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Abstract

The principal goal of this work is to provide efficient algorithms for implementing

the Bayesian approach to quantile regression. There are two major obstacles to

overcome in order to achieve this. Firstly, it is necessary to specify a suitable

likelihood given that the frequentist approach generally avoids such specifications.

Secondly, sampling methods are usually required as analytical expressions for

posterior summaries are generally unavailable in closed form regardless of the

prior used.

The asymmetric Laplace (AL) likelihood is a popular choice and has a direct

link to the frequentist procedure of minimising a weighted absolute value loss

function that is known to yield the conditional quantile estimates. For any given

prior, the Metropolis Hastings algorithm is always available to sample the pos-

terior distribution. However, it requires the specification of a suitable proposal

density, limiting it’s potential to be used more widely in applications.

It is shown that the Bayesian quantile regression model with the AL likelihood

can be converted into a normal regression model conditional on latent parameters.

This makes it possible to use a Gibbs sampler on the augmented parameter space

and thus avoids the need to choose proposal densities. Using this approach of

introducing latent variables allows more complex Bayesian quantile regression

models to be treated in much the same way. This is illustrated with examples

varying from using robust priors and non parametric regression using splines

to allowing model uncertainty in parameter estimation. This work is applied to

comparing various measures of smoking and which measure is most suited to

predicting low birthweight infants. This thesis also offers a short tutorial on the

R functions that are used to produce the analysis.
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Chapter 1

Introduction

1.1 Why use quantile regression?

Since the introduction of quantile regression in a paper by Koenker and Bassett

(1978), there has been much interest in the field. Quantile regression is used

when an estimate of the various quantiles (such as the median) of a conditional

distribution is desired. It can be seen as a natural analogue in regression analysis

to the practice of using different measures of central tendency and statistical

dispersion to obtain a more comprehensive and robust analysis (Koenker, 2005).

To get an idea of the usefulness of quantile regression, note the identity linking

the conditional quantiles to the conditional mean:

E(y|x) =

∫ 1

0

Qτ (y|x)dτ, (1.1)

where E(y|x) denotes the conditional expectation of y given x and Qτ (y|x) de-

notes the conditional τth quantile of y given x. In essence, this result implies

that traditional mean regression is a summary of all possible quantile regressions.

Hence, a simple mean regression analysis can be insufficient to describe the com-

plete relationship between y and x. This is demonstrated empirically by Min and

Kim (2004), who simulate data based on a wide-class of non Gaussian error distri-

butions. They conclude that simple mean regression cannot satisfactorily capture

the key properties of the data and that even the conditional mean estimate can

be misleading.

The robustness property of quantile regression is also important. It is widely
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known that the mean is not a robust estimate when the underlying distribution

is asymmetric or has non-negligible probabilities of extreme outcomes (the distri-

bution has long tails). In such cases, the median (central quantile) offers a more

robust estimate of the centre of the distribution. Situations like these are com-

monly encountered in real datasets from a number of disciplines such as social

sciences, economics, medicine, public health, financial return, environment and

engineering. Examples are presented in the next section.

This thesis focuses solely on the problem of parameter estimation in Bayesian

quantile regression models, firstly assuming the regression model is fixed and then

later relaxing this assumption. In addition, this thesis focuses on quantile regres-

sion models specified linearly in terms of the regression parameters. However, the

ideas presented in the next chapter can be extended to handle nonlinear quantile

regression under a Bayesian framework. For a discussion about using these models

for prediction and other extensions, see Chapter 5.

1.2 Examples of Cases where Quantile Regres-

sion is Useful

Quantile regression enjoys some wide ranging applications. Here are some of them.

• Many asymmetric and long-tailed distributions have been used to model the

innovation in autoregressive conditional heteroscedasticity (ARCH) models

in finance. Specifically, the conditional autoregressive value at risk (CAViaR)

model introduced by Engel and Manganelli (2004) is a very popular time

series model for estimating the value at risk in finance.

• In ecology, there exist complex interactions between different factors affect-

ing organisms that cannot all be measured and accounted for in statistical

models. This leads to data which often exhibit heteroscedasticity and as

such, quantile regression can give a more complete picture about the under-

lying data generating mechanism (Cade and Noon, 2003).
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• In the study of maternal and child health and occupational and environ-

mental risk factors, Abrevaya (2001) investigates the impact of various de-

mographic characteristics and maternal behaviour on the birthweight of

infants born in the U.S. Low birthweight is known to be associated with a

wide range of subsequent health problems and developmental markers.

• Based on a panel survey of the performance of Dutch school children, Levin

(2001) found some evidence that for those individuals within the lower por-

tion of the achievement distribution, there is a larger benefit of being placed

in classes with individuals of similar ability. This benefit decreases mono-

tonically as the quantile of interest is increased.

• Chamberlain (1994) infers that for manufacturing workers, the union wage

premium, which is at 28 percent at the first decile, declines continuously

to 0.3 percent at the upper decile. The author suggests that the location

shift model estimate (least squares estimate) which is 15.8 percent, gives a

misleading impression of the union effect. In fact, this mean union premium

of 15.8 percent is captured primarily by the lower tail of the conditional

distribution.

These examples demonstrate the fact that quantile regression can be an im-

portant part of any statistician’s toolbox. For more details and examples, see Yu

et al. (2003).

1.3 The Frequentist Approach

The linear parametric model specifies the conditional quantiles as

Qτ (yi|xi) = xi
Tβ(τ), i = 1, . . . , n, (1.2)

where xi denotes the ith column of the n× (p+ 1) design matrix X made up of p

predictors and the intercept and β(τ) denotes the (p+ 1)× 1 vector of associated

regression parameters for a fixed value of τ .
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In classical (frequentist) quantile regression estimation, the aim is to find an

estimator β̂(τ) of β(τ). This is often done without relying on a specification of

the form of the residual distribution such as the assumption that the residuals

are normally distributed with mean 0 and variance σ2. Analysis may focus on one

value of τ , say τ = 0.5 for the conditional median, or a set of values for τ . If just

one value of τ is of interest, Koenker and Bassett (1978) show that minimising

the loss function given by
n∑
i=1

ρτ (yi − xi
Tβ), (1.3)

where

ρτ (u) :=

{
τu if u ≥ 0,

(1− τ)|u| if u < 0.
(1.4)

leads to the τth regression quantile. In the case of multiple quantile regressions,

the procedure of minimising (1.3) could be repeated with different values of τ .

More generally, the entire path of β(τ) could be modelled through the quantile

regression process in which τ becomes a continuous variable in (0, 1). Koenker

and Bassett (1978) show that the problem of minimising (1.3) can be converted

into a linear program and give details on how to solve it efficiently for any or

all τ ∈ (0, 1). This procedure now comes as standard in the quantreg package

(Koenker, 2009) for R (R Development Core Team, 2010).

Without specifying the form of the residual distribution, frequentist inference

for quantile regression focuses on asymptotic theory (see Koenker and Bassett

(1978)). In particular, for the linear location shift model yi = xi
Tβ + εi, where

εi are i.i.d from a density with distribution function Fε, Koenker and Bassett

(1978) show that the quantity
√
n(β̂(τ) − β(τ)) converges in distribution to a

normal distribution with mean 0 and variance given by τ(1− τ)Ω−1/s2(τ), where

Ω = limn→∞
∑n

i=1 xi xi
T and s(t) is the sparsity function, the derivative of the

quantile function F−1ε . The dependence of the asymptotic covariance matrix on

the sparsity function makes this approach unreliable (Billias et al., 2000) and it

is very sensitive to the assumption of i.i.d errors (Chen and Wei, 2005).
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An alternative approach, suggested by Koenker (1994) is to make use of the

theory of rank tests. The advantage of this approach is twofold. Firstly, it avoids

the need to estimate the sparsity function and secondly, it is more robust to the

model assumptions (Chen and Wei, 2005). The origins of this procedure is related

to testing the hypothesis β2 = ν in the regression model y = X1β1 + X2β2 + ε,

where ν is a pre-specified vector. The idea is to calculate the vector of regression

rank score functions â(t,ν) by solving the linear programming problem

max
a
{(y −X2ν)Ta|XT

1 a = (1− t)XT
1 1n, a ∈ [0, 1]n}, (1.5)

where 1n denotes an n× 1 vector of ones. Then, the vector of τth quantile scores

b̂τ (ν) can be defined as

b̂τ (ν) := â(τ,ν)− (1− τ)1n. (1.6)

Under the null hypothesis β2 = ν, it can be shown that the test statistic

Tn(ν) :=
n−1/2XT

2 b̂τ (ν)Θ−1/2√
τ(1− τ)

(1.7)

converges in distribution to a standard normal, where

Θ = n−1XT
2 (I−X1(X

T
1 X1)

−1XT
1 )X2. (1.8)

This test can be inverted to yield confidence intervals, as explained in Koenker

(1994).

The disadvantage of this approach, as pointed out by Chen and Wei (2005),

is that the computing complexity is exponential in both n, the number of ob-

servations and p, the number of regression parameters. This makes it extremely

expensive for medium to large sized datasets. For such datasets, a third option is

the bootstrap. There are many versions of this. The package quantreg (Koenker,

2009) for R (R Development Core Team, 2010) offers 4 methods for bootstrapping.

These are the xy-pair method, the method of Parzen et al. (1994), the Markov

chain marginal bootstrap (MCMB) of He and Hu (2002) and Kocherginsky et al.
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(2005) and a generalised bootstrap of Bose and Chatterjee (2003) and Cham-

berlain and Imbens (2003). These methods are not recommended for p < 20 or

n < 20 due to stability issues (Chen and Wei, 2005).

1.4 The Bayesian Approach

For Bayesians, the missing specification of the residual distributions poses a prob-

lem as there is consequently no likelihood specified and learning about any un-

known parameters is not possible. A simple solution to this problem has been

suggested by Yu and Moyeed (2001), among others, who employ a “pseudo” like-

lihood l(y|β) given by

τn(1− τ)n exp

{
−

n∑
i=1

ρτ (yi − xi
Tβ)

}
. (1.9)

This is a “pseudo” likelihood in the sense that it is only used to link the Bayesian

approach of estimation to the frequentist approach through the property that

maximising the log-likelihood is equivalent to minimising (1.3). It is not based on

the belief that it is the true data generating mechanism. The likelihood l(y|β)

can alternatively be viewed as arising from the model yi = xi
Tβ + εi, where εi

is i.i.d. from the standard asymmetric Laplace (AL) distribution with skewness

parameter τ and density function

fτ (z) = τ (1− τ) exp{−ρτ (z)}. (1.10)

Yu and Moyeed (2001) place an improper prior π(β) ∝ 1 on the regression

parameters β. Under the improper prior, the posterior mode also corresponds to

the minimisation of (1.3). In this sense, priors on β can be used to impose reg-

ularisation. For example, setting the prior to be independent double exponential

distributions (or AL with τ = 0.5) with a common shape parameter λ results in a

posterior mode that corresponds to the L1 norm quantile regression studied by Li

and Zhu (2008). Li et al. (2010) extended this idea to obtain Bayesian regularised

estimates based on other forms of penalty such as the elastic net.
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A further appealing feature of the AL distribution is that it is a member of

the tick exponential family introduced by Komunjer (2005). It was illustrated in

Komunjer (2005) that for likelihood based inference, using this family of distribu-

tions was necessary to achieve consistency of the maximum likelihood estimators.

Under a flat prior, Yu and Moyeed (2001) form the posterior distribution

π(β|y) and show that it is proper. This posterior distribution cannot be sam-

pled directly, so Yu and Moyeed (2001) resort to the Metropolis Hastings (MH)

algorithm to provide joint samples from π(β|y).

Yu and Stander (2007) extend this work to analysing a Tobit quantile regres-

sion model, a form of censored model in which yi = yi∗ is observed if yi∗ > 0 and

yi = 0 is observed otherwise. A regression model then relates the unobserved yi∗

to the covariates xi. Geraci and Bottai (2007) use the AL likelihood and combine

Markov Chain Monte Carlo (MCMC) with the expectation maximising (EM) al-

gorithm to carry out inference on quantile regression for longitudinal data. Chen

and Yu (2009) use the AL likelihood combined with non-parametric regression

modelling using piecewise polynomials to implement automatic curve fitting for

quantile regression and Thompson et al. (2010) use the same approach but using

natural cubic splines.

Tsionas (2003) employs a different approach to sampling from the joint poste-

rior of Yu and Moyeed (2001) by using data augmentation. His approach relies on a

representation of the AL distribution as a mixture of skewed normal distributions

where the mixing density is exponential. He then implements a Metropolis within

Gibbs algorithm to simulate from the augmented joint posterior distribution.

Alternatives to the AL likelihood have been suggested by Dunson and Taylor

(2005), who use Jeffreys’ (Jeffreys, 1961) substitution likelihood and Lancaster

and Jun (2010), who use an approach based on the Bayesian exponentially tilted

empirical likelihood introduced by Schennach (2005).

Kottas and Krnjajić (2009) point out that the value of τ not only controls the

quantile but also the skewness of the AL distribution resulting in limited flexibility.
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In particular, the residual distribution is symmetric when modelling the median.

This motivated Kottas and Gelfand (2001) and Kottas and Krnjajić (2009) to

consider a more flexible residual distribution constructed using a Dirichlet process

prior but still having τth quantile equal to 0. Kottas and Krnjajić (2009) include

a general scale mixture of AL densities with skewness τ in their analysis, but

conclude that in terms of ability to predict new observations, a general mixture

of uniform distributions performs the best.

Despite these concerns, the AL distribution is easy to work with for applied re-

searchers if the key aim is parameter estimation. In particular, as will be shown in

the next section, the AL distribution can be represented in terms of the symmet-

ric double exponential distribution. This is well known to have a representation

as a scale mixture of normals. By augmenting the data with latent variables, it is

possible to implement the Gibbs sampler to sample from the resulting augmented

posterior distribution under a normal prior. Gibbs sampling, where possible, has

the advantage of being“automatic”, in the sense that the researcher does not have

to specify a candidate distribution necessary for MH sampling. Perhaps more im-

portantly, this approach is easily extended to allow for more complex models such

as random effect models. In addition, since the marginal likelihoods conditional

on the latent parameters are available in closed form under a normal prior, it is

possible to compute approximate Bayes factors to compare models. More gener-

ally, it is possible to incorporate covariate set uncertainty into the analysis. Such

analysis would be computationally very expensive for the approach of Kottas and

Krnjajić (2009). Finally, it is possible to use Rao-Blackwellisation to approxi-

mate the marginal density π(β|y). This may be useful for obtaining simultaneous

credible intervals using the method of Held (2004).

This particular strategy of data augmentation differs from Tsionas (2003) in

that the resulting full conditionals are available to sample from directly using

standard algorithms. However, at the time of writing the manuscript, it was soon

realised that work by Kozumi and Kobayashi (2009) essentially used the same
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approach as the one demonstrated in the next chapter. The approach of Kozumi

and Kobayashi (2009) differs only in the parameterisation used in the mixture

of normals representation and was obtained by using results about a different

parameterisation of the AL distribution appearing in Kotz et al. (2001). As will

be shown in Chapter 2, there are key differences that make this approach more

efficient than that of Kozumi and Kobayashi (2009). Firstly, in the Gibbs sampler

developed in Chapter 2, the entire set of latent variables can be sampled efficiently

using the algorithm described in Michael et al. (1976). Secondly, when adding a

scale parameter as discussed in Chapter 5, it is demonstrated that a Gibbs sampler

can be designed that still only requires two blocks, unlike Kozumi and Kobayashi

(2009) who implement a three block sampler when considering a scale parameter.

Results in Liu et al. (1994) suggest that the Gibbs sampler described in this thesis

is likely to be more efficient than that of Kozumi and Kobayashi (2009).

It is nevertheless important to emphasise that this work was done indepen-

dently and that it was only through an associate referee’s observation that any-

thing was known about this new manuscript Kozumi and Kobayashi (2009). As a

result, the authors were invited to become joint authors of the manuscript Reed

et al. (2010) which is awaiting a small revision. See Chapter 5 for further details.

1.5 Thesis Outline

The outline of this thesis is as follows. In Chapter 2, working with the AL likeli-

hood and using data augmetation, a simple Gibbs sampler is developed to sample

the augmented posterior distribution. This is compared to the MH algorithm of

Yu and Moyeed (2001). The approach is extended to non parametric Bayesian

quantile regression using natural cubic splines and the resulting Gibbs sampler

is compared to the MH algorithm of Thompson et al. (2010). In Chapter 3, the

method introduced in the previous chapter is used to analyse the dataset obtained

from 1,254 women booking for antenatal care at St. George’s hospital between

August 1982 and March 1984. Gibbs sampling the posterior under a more robust
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prior on β is considered. Chib’s method (Chib, 1995) is used to calculate approx-

imate Bayes factors for comparing competing models. In Chapter 4, the ideas of

the previous chapters are extended to deal with model uncertainty and model se-

lection in more detail. Stochastic search variable selection for quantile regression

(QR-SSVS) similar in spirit to George and McCulloch (1997) is introduced and

applied to a simulated dataset and the Boston Housing data. Finally, Chapter 5

concludes the thesis and offers suggestions of future work.

The Appendix provides details about the R functions that have been written

to implement the Gibbs sampler described in Chapter 2 with a normal prior and

the QR-SSVS algorithm described in Chapter 4. These have been used to obtain

all analyses reported in this thesis. A short tutorial is provided on how to use

these R functions.
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Chapter 2

Bayesian Quantile Regression
using Data Augmentation

2.1 Introducing the Latent Variables

From the literature review in the previous chapter, it is now clear that relying

on a fully parametric model specified using the AL likelihood may be restrictive.

Nevertheless, it remains the most straightforward and easily extended approach

to obtain Bayesian estimates in quantile regression models. Results from this

chapter will allow a regression model with the AL likelihood to be converted into

a normal regression model with latent variables.

Firstly, note that the check function (1.4) can equivalently be defined as

ρτ (u) := 1
2
|u|+ (τ − 1

2
)u. (2.1)

Using the definition of the check function (2.1), we can write the AL likelihood

l(y|β) given in (1.9) as

n∏
i=1

exp{−1
2
|yi − xi

Tβ|}
n∏
i=1

τ(1− τ) exp{−(τ − 1
2
)(yi − xi

Tβ)}. (2.2)

Notice that the first product in (2.2) is proportional to the product of n double

exponential densities (or AL densities with τ = 0.5). Well known results from

Andrews and Mallows (1974) and West (1987) show that the double exponential

distribution admits a representation as a scale mixture of normals. In particular,

fτ=0.5(z) =
1

4
exp

{
−|z|

2

}
=

∫ ∞
0

1√
2πv

exp

{
− z

2

2v

}
1

8
exp

{
−v

8

}
dv. (2.3)
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It is in fact more convenient to parameterise in terms of w = v−1 in (2.3),

giving the representation

fτ=0.5(z) =
1

4
exp

{
−|z|

2

}
=

∫ ∞
0

√
w

2π
exp

{
−z

2w

2

}
1

8w2
exp

{
− 1

8w

}
dw.

(2.4)

This means that a double exponential distribution can be obtained by marginal-

ising over w, where z|w is normal with mean 0 and precision w and w has an in-

verse Gamma distribution with parameters (1, 1
8
). Likelihood (2.2) can therefore

be obtained by marginalising over the entire n× 1 vector of latent parameters w

from the augmented likelihood l(y|β,w) proportional to

n∏
i=1

{√
wi exp{−1

2
wi(yi − xi

Tβ)2 − (τ − 1
2
)(yi − xi

Tβ)}
}
, (2.5)

under the prior π(w) =
∏n

i=1 π(wi), where

π(wi) ∝ w−2i exp(−1
8
w−1i ). (2.6)

The full Bayesian specification is completed by a prior on the unknown re-

gression parameters β. The multivariate normal prior

π(β) ∝ exp{−1
2
(β − b0)TB0(β − b0)}, (2.7)

is semi-conjugate. For now, it is assumed that the prior mean vector b0 and

the prior precision matrix B0 are fixed although this will be relaxed later. An

improper prior is obtained by setting B0 = cI, and letting c→ 0.

The joint posterior distribution π(β,w|y) is given by

π(β,w|y) ∝ l(y|β,w)π(w)π(β). (2.8)

Given the result that the marginal posterior distribution π(β|y) =
∫
π(β,w|y)dw

remains proper if an improper prior is used for π(β) (Yu and Moyeed, 2001), this

is also the case for the augmented posterior distribution (2.8).

Sampling directly from π(β,w|y) and the marginal π(β|y) remains difficult.

However, the conditional posterior distributions π(β|w,y) and π(w|β,y) can
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be sampled easily and efficiently. This motivates the Gibbs sampler to produce

approximate samples from π(β,w|y) and using the sampled values of β as samples

from π(β|y).

Combining (2.5) with (2.7) reveals that π(β|w,y) is multivariate normal with

precision matrix

B1 = XTWX + B0, (2.9)

and mean

b1 = B1
−1(XTWy + (τ − 1

2
)XT1n + B0b0). (2.10)

Here, W denotes an n × n diagonal matrix with the weights wi forming the

diagonal and 1n denotes an n × 1 vector of ones. Note that if τ = 0.5, then the

posterior mean b1 becomes

b1 = B1
−1(XTWy + B0b0). (2.11)

If the predictors are centered and τ 6= 0.5, then

b1 = B1
−1(XTWy + B0b0 + ξ), (2.12)

where ξ is a (p + 1) × 1 vector with the first element equal to n(τ − 1
2
) and

the remaining elements equal to 0. Sampling this normal distribution is most

efficiently done using a Cholesky decomposition of B1.

To obtain π(w|β,y), first note that wi is conditionally independent of all

remaining elements of w given β and y. For a particular value of i, combining

(2.5) with (2.6), the density function is proportional to

w
−3/2
i exp

{
−wi(yi − xTi β)2

2
− 1

8wi

}
. (2.13)

This density function can be compared to the kernel of an inverse Gaussian (IG)

density function with pdf

f(wi|λi, µi) ∝ w
−3/2
i exp

{
−λi(wi − µi)

2

2µ2
iwi

}
, µi, λi > 0, (2.14)

using the parameterisation of Chhikara and Folks (1989). The parameters of

(2.14) are the scale parameter λi = λ = 1
4

and the location parameter µi =
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Algorithm 2.1 Gibbs sampler for augmented quantile regression model with
initial values for β. Draws M burn in samples followed by an additional N samples
for inference.

Given: Prior mean vector b0, prior precision matrix B0 and initial values β(0).

for k = 1 to M +N do
• Sample w(k)|β(k−1),y by sampling the ith component of w (i = 1, . . . , n)
from the inverse Gaussian distribution with shape parameter 1

4
and location

1
2
|yi − xi

Tβ(k−1)|−1.
• Sample β(k)|w(k),y from the multivariate normal distribution with preci-
sion matrix

XTW(k)X + B0

and mean vector

(XTW(k)X + B0)−1(XTW(k)y + (τ − 1
2
)XT1 + B0b0),

where W(k) is a diagonal matrix with the elements of w(k) forming the diag-
onal.

end for.

1
2
|yi − xi

Tβ|−1. Consequently, sampling from π(w|β,y) requires n samples from

the inverse Gaussian distribution with the same scale parameter 1
4

but differ-

ent location parameters µi. The inverse Gaussian distribution can be sampled

efficiently using the algorithm of Michael et al. (1976). Note the difference here

between Kozumi and Kobayashi (2009) who obtain a generalised inverse Gaussian

density for each of their latent variables, which cannot be sampled as efficiently.

The Gibbs sampler is summarised in Algorithm 2.1. Of course, as this is an

ordinary Gibbs sampler, it is possible to rearrange the steps without altering the

target distribution to which the Gibbs sampler converges. This leads to Algorithm

2.2. In this case, starting values w(0) are required. Given that the prior on w is

proper and that it is more difficult to make a sensible first guess at these initial

values, they could be drawn at random from the prior.
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Algorithm 2.2 Gibbs sampler for augmented quantile regression model with
initial values for w. Draws M burn in samples followed by an additional N samples
for inference.
Given: Prior mean vector b0, prior precision matrix B0 and initial values w(0).

for k = 1 to M +N do
• Sample β(k)|w(k−1),y from the multivariate normal distribution with pre-
cision matrix

XTW(k−1)X + B0

and mean vector

(XTW(k−1)X + B0)−1(XTW(k−1)y + (τ − 1
2
)XT1 + B0b0),

where W(k−1) is a diagonal matrix with the elements of w(k−1) forming the
diagonal.

• Sample w(k)|β(k),y by sampling the ith component of w (i = 1, . . . , n)
from the inverse Gaussian distribution with shape parameter 1

4
and location

1
2
|yi − xi

Tβ(k)|−1.
end for.

2.2 Engel data: Comparing Augmented Poste-

rior Summaries with Frequentist Estimate/

Marginal Posterior Mode

The first application is to assess the accuracy of the point estimates obtained

by retaining only the sampled values of β from the Gibbs sampler described in

the previous section. Whilst the marginal posterior mode in this case corresponds

to finding the classical quantile regression estimate, it is in general unreliable to

estimate the marginal posterior mode purely from MCMC output. This is because

it is difficult to know whether all islands of high probability have been visited by

the MCMC algorithm.

To illustrate, consider Engel’s data in Koenker and Bassett (1982) and also

available in the quantreg (Koenker, 2009) package. The dataset consists of 235

observations on the annual household food expenditure in Belgian francs. There

is one predictor which is annual household income. Both the intercept and the

coefficient of the predictor were assigned improper priors. Inference was based on

10,000 samples following a burn in of 1,000.
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τ = 0.1
Frequentist Estimate Posterior Mean Posterior Median

Intercept 110.142 111.398 111.189
Foodexp 0.402 0.398 0.399

τ = 0.25
Frequentist Estimate Posterior Mean Posterior Median

Intercept 95.484 94.709 94.827
Foodexp 0.474 0.475 0.475

τ = 0.5
Frequentist Estimate Posterior Mean Posterior Median

Intercept 81.482 82.625 82.556
Foodexp 0.560 0.559 0.559

τ = 0.75
Frequentist Estimate Posterior Mean Posterior Median

Intercept 62.397 60.467 60.338
Foodexp 0.644 0.646 0.646

τ = 0.9
Frequentist Estimate Posterior Mean Posterior Median

Intercept 67.351 66.164 66.141
Foodexp 0.686 0.687 0.687

Table 2.1: Comparison of frequentist estimate (also marginal posterior mode) and
posterior mean and median, estimated from the Gibbs sample by retaining only
the β values. The summary statistics are calculated from 11,000 iterations with
the first 1,000 discarded.
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As can be seen in Table 2.1, both the estimated posterior mean and median

under the augmented model are good approximations to the marginal posterior

mode, the median being slightly closer in more cases than the mean. The Rao-

Blackwellised estimate of the mean was also calculated but was almost identical

to the mean calculated directly from the samples and is therefore not reproduced

in the table.

2.3 Stackloss data: Comparison of Gibbs sam-

pler and Metropolis-Hastings algorithm

The second example uses Brownlee’s stack loss data (Brownlee, 1960). The data

originates from 21 days of operation of a plant for the oxidation of ammonia to

nitric acid. The nitric oxides produced are absorbed in a countercurrent absorption

tower. The response variable is 10 times the percentage of the ingoing ammonia to

the plant that escapes from the absorption column unabsorbed and is a measure of

the “efficiency” of a plant. There are 3 covariates in this dataset which are air flow

(x1), which represents the rate of operation of the plant, water temperature (x2),

the temperature of cooling water circulated through coils in the absorption tower

and acid concentration (x3), which is the concentration of the acid circulating,

minus 50, times 10.

This section compares the posterior estimates obtained using the Gibbs sam-

pler to those obtained using the univariate random walk Metropolis Hastings

(MH) within Gibbs algorithm of Yu and Moyeed (2001). This involves updating

each of the 4 parameters including the intercept one by one using an MH step

based on a proposed value that is the current value plus random noise whilst

conditioning on all remaining parameters. For this comparison, improper priors

on all unknown regression parameters are again used. 11,000 samples are drawn

from each Markov chain, 1,000 of which discarded as burn in. The analysis uses

τ = {0.05, 0.25, 0.5, 0.75, 0.95}. Table 2.2 presents the posterior mean together

with the 95% highest posterior density (HPD) region in parentheses for each
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chain. A word of caution: the HPD intervals are conditional on the choice of like-

lihood. They are presented here as a way to compare how well both algorithms

explore the posterior distribution.

It can be seen from Table 2.2 that both the estimates and the HPD inter-

vals are very similar across all quantiles, indicating that for small dimensional

problems, Gibbs and MH perform similarly well at exploring the posterior distri-

bution despite the n = 21 additional parameters for the Gibbs sampler to update.

The MH algorithm was run using the optimal settings recommended by Yu and

Moyeed (2001).

It should be noted that the Gibbs sampler for τ = 0.5 produces samples that

have significantly lower autocorrelation than MH (see Figure 2.1). Whilst it is

true that any MH algorithm is always likely to have higher autocorrelation than

a Gibbs sampler given that all candidate values are accepted in Gibbs sampling,

another factor may be that the Gibbs sampler updates the regression parameters

in one block and the latent parameters in another block. In contrast, the advan-

tage associated with being able to choose univariate candidate densities for MH

by holding the remaining parameters constant is negated by the fact that the

predictors are correlated. The correlation between water temperature and acid

concentration is about 0.39, between acid concentration and air flow is 0.5 and

between water temperature and air flow is 0.78. As a result, any sampler that up-

dates each parameter one by one conditional on the other parameters being held

fixed is less likely to be able to make large moves and fully explore the posterior

distribution in a reasonable amount of time. On this basis, the Gibbs sampler is

more efficient when τ = 0.5.

2.4 Bayesian Quantile Regression with Natural

Cubic Splines

Recently, Thompson et al. (2010) used the approach of Yu and Moyeed (2001)

to implement non parametric Bayesian quantile regression using natural cubic
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τ = 0.05
Gibbs MH

Intercept -41.099(-89.951, -2.328) -41.873(-92.301,-3.637)
x1 0.398(-0.165,0.900) 0.387(-0.181,0.901)
x2 1.545(-0.176,3.163) 1.519(-0.150,3.149)
x3 -0.050(-0.648,0.607) -0.028(-0.603,0.615)

τ = 0.25
Gibbs MH

Intercept -37.749(-54.170,-21.421) -37.133(-54.318, -21.008)
x1 0.654(0.350,0.933) 0.672(0.368,0.970)
x2 1.013(0.363,1.770) 1.004(0.328, 1.743)
x3 -0.092(-0.361, 0.147) -0.106(-0.387, 0.133)

τ = 0.5
Gibbs MH

Intercept -38.613(-53.419,-23.587) -38.660(-54.983,-22.687)
x1 0.839(0.613,1.072) 0.838(0.620, 1.058)
x2 0.725(0.222,1.352) 0.732(0.186,1.386)
x3 -0.115(-0.322,0.078) -0.116(-0.334,0.083)

τ = 0.75
Gibbs MH

Intercept -48.528(-68.976, -23.097) -48.872(-68.624,-22.496)
x1 0.862(0.589,1.131) 0.849(0.562,1.132)
x2 1.033(0.263,1.810) 1.068(0.261,1.910)
x3 -0.065(-0.380,0.186) -0.060(-0.389,0.189)

τ = 0.95
Gibbs MH

Intercept -41.236(-90.369,45.144) -43.047(-91.716,41.351)
x1 0.766(0.191,1.428) 0.786(0.186,1.477)
x2 1.485(-0.194,2.806) 1.401(-0.224,2.755)
x3 -0.144(-1.124,0.538) -0.118(-1.114,0.561))

Table 2.2: Comparison of Gibbs sampler and Metropolis-Hastings(MH). The pos-
terior means were recorded together with the 95% highest posterior density (HPD)
intervals (in parentheses).
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Figure 2.1: Stackloss data: Comparing autocorrelation of Gibbs and MH at τ =
0.5. The top row corresponds to the Gibbs sampler, the bottom row to MH with
optimal settings.
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splines (NCS). In this section, a Gibbs sampler designed using the same approach

as the previous sections is compared to the MH algorithm used by Thompson

et al. (2010). Following the authors, artificial data was simulated based on the

motorcycle data obtained in an experiment to test crash helmets and discussed

in Silverman (1985). This dataset is a classic example of where polynomial re-

gression is inappropriate. The response variable y of the motorcycle data is a

record of the head acceleration, measured in multiples of the acceleration due to

gravity g. The explanatory variable x is the time, measured in milliseconds, after

a simulated motorcycle accident. An artificial dataset was formed by simulating

100 observations at 30 evenly spaced time points from a normal distribution with

mean equal to the value of the smoothing spline fitted to the motorcycle data at

each time point and standard deviation equal to 20.

Using the notation of Green and Silverman (1994), let ti be the ordered set of

knots that are in the range of x and let gi = g(ti) denote the value of the NCS

at the knot points ti. The AL likelihood l(y|g), where g is a 30 × 1 vector with

elements gi, is then proportional to

∏
i,j

exp{−1
2
|yij − gi|}

∏
i,j

exp{−(τ − 1
2
)(yij − gi)}, (2.15)

where i runs from 1 to 30 and j runs from 1 to 100. The model of Thompson

et al. (2010) assumes a multivariate normal prior for g,

π(g|λ) ∝ λn/2 exp(−λ
2
gTKg). (2.16)

This choice was motivated by the fact that the log density is proportional to

the roughness penalty
∫ b
a
g′′(x)2dx as a consequence of theorem 2.1 in Green and

Silverman (1994). The matrix K is a fixed symmetric matrix of rank 28 defined

as QR−1QT . Defining hi = ti+1− ti for i = 1, . . . , 29, the matrix Q is 30×28 with

entries qij, i = 1, . . . , 30, j = 2, . . . , 29, with qj−1,j = h−1j−1, qjj = −h−1j−1 − h−1j ,

qj+1,j = h−1j for j = 2, . . . , 29 and qij = 0 for |i − j| ≥ 2. The matrix R is a

symmetric 28× 28 matrix and has elements rij, i = 2, . . . , 29, j = 2, . . . , 29, with
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rii = 1
3
(hi−1 + hi), i = 2, . . . , 29, ri,i+1 = ri+1,i = 1

6
hi, i = 2, . . . , 28 and rij = 0

for |i − j| ≥ 2. The parameter λ denotes the smoothing parameter that acts as

a compromise between smoothness and fidelity to the data. Finally, the model of

Thompson et al. (2010) treats λ as unknown and gives it a Gamma hyperprior

with parameters c0 and d0,

π(λ) ∝ λc0−1 exp(−d0λ). (2.17)

Instead of using the random walk Metropolis within Gibbs as in Yu and Moy-

eed (2001), Thompson et al. (2010) opt for an MH algorithm that updates the

entire vector g in one block followed by an update for λ. The main disadvantage

with this approach is the “curse of dimensionality” - to find a suitable candi-

date density that performs well and gives good mixing is extremely hard in high

dimensional problems.

In order to implement a Gibbs sampler, an additional 3,000 latent variables

in a 30 × 100 matrix W need to be introduced into the model. The augmented

likelihood l(y|g,W,y) is proportional to∏
i,j

{√
wij exp{−1

2
wij(yij − gi)2}

}∏
i,j

exp{−(τ − 1
2
)(yij − gi)}. (2.18)

The final component of this augmented model is the independent and identically

distributed inverse Gamma priors on each wij with parameters (1, 1
8
). Just as in

section 2, the likelihood of Thompson et al. (2010) can be recovered by marginal-

ising over W.

Routine calculations reveal that the conditional posterior distribution of g is

multivariate normal with precision matrix

Ω + λK (2.19)

and mean vector

(Ω + λK)−1u, (2.20)

where Ω denotes a 30×30 diagonal matrix with Ωi,i =
∑100

j=1wij and u is a 30×1

vector with elements ui =
∑100

j=1wijyij + 100(τ − 1
2
). The full conditional of each
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Algorithm 2.3 Gibbs sampler for quantile regression with natural cubic splines.
Draws M burn in samples and N samples for inference.

Given: Precision matrix K and initial values g(0).

for k = 1 to M +N do
• Sample each component w

(k)
ij |g(k−1),y by sampling from the inverse Gaus-

sian distribution with shape parameter 1
4

and location 1
2
|yij − g(k−1)i |−1.

• Sample λ(k)|g(k−1),y from the gamma distribution with location 14 + c0
and scale 1

2
{g(k−1)}TKg(k−1).

• Sample g(k)|W(k), λ(k),y from the multivariate normal distribution with
precision matrix

Ω(k) + λ(k)K

and mean vector
(Ω(k) + λ(k)K)−1u(k),

where Ω(g) is a 30× 30 diagonal matrix with Ω
(g)
i,i =

∑100
j=1w

(g)
ij and u(k) is a

30× 1 vector with elements u
(k)
i =

∑100
j=1w

(k)
ij yij + 100(τ − 1

2
).

end for.

wij is inverse Gaussian with parameters (1
2
|yij − gi|−1, 14), with wij conditionally

independent of each other given g and the data y. Finally, the conditional poste-

rior for λ is gamma with parameters (14 + c0,
1
2
gTKg + d0). This Gibbs sampler

can be summarised in Algorithm (2.3)

Thompson et al. (2010) analysed τ = 0.95 and ran the MH algorithm for

250,000 iterations discarding 50,000 as burn in and retaining every 10th iteration

to reduce autocorrelation and for storage purposes. Figure 2.2 plots the NCS

obtained by the MH algorithm and that obtained by the Gibbs sampler using

11,000 iterations, 1,000 of which were discarded as burn in.

At first glance, all seems fine. Figure 2.2 show that both the MH algorithm

and the Gibbs sampler produce curves that can accurately reconstruct the true

underlying curve and are very similar to each other.

Thompson et al. (2010) assess the rate of convergence by running 3 separate

MH samplers initialised with wildly different starting values. These same starting

values were used to start 3 additional Gibbs samplers. Figure 2.3 shows the first

10,000 iterations of the 3 chains under MH sampling for the first knot g1. Figure

2.4 shows the first 100 iterations of the 3 chains under Gibbs sampling for g1.
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Figure 2.2: Bayesian nonparametric regression using NCS for τ = 0.95. The blue
curve is obtained from our Gibbs sampler, the red curve is obtained from MH.
The dashed black curve is the true underlying curve.
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Figure 2.3: Plot of the first 10,000 iterations of the Metropolis Hastings chains,
plotted for g1.
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Figure 2.4: Plot of the first 100 iterations of the Gibbs chains, plotted for g1.
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The disadvantage of the MH algorithm is immediately evident from Figure 2.3

and Figure 2.4. The chains obtained using MH have not forgotten their starting

values after 10,000 iterations. In fact, even after running the 3 chains for the full

250,000 iterations, discarding the first 50,000 iterations and thinning, the posterior

mean for g (not shown here) was different for each chain. In contrast, observe that

the 3 chains obtained by running the Gibbs sampler converged on each other very

quickly, despite having 3,000 additional parameters to update. This is likely to be

due to the fact that the Gibbs sampler blocks all 3,000 latent parameters together,

thus reducing the negative effect alluded to in Liu et al. (1994) of having 3,000

additional parameters to update. Running the Gibbs samplers with 3 different

starting values each for 11,000 iterations discarding the first 1,000 gave values of

the Gelman-Rubin (Gelman and Rubin, 1992) diagnostic of between 1.000 and

1.013. The posterior mean for g was virtually identical for each chain. These

results demonstrate the apparent superiority of the Gibbs sampler in these higher

dimensional cases.

The posterior mean for λ was about 0.03. This value of λ indicates that those

curves that fit the data well but are fairly “wiggly” are preferred for this example.

2.5 Summary

This chapter has provided the framework for allowing Bayesian parameter estima-

tion to be implemented on more complex quantile regression models in a relatively

straightforward manner. Despite the observations by Liu et al. (1994) suggesting

that adding latent variables will slow convergence, no evidence of this has been

observed. In fact, it is particularly evident when analysing the nonparametric

quantile regression model with natural cubic splines that the Gibbs sampler is

a much more efficient MCMC sampler. Although it was possible to accurately

reconstruct the underlying curve using both the Gibbs sampler and the MH algo-

rithm of Thompson et al. (2010), the MH sampler requires good prior knowledge

about starting values whereas the Gibbs sampler appears not to be affected by
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the starting values. These observations could be due to a number of factors, most

notably that it is extremely difficult to choose a sensible proposal density in high

dimensional problems and that the Gibbs sampler can update the latent param-

eters jointly whilst sampling directly from the conditional π(g|W, λ,y).
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Chapter 3

An Application in Epidemiology:
Is Maternal Cotinine a Better
Predictor of Low Birthweight
Infants than the Reported
Number of Cigarettes?

3.1 Introduction and Method

Many previous studies analysing infant birthweight have analysed how various

factors have affected average birthweight (Peacock et al. (1998) and references

therein). However, as Abrevaya and Dahl (2008) have pointed out, there are

greater costs associated with low birthweight (LBW) infants. Moreover, it has

been observed that it is more likely for LBW infants to have a greater mortality

rate, in addition to likely problems in development and education (LBW infants

are more likely to repeat a year) and ultimately, are more likely to be unemployed

(see Abrevaya and Dahl (2008) and references therein).

The aim of this study is to use quantile regression on the St George’s Birth-

weight study data to explore whether results presented in Peacock et al. (1998)

hold for the lower quantiles of the conditional distribution. In using quantile

regression, it will be possible to analyse the median and hence investigate the

robustness of the original results.

To answer some of the questions related to this study, model comparisons will
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be required. The Bayesian approach to comparing competing models is to use the

Bayes factor, defined as π(y|Model 1)/π(y|Model 2). If there is no reason to sus-

pect that model 1 is more likely to have generated the data than model 2 a priori,

then the Bayes factor is equivalent to the posterior odds π(Model 1|y)/π(Model 2|y).

Using the Bayesian approach compares the likelihoods averaged over the param-

eters of the models rather than the maximum likelihoods used in frequentist

statistics. The averaging of the likelihood over the parameters naturally penalises

a model for the size of its parameter space, hence offering a model comparison

tool that trades off goodness of fit against model complexity.

Combined with the AL likelihood (1.9), the prior

β|λ ∼ N(0,Λ−1) (3.1)

is used throughout this chapter. Here, λ is a (p+1)×1 vector of hyperparameters

λj and Λ is a (p + 1) × (p + 1) diagonal matrix with Λj,j = λj. To let the data

influence the results as much as possible, λj can be set to a constant c and then

letting c tend to 0. This results in a joint improper uniform prior for β. However,

this improper prior leads to indeterminate Bayes factors. A compromise between

robustness and avoiding indeterminate Bayes factors is to give each λj a gamma

hyperprior with parameters (1
2
, 1
2
). Marginalised over λ, this gives a product of

standard Cauchy(0, 1) distributions as the joint prior on β. These have more

probability mass in the tails than the normal.

Just as before, data augmentation plays a key role in designing more efficient

Gibbs samplers. Under the improper prior on β, the resulting Gibbs sampler is

the same as that in Chapter 2 using b0 = 0 and B0 = cI and c → 0. With the

Cauchy priors, an additional update of each of the latent λj is required, similar

in spirit to the Gibbs sampler for NCS. These can be updated independently of

each other and are exponentially distributed with rate parameter 1
2
(1 + β2

j ). The

procedure is described in Algorithm 3.1.

In using the Gibbs sampler to analyse this dataset, no indications of lack of
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Algorithm 3.1 Gibbs sampler for augmented quantile regression model under
independent Cauchy priors on β. Draws M burn in samples followed by an addi-
tional N samples for inference.

Given: Initial values β(0).

for k = 1 to M +N do
• Sample w(k)|β(k−1),y by sampling the ith component of w (i = 1, . . . , n)
from the inverse Gaussian distribution with shape parameter 1

4
and location

1
2
|yi − xi

Tβ(k−1)|−1.
• Update each component of λ(k) from an exponential distribution with rate
1
2
{1 + {β(k−1)

j }2}.
• Sample β(k)|w(k),λ(k),y from the multivariate normal distribution with
precision matrix

XTW(k)X + Λ(k)

and mean vector

(XTW(k)X + Λ(k))−1(XTW(k)y + (τ − 1
2
)XT1,

where W(k) and Λ(k) are diagonal matrices. Each element of w(k) forms the
diagonal of W(k) and the diagonal elements of Λ(k) are {λ(k)j }.

end for.

convergence were found after 1,000 iterations. Once these first 1,000 iterations

had been discarded, inference was based on 10,000 further iterations.

For the analysis under the Cauchy priors, the Bayes factors were calculated

from the samples using Chib’s method (Chib, 1995). This approach uses a rear-

rangement of Bayes theorem. In this case, conditional on a model, Bayes theorem

gives

l(y) =
l(y|β)π(β)

π(β|y)
. (3.2)

Equation (3.2) remains true if β is substituted by it’s posterior mean β̂. Thus,

an algorithm can be developed making use of the Gibbs samples to calculate an

approximate marginal for y conditional on a fixed model. This is summarised in

Algorithm 3.2.

Algorithm 3.2 can be repeated with other models to form approximate Bayes

factors. The most computationally intense part in this calculation is evaluating the

posterior marginal density ordinate π(β̂|y), which requires additional iterations

from the Gibbs sampler to get a good approximation.
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Algorithm 3.2 Chib’s method for calculating approximate marginal likelihood
l(y).

Given: Gibbs sample obtained using Algorithm 3.1.

• From the Gibbs sample, discard the burn in and average over the remaining
samples to produce an estimate of the marginal posterior mean β̂.

• Evaluate l(y|β̂) and π(β̂). These are both available in closed form, the first
being the AL likelihood and the second a product of Cauchy density ordinates.

• Using the current state of the Gibbs sampler, obtain N addition samples
using Algorithm 3.1. Record the density ordinate at each sampled value of w
and λ, π(β̂|w(k),λ(k)) for k = M +N + 1, . . . ,M + 2N .

• Approximate π(β̂|y) with

π̂(β̂|y) =
1

N

M+2N∑
k=M+N+1

π(β̂|w(k),λ(k)). (3.3)

• Plug these values into (3.2) to obtain an approximation of π̂(y).

3.2 Results

The original research by Peacock et al. (1998), investigated two main questions,

namely i) whether maternal serum cotinine level, a metabolite of nicotine, is a

better predictor of infant’s birthweight than the reported number of cigarettes

smoked by the mother and ii) what the effect of passive smoke exposure on birth-

weight among women who do not smoke is. This dataset was analysed again

to investigate relationships at the median and the lower tails of the conditional

birthweight distribution. Following the original analysis, quantile regression was

used with the response variable being adjusted birthweight (birthweight adjusted

for gestational age, maternal height, sex of infant and parity, where the adjusted

birthweight is effectively a ratio of observed to expected values and can be inter-

preted as percentage differences from expected values (Bland et al., 1990)). The

models investigated included one or more of the following covariates:

• cotinine

• number of cigarettes
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• nicotine yield of cigarette

For each model, data recorded at three time points was analysed: at booking

clinic (approximately 14 weeks gestation), at 28 weeks gestation and at 36 weeks

gestation. The difference between cotinine measured at each of the different time

points was also modelled to help identify whether a change in smoking habit has

an effect on the adjusted birthweight. As a final anaysis, data for women who

were not active smokers (determined by a cotinine measurement level less than

15ng/ml) were analysed to see if there are any effects of passive smoke on the

adjusted birthweight.

A quick glance at the scatterplot of cotinine level at booking against adjusted

birthweight (Figure 3.1) suggests that the linear regression model used by Peacock

et al. (1998) seems sensible for the majority of conditional quantiles of the adjusted

birthweight distribution. Here, the term “linear” is referring both to regression

linear in the parameters and a regression equation that is a straight line. The plots

look similar for cotinine measured at 28 weeks and 36 weeks so are not presented

here. This analysis is therefore based on simple linear quantile regression.

Figure 3.2 plots the posterior mean cotinine as a function of τ for τ ∈

{0.05, 0.1, . . . , 0.45, 0.5}. The shaded region is the associated 95% HPD inter-

val. Just as in the previous chapter, the HPD interval should be interpreted with

caution as it is subject to the likelihood representing the true underlying data

generating mechanism, something that is never assumed in the analysis. It does

however serve as a rough guide for exploratory analysis.

Figure 3.2 shows that at all 3 timepoints the posterior mean birthweight grad-

ually decreases until τ = 0.15, then it appears to decreases significantly faster as

τ gets smaller. The implications are that smoking has a much larger effect on the

more severely underweight infants.

Turning to the question of whether cotinine is a better predictor than the re-

ported number of cigarettes, the Bayes factors were calculated at τ ∈ {0.03, 0.1, 0.25, 0.5}.
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Figure 3.1: Scatterplot of cotinine level at booking against adjusted birthweight.
The points include all those classed as smokers with a cotinine level above
15ng/ml.
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Figure 3.2: Plot of posterior mean cotinine against quantile. The shaded area is
the 95% HPD interval.
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τ Booking 28 Weeks 36 Weeks
0.03 0.958 1.054 0.964
0.1 1.006 1.041 0.9129
0.25 1.072 1.059 1.070
0.5 1.074 1.032 1.162

Table 3.1: Bayes factors against Model 1: Model 1 number of cigarettes vs. Model
2 cotinine.

Bayes factor against Model Evidence against Model
1:3 Weak
3:20 Positive

20:150 Strong
>150 Very strong

Table 3.2: Interpretation of Bayes factors from Kass and Raftery (1995).

Table 3.1 presents the Bayes factor comparing cotinine and number of cigarettes

at the 3 different time points. Table 3.2 is from Kass and Raftery (1995) giving the

scale of evidence for the competing model. The Bayes factors in Table 3.1 range

from 0.9129 to 1.162. Thus any evidence to support either cotinine or number of

cigarettes is weak. The majority of Bayes factors do favour cotinine as a predictor

(3
4

versus 1
4
).

The Bayes factors, although not presented here due to the fact that they

were all bigger than 150, strongly suggest that the additional knowledge of the

nicotine yield does not improve the predictive accuracy in using reported number

of cigarettes relative to cotinine. Instead, the price is paid in additional model

complexity.

Figure 3.3 shows how the difference in cotinine between the various time points

varies with the quantile. The relationship appears fairly linear when comparing

the cotinine recorded at booking with the cotinine recorded at 28 weeks and

36 weeks. However, this does not appear to hold when comparing the difference

between cotinine recorded at 28 weeks to cotinine recorded at 36 weeks with a

more noticeable effect at values of τ smaller than about 0.1. Overall, any difference

in cotinine seems to have the greatest impact on the low birthweight infants.
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Figure 3.3: Plot of posterior mean difference in cotinine against quantiles. Shaded
region is 95% HPD interval.
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τ Booking-28 Weeks 28 Weeks-36 Weeks Booking-36 Weeks
0.03 11.316 9.399 10.013
0.1 19.407 18.874 18.830
0.25 26.745 27.764 25.375
0.5 33.526 30.801 29.663

Table 3.3: Bayes factors against Model 1: Model 1 null model vs. Model 2 cotinine
difference.

τ Booking 28 Weeks 36 Weeks
0.03 17.304 14.105 14.897
0.1 31.443 29.280 28.969
0.25 51.109 47.508 43.368
0.5 61.625 57.642 48.383

Table 3.4: Bayes factors against Model 1 for passive smokers: Model 1 null model
vs. Model 2 cotinine.

Table 3.3 shows the Bayes factors comparing the null model with the model

containing cotinine difference as a predictor. The Bayes factors this time range

from 9.399 to 33.526, indicating evidence ranging from positive to strong that the

difference in cotinine does not have any significant impact. Perhaps not surprising

given Figure 3.3, the weakest evidence supporting the null model was observed at

τ = 0.03, with the evidence increasing steadily as τ increases and falling into the

strong category at the median.

Finally, Figure 3.4 shows the effect of passive smoking on adjusted birthweight.

There is again evidence of a linear relationship between the posterior means and

τ from τ = 0.5 down to about 0.2, then it appears to decrease at a quadratic rate

for values of τ lower than 0.2.

The Bayes factors from Table 3.4 appear to suggest that there is evidence

against passive smoking having a significant effect on birthweight. Just as for the

cotinine difference, the evidence is strongest at the median and gets weaker as τ

decreases. This is again in keeping with the relationship apparent in Figure 3.4.
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region is 95% HPD interval.
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3.3 Conclusion of Study

The Bayesian approach to quantile regression has been successfully used in mod-

elling the lower half of the conditional distribution of birthweight rather than the

average birthweight carried out in the original study. Whilst many of the con-

clusions from median regression analysis are identical to the original research by

Peacock et al. (1998), it is clear that the effects are significantly stronger at the

extreme low quantiles. This study also gives further evidence, albeit weak, that

cotinine is a better predictor of birthweight than the reported number of cigarettes

at all quantiles except 3 percent. There is no significant evidence for both a change

in cotinine level and passive smoking having any effect on birthweight.
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Chapter 4

Bayesian Variable Selection
for Quantile Regression

4.1 Introduction and Method

Up until now, the assumption has been that the underlying regression model is

fixed. Proceeding in this way ignores model uncertainty. The cost of ignoring

model uncertainty is now well known (see Hoeting et al. (1999) and references

therein). The Bayesian answer to this problem is provided by Bayesian model

averaging (BMA). A nice introductory tutorial to BMA is provided by Hoeting

et al. (1999). Madigan and Raftery (1994) show that predictive accuracy, mea-

sured by a logarithmic scoring rule, is always higher if BMA is used compared to

any single model.

The work in the previous two chapters can now be extended to handle model

uncertainty in quantile regression. This chapter follows the manuscript of Reed

et al. (2010) which has been submitted to the Journal of Computational and

Graphical Statistics and is awaiting a revision.

The potential models considered are of the form

Qτ (yi|zi,xi) = zi
Tα+ xi

Tβ. (4.1)

The n× q associated design matrix Z contains all predictors that should always

appear in any model. In the majority of cases, this will be the intercept only so

that Z = 1n and q = 1. The n× (p− q) design matrix X contains the remaining

47



predictors for which variable selection is to be carried out on. The regression

parameters are α and β which are distinguished deliberately to make notation

clearer.

Following common practice for Bayesian variable selection, index each of the

p − q predictors in X by γj, j = q + 1, . . . , p with γj = 1 if the jth predictor is

present in the regression model and 0 otherwise. Additionally, denote the (p−q)×1

vector γ as having jth element γj. In this way, the vector γ uniquely defines each

regression model Mγ . For example, the model Mγ indexed by γ = [1, 0, 0, 1, 0]T

with Z = 1n corresponds to the regression model

Qτ (yi|zi,xi) = α0 + β1x1i + β4x4i.

In order to compare predictors in X in a meaningful way, it is necessary that

the predictors are standardised, that is, they have sample mean equal to 0 and

sample standard deviation equal to 1. The predictors in Z are not required to

be standardised as they are common to all models. Given this, the AL likelihood

(2.2) takes the form

n∏
i=1

exp{−1
2
|yi − zi

Tα− xi
Tβ|}

n∏
i=1

τ(1− τ) exp{−(τ − 1
2
)(yi − zi

Tα)}. (4.2)

After augmenting the data with the latent vector w and assigning the inde-

pendent inverse Gamma priors as in Chapter 2, the normal prior for the regression

parameters is semi-conjugate. The assumed prior for α takes the form

π(α) ∝ exp
{
−1

2
(α− µ0)TA0(α− µ0)

}
, (4.3)

with µ0 and A0 both fixed. The improper prior could be used here by setting

A0 = cI, and letting c→ 0.

For regression parameters β, the assumed prior is specified jointly with γ and

depends on hyperparameters λ and π0. The first component π(β|γ,λ) is specified

using

βj|γj, λj ∼ (1− γj)δ0 + γjN(0, λ−1j ) (4.4)
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for j = q + 1, . . . , p. Here, δ0 denotes a degenerate distribution with all its mass

at zero. The joint prior π(γ,β|λ, π0) is fully specified by letting

γj|π0 ∼ Bernoulli(π0) (4.5)

independently. The hyperparameter π0 = Pr(γj = 1) = Pr(βj 6= 0) represents the

prior probability of including a randomly selected predictor in the model.

Note that the prior (4.4) assigns prior probability 1 − π0 to the event that a

randomly selected predictor is not present in the quantile regression model. This

is in contrast to the specification given by George and Mcculloch (1993) where

this prior probability is 0.

Given that the QR-SSVS procedure will effectively be computing multiple

Bayes factors, a robust approach that avoids using improper priors leading to

indeterminate Bayes factors uses a hyperprior on λ. Following from the previous

chapter, the prior specification

λj ∼ Gamma(1/2, 1/2) (4.6)

induces a heavy-tailed Cauchy prior marginally for the coefficients on the predic-

tors selected to be in the model. Specifically, the marginal prior for βj|γj is given

by

βj|γj ∼ (1− γj)δ0 + γjCauchy(0, 1). (4.7)

Using a standard Cauchy prior for βj given γj = 1 seems sensible given that the

predictors are standardised.

To complete the full specification, it is necessary to specify π0. A common

choice here is to set π0 = 1
2

in an attempt to be non-informative (see e.g. George

and McCulloch (1997)). However, this also assumes that the prior expected num-

ber of predictors in X, pγ =
∑p

j=1 γj, is (p − q)/2. Alternatively, π0 could be

treated as unknown and given a conjugate beta hyperprior π0 ∼ Beta(a0, b0),

thus obtaining a more flexible prior on pγ . This allows the data to inform more

strongly about the model size. The parameter π0 can then be analytically inte-

grated out to yield a beta-binomial prior marginally on pγ .
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4.1.1 QR-SSVS algorithm

For computational convenience, define Xγ , βγ and λγ as being the design matrix

X, the regression parameters β and the vector λ with the jth row or column

deleted if γj = 0. Additionally define Λγ to be a diagonal matrix containing only

those elements of λ on the diagonal for which γj = 1. Now define the matrices

Hγ and Qγ as

Hγ := WXγ(Xγ
TWXγ + Λγ)−1Xγ

TW (4.8)

Qγ := A0 + ZT (W −Hγ)Z, (4.9)

and the vector r as

r := ZTWy + (τ − 1
2
)ZT1 + A0µ0. (4.10)

Finally, define the function f(γ) = f(γq+1, γq+2, . . . , γp), where

f(γ) := Γ(pγ + a0)Γ(p− q − pγ + b0)|Λγ |1/2|Xγ
TWXγ + Λγ |−1/2|Qγ |−1/2

× exp{1
2
(yTHγy + (r− ZTHγy)TQγ(r− ZTHγy))}. (4.11)

Equipped with these definitions, the QR-SSVS algorithm sampling from the joint

marginal with π0 integrated out is fully described in Algorithm 4.1 and Algorithm

4.2.

To prevent the QR-SSVS algorithm from getting stuck, it is necessary to

marginalise out the vector of regression parameters β in updating the indicator

γj. It is not necessary to marginalise out α but it makes the calculations easier if it

is integrated out when updating γj. Due to the use of these reduced conditionals,

the algorithm no longer defines an ordinary Gibbs sampler. It instead defines

a partially collapsed Gibbs sampler (van Dyk and Park, 2008), (Park and van

Dyk, 2009). With such samplers, the order in which the parameters are updated

necessarily affects the stationary distribution to which the algorithm converges.

Although at first glance, the QR-SSVS algorithm seems computationally in-

tensive, in practice the steps required to update both γ and (α,β) can be imple-

mented efficiently. The main computational overhead is computing the Cholesky
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Algorithm 4.1 Component of QR-SSVS algorithm that updates the vector γ.

Given: Index k, previous values of parameters w(k−1), λ(k−1) and previous model
specified through γ(k−1).

• Sample γ
(k)
q |γ(k−1)

−q ,w(k−1),λ(k−1),y, where γ−q denotes the remaining ele-
ments of γ excluding the qth, from a Bernoulli trial with probability of success

f(γq = 1,γ
(k−1)
−q )

f(γq = 1,γ
(k−1)
−q ) + f(γq = 0,γ

(k−1)
−q )

.

for j = q + 1 to (p− 1) do

• Sample γ
(k)
j |γ

(k)
q:j−1,γ

(k−1)
j+1:p ,w

(k−1),λ(k−1),y from a Bernoulli trial with prob-
ability of success

f(γj = 1,γ
(k)
q:j−1,γ

(k−1)
j+1:p)

f(γj = 1,γ
(k)
q:j−1,γ

(k−1)
j+1:p) + f(γj = 0,γ

(k)
q:j−1,γ

(k−1)
j+1:p)

.

end for

• Sample γ
(k)
p |γ(k)

−p,w
(k−1),λ(k−1),y from a Bernoulli trial with probability of

success
f(γp = 1,γ

(k)
−p)

f(γp = 1,γ
(k)
−p) + f(γp = 0,γ

(k)
−p)

.

decomposition, that is, find the Cholesky factor L such that LLT = Σ for some

positive definite matrix Σ. Once this is known, the new Cholesky factor can be

recalculated when a predictor is added or removed from the design matrix Xγ

efficiently using techniques such as permuting the rows of the current Cholesky

factor and applying orthogonal transformations. See Dongarra et al. (1979) for a

more detailed explanation.

4.2 Revisiting the Stack Loss Data

To illustrate QR-SSVS, consider again the stackloss data in Section 2.3. If the

intercept is to be included in all candidate models, then there are a total of 23 = 8

potential models. This data was analysed using the hyperprior π0 ∼ Beta(1, 1).

Each predictor was standardised before analysis except the intercept, which is

assumed to appear in all models. The results are based on 10,000 iterations of
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Algorithm 4.2 Stochastic search variable selection for quantile regression model.
Draws M burn in samples followed by an additional N samples for inference.

Given: Initial values w(0), λ(0) and an initial model specified through γ(0). Typ-
ically, the initial model is the full model, i.e. γ(0) = 1p−q.

for k = 1 to M +N do
• Sample γ(k) using Algorithm 4.1.

• Sample α(k),βγ
(k)|γ(k),w(k−1),λ(k−1),y from the multivariate normal dis-

tribution with precision matrix[
ZTW(k−1)Z + A0 ZTW(k−1)Xγ

Xγ
TW(k−1)Z Xγ

TW(k−1)Xγ + Λγ

]
and mean[

ZTW(k−1)Z + A0 ZTW(k−1)Xγ

Xγ
TW(k−1)Z Xγ

TW(k−1)Xγ + Λγ

]−1 [
r(k−1)

Xγ
TW(k−1)y

]
.

The diagonal matrix W(k−1) is as defined in previous chapters and r(k−1) =
ZTW(k−1)y + (τ − 1

2
)ZT1 + A0µ0.

• Sample w(k)|α(k),β(k),y by sampling the ith component of w (i = 1, . . . , n)
from the inverse Gaussian distribution with shape parameter 1

4
and location

1
2
|yi − zi

Tα(k) − xγ,iTβγ (k)|−1.
• Sample each component of λ(k)|β(k),y from the exponential distribution

with rate parameter 1
2
(1 + {β(k)

j }2)
end for.
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τ = 0.05
Predictors Probability

Intercept, x1, x2 0.283
Intercept, x1, x2, x3 0.261

Intercept, x2 0.144
τ = 0.25

Predictors Probability
Intercept, x1, x2 0.630

Intercept, x1, x2, x3 0.334
Intercept, x1 0.029

τ = 0.5
Predictors Probability

Intercept, x1, x2 0.564
Intercept, x1, x2, x3 0.356

Intercept, x1 0.065
τ = 0.75

Predictors Probability
Intercept, x1, x2 0.595

Intercept, x1, x2, x3 0.298
Intercept, x1 0.084

τ = 0.95
Predictors Probability

Intercept, x1, x2, x3 0.394
Intercept, x1, x2 0.383

Intercept, x1 0.123

Table 4.1: Models visited by QR-SSVS with their estimated posterior probability.
The top 3 models are displayed for τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}.

QR-SSVS following a 1,000 iteration burn in. Table 4.1 presents the 3 most visited

models at each quantile τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. Again, x1 denotes air flow,

x2 denotes water temperature and x3 is acid concentration.

The first observation is that the models selected when τ = 0.25, τ = 0.5 and

τ = 0.75 are ranked in the same order and have similar posterior probabilities.

This might suggest that the data exhibit homoscedasticity in this region although

this would have to be verified. One way to do this would be to examine posterior

parameter estimates βγ and see if they are roughly equal for these values of

τ . At the extreme quantiles τ = 0.05 and τ = 0.95, the models ranked first

and second have roughly equal posterior probabilities. This is typical for extreme
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a0 = b0 = 1
Predictors Probability

Intercept, x1, x2 0.564
Intercept, x1, x2, x3 0.356

Intercept, x1 0.065
a0 = 3, b0 = 6

Predictors Probability
Intercept, x1, x2 0.710

Intercept, x1 0.146
Intercept, x1, x2, x3 0.125

Table 4.2: Models visited by QR-SSVS at τ = 0.5 with their estimated posterior
probability. The top 3 models are displayed for the hyperpriors π0 ∼ Beta(1, 1)
and π0 ∼ Beta(3, 6) respectively.

quantiles and is due to the frequent lack of information provided in the tails of the

conditional distribution. To see this, observe that the top 3 models account for

over 97% of the total posterior probability when τ = 0.25, τ = 0.5, and τ = 0.75

whereas when τ = 0.05, the top 3 models account for only around 69% of the

total posterior probability.

The effect of including prior information about the model size is now investi-

gated. For this analysis, τ is set equal to 0.5 i.e. there is interest in discovering

plausible models for the conditional median. This analysis has just been done

using π0 ∼ Beta(a0, b0) with a0 = b0 = 1. This is equivalent to a uniform prior

on the prior probability of selecting a predictor. Suppose instead that a0 = 3 and

b0 = 6 in the hyperprior for π0. This density has a single mode at 2
7
. Alternatively,

it is equivalent to saying that the expected model size pγ is 1 with variance equal

to 0.8. As a consequence, it can be viewed as including prior knowledge that mod-

els with a smaller number of predictors are more plausible. The results of using

the 2 priors are compared in Table 4.2.

The effect of this prior knowledge has resulted in increasing the estimated

posterior probability of the model that was ranked in first position under a non-

informative prior from 0.564 to 0.710. This is likely to be due to the fact that

using an informative prior on the model size reduces the number of alternative
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models that are supported by the prior. Secondly, the effect of imposing sparsity

in the range of plausible models can clearly be seen. The full model was ranked

in second position under the non-informative prior with an estimated posterior

probability of 0.356. However, when imposing sparsity, the full model was ranked

in third place with an estimated posterior probability of 0.125. In contrast, the

model containing only x1 (air flow) was ranked in third place with an estimated

posterior probability of 0.065 under the non-informative prior, but was ranked

in second place with an estimated posterior probability of 0.146 when imposing

sparsity. The conclusion is that an informative hyperprior on π0 can be used to

guide the QR-SSVS procedure depending on what models are thought to be most

plausible before observing the data.

4.3 Application to Boston Housing data

To illustrate QR-SSVS on a larger dataset, consider the Boston housing data of

Harrison and Rubinfeld (1978). The corrected data consists of n = 506 observa-

tions and p = 16 potential predictors of interest. These are the tract point lati-

tudes/longitudes in decimal degrees (LAT/LON), the per capita crime (CRIM),

the proportions of residential land zoned for lots over 25,000 square feet per town

(ZN), the proportions of non-retail business acres per town (INDUS), whether

or not the tract borders the Charles river (CHAS), nitric oxide concentration

(parts per 10 million) per town (NOX), average number of rooms per dwelling

(RM), the proportions of owner occupied units built prior to 1940 (AGE), the

weighted distances to 5 Boston employment centres (DIS), the index of acces-

sibility to radial highways per town (RAD), the full value property tax rate in

10,000s of US dollars per town (TAX), pupil to teacher ratios per town (PTRA-

TIO), 1, 000(proportion of black people−0.63)2 (B) and the percentage values of

lower status population (LSTAT). The response variable is CMEDV, the corrected

median values of owner occupied housing in 1,000s of US dollars.

This data was analysed using the hyperprior representing ignorance, π0 ∼
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τ = 0.5
Posterior 95% credible Frequentist 95% rank

MIP median interval estimate interval
LON 0.996 -0.563 (-0.960, -0.163) -0.495 (-0.989, -0.287)
LAT 0.867 0.194 (-0.057, 0.505) 0.249 (-0.007, 0.504)

CRIM 0.998 -0.953 (-1.399, -0.271) -1.203 (-1.282, -0.222)
ZN 0.998 0.728 (0.224, 1.198) 0.835 (0.422, 1.150)

INDUS 0.748 0.000 (-0.566, 0.355) 0.006 (-0.405, 0.302)
CHAS 0.983 1.036 (-0.023, 2.259) 0.942 (0.367, 2.108)
NOX 0.978 -0.651 (-1.309, 0.000) -0.682 (-1.213, -0.059)
RM 1.000 3.534 (2.893, 4.193) 3.516 (2.619, 4.335)
AGE 0.987 -0.617 (-1.163, -0.013) -0.637 (-1.052, -0.173)
DIS 1.000 -1.784 (-2.406, -1.163) -1.909 (-2.525, -1.379)

RAD 1.000 1.482 (0.592, 2.346) 1.733 (0.962, 2.426)
TAX 1.000 -1.917 (-2.721, -0.999) -2.099 (-2.630, -1.312)

PTRATIO 1.000 -1.428 (-1.828, -1.011) -1.485 (-1.742, -1.051)
B 1.000 1.096 (0.746, 1.445) 1.085 (0.848, 1.496)

LSTAT 1.000 -2.281 (-2.961, -1.607) -2.254 (-2.904, -1.620)

Table 4.3: Marginal inclusion probabilities (MIPs), posterior summaries and cor-
responding frequentist estimates (based on the full model) of the Boston Housing
data, presented for τ = 0.5.

Beta(1, 1). Just as before, each predictor was standardised before analysis except

the intercept, which is assumed to appear in all models. The results this time

are based on 50,000 iterations of QR-SSVS following a 5,000 iteration burn in

due to the larger number of candidate predictors. Table 4.3 presents the marginal

inclusion probabilities (MIPs), the posterior summaries and the frequentist results

for comparison. The MIP for a predictor j is given by π(γj = 1|y) and can be

estimated by the proportion of occasions that γj = 1 during the QR-SSVS run.

The 95% credible interval reported is the central 95% credible interval estimated

by calculating the sample 2.5% and 97.5% quantiles and not the HPD as this is

difficult to find given the enormity (p = 216 = 65, 536) of the model space. The

frequentist analysis was based on fitting the full model to the data.

Note from Table 4.3 that many predictors appear in all models visited by QR-

SSVS when τ = 0.5. The median probability model, as defined by Barbieri and

Berger (2004) includes all predictors. The posterior estimates and credible inter-
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τ = 0.05
Predictors Model Size Probability

LON, LAT, CRIM, ZN, INDUS, CHAS, NOX, RM,
15 0.268

AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT
LON, CRIM, ZN, INDUS, CHAS, NOX, RM,

14 0.053
AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT
LON, LAT, CRIM, INDUS, CHAS, NOX, RM,

14 0.052
AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT

LON, LAT, CRIM, ZN, CHAS, NOX, RM,
14 0.043

AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT
LON, LAT, CRIM, ZN, INDUS, CHAS, RM,

14 0.025
AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT

τ = 0.5
Predictors Model Size Probability

LON, LAT, CRIM, ZN, INDUS, CHAS, NOX, RM,
15 0.634

AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT
LON, LAT, CRIM, ZN, CHAS, NOX, RM,

14 0.186
AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT
LON, CRIM, ZN, INDUS, CHAS, NOX, RM,

14 0.078
AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT

LON, CRIM, ZN, CHAS, NOX, RM, AGE,
13 0.044

DIS, RAD, TAX, PTRATIO, B, LSTAT
LON, LAT, CRIM, ZN, INDUS, CHAS, RM,

14 0.013
AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT

Table 4.4: The 5 models with the highest estimated posterior probability. The
results are presented for τ = 0.05 and τ = 0.5.

vals are similar to the frequentist estimates and rank intervals. This is perhaps

unsurprising given that the majority of predictors are important in the median

regression model. In Table 4.4, the top 5 models for τ = 0.05 and τ = 0.5 are pre-

sented. In this case, the highest probability model for both values of τ is the same,

but the associated probability changes for different quantiles. Observe again the

larger model uncertainty when τ = 0.05, with only 44.1% of the posterior proba-

bility accounted for by the top 5 models. In contrast, for median regression where

τ = 0.5, the top 5 models account for 95.5% of the total posterior probability.
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4.4 Summary

The work done in this chapter has allowed researchers to fully take into account

the model uncertainty inherent to regression analysis and apply it to quantile

regression under a Bayesian framework. It is likely that posterior model proba-

bilities may vary across quantiles and the models achieving the highest posterior

probabilities may also vary. QR-SSVS can thus be used as a tool to rank models

in order of posterior probabilities at each quantile. By examining MIPs, QR-SSVS

can help uncover predictors that globally affect all quantiles and those that only

affect quantiles locally.
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Chapter 5

Conclusions and Future Research

5.1 A Summary of this Thesis

The principal aim of this work has been to make the Bayesian approach to quan-

tile regression straightforward for applied researchers. The bonus of using the

AL likelihood of Yu and Moyeed (2001) is that the resulting Bayesian quantile

regression model can be converted into a normal regression model with latent vari-

ables. This has many advantages, including, for example, the ability to use Rao-

Blackwellisation to approximate the marginal posterior density (see Held (2004)

for an example of an application) and the ability to easily extend the model to

handle random effects, non parametric regression using splines and covariate set

uncertainty, to name but a few.

It has been shown that although the posterior mode under an improper prior

has a direct correspondence to the frequentist procedure, the posterior mean and

median are also close to the mode and are more readily available from the Gibbs

sample. Alternatively, Rao-Blackwellised estimates are available for the posterior

mean. Using Gibbs sampling on the augmented posterior distribution has been

shown to be more efficient than MH on the marginal distribution, particularly

when fitting natural cubic splines.

A variant of this Gibbs sampling approach was independently investigated

by Kozumi and Kobayashi (2009) who used a different parameterisation than

that appearing in this thesis. They also found an increase in efficiency using the
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Gibbs sampler on the augmented space. On realising the similarity between the

two approaches, a comparison was made between the progress of this work and

of the work of Kozumi and Kobayashi (2009). It was felt that this work was at

a more advanced stage and so Kozumi and Kobayashi (2009) were invited to

combine their contribution to this work. This proposal was accepted, resulting in

the joint manuscript (Reed et al., 2010) that has been submitted to the Journal

of Computational Statistics and Data Analysis and is awaiting a small revision.

Re-analysing the St George’s birthweight study has confirmed the findings of

the original study by Peacock et al. (1998), but additional insight has been gained

into whether or not the metabolite cotinine is a more accurate predictor of low

birthweigh infants than just the reported number of cigarettes and whether or not

changing smoking habits during pregnancy or second hand smoke have an effect

on the chances of having an underweight infant. It has been observed through

quantile regression that these factors seem to have a stronger effect on the lower

portion of the conditional birthweight distribution suggesting that any exposure

to smoke, whether it is active or passive can increase the likelihood of having an

underweight infant.

By taking account of model uncertainty in quantile regression, there is the

possibility of choosing a single model as the “best” model, for example by taking

the model with the highest estimated posterior probability or to take the model

whose predictors have a marginal inclusion probability of greater than 0.5 (the

median probability model, using the terminology of Barbieri and Berger (2004)).

Alternatively, it allows the possibility of model averaging to fully take account of

the model uncertainty inherent in all regression problems.

Finally, two of the main Gibbs sampling algorithms have been implemented

in R for the package MCMCpack. These algorithms use an R interface that is very

similar to what users would find using the lm command. As a result, anyone who

is familiar with regression in R could use these functions easily. Whilst not having

the flexibility of programs like WinBUGS, the samplers are hand crafted and are
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consequently more efficient and faster. This is important when multiple quantile

regressions are of interest.

It is important to again emphasise that the AL likelihood is a “pseudo” like-

lihood providing a bridge between the Bayesian and the classical approach to

quantile regression. It is not thought to be an accurate representation of a true

data generating likelihood. Topics that require further research include how ac-

curate any credible intervals are when the assumption of the AL likelihood is

violated. Posterior model probabilities and marginal inclusion probabilities may

also be called into question in this situation. There are, however, extensions that

may offer some improvements. These are discussed next.

5.2 Extensions

5.2.1 Shape parameter σ

A small improvement in flexibility can be made by incorporating a scale parameter

σ. This now results in a likelihood l(y|β, σ) given as

τn(1− τ)nσ−n exp

{
−σ−1

n∑
i=1

ρτ (yi − xi
Tβ)

}
, (5.1)

and can be obtained from the model yi = xi
Tβ + σεi, where εi has the standard

AL distribution with skewness τ .

The appropriate prior for w in the specification including the latent variables

now depends on σ and is given as π(w|σ) =
∏n

i=1 π(wi|σ), where

π(wi|σ) ∝ σ−1w−2i exp(− 1
8σ
w−1i ), (5.2)

so that π(w|σ) is the product of inverse Gamma densities with parameters (1, (8σ)−1).

The joint prior π(β, σ) can be specified by using π(β, σ) = π(β|σ)π(σ). An im-

proper prior for beta would yield a marginal posterior mode corresponding to the

frequentist quantile regression estimate (if it is unique). Specifying a proper prior

that is dependent on σ yields a marginal posterior mode that corresponds to the
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regularised QR estimate. The normal prior is semi-conjugate

π(β|σ) ∝ exp

{
− 1

2σ
(β − b0)TB0(β − b0)

}
. (5.3)

The inverse Gamma distribution is the semi conjugate prior for σ. Thus, with

prior hyperparameters c0 and d0, this model is completed by specifying

π(σ) ∝ σ−c0−1 exp(−d0σ−1). (5.4)

This also includes the improper Jeffrey’s prior π(σ) ∝ σ−1 obtained by letting c0

and d0 tend to 0 although whether or not this yields a proper posterior has yet

to be verified.

Although there is now an additional parameter to update in the Gibbs sampler,

it is still possible to construct a Gibbs sampler with only two steps. This is done by

noting that the marginal conditional posterior π(σ|w,y) is also inverse Gamma.

This means that the joint conditional π(β, σ|w,y) is available to sample from

directly. This algorithm is summarised in Algorithm (5.1).

5.2.2 Multiple values of τ

For the purposes of using quantile regression to characterise the complete condi-

tional distribution of y|x, analysis at more than one value of τ is required. The

approach of Yu and Moyeed (2001) is to simply repeat the procedure fixing τ at

different values. This has also been the approach adopted throughout this thesis.

However, it is effectively fitting different likelihoods to the same data and it could

be argued that at least one of the likelihoods is misspecified. One way to address

this criticism is if τ is allowed to be a discrete random variable taking values τ1,

τ2, · · · , τS with probabilities p1, p2, . . ., pS respectively. The result is a marginal

likelihood l(y|β, σ) given by

S∑
s=1

{
n∏
i=1

psAL(xi
Tβ, σ, τs)

}
. (5.5)

In this case, the approach of Yu and Moyeed (2001) can be viewed as finding

conditional posterior distributions given τ = τs for different values of s when the
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Algorithm 5.1 Gibbs sampler for augmented quantile regression model with
shape parameter σ. Draws M burn in samples followed by an additional N samples
for inference.
Given: Prior mean vector b0, prior precision matrix B0 and initial values w(0).

for k = 1 to M +N do
• Sample σ(k)|w(k−1),y from an inverse Gamma distribution with shape c1 =
c0 + 3n

2
and scale

d1 = yTW(k−1)y + b0
TB0b0 + 2

n∑
i=1

(
yi −

1

8w
(k−1)
i

)
− {v(k−1)}T (XTW(k−1)X + B0)v(k−1),

where W(k−1) is a diagonal matrix with the elements of w(k−1) forming the
diagonal and

v(k−1) = XTW(k−1)y + (τ − 1
2
)XT1 + B0b0.

• Sample β(k)|σ(k),w(k−1),y from the multivariate normal distribution with
precision matrix

XTW(k−1)X + B0

σ(k)

and mean vector

(XTW(k−1)X + B0)−1(XTW(k−1)y + (τ − 1
2
)XT1 + B0b0).

• Sample w(k)|β(k), σ(k),y by sampling the ith component of w (i = 1, . . . , n)
from the inverse Gaussian distribution with shape parameter 1

4
{σ(k)}−1 and

location 1
2
|yi − xi

Tβ(k)|−1.
end for.
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underlying marginal likelihood is (5.5). However, likelihoods such as (5.5) that

are discrete mixtures of densities can be notoriously tricky to analyse (see e.g.

Diebolt and Robert (1994)).

Of course, it is not necessary for τ to be a discrete random variable. If τ is

allowed to be continuous with a prior density π(τ) on (0, 1), then this could be

viewed as the Bayesian analogue of the quantile regression process. The marginal

likelihood then generalises to

∫ { n∏
i=1

AL(xi
Tβ, σ, τ)

}
π(τ)dτ. (5.6)

Whether τ is discrete or continuous, there is the possibility of allowing the

joint prior for β and σ to depend on τ . Priors could be used here to enforce the

condition of monotonicity or in cases where there is more prior knowledge about

the median than there is the tails of the distribution or vice versa.

5.2.3 Prediction

The advantage of prediction in the Bayesian framework over the frequentist ap-

proach is that it is possible for the predictive uncertainty to account for the uncer-

tainty involved in the parameter estimation. Of course, predicting a new y∗ given

x∗ and the data y depends on the likelihood. Given that the AL likelihood is not

really believed to have generated the data, predictive inference could be mislead-

ing. However, by allowing τ to be random, the marginal likelihood becomes much

more flexible and predictive inference could potentially be implemented from this

model taking into account the uncertainty involved in estimating all conditional

quantiles. Prediction need not be at a new value of x∗, it could also be used in

cross validation to assess model fidelity. An example of this is leave one out cross

validation, in which a random data point is excluded from the data analysis and

is then predicted. The mean square error is one possibility to compare the pre-

dicted value to the actual observed value. Given the criticisms of using the AL

distribution, this will be a handy tool in what appears to be a key area of future
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research.

5.2.4 Posterior mode using the EM algorithm

An interesting by-product of the work in Chapter 2 is that it allows an alternative

to linear programming in order to find the posterior mode under an AL likelihood.

As an illustration, consider the case of estimating the τth quantile from a sample

y of size n, assuming it can be uniquely determined. Of course, in a simple case

like this, the τth sample quantile can be deduced by ordering the data y. An

alternative approach would be to use the Expectation Maximising (EM) algorithm

introduced by Dempster et al. (1977).

Proceeding as in the previous chapters, adopting the AL likelihood (1.9) for a

fixed τ with location parameter µ and combining with the improper prior π(µ) ∝ 1

yields the posterior distribution with the mode at the τth sample quantile of y. In

Chapter 2, it was shown how to express the AL likelihood as a mixture of normals.

As illustrated in Dempster et al. (1977), the EM algorithm is then equivalent to

an iteratively reweighted least squares procedure.

Starting with an initial value µ0, the expectation step is to find the posterior

expectation qi of each latent variable wi conditional on the data y and µ0. It was

shown in Chapter 2 that the conditional posterior distribution of wi is inverse

Gaussian with scale parameter 1
4

and location parameter 1
2
|yi − µ|−1. The expec-

tation of an inverse Gaussian random variable is equal to the location parameter

so that

qi = 1
2
|yi − µ|−1. (5.7)

Thus, using µ0 in place of µ for the conditional expectations qi in (5.7), a new

estimate µ1 can be obtained from the maximisation step. Due to the conjugacy

of the prior, the maximum is available in closed form as

µ1 =

∑n
i=1 qiyi + n(τ − 1

2
)∑n

i=1 qi
. (5.8)

The expectation and maximisation steps are then iterated to form µ2, µ3, . . .
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Algorithm 5.2 The EM algorithm for finding the posterior mode under a
N(b0,B0

−1) prior where each yi has an AL distribution with skewness τ and
location xi

Tβ.

Given: Prior mean vector b0, prior precision matrix B0 and initial values β(0).
Set k = 0 and define a convergence criterion.

Repeat:
• Calculate q

(k)
i = 1

2
|yi−xi

Tβ(k)| for i = 1, . . . , n and form the n×n diagonal

matrix Q(k) such that Q
(k)
i,i = q

(k)
i .

• Update β according to

β(k+1) = {B1
(k)}(−1)(XTQ(k)y + (τ − 1

2
)XT1n + B0b0),

where
B1

(k) = XTQ(k)X + B0.

• Set k ← k + 1.

Until Convergence criterion is satisfied.

until some convergence criterion is satisfied. Interestingly, it turns out that this

particular algorithm is exactly the same algorithm as that presented in Hunter

and Lange (2000). Algorithm (5.2) describes the procedure for the general case

where it is assumed that each yi come from an AL distribution with location

parameter xi
Tβ with the semi conjugate prior

β ∼ N(b0,B0
−1).

The hyperparameters b0 and B0 are assumed fixed.

Provided that the prior is conjugate normal and that there is a unique posterior

mode, Algorithm 5.2 can be used to find it. An example of where the mode is not

unique is when n is even so that there are an even number of data points y and

the sample median (τ = 0.5) is of interest. In this case, the posterior distribution

under the AL likelihood and an improper prior has a plateau in which there is

a range of values [µmin, µmax] for which the posterior density is maximised. The

theory of the EM algorithm (e.g. Dempster et al. (1977)) suggests that for this

example, it will converge to any value in [µmin, µmax].
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5.3 Recommendations

To conclude this thesis, some recommendations for future work are in order. The

previous section has outlined a few of the potential extensions to the Bayesian

quantile regression models. There are many other extensions not mentioned here

such as Bayesian nonlinear quantile regression. The main drawback with any ex-

tension to the model is that in order to have an efficient MCMC algorithm for

sampling the posterior distribution, it is usually necessary to code it or parts of

it from scratch as was done in MCMCpack. In order to implement some of these

extensions in practice, it would be useful to use the data augmentation approach

in WinBUGS or JAGS and for them to recognise the efficient sampling strategies

that exist for these models. This would give the Bayesian quantile regression mod-

els additional flexibility and would make it easier to investigate their performance

in applied settings.
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Appendix A

Practical Implementation in R

A.1 Introduction

Historically, Bayesian inference was only possible for a handful of simple mod-

els. With the power of today’s computers and MCMC algorithms in abundance,

it should be possible to conduct Bayesian inference on virtually all models re-

gardless of their complexity. However, there remains little in the way of publicly

available software for fitting Bayesian models using MCMC particularly compared

to software for implementing frequentist methods.

For a researcher wishing to fit a Bayesian model, there are two options. The

first of these is to use a variant of the BUGS software such as WinBUGS (Lunn

et al., 2000), a program that is extremely versatile and can fit a range of models

with only a small learning curve. However, this flexibility can come at a price. The

researcher cannot guarantee that WinBUGS is using the most efficient MCMC

algorithm to fit their model and it can be fairly slow. Time is required to organise

the data into a format that can be recognised by WinBUGS. It also allocates

memory to each parameter in the model, which can be inefficient in larger models.

Another program similar to BUGS is JAGS (Plummer, 2004). JAGS is based

on compiled C++ code and is faster than WinBUGS. Additionally, it reads data

in the same format as R. Additional modules can be added to JAGS to give it a

greater array of samplers. This makes it more likely (although not guaranteed)

that JAGS will use an efficient sampler. Just like WinBUGS, this program will
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allocate memory to each parameter in a model, again making it potentially inef-

ficient.

The second option is to code the algorithm in R (R Development Core Team,

2010). A main provider of MCMC algorithms for R is the package MCMCpack

(Martin et al., 2010) which contains MCMC algorithms to fit a variety of different

models including mean regression models, probit models, poisson change point

and item response theory. The algorithms in MCMCpack use compiled C++ code

using the Scythe statistical library (Pemstein et al., 2007) to do the bulk of the

calculation and are hand crafted making them fast and efficient. This does mean

that they lack the flexibility of WinBUGS and JAGS, often requiring conjugate

prior distributions. Nevertheless, for quantile regression, particularly when several

quantile regressions are of interest, the gains in speed and efficiency of using the

functions in MCMCpack can be considerable.

In this section, a small tutorial is provided on the use of MCMCquantreg and

SSVSquantreg that has been used to do all analysis reported in this thesis. Pre-

vious versions of these functions have been successfully included in MCMCpack.

A.2 Using Gibbs Sampling for Bayesian Quan-

tile Regression in R

A.2.1 MCMCquantreg

Conducting Bayesian inference in R using the MCMCpack functions is much the

same as using the lm function for frequentist linear mean regression as the syntax

is very similar. The package MCMCpack can be installed by using the command

> install.packages("MCMCpack")

and choosing a mirror to download from. On completion of this, the package can

be made available to the R session with the command

> library(MCMCpack)
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Once the library has been loaded, it is possible to reproduce the various analy-

ses in Chapter 2 and Chapter 4. In Section 2.2, Engel’s data was used to compare

augmented posterior summaries and the marginal posterior mode. The following

commands implement Bayesian median regression on Engel’s data with an im-

proper prior on the the regression parameters β (assuming that the quantreg

package is installed) and stores the results in medfit.

> library(quantreg)

> library(MCMCpack)

> data(engel)

> medfit <- MCMCquantreg(foodexp ~ income, data = engel)

Now suppose that regression at the 90th centile is of interest. It may be felt by

the researcher that, given the frequent lack of data in the tails of the distribution,

that a larger sample is needed to get an “appropriate” level of convergence. This

is easily accomplished by altering the mcmc and the burnin options. For example,

to get a sample of size 100,000 from the posterior ditribution following a burn in

of 10,000 samples at τ = 0.9, the command would be

> fit90pc <- MCMCquantreg(foodexp ~ income, data = engel, mcmc = 1e+05,

+ burnin = 10000, tau = 0.9)

By default, MCMCquantreg uses a different seed for each simulation. This is to

ensure that the simulation will be different when the value of τ is changed. This

is in contrast to many of the other MCMC functions in MCMCpack where a seed

would need to be specified with the seed argument to ensure a different seed was

used.

Unlike any object resulting from the lm command, objects resulting from MCM-

Cquantreg or any other functions in MCMCpack such as medfit cannot be sum-

marised by just typing it’s name. Doing so will just display the exhaustive list of

all values that were simulated during the MCMC run. The summary command,

on the other hand, produces the following output:
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> summary(medfit)

Iterations = 1001:11000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept) 82.7984 2.238199 2.238e-02 7.435e-02

income 0.5584 0.002411 2.411e-05 7.421e-05

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) 79.0821 81.3337 82.5426 83.92 88.1813

income 0.5524 0.5572 0.5589 0.56 0.5619

This is the summary produced from the coda package (Plummer et al., 2010).

This particular form of summary is defined for an object with class mcmc such as

medfit. Many other summary statistics and plots can be obtained from the coda

package. For example,

> plot(medfit)

will plot a traceplot of each variable, and a corresponding estimated density plot.

Another common plot is the autocorrelation function. The command used to

produce an autocorrelation plot like Figure 2.1 used in Section 2.3 is

> autocorr.plot(medfit)
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In Section 2.4, the Gelman-Rubin statistic was calculated. To obtain this, a

second chain is needed and both chains need to be contained in an R list with an

mcmc.list class attribute.

> medfit2 <- MCMCquantreg(foodexp ~ income, data = engel)

> medfitlist <- mcmc.list(medfit, medfit2)

> gelman.diag(medfitlist)

Potential scale reduction factors:

Point est. 97.5% quantile

(Intercept) 1.00 1.01

income 1.01 1.03

Multivariate psrf

1.01

Many other convergence diagnostics are also implemented in coda. To see a

more comprehensive list of all available functions, type

> help(package = "coda")

A.2.2 SSVSquantreg

To demonstrate SSVSquantreg in action, consider the model described in Tib-

shirani (1996). The model is y = Xβ + σε where β = [3, 1.5, 0, 0, 2, 0, 0, 0]T and

σ is set equal to 1. The design matrix X in constructed in such a way that the

correlation between column i and column j is approximately 0.5|i−j|. In this ex-

ample, the conditional quantiles are parallel. If there is strong prior knowledge

about this fact, then QR-SSVS is not really needed. Nevertheless, this example

serves to illustrate the commands that can be used. The following R commands

will produce this data with n = 101 data points.
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> rhomatrix <- matrix(0, 8, 8)

> for (i in 1:8) {

+ for (j in 1:8) {

+ rhomatrix[i, j] <- 0.5^(abs(i - j))

+ }

+ }

> set.seed(1)

> standnorm <- matrix(rnorm(808), 101, 8)

> U <- chol(rhomatrix)

> x <- standnorm %*% U

> beta <- c(3, 1.5, 0, 0, 2, 0, 0, 0)

> set.seed(2)

> y <- x %*% beta + rnorm(101)

> xs <- scale(x)

> models50pc <- SSVSquantreg(y ~ xs)

Note the second to last step, which standardises the predictors prior to analysis

except the intercept, which is added implicitly unless otherwise specified in the

formula. Future versions of SSVSquantreg will automate this process. A product

of spike and slab priors with the slab corresponding to a Cauchy distribution (see

Chapter 4) is placed on the regression parameters β and a beta-binomial prior is

assumed for pγ . The default values of the hyperparameters a0 and b0 are set to 1

but can be chosen by the researcher with the options pi0a0 and pi0b0.

The results from using SSVSquantreg, in this case models50pc, are in the

form of a list. The first component is gamma, which contains all the models that

were visited by the SSVS algorithm and beta, which contains the sampled values

of the model specific regression parameters. The beta component of models50pc

can be analysed in the same way as the output from MCMCquantreg. For this

reason, the rest of this tutorial is devoted to analysing the gamma component.

80



The gamma component of models50pc has a qrssvs class attribute. There exists

methods to handle this class for print, summary and plot, as well as a couple of

additional functions.

> summary(models50pc$gamma)

Marginal inclusion probability of each predictor:

Probability

(Intercept) 0.4386

xs1 1.0000

xs2 1.0000

xs3 0.4105

xs4 0.5436

xs5 1.0000

xs6 0.3079

xs7 0.3553

xs8 0.3613

For tau = 0.5, the median probability model

includes the following predictors:

xs1, xs2, xs4, xs5.

R can identify components of a list just by the first letter that makes them

unique. In this case,

> summary(models50pc$g)

would also produce the desired output.

As can be seen from above, the summary command will produce a table list-

ing all the candidate predictors together with the estimated marginal inclusion
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Figure A.1: R plot obtained by the plot function on an object of class qrssvs.

probabilities (MIPs). It will additionally provide the median probability model as

defined in the previous section. The table can be extracted on it’s own using the

mptable command. It is also possible to plot these MIPs.

> print(plot(models50pc$g))

This plots the covariates on the y axis against the estimated MIPs on the x

axis (see Figure A.1). It is produced as a trellis graph that can be manipulated

in any way desired using the lattice package of Sarkar (2010).

The models that were visited most frequently can be displayed in a table using

the topmodels command.

> topmodels(models50pc$g)

Probability

xs1,xs2,xs5 0.1058
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xs1,xs2,xs4,xs5 0.0628

(Intercept),xs1,xs2,xs5 0.0459

xs1,xs2,xs3,xs4,xs5 0.0435

(Intercept),xs1,xs2,xs3,xs4,xs5,xs6,xs7,xs8 0.0343

The default behaviour is to produce the top 5 visited models although this can

be changed using the nmodels option. Observe that even though there are only 9

predictors including the intercept, the model with the highest posterior probability

only achieves an estimated probability of around 0.1. This illustrates that there

is considerable model uncertainty in this problem and so inference based on one

single fixed model does not capture this uncertainty.

Now consider a large problem in which there are p = 60 possible predictors

giving a total of 260 possible models. The design matrix is constructed in the same

way as before, with the correlation between column i and column j being 0.5|i−j|.

This simulation sets β = [2, 2, . . . , 2, 1, 1, . . . , 1, 0, 0, . . . , 0] with 10 twos, 10 ones

and 40 zeros.

> beta <- c(rep(2, 10), rep(1, 10), rep(0, 40))

> y <- x %*% beta + rnorm(101)

Now suppose that a priori it is certain that the variables x1, x2 through to

x10 should appear in all models visited by QR-SSVS. This can be specified using

the include option. The predictors can be specified either by name, or by the

position that they appear in the formula containing all predictors. The second way

is shown below. The algorithm is designed in such a way that forcing variables to

be included in the model can improve computational speed.

> print(system.time(models50pc1 <- SSVSquantreg(y ~ xs)))

user system elapsed

40.730 0.260 41.762
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> print(system.time(models50pc2 <- SSVSquantreg(y ~ xs, include = 2:11)))

user system elapsed

30.300 0.210 31.264

Note that the argument to include starts at 2. The intercept appears in

position 1 of the formula and so if there is uncertainty about whether it appears,

then the command above is how to specify it. Given that in general, researchers

are not interested in whether the intercept appears or not and that it is likely that

in general it does, future versions of SSVSquantreg will automatically include an

intercept term. Regression parameters of any predictors that are a priori certain

to appear are given an improper flat prior.

A.3 Summary

The previous section is not an exhaustive tutorial on the use of MCMCquantreg

and SSVSquantreg. The help files of these functions will give further details on

additional options that can be set. Most options are common to all functions in

MCMCpack and give the researcher more direct control over the MCMC algorithms,

such as which random number generator to use and whether the algorithm gives

output to the R console while running. All of these options have default values and

so as long as the researcher is familiar with the lm function for linear regression,

in practice it should be easy to use MCMCquantreg and SSVSquantreg.
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