined the variables that we need and the constraints that logically 

(mathematically) must be satisfied given these variables. We now present the metabolic 

constraints that we included in the BP model.  

We need constraints specifying that the required number of molecules of the source 

compound S (QS) and target compound T (QT) are involved – these are: 

∑
=

R

r 1

nSrtr = QS  and  ∑
=

R

r 1

pTrtr = QT     (3.8) 

If the source compound and target compound are different then we produce none of 

the source compound and consume none of the target compound, i.e. 

 ∑
=

R

r 1

pSrtr = ∑
=

R

r 1

nTrtr = 0  if S≠T     (3.9) 

We have found it necessary in the BP model to distinguish between compounds that 

appear in a significant number of different reactions and compounds that appear in just a 

few reactions. We define the percentage presence (δc) of a compound c to be δc = 

100(number of reactions in which c appears)/R = 100∑
=

R

r 1

min(max(pcr,ncr),1)/R. Note that δc 

is defined purely with respect to the set of reactions that are considered and hence will vary 

as that set of reactions changes. Compounds for which δc ≤ Δ (where Δ is an input 

parameter) we call low presence compounds. Compounds for which δc > Δ we call high 
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presence compounds. Other authors (Croes et al., 2006; Horne et al., 2004; Jeong et al., 

2000; Ma and Zeng, 2003; Wagner and Fell, 2001) have also found it necessary to 

distinguish compounds that commonly appear from those that appear less often when 

considering metabolic networks. In the computational results reported later we used Δ=4%. 

Although this might seem a small value, for our relatively large database (R=880 reactions, 

involving C=605 compounds) there were only 16 compounds (shown in Table 3.1) that had 

δc > Δ and so were considered high presence compounds.  

Compound Percentage presence
Hydrogen ion 43.86 
Water 28.98 
Adenosine triphosphate 18.98 
Adenosine diphosphate 14.89 
Phosphate 14.32 
Nicotinamide adenine dinucleotide 9.77 
Nicotinamide adenine dinucleotide – reduced 9.32 
Diphosphate 8.98 
Nicotinamide adenine dinucleotide phosphate 7.16 
Carbon dioxide 7.05 
Nicotinamide adenine dinucleotide phosphate – reduced 6.93 
L-Glutamate 5.91 
Coenzyme A 5.23 
Pyruvate 4.77 
Ammonium 4.43 
Adenosine monophosphate 4.43 

Table 3.1: High presence compounds 

The logic behind this distinction is that high presence compounds appear in so many 

reactions that we can reasonably assume that if the metabolic pathway we are seeking either 

needs to obtain molecules of a high presence compound (produced by other pathways); or 

produces molecules of a high presence compound that have to be disposed of (in other 

pathways); then this can be achieved. High presence compounds can therefore be regarded 

as being “freely available” or being “produced to excess” if necessary. Another way to view 

high presence compounds is that they represent the interaction/interface between the 

pathway we are considering (which is unknown, but is to be found) and all the other 
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pathways that exist (which are unknown, and remain unknown in terms of our mathematical 

model).  

Low presence compounds, by contrast, cannot be reasonably assumed to be so easily 

obtained from, or disposed of in, other pathways and so must be balanced, i.e. any molecules 

involved must be internally produced/disposed of in the pathway chosen from S to T. Hence 

we have the constraint: 

bc = 1   if δc ≤ Δ; c≠S,T; c=1,…,C    (3.10) 

which forces low presence compounds (excluding S and T) to be balanced. This constraint 

does not force compounds to be active in the pathway, merely to be balanced.  

Equation (3.10) is precisely the pseudo steady state (PSS) condition described in 

Chapter 2. This links our approach to stoichiometric approaches (Schilling et al., 2000; 

Schuster et al., 2000. However, the BP model applies the PSS condition to a different set of 

biochemical compounds, namely low presence compounds. As opposed to the set of internal 

compounds in elementary flux modes approach, our definition of low presence compounds 

is done based on a numerical criterion.  

On the other hand, Table 2.1 in Chapter 2 shows that the PSS condition, though 

satisfied by the majority of biochemical compound in the metabolic pathway, is not general. 

This issue is also found in the BP model. Indeed, we may find experimentally determined 

pathways containing low presence unbalanced compounds. In the Results section we show 

how to deal with this issue (by neglecting Equation (3.10) for certain low presence 

compounds). 

In the BP model each reaction active in the pathway has at least one active balanced 

compound as an output, except any reaction producing the target compound T. Should a 

reaction be in the pathway and not satisfy this condition it can only be producing high 

presence compounds, which by definition are freely available anyway. Hence we impose the 

constraint: 
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1, 1cr

C

c p= ≥
∑ bc ≥ zr   pTr=0; r=1,…,R     (3.11) 

We need to consider the issues of cycles (a closed path in the directed graph 

representation, e.g. C6-R5-C3-R2-C5-R3-C6 in Figure 3.4) in the pathway. Cycles do exist 

in metabolic pathways, but in our approach some types of cycles are allowed, others are 

disallowed. 

 

Figure 3.4: A possible pathway that contains a cycle. 

Each reaction in our database of R reactions has a specified direction associated with 

it. Define the set B={(α,β)| reaction α and reaction β are the reverse of each other, α<β}. In 

order to disallow a cycle around a reaction and its reverse we impose the constraint:  

zα + zβ ≤ 1  ∀(α,β)∈B   (3.12) 

Considering a pathway as a directed graph we define a c-cycle to be an alternating 

sequence of c active balanced compounds and c active reactions that starts and ends at the 

same compound and within which no compound/reaction is repeated except at the start/end 
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of the sequence. An example 3-cycle (C6-R5-C3-R2-C5-R3-C6) can be seen in Figure 3.4. 

In the BP model we regard a c-cycle in a metabolic pathway as allowable if and only if: 

• the source compound and the target compound are the same (S=T) and the c-

cycle involves that compound; or 

• the c-cycle involves exactly one high presence balanced compound  

If the above conditions are not met then the c-cycle is disallowed. 

The first of these conditions is a logical one. If S=T then the pathway must be a cycle 

by definition and so must be allowed. The second of these conditions is based on 

examination of known pathways. In a random sample of 25 pathways (taken from 

http://biocyc.org/ECOLI/, but excluding the forty pathways dealt with here) we found 5 

pathways where there was an allowable c-cycle, but only one pathway where there was a 

disallowed c-cycle.  

To illustrate this second condition if and only if exactly one of the three balanced 

compounds (C3, C5 and C6) in the 3-cycle (C6-R5-C3-R2-C5-R3-C6) in Figure 3.4 is a 

high presence compound would the 3-cycle be allowed, otherwise it would be disallowed.  

If a c-cycle is disallowed a constraint must be imposed to prevent it appearing in the 

pathway. To illustrate this consider the case c=3. A 3-cycle involves 3 balanced compounds 

and 3 reactions. Any 3 reactions α,β,λ for which there exist 3 compounds d,e,h  for which: d 

is an input for α (ndα>0); e is an output from α (peα>0) and e is an input for β (neβ>0); h is an 

output from β (phβ>0) and h is an input for λ (nhλ >0); and d is an output from λ (pdλ>0); 

gives rise to a potential 3-cycle (d-α-e-β-h-λ-d). If this 3-cycle is disallowed (it does not 

satisfy the conditions given above) then the constraint bd + zα + be + zβ  + bh + zλ ≤ 5 

prevents it from appearing. In general the constraint required to prevent a c-cycle from 

appearing is: sum of the b variables for the compounds in the c-cycle plus sum of the z 

variables for the reactions in the c-cycle ≤ 2c-1. 
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3.2.4 Objective 

Above we have set out a series of variables and constraints (a mathematical model) 

that we believe can be used to recover a metabolic pathway. It is likely that there is more 

than one feasible solution to the above mathematical model and so to arrive at a pathway we 

propose an objective that is to be optimised. Our computational results (reported below) 

indicate that two factors are of importance in terms of an optimisation objective: the total 

number of reactions involved in the pathway and the number of excess molecules of 

Adenosine Triphosphate (ATP). 

The total number of reactions involved in the pathway (∑
=

R

r 1

zr) should be minimised. 

This makes biological and evolutionary sense as minimising the number of reactions 

involved reduces the “complexity” of the pathway. Broadly speaking we would expect that 

the fewer the reactions involved in a pathway the fewer the enzymes that will be needed by 

an organism to catalyse the reactions in the pathway. Moreover we would expect that the 

more reactions involved in a pathway the greater the chance that it may be disrupted, for 

example should an enzyme not be present due to a genetic defect. Other authors (Meléndez-

Hevia and Isidoro, 1985; Meléndez-Hevia and Torres, 1988; Meléndez-Hevia, 1990; 

Meléndez-Hevia et al., 1994, 1996; Mittenthal et al., 1998; Ebenhöh and Heinrich, 2003) 

have also emphasised minimisation of the number of reactions involved in a metabolic 

pathway. 

Denoting ATP as compound 1 for simplicity the number of excess molecules of ATP 

(∑
=

R

r 1

p1rtr -∑
=

R

r 1

n1rtr ) should be maximised. This makes biological and evolutionary sense as 

ATP is a key metabolic compound. ATP has been termed the cell's energy currency and is 

the universal carrier of chemical energy in the cells of all living organisms from bacteria and 

fungi to plants and animals including humans. It captures the chemical energy released by 

the combustion of nutrients and transfers it to reactions that require energy. Previous work 

examining optimality criteria associated with the structure of metabolic pathways 
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(Meléndez-Hevia et al., 1996, 1997; Heinrich et al., 1997; Stephani and Heinrich, 1998; 

Stephani et al., 1999; Heinrich and Ebenhöh, 2001) has also focused on the optimisation of 

(net) ATP production. 

Maximising excess ATP:  

• if (∑
=

R

r 1

p1rtr -∑
=

R

r 1

n1rtr) > 0 produces as many “spare” molecules of ATP as possible 

for use in other pathways 

• if (∑
=

R

r 1

p1rtr -∑
=

R

r 1

n1rtr) < 0 uses as few “spare” molecules of ATP (generated in other 

pathways) as possible in the pathway from S to T. 

Attempting to minimise one factor (total number of reactions) whilst simultaneously 

maximising another (excess ATP) involves a tradeoff. Whilst this tradeoff can be treated in 

a number of ways (e.g. see Heinrich et al., 1991) in this thesis we examine the two extreme 

cases of this tradeoff: 

minimise M3(∑
=

R

r 1

zr) - (∑
=

R

r 1

p1rtr -∑
=

R

r 1

n1rtr)   (3.13) 

maximise M3(∑
=

R

r 1

p1rtr -∑
=

R

r 1

n1rtr) - (∑
=

R

r 1

zr)    (3.14) 

where M3 is a large positive constant. Objective (3.13) gives primary weight to minimising 

the total number of reactions and secondary weight to maximising excess ATP, whilst 

objective (3.14) gives primary weight to maximising excess ATP and secondary weight to 

minimising the total number of reactions. Note here that non-extreme cases of this tradeoff, 

i.e. λ1(∑
=

R

r 1

zr) – λ2(∑
=

R

r 1

p1rtr -∑
=

R

r 1

n1rtr), λ1>0, λ2>0, were not explored computationally.  

3.2.5 Overview 

The BP model (optimise (3.13) or (3.14) subject to (3.1)-(3.12) plus c-cycle 

constraints) is an integer linear program. Algorithmically such programs are solved by linear 
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programming based tree search. Modern software packages to perform this task, such as 

ILOG CPLEX, 2005, which we used, are well developed and highly sophisticated. 

One computational point here deals with our treatment of c-cycles. We imposed 

constraints to prevent all disallowed 2-cycles directly and solved the integer program as 

given above. The solution obtained was then checked to see whether it contained any 

disallowed c-cycles (for any c>2). Finding a cycle in the directed graph composed of 

balanced compounds and active reactions is (algorithmically) an easy task, and checking to 

see whether a c-cycle is allowed or not is trivial. If any disallowed c-cycles were found then 

constraints to eliminate them (as discussed above) were added and the process repeated until 

a solution without any disallowed c-cycles was found. 

3.3 Results 

We have used the metabolic network of E.Coli (the best studied organism in the 

biological world) presented by Reed et al., 2003, which is available from 

http://systemsbiology.ucsd.edu/In_Silico_Organisms/E_coli/E_coli_reactions and comprises 

880 cytosolic reactions and 613 compounds. A cytosolic reaction is one occurring in the 

cytosol, which essentially defines the medium where metabolism is carried out. A full list of 

reactions/compounds can be found in Appendices A and B. 

We applied the BP model to the forty E.Coli experimentally determined pathways 

shown in Table 3.2. The pathways used were taken from Keseler et al., 2005; Nelson and 

Cox, 2005 and http://biocyc.org/ECOLI/. A detailed description of the experimentally 

determined pathways examined can be found in Appendix C.  
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Pathway     
Number Pathway name Low presence unbalanced compounds 
      

1 Gluconeogenesis - 
2 Glycogen - 
3 Glycolysis - 
4 Proline biosynthesis - 
5 Ketogluconate metabolism - 
6 Pentose phosphate g3p  
7 Salvage pathway deoxythymidine phosphate ura, thym 
8 Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle fad, fadh2, accoa 
9 NAD biosynthesis dhap, o2, h2o2,prpp 

10 Arginine biosynthesis akg, asp-L,fum.,ac, accoa,cbp 
11 Sperdimine biosynthesis urea, 5mta, ametam 
12 Threonine Degradadation to synthetise propionate for 
13 Serine biosynthesis akg 
14 Histidine biosynthesis akg, aicar, gln-L 
15 Tirosine biosynthesis akg 
16 Coenzyme A biosynthesis ctp, cmp, cyst-L 
17 Pantothenate biosynthesis akg, thf, mlthf,ala-B 
18 Tetrahydrofolate biosynthesis chor, gln-L,for, gcald 
19 Riboflavin and FMN and FAD biosynthesis db4p, for 
20 Heme Biosynthesis o2, fe2,frdp 
21 De novo sinthesis of pyrimidine ribonucletides asp-L, gln-L, q8, q8h2,prpp 
22 De novo sinthesis of pyrimidine deoxyribonucletides dhf, mlthf,trdox, trdrd  
23 Phenylethylamine degradation o2, h2o2 
24 Rhamnose degradation dhap 
25 Fucose degradation dhap 
26 Entner-Doudoroff Pathway - 
27 Anaerobic Respiration oaa, accoa, h2 
28 Arginine degradation akg, succoa 
29 Proline degradation fad,fadh2 
30 Glycolate degradation accoa 
31 Phospholipid Biosynthesis q8, q8h2 
32 Biosynthesis of cysteine - 
33 Allantoin degradation - 
34 Deoxycytidine degradation urea 
35 Phenylalanine Biosynthesis acald, ura 
36 Glyoxylate Cycle dhap 
37 Propionate Degradation suc, accoa 
38 Glutamate Biosynthesis Cycle oaa 
39 Biotin Synthesis akg 
40 Glycerol Degradation amet, cys-L,amob 

Table 3.2: Metabolic pathways considered and low presence unbalanced compounds 
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The fundamental limitation of the BP model arises with pathways 6-25, 27-31 and 

34-40 in that they contain some low presence unbalanced compounds, as shown in Table 

3.2. Due to equation (3.10), the BP model forces low presence compounds to be balanced. 

Hence for these pathways we did not force these compounds to be balanced (i.e. we 

excluded them from equation (3.10)). In other words the BP model, for these pathways, 

requires pathway knowledge with respect to low presence unbalanced compounds 

incorporated into the mathematical model.  

 To illustrate this limitation, Figure 3.5 shows the Anaerobic Respiration pathway, 

which convert one molecule of Pyruvate (pyr) into one molecule of 2-Oxoglutarate (akg). 

The number in brackets after the compound label is the percentage presence, δc. For 

example, the percentage presence of Oxaloacetate (oaa), δoaa, is 1.4%.  As δoaa ≤ ∆, with ∆ = 

4%, then oaa is a low presence compound. According to equation (3.10), low presence 

compounds must be in aggregate (net) terms balanced. However, the Anaerobic Respiration 

pathway presents a case in which oaa is, in aggregate (net) terms, unbalanced. Indeed, one 

molecule of oaa is consumed in R272, as can be seen in Figure 3.5. In order to recover this 

pathway, the BP model needs, when applied for this particular pathway, to exclude the low 

presence balancing constraint, equation (3.10), for this particular compound. This also 

applies to any other low presence unbalanced compounds in the pathway. In the Anaerobic 

Respiration pathway we have only one low presence unbalanced compound, oaa. 

Accordingly equation (3.10) was removed for oaa compound when the BP model was 

applied to the Anaerobic Respiration pathway. This procedure was repeated for each 

experimentally determined pathway. Table 3.2 shows the low presence unbalanced 

compounds for each pathway. For example, equation (3.10) was removed for ura and thym 

compounds when the BP model was applied to Salvage pathway deoxythymidine phosphate 

(Pathway 7). 
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Figure 3.5: Anaerobic respiration pathway 

 Thus, the BP model needs to know beforehand the low presence unbalanced 

compounds for each experimentally determined pathway. Clearly this is a limitation since 

most experimentally determined pathways contain low presence unbalanced compounds. 

The Improved Beasley-Planes (IBP) model, described in Chapter 6, directly addresses this 

issue. 

 Despite this limitation however we believe that the BP model is important because, 

as our results below indicate, given this knowledge we can recover a large number of the 

experimentally determined pathways when we apply the BP model. This indicates that we 

have reason to believe that disparate observed experimentally determined pathways 

have a common underlying mathematical model.     
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3.3.1 Structural recovery of experimentally determined pathways 

We mean here by structural recovery that, once the BP model is solved, the solution 

is precisely the same as the experimentally determined metabolic pathway, both in terms of 

the reactions/compounds involved in the pathway and its inherent stoichiometry (reaction 

ticks). Note that the BP model needs QS, QT the number of source and target molecules to be 

specified. 

 Table 3.3 indicates that for 38 of our 40 experimentally determined pathways one 

(or both) of our objectives do recover the structure of the pathway. Statistically this is a 

highly significant result (significant at the 0.001% level), as we will show in a later 

subsection.  

With respect to computation time the average computation time over the eighty cases 

shown in Table 3.3 was 4.6 seconds, no case requiring more than 30 seconds (1.86Ghz pc, 

2GB RAM). For thirty-eight of the forty pathways in Table 3.3 optimising using objective 

(3.14) took longer than optimising using objective (3.13), on average five times longer. 

In forty-eight of the fifty-one “yes” cases in Table 3.3 there is a unique pathway 

providing the optimal objective function value and in only three cases is there an alternative 

pathway providing the same optimal objective function value.  

As we have a significant number of constraints in the BP model the question arises 

as to the relevance of the objective adopted. In the limit for example there may be only one 

unique solution satisfying the constraints, and if so the objective adopted becomes 

irrelevant. We have investigated this issue and have found that in all 51 “yes” cases in Table 

3.3 we have more than one solution satisfying the constraints.  
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Pathway 
number 

Pathway name Pathway recovered? 
  

   Objective Objective 
    3.13 3.14 

1 Gluconeogenesis yes no 
2 Glycogen yes no 
3 Glycolysis yes yes 
4 Proline biosynthesis yes no 
5 Ketogluconate metabolism yes no 
6 Pentose phosphate yes no 
7 Salvage pathway deoxythymidine phosphate yes no 
8 Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle no yes 
9 NAD biosynthesis yes no 

10 Arginine biosynthesis yes no 
11 Sperdimine biosynthesis yes yes 
12 Threonine Degradadation to synthetise propionate yes yes 
13 Serine biosynthesis yes yes 
14 Histidine biosynthesis yes no 
15 Tirosine biosynthesis yes yes 
16 Coenzyme A biosynthesis yes no 
17 Pantothenate biosynthesis yes no 
18 Tetrahydrofolate biosynthesis yes no 
19 Riboflavin and FMN and FAD biosynthesis no no 
20 Heme Biosynthesis yes yes 
21 De novo sinthesis of pyrimidine ribonucletides yes no 
22 De novo sinthesis of pyrimidine deoxyribonucletides yes no 
23 Phenylethylamine degradation yes yes 
24 Rhamnose degradation yes no 
25 Fucose degradation yes no 
26 Entner-Doudoroff Pathway yes yes 
27 Anaerobic Respiration yes yes 
28 Arginine degradation yes no 
29 Proline degradation yes yes 
30 Glycolate degradation yes no 
31 Phospholipid Biosynthesis yes no 
32 Biosynthesis of cysteine yes yes 
33 Allantoin degradation yes no 
34 Deoxycytidine degradation yes yes 
35 Phenylalanine Biosynthesis yes yes 
36 Glyoxylate Cycle yes no 
37 Propionate Degradation yes no 
38 Glutamate Biosynthesis Cycle yes no 
39 Biotin Synthesis no no 
40 Glycerol Degradation yes no 

Number of “yes” entries 37 14 

Table 3.3: Structural Recovery 
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Equation (3.9) explicitly excludes solutions in which reactions in the pathway 

produce any of the source compound (or consume any of the target compound). If we amend 

the BP model (which is trivially done) to allow such solutions then, with respect to Table 

3.3, we degrade the results slightly, failing to recover pathways 1, 6, 9, 27 and 37 for 

objective (3.13) and pathways 26, 27 and 34 for objective (3.14). In a random sample of 25 

pathways (taken from http://biocyc.org/ECOLI/, but excluding the forty pathways dealt with 

here) we found only one pathway in which equation (3.9) was violated (and that was for a 

pathway where the source compound was itself a high presence compound). 

 If we do not impose the constraint on allowable c-cycles then, with respect to Table 

3.3, we have a mix of situations. Objective (3.13) now fails to recover pathway 3 and 9. 

However, objective (3.13) now recovers pathway 19 and 39, which were not recovered by 

the BP model (see Table 3.3) as they contains at least one disallowed cycle. Thus, objective 

(3.13) preserves 37 recovered pathways. With respect to objective (3.14), we degrade the 

results significantly, as no pathway is now recovered.   

As our approach is linked to elementary flux modes (and extreme pathways) the 

question arises as to the results we would obtain were we to apply an elementary flux modes 

based approach. Here such an approach would be to optimise (3.13) or (3.14) subject to 

(3.1)-(3.10), i.e. excluding equations (3.11), (3.12) and c-cycle constraints. If we do this 

then, with respect to Table 3.3, we degrade the results significantly. Objective (3.13) now 

only recovers thirty-three pathways (including pathway 19 and pathway 39) and objective 

(3.14) fails to recover any pathway. Note here that we neglect here the non-decomposability 

condition, as we do not have a linear mathematical statement of such condition.  

3.3.2 QS,QT recovery of experimentally determined pathways 

In the BP model it is necessary to specify the number of molecules of the source and 

target compounds (QS,QT) involved in the pathway (equation (3.8)). For the results shown in 

Table 3.3 these values have (obviously) been taken as equal to those associated with the 

experimentally determined pathway. For example, the Anaerobic Respiration pathway 
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shown in Figure 3.7 has (QS,QT)=(1,1). In this section, we present results as to the BP model 

when applied to a number of different (QS,QT) pairs (QS,QT≤6), so that the dominant pair is 

determined in terms of the objective function. In the case that the dominant pair is precisely 

that appearing in the experimentally determined pathway, then the BP model does recover 

the (QS,QT) pair observed in the experimentally determined pathway. Such analysis was 

exclusively carried out in those pathways in which the BP model achieves structural 

recovery, i.e. those pathways having a “yes” in Table 3.3. As the BP model present two 

different objective functions, (3.13) and (3.14), the criterion for selecting the dominant pair 

was modified according to objective function optimised. To illustrate this, we show below 

results obtained for the Anaerobic respiration pathway (pathway 27), whose structure was 

recovered for objective function (3.13) and (3.14) as shown in Table 3.3 and thus, (QS,QT) 

analysis must be carried out for both objectives.     

The Anaerobic respiration pathway in Table 3.3 has (QS,QT)=(1,1), requiring 4 

reactions and consuming no molecules of ATP. For this pathway Table 3.4 shows for a 

number of different (QS,QT) pairs (QS,QT≤6) the number of reactions and the excess ATP 

when the BP model is solved using objective (3.13). Situations where the BP model 

indicated that no feasible solution exists are indicated by a ‘X’. In other words in these cases 

no values for the decision variables in the BP model exist which satisfy all the constraints of 

that model for the particular (QS,QT) pair examined. Objective (3.13) gives primary weight 

to minimising the total number of reactions and secondary weight to maximising excess 

ATP. In order to identify the dominant (QS,QT) pair with respect to this objective we 

examine all entries in the table. Let E represent the set of all feasible (QS,QT) pairs in the 

table. We apply the following procedure: 

• eliminate repeats from E. An entry is a repeat if it involves the same number of 

reactions but precisely k (≥2, integer) times as many source/target/excess ATP 

molecules. A repeat essentially corresponds to the same reaction set but with the 

ticks multiplied by a factor of k. In Table 3.4, for example, the entries for 
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(QS,QT)=(4,2) and (QS,QT)=(6,3) are a repeat of the entry for (QS,QT)=(2,1) with k=2 

and k=3 respectively. In addition, the pairs seen down the diagonal are all repeats of 

the entry for (QS,QT)=(1,1). After elimination of repeats the entries left are 

(QS,QT)=(1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,1); (2,3); (2,4); (2,5); (2,6); (3,4); 

(3,5); (3,6); (4,3); (4,5); (4,6); (5,6); (6,4); (6,5). 

• eliminate from E any entries that do not involve the minimum number of reactions. 

In Table 3.4 the minimum number of reactions is 4. Thus, all the remaining entries 

aside from (QS,QT)=(1,1) are eliminated from E.   

• choose from E the entry which involves the maximum excess ATP, ties broken by 

minimum number of source molecules used, and then further broken if necessary by 

maximum number of target molecules produced. As there is only one entry with the 

minimum number of reactions, it is not necessary to tie breaks here.  

For this pathway the BP model indicates that the pair (QS,QT)=(1,1) dominates all 

other cases. This is indicated by the * superscript on that entry in the Table 3.4. Hence in this 

case the BP model recovers the (QS,QT)=(1,1) pair observed in the experimentally 

determined pathway. 
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Number of molecules QT of target compound (number of reactions, 
excess ATP) 

1 2 3 4 5 6 

1 
(4,0)* (5,0) (5,0) (5,0) (5,0) (5,0) 

2 
(6,-1) (4,0) (5,0) (5,0) (5,0) (5,0) 

3 
X X (4,0) (5,0) (5,0) (5,0) 

4 
X (6,-2) (7,-2) (4,0) (5,0) (5,0) 

5 
X X X X (4,0) (5,0) 

Number 

of 

molecules 

QS of 

source 

compound 6 
X X (6,-3) (7,-3) (7,-3) (4,0) 

Table 3.4: BP model solution for objective (3.13), expressed as (number of reactions, excess ATP), for 
varying QS and QT for Anaerobic respiration pathway 

Amending that procedure to identify the dominant (QS,QT) pair for objective (3.14) is 

easily done. The results for the Anaerobic Respiration pathway with objective (3.14) can be 

seen in Table 3.5. As objective (14) gives primary weight to maximising excess ATP and 

secondary weight to minimising the total number of reactions, the procedure for identifying 

the dominant pair with objective (3.14) is: 

• eliminate repeats from E. In Table 3.5 the entries for (QS,QT)=(4,2) and 

(QS,QT)=(6,3) are a repeat of the entry for (QS,QT)=(2,1) with k=2 and k=3 

respectively. In addition, the pairs seen down the diagonal are all repeats of the entry 

for (QS,QT)=(1,1). After elimination of repeats the entries left are (QS,QT)=(1,1); 

(1,2); (1,3); (1,4); (1,5); (1,6); (2,1); (2,3); (2,4); (2,5); (2,6); (3,4); (3,5); (3,6); (4,3); 

(4,5); (4,6); (5,6); (6,4); (6,5). 

• eliminate from E any entries that do not involve the maximum excess ATP. Since 

excess ATP for all the remaining entries in Table 3.5 is zero, no entry is eliminated 

in this step.   
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• choose from E the entry which involves the minimum number of reactions, ties 

broken by minimum number of source molecules used, and then further broken if 

necessary by maximum number of target molecules produced. In the example Table 

3.5, the entry for (QS,QT)=(1,1) presents the minimal number of reactions.  

For this pathway the BP model indicates that the pair (QS,QT)=(1,1) dominates all 

other cases. Hence in this case the BP model recover the (QS,QT)=(1,1) pair observed in the 

experimentally determined pathway. 

Number of molecules QT of target compound (number of reactions, 
excess ATP) 

1 2 3 4 5 6 

1 
(4,0)* (5,0) (5,0) (5,0) (5,0) (5,0) 

2 
(7,0) (4,0) (5,0) (5,0) (5,0) (5,0) 

3 
X X (4,0) (5,0) (5,0) (5,0) 

4 
X (7,0) (8,0) (4,0) (5,0) (5,0) 

5 
X X X X (4,0) (5,0) 

Number 

of 

molecules 

QS of 

source 

compound 6 
X X (7,0) (8,0) (8,0) (4,0) 

Table 3.5: BP model solution for objective (3.14), expressed as (number of reactions, excess ATP), for 
varying QS and QT for Anaerobic respiration pathway 

We have repeated the analysis shown in Table 3.4 and Table 3.5 for those cases in 

which the BP model recovers the pathway structure (see Appendix C for details of this 

analysis). The summary of this analysis can be seen in Table 3.6. Our judgment in that for 

thirty-seven of the forty pathways the BP model (either objective (3.13) or (3.14)) recovers 

the (QS,QT) pair observed in the experimentally determined pathway. Statistically this is a 

highly significant result (significant at the 0.001% level), as shown in the following 

subsection. 
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Pathway 
number 

Pathway name (QS,QT) recovered? 
  

   Objective Objective 
    3.13 3.14 

1 Gluconeogenesis yes - 
2 Glycogen yes - 
3 Glycolysis yes yes 
4 Proline biosynthesis yes - 
5 Ketogluconate metabolism yes - 
6 Pentose phosphate no - 
7 Salvage pathway deoxythymidine phosphate yes - 
8 Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle - yes 
9 NAD biosynthesis yes - 

10 Arginine biosynthesis yes - 
11 Sperdimine biosynthesis yes yes 
12 Threonine Degradadation to synthetise propionate yes yes 
13 Serine biosynthesis yes no 
14 Histidine biosynthesis yes - 
15 Tirosine biosynthesis yes yes 
16 Coenzyme A biosynthesis yes - 
17 Pantothenate biosynthesis yes - 
18 Tetrahydrofolate biosynthesis yes - 
19 Riboflavin and FMN and FAD biosynthesis - - 
20 Heme Biosynthesis yes yes 
21 De novo sinthesis of pyrimidine ribonucletides yes - 
22 De novo sinthesis of pyrimidine deoxyribonucletides yes - 
23 Phenylethylamine degradation yes yes 
24 Rhamnose degradation yes - 
25 Fucose degradation yes - 
26 Entner-Doudoroff Pathway yes no 
27 Anaerobic Respiration yes yes 
28 Arginine degradation yes - 
29 Proline degradation yes yes 
30 Glycolate degradation yes - 
31 Phospholipid Biosynthesis yes - 
32 Biosynthesis of cysteine yes yes 
33 Allantoin degradation yes - 
34 Deoxycytidine degradation yes yes 
35 Phenylalanine Biosynthesis yes yes 
36 Glyoxylate Cycle yes - 
37 Propionate Degradation yes - 
38 Glutamate Biosynthesis Cycle yes - 
39 Biotin Synthesis - - 
40 Glycerol Degradation yes - 

Number of “yes” entries 36 12 

Table 3.6: (QS,QT) Recovery 
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3.3.3 Statistical significance 

We address here the issue of the statistical significance of the results we have 

obtained. We will deal with: 

• recovering the pathway structure (Table 3.3); and 

• recovering the (QS,QT) pair associated with the pathway (Table 3.6) 

separately. 

3.3.3.1 Structural recovery 

Table 3.3 shows that out of 80 cases we have a “yes” entry in 51 cases (indicating 

that we recovered the experimentally determined pathway), and a “no” entry in 29 cases 

(indicating that we failed to recover the experimentally determined pathway). With regard to 

the issue of statistical significance then, as an analogy, if we had conducted 80 throws of a 

coin and observed 51 heads and 29 tails then most likely we would have nothing of 

particular significance if we were testing whether the coin was fair or not. But for a fair coin 

the probability of a head is known to be ½.  

In order to conduct a hypothesis test to judge the statistical significance of our results 

we need to know the probability (say ρ) that the BP model, when solved, will (by chance) 

recover a known pathway; i.e. we would like to conduct the hypothesis test: 

H0: results from the BP model arise due to chance  

probability of a success (“yes” entry in Table 3.3) = ρ 

versus  

H1: results from the BP model do not arise from chance  

probability of a success > ρ 
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In order to carry through this hypothesis test on our results we need to know ρ.  

To proceed let us ignore the issue of reactions ticks (pathway stoichiometry) for 

convenience. For our database each compound is involved in (on average) 4.5 reactions. As 

an approximation therefore (for a reasonable value of K) there are of the order of 4.5K 

different pathways from the source compound S to the target compound T that involve 

exactly K reactions. This is an approximation since a reaction may produce more than one 

compound (each of which in turn may be involved in 3.5 other reactions). 

For the forty pathways we have examined the number of reactions involved in the 

experimentally determined pathway varies from a minimum of 2 to a maximum of 10, with 

an average of 4.825. Adopting an average value of 4 as a deliberate under-estimate so as to 

not bias any calculations in our favour an estimate of the number of possible pathways 

involving exactly 4 reactions is 4.54, which is approximately 410.  

Only one of these 410 possible pathways corresponds to the experimentally 

determined pathway. If the BP model were (for example) simply making a random choice 

from this set of possible pathways then it is clear that the probability of achieving a “yes” 

entry in Table 3.3 is very low. We however achieve 51 “yes” entries. 

Of course this value of 410 is purely an estimate from average values and so 

adopting a value for ρ of 1/410 = 0.0024 for hypothesis testing may be misleading. Here we 

shall make a very conservative assumption and assume that 1/410 overestimates the true 

value of ρ by two orders of magnitude, i.e. we shall use a value of ρ of 1/4.1 = 0.24 for 

hypothesis testing. Hence we have the hypothesis test: 

H0: results from the BP model arise due to chance  

probability of a success = ρ = 0.24 

versus  

H1: results from the BP model do not arise from chance  
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probability of a success > ρ 

 

The BP model recovers the experimentally determined pathway in 51 cases out of 80 

in Table 2, so a sample probability of 51/80 = 0.64 of success. The test statistic for this one-

sided hypothesis test is (sample probability – ρ)/√[ρ(1-ρ)/(sample size)] = (0.64-ρ)/√[ρ(1-

ρ)/80] = (0.64-0.24)/√[(0.24)(1-0.24)/80] = 8.32. This is a statistically highly significant 

result. At the 0.001% level for example the critical value is 4.27, and our test statistic far 

exceeds this, so H0 would be rejected and we would conclude that the results from the BP 

model do not arise from chance. This fact shows that the results obtained for the BP model 

for recovering the pathway structure are statistically significant at the 0.001% level, as noted 

above.  

3.3.3.2 QS,QT recovery 

Table 3.6 shows that the BP model can recover the specific values of (QS,QT) 

associated with the experimentally determined pathway (where QS is the number of 

molecules of the source compound S consumed and QT is the number of molecules of the 

target compound T produced). This analysis was performed by solving the BP model for all 

different (QS,QT) pairs (QS,QT≤6) and determining the (QS,QT) pair that was dominant.  

 At first sight, if we examine all (QS,QT) pairs, where QS,QT≤6 so 36 different pairs in 

total, we might believe that there is a probability of 1/36 of (by chance) choosing the single 

correct pair associated with the experimentally determined pathway. However this ignores 

the issue of repeats, which might (in some cases) have the same number of reactions and the 

same excess ATP. Referring back to the (QS,QT) discussion carried out in Section 3.3.2, an 

entry is a repeat if it involves the same number of reactions but precisely k (≥2, integer) 

times as many source/target/excess ATP molecules. Clearly, a potential repeat will involve, 

at least, k times as many source and target molecules. This is the case, for example, of 

(QS,QT)=(2,2), which is a potential repeat of (QS,QT)=(1,1). 



Metabolic pathway analysis via integer linear programming 

Francisco J. Planes                                                                                                                                  May 2008 71

The matrix below shows for all (QS,QT) pairs, where QS,QT≤6, those pairs that are 

potential repeats (denoted by a “R”) and those that are not (denoted by a “ ”).Over the 36 

cases shown there are 23 that are not potential repeats. Hence we have an initial estimate of 

the probability of choosing the single correct pair associated with the experimentally 

determined pathway as 1/23. 

Number of molecules QT of target compound  

1 2 3 4 5 6 

1 
      

2 
 R  R  R 

3 
  R   R 

4 
 R  R  R 

5 
    R  

Number 

of 

molecules 

QS of 

source 

compound 6 
 R R R  R 

Table 3.7: Matrix of repeats 

However this estimate of 1/23 depends upon the maximum values examined for QS 

and QT (here 6). Over all the forty experimentally determined pathways we examined the 

maximum QS value is 3 and the maximum QT value is 2. If we restrict our investigation to 

QS≤3 and QT≤2 then we have just five cases that are not potential repeats and hence an 

initial estimate of the probability of choosing the single correct pair associated with the 

experimentally determined pathway as 1/5. 

So, for the purposes of statistical testing, we shall assume that there is a probability 

of 1/5 of, by chance, choosing the correct (QS,QT) pair associated with the experimentally 

determined pathway. Hence we have the hypothesis test: 

H0: results from the BP model arise due to chance  
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probability of a success = ρ =1/5, where ρ is the probability that the BP model will 

by chance recover the (QS,QT) pair associated with the experimentally determined 

pathway 

versus  

H1: results from the BP model do not arise from chance  

probability of a success > ρ 

 

The BP model recovers the (QS,QT) pair associated with the experimentally 

determined pathway for 48 pathways out of 80, see Table 3.6, so a sample probability of 

48/80 = 0.6 of success. The test statistic for this one-sided hypothesis test is (sample 

probability – ρ)/√[ρ(1-ρ)/(sample size)] = (0.6-ρ)/√[ρ(1-ρ)/10] = (0.6-(1/5))/√[(1/5)( 

4/5)/80] = 8.94. This is a statistically highly significant result. At the 0.001% level for 

example the critical value is 4.27, and our test statistic far exceeds this, so H0 would be 

rejected and we would conclude that the results from the BP model do not arise from 

chance. This fact shows that the results obtained for the BP model for recovering the 

(QS,QT) pair associated with the pathway are statistically significant at the 0.001% level, as 

noted above. 

3.3.4 Sensitivity analyis relating to ∆ 

In the BP model it is necessary to specify the user defined input parameter Δ which 

determines whether a compound is a low presence, or a high presence, compound. We 

conducted a sensitivity analysis as to how the results change as Δ changes. This can be seen 

in Table 3.7, where we have summarized the number of “yes” entries that we obtained in the 

equivalent of Table 3.3 and Table 3.6 for varying Δ values. It is clear from this table that 

over a fairly wide range of Δ values a significant number of “yes” entries are obtained. 

Note here that the value of Δ=4% associated with the results presented in Table 3.3 

and Table 3.6 was originally chosen based on limited computational experience with a 

number of pathways. It was not chosen via systematic enumeration of results for all 
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pathways for a range of Δ values and then selection of the best Δ value. As can be seen from 

Table 3.7 we could improve the results presented in Table 3.3 and Table 3.6 were we to use 

Δ=5% for example. 

 Number of “yes” entries 

 Pathway structure 
recovered? 

(QS,QT) recovered if 
pathway structure 

recovered? 
Value of Δ 

(%) 
Objective 

(3.13) 
Objective 

(3.14) 
Objective 

(3.13) 
Objective 

(3.14) 

2.5 30 5 30 4 

3 33 11 33 9 

3.5 33 11 33 9 

4 37 14 36 12 

4.5 37 29 36 21 

5 37 31 36 24 

5.5 35 30 34 24 

Table 3.8: Sensitivity analysis relating to Δ 

3.4 Neglected issues 

The BP model neglects three issues: bioenergetics (Gibbs free energy), enzymes and 

cofactors/coenzymes. Mathematically all of these can be easily incorporated into the BP 

model. However, the data available for the 880 reactions considered was not sufficient to 

enable any of these issues to be implemented computationally. We describe below how to 

extend our model to deal with these issues. 

Let Gr be the Standard Gibbs free energy involved in one tick of reaction r 

(r=1,…,R). The Gibbs free energy provides a measure about the directionality and 

spontaneity of a particular reaction. Consider, for example, the following reversible reaction 
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α: A + B ↔ C + D. If the Standard Gibbs free energy is less than zero, i.e. Gα<0, then A and 

B will necessarily tend to be converted into C and D. Similarly, if the Standard Gibbs free 

energy is greater than zero, i.e. Gα >0, then C and D will necessarily tend to be converted 

into A and B. In addition, if the Standard Gibbs free energy is equal to zero, i.e. Gα =0, then 

the reaction has reached equilibrium. 

This idea can be easily applied for metabolic pathways. A particular pathway will be 

energetically feasible if and only if the sum of Standard Gibbs free energy of the active 

reactions (more precisely the ticks of the reactions) involved in the pathway is less than 

zero. This can be expressed in the equation below. 

∑
=

R

r 1

Grtr < 0      (3.15) 

In addition, it might be of interest to determine the metabolic pathway with 

minimum Standard Gibbs free energy net value. This can be expressed in the objective 

function below. 

minimise∑
=

R

r 1

Grtr     (3.16) 

The main reason as to why Standard Gibbs free energies were not included in the BP 

model was the lack of data for each particular reaction in the metabolic network when the 

BP model was built. We examined the group contribution methodology presented by of 

Mavrouniotis (1990; 1991) to estimate Standard Gibbs free energies values. However, 

results reported in those works did not cover every biochemical reaction in the metabolic 

network. Full Standard Gibbs data are now available for E.Coli in Feist et al., 2007.     

An additional point to note here is that it would be more appropriate to utilise real 

Gibbs free energy, Hr (r=1,…,R), since Standard Gibbs free energy assumes 1 molar 

concentration for each compound in the cell/organism, which clearly is not true. We give 

below the chemical formula to calculate real Gibbs free energy, Hα, for the example reaction 

α. 
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Hα = Gα + RT [ ] [ ]
[ ] [ ]BA

DC
⋅
⋅      (3.17) 

where R is the Boltzmann constant; T is the absolute temperature; [C] is the cellular 

concentration of compound C; [D] is the cellular concentration of compound D; [A] is the 

cellular concentration of compound A; [B] is the cellular concentration of compound B.  

The discipline of metabolomics is meant to provide cellular concentrations of 

compounds in large scale. However, we are still far from obtaining the concentrations for 

each particular compound. Despite this fact, we think that Gibbs Energy provide an 

interesting link between computational and experimental methods.       

As far as the issue of enzymes is concerned, let E be the total number of enzymes. 

Let mer be 1 if enzyme e (e=1,…,E) catalyses reaction r (r=1,…,R), 0 otherwise. This 

notation is general and allows us to have more than one enzyme catalysing a particular 

reaction. In addition, a particular enzyme might catalyse a number of different reactions. 

We need a binary zero-one variable xe = 1 if we make use of enzyme e (e=1,…,E) in 

the pathway, 0 otherwise. 

We need constraints relating a reaction to the enzyme needed for the reaction. These 

are: 

∑
=

E

e 1
merxe ≥ zr  r=1,…,R      (3.18) 

∑
=

R

r 1

merzr ≥ xe  e=1,…,E    (3.19) 

The first constraint ensures that if a reaction occurs, then at least one of enzymes that 

catalyses that reaction must be active. The second constraint ensures that if an enzyme is active, 

then at least one of the reactions catalysed by that enzyme must be active. 

It would be an interesting objective function to minimise the number of the enzymes 

involved in the pathway.   
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 minimise ∑
=

E

e 1

xe      (3.20) 

The main cause for neglecting enzymes in the BP model was that the metabolic 

network of E.Coli presented by Reed et al., 2003, contains a large number of reactions 

whose catalysing enzyme is still unknown.  

Finally, as we explained in the Chapter 2, a cofactor is generally defined as a 

biochemical compound that fulfils the same specific and secondary function in a 

considerable number of reactions.  However, the list of cofactors for a given metabolic 

network has not been defined unambiguously. The model described later in Chapter 6 

directly deals with this issue. 

3.5 Conclusions 

We have presented our initial mathematical optimisation model named the BP model 

so as to recover experimentally determined metabolic pathways. The BP model showed 

excellent performance, as the pathway structure and (QS,QT) pair were recovered in 37 out 

of 40 experimentally determined pathways using one of the two objectives proposed. 

However, the model needs to know beforehand the unbalanced low presence compounds in 

the experimentally determined pathway. This constitutes a major drawback for predicting 

novel (unknown) metabolic pathways. The IBP (Improved Beasley-Planes) model described 

in Chapter 6 is meant to avoid that prior pathway knowledge. Despite this issue, the results 

presented here for the 40 E.Coli pathways shows that the BP model is more accurate than 

previous stochiometric approaches, namely elementary flux modes and extreme pathways, 

for determining biologically meaningful metabolic pathways. In addition, the BP model is 

more applicable, since it overcomes the combinatorial explosion suffered by previous 

approaches by using an optimization approach. Moreover it indicates that there is reason to 

believe there is a general mathematical model underlying the many different experimentally 

determined pathways seen.  
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Chapter 4  

Pathway disruption, an application of the BP model  

Chapter 3 showed the effectiveness of the BP model for recovering experimentally 

determined pathways. In this chapter we illustrate how the BP model can be used to 

investigate the disruption of metabolic pathways. In particular, we focus on the Glycolysis 

pathway, a key ATP producer pathway. Interestingly, our results accords with work done 

from a non-mathematical (biochemical/medical) perspective.  

4.1 Introduction 

In previous chapters we explained that in order to search for meaningful metabolic 

pathways in a metabolic network, experimentally determined pathways provide an 

appropriate starting point. Despite the issue of low presence unbalanced compounds, the BP 

model showed high success in recovering experimentally determined (known) pathways 

from the metabolic network. This fact does give us a degree of confidence that, when we 

apply the BP model to an unknown situation, the pathway predicted by the BP model will 

have biological significance. 

To illustrate this, assume that Figure 4.2 shows the experimentally determined 

pathway converting C1 into C7, given our example metabolic network shown in Figure 4.1. 

Suppose that, once we solve the BP model for this example pathway, we achieve recovery. 

Suppose now that (due to a genetic disease, for example) the pathway shown in Figure 4.2 

presents an enzymatic deficiency, e.g. the enzyme catalysing R1. Such deficiency prevents 

this pathway from being active. In the literature the phrase “knocked out” is often used to 

indicate a reaction is disabled/unable to be performed. This situation represents a case in 

which the active pathway converting C1 into C7 is unknown (under the assumption that the 

organism continues to transform C1 into C7). Since the BP model obtains biologically 

significant metabolic pathways, if we apply the BP model with reaction R1 “knocked out”, 

i.e., zR1= 0, then the pathway predicted by the BP model may have biological significance. 
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Figure 4.1: Previous Figure 1.2 in Chapter 1 

 

Figure 4.2: Experimentally determined pathway converting C1 into C7 
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In this chapter the BP model is applied to the unknown situation that arises when one 

or more reactions are knocked out and an organism must adapt by utilising previously 

unutilised pathways. Note here that we specifically refer to reaction knockout as a 

convenient shorthand way of saying inhibit the enzyme(s) that catalyses a particular 

reaction. Enzyme inhibition can take place either using gene-based inhibition of enzyme 

production, or by pharmacological means. In addition, note that as enzymes catalyse 

reactions in both directions when we refer to reaction knockout we implicitly mean 

knockout a reaction and its reverse (if it exists). The reason as to why we might be interested 

in reaction knockout is that we wish to have a means to deliberately disrupt a metabolic 

pathway. This may be, for example, because we wish to disable/kill an organism utilising 

that pathway.   

Knockout approaches given in the literature typically build upon flux balance 

analysis (FBA), (Kauffman et al., 2003; Lee et al., 2006; Price et al., 2004). The starting 

point for FBA is a known set of biochemical (enzyme catalysed) reactions that can take 

place in an organism, i.e. the metabolic network of a given organism. Given the metabolic 

network the basic assumption in FBA is that a steady state applies and the majority of 

metabolites in the organism must be in balance. These balance constraints are the essential 

FBA constraints and they can be written in a mathematical form using reaction flux vectors. 

As a result of this balance assumption linear programming can be applied to find the effect 

(for example) on organism growth (biomass production) if a particular reaction is knocked 

out (deleted, eliminated, so it has zero flux). These network-based approaches to reaction 

knockout however make no use of the information that certain sets of reactions are 

commonly recognised as grouped together into pathways. Hellerstein, 2007, has recently 

argued the need for a pathway-based approach to reaction knockout. We present below a 

detailed review of mathematical approaches in the literature to reaction knockout.  

In this chapter we present a novel knockout approach based upon the BP model. 

Though the BP model also includes FBA constraints, it fundamentally stands for a pathway-

based approach. We apply our approach to disrupt the operation of a given experimentally 
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determined metabolic pathway. In particular we will focus here on Glycolysis. This pathway 

is currently of interest due to a recent revival of interest in the Warburg effect, that cancer 

cells utilise Glycolysis, and hence disrupting that pathway may be of benefit in fighting 

cancer (Garber, 2004; Xu et al., 2005; Bui and Thompson, 2006; Fantin et al., 2006; 

Gatenby and Gillies, 2004; Mathupala et al., 2006). 

4.2 Review of network-based approaches to reaction knockout 

Firstly, we would note here that we focus our discussion on reaction knockout, 

whereas often the literature uses the phrase “gene knockout”. The difficulty with focusing 

directly on gene knockout is that it neglects the effect of isoenzymes (isozymes), where two 

or more enzymes catalyse the same reaction. By focusing on reaction knockout we 

automatically account for isoenzymes. Moreover in the literature it is not uncommon to see 

that although authors may use the phrase “gene knockout” the mathematical/computational 

details of their procedure make it clear that they are actually investigating reaction knockout 

(e.g. by setting flux for a reaction to zero in a FBA based approach). 

As described above, FBA has been applied in the literature as a basis for 

investigating knockout. For example, Edwards and Palsson, 2000a, used FBA to investigate 

knockout in E. coli MG1655; Edwards and Palsson, 2000b, knockout in E. coli K-12. 

Burgard and Maranas, 2001, used FBA together with mixed-integer linear programming to 

investigate the maximum number of knockouts possible for E. coli whilst maintaining a 

specified level of biomass production; they also investigated knockin, i.e. reaction addition, 

the reverse of knockout.  

Burgard et al., 2003, presented a bilevel optimisation approach, OptKnock, where 

the outer optimisation objective is to maximise a given flux, and the inner optimisation 

objective is FBA based (maximise biomass). In their approach the number of knockouts 

chosen is bounded above by a prespecified value. Fong et al., 2005, applied OptKnock to E. 

coli to identify knockouts associated with increasing lactate production. Pharkya and 

Maranas, 2006, extended OptKnock to OptReg, where as well as reaction knockout they 
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include options relating to reactions being repressed/activated (down/up regulated, having 

flux values much lower/higher than their steady state (FBA based) flux values). 

Pharkya et al., 2004, presented OptStrain, that first considers knockin, then 

knockout. In their procedure maximal yield for a target product is first calculated when it is 

possible to utilise any of a large set of possible reactions (this set including not only 

reactions native to the organism, but also other reactions that are non-native). Then the 

minimum number of non-native reactions that provide maximal yield are calculated (using 

mixed-integer linear programming, with explicit enumeration of alternative optimal 

solutions). Finally OptKnock (Burgard et al., 2003) is used to identify knockouts in the 

organism composed of native reactions and those non-native reactions identified at the 

previous step as members of a non-native minimal set. 

Although most FBA knockout work has been done with E. coli work with other 

organisms has also been presented in the literature. For example Borodina et al., 2005, 

considered Streptomyces coelicolor; Duarte et al., 2004, and Deutscher et al., 2006, 

considered the yeast Saccharomyces cerevisiae; Thiele et al., 2005, considered Helicobacter 

pylori. 

Knockout (and knockin) approaches based upon FBA however effectively assume 

that the entire flux vector can be changed from its initial state (before knockout/knockin) to 

an entirely new state (after knockout/knockin), in effect a complete “rerouting” of the fluxes 

in the organism. Here the literature has been predominantly concerned with knockout and 

various authors have argued that although FBA knockout approaches may give long-term 

evolutionary insight into how an organism might eventually adapt to a knockout, it is less 

effective at predicting the immediate response of an organism to a knockout. 

For this reason approaches aimed at focusing on immediate flux changes after 

knockout have appeared in the literature. Minimisation of metabolic adjustment (MOMA), 

Segrè et al., 2002, minimises the Euclidean distance between the flux vector before 

knockout and the flux vector after knockout. In MOMA the Euclidean objective adopted 
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tries to ensure that there are only “small” changes between the flux vector before knockout 

and the flux vector after knockout. Alper et al., 2005, used MOMA to investigate multiple 

knockouts in E. coli when focusing on lycopene biosynthesis.  

In regulatory on/off minimisation of metabolic flux (ROOM), Shlomi et al., 2005, 

mixed-integer linear programming is used to find the flux after knockout that minimises the 

number of “significant” flux changes compared with the flux before knockout (where a key 

conceptual and computational issue is how large a flux change has to be before it is 

classified as “significant”). Shlomi et al., 2005, with respect to E. coli, give an example 

where the number of significant flux changes after knockout are 12 with ROOM, 317 with 

MOMA and 119 with FBA.  

One theme encountered in FBA based knockout is that of classifying reactions as 

“essential” or not. For example, essential reactions may be defined as those whose knockout 

renders the organism ineffective (e.g. unable to grow at all, or at best grow very slowly, as 

compared with the organism before knockout). Work of this kind can be seen, for example, 

in Borodina et al., 2005; Burgard and Maranas, 2001; Deutscher et al., 2006, Segrè et al., 

2002; Shlomi et al., 2005. 

4.3 Pathway-based knockout approach 

In this section we present our approach to knockout based upon the BP model for 

metabolic pathways. To motivate our approach suppose that, for biomedical reasons, we 

wish to disrupt the operation of a known metabolic pathway by knocking out reactions 

within it. Clearly within a pathway there are many options for reaction knockout. For 

example if the pathway involves K reactions then there are K choices for single reaction 

knockout; K(K-1)/2 choices for two reaction knockout; K(K-1)(K-2)/6 choices for three 

reaction knockout; etc. Of these many choices which one should we adopt? The reason why 

we might be interested in more than single reaction knockout with respect to a pathway is 

clear – the organism may adapt to a single knockout via a limited rerouting of flux within 

the pathway (whilst also perhaps utilising other reactions not in the pathway), the more 
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reactions associated with the pathway that are knocked out, the more difficult this becomes. 

In our approach, we examine all of these possible knockout choices and select the 

best one. Whilst this might at first sight seem computationally expensive the fact that we are 

adopting a pathway based approach means that K is relatively small. Over the forty 

pathways we consider the maximum number of reactions in a pathway is K=10. Hence there 

are only (at most) 10 choices for single reaction knockout; K(K-1)/2 = 10(10-1)/2 =45 

choices for two reaction knockout; K(K-1)(K-2)/6 = 10(10-1)(10-2)/6 = 120 choices for 

three reaction knockout. Approaches in the literature rarely go beyond single or two reaction 

knockout. As reported below examining a single choice is not computationally expensive 

and so our approach is computationally feasible. Moreover, as illustrated below, since we 

explicitly examine all choices we are able not only to identify the best choice, but also the 

second-best, third-best, etc, i.e. to produce a ranked list of choices. This ranking enables 

skilled professionals to bring to bear considerations that cannot be easily incorporated into a 

mathematical model on a restricted range of choices in order to make a final considered 

judgment with regard to the choice to select. 

In order to illustrate our approach we discuss below both single reaction knockout, 

and two reaction knockout, in E. coli when our aim is to disrupt the Glycolysis pathway, a 

key ATP producing pathway, which transforms D-glucose into pyruvate (see Figure 4.3). 
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Figure 4.3: Glycolysis pathway 

4.3.1 Single reaction knockout 

In order to decide the best reaction to knockout we adopt the procedure below: 
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For each active reaction R1 in the pathway under consideration: 

• apply the BP model when reaction R1 is knocked out for each (QS,QT) pair 

(QS,QT≤6), where QS represents the number of molecules of source compound, QT 

the number of molecules of target compound. This was carried out for each of the 

ten reactions involved in the Glycolysis pathway. Table 4.1, for example, shows 

results when reaction R444 was deleted.  

Number of molecules QT of target compound  

1 2 3 4 5 6 

1 
X (10,1)* X X X X 

2 
X X X (10,2) X X 

3 
X X X X X (10,3) 

4 
X X X X X X 

5 
X X X X X X 

Number 

of 

molecules 

QS of 

source 

compound 6 
X X X X X X 

 
Table 4.1: Results when R444a was deleted 

• identify the dominant (QS,QT) pair with respect to our objective (primary weight 

on minimising the total number of reactions and secondary weight on maximising 

excess ATP) for each. This pathway represents for the best alternative pathway 

given the knockout of the reaction considered. Let (a,b) be the (number of 

reactions, excess ATP) involved in this alternative pathway. In the above example, 

the pairs seen down the diagonal are all repeats of each other, doubling and then 

tripling the number of source and target molecules (and excess ATP). The 

dominant pair is (QS,QT)=(1,2) when reaction R444 is deleted, thus (a,b)= (10,1). 

Situations where the Beasley-Planes model indicated that no feasible solution 

exists are indicated by a ‘X’. 
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Now over all reactions R1 considered choose the reaction that maximises the total 

number of reactions (a), ties broken by minimising total excess ATP (b), and further broken 

if necessary by minimising the number of other pathways in which R1 is involved.  

Here we are choosing the worst alternative pathway out of the cases considered, 

according to the BP objective of giving primary weight to minimising the total number of 

reactions and secondary weight to maximising excess ATP. The reaction whose knockout 

corresponds to this worst alternative pathway is the best reaction to knockout to disrupt the 

functioning of the pathway, because the aim behind reaction knockout is to make the 

functioning of the subsequent pathway after reaction knockout as difficult as possible. In the 

event that there are two (or more) reactions that tie for consideration here then we tie-break 

by choosing the reaction involved in as few other pathways as possible. Note here that in 

this procedure we do not constrain the pathway after reaction knockout to consume/produce 

the same number of molecules of source/target compound as in the original (undisrupted) 

pathway. 

Table 4.2 gives for each reaction the dominant (QS,QT) pair and the corresponding 

(number of reactions, excess ATP)= (a,b) in the Glycolysis pathway. Note that the 

Glycolysis pathway itself has (number of reactions, excess ATP) = (10,2) and, as we would 

expect, the pathways we have after single reaction knockout are worse with respect to these 

(combined) characteristics than the original pathway. 
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Reaction deleted Dominant (QS,QT) pair (Number of reactions, excess ATP) 

R444a (1,2) (10,1) 
R443a - Infeasible 
R447a - Infeasible 
R451 - Infeasible 
R452b - Infeasible 
R453 (1,2) (10,1) 
R454a (1,2) (10,1) 
R457 (1,2) (14,-1) 
R455b - Infeasible 
R458a (1,2) (10,1) 

 

Table 4.2: Best alternative pathway for each reaction in Glycolysis pathway 

Considering the above table, and ignoring the five infeasible cases for the moment, 

we can see that from the set of reactions {R444a, R453, R454a, R457, R458a} the worst 

alternative pathway is that corresponding to the knockout of R457, since that involves 14 

reactions and consumes one molecule of ATP. This is worse than any other (feasible) case - 

recall that our objective is to give primary weight to minimising the total number of 

reactions and secondary weight to maximising excess ATP. 

It is clear from all ten entries in the above table that, if we wish to best disrupt the 

Glycolysis pathway, we should choose one of the five reactions {R443a, R447a, R451, 

R452b, R455b}, as the Beasley-Planes model indicates that with any of these reactions 

knocked out it will not be possible to transform D-glucose to pyruvate.  

To make a choice from this reaction set we examine the number of pathways in 

which these reactions appear. We have, in our work, 40 pathways. Of these 40 pathways 

R443a, R447a, R452b and R455b each appear in two pathways (Gluconeogenesis and 

Glycolysis), whilst R451 only appears in Glycolysis. Since in deleting a reaction we cannot 

be blind to the effect on other (known) pathways it appears that the best choice for deletion 

is R451. 
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In the light of the above table, and of the discussion as to “tie-breaking” between 

reactions by looking at the number of known pathways in which reactions are involved, we 

can form an ordered list of reactions as below. Here the reactions are ordered in increasing 

order of their attractiveness for knockout, in terms of (number of reactions, excess ATP), 

ties broken by number of known pathways the reaction is involved in. Another way to view 

this ordered list is that we are ranking reactions in terms of their potential for disrupting the 

pathway when disabled.  

Reaction deleted (Number of reactions, 

excess ATP) 

Number of known pathways 

the reaction is involved in 

R451 Infeasible 1 
R443a, R447a, R452b, R455b Infeasible 2 

R457 (14,-1) 1 
R453 (10,1) 1 

R444a, R454a (10,1) 2 
R458a (10,1) 3 

 

Table 4.3: Ranked list of reactions in increasing potential for disruption 

In the table above the first reaction listed, R451, has the highest potential for 

disrupting the pathway when knocked out. We then have {R443a, R447a, R452b, R455b}, 

then R457, then R453, then {R444a ,R454a} and finally R458a. Here, reactions grouped 

together are those that our approach regards as being of equal potential. 

Of course, given the above table different orderings are possible. For example we 

might wish to place more weight on not interfering with other pathways and so rank in order 

of the last column in the above table. Whatever the ranking criteria adopted it is clear that 

the approach presented above does provide a structure to deciding which reactions might be 

possible targets for deletion in terms of disrupting a pathway. 

In summary, when we apply this procedure to our chosen Glycolysis pathway we 

find that the best reaction to knockout is R451, namely atp + glc-D → adp + g6p + h. This 

reaction is catalysed by the enzyme (protein) hexokinase and so our approach indicates that 
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this enzyme would be a good target in order to disrupt Glycolysis. Although this suggestion 

for targeting hexokinase has come from a purely mathematical analysis it is interesting to 

note that other workers (Mathupala et al., 2006; Xu et al., 2005), working purely from a 

biochemical/medical perspective, have also recently drawn attention to targeting hexokinase 

in terms disrupting Glycolysis. 

4.3.2 Two reaction knockout 

One issue in relation to our mathematical approach to disrupting a metabolic 

pathway is the purpose of the pathway. Taking Glycolysis as an example is the (primary) 

purpose of this pathway to transform D-glucose into pyruvate or to produce/consume 

another compound (e.g. to produce ATP)? 

In terms of the disruption approach considered above we have regarded the purpose 

of the pathway as being related to transformation of the source compound into the target 

compound. Our approach assumes that the organism will attempt to continue that 

transformation after disruption. However, if the primary purpose of the pathway is to 

produce/consume another compound, the organism may switch to an already existing 

pathway that performs the same function (albeit possibly with less effectiveness). 

If the purpose of the pathway is to produce/consume another compound then the 

disruption approach given above is still applicable, but slightly more complicated. Suppose 

for example we assume that the purpose of the Glycolysis pathway is to produce ATP – 

hence if that pathway is disrupted the organism will utilise another (known) pathway to 

produce ATP. Here therefore, in an attempt to disrupt ATP production, we face the problem 

of simultaneously disrupting two known pathways.  

Our approach is easily extendable to the problem of simultaneously disrupting two 

(or even more) pathways. Considering simultaneous disruption of two pathways, and 

focusing on single reaction knockout in each pathway, then we simply apply the BP model 
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to both pathways a number of times, each time with two reactions (one from one pathway, 

the other from the other pathway) knocked out. 

With respect to E. coli an alternative to Glycolysis for ATP production is the 

Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle shown in Figure 4.4. 

 

Figure 4.4: TCA Cycle pathway 

In more detail therefore our approach here is: 

For each reaction pair, one reaction R1 from Glycolysis, the other reaction R2 from 

the TCA cycle: 
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• apply the BP model to identify the best alternative pathway to Glycolysis when 

both reactions R1 and R2 are knocked out using objective (3.13). Let (a,b) be the 

(number of reactions, excess ATP) involved in this alternative pathway. 

• apply the BP model to identify the best alternative pathway to the TCA cycle when 

both reactions R1 and R2 are knocked out using objective (3.14). Let (c,d) be the 

(number of reactions, excess ATP) involved in this alternative pathway. 

Now over all pairs of reactions R1 and R2 considered choose the pair that maximises 

the total number of reactions (a+c), ties broken by minimising total excess ATP (b+d) and 

further broken if necessary by minimising the number of other pathways in which R1 and 

R2 are involved. Here we are choosing the worst alternative pathways according to the BP 

objective of giving primary weight to minimising the total number of reactions and 

secondary weight to maximising excess ATP. The pair of reactions whose knockout 

corresponds to these worst alternative pathways is the best pair of reactions to knockout to 

disrupt ATP production by the Glycolysis and TCA pathways. 

 When we apply this procedure we find that there are eighty pairs of reactions (one 

from Glycolysis, one from TCA) that need to be examined. Although this might seem large 

the BP model requires (on average) only 4.6 seconds (1.86Ghz pc, 2GB RAM) each time it 

is solved and so total computation time is not excessive. Over these eighty reaction pairs we 

find that the best reaction pair to knockout involves R451 atp + glc-D → adp + g6p + h 

from Glycolysis and R273 icit + nadp ↔ akg + co2 + nadph from TCA. Here this first 

Glycolysis reaction is as discussed above, this second TCA reaction is catalysed by 

isocitrate dehydrogenase (IDH). Work presented from a biochemical (rather than a 

mathematical) perspective has emphasised the importance of this reaction in TCA (Kabir 

and Shimizu, 2004). 

 Again, since we have examined all choices, we can produce a ranked list of all 

eighty reaction pairs in terms of their potential for (in this instance) disrupting ATP 
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production by the Glycolysis and TCA pathways. Table 4.4 show results for the eighty pairs 

of reactions under study in decreasing disruption potential. Here, for example, there are two 

reaction pairs in equal second place in this ranked list {R447; R455} from Glycolysis and 

R273 from TCA. Next in this ranked list we have {R443; R452} from Glycolysis and R273 

from TCA. Next in this ranked list we have R451 from Glycolysis and {R271; R274; R278; 

R279}from TCA and so onwards. The last place in this ranked list is R458 from Glycolysis 

and {R267; R272} from TCA. Note that we found in total 19 ranks for the disruption of 

ATP production by the Glycolysis and TCA pathways.   

Reaction knocked Reaction knocked
out in Glycolysis out in TCA Cycle 

(a,b) (c,d) Number of known 
pathways the pair is involved 

Disruption
Rank 

R451 R273a infeasible (18,2) 1 1 
R447a R273a infeasible (18,2) 2 2 
R455b R273a infeasible (18,2) 2 2 
R443a R273a infeasible (13,1) 2 3 
R452b R273a infeasible (13,1) 2 3 
R451 R271a infeasible (3,0) 0 4 
R451 R274 infeasible (3,0) 0 4 
R451 R278 infeasible (3,0) 0 4 
R451 R279b infeasible (3,0) 0 4 
R443a R274 infeasible (3,0) 1 5 
R443a R278 infeasible (3,0) 1 5 
R443a R279b infeasible (3,0) 1 5 
R447a R271a infeasible (3,0) 1 5 
R447a R274 infeasible (3,0) 1 5 
R447a R278 infeasible (3,0) 1 5 
R451 R275a infeasible (3,0) 1 5 
R457 R275a infeasible (3,0) 1 5 
R452b R271a infeasible (3,0) 1 5 
R452b R274 infeasible (3,0) 1 5 
R452b R278 infeasible (3,0) 1 5 
R452b R279b infeasible (3,0) 1 5 
R455b R271a infeasible (3,0) 1 5 
R455b R274 infeasible (3,0) 1 5 
R455b R278 infeasible (3,0) 1 5 
R455b R279b infeasible (3,0) 1 5 
R443a R275a infeasible (3,0) 2 6 
R447a R275a infeasible (3,0) 2 6 
R451 R267a infeasible (3,0) 2 6 
R451 R272 infeasible (3,0) 2 6 
R452b R275a infeasible (3,0) 2 6 
R455b R275a infeasible (3,0) 2 6 
R443a R267a infeasible (3,0) 3 7 
R443a R272 infeasible (3,0) 3 7 
R447a R267a infeasible (3,0) 3 7 
R447a R272 infeasible (3,0) 3 7 
R452b R267a infeasible (3,0) 3 7 
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R452b R272 infeasible (3,0) 3 7 
R455b R267a infeasible (3,0) 3 7 
R455b R272 infeasible (3,0) 3 7 
R443a R271a infeasible (3,1) 1 8 
R447a R279b infeasible (3,1) 1 8 
R453 R273a (10,1) (18,2) 1 9 
R444a R273a (10,1) (18,2) 2 10 
R454a R273a (10,1) (18,2) 2 10 
R458a R273a (10,1) (18,2) 3 11 
R457 R271a (14,1) (3,0) 0 12 
R457 R274 (14,1) (3,0) 0 12 
R457 R278 (14,1) (3,0) 0 12 
R457 R279b (14,1) (3,0) 0 12 
R457 R273a (14,1) (3,0) 1 13 
R457 R267a (14,1) (3,0) 2 14 
R457 R272 (14,1) (3,0) 2 14 
R453 R271a (10,1) (3,0) 0 15 
R453 R274 (10,1) (3,0) 0 15 
R453 R278 (10,1) (3,0) 0 15 
R453 R279b (10,1) (3,0) 0 15 
R444a R271a (10,1) (3,0) 1 16 
R444a R274 (10,1) (3,0) 1 16 
R444a R278 (10,1) (3,0) 1 16 
R444a R279b (10,1) (3,0) 1 16 
R453 R275a (10,1) (3,0) 1 16 
R454a R271a (10,1) (3,0) 1 16 
R454a R274 (10,1) (3,0) 1 16 
R454a R278 (10,1) (3,0) 1 16 
R454a R279b (10,1) (3,0) 1 16 
R444a R275a (10,1) (3,0) 2 17 
R453 R267a (10,1) (3,0) 2 17 
R453 R272 (10,1) (3,0) 2 17 
R454a R275a (10,1) (3,0) 2 17 
R458a R271a (10,1) (3,0) 2 17 
R458a R274 (10,1) (3,0) 2 17 
R458a R278 (10,1) (3,0) 2 17 
R458a R279b (10,1) (3,0) 2 17 
R444a R267a (10,1) (3,0) 3 18 
R444a R272 (10,1) (3,0) 3 18 
R454a R267a (10,1) (3,0) 3 18 
R454a R272 (10,1) (3,0) 3 18 
R458a R275a (10,1) (3,0) 3 18 
R458a R267a (10,1) (3,0) 4 19 
R458a R272 (10,1) (3,0) 4 19 
 

Table 4.4: Ranked list of two reactions knockout in decreasing potential for disruption 

4.4 Conclusions 

In this chapter we have discussed how the BP model can be used to investigate 

pathway disruption (reaction knockout). Our approach is a pathway-based approach, that (as 
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the Beasley-Planes model) builds on flux balance analysis. It involves explicit enumeration 

and evaluation of all knockout choices and hence is able not only to choose the optimal 

(best) knockout but also to provide an explicit ranking of all possible knockout choices. 

Note that our approach is general. Certainly we could apply the same approach as in this 

chapter using a different mathematical model for metabolic pathways (with a known 

objective in terms of factors like number of reactions and excess of ATP).  

We have shown that for the Glycolysis pathway the prediction from our knockout 

approach in terms of the enzyme/reaction to target to best disrupt the pathway accords with 

work done from a non-mathematical (biochemical/medical) perspective. Moreover, as 

illustrated for two key ATP producing pathways, it is applicable to the problem of 

simultaneously disrupting two (or more) pathways. Predicting how one might best disrupt 

metabolic pathways via mathematics, before undertaking any laboratory work, is clearly of 

value. 
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Chapter 5  

Analysis of path finding approaches  

As described in Chapter 2, path finding approaches to metabolic pathways adopt a 

graph theory approach to the problem of determining biologically meaningful metabolic 

pathways. Although path finding approaches are often regarded as a promising concept for 

analysing metabolic pathways little validation has been carried out. In this chapter the 

effectiveness of using compound node connectivities in a path finding approach is 

examined. In addition, an approach to path finding based upon integer programming is 

presented. 

5.1 Introduction 

The BP model needs a prior classification of the biochemical compounds, namely 

dividing compounds into low presence and high presence compounds. Low presence 

compounds must be in aggregate (net) terms balanced. By balanced we are referring to a 

stoichiometric related balance, namely a compound is balanced if the total number of 

molecules consumed by the reactions involved in the pathway is equal to the total number of 

molecules produced by the reactions involved in the pathway. Whereas, high presence 

compounds are stoichiometrically unconstrained, i.e. they could be in aggregate (net) terms 

produced to excess, consumed (freely available) or balanced. 

 These balancing related constraints, equation (3.10) of the BP model, reduce the 

difficulty of finding biologically meaningful metabolic pathways. In addition, the majority 

of the biochemical compounds active in a metabolic pathway satisfy equation (3.10), as 

noted in Chapter 2. However, there exist experimentally determined pathways which have 

low presence unbalanced compounds, as described in Chapter 3. These pathways, as not 

satisfying equation (3.10), will never be determined by the BP model without prior 

knowledge. In order to fix this problem, the BP model did not force such low presence 

compounds to be balanced. However this strategy cannot be extended for unknown 
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metabolic pathways, as the BP model needs to know beforehand the low presence 

unbalanced compounds of the metabolic pathway. This fact constitutes the major limitation 

of the BP model. This limitation also applies to stoichiometric approaches (Schilling et al., 

2000; Schuster et al., 2000), as described in Chapter 2.  

 In contrast to the BP model and stoichiometric approaches, path finding approaches 

do not include stoichiometric constraints and thus avoid the limitation described above. This 

is the reason as to why we analyse path finding approaches in detail. 

 Recalling Chapter 2, path finding approaches focus on the fact that there is a 

(directed) path (containing no cycles) from the source compound to the target compound in 

experimentally determined metabolic pathways. We refer to this directed path as the 

metabolic path for a particular experimentally determined metabolic pathway. This path may 

not be unique, in particular when the pathway is branched. To illustrate this, suppose that, 

given our example metabolic network shown in Figure 5.1, the subgraph shown in Figure 

5.2 is the experimentally determined metabolic pathway that converts C1 into C7. Here, for 

example, we have the two metabolic paths shown in Figure 5.3. 
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Figure 5.1: Previous Figure 1.2 in Chapter 1 

 

 

 

 

 

 

Figure 5.2: Experimentally determined pathway converting C1 into C7 
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Figure 5.3: Two metabolic paths associated with the pathway shown in Figure 5.2 

Note, as in Figure 5.2 and 5.3, the difference between a metabolic pathway and a 

metabolic path. The metabolic pathway contains all the reactions and compounds involved 

in the pathway. The metabolic path is a directed path from the source compound to the 

target compound in the metabolic pathway and may (as in both the metabolic paths seen in 

Figure 5.3) contain only a subset of intermediate reactions/compounds. 

Since experimentally determined pathways do have at least one directed path from 

the source compound to the target compound, it is plausible to assume that unknown 

metabolic pathways will also contain directed paths from the source compound to the target 

compound. Thus, the key assumption behind path finding approaches is that finding directed 

paths between the source compound and the target compound in the entire metabolic 

network will give insight into the intermediate reactions/compounds used in unknown 

metabolic pathways.  

 Clearly the number of metabolic paths from a source compound to a target 

compound is very high for a given metabolic network and not every path will have 

biological significance. Accordingly path finding approaches have evolved to define a 

suitable distance metric and then find k-shortest paths (with k small) from the source 

compound to the target compound in the metabolic network. The approaches described in 

Chapter 2 (Küffner et al., 2000; Arita et al., 2000; McShan et al., 2003; Dooms et al., 2005; 
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Rahman et al., 2005; Croes et al., 2005, 2006) propose different distance metrics aimed to 

provide biological significance to the k-shortest paths.  

Typically the effectiveness of a path finding approach is examined by seeing how 

well it performs with respect to a known metabolic pathway. Note here that, in terms of the 

metabolic pathway, we need only focus on the reactions involved in the metabolic path, as 

for each reaction we know the set of compounds involved. For example, both of the 

metabolic paths shown in Figure 5.3 involve reactions R1, R2 and R3. Since, from Figure 

5.2, these are the only reactions involved in the metabolic pathway then, for this example, 

knowledge of either of the metabolic paths shown in Figure 5.3 would give us complete 

insight into the underlying metabolic pathway as shown in Figure 5.2. In particular note here 

that in path finding approaches we do not seek stoichiometric information as to the pathway 

(e.g. number of reaction ticks, number of the molecules of source/target compound 

involved).        

In this chapter we examine the effectiveness of a distance metric based on compound 

node connectivities, as initially proposed by Croes et al., 2005; 2006, in ten E.Coli 

metabolic pathways. The work of Croes et al., 2005; 2006, is unusual in that they only 

consider paths from a source reaction to a target reaction (which we denote as the R-R case). 

In our analysis, we also consider paths from a source compound to a target compound 

(which we denote as the C-C case). Moreover we present results for higher values of k (up 

to k=10) than Croes et al., 2005; 2006, (they considered up to k=5) so as to see the benefit 

of increasing the number of shortest paths considered. 

One important point to note here is that the ten E.Coli pathways examined in this 

chapter are precisely the first ten pathways studied in Chapter 3. Pathways 11-40 were 

excluded from the analysis carried out in this chapter as we think pathways 1-10 are 

sufficient to evaluate the scope and effectiveness of path finding approaches.    

It is clear from our reading of the various papers discussed in Chapter 2 (Küffner et 

al., 2000; Arita et al., 2000; McShan et al., 2003; Dooms et al., 2005; Rahman et al., 2005; 
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Croes et al., 2005, 2006) that authors have taken an approach to calculating paths based 

upon algorithms such as breadth-first and depth-first search. Such algorithms, although 

relatively easy to code, are often computationally ineffective (especially for paths that 

involve many nodes). As such a detailed examination of papers discussed above often 

reveals some choice being made so as to limit computational effort. For example: 

• Dooms et al., 2005, constraint programming, impose a limit of the size of the 

metabolic network  

• Croes et al., 2006, depth-first search, impose an upper limit on the number of 

nodes in the path and the total length of the path 

Such choices, whilst being necessary for computational reasons, do mean that the 

paths found may not (in fact) be optimal, i.e. there may exist shorter paths that have been 

missed because of these heuristic choices.  

In addition algorithms such as breadth-first and depth-first search do not produce 

paths in increasing distance order, i.e. they do not first find the (k=1) shortest path; then the 

(k=2) second shortest path; etc. Rather the entire search algorithm must be allowed to finish 

enumerating paths in the directed graph (many of which will be irrelevant) before all of the 

k-shortest paths are known. 

 In this chapter we are concerned with finding k-shortest paths between a source 

compound and a target compound in the metabolic network, where in each path no node 

appears more than once. In order to do this we present below an integer programming 

approach that produces paths in increasing distance order. Although other approaches to 

finding k-shortest paths are available, e.g. see Guerriero et al., 2001, we believe using 

integer programming does have advantages over previous approaches used for calculating k-

shortest paths in the metabolic pathway literature, in terms of: 

• producing paths in increasing distance order; and 
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• guaranteeing that the paths found will be optimal. 

We should stress here that we are aware that in the Operational Research literature 

there are effective algorithms presented for optimally computing k-shortest paths in 

increasing distance order. We have not implemented them in this thesis as we initially 

believed we might build on k-shortest paths and add additional constraints, so an integer 

programming approach could offer more flexibility than a specialised algorithm (in fact this 

is not done in this chapter, but is done in Chapter 6). 

5.2 Integer programming approach 

5.2.1 Formulation 

In our approach we have a metabolic network of R reactions (where each reaction 

has a specified direction so a reversible reaction contributes two different reactions to the 

total number R), which collectively involve C different compounds. Let mcr have the value 1 

if compound c is an input compound for reaction r, 0 otherwise. Let drc have the value 1 if 

compound c is an output compound from reaction r, 0 otherwise. Let Wc = ∑
=

R

r 1

max(mcr,drc) 

be the connectivity of compound c, i.e. the number of reactions in which the compound 

appears in the database of reactions. Since no compound is both input and output from the 

same reaction, i.e. we cannot have mcr=drc=1 for c=1,…, C, r=1,…, R, Wc can also be 

viewed as the sum of the in-degree and out-degree of compound c in the directed graph 

representation, specifically Wc = ∑
=

R

r 1

(mcr+drc).  

Suppose we are seeking the shortest path from a source node S to a target node T in 

our directed graph representation where, for ease of exposition, we assume below that S and 

T are compound nodes. Amending the formulation given below if S and T are reaction 

nodes is easily done. 
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5.2.1.1 Variables 

We need to decide the arcs involved in the metabolic path, so our zero-one (binary, integer) 

variables are: 

• ucr = 1 if the arc from compound node c to reaction node r is in the metabolic path; 0 

otherwise 

• vrc = 1 if the arc from reaction node r to compound node c is in the metabolic path; 0 

otherwise 

If mcr =0, i.e. the arc does not exist, then we fix ucr to 0; similarly if drc=0 we fix vrc to 0. 

This enables us to present the constraints below in a simplified form.  

5.2.1.2 Constraints 

The constraints are: 

R

r=1
∑ uSr =

R

r=1
∑  vrT = 1     (5.1) 

R

r=1
∑  vrS = 

R

r=1
∑ uTr = 0     (5.2) 

Equation (5.1) ensures that one arc leaves S and one arc enters T. Equation (5.2) that no arc 

enters S and no arc leaves T. 

C

c 1=
∑ ucr = 

C

c 1=
∑ vrc   r=1,…,R  (5.3) 

R

r=1
∑ vrc = 

R

r=1
∑ ucr   c=1,…,C c≠S,T (5.4) 

Equation (5.3) ensures that the number of arcs entering a reaction node is equal to the 

number leaving. Equation (5.4) fulfils the same condition for compound nodes. 
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C

c 1=
∑ ucr ≤ 1   r=1,…,R  (5.5) 

R

r=1
∑  vrc ≤ 1   c=1,…,C c≠S,T (5.6) 

Equations (5.5) and (5.6) ensure that no reaction/compound node is revisited in the path.  

We need constraints to prevent cycles appearing. Referring back to Figure 5.1, if we 

are seeking a path from C1 to C7 then Figure 5.4, where we do have a path from C1 to C7 

but also a cycle R2→C5→R3→C6→R5→C3→R2, is a valid solution to the constraints 

presented so far above.  

 

Figure 5.4: An example cycle 

Note here on a technical issue that if we are seeking just the (k=1) shortest path then 

cycles will not appear as the distance metric (Wc) we use is non-negative. However because 

we intend to use our formulation to find k-shortest paths (for k≥2) cycles may appear. 

Cycle elimination constraints are standard in the literature. As an illustration, for the 

cycle with six arcs (R2→C5, C5→R3, R3→C6, C6→R5, R5→C3, C3→R2) shown in 

Figure 5.4 the cycle elimination constraint is (vR2,C5 + uC5,R3 + vR3,C6 + uC6,R5+ vR5,C3 + uC3,R2) 

≤ 5. In general the constraint to eliminate a cycle is: (sum of the vrc and ucr variables for arcs 

appearing in the cycle) ≤ (number of arcs in the cycle - 1). Computationally cycle 

elimination constraints are added as and when cycles appear in solutions (identifying a cycle 
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in a directed graph is algorithmically an easy task). Adding constraints to eliminate cycles as 

and when they appear is standard computational practice (since adding constraints to prevent 

any cycle at all appearing entails adding a very large number of constraints). After adding a 

cycle elimination constraint we resolve the problem, this process of adding cycle elimination 

constraints and resolving being repeated until no cycles exist in the solution. 

Other authors dealing with path finding in metabolic pathways (e.g. McShan et al., 

2003; Croes et al., 2005, 2006) constrain paths so as to exclude a reaction and its reverse. 

This is easily done within our integer programming approach. Let B be the set {(α,β)| 

reaction node α and reaction node β are the reverse of each other, α<β}. If a reaction r is in 

the path then it must be true that 
1

C

c=
∑ ucr = 1. So to prevent reactions α and β from both being 

in the path we have: 

C

c 1=
∑ ucα + 

C

c 1=
∑ ucβ ≤ 1  ∀(α,β)∈B   (5.7) 

5.2.1.3 Objective 

The objective function is to minimise the total connectivity of the compounds involved in 

the path, i.e. 

minimise WS +
C

c=1,c S,T≠
∑ Wc 

R

r=1
∑  (vrc + ucr)/2 + WT  (5.8) 

where 
R

r=1
∑  (vrc + ucr)/2 will have the value one if compound c is in the path, and the value zero 

if compound c is not in the path. Note that the objective function includes the connectivity of 

the source (WS) and target compound (WT). The choice of this objective was based on 

empirical evidence presented in Croes et al., 2005, 2006, that the intermediate compounds in 

experimentally determined pathways present a low degree of connectivity. Although this can 

be explained on the basis of evolution, we think more research needs to be done to clarify this 

aspect of metabolic pathways.  
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5.2.2 Solution elimination constraints 

In order to find the k-shortest path, we need to add further constraints to eliminate the (k-1)-

shortest paths from the set of solutions. To illustrate this suppose we are interesting in 

finding the (k=2) second shortest path. Let 1
crU  and 1

rcV  be the solution for the (k=1) shortest 

path. We need to eliminate this shortest path from the set of solutions. To do this we add the 

following constraint to our formulation: 

C

c 1=
∑

1
cr

R

r=1,U 0=
∑ ucr + 

C

c 1=
∑

1
rc

R

r=1,V =0
∑ vrc + 

C

c 1=
∑

1
cr

R

r=1,U 1=
∑ (1-ucr) + 

C

c 1=
∑

1
rc

R

r=1,V =1
∑ (1-vrc) ≥ 1     (5.9)  

This constraint ensures that the Hamming distance between: 

• the (k=1) shortest path solution, and  

• the path solution found after this constraint is added and the problem resolved  

is at least one, which means that there is a difference of at least one arc between the two 

solutions. Therefore, if we add this constraint to our formulation and resolve, we will find a 

new path solution, which is different from the previous solution (the 1-shortest path). 

Because we are minimising (c.f. equation (5.8)) this new path will be the “next best” path in 

objective function terms - so it must be the 2-shortest path.  

In the general case, in order to find the k-shortest path, we have to include k-1 

solution elimination constraints as below related to the (k-1)-shortest paths: 

C

c 1=
∑

K
cr

R

r=1,U =0
∑ ucr + 

C

c 1=
∑

K
rc

R

r=1,V =0
∑ vrc + 

C

c 1=
∑

K
cr

R

r=1,U =1
∑ (1-ucr)  

+ 
C

c 1=
∑

K
rc

R

r=1,V =1
∑ (1-vrc) ≥ 1 K=1,…,k-1  (5.10)  

where K
crU  and K

rcV  are the solution for the K-shortest path.  
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5.2.3 Overview 

The formulation given above for finding the k-shortest metabolic path is an integer linear 

(zero-one, binary) program. Algorithmically such programs are solved by linear 

programming based tree search, which guarantees that the solution found will be optimal. 

Here, as in Chapter 3, we used Cplex.  

 Hence to summarise we have presented above a formulation for finding k-shortest 

paths to which standard software can be applied that: 

• produces paths in increasing distance order; and 

• guarantees that the paths found will be optimal. 

 

5.3 Results 

5.3.1 Introduction 

We have used the metabolic network of E.Coli (the best studied organism in the 

biological world) presented by Reed et al., 2003, which is available from 

http://systemsbiology.ucsd.edu/In_Silico_Organisms/E_coli/E_coli_reactions and comprises 

880 cytosolic reactions and 613 compounds. A cytosolic reaction is one occurring in the 

cytosol, which essentially defines the medium where metabolism is carried out. A full list of 

reactions/compounds can be found in Appendices A and B. 

The approach to finding k-shortest paths given above was applied to ten E.Coli 

experimentally determined pathways. The pathways used were taken from Keseler et al., 

2005; Nelson and Cox, 2005 and http://biocyc.org/ECOLI/. A detailed description of the 

experimentally determined pathways can be found in Appendix C. 

Two different cases were considered: the reaction to reaction (R-R) case, where 

paths are computed from the first reaction to the last reaction in the pathway (such as was 
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considered in Croes et al., 2005, 2006); and the compound to compound (C-C) case, where 

paths are computed from source compound to target compound in the pathway. 

 In order to judge the effectiveness of our path finding approach we will compare 

each path found with a single metabolic path associated with each experimentally 

determined pathway. As noted above, there may be more than one metabolic path associated 

with a pathway. In this event we choose from amongst the possible metabolic paths just one 

path against which to compare our results. In order to address this issue, the associated 

metabolic path is defined here as the shortest path (under the distance metric as described 

above) that links the initial compound (reaction) and the final compound (reaction) of the 

pathway via balanced intermediate compounds. Details as to the associated metabolic paths 

can be found in Appendix C. To illustrate this issue, Figure 5.5 shows Gluconeogenesis 

pathway (Pathway 1). The source and target compounds (pyr and g6p respectively in this 

pathway) are coloured yellow. Compounds coloured blue are produced to excess; 

compounds coloured red are freely available; and compounds shown in white are balanced. 
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Figure 5.5: Gluconeogenesis pathway 

With regard to the issue of multiple metabolic paths there are four metabolic paths, for 

the C-C case, in the above pathway. These are: 

• pyr→R456→pep→R443b→2pg→R452a→3pg→R455a→13dpg→R447b→ g3p 

→R458b→dhap→R444b→fdp→R445→f6p→R454b→g6p 
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• pyr→R456→pep→R443b→2pg→R452a→3pg→R455a→13dpg→R447b→ g3p 

→R444b→fdp→R445→f6p→R454b→g6p 

• pyr→R456→h→R447b→g3p→R458b→dhap→R444b→fdp→R445→f6p→ 

R454b→g6p 

• pyr→R456→h→R447b→ g3p →R444b→fdp→R445→f6p→R454b→g6p 

In order to associate a single metabolic path with this pathway we choose (from 

amongst these four paths in this particular instance) the shortest path (under the distance 

metric as described above) via balanced intermediate compounds. Balanced compounds are 

shown in white in the above pathway. When this is done we have the following metabolic 

path: pyr→R456→pep→R443b→2pg→R452a→3pg→R455a→13dpg→R447b→ g3p 

→R444b→fdp→R445→f6p→R454b→g6p. 

 For the R-R case there are also four metabolic paths in the above pathway. These 

are: 

• R456→pep→R443b→2pg→R452a→3pg→R455a→13dpg→R447b→ g3p 

→R458b→dhap→R444b→fdp→R445→f6p→R454b 

• R456→pep→R443b→2pg→R452a→3pg→R455a→13dpg→R447b→ g3p 

→R444b→fdp→R445→f6p→R454b 

• R456→h→R447b→g3p→R458b→dhap→R444b→fdp→R445→f6p→ R454b 

• R456→h→R447b→ g3p →R444b→fdp→R445→f6p→R454b 

In order to associate a single metabolic path with this pathway we choose (from 

amongst these four paths in this particular instance) the shortest path (under the distance 

metric as described above) via balanced intermediate compounds. When this is done we 
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have the following metabolic path: 

R456→pep→R443b→2pg→R452a→3pg→R455a→13dpg→R447b→ g3p 

→R444b→fdp→R445→f6p→R454b. 

The computed paths were evaluated using the same criteria as in Croes et al., 2005, 

2006. These criteria, detailed below, essentially measure the degree of correspondence 

between any computed path and a path (the metabolic path) that represents the metabolic 

pathway.  

In order to compare the computed path and the metabolic path, Croes et al., 2005, 

2006 defined the following correspondence values which indicate, numerically, 

correspondence between the computed path and the metabolic path: 

• True positives (TP): The total number of reactions and compounds found in the 

computed path that are also in the metabolic path. The source and target nodes, 

whether reaction or compound, are not considered. 

• False positives (FP): The total number of reactions and compounds found in the 

computed path that are not in the metabolic path.  

• False negatives (FN): The total number of reactions and compounds found in the 

metabolic path that are not in the computed path. 

• Sensitivity (Sn): = TP/ (TP + FN), is the fraction of the reactions and compounds in 

the metabolic path (excluding source and target) that are in the computed path. 

• Positive Predictive Value (PPV): = TP/ (TP + FP), is the fraction of the reactions 

and compounds in the computed path (excluding source and target) that are in the 

metabolic path. 

• Accuracy (Ac): = (Sn + PPV)/2, is the average of the previous two values. 
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Sensitivity, positive predictive value and accuracy are all defined such that higher 

values represent closer correspondence between the computed path and the metabolic path. 

If the computed path corresponds exactly to the metabolic path then Sn=PPV=Ac=1 

(equivalently FP=FN=0). 

As noted above, typically the effectiveness of any path finding approach is examined 

by seeing how well it performs (for example as evaluated by the above correspondence 

values) with respect to a known metabolic pathway. In other words given the source and 

target compound, and the entire metabolic network, how well does a particular path finding 

approach do at discovering the reactions and compounds involved in a known metabolic 

path or pathway? 

Note here that we have adopted (as detailed above) the same correspondence values 

as defined in Croes et al., 2005, 2006 but we should be clear that their approach is flawed. 

This is because they include compounds in their correspondence values. As mentioned in the 

introduction section we need only focus on reactions (since for each reaction we know the 

set of compounds involved). As many reactions involve more than one input/output 

compound the correspondence measures used by Croes et al.,2005, 2006 could classify a 

computed path as less than perfect even if it contains exactly the same set of reactions as the 

metabolic path (due to different compounds being involved in the metabolic path and the 

computed path). For example, referring to Figure 5.3, suppose the metabolic path is 

C1→R1→C3→R2→C5→R3→C7 (the left-hand path shown in Figure 5.3), but the 

computed path is C1→R1→C2→R2→C5→R3→C7 (the right-hand path shown in Figure 

5.3). This will give TP=6, FP=1, FN=1, Sn=6/7, PPV=6/7, Ac=6/7. Yet both paths contain 

precisely the same reactions, which is the key feature. Clearly the correspondence values 

defined by Croes et al., 2005, 2006 are inappropriate. Better correspondence measures 

would drop all mention of compounds in the values defined above. Despite this flaw we, for 

reasons of consistency of comparison with the results presented previously in Croes et al., 

2005, 2006, will present our results below using the correspondence measures that include 

compounds as defined above. 
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5.3.2 Results for an example known pathway - Gluconeogenesis 

Table 5.1 shows the correspondence values for each of the k-shortest paths (k=1,2,…,10) 

computed from the initial reaction to final reaction (the R-R case) in the Gluconeogenesis 

pathway. For k=1, i.e. the shortest path, there is a low level of correspondence between the 

metabolic path and the computed shortest path. For k=2, i.e. the second shortest path, 

correspondence increases (sensitivity, positive predictive value and accuracy all increase). 

Note though that as we increase k we find different paths and so there is no guarantee that 

correspondence increases with increasing k. For k=4, for example, the correspondence 

values decrease – so the 4-shortest path corresponds less well to the metabolic path than the 

3-shortest path. In fact the correspondence between the 4-shortest path and the metabolic 

path is less than for the (k=1) shortest path. It can be seen from Table 5.1 that for k=6 the 

solution is precisely the same as the Gluconeogenesis metabolic path. 

k True False False Sensitivity Positive Accuracy
shortest  

path 
positives positives negatives  predictive 

value 
 

k (TP) (FP) (FN) (Sn) (PPV) (Ac) 
1 5 2 8 0.385 0.714 0.549 
2 10 1 3 0.769 0.909 0.839 
3 10 1 3 0.769 0.909 0.839 
4 3 4 10 0.231 0.429 0.330 
5 3 4 10 0.231 0.429 0.330 
6 13 0 0 1 1 1 
7 2 13 11 0.154 0.133 0.144 
8 2 13 11 0.154 0.133 0.144 
9 2 13 11 0.154 0.133 0.144 
10 10 3 3 0.769 0.769 0.769 

Table 5.1: Correspondence values for the first ten shortest paths in the Gluconeogenesis pathway in the 
R-R case 

Table 5.2 shows the correspondence values for each of the k-shortest paths (k=1,2,…,10) 

computed from the source compound to the target compound (the C-C case) in the 

Gluconeogenesis pathway. It can be seen that correspondence is markedly less than for the 

R-R case, and for no value of k examined is the computed k-shortest path the same as the 

Gluconeogenesis metabolic path. 
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k True False False Sensitivity Positive Accuracy
shortest 

path 
positives positives negatives  predictive 

value 
 

k (TP) (FP) (FN) (Sn) (PPV) (Ac) 
1 2 15 13 0.133 0.118 0.125 
2 7 2 8 0.467 0.778 0.622 
3 0 21 15 0 0 0 
4 0 27 15 0 0 0 
5 2 23 13 0.133 0.080 0.107 
6 2 21 13 0.133 0.087 0.110 
7 0 18 15 0 0 0 
8 0 23 15 0 0 0 
9 2 23 13 0.133 0.080 0.107 
10 0 20 15 0 0 0 

Table 5.2: Correspondence values for the first ten shortest paths in the Gluconeogenesis pathway in the 
C-C case 

Table 5.3 shows correspondence values for the best correspondence path (as 

measured by maximum accuracy) amongst all of the first k-shortest paths for a number of 

different values of k for the Gluconeogenesis pathway. For k=5 in the C-C case, for 

example, the best correspondence path out of the first five shortest paths has accuracy 0.622. 

Examining Table 5.2 we can see that this path was the second shortest path. Because here 

we take the maximum accuracy path from amongst the first k-shortest paths correspondence 

increases as we increase k. 

Case k Sensitivity Positive Accuracy
 

  
predictive

value  
  (Sn) (PPV) (Ac) 

R-R 1 0.385 0.714 0.549 
 5 0.769 0.909 0.839 
 10 1 1 1 

C-C 1 0.133 0.118 0.125 
 5 0.467 0.778 0.622 
 10 0.467 0.778 0.622 

Table 5.3: Values for the best correspondence path among the first k-shortest paths for k=1,5,10 in the 
Gluconeogenesis pathway 

5.3.3 Results for ten known pathways – correspondence values 

In our analysis we have examined the ten E.Coli experimentally determined 

pathways (including Gluconeogenesis) shown in Table 5.4. One complication arose with 

pathways 6 (Pentose phosphate) and 10 (Arginine biosynthesis) in the R-R case in that the 
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definition of the first or last reaction turned out to be ambiguous, there being two different 

options for the first reaction (pathway 10) or for the last reaction (pathway 6), as can be seen 

in Appendix C. Consequently, we computed two different metabolic paths in the R-R case 

for each pathway.  

As far as the C-C case is concerned, one minor issue relates to pathway 8, the TCA 

cycle. In this pathway the source compound and the target compound are the same. The 

usual definition of a path is that the initial and final nodes are different (whereas in a cycle 

the initial and final nodes are the same). Hence in order to deal with this pathway we treated 

the source/target compound as two different compounds, one relating to being used as input 

to a reaction, the other relating to being used as output from a reaction. 

 

Pathway number Pathway name 
1 Gluconeogenesis 
2 Glycogen 
3 Glycolysis 
4 Proline biosynthesis 
5 Ketogluconate metabolism 
6a Pentose phosphate 
6b Pentose phosphate 
7 Salvage pathway deoxythymidine phosphate 
8 Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle
9 NAD biosynthesis 

10a Arginine biosynthesis 
10b Arginine biosynthesis 

Table 5.4: Experimentally determined pathways examined 

Detailed results for all of the pathways shown in Table 5.4 can be found in Appendix C.  

Table 5.5 shows the same information as Table 5.3, but averaged over all the 

pathways considered. In Table 5.5 we, for example, have that the average accuracy for the 

shortest path (k=1) is 0.830 in the R-R case, but only 0.449 in the C-C case. If we take, for 

each of the pathways examined, the maximum accuracy (best correspondence) path over the 

first five shortest paths this accuracy increases to 0.966 in the R-R case and 0.818 in the C-C 

case. 
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Case k Sensitivity Positive Accuracy
 

  
predictive

value  
  (Sn) (PPV) (Ac) 

R-R 1 0.813 0.847 0.830 
 5 0.948 0.983 0.966 
 10 0.968 0.991 0.979 

C-C 1 0.400 0.499 0.449 
 5 0.755 0.882 0.818 
 10 0.755 0.882 0.818 

Table 5.5: Values for the best correspondence path among the first k-shortest paths for k=1,5,10 
averaged over all pathways 

Table 5.5 indicates high correspondence for the R-R case. These results are in 

accordance with the results presented in Croes et al., 2005, 2006. However, one of the 

deficiencies of the Croes et al., 2005, 2006 work is that no results are presented for the C-C 

case. This is especially important as, in the literature, metabolic pathways are typically 

viewed as relating to transforming one compound into another – not as relating to going 

from one reaction to another. It is clear from Table 5.5 that correspondence is poor for the 

C-C case. Even taking the first ten shortest paths correspondence (average maximum 

accuracy) is only 0.818 – less that the correspondence achieved for the shortest path (k=1) in 

the R-R case. 

Poor maximum accuracy in the C-C case is especially found in those metabolic paths 

where the number of intermediate reactions/compounds between the source compound and 

the target compound is high. Figure 5.6 plots, for each pathway in the C-C case, the 

maximum accuracy over all ten shortest paths against the number of intermediate 

reactions/compounds in the metabolic path. As can be seen from Figure 5.6, maximum 

accuracy declines as the metabolic path involves more intermediate reactions/compounds. 

One further point to be made from Table 5.5 is that the results are not significantly improved 

in either the R-R or C-C cases by moving from the first five shortest paths to the first ten 

shortest paths. In other words the computation of more shortest paths beyond the first five is 

of little (average) benefit. 
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Figure 5.6: Maximum accuracy over all ten k-shortest paths for each pathway as against number of 
intermediate reactions/compounds for the C-C case 

5.3.3 Results for ten known pathways – metabolic path recovery 

Whilst Table 5.5 gives an insight into accuracy we believe that it is appropriate to 

also tabulate whether, or not, a computed shortest path corresponds exactly to the metabolic 

path (which we term “recovering” the path). Clearly recovering a metabolic path is the ideal 

case (and corresponds to an accuracy (Ac) of one). Table 5.6 indicates for the R-R case 

whether, or not, we recover the metabolic path amongst the first k-shortest paths for 

k=1,5,10.  
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Metabolic path 
recovered? 

k k k 

Pathway 
number 

Pathway name 

1 5 10 
1 Gluconeogenesis no no yes 
2 Glycogen yes yes yes 
3 Glycolysis no yes yes 
4 Proline biosynthesis yes yes yes 
5 Ketogluconate metabolism yes yes yes 
6a Pentose phosphate yes yes yes 
6b Pentose phosphate yes yes yes 
7 Salvage pathway deoxythymidine phosphate no yes yes 
8 Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle no no no 
9 NAD biosynthesis yes yes yes 

10a Arginine biosynthesis yes yes yes 
10b Arginine biosynthesis yes yes yes 

Number of “yes” entries (maximum 12) 8 10 11 
Table 5.6: Metabolic path recovery amongst the first k-shortest paths for k=1,5,10 for the R-R case 

Metabolic path 
recovered? 

BP model 

k k k 
Metabolic pathway 

recovered? 

Pathway 
number 
 

Pathway name 

1 5 10 
Objective 

(3.13) 
Objective 

(3.14) 

1 Gluconeogenesis no no no yes no 
2 Glycogen yes yes yes yes no 
3 Glycolysis no no no yes yes 
4 Proline biosynthesis no no no yes no 
5 Ketogluconate metabolism yes yes yes yes no 
6 Pentose phosphate no yes yes yes no 
7 Salvage pathway 

deoxythymidine phosphate 
no yes yes yes no 

8 Tricarboxylic acid (citric acid, 
citrate, TCA, Krebs) cycle 

no no no no yes 

9 NAD biosynthesis no yes yes yes no 
10 Arginine biosynthesis yes yes yes yes no 

Number of “yes” entries (maximum 10) 3 6 6 9 2 
Table 5.7: Metabolic path recovery amongst the first k-shortest paths for k=1,5,10 for the C-C case and 

comparison with the BP model 
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Table 5.7 presents the same information as Table 5.6 but for the C-C case. It also 

shows the results for the BP model for these ten E.Coli experimentally determined metabolic 

pathways. 

Table 5.6 indicates that for the R-R case the (k=1) shortest path recovers the 

metabolic path in 8 out of 12 pathways – this figure rising to recovering 11 of the 12 paths if 

we consider k=10. On the other hand, Table 5.7 indicates that for the C-C case the (k=1) 

shortest path recovers the metabolic path in only 3 out of 10 pathways – this figure rising to 

recovering 6 of the 10 paths if we consider k=10. 

Comparing the results shown in Table 5.7 (k=10) with the results for the BP model 

(taking the best of both objectives), we have a mix situations: some whether both 

approaches achieve recovery (e.g. pathway 2); some whether both approaches do not 

achieve recovery (e.g. pathway 8); and some where the path finding approach presented here 

does not achieve recovery and the BP model does (e.g. pathway 1). It appears clear that BP 

model produces more accurate results. Note here however that path finding approaches do 

not need any prior pathway knowledge. 

5.3.4 Discussion 

In essence the path finding approach to metabolic pathways given above rests on the 

hypothesis that insight into a metabolic pathway can be obtained by finding k-shortest paths 

using compound node connectivities as a distance metric. Our results partially support this 

hypothesis.  

 It is clear that for the R-R case, where our results are in accordance with the results 

presented previously in Croes et al., 2005, 2006, this hypothesis is valid. We have high 

correspondence values and recover the metabolic path for nearly all pathways examined. 

However for the C-C case the validity of the hypothesis is more questionable. 

Correspondence values are not as good as for the R-R case and we recover far fewer 

metabolic paths.  
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 Clearly the lack of success for the C-C case, as opposed to the R-R case, could be 

due to a number of factors. It may be that k-shortest paths (whatever the distance metric 

used) is not an appropriate concept for analysing metabolic pathways. It is clear that the 

literature is divided as to whether, or not, making use of shortest paths is of value with 

respect to metabolic pathways. Stoichometric approaches (Schilling et al., 2000; Schuster et 

al., 2000) do not use shortest paths. However if utilising shortest paths was inappropriate 

then we would not have expected the results for the R-R case to be any better than the 

results for the C-C case. But in fact we find that the results for the R-R case are better than 

the results for the C-C case. 

 It could be, of course, that k-shortest paths are an appropriate concept for analysing 

metabolic pathways, but we have used an inappropriate distance metric. The distance metric 

used in this paper related to the connectivity of the compounds involved in the path. Other 

possibilities (obviously) exist. For example we might use a distance metric based on 

reactions. Such a metric, for example, could be related to the amount of chemical change 

that takes place at each reaction, or to energetic considerations such as the Gibbs free energy 

for each reaction. Alternatively a distance metric that takes both compounds and reactions 

into account may be appropriate.  

 Finally we would note here that the key difference between the C-C case and the R-R 

case relates to the fact that in the C-C case we have to choose two extra reactions in the 

path: one reaction having the source compound as an input compound, the other reaction 

having the target compound as an output compound. In the R-R case these two reactions are 

specified. This might imply that taking the current distance metric (which is compound 

based, but which is successful for the R-R case), and amending it for the C-C case with 

reaction terms that relate only to any reactions having the source compound as an input 

compound, or having the target compound as an output compound, might be a profitable 

approach. 
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5.4 Conclusions 

In this chapter, the effectiveness of using compound node connectivities in a path 

finding approach to metabolic pathways has been examined. We found that finding k-

shortest paths using a distance metric based on compound node connectivities performed 

well when a metabolic path was regarded as being from a source reaction to a target 

reaction. The same approach performed less well when a metabolic path was regarded as 

being from a source compound to a target compound. An approach to path finding based 

upon integer programming was also presented that produces k-shortest paths in increasing 

distance order and guarantees that the paths found will be optimal. 
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Chapter 6  

The Improved Beasley-Planes model  

In this chapter we present the Improved Beasley-Planes (IBP) model for recovering 

experimentally determined pathways. Using path finding approaches as a building block, the 

IBP model also incorporates elements from the BP model.  Although the IBP model results 

are slightly worse than the BP model results, the IBP model overcomes the issue of having 

to know which are the low presence unbalanced compounds, which represents the major 

limitation of the BP model. 

6.1 Introduction 

In Chapter 5 we showed that path finding approaches present a significant advantage 

with respect to the BP model as no prior pathway knowledge is needed. The main 

assumption behind path finding approaches is that metabolic pathways do contain at least 

one directed path from the source compound to the target compound. Clearly this 

assumption applies for any metabolic pathway, whether known or unknown. The key 

decision relates to the choice of a proper distance metric so as to provide biological 

significance to the sought k-shortest paths. In Chapter 5 we examined a distance metric 

based on total connectivity, as initially proposed by Croes et al., 2005, 2006. Though the 

results presented do not show complete success for recovering experimentally determined 

metabolic pathways, we consider that path finding approaches can be utilised as a building 

block for constructing a more refined approach. 

 In this chapter we present the Improved Beasley-Planes (IBP) model for recovering 

experimentally determined pathways. As in path finding approaches, the IBP model starts 

from the idea that metabolic pathways do contain at least one directed (metabolic) path from 

the source compound to the target compound. However the IBP model also addresses 

pathway stoichiometry, namely including stoichiometric constraints, as previously done in 

the BP model. In essence the IBP model views a metabolic pathway as a finite set of 
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metabolic paths from the source compound to the target compound that satisfy different 

(logical) stoichiometric constraints. Interestingly, the IBP model provides a link between 

path finding approaches (Croes et al., 2005, 2006) and stoichiometric approaches (Schilling 

et al., 2000; Schuster et al., 2000). To the best of our knowledge, no approach in the 

literature has to date combined both types of approaches. This fact constitutes a significant 

advance in the field from the modelling point of view.  

To illustrate the IBP model, given our example metabolic network in Figure 6.1, let 

us assume that Figure 6.2 shows the experimentally determined pathway that converts C1 

into C7. This pathway contains two different metabolic paths, namely 

C1→R1→C3→R2→C5→R3→C7 and C1→R1→C2→R2→C5→R3→C7. Both paths 

provide the precise set of reactions involved in the pathway. However, they do not give 

information as to pathway stochiometry, e.g. balanced compounds, the number of ticks of a 

particular reaction, number of source compound molecules consumed, etc. The IBP model 

introduces stoichiometric constraints in the paths so as to recover pathway stoichiometry. 

 

Figure 6.1: Previous Figure 1.2 in Chapter 1 



Metabolic pathway analysis via integer linear programming 

Francisco J. Planes                                                                                                                                  May 2008 123

 

Figure 6.2: A possible pathway converting C1 into C7 

In addition, the IBP model also considers the issue of branched metabolic pathways. 

Figure 6.3 shows an example branched metabolic pathway. In order to recover the complete 

set of reactions involved in the pathway, we need at least two metabolic paths. These might 

be: C1→R1→C2→R2→C5→R3→C7 and C1→R7→C8→R8→C7. This contrasts with 

Figure 6.2 where a single metabolic path contained the complete set of reactions in the 

pathway. Accordingly, a single path representation (as is usually done in path finding 

approaches) turns out to be limited for branched metabolic pathways. It is for that reason 

that we extend the IBP model into a set of metabolic paths. 
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Figure 6.3: A possible branched metabolic pathway converting C1 into C7 

In order to provide biological significance to the metabolic paths, the IBP model 

introduces additional constraints related to high presence compounds, inorganic compounds 

and cofactors, which do not typically appear as intermediate compounds in experimentally 

determined metabolic pathways. These compound sets are properly defined in the 

mathematical model section below. Moreover, the IBP model discusses two novel objectives 

functions. Whilst one objective is similar to objective (3.13) of the BP model presented in 

Chapter 3, the other objective is related to objective (5.8) of the path finding approach 

presented in Chapter 5. We also show the relationship between the objectives.   

We present below the Improved Beasley-Planes optimisation model for recovering 

experimentally determined metabolic pathways.  

6.2 Mathematical model 

In the IBP model we have a metabolic network of R reactions (where each reaction 

has a specified direction so a reversible reaction contributes two different reactions to the 

total number R) which collectively involve C different compounds. Suppose we are seeking 

a pathway that transforms QS molecules of source compound S into QT molecules of target 
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compound T and contains a maximum number of K metabolic paths from the source 

compound to the target compound. 

 Technically the IBP model is an integer linear program. We first describe the 

variables and constraints related to the pathway stoichiometry. Secondly, we describe the 

variables and constraints related to the directed metabolic paths. Subsequently the linking 

constraints between pathway stoichiometry and the metabolic paths are presented. In 

addition, we present constraints related to compound sets, i.e. high presence compounds, 

inorganic compounds and cofactors. Finally the objective function of the IBP model is 

described.  

As the reader will note some of this material below (e.g. variables, constraints) 

echoes that seen in Chapter 3 and Chapter 5. However for ease of understanding of the IBP 

model we have repeated that material in this chapter.    

6.2.1 Variables and constraints related to metabolic pathway stoichiometry 

A metabolic pathway is a set of enzyme-catalysed biochemical reactions that 

transforms QS molecules of source compound S into QT molecules of target compound T. 

Figure 6.2 shows a possible metabolic pathway that converts one molecule of C1 into one 

molecule of C7. 

Thus, a reaction may, or may not, be active in the pathway. We have the following 

binary (zero-one) variable: 

zr = 1 if reaction r is active in the pathway, 0 otherwise (r=1,…,R)  

and the associated tick variable: 

tr the number of ticks of reaction r in the pathway (this must be an integer variable 

(≥0) with value 0 if the reaction not active) 
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We need a constraint relating the number of ticks of a reaction to the zero-one 

variable signifying whether the reaction is active or not, this is: 

tr ≤ M1zr    r=1,…,R    (6.1) 

where M1 is a large positive constant that represents the maximum number of ticks of any 

reaction. If the reaction does not tick then it must be inactive, so we have the constraint: 

zr ≤ tr    r=1,…,R    (6.2) 

As in the BP model, the IBP model involves variables relating to whether 

compounds are balanced (or not). A balanced compound is one where the number of 

molecules needed (consumed) is equal to the number produced. A compound which is 

balanced can either be active (number of molecules needed = number produced > 0) or 

inactive (number of molecules needed = number produced = 0) in the pathway. Considering 

Figure 6.2, for example, the active balanced compounds are C2 and C5. 

Let ncr be the number of molecules of compound c needed as input for one tick of 

reaction r and pcr be the number of molecules of compound c produced as output by one tick 

of reaction r. For each compound c (c=1,…,C) define: 

• bc=1 if for compound c the number of molecules needed is equal to the number 

produced (i.e. if ∑
=

R

r 1

ncrtr = ∑
=

R

r 1

pcrtr ), 0 otherwise. If bc=1 compound c is balanced.  

• ec=1 if for compound c the number of molecules needed is less than the number 

produced (i.e. if ∑
=

R

r 1

ncrtr < ∑
=

R

r 1

pcrtr ), 0 otherwise. If ec=1 compound c is produced 

to excess, since we have “spare” molecules of the compound to be disposed of 

(in other pathways). 

• fc=1 if for compound c the number of molecules needed is greater than the 

number produced (i.e. if ∑
=

R

r 1

ncrtr >∑
=

R

r 1

pcrtr ), 0 otherwise. If fc=1 compound c must 
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be freely available, since we need “spare” molecules of the compound that have 

come from other pathways. 

Considering Figure 6.2, for example, compound C4 is produced to excess (denoted 

by the blue colouring) and compound C3 is freely available (denoted by the red colouring).  

We have the constraint: 

bc + ec + fc = 1     c=1,...,C  (6.3) 

In order to link the variables ec and fc to the number of molecules of each compound 

produced we need the constraints. 

ec ≥ ( ∑
=

R

r 1

pcrtr - ∑
=

R

r 1

ncrtr)/M2    c=1,…,C   (6.4) 

ec ≤ 1 + ( ∑
=

R

r 1

pcrtr - ∑
=

R

r 1

ncrtr -1)/ M2   c=1,…,C   (6.5) 

fc ≥ (∑
=

R

r 1

ncrtr - ∑
=

R

r 1

pcrtr)/M2    c=1,…,C  (6.6) 

fc ≤ 1 + (∑
=

R

r 1

ncrtr - ∑
=

R

r 1

pcrtr -1)/M2   c=1,…,C   (6.7) 

where M2 is a large positive constant.  

We need constraints specifying that the required number of molecules of the source 

compound S (QS) and target compound T (QT) are involved. These are: 

∑
=

R

r 1

nSrtr = QS  and  ∑
=

R

r 1

pTrtr = QT     (6.8) 

If the source compound and target compound are different then we produce none of 

the source compound and consume none of the target compound, i.e. 

 ∑
=

R

r 1

pSrtr = ∑
=

R

r 1

nTrtr = 0  if S≠T     (6.9) 
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6.2.2 Variables and constraints related to metabolic paths 

We define a metabolic path to be a directed path from the source compound S to the 

target compound T. Figure 6.4 shows an example metabolic path contained in the example 

metabolic pathway shown in Figure 6.2 (repeated below in Figure 6.4 for convenience). 

Note the difference between a metabolic pathway and a metabolic path. The metabolic 

pathway contains all the reactions and compounds involved in the pathway, whilst the 

metabolic path typically contains only a subset of intermediate reactions/compounds. 

               

Figure 6.4: A metabolic path from C1 to C7 in the pathway shown in Figure 6.2 

 

 Let K be the maximum number of directed metabolic paths from the source 

compound to the target compound. We need to decide the arcs involved in the K metabolic 

paths, so our zero-one (binary, integer) variables are: 

• ucrk = 1 if the arc from compound node c to reaction node r is in metabolic path k; 

0 otherwise (c=1,…,C; r=1,…,R; k=1,…,K ) 

• vrck = 1 if the arc from reaction node r to compound node c is in metabolic path k; 

0 otherwise (r=1,…,R; c=1,…,C; k=1,…,K ) 

Let mcr have the value 1 if compound c is an input compound for reaction r, 0 

otherwise. If mcr =0, i.e. the arc does not exist, then we fix ucrk∀k to 0. Let drc have the value 
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1 if compound c is an output compound from reaction r, 0 otherwise. Similarly if drc=0, then 

we fix vrck ∀k to 0. So ucrk= 0 ∀k if mcr =0 r=1,…,R; c=1,…,C and vrck= 0 ∀k if drc =0 

r=1,…,R; c=1,…,C. 

Note here that allowing a maximum of K metabolic paths does not imply that the 

solution will contain K different paths. It is possible for the solution to contain K copies of 

exactly the same metabolic path. Rather the formulation given allows distinct metabolic 

paths to exist if other constraints in the problem are best satisfied by having multiple distinct 

metabolic paths.  

The constraints related to the K metabolic paths are: 

R

r=1
∑ mSruSrk =1  and  

R

r=1
∑  drTvrTk = 1  k=1,…,K  (6.10) 

R

r=1
∑  drSvrSk = 0  and  

R

r=1
∑ mTruTrk = 0   k=1,…,K, S≠T  (6.11) 

Equation (6.10) here ensures that one arc leaves S and one arc enters T for each of 

the K metabolic paths. Equation (6.11) here ensures that no arc enters S and no arc leaves T 

for each of the K metabolic paths. 

C

c 1=
∑ mcrucrk = 

C

c 1=
∑ drcvrck   r=1,…,R; k=1,…,K  (6.12) 

R

r=1
∑ drcvrck = 

R

r=1
∑ mcrucrk   c=1,…,C c≠S,T; k=1,…,K  (6.13) 

Equation (6.12) ensures that the number of arcs associated with metabolic path k 

entering a reaction node is equal to the number leaving. Equation (6.13) fulfils the same 

condition for compound nodes. 

C

c 1=
∑ mcrucrk ≤ 1   r=1,…,R; k=1,…,K  (6.14) 
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R

r=1
∑  drcvrck ≤ 1   c=1,…,C c≠S,T; k=1,…,K (6.15) 

Equation (6.14) and (6.15) ensure that no reaction/compound node is revisited in 

metabolic path k. 

As in Chapter 5, we need to prevent cycles appearing in the solution. Consider 

metabolic path k once we have solved the IBP model (as considered so far above). We may 

have a cycle for the non-zero variables (ucrk,vrck) associated with this path. If S ≠T a cycle 

defines a path of successive arcs associated with non-zero variables (ucrk,vrck) in the 

metabolic network that starts and ends at the same compound, whilst if S=T a cycle defines 

a path of successive arcs associated with non-zero variables (ucrk,vrck) in the directed 

network that starts and ends at the same compound and does not contain compound S. 

Figure 6.5 shows an example cycle in the case S ≠T. 

 

Figure 6.5: An example cycle 

The constraints to eliminate a cycle are: (sum of the vrck and ucrk variables for arcs 

appearing in the cycle) ≤ (number of arcs in the cycle - 1) k=1,…,K. Note that this cycle 

elimination constraint applies for all metabolic paths, irrespective of the metabolic path in 

which it was discovered. Technically this is because we are allowing K paths. If we detect a 

cycle in a Cplex solution associated with a specific metabolic path then unless we eliminate 

that cycle in all K paths simultaneously we may well find computationally that we use Cplex 

K times, each time discovering what is essentially the same cycle, but with a different 
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metabolic path, k, label. As described in Chapter 5, in our computational implementation 

cycle elimination constraints are added as and when cycles appear in solutions (identifying a 

cycle in a directed graph is algorithmically an easy task).  

As a final comment, we did not explore here the incorporation of constraints relating to 

“labelling” of the K metabolic paths (so as to uniquely define the first path, the second path, 

etc). This possibility might be a fruitful one to attempt, since these constraints might reduce 

computational time and eliminate equivalent optimal solutions.    

6.2.3 Linking constraints between metabolic pathway stoichiometry and the K 

metabolic paths 

We need to link the variables related to the metabolic pathway stoichiometry (zr, tr, 

bc) and the variables related to the metabolic paths (ucrk and vrck).  

Firstly we need to relate the appearance of a reaction node in a metabolic path to the 

variables zr signifying whether or not a reaction is present in the pathway. This is done by: 

zr ≥ ucrk  mcr=1; r=1,…,R; c=1,…,C; k=1,…K   (6.15) 

zr ≥ vrck  drc=1; r=1,…,R; c=1,…,C; k=1,…K  (6.16) 

These constraints ensure that if an arc is in any of the K metabolic paths then zr is 

forced to be one. If the arcs are not used then these constraints are inactive. Similarly if zr is 

zero then these constraints ensure that no arc associated with reaction r can be used in any 

metabolic path. 

In addition, we can reasonably impose the constraint that if a reaction is present in 

the pathway, then it must lie on one of the K metabolic paths. This constraint is true for all 

the pathways examined if we have a sufficiently high K value. To some extent this 

constraint addresses an issue of scope, i.e. reactions that are not on a metabolic path are 

outside the scope of our pathway. This is supported by the recent work of Ihmels et al., 

2004, which suggests that metabolic flow is driven by linear pathways. This constraint is: 
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K

k=1
∑

C

c 1=
∑ mcrucrk ≥ zr  r=1,…,R    (6.17) 

which ensures that if a reaction r is active then we have at least one arc coming into that 

reaction associated with one of the K metabolic paths. Note that this constraint allows a 

reaction to be on more than one metabolic path. 

It may be that for S and T there is a single reaction that has S as an input compound 

and T as an output compound. If such cases we may, perhaps, find a pathway that comprises 

just this reaction. If such a reaction exists then we exclude it from ever appearing in the 

pathway, i.e. 

zr =0   if nSr≥1 and pTr≥1 r=1,…,R    (6.18) 

With respect to the compound nodes in the paths, we impose the constraint that if an 

intermediate compound c is on a metabolic path then the compound must be balanced. This 

constraint is: 

bc ≥ ucrk  r=1,…,R; c=1,…,C; c≠S,T; k=1,…K   (6.19) 

bc ≥ vrck  r=1,…,R; c=1,…,C; c≠S,T; k=1,…K   (6.20) 

which ensure that if an arc associated with an intermediate (c≠S,T) compound is used in any of 

the K metabolic paths then the compound must be balanced. If the arcs are not used then these 

constraints are inactive. Similarly if bc is zero then these constraints ensure that the arc 

associated with compound c cannot be used in any metabolic path.  

Note here equations (6.19) and (6.20) are much less restrictive than equation (3.10) 

of the BP model or even the PSS condition in elementary flux modes (Schuster et al., 2000) 

and extreme pathways (Schilling et al., 2000). Indeed equation (3.10) and PSS condition 

define a set of compounds (low presence compounds and internal compounds respectively) 

that must necessarily be balanced in every metabolic pathway. This clearly does not apply 

for every metabolic pathway and the problem of unbalanced low presence compounds 
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arises. Here equations (6.19) and (6.20) exclusively state that intermediate compounds on a 

metabolic path must be balanced, but do not explicitly state which compounds must be 

balanced. This potentially allows the same compound to be balanced in some pathways, 

whilst being consumed (or produced) in other pathways.    

6.2.4 Compound set constraints 

As in the BP model, we have found it necessary to distinguish between compounds 

that appear in a significant number of different reactions and compounds that appear in just 

a few reactions.  The percentage presence δc of a compound c was previously defined as δc = 

100(number of reactions in which c appears)/R = 100∑
=

R

r 1

min(max(pcr,ncr),1)/R. Compounds 

for which δc ≤ Δ (where Δ is an input parameter) we call low presence compounds. 

Compounds for which δc > Δ we call high presence compounds.  The set of high presence 

compounds is formally defined here as D1 = [c | δc>Δ, c=1…,C]. Table 6.1 shows the list of 

compounds belonging to D1 with Δ=4%, the value used in the computational results reported 

later.   

Compound Percentage presence
Hydrogen ion 43.86 
Water 28.98 
Adenosine triphosphate 18.98 
Adenosine diphosphate 14.89 
Phosphate 14.32 
Nicotinamide adenine dinucleotide 9.77 
Nicotinamide adenine dinucleotide – reduced 9.32 
Diphosphate 8.98 
Nicotinamide adenine dinucleotide phosphate 7.16 
Carbon dioxide 7.05 
Nicotinamide adenine dinucleotide phosphate – reduced 6.93 
L-Glutamate 5.91 
Coenzyme A 5.23 
Pyruvate 4.77 
Ammonium 4.43 
Adenosine monophosphate 4.43 

Table 6.1: List of high presence compounds 
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We denote D2 as the set of all (inorganic) compounds which do not involve carbon in 

their molecular makeup. D2 is easily identified as we know the chemical formula for each 

compound. Hence formally D2 = [c | compound c does not include carbon in its molecular 

makeup, c=1…,C]. Note that this subset does include some compounds which are high 

presence. For example water (H2O) is a high presence compound, and it does not include 

carbon in its molecular makeup. Mathematically this means that we will have D1∩D2≠∅. 

The complete list of inorganic compounds is shown in Table 6.2.  

Iron ion Fe 
Hydrogen ion H 
Hydrogen H2 
Water H2O 
Hydrogen peroxide H2O2 
Hydrogen sulfide H2S 
Ammonium NH4 
Nitrite NO2 
Nitrate NO3 
Oxygen O2 
Superoxide anion O2 
Phosphate HO4P 
Diphosphate HO7P2 
Inorganic triphosphate HO10P3 
Selenide HSe 
Selenophosphate H2O3PSe 
Sulfite O3S 
Sulfate O4S 
Thiosulfate O3S2 

Table 6.2: List of inorganic compounds 

We impose the constraint that if a compound is either in the set of high presence 

compounds D1, or in the set of inorganic compounds D2, then it cannot be on the metabolic 

path through a reaction provided it is possible for that reaction to have other compounds on 

such a path.  

For a reaction r other compounds associated with r exist and can be on a metabolic 

path into r if and only if there exists an input compound c for reaction r (i.e. ncr≥1) with 

c∉D1∪D2-[S]. For each reaction r that satisfies this condition we impose the constraint that 

no compound in D1∪D2 (but excluding source) can be on a metabolic path into r, i.e. 
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ucrk=0   ∀c∈D1∪D2-[S]; k=1,…K    (6.21) 

For a reaction r other compounds associated with r exist and can be on a metabolic 

path out of r if and only if there exists an output compound c for reaction r (i.e. pcr≥1) with 

c∉D1∪D2-[T]. For each reaction r that satisfies this condition we impose the constraint that 

no compound in D1∪D2 (but excluding target) can be on a metabolic path out of r, i.e. 

vrck=0   ∀c∈D1∪D2-[T]; k=1,…K     (6.22) 

In the IBP model we account for cofactors. Although the word cofactor is commonly 

used in the literature there appears to be no clear definition, certainly no definition based on 

numeric criteria. As described in Chapter 2, essentially two (organic) compounds are said to 

be cofactors if they commonly appear together, one as an input compound, the other as an 

output compound, in reactions and have similar chemical makeups. For the purposes of 

adopting a numeric definition of cofactors we conducted a graphical analysis. 

 We define the frequency Ωαβ of a given pair of compounds (α,β) to be the 

frequency with which the pair of compounds (α,β) appear together on opposite sides of the 

same reaction (so Ωαβ = Ωβα). Becker et al. (2006) used this parameter to find significant 

pairs, i.e. those with high frequency values.  However, when trying to find cofactors, this 

parameter is not completely appropriate as Ωαβ might lead to compounds with high 

connectivity (Wc), which are not necessarily cofactors. Recalling Chapter 5, the connectivity 

Wc of compound c is the number of reactions in which the compound appears in the 

metabolic network. For example, the pair Nadh-Coa (Nicotinamide adenine dinucleotide – 

reduced and Coenzyme A) has a frequency value of 8. In terms of frequency values this pair 

is significant as only eleven pairs have a higher frequency value. However this pair does not 

appear in the literature as cofactors. The reason we have a significant frequency here is that 

both compounds have a high total connectivity (82 for Nadh and 46 for Coa).  

In order to avoid these misleading results, we introduce the relative frequency Ωαβ
  

for the compound α (and Ωβα
 for the compound β), formally Ωαβ=Ωαβ/Wα (and Ωβα=Ωαβ/Wβ 
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for compound β ). Note here that unlike Ωαβ (=Ωβα) this is not symmetric, i.e. Ωαβ≠Ωβα
  in 

general. The relative frequency takes values between 0 and 1. Clearly high values of the 

relative frequency might indicate a possible cofactor. In relation to the example pair 

described above, the relative frequency of Nadh with respect to Nadh-Coa pair is 0.1 and the 

relative frequency of Coa with respect to Nadh-Coa pair is 0.17, indicating that the pair 

Nadh-Coa is not significant. As we have two different values of relative frequency for a 

given pair (α,β) (precisely one for compound α and one for compound β), we used the 

average relative frequency to evaluate the significance of a pair, (Ωαβ + Ωβα)/2. In the 

example the average relative frequency for Nadh-Coa is 0.135, which is far from 1. Note 

here that we neglected inorganic compounds in the analysis, as usually cofactors include 

carbon in their molecular formula.  

Figure 6.6 plots, for each particular pair (α,β), the average relative frequency of the 

pair against the frequency of the pair (Ωαβ).  We chose as cofactors those pairs circled in red 

since they are far from the main set of points shown in Figure 6.6. Note that we did not 

include pairs with high average relative frequency but low frequency, e.g. (Ωαβ
 + Ωβα)/2=1 

and Ωαβ=2.  The reason is that cofactors usually have a significant frequency value Ωαβ. 

Similarly, pairs with low average relative frequency but high frequency, e.g. (Ωαβ + 

Ωβα)/2=0.4 and Ωαβ=25, are not considered, since cofactors must have a significant average 

relative frequency. The set of cofactors is listed in Table 6.3.  These results agree with 

biochemistry textbooks (Nelson and Cox, 2005) but arrived at via a numerical consideration. 

Some of the compounds listed in Table 6.3 are high presence compounds (and so have δc > 

Δ = 4%), e.g. atp-adp. However, we find cofactors which are not high presence compounds, 

e.g. q8- q8h2. 
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Figure 6.6: Graphical analysis of the pairs 

atp adp 
nad nadh 
nadp nadph 
glu-L akg 
accoa coa 
q8 q8h2 
fad fadh2 
mql8 mqn8 

Table 6.3: List of cofactors 

We denote D3 as the set of cofactors, formally D3= [(α,β) | compounds α and β are a 

cofactor pair] so D3 is a set of compound pairs, not simply a set of compounds (cf D1 and D2 

above). For convenience in presenting our constraints in a mathematical form below we 

adopt the convention that each compound pair appears twice in D3 (e.g. if we had had a 

single cofactor pair composed of q8 and q8h2 then we would have D3 = [(q8,q8h2), 

(q8h2,q8)].  

If two compounds (α and β) are a cofactor pair then we impose the constraint that 

the compounds in this cofactor pair cannot be on the metabolic path through any reaction 

that involves them both provided it is possible for that reaction to have other compounds on 

such a path. Consider each cofactor pair (α,β)∈D3 in turn. Consider each reaction r in turn. 

If (α,β)∈D3 satisfy: 
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• α≠S and β≠T (so the cofactor pair does not involve either the source compound 

or the target compound); and 

• nαr≥1 and pβr≥1 (so the cofactor pair is involved with reaction r with α as the 

input compound and β as the output compound); and 

• for reaction r there exists an input compound λ (i.e. nλr≥1) with λ≠α, λ∉D1∪D2-

[S] and an output compound μ (i.e. pμr≥1) with μ≠β, μ∉D1∪D2-[T] such that 

(λ,μ)∉D3 (so the pair (λ,μ) is not itself a cofactor pair) 

then we impose the constraint that the cofactor pair (α,β) cannot be on a metabolic path 

through r, i.e. 

uαrk=0  and   vrβk=0  k=1,…K  (6.23) 

Finally, for the sake of clarity, we denote D4 as the set of main compounds. A main 

compound c is a low presence, organic compound not involved in any cofactor pair. 

Formally D4 = [c | c∉ D1∪D2 and (c,α) ∉ D3, ∀ α=1,…, C, c=1…,C]. From the above 

equations, it can be observed that we encourage main compounds to appear as the 

intermediate compounds of the K metabolic paths. This is a common practice in the 

metabolic pathways literature. As noted in Chapter 5, Croes et al., 2006 prevents high 

presence compounds from appearing in the k-shortest paths. Jeong et al., 2000 showed that 

the list of high presence compounds is almost identical for a number of organisms. Ma and 

Zeng, 2003 removed cofactors and inorganic compounds from the metabolic network in 

their path finding analysis. They note that a cofactor might (or might not) be removed 

according to the reaction considered. However, the removal was done in a manual fashion 

(rather than mathematical). In addition, they noted that their list of cofactors and inorganic 

compound is very similar to the list of high presence compounds presented in Jeong et al., 

2000. A similar analysis can be found in Horne et al., 2004.  
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6.2.5 Objective function 

The results obtained for path finding approaches in Chapter 5 show that it is appropriate 

to assume that intermediate compounds in metabolic pathways are usually low presence 

compounds. This assumption is done on the basis of evolution. Indeed it seems reasonable to 

believe that metabolic pathways have evolved to accomplish their function in the cell via low 

presence compounds. Low presence compounds provide a degree of specificity to metabolic 

pathways. Note that the fact that metabolic pathways make use of specific compounds contrasts 

with the robustness shown for enzymes, especially due to the presence of isoenzymes. Starting 

from this assumption, we try and ensure low presence compounds are on metabolic paths and 

high presence compounds off such paths. Thus, we need a factor relating to the presence of 

compounds in metabolic paths.   

We define Ncr to be the relative presence for compound c as input to reaction r, formally 

Ncr = δc/min[δb | nbr>0, b=1,…,C] when ncr>0. If a compound c has the lowest percentage 

presence over all input compounds for reaction r then Ncr will have the value 1. Such 

compound c with the lowest relative presence will be the most specific of the input compounds 

of the reaction r, since it participates in less biochemical reactions than any other input 

compound.    

We define Prc to be the relative presence for compound c as output from reaction r, 

formally Pcr = δc/min[δb | pbr>0, b=1,…,C] when pcr>0. If a compound c has the lowest 

percentage presence over all output compounds for reaction r then Pcr will have the value 1. 

Such compound c with the lowest relative presence will be the most specific of the output 

compounds of the reaction r, since it participates in less biochemical reactions than any other 

output compound.  

In order to clarify the concept of the relative presence, Table 6.4 shows the relative 

presence values for reaction R1: C1 → C2 + C3 in the example metabolic network in Figure 

6.1. Note that the presence of C1 can be calculated as δC1=WC1/R, where WC1 is the total 

connectivity of C1. In the example, WC1= 4 and R=8, namely δC1=4/8= 0.5. Since only C1 
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appear as input compound of R1, then necessarily NC1R1=1. Similarly, δC2=0.25 and δC3= 

0.375, having that C2 is the most specific output compound of R1. 

 

Table 6.4: Relative presence values, Prc and Ncr, for R1 

Since we are trying to find paths converting the source compound into the target 

compound via specific input and output compounds, the factor we are interested in minimising 

is: 

 
K

k=1
∑

C

c 1=
∑

cr

R

r=1,n >0
∑  Ncrucrk + 

K

k=1
∑

C

c 1=
∑

cr

R

r=1,p >0
∑ Pcrvrck    (6.24) 

which is the weighted sum over all metabolic paths of the arcs in the path each being weighted 

by its relative presence. Note that equation (6.24) adds up 2K terms, one input and one output 

term for each of the K metabolic paths we choose. In order to provide an average value of 

relative presence for the metabolic pathway, we define the specificity of a pathway Ψ, using  

Ψ = (
K

k=1
∑

C

c 1=
∑

cr

R

r=1,n >0
∑  Ncrucrk +

K

k=1
∑

C

c 1=
∑

cr

R

r=1,p >0
∑ Pcrvrck)/2K    (6.25) 

 Interestingly, when trying to minimise the specificity, we are implicitly minimising the 

number of active reactions in the metabolic pathway (∑
=

R

r 1

zr ), which we, henceforth, refer as to 

the length of the pathway, L. We empirically demonstrate in the Results section that length 

and specificity are closely related.     

For this reason we found it of interest to analyse two different objectives, namely 

one minimising the specificity of the pathways (Ψ) and other minimising the length of the 

pathway (L =∑
=

R

r 1

zr).    

Input δc min δc value Ncr 
C1 0.5 0.5 1 

Output δc min δc value Pcr 
C2 0.25 0.25 1 
C3 0.375 0.25 1.5 
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In addition, we include a secondary term that minimises the number of unbalanced 

main compounds. The appearance of unbalanced main compounds usually implies that the 

pathway under study will need an additional pathway (in the global sense of all pathways in the 

organism) to balance such compounds. In order to minimise the dependency of the pathway 

under consideration with respect to other pathways, we need a factor relating to the number of 

unbalanced main compounds.  We denote W the number of unbalanced main compounds 

(excluding the source and the target compound), formally W = ∑
∈≠≠=

C

DcTcScc 4,,,1

(ec + fc). The best 

case is obviously W=0, i.e. the pathway involves no unbalanced main compounds and thus the 

pathway is completely independent of other pathways.  

Consequently, the IBP model considers two different objective functions:  

minimise 1000Ψ + 100W     (6.26) 

minimise 1000L + 100W     (6.27) 

The values adopted for the weight of Ψ and L here (1000) and that of W (100) were 

decided empirically based on a few pathways. We suspect that no change is found when 

factor 1000 is increased (e.g. to 10000 or 100000). This would position our analysis in the 

extreme case, i.e. M3Ψ + W for objective (6.26) and M3L + W for objective (6.27), where 

M3 is a large positive constant. However, a more precise and extensive computational 

validation would be needed to confirm this suspicion. Note that whilst L and W must take 

integer values Ψ is, by its very nature (equation (6.25)), fractional. Although it is equivalent 

to divide each of (6.26) and (6.27) by 100 we leave them in the form given. 

6.2.6 Overview 

The IBP model (optimise (6.26) or (6.27) subject to (6.1)-(6.23) plus cycle 

constraints) is an integer linear program. Algorithmically such programs are solved by linear 

programming based tree search. Here, as in previous chapters, we used Cplex. 
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6.3 Results 

As in previous chapters, we used the metabolic network of E.Coli presented by Reed 

et al., 2003, which comprises 880 cytosolic reactions and 613 compounds. A full list of 

reactions/compounds can be found in Appendices A and B. 

We applied the IBP model to the forty E.Coli experimentally determined pathways 

shown in Table 6.4. The pathways used were taken from Keseler et al., 2005; Nelson and 

Cox, 2005 and http://biocyc.org/ECOLI/. A detailed description of the experimentally 

determined pathways can be found in Appendix C.  

6.3.1 Structural recovery of experimentally determined pathways 

As in Chapter 3, we mean here by structural recovery that, once the IBP model is 

solved, the solution is precisely the same as the experimentally determined metabolic 

pathway, both in terms of the reactions/compounds involved in the pathway and its inherent 

stoichiometry (reaction ticks). 

 The IBP model requires QS, QT the number of source and target molecules to be 

specified. In addition, the IBP model needs to specify the input parameter K, which defines 

the maximum number of metabolic paths. As we described in the Introduction section of this 

chapter, the reason for considering K metabolic paths was to meet the issue of branched 

metabolic pathways. In our forty experimentally determined pathways we only have one 

branched metabolic pathway, pathway 6 (Pentose Phosphate Pathway). This pathway can be 

recovered with two metabolic paths. Thus K=2 would be sufficient for recovering any of our 

forty pathway under study. However we applied the IBP model for K=1, 2,...,5 so as to see 

the performance of the IBP model under different values of K. 

In addition, as explained above, the IBP model considers two different objectives. 

Objective (6.26) gives primary weight to the specificity (Ψ), whilst objective (6.27) gives 

primary weight to the length of the pathway (L). We present below results for both 

objectives. 
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 Table 6.5 shows the performance of the IBP model for objective (6.26). The IBP 

model recovers 32 of our 40 experimentally determined pathways for K=1 and 33 pathways 

for K=2,…,5. 
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Pathwy 
number 

Pathway name Pathway recovered? 
Objective (6.26) 

    K=1 K=2,3,4,5 
        

1 Gluconeogenesis yes yes 
2 Glycogen yes yes 
3 Glycolysis no no 
4 Proline biosynthesis yes yes 
5 Ketogluconate metabolism yes yes 
6 Pentose phosphate no yes 
7 Salvage pathway deoxythymidine phosphate no no 
8 Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle no no 
9 NAD biosynthesis yes yes 

10 Arginine biosynthesis yes yes 
11 Sperdimine biosynthesis yes yes 
12 Threonine Degradadation to synthetise propionate yes yes 
13 Serine biosynthesis yes yes 
14 Histidine biosynthesis yes yes 
15 Tirosine biosynthesis yes yes 
16 Coenzyme A biosynthesis yes yes 
17 Pantothenate biosynthesis yes yes 
18 Tetrahydrofolate biosynthesis no no 
19 Riboflavin and FMN and FAD biosynthesis yes yes 
20 Heme Biosynthesis yes yes 
21 De novo sinthesis of pyrimidine ribonucletides yes yes 
22 De novo sinthesis of pyrimidine deoxyribonucletides yes yes 
23 Phenylethylamine degradation yes yes 
24 Rhamnose degradation yes yes 
25 Fucose degradation yes yes 
26 Entner-Doudoroff Pathway no no 
27 Anaerobic Respiration no no 
28 Arginine degradation yes yes 
29 Proline degradation yes yes 
30 Glycolate degradation yes yes 
31 Phospholipid Biosynthesis yes yes 
32 Biosynthesis of cysteine yes yes 
33 Allantoin degradation yes yes 
34 Deoxycytidine degradation yes yes 
35 Phenylalanine Biosynthesis yes yes 
36 Glyoxylate Cycle no no 
37 Propionate Degradation yes yes 
38 Glutamate Biosynthesis Cycle yes yes 
39 Biotin Synthesis yes yes 
40 Glycerol Degradation yes yes 

Number of “yes” entries 32 33 

Table 6.5: Structural Recovery for K=1,…,5 and objective (6.26) 
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In addition, Table 6.6 shows the results of the IBP model for objective (6.27). The 

IBP model recovers in this case 29 of our 40 experimentally determined pathways for K=1 

and 30 pathways for K=2,…,5.  
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Pathway 
number 

Pathway name Pathway recovered? 
Objective 6.27 

    K=1 K=2,3,4,5 
        

1 Gluconeogenesis yes yes 
2 Glycogen yes yes 
3 Glycolysis no no 
4 Proline biosynthesis no no 
5 Ketogluconate metabolism yes yes 
6 Pentose phosphate no yes 
7 Salvage pathway deoxythymidine phosphate no no 
8 Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle no no 
9 NAD biosynthesis no no 

10 Arginine biosynthesis no no 
11 Sperdimine biosynthesis yes yes 
12 Threonine Degradadation to synthetise propionate yes yes 
13 Serine biosynthesis yes yes 
14 Histidine biosynthesis yes yes 
15 Tirosine biosynthesis yes yes 
16 Coenzyme A biosynthesis yes yes 
17 Pantothenate biosynthesis yes yes 
18 Tetrahydrofolate biosynthesis no no 
19 Riboflavin and FMN and FAD biosynthesis yes yes 
20 Heme Biosynthesis yes yes 
21 De novo sinthesis of pyrimidine ribonucletides yes yes 
22 De novo sinthesis of pyrimidine deoxyribonucletides yes yes 
23 Phenylethylamine degradation yes yes 
24 Rhamnose degradation yes yes 
25 Fucose degradation yes yes 
26 Entner-Doudoroff Pathway no no 
27 Anaerobic Respiration no no 
28 Arginine degradation yes yes 
29 Proline degradation yes yes 
30 Glycolate degradation yes yes 
31 Phospholipid Biosynthesis yes yes 
32 Biosynthesis of cysteine yes yes 
33 Allantoin degradation yes yes 
34 Deoxycytidine degradation yes yes 
35 Phenylalanine Biosynthesis yes yes 
36 Glyoxylate Cycle no no 
37 Propionate Degradation yes yes 
38 Glutamate Biosynthesis Cycle yes yes 
39 Biotin Synthesis yes yes 
40 Glycerol Degradation yes yes 

Number of “yes” entries 29 30 

Table 6.6: Structural Recovery for K=1,…,5 and objective (6.27) 
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In terms of recovery, the IBP model for K=1 differs from the IBP model for 

K=2,…,5 (using both objective (6.26) and objective (6.27)) in that pathway 6 was not 

recovered. Accordingly, we need K≥2 so as to recover pathway 6. In addition, Table 6.5 and 

Table 6.6 show that the IBP model has no effect (in terms of recovery) when the K value is 

increased from K=2 to K=3,4,5. Moreover, as seen in Tables 6.7 and 6.8, applying the IBP 

model for K>2 has an unnecessary increase in average computation time. For example, the 

average computation time over the forty pathways is 7.5 seconds for K=2 (1.86Ghz pc, 2GB 

RAM) and 69.6 seconds for K=5 when objective (6.26) is used.  For that reason we 

henceforth fix K=2. 

  
  K=1 K=2 K=3 K=4 K=5 

Average computation time (seconds) 7.0 7.5 25.7 33.7 69.6 

Minimum computation time (seconds) 2.7 3.0 3.3 3.7 4.0 

Maximum computation time (seconds) 150.4 99.9 776.4 628.8 1,585.8 

Table 6.7: Computation times for the forty pathways with objective (6.26) 

  
  K=1 K=2 K=3 K=4 K=5 

Average computation time (seconds) 6.3 11.5 42.2 92.1 127.6 

Minimum computation time (seconds) 2.5 3.0 3.3 3.8 4.1 

Maximum computation time (seconds) 63.3 127.1 815.3 1,834.2 1,871.2 

Table 6.8: Computation times for the forty pathways with objective (6.27) 

6.3.1.1 Analysis of the structural recovery for K=2 

Tables 6.5 and 6.6 indicate that the IBP model recovers 33 of our 40 experimentally 

determined pathways using one (or both) of the objectives considered. Statistically this is a 

highly significant result at the 0.001% level. In no case does objective (6.27) achieve 

recovery and objective (6.26) does not. However, these results are slightly worse than the 

BP model, which achieves recovery in 38 pathways whether using objective (3.13) or 

objective (3.14), as noted in Table 6.9. Interestingly, we have a mix of situations: some 
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where both approaches achieve recovery (e.g. pathway 1); some where the IBP model 

achieves recovery and the BP model does not (e.g. pathway 19); some where the IBP model 

does not achieve recovery and the BP model does (e.g. pathway 8). 
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Pathway 
number 

Pathway name Pathway recovered? 

    BP model IBP model 
       

1 Gluconeogenesis yes yes 
2 Glycogen yes yes 
3 Glycolysis yes no 
4 Proline biosynthesis yes yes 
5 Ketogluconate metabolism yes yes 
6 Pentose phosphate yes yes 
7 Salvage pathway deoxythymidine phosphate yes no 
8 Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle yes no 
9 NAD biosynthesis yes yes 

10 Arginine biosynthesis yes yes 
11 Sperdimine biosynthesis yes yes 
12 Threonine Degradadation to synthetise propionate yes yes 
13 Serine biosynthesis yes yes 
14 Histidine biosynthesis yes yes 
15 Tirosine biosynthesis yes yes 
16 Coenzyme A biosynthesis yes yes 
17 Pantothenate biosynthesis yes yes 
18 Tetrahydrofolate biosynthesis yes no 
19 Riboflavin and FMN and FAD biosynthesis no yes 
20 Heme Biosynthesis yes yes 
21 De novo sinthesis of pyrimidine ribonucletides yes yes 
22 De novo sinthesis of pyrimidine deoxyribonucletides yes yes 
23 Phenylethylamine degradation yes yes 
24 Rhamnose degradation yes yes 
25 Fucose degradation yes yes 
26 Entner-Doudoroff Pathway yes no 
27 Anaerobic Respiration yes no 
28 Arginine degradation yes yes 
29 Proline degradation yes yes 
30 Glycolate degradation yes yes 
31 Phospholipid Biosynthesis yes yes 
32 Biosynthesis of cysteine yes yes 
33 Allantoin degradation yes yes 
34 Deoxycytidine degradation yes yes 
35 Phenylalanine Biosynthesis yes yes 
36 Glyoxylate Cycle yes no 
37 Propionate Degradation yes yes 
38 Glutamate Biosynthesis Cycle yes yes 
39 Biotin Synthesis no yes 
40 Glycerol Degradation yes yes 

Number of “yes” entries 38 33 

Table 6.9: Comparison between the BP and the IBP model 
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In thirty-one of the thirty-three “yes” cases obtained in the IBP model for objective 

(6.26) (and K=2) there is a unique pathway associated with the optimal objective function 

value and in only two cases is there an alternative pathway providing the same optimal 

objective function value. However, when using objective (6.27), only twenty-two out of the 

thirty yes cases provide a unique optimal solution.  

As we have a significant number of constraints in the IBP model the question arises 

as to the relevance of the objective adopted. In the limit for example there may be only one 

unique solution satisfying the constraints, and if so the objective adopted becomes 

irrelevant. We found that in all “yes” cases in Table 6.5 and Table 6.6 we have more than 

one solution satisfying the constraints. In addition, we found that in all 40 pathways 

(whether recovered or not) we have at least one solution satisfying the constraints. This fact 

contrasts with the BP model, where we found two cases (pathway 19 and pathway 39) for 

which the BP model obtains no feasible solution, i.e. no values for the decision variables in 

the BP model exist which satisfy all the constraints of the BP model. This observation 

shows that the set of constraints included in the IBP model, (6.1)-(6.23) are less restrictive 

than those included in the BP model. Thus, the objective adopted is clearly a more relevant 

issue for the IBP model. A later section analyses in detail the objective functions (6.26) and 

(6.27) defined in the IBP model.   

As in the BP model, equation (6.9) explicitly excludes solutions in which reactions in 

the pathway produce any of the source compound (or consume any of the target compound). 

If we amend the IBP model to allow such solutions then, with respect to Table 6.5 and Table 

6.6, we degrade the results slightly, failing to recover pathways 1, 10 and 37 for objective 

(6.26) and pathways 1 and 37 for objective (6.27). 

Equation (6.17) defines the scope of the pathway, i.e. reactions active in the 

pathways must necessarily be contained in at least one of the K metabolic paths. If we 

remove equation (6.17) from the IBP model, then we degrade the results significantly for 

objective (6.26), recovering now only 14 pathways. However, the deletion of equation 
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(6.17) from the IBP model does not have much effect when using objective (6.27), since we 

now achieve recovery in 27 pathways.  

Equations (6.21), (6.22) and (6.23) relate to high presence compounds, inorganic 

compounds and cofactors constraints. If we do not include these constraints in the IBP 

model then, we degrade the results slightly for objective (6.26), failing to recover now 

pathways 1, 9 and 10. However, a significant effect is found for objective (6.27), which now 

only recovers now 11 pathways. Note that in the 40 pathways under study we found that 

only pathway 27 violates these constraints. 

6.3.2 QS,QT recovery of experimentally determined pathways 

As in the BP model, the IBP model needs to specify the number of molecules of the 

source and target compounds (QS,QT) involved in the pathway (equation (6.8)). For the 

results shown in Table 6.5 and Table 6.6 these values have been taken as equal to those 

associated with the experimentally determined pathway. In this section, we present results as 

to the IBP model when applied to a number of different (QS,QT) pairs (QS,QT≤6), so that the 

dominant pair is determined in terms of the objective function. In the case that the dominant 

pair is precisely that appearing in the experimentally determined pathway, then the IBP 

model does recover the (QS,QT) pair observed in the experimentally determined pathway. 

Such analysis was exclusively carried out in those pathways in which the IBP model 

achieves structural recovery, i.e. those pathways having a “yes” in Table 6.5 and Table 6.6. 

As the IBP model present two different objective functions, (6.26) and (6.27), the criterion 

for selecting the dominant pair was modified according to objective function optimised. To 

illustrate this, we show below results obtained for the Gluconeogenesis pathway (pathway 

1), whose structure was recovered for objective function (6.26) and (6.27) as shown in Table 

6.5 and Table 6.6, respectively, and thus, (QS,QT) analysis must be carried out for both 

objectives.     

The Gluconeogenesis pathway in Table 6.5 has (QS,QT)=(2,1). For this pathway Table 

6.10 show for a number of different (QS,QT) pairs (QS,QT≤6) the specificity value (Ψ) and 
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the number of unbalanced main compound (W) when the IBP model is solved using 

objective (6.26). Situations where the IBP model indicated that no feasible solution exists 

are indicated by a ‘X’. Objective (6.26) gives primary weight to minimising the specificity 

(Ψ) and secondary weight to minimising the number of unbalanced main compounds (W). In 

order to identify the dominant (QS,QT) pair with respect to this objective we examine all 

entries in the table. Let E represent the set of all feasible (QS,QT) pairs in the table. We apply 

the following procedure: 

• eliminate repeats from E. An entry is a repeat if it presents the same Ψ and W 

value but precisely k (≥2, integer) times as many source/target molecules. A repeat 

essentially corresponds to the same reaction set but with the ticks multiplied by a 

factor of k. In Table 6.10, for example, the entries for (QS,QT)=(4,2) and 

(QS,QT)=(6,3) are a repeat of the entry for (QS,QT)=(2,1) with k=2 and k=3 

respectively. In addition, the pairs seen down the diagonal are all repeats of the 

entry for (QS,QT)=(1,1). After elimination of repeats the entries left, for example, 

in Table 6.10 are (QS,QT)=(1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,1); (2,3); (2,4); 

(2,5); (3,1); (3,2); (3,3); (3,4); (3,5); (4,1);  (4,3); (4,5); (4,6); (5,1); (5,2); (5,3); 

(5,4); (5,6); (6,1); (6,5). 

• eliminate from E any entries that do not involve the minimum specificity value. In 

Table 3.4 the minimum number of reactions is 8.13. Thus, all the remaining entries 

aside from (QS,QT)=(1,1) are eliminated from E.   

• choose from the remaining entries that which involves the minimum number of 

unbalanced main compounds, ties broken by minimum number of source 

molecules used, and then further broken if necessary by maximum number of 

target molecules produced. As there is only one entry with the minimum specificity 

in Table 6.10, for example, it is not necessary to tie breaks here.  
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For this pathway the IBP model indicates that the pair (QS,QT)=(1,1) dominates all 

other cases either using objective (6.26). This is indicated by the * superscript on that entry 

in the Table 6.10. Hence in this case the IBP model for objective (6.26) does not recover the 

(QS,QT)=(2,1) pair observed in the experimentally determined pathway. 

Number of molecules QT of target compound 
(Ψ,W) 

1 2 3 4 5 6 

1 
(8.13,1)* (9.02,4) (8.96,3) (9.02,4) (8.96,3) (9.02,4) 

2 
(8.56,0) (8.13,1) (9.02,4) (8.96,3) (9.02,4) (9.06,2) 

3 
(9.09,3) (9.19,1) (8.13,1) (9.02,4) (8.96,3) (9.02,4) 

4 
(9.09,3) (8.56,0) (9.19,1) (8.13,1) (9.02,4) (8.96,3) 

5 
(9.09,3) (9.09,3) (9.19,1) (9.19,1) (8.13,1) (9.02,4) 

Number 

of 

molecules 

QS of 

source 

compound 6 
(9.09,3) (9.09,3) (8.56,0) (9.19,1) (9.19,1) (8.13,1) 

Table 6.10: IBP model solution for objective (6.26) for varying QS and QT for Gluconeogenesis pathway 

Amending that procedure to identify the dominant (QS,QT) pair for objective (6.27) is 

easily done. The results for the Gluconeogenesis pathway with objective (6.27) can be seen 

in Table 6.11. As objective (6.27) gives primary weight to minimising the length (L) of the 

pathway and secondary weight to minimising the number of unbalanced main compounds 

(W) in the pathway, the procedure for identifying the dominant pair with objective (6.27) is: 

• eliminate repeats from E. In Table 6.11 the entries for (QS,QT)=(4,2) and 

(QS,QT)=(6,3) are a repeat of the entry for (QS,QT)=(2,1) with k=2 and k=3 

respectively. In addition, the pairs seen down the diagonal are all repeats of the entry 

for (QS,QT)=(1,1). After elimination of repeats the entries left are (QS,QT)=(1,1); 

(1,2); (1,3); (1,4); (1,5); (1,6); (2,1); (2,3); (2,5); (3,1); (3,2);  (3,4); (3,5); (4,1); 

(4,3); (4,5); (5,1); (5,2); (5,3); (5,4); (5,6); (6,1); (6,5). 
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• eliminate from E any entries that do not involve the minimum L value. In Table 

6.11 the minimum number of reactions is 7. Thus, all the remaining entries aside 

from (QS,QT)=(1,1) are eliminated from E.   

• choose from the remaining entries that which involves the minimum number of 

unbalanced main compounds, ties broken by minimum number of source 

molecules used, and then further broken if necessary by maximum number of 

target molecules produced. As there is only one entry with the minimum L value in 

Table 6.10, for example, it is not necessary to tie breaks here.  

For this pathway the IBP model indicates that the pair (QS,QT)=(1,1) dominates all 

other cases. Hence in this case the BP model for objective (6.27) does not recover the 

(QS,QT)=(1,1) pair observed in the experimentally determined pathway. 

Number of molecules QT of target compound 
(L,W) 

1 2 3 4 5 6 

1 
(7,1)* (8,8) (9,3) (9,3) (9,3) (9,3) 

2 
(9,0) (7,1) (9,3) (8,8) (9,3) (9,3) 

3 
(10,2) (10,1) (7,1) (9,3) (9,3) (8,8) 

4 
(10,2) (9,0) (10,1) (7,1) (9,3) (9,3) 

5 
(10,2) (10,2) (10,1) (10,1) (7,1) (9,3) 

Number 

of 

molecules 

QS of 

source 

compound 6 
(10,2) (10,2) (9,0) (10,1) (10,1) (7,1) 

Table 6.11: IBP model solution for objective (6.27) for varying QS and QT for Gluconeogenesis pathway 

We have repeated the analysis shown in Table 6.10 and Table 6.11 for those cases in 

which the IBP model recovers the pathway structure (see Appendix C). The summary of this 

analysis can be seen in Table 6.12. Our judgment is that for thirty of the forty pathways the 

IBP model (either objective (6.26) or (6.27)) recovers the (QS,QT) pair observed in the 
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experimentally determined pathway. Statistically this is a highly significant result 

(significant at the 0.001% level). 

 



Metabolic pathway analysis via integer linear programming 

Francisco J. Planes                                                                                                                                  May 2008 156

 
Pathway 
number 

Pathway name (QS,QT) 
 recovered? 

   Objective Objective 
    6.26 6.27 

1 Gluconeogenesis no no 
2 Glycogen yes yes 
3 Glycolysis - - 
4 Proline biosynthesis yes - 
5 Ketogluconate metabolism yes yes 
6 Pentose phosphate no no 
7 Salvage pathway deoxythymidine phosphate - - 
8 Tricarboxylic acid (citric acid, citrate, TCA, Krebs) cycle - - 
9 NAD biosynthesis yes - 

10 Arginine biosynthesis no - 
11 Sperdimine biosynthesis yes yes 
12 Threonine Degradadation to synthetise propionate yes yes 
13 Serine biosynthesis yes yes 
14 Histidine biosynthesis yes yes 
15 Tirosine biosynthesis yes yes 
16 Coenzyme A biosynthesis yes yes 
17 Pantothenate biosynthesis yes yes 
18 Tetrahydrofolate biosynthesis - - 
19 Riboflavin and FMN and FAD biosynthesis yes yes 
20 Heme Biosynthesis yes yes 
21 De novo sinthesis of pyrimidine ribonucletides yes yes 
22 De novo sinthesis of pyrimidine deoxyribonucletides yes yes 
23 Phenylethylamine degradation yes yes 
24 Rhamnose degradation yes yes 
25 Fucose degradation yes yes 
26 Entner-Doudoroff Pathway - - 
27 Anaerobic Respiration - - 
28 Arginine degradation yes no 
29 Proline degradation yes yes 
30 Glycolate degradation yes yes 
31 Phospholipid Biosynthesis yes yes 
32 Biosynthesis of cysteine yes yes 
33 Allantoin degradation yes yes 
34 Deoxycytidine degradation yes yes 
35 Phenylalanine Biosynthesis yes yes 
36 Glyoxylate Cycle - - 
37 Propionate Degradation yes yes 
38 Glutamate Biosynthesis Cycle yes yes 
39 Biotin Synthesis yes yes 
40 Glycerol Degradation yes yes 

Number of “yes” entries 30 27 

Table 6.12: (QS,QT) Recovery for the IBP model 



Metabolic pathway analysis via integer linear programming 

Francisco J. Planes                                                                                                                                  May 2008 157

Considering Table 6.5, 6.6 and 6.12 it is clear that objective (6.26) is slightly better that 

objective (6.27). For this reason we focus only on objective (6.26) and (Ψ,W) in the following 

sections. 

6.3.3 Objective function 

In the IBP model we consider two different objective functions. Whilst objective (6.26) 

gives primary weight to minimising the specificity (Ψ), objective (6.27) gives primary weight 

to minimising the length (L) of the pathways. Both objectives give secondary weight to 

minimising the number of unbalanced main compounds (W). In this sub-section, we are 

concerned with empirically showing that specificity and length (Ψ and L) are approximately 

equal, i.e. Ψ ≈ L. In addition, we illustrate the reason as to why W was included in the objective 

function.    

Table 6.5 and Table 6.6 show that the set of pathways recovered by objective (6.27) 

are also recovered by objective (6.26), which additionally recovers pathway 4, 9 and 10. 

This fact evidences a possible relationship between Ψ and L, since the secondary term (W) 

remains unchanged. Based on this empirical observation, we plot in Figure 6.7 the values of Ψ 

and L obtained for our forty experimentally determined pathways when we solve the IBP 

model for objectives (6.26) and (6.27) respectively. It can be observed that Ψ is very close to L 

in the majority of the pathways, the average value of Ψ-L among the forty pathways E(Ψ-

L)=0.15 and the standard deviation σ(Ψ-L) = 0.63. Note also here that for linear pathways 

we always have Ψ≥ L, e.g. pathway 4. This does not apply for branched pathways, e.g. 

pathway 1, where Ψ1< L1. 
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Figure 6.7: Correspondence between between Ψ and L 

The maximum difference between Ψ and L in Figure 6.7 is found in pathway 9, 

where Ψ9-L9=3.60. Since objective (6.26) recovers pathway 9 and objective (6.27) does not, 

we expect Ψ9 to be closer than L9 to the actual length of pathway 9. We denote Ledp the 

actual length of the experimentally determined pathway, e.g. actual length of pathway 9, 

L9
edp =5. Figure 6.8 plots the values of Ledp and L in our forty experimentally determined 

pathways. It can be observed that, in general, Ledp ≥ L, since the solution of the IBP model 

for objective (6.27) identifies the pathway with the minimal length. In the case the IBP 

model for objective (6.27) achieves recovery, then Ledp = L. For pathway 9, we have L9
edp - 

L9 = 6. We averaged Ledp - L in our forty experimentally determined pathways and found that 

E(Ledp - L)=0.58 and σ(Ledp  - L)= 1.25. As shown in Figure 6.9, we repeated this analysis 

between Ledp and Ψ, obtaining E(Ledp - Ψ )=0.25 and σ(Ledp - Ψ) = 1.25. For pathway 9, in 

particular, L9
edp - Ψ9 = -0.60. We can then conclude that objective (6.26) is somewhat more 

accurate than objective (6.27) for recovering experimentally determined pathways. 
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Figure 6.8: Correspondence between L and Ledp 
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Figure 6.9: Correspondence between Ψ and Ledp 

This last conclusion is confirmed by observations given above. First and foremost, 

objective (6.26) presents a higher recovery rate (both structure and (QS,QT)) than objective 

(6.27). In addition, objective (6.26) better characterises metabolic pathways, as generally a 

unique pathway is associated with the optimal solution. Objective (6.27) presents eight cases 

where more than one optimal solution was found.  

With respect to the number of unbalanced main compounds W, a discussion is given 

below to evaluate the impact of W in the objective function of the IBP model. We 
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exclusively use here objective (6.26) (with K=2) for this discussion. A similar analysis can 

be done for objective (6.27).  

Figure 6.10 plots the value of (Ψ, W) when W is fixed to a constant value 

(W=0,1,2,3,4,5,6) for pathway 18. We recall here that pathway 18 was not recovered for 

objective (6.26). The solution from the IBP model corresponds to W=4, where we found the 

lowest Ψ value, as can be observed in Figure 6.10. Note that no solution exists when W is 

fixed to 0 or 1.  Interestingly, when we fix W=3, the IBP model precisely corresponds to 

pathway 18, i.e. we achieve recovery. In addition, from Figure 6.10, it is easy to recognize 

that IBP model will not have a good performance for every W value. For example, when 

W=2, Ψ presents an elevated value with respect to its value for W=3. The fact that, by 

considering fixed W values, we have the experimentally determined pathway being amongst 

the solutions found does, we believe, indicate that W is a relevant factor to include in the 

IBP model. 
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Figure 6.10: (Ψ, W) analysis for pathway 18 

This analysis has been repeated for non-recovered pathways that do not constitute a 

cycle, namely pathway 3, 7, 18, 26, 27. Cyclic pathways are analysed separately in the 

following section. Table 6.13 shows the specificity (Ψ) for different W values, 

(W=0,1,2,3,4,5,6), e.g. Ψ=9.83 when W=1 in pathway 3. Note that we applied a time limit 

for the computation of some values of Table 6.13. Situations where the IBP model indicated 

that no feasible solution exists are indicated by ‘X’. We found the experimentally 
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determined pathway in W=3 for pathway 18 and W=1 for pathway 26. Instead, pathway 3, 7 

and 27 were not recovered for any W value. Note here that pathway 27 does not satisfy 

equation (6.23) of the IBP model, thus it cannot be recovered. That is the reason as to why 

we set infeasible in the solution (Ψ, W) value for pathway 27.  In addition, the IBP model 

recognizes for pathway 7 that the best performance will be found for W=2. In summary, we 

think these results illustrate the relevance of including W in the objective function.  

Pathway Edp Solution 
Number 

W=0 W=1 W=2 W=3 W=4 W=5 W=6
(Ψ, W) 

Recovered? 

3 7.33 9.83 6.33 7.86 9.65 19.73 8.50 (9.57, 0) no 
7 X X 3.26 X X X X (6.955,2) no 

18 X X 13.38 8.00 6.75 9.16 6.89 (8,3) yes 
26 X 4.41 9.56 3.66 7.8 X X (4.41,1) yes 
27 5 3.47 7.25 6.31 6.32 X X X no 

Table 6.13: Summary of (Ψ, W) analysis for non-recovered and non-cyclic pathways 

6.3.4 Non-recovered metabolic pathways 

6.3.4.1 Cyclic pathways 

The IBP model shows particular difficulties to recover cyclic pathways. We define a 

cyclic pathway to be a pathway satisfying S=T and QS =QT.  In our forty experimentally 

determined pathways we have two cyclic pathways: pathway 8 (Tricarboxylic acid (citric 

acid, citrate, TCA, Krebs) cycle) and pathway 36 (Glyoxylate Cycle). Note here that 

pathway 38 (Glutamate Biosynthesis Cycle) satisfies S=T, but QS≠QT. For this reason, this 

pathway was not included in the list of cyclic pathways. 

As discussed above, the IBP model for both objective (6.26) and (6.27) minimises 

the number of active reactions involved in the pathway. In cyclic pathways, the IBP model 

finds solutions whose length is far from the actual length of the experimentally determined 

pathway, as can be observed in Figure 6.7 and 6.8. For example, for pathway 8, Ψ8=2, L8=2 

and L8
edp=8. The biological significance of these solutions is however questionable. It is 

clear from the biochemistry literature (Nelson and Cox, 2005) that the purpose of cyclic 

pathways is to produce a key compound for the cell. Pathway 8 (TCA Cycle) produces one 

molecule of ATP and one molecule of NADH. ATP is the cell's energy currency, as 
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described in Chapter 3. NADH is a key compound in the respiratory chain, which produces 

ATP via electron transfers (Nelson and Cox, 2005).  In addition, NADH is generally 

considered a target compound to measure the performance of cellular metabolism 

(Mayevsky and Rogatsky, 2007). Pathway 38 (Glyoxylate Cycle) also produces one 

molecule of NADH. For that reason we found interesting to analyse the performance of the 

IBP model by including new constraints related to ATP and NADH in cyclic pathways. 

 Denoting ATP as compound 1 for simplicity, we can force ATP to be produced by 

including the following constraint:  

∑
=

R

r 1

p1rtr -∑
=

R

r 1

n1rtr  ≥ 1, i.e. e1=1  if S=T and QS=QT  (6.28) 

Denoting NADH as compound 2 for simplicity, we can force NADH to be produced 

by including the following constraint:  

∑
=

R

r 1

p2rtr -∑
=

R

r 1

n2rtr  ≥ 1 , i.e. e2=1  if S=T and QS=QT (6.29) 

In addition, we might impose a constraint forcing that at least one of ATP and NADH 

must be produced: 

e1 + e2  ≥ 1    if S=T and QS=QT (6.30) 

Table 6.14 shows the performance of the IBP model with objective (6.26) model when 

these constraints are considered. We set K=1 for cyclic pathways (as opposed to K=2 for 

other pathways). The reason is that by definition a cyclic pathway is one from S back to T 

(=S) involving QS=QT molecules. Hence constraining the solution to have just a single 

metabolic path from S to T (=S) seemed appropriate. Similar analysis can be done for 

objective (6.27). In order to recover pathway 8 four different strategies were applied. We found 

that the IBP model recovers this pathway when we force both ATP and NADH to be produced, 

i.e. including equation (6.28) and (6.29). In the case of pathway 36 we applied two strategies. 

The IBP model recovers pathway 36 either forcing NADH to be produced, equation (6.29), or 
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forcing at least one of ATP and NADH to be produced, equation (6.30).  These results show the 

strength of the IBP model to deal with cyclic pathways. They also reveal that biologically 

significant cyclic pathways might not be properly defined with the source (target) compound, 

i.e. they need extra knowledge related to the purpose of the pathway. Finally, (QS,QT) analysis 

has been carried out  for the three ‘yes’ cases in Table 6.14, finding that we recovered the pair 

observed in the experimentally determined pathway.  

Cyclic pathways 
Recovered? 

Strategy 

Pathway 8 Pathway 36 
IBP model + (6.28) no - 
IBP model + (6.29) no yes 
IBP model + (6.28) + (6.29) yes - 
IBP model + (6.30) no yes 

Table 6.14: Performance of IBP model with additional cyclic pathway constraints 

6.3.4.2 The Glycolysis pathway and other non-recovered non-cyclic pathways 

Considering Table 6.13, the IBP model does not recover the Glycolysis pathway 

(pathway 3). The Glycolysis pathway represents one of the most popular and accepted 

pathways in biochemistry. This pathway converts one molecule of D-Glucose into two 

molecules of Pyruvate. In addition, it is well known for being a very active pathway for 

producing ATP. For this reason, we found of interest to examine the performance of the IBP 

model forcing ATP to be produced to excess, namely ∑
=

R

r 1

p1rtr -∑
=

R

r 1

n1rtr  ≥ 1, i.e. e1=1. When 

we applied the IBP model to this situation, we achieved structural recovery using objective 

(6.26) for K=1. We also recovered the pair associated with the pathway when (QS,QT) 

analysis was conducted (see Appendix C for details). This fact shows that the addition of 

biologically meaningful constraints to the IBP model clearly refine the performance of the 

model. 

With respect to Pathway 7 (Salvage pathway deoxythymidine phosphate), we would 

like to note that, despite the fact that the IBP model obtains a solution different from the 
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experimentally determined pathway presented in Appendix C, such solution is a known 

alternative pathway, as can be noted in http://biocyc.org/ECOLI/.  

Finally, the IBP model does not recover Pathway 27 (Anaerobic Respiration). The 

reason for this flaw is that Pathway 27 does not satisfy equation (6.23) relating to cofactor 

pairs. This basically implies that Pathway 27 is not contained in the set of feasible solutions, 

i.e. Pathway 27 will never be recovered unless this constraint is excluded from the IBP 

model. Since this flaw uniquely occurs in this pathway, we think that Pathway 27 might be 

ill-defined in EcoCyc (http://biocyc.org/ECOLI/), or possibly the cofactor constraint is 

inappropriate for this pathway. Note here that even if we exclude equation (6.23) however 

we still fail to recover the pathway. 

6.4 Conclusions 

We have presented the Improved Beasley-Planes (IBP) model for recovering 

experimentally determined metabolic pathways. The IBP model showed an acceptable 

performance, namely recovering the structure in 33 of our 40 experimentally determined 

pathways and the (QS,QT) pair in 30 cases. When further constraints related to cyclic 

pathways and glycolysis are included, the IBP model recovers the structure and the (QS,QT) 

pair in 36 and 33 pathways, respectively. Though this result is somewhat less accurate than 

the BP model, the IBP model appropriately solves the issue of low presence unbalanced 

compounds described in Chapter 3. In addition, the IBP model presents a significant 

advance from the modelling standpoint, since elements of stoichiometric approaches and 

path finding approaches are incorporated.  In the light of these modelling advances, and the 

results obtained, we think the IBP model is more general and applicable than previous 

approaches (including the BP model) for determining biologically meaningful metabolic 

pathways.   
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Chapter 7  

Conclusions 

7.1 Summary of the thesis 

A central issue in understanding cellular metabolism relates to the identification and 

regulation of the specific metabolic pathways that operate inside the cell. Thanks to 

advances in the field of genomics, a computational/mathematical analysis of metabolic 

pathways at the genome-scale can now be carried out. In this thesis we have considered 

computational (mathematical) methods for determining biologically significant metabolic 

pathways from a given metabolic network. 

 In Chapter 2, we introduced and discussed existing approaches to metabolic 

pathway analysis, namely stoichiometric approaches and path finding approaches. Although 

both types of approach present clear limitations, we consider that path finding approaches 

present higher potential for determining biologically meaningful metabolic pathways.  

In Chapter 3, we presented our initial approach, named the Beasley-Planes (BP) 

model, so as to refine the search for biologically meaningful metabolic pathways. The BP 

model can be considered a stoichiometric approach, since the pseudo steady state condition 

is applied to a subset of biochemical compounds called low presence compounds. In contrast 

to classic stoichiometric approaches, the BP model uses integer linear programming to 

obtain a single (optimal) metabolic pathway that converts a source compound into a target 

compound. This perspective is novel from the modelling point of view.  

We tested the performance of the BP model in 40 experimentally determined 

pathways, achieving recovery in 37 out of 40 experimentally determined pathways. 

However we found that the pseudo steady state condition does not apply to every 

experimentally determined pathway, i.e. low presence unbalanced compounds appear in 

most of our 40 experimentally determined pathways. Hence for these pathways we did not 

force these compounds to be balanced. Subsequently, the BP model needs to know 



Metabolic pathway analysis via integer linear programming 

Francisco J. Planes                                                                                                                                  May 2008 166

beforehand the low presence unbalanced compounds contained in the experimentally 

determined pathways. This clearly constitutes a limitation for predicting novel (unknown) 

metabolic pathways. Despite this issue, the accurate results obtained here indicate that there 

is reason to believe there is a general mathematical model underlying the many different 

experimentally determined pathways seen.  

In Chapter 4 we proposed a novel pathway-oriented approach to investigate reaction 

knockout that is built upon the BP model. This approach was applied for optimally 

disrupting metabolic pathways. We distinguished two cases: the disruption of a single 

metabolic pathway, namely the glycolysis pathway; and the disruption of two (related) 

metabolic pathways: the glycolysis pathway and the TCA Cycle. The results obtained (in 

terms of the enzyme/reaction to target to best disrupt the pathway) accord with work done 

from a non-mathematical (biochemical/medical) perspective. Despite the issue of low 

presence unbalanced compounds described above, we show that the BP model can be 

successfully applied to a given unknown situation.  

In order to find alternative ways to solve the issue of low presence unbalanced 

compounds, we carried out a detailed analysis of path finding approaches in Chapter 5. In 

particular, we developed a path finding approach (via integer linear programming) with a 

similar distance metric to one given previously in the literature. We tested our approach in 

the first ten experimentally determined pathways studied in Chapter 3. Although the results 

presented are clearly worse than the BP model, our path finding approach served as a 

building-block for a more refined approach (the IBP model described in Chapter 6), which 

overcomes the issue of low presence unbalanced compounds.  

Chapter 6 describes our final approach: the Improved Beasley-Planes (IBP) model. 

As noted above, the IBP model is essentially a path finding approach. However it also 

includes stoichiometric constraints. This fact constitutes a clear advance from the modelling 

point of view, since, to the best of our knowledge, no approach in the literature has to date 

combined both types of approaches. In terms of results, the IBP model is somewhat less 
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accurate than the BP model, namely recovering 33 of our 40 experimentally determined 

pathways. However, as noted above, the IBP model successfully overcomes the issue of low 

presence unbalanced compounds. This makes the IBP model a more suitable approach than 

the BP model for predicting (unknown) novel metabolic pathways. Overall, we think that 

the IBP model is more powerful than any other mathematical/computational approach in the 

literature (including the BP model) for determining biologically meaningful metabolic 

pathways.  

7.2 Extensions and future directions 

It is clear that, at least in our view, the IBP model is more general than the BP model. 

Naturally we are not claiming that the IBP model represents a final mathematical model that 

fully explains all metabolic pathways. Though unrecovered pathways might reflect that our 

E. Coli metabolic network is flawed, this obviously reflect that the IBP model is less than 

perfect. However we believe that we have made significant steps along the path to a more 

complete (and applicable) mathematical model for metabolic pathways. More can be done 

as to constraints, and much effort is needed to more fully determine (by computational 

experimentation) an appropriate objective function. In our work, for example, we found that 

the number of reactions and excess ATP were appropriate factors to include in the objective 

for the BP model. By contrast, in the IBP model we had different factors, the specificity and 

the number of unbalanced main compounds. A more general model may involve some/all of 

these factors in its objective, or there may be other factors that have eluded us in the work 

that we have undertaken. We believe however that this thesis clearly demonstrates that there 

is a significant chance of discovering/developing a mathematical optimisation model that 

underlies many/all experimentally determined metabolic pathways. 

 

A natural extension to this thesis would be to refine the IBP model so as to achieve 

recovery in non-recovered pathways. In order to help achieve this task, bioenergetics 

constraints as described in Chapter 3 could be incorporated into the model, since full Gibbs 

Energies values are now available for E.Coli. Note that the publication of Gibbs Energy 
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values for E.Coli is posterior to the development of both the BP model and the IBP model. 

As also noted in Chapter 3, the knowledge of cellular concentrations of biochemical 

compounds would help to improve the estimation of Gibbs Energies values. However, we 

are still far from having the concentration for every biochemical compound in the metabolic 

network.  

It may be valuable to include data from gene expression profiles. Gene expression 

profiles provide a measure as to the activity of genes under very different conditions. Gene 

expression profiles are nowadays available at the genome scale. In relation to metabolic 

pathways analysis, gene expression might determine the appearance of a certain set of 

biochemical reactions in a metabolic pathway. The fundamental reason for this is that some 

(metabolic) genes code for enzymes and enzymes catalyse biochemical reactions. This fact 

provides a clear link between the genome and metabolism. In terms of mathematical 

modelling, gene expression profile might introduce additional constraints. For example, 

experiments in different organisms indicate that the expression of the genes involved in an 

experimentally determined pathway is correlated. This clearly may help refine the search for 

biologically meaningful metabolic pathways. Thus, a possible future research direction will 

be to find properties of metabolic pathways from gene expression profiles.  

Recently, an updated and expanded metabolic network for E.Coli has been released. 

This refined network approximately doubles the number of reactions for E.Coli as compared 

with the metabolic network used in this thesis. A clear extension here would be to test the 

IBP model with this updated metabolic network. In addition, it would be of interest to apply 

the IBP model to the metabolic network of different organisms, such as Saccharomyces 

Cerevisiae (baker's yeast) or Homo Sapiens (humans). An analysis as to how metabolic 

pathways are evolved in different organisms constitutes a possible future direction.  

With respect to our reaction knockout approach presented in Chapter 4 (which used 

the BP model), an obvious task to carry out in the future is to build such an approach using 

the IBP model. In Chapter 4 this approach was used to investigate the optimal disruption of 
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a (number of) metabolic pathway(s). A further future direction here might be to understand 

how metabolic pathways reorder after a reaction/gene knockouts. This analysis can 

obviously be expanded to reaction (or gene) additions. Such questions directly relate to the 

regulation of cellular metabolism. Clearly, once we have a reliable approach for determining 

biologically significant metabolic pathways, the next scientific step is to elucidate how these 

metabolic pathways are regulated to produce coherent and coordinated global behaviour 

under different conditions. This question is however outside the boundaries of this thesis.  

As a final note, we would like to emphasise that we believe that optimisation will 

play a very important and increasing role in modern cellular biology. What is not clear is 

that we can always find linear models. For that reason we think that research must be carried 

so as to find powerful algorithms to solve non-linear mathematical optimisation models. 
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