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Abstract

Clinical electromyography (EMG) interference pattern (IP) signals can reveal more diagnostic
information than their constituents, the motor unit action potentials (MUAPs). Singularities and
irregular structures typically characterize the mathematically defined content of information in signals.
In this paper, a wavelet transform method is used to detect and quantify the singularity characteristics
of EMG IP signals using the Lipschitz Exponent (LE) and measures derived from it. The performance
of the method is assessed in terms of its ability to discriminate healthy, myopathic and neuropathic
subjects and how it compares with traditionally used Turns Analysis (TA) methods and a method
recently developed by the authors, Inter-Scale Wavelet Maximum (ISWM). Highly significant
intergroup differences were found using the LE method. Most of the singularity measures have a
performance similar to that of ISWM and considerably better than that of TA. Some measures such as
the ratio of the mean LE value to the number of singular points in the signal have considerably superior
performance to both TA methods. These findings add weight to the view that wavelet analysis
methods offer an effective way forward in the quantitative analysis of EMG IP signal to assist the
clinician in the diagnosis of neuromuscular disorders.

1. Introduction

The conventional needle electromyographic (EMG) examination is performed using a

concentric or monopolar needle electrode. EMG signals can be recorded during varying

degrees of voluntary muscle activity, particularly maximum voluntary contraction. With

minimal voluntary effort, only a few motor units are activated and the individual motor-unit

action potentials (MUAPs) can be identified. As the force of contraction increases, more

motor units start to fire and the EMG signal becomes increasingly complex, with the

individual MUAPs superimposing upon each other in the signal. Individual MUAPs can no

longer readily be identified. This signal is known as an the Interference Pattern (IP).

Analysis of the EMG IP has been shown to be useful in the description of muscle activity,

muscle fatigue, occupational work, chronic muscle pain, disused muscle and dystonic muscles

treated with botulinum toxin and in the diagnosis of patients with neuromuscular disorders

[1]. It is normal clinical practice to examine the IP signal from visual inspection of an
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oscilloscope trace and from listening to the signal through a loudspeaker, as its bandwidth is

within the audio frequency range of the human ear. Abnormalities are most easily detected in

the more severe cases. In myogenic disorders, due to loss of individual muscle fibres, MUAPs

are low in amplitude and short in duration. This manifests as a high-pitched sound from the

loudspeaker. In order to compensate for the low amplitude, a large number of motor units are

recruited at lower than normal levels of muscle contraction. With increasing force, a full

interference pattern is developed at less than maximal contraction [2]. In neurogenic

disorders, the excited motor neurons are reduced in number and muscle fibres are reorganised

to give larger MUs, which generate MUAPs of higher amplitude and longer duration than

normal. In order to maintain a certain force of contraction for this reduced recruitment, the

available motor neurons must fire at an appropriately higher than normal rate to compensate

for the motor neuron loss. This manifests as a duller sound from the loudspeaker. These

perceived frequency changes to the signal in neuromuscular disease conditions may be the

reason for some of the earliest quantitative methods being based on frequency domain

analysis [3-6].

Time domain methods were introduced subsequently and have been more popular than

frequency analysis. Turns Analysis (TA) has for many years been the most commonly used

analytical tool for clinical EMG interpretation, both in research and on commercial EMG

systems. A turn is defined as a change in EMG signal potential of more than 100μV between 

adjacent turning points [7]. TA measures include the number of turns (NT) in the IP signal

and the mean voltage (amplitude) difference between successive turns (MA). The ratio

NT:MA has been found to increase in cases of myopathy and decrease in neuropathies [8].

More recently, a range of elaborate signal processing methods has been developed to try to

improve the quantification of the EMP IP signal [9]. These and the many other methods that

have been used in IP analysis are reviewed [10]. Very few methods have been of sufficient

diagnostic value to be incorporated into commercial EMG instrumentation and none is
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reliable enough to be relied upon without observation of the signal by the clinician. Neural

networks have been applied to combine the best of many time and frequency based measures

in order to try to improve the diagnostic yield but did not give adequate classification for

clinical use [11]. Pathological changes in the signal are often subtle, particularly in the early

stages of a disease or in less severe cases, which has made quantification for diagnostic

purposes difficult to achieve. Furthermore, the EMG signal is non-stationary. The MUAPs are

transients that are not identical for each recurrence of the same MU. For this reason, time-

frequency methods are now being used to characterize the localized frequency content of each

MUAP [12,13]. These have focused mainly on low force signals, which show the MUAPs

rather than the IP. One of the more promising measures for assisting in the clinical diagnosis

of neuromuscular disease from analysis of the IP is the Inter-Scale Wavelet Maximum

(ISWM) [14]. The method identifies the Wavelet Transform Modulus Maxima, or Wavelet

Maxima (WM) [15] associated with each event in the signal, determines which scale is most

active and calculates the magnitude of the coefficient at that scale, which is the ISWM. This

method has been shown to differentiate myopathic and neuropathic abnormalities. In contrast,

more traditional methods used on the same EMG data could not differentiate all the groups.

Singularities and irregular structures typically characterize the mathematically defined content

of information in signals. The wavelet transform can identify these local signal structures by

virtue of its zooming effect at different scales. The WM can detect all singularities in a signal

and contain the necessary information to allow them to be analyzed and characterized [16]. In

the EMG IP signal, the rising edge of a MUAP is a result of the synchronous activation of a

muscle fibre group, which form the MU. In the multiscale analysis employed in the ISWM

method [14] the singularity associated with the rising edge of the MUAP is represented at

each scale by one WM. In this paper the Lipschitz Exponent (LE) is used to characterize these

singularities by examining their values across scales, in order to determine if abnormal

characteristics can be detected in the IP signals from patients with neuromuscular disease.
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2. Singularity detection and measurement from the wavelet transform

The LE is the most popular measure of the singularity behavior of a signal. It is a real number

that can characterize the local regularity or smoothness in a signal. An local LE value of

greater than 1 means that the signal is differentiable at this locality, while a value smaller than

1 means that the signal is not differentiable and has a singularity that is characterized by the

value of LE. It is defined and described in detail in [16]. The local signal regularity at regions

of singularity can be characterized by the magnitude of the decay of the wavelet maxima

amplitudes across scales. Singularities can be detected by following the wavelet Modulus

Maxima (WM) lines at fine scales. The LE value of each singularity point, representing rapid

change of the signal at that point, gives a measure of the regularity of the signal.

The wavelet transform can detect and measure the both non-oscillating and oscillating

singularity. In this paper, only the characteristics of non-oscillating singularities are studied,

because singularity points of EMG IP signals do not tend to oscillate. A similar method has

been used for edge detection in 2-dimensional image processing, for detecting edges of gray

scale images [16]. In the EMG IP signal all the non-oscillating singular points in the signal

are identified by the WM lines, from which the LE values are determined. An analysis of

these values and their statistical distribution in a signal could provide a meaningful

quantitative characterization of singularity in the EMG IP for identifying neuromuscular

disease abnormalities.

The uniform Lipschitz regularity of a signal on an interval can be related to the amplitude of

its WM values at fine scales [15,16]. The wavelet transform ),( suWf of signal )(tf may be

expressed as:
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where )(t is a mother wavelet function, )(* t is its conjugate, 0s is the scale factor and u

is the spatial position. Then, from [15], if a function )(2 RLf  is uniformly Lipschitz
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where R+ is a positive real number. Conversely, if ),( suWf satisfies equation (2) and if

n is not an integer then f is uniformly Lipschitz on    ba , for any 0 . This

implies that )(tf is uniformly LE in the neighbourhood of v if and only if there exists A>0

such that each modulus maximum (u,s) in the region Csvu  satisfies the condition
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where C is a constant. This may be expressed in logarithmic form as

sAsuWf 222 log)
2

1
(log),(log   (4)

The Lipschitz regularity (
2
1 ) at v is thus the maximum slope of ),(log 2 suWf as a

function of s2log along the WM lines that converge to v. In practice, the finest scale (s=1)

of the wavelet transform is limited by the resolution of the discrete data, so LE  is estimated

from the wavelet transform ),( suWf at scales 1s to give an estimate of the singularity
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exponent at s=1. The exponent
2
1 is calculated by measuring the decay slope of

),(log 2 suWf as a function of s2log at the finest scale.

A coarse-to-fine approach has been used to create the Wavelet Maxima (WM) line structures.

For each WM at the coarsest scale, the WM lines are constructed from the coarser to the finer

scales by finding the corresponding WM nearby. A threshold value  at the coarsest scale is

chosen whereby the absolute value of a local maximum point must be greater than  percent

of the absolute value of the whole wavelet coefficient in that scale. In the 15 ms example

signal shown in Fig. 1, there are 4 WM points found at scale 52 using a threshold %80

and WM lines were constructed from scale 52 to scale 12 . These 4 WM lines were

associated with 4 singularity points in the signal.

The implementation algorithm for obtaining the LE of the IP signals involves four steps:

(i) Decomposition of signal into different scales by the continuous wavelet transform:

EMG IP waveforms are decomposed to wavelet coefficients by the continuous wavelet

transform of the B-spline wavelet. The wavelet transform used here ( js 2 , ku  ) is based

on the filters of Unser and Aldroubi [17,18]. The first derivative of the cubic B-spline is

suited to the detection of gradient changes. This analysis is restricted to dyadic scales

( js 2 ) as they offer an efficient way to examine a wide range of frequencies with wavelet

transforms. This implementation is a fast algorithm in which continuous wavelet transform is

carried out by a discrete scheme [19].

(ii) Detection of the WM points in the characteristic scales:
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The scales selected were 12 , 22 , 32 and 42 , based on a sampling rate for the signals of

32kHz. These finer scales contain the important information for computing the singularity

exponent and for obtaining the best singularity estimation. At each characteristic scale, the

wavelet maximum points are detected. A threshold  was applied, whereby the largest  %

of wavelet coefficients at the coarsest scale were selected. The larger the threshold, the

fewer the number of local maxima points, but those that remain represent the faster

changes in the waveform.

(iii) Determination of WM lines:

The LE values are estimated from the scales ]2,2[ 32
. The scales ]2,2[ 21

were not chosen

because of noise at scale
12 . Initial experimentation using scales 32 , 42 and 52 as the

coarsest scale were found to give very similar results so only results with coarsest scales 42

and 32 are reported here.

(iv) Calculation of the singularity exponent for each WM point along the WM lines:

The first order derivative of a fourth-order B-spline was selected. This wavelet only has one

vanishing moment. Each LE value is found from the WMs along a WM line from scales

]2,2[ 32s . With the first scale excluded due to the influence of noise, the lowest scale was

chosen as 22. From equation (4), the LE value can be estimated by the following:

2

1
)2,(log)2,(log 2

2
3

2 2232

 vv uWfuWf (5)

in which v

j
u

2

is the WM point in the scale j2 associated with the time point v of the IP

signal.
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Figure 2 shows a 30 ms segment of an EMG IP signal and the LE values for each of the six

singularity points in this segment, as identified by the wavelet transform. The signal clearly

has rapidly changing characteristics at these points. The smaller the LE value, the faster the

waveform change. For example, in this picture, the third point has a LE value 0.2907,

representing the most rapidly changing singularity. For all the other parts of the segment, the

signal has smaller changes with LE values that can be regarded as 1. From this figure, it can

also be seen that this not influenced by any high frequency signal components, which could

be associated with noise, as these are not detected as singularity points.

3. Singularity measures

Several statistical parameters based on singularity measures were investigated. These were:

the Number of Singularity Points (NSP) in the signal, which in some sense describes the level

of complexity of the signal; the mean value (Mean) of all the LE values and the standard

deviation (SD); the SD/Mean because of its normalizing property; and the ratio of Mean to

NSP (Mean/NSP). The latter measure was chosen because it was anticipated that, for

myopathy subjects, Mean would be small and NSP large, while the converse should be true

for neuropathy subjects.

An additional measure was used to describe the information obtained from the distribution of

LE values. In any EMG IP signal, there are hundreds of singularity points with their own LE

values, which are in the interval from zero to one. Fig. 3 gives an example for an EMG IP

signal of 4 seconds duration. The distribution of LE values was obtained by dividing the

inerval [0,1] into 50 segments. Fig. 4 shows an example, using the data from the signal in Fig

3.
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A Principal Component Analysis (PCA) method was used to analyze this distribution vector,

which has a dimension of 50. The extracted measure, named the First Principle Component

Analysis (FPCA), was the first component of the PCA transformation of the distribution

vector. The PCA or Karhunen-Loeve expansion is the best known linear feature extractor that

computes several largest eigenvectors of the covariance matrix of the original patterns, i.e. for

the original patterns being centred ( 0
0

 
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j jx ), PCA diagonalizes its covariance matrix
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jj xx
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4. Experimental Results

Interference pattern data from concentric needle electrodes were sampled at 32 kHz from the

analogue output of a Medelec MS60 EMG recording system (Oxford Instruments, Oxford,

UK). Four seconds of data from five sites were examined from the biceps muscles of 11

healthy subjects, 26 patients with myopathic disease and 20 patients with neuropathic disease,

at maximum voluntary muscle contraction. The recording sites were obtained in the usual

clinical manner, by removing the needle from the muscle, without withdrawing it completely

through the skin, then reinserting the needle into the same muscle. The Medelec MS60 has a

built-in low pass filter with a cut-off frequency of 10 kHz (which functioned as an anti-

aliasing filter) and a high pass filter with a cut-off frequency of 30 Hz for removal of low

frequency noise artifacts. Patient diagnoses were based on a range of clinical information,

which included a general examination and clinical history of the patient, and EMG and nerve

conduction tests. Muscle biopsies were not taken in the majority of cases, on ethical grounds,

as they are only considered in our EMG Clinic in cases where diagnosis is uncertain or for

specific clinical reasons.
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Data from the five sites of each subject were used to generate descriptive statistical measures

to measure the distribution of the magnitudes of the LE values. The nonparametric Mann-

Whitney U-test [20] was used to test the significant differences between samples from two

independent groups for the above measures.

(i) LE Method

The LE values for all WM lines in a signal were obtained and the mean and standard

deviation used to provide basic measures of their distribution of values. This is where we

need to show example frequency distributions for each group, in a new figure. Tables 1 to 3

show p-values to three decimal places using examples of different coarsest scales and

threshold values. Significant differences (p<0.01) between Neuropathies (Ne) and the other

two groups, Normals (No) and Myopathies (My), were found for many of the measures. For

most measures, myopathy subjects show significant differentiation from the other two groups.

NSP shows significant difference for neuropathy subjects compared to those from other two

groups. Mean/NSP showed the best performance in differentiating all three groups. A

comparison of the results in Tables 1 and 2, for scales 4 and 3 respectively as the coarsest

scale for determining LE, and of the results in Tables 2 and 3 for thresholds of 70% and 80%

shows only small differences in performance for most measures. The most difficult groups to

differentiate were normal from neuropathy. Using a coarsest scale of 24 and a threshold of

70% (Table 1) gave the best differentiation, with two measures (NSP and Mean/NSP) that

could differentiate at p=0.002 or better.
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Table 1: p-values for statistical differences in measures
between subject groups with the coarsest scale 24 and
β=70%. 

Measure No-My No-Ne My-Ne
mean p mean p mean p

Mean 0.001 0.710 0.000
SD 0.006 0.216 0.033
SD/Mean 0.003 0.283 0.007
NSP 0.690 0.001 0.000
Mean/NSP 0.001 0.002 0.000

FPCA 0.052 0.079 0.000

Table 2: p-values for statistical differences in measures
between subject groups with the coarsest scale 23 and β=  
70%.

Measure No-My No-Ne My-Ne
mean p mean p mean p

Mean 0.001 0.536 0.001
SD 0.022 0.248 0.097
SD/Mean 0.009 0.248 0.018
NSP 0.288 0.006 0.000
Mean/NSP 0.001 0.039 0.000
FPCA 0.001 0.665 0.000

Table 3: p-values for statistical differences in measures
between subject groups with the coarsest scale 23 and
β=80%. 

Measure No-My No-Ne My-Ne
mean p mean p mean p

Mean 0.001 0.773 0.000
SD 0.017 0.201 0.207
SD/Mean 0.007 0.216 0.034
NSP 0.335 0.006 0.000
Mean/NSP 0.001 0.029 0.000
FPCA 0.002 0.788 0.000

(ii) Turns Amplitude Method
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For comparison, more traditionally used measures for EMG analysis were applied to the data.

Turns analysis is a standard method for EMG IP quantification, which has been used for over

30 years and is regarded as a reference against which to compare new methods. A basic turns

amplitude analysis [7, 21] was performed using the mean amplitude (MA), the Number of

Turns (NT) and the ratio of the two (MA/NT). The results are presented in Table 4. The

MA/NT measure could not differentiate any of the groups, while the MA could only

differentiate the neuropathies from the myopathies and NT could only differentiate the

myopathies from the normals.

Table 4: p-values for statistical differences in traditional

measures MA, NT and MA/NT between subject groups.

Measure No-My No-Ne My-Ne
mean p mean p mean p

MA 0.027 0.353 0.023
NT 0.280 0.577 0.499
MA/NT 0.148 0.386 0.388

The results in Tables 1-3 show considerably better performance than those from Turns

Analysis.

(iii) ISWM Method

An outline of the ISWM method is described briefly here. A full description of the method

can be found in [14]. It uses a fine-to-coarse scale processing of the WM, incorporating a

weighting function to associate each WM at a fine scale with only one WM at the next coarser

scale The weighting function takes into account the relative magnitudes and temporal

proximity of all WM at the coarser scale in this association process, to determine which WM,

if more than one is present, should propagate at the next scale. This results in a meaningful

propagation of the WMs across scales and enables the construction of a tree structure. The

weighting function is a cubic B-spline, which is similar to a Gaussian function [17] but much

easier to manipulate computationally. The root of the WM tree is the scale beyond which no

corresponding WM can be found.
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Each WM tree consists of one or more WM at each of the j scales. If jN is the number of

WM coefficients that belong to a particular WM tree at scale j2 and x are the positions,

this group jG is defined by:

  jj
j NxWfmG ...1,2,  

The  wavelet coefficients are summed, i.e. jNm ...1,   . A similar summation is

done for all the other scales and the ISWM value is the summation that has the highest value:


j

mISWM max (6)

Fig. 5 shows a 15 ms segment of an EMG IP in the region of an MUAP, the derived WM and

the ISWM, calculated from equation (6).. The signal has been decomposed at five scales. The

ISWM method uses a fine-to-coarse algorithm to construct a tree structure, as opposed to the

coarse-to-fine algorithm used for the singularity method in this paper, which constructs a WM

line. The MUAP corresponds to one WM at the coarsest dyadic scale, while at finer scales

more than one WM indicates a MUAP with a more complex shape, which is commonly the

case in neuromuscular disorders, where there tend to me more rising edges in a MUAP and

therefore more WM, with a tendency also for the WM tree to branch out more than for normal

EMG signals. At each scale the WM are summed, the highest resulting value being the

ISWM. In the example, the ISWM is at scale 42 .

Table 5: p-values for statistical differences in ISWM measures
in scales 22, 23 and 24 between subject groups, using scale
dependent thresholding

Measure No-My No-Ne My-Ne
Scale 23 24 25 23 24 25 23 24 25

Mean 0.006 0.013 0.005 0.087 0.027 0.292 0.000 0.000 0.000
SD 0.061 0.075 0.052 0.050 0.005 0.037 0.000 0.000 0.000
Skewness 0.252 0.158 0.584 0.003 0.001 0.132 0.001 0.004 0.303
SD/Mean 0.158 0.213 0.115 0.353 0.820 0.180 0.019 0.375 0.938

In the ISWM method, noise reduction thresholding is applied at all scales. Only WM with

amplitudes greater than the 100 -th percentile threshold at each scale are selected for

determining the tree structure, where  varies between zero and unity and can be constant

across all scales or have a scale-dependent value. Scale dependent thresholding was found to

give better performance than a constant  at all scales. The p-values shown in Table 5,

comparing the subject groups for statistical measures obtained from an analysis of the ISWM
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values, show the best results obtained from the earlier study [14] (with 95.01  , 85.02  ,

75.03  , 65.04  , 55.05  ). As with the LE results, there is good discrimination

between the normals and the neuropathies, and between the myopathies and the neuropathies,

even at p<0.01.

The ISWM by definition occurs at one scale only, information at other scales being discarded.

The LE measure is calculated from two adjoining scales so provides complementary,

between-scale, information about the EMG IP signals.

In order to test the more general effectiveness of the LE method, a larger dataset was

analysed, using a wider range of muscle groups. EMG IP signals were recorded from 271

patients. The muscle sites includes tibialis anterior, EDC, extensor proprius indicis, APB,

ECR, triceps, pronator teres, flexor pollicis longus, pronator teres, lateral gastrocnemius,

soleus, adductor magnus, the short head of biceps femoris, the long head of biceps femoris,

lateral peroneus, iliopsoas and biceps brachii. The results are shown in Table 6. These results

showed a consistently good performance and in particular give improved confidence over

FPCA. in discriminating patients with neuropathies from normal subjects.

Table 6 p-values for statistical differences in measures between
subject groups with the coarsest scale 23 and β = 70%. 

Measure No-My No-Ne My-Ne
mean p mean p mean p

Mean 0.000 0.607 0.000
SD 0.000 0.879 0.000
SD/Mean 0.000 0.851 0.000
NSP 0.001 0.000 0.000
Mean/NSP 0.000 0.000 0.000
FPCA 0.000 0.189 0.000

5. Discussion and Conclusion
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In this paper, a wavelet transform method has been used to detect and quantify the singularity

characteristics of EMG IP signals and some new quantitative measures have been derived.

The LE measure uses a coarse to fine algorithm, which is faster computationally than a fine to

coarse algorithm, which is implemented in the ISWM method. Furthermore, only the WM

points at the coarsest scales need to be kept to construct the WM lines, whereas the fine to

coarse algorithm requires all WM points to be analysed in order to construct a WM tree

structure. Both algorithms perform considerably better than the TA method in differentiating

the subject groups and they may complement each other in a future neural network or other

artificial intelligence system that uses multiple measures for diagnostic purposes.

The Mean/NSP derived from the LE performed particularly well. The following explanation

may be put forward for the fact that the Mean/NSP showed the best performance. In

neuropathies there are generally fewer but larger MUAPs than in normal subjects so NSP is

smaller and Mean is higher (because the waveform is smoother). In myopathies there are

more MUAPS, but these are smaller in magnitude, so the NSP is larger and the Mean is

smaller (because the waveform is not smooth). The ratio of Mean/NSP could therefore be

expected to discriminate the groups, which was found to be the case.

From wavelet transform theory, it is unrealistic to try to estimate every singularity exactly and

individually from a signal. However, the singularity of most singularity points in the EMG IP

can be detected and estimated by this method. The wavelet transform can detect and measure

both non-oscillating and oscillating singularity. In this paper, only the former has been studied

because we aimed to obtain the global singularity property of the EMG signals, which is best

represented by the non-oscillating component. However, in order to obtain the complete

singularity characteristics of the signal, the oscillating singularity should also be studied. It

might provide more detailed information about local signal abnormality which could assist in

disease detection. As the method stands, highly significant differences in the non-oscillating

singularity measures have been found between healthy, myopathic and neuropathic subjects.
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These findings make a contribution to enhancing the diagnostic capability of EMG IP signal

analysis, which remains a difficult process.
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List of Figures

Fig.1. Coarse to fine method to find WM lines for a 15 ms EMG IP signal. IP signals were
decomposed into 5 scales and 4 WM lines were constructed from coarser to finer scales.
Each WM line represents a singularity in the signal

Fig.2. A 30 ms EMG IP signal with 6 singularity points marked as circles and LE value for
every singularity

Fig.3 LE values in an EMG IP signal. There are 1775 values, each in the interval (0,1). The
smaller the LE value, the faster the waveform change at this point.

Fig.4 Distribution of LE values of EMG IP signals. The interval (0,1) were divided into 50
sub-intervals and the number of singularity points within each sub-intervals were calculated.

Fig 5. A 15 ms signal segment containing a MUAP with its WM tree. At each scale, the
summation of WM is computed. The largest value is the ISWM.
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Fig.1.
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Fig 2
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Fig.3
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Fig 5.
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