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Abstract 

 

This thesis describes the determination of student errors through paper-based 

assessment through to computer-aided assessment. The focus on identification of 

errors is through low-level calculus questions; on polynomial differentiation through 

to product rule and chain rule usage in integration.   

 

A major objective of this work is the design of suitable computer-aided assessment to 

fulfil learning objectives and usage as a diagnostic tool. The limitations of such 

diagnostic tools (whether paper-based or computer-aided) are explored in some depth, 

and the role of question design is brought to the fore through careful analysis of 

student errors on summative as well as formative assessments. It is from the data 

gained through these assessments that we can begin to classify mistakes into usable 

taxonomies. Firstly I have chosen to use the ResultsPlus data files from summative 

assessments via Edexcel, secondly the results from several years of paper-based 

formative assessment on a multiple-choice diagnostic test, and thirdly formative 

testing scores from Brunel University first year Economics students. The basis for 

forming an over-arching taxonomy for mistakes is built up using the SOLO model for 

classification and the discussion turns very much back towards question design as the 

nature of student errors changes as question structure changes. The data generated 

through computer-aided assessment is firstly unpacked to allow comparison between 

difficulty levels and cognitive levels. I go on to look at temporal comparisons between 

cohorts over time to discover weaker skill areas and question discrimination that will 

yield improved diagnostic assessments as well as selectively difficult assessments for 

the top-end of a cohort. The thesis looks carefully at the limitations of classification 

from these data sets and explores further distracter design in computer-aided 

assessment questions.  
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Foreword 

 

This thesis is primarily for teachers of both students preparing for the transition 

between GCSE and GCE maths, as well as those studying for AS maths. It will also be 

useful for those teaching remedial maths courses / foundation maths courses at tertiary 

level who have only GCSE maths or basic understanding / competence at GCE maths.  

The major aim is to enable teachers to use CAA in assessment, and help students use 

CAL to boost understanding. A secondary aim is to help teachers and students alike in 

diagnosis of common errors and areas of weakness or misunderstanding so that they 

can make great strides in learning.   

 

I have spent ten years full-time teaching maths to secondary level students, at two 

different secondary schools. Before that, after my initial maths degree, I completed an 

MSc in mathematical biology, seeking to pursue a relevant interest in medicine and 

applications of mathematics to medicine.  While teaching, I have been fascinated to 

see how students make the transition from GCSE to GCE maths, how the gap has 

narrowed from syllabus changes, examination material release, changes to assessment 

strategies and changes to incorporate IGCSE. My research journey led to me to use a 

diagnostic test to examine bridging materials in core maths skills I perceived vital for 

future GCE success. I also embarked on a collection of data through a basic paper-

based test, and this in turn led me to the professionals at Brunel and Martin Greenhow, 

looking at Mathletics. I started by writing a few questions for Mathletics on surds and 

indices for the package, mainly to facilitate my own understanding of question 

pedagogy, the use of CAA and CAL and also the role that CAA could possibly play in 

the school curricula. From here, my research interest turned more to the pedagogy of 

writing questions for my own students to use repeatedly as CAL, and also as paper-

based diagnostic tests.  I wanted to really investigate how robust present-day CAA 

was for students, and how close we are to designing reliable assessment models that 

take mathematics away from paper to onscreen.  

 

 

James Hanson 

March 2011 
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Chapter 1:  - Introduction 
 

1.1 Role of Assessment in the school curriculum 

 

In the UK, the tradition for assessment has been for terminal public exams (A levels, 

Highers, and national curriculum tests etc) to assess the (centrally agreed) syllabus 

that is taught in schools, Baker

 

 (2010). This is much less true in other countries 

where the exams are less closely tied to the school curriculum.  

The system of grading for each examination used to be such that only a set 

proportion of students passed each year, in order to filter out the (then) small 

percentage that were deemed suitable for entry to tertiary education. Clearly it would 

have been impossible to judge how standards changed over decades, or even how 

much students knew at any one year, since the removal of such bars in the 1980s.     

 

Summative assessment in mathematics has changed little in 100 years, and the 

University of London schools matriculation examination, Carson & Dale

 

 (1909) is 

one such exam paper that I have furnished my students with this year, as a means of 

enriching them with a different style of questions which still rely on skills present in 

today’s curriculum. In fact, many of them find this assessment more interesting than 

standard present-day assessments.  

It could be argued that this staleness in approach has robbed students of potential 

gains in achievement, Emanuel (2010), and that those who are taught only to pass 

the test, rather than encouraged to learn skills, leave school bored by endless testing, 

Ellis (2010). While teachers often teach beyond the requirements of any 

examination, there is widespread acceptance that “what you assess is what you get”, 

MEI

 

 (2010), and students are widely asking “is this going to be tested? And if not, 

then why should I learn this?”. 
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The argument for a change has begun in the past decade, not only with the advent of 

technologies sympathetic to learning and assessing, but also the growing unhappiness 

with the status quo in teaching purely to a summative written test.  

 

1.2 Teaching to the test 

 

The traditional assessment model has always been where students’ responses to 

individual questions and sub-questions are assigned marks to 'correct' responses, 

and marks lead to grades. The problem with this is that it encourages students to 

play the assessment game, and go for a mark 'trawl' in exams, trying to pick-up bits 

of marks here and there. It also allows students to retake modules and units of 

assessments, in order to gain a higher mark and grade, often encouraged by schools. 

The economics of such an approach must be a heavy counter-argument before you 

look at the efficacy of this assessment strategy. The alternative is criteria-based 

assessment where grades are awarded according to how well students meet the 

desired learning outcomes, Biggs (1999).

Some 27% of entries (to A-levels) gained an A or A* and the overall pass rate rose 

for the 28th year, amid a record battle for university places, 

 In an ideal world, we would like to 

reward students on how well they have achieved such individual learning 

outcomes, pre-specified before the course started, but that approach is enormously 

difficult to get right or fair.  

Harrison (2010). Many 

questions pertaining to rising pass rates or decreasing standards are asked every 

August when exam boards and schools publish seemingly improving results in A-

levels and GCSEs to hundreds of thousands of teenagers across the country. 

Authorities now spend large amounts of time and effort trying to locate the ‘easiest’ 

exam boards for boosting their schools’ results, Golding

 

 (2010). It is clearly of great 

distress to students who achieve high results, to hear the national media bashing their 

achievements, and forever comparing the assessment that they have just sat to that 

which was sat a decade or more previously.  
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What we need is the ability to accurately compare assessment performances on a 

temporal basis, but there is little consensus about how to compare standards, 

definitively, over long periods of time, Baker 

 

(2010). I, for one, would like to be 

able to compare results achieved in 2011 with those from 2001, and indeed 1991, so 

see how students of my generation compare to those I teach today.  

Those arguing that media-based allegations of “grade inflation” are unfair seem to be 

lone voices in the assessment world, and often their impassioned defence of the 

consistent standards falls on deaf ears. However Murphy et al. (2010) are in 

agreement that exam papers (across the school curricula, including maths) have to 

change, for the simple reason that the curriculum changes all the time, and 

assessment (which produces exam grades) is not an exact science, so cannot be 

accurate enough to conclude that standards are changing at all.   While there is little 

concrete evidence backing up their confidence in our consistent system of 

assessment, the there is growing evidence of degradation in the quality of A level 

grades with real mathematical knowledge of students becoming increasingly porous, 

Barry et al.

 

 (2003).  

The fickle nature of examination success is clearly intertwined with entry numbers, 

and there is evidence of significant entry increases in STEM subjects, long rejected 

by students and grade hungry schools in favour of “soft” A level subjects. These 

entry increases are coincident with ever increasing pass rates and A grade 

proportions in A level mathematics students, Harrison (2010). This increase in pass 

rates is clearly not down to the fact that students have worked harder than ever, nor 

that standards overall continue to improve, because universally employers and 

universities are complaining that entrants appear to lack even basic numeracy skills, 

Spriggs (2010). At present, schools are generally thinking of how to maximise 

league table positions, A level grades, and not what A levels are valued by 

universities, Ricketts 

 

(2010).  

This hard position has been long understood by those outside of the education world, 

but it is only recently that those within education have seen what is wrong with the 
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assessment system of today. The fact that exam papers have become very 

predictable, Smithers (2010), and that there is competition for lucrative custom, 

Golding (2010) all point to the same inextricable conclusion: assessment rewards 

those who pursue ‘teaching to the test’. Even teachers feel obliged to buy the latest 

textbooks and teaching resources endorsed by the exam boards, fearing that their 

pupils would be disadvantaged if they did not IMA

 

, (2010).   

Summative assessment, in its present form, has to change, and learning outside of 

such narrow channels must be the major benefit. So the learning process needs 

formative assessment / diagnostic tests of high quality. How they can be generated in 

a consistent, robust, repeatable, evidence-based, defensible way is the subject of this 

thesis.  

 

1.3 Research Questions and structure of the thesis 

 

I found myself instinctively drawn to (perhaps neutral) research questions, as a desire 

to test how far we could go within school curricula, without a firm hypothesis when I 

started the research project.  

 

1. Do students make the same mistakes online as on paper-based tests? 

2. Can we devise a diagnostic test spanning core maths skills? 

 

The ultimate question for the future of Computer-aided assessment (CAA) – can we 

reliably tell if the nature of assessment will radically change the mistakes students 

will make and will it reliably test the range of skills we wish to assess using it as our 

assessment vehicle?. Given evidence showing that CAA is likely to grow within the 

school curricula, we must have diagnostic and formative tests of high quality. My 

hypothesis here is that students don’t make the same mistakes on paper as online, as I 

believe the nature of the question, its type and required response change the way of 

approach greatly, and as such the model for assessment must move its aims and 

quality to be able to test a wide range of skills in the same way and also generate 

reliable results.  
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3. Can we identify or infer and classify student mistakes using evidence from 

students’ work? 

4. Can we generate a taxonomy for student errors? 

 

My hypothesis here is that we can construct a basic taxonomy for classifying student 

errors, but it is beyond the scope of my ability to construct a fully detailed tree-like 

structure taxonomy to cover the multitude of student errors. In short, I wanted to 

propose that we could generate a fully automated question taxonomy model that 

would classify every mistake for us. But this has proved impossible, and I conclude 

that the human question author is needed. I wanted to see how far we could go in 

classification, and propose a model that reflects the mechanical nature of questions. 

This in itself has a general use in construction of diagnostic and assessment questions 

because we can (at least on a question by question basis) classify errors using careful 

question structures.  The research was also focussed on seeing how much we can 

infer from students’ results files, what we can conclude about present day paper-

based tests and classification of errors.  

 

5. Can we generate a reliable model for choosing and refining mal-rules for 

diagnostic calculus questions? 

6. Can we understand how the choice of mal-rules affects the difficulty of 

multiple-choice objective questions on calculus? 

7. Can we use students’ known mistakes and our own evidence bases to 

improve presently used questions on calculus? 

 

Calculus is a wide topic, but was selected as a narrowed down field of research, as 

there is overlap between some IGCSE (International GCSE) courses and the start of 

the GCE course, it underpins all core maths modules at GCE level, and the core 

maths 1 skill pyramid has calculus underpinned by many other key bridging topics 

such as indices, algebra, graphs, polynomials. There are also a large number of 

questions written on calculus within many CAA and Computer-aided learning (CAL) 
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products, as it could anecdotally be accepted that understanding of calculus is 

broadly indicative of general maths understanding. The subject of mal-rules is one I 

have developed a really good understanding of regarding the pedagogy,  I wanted to 

investigate how mal-rules can give false-positives, or change the scope of a question 

from facility to discrimination indices, so these questions were posed with an 

investigative slant. The hypothesis I wished to explore was that mal-rules written for 

questions can lead the students either towards or away from the correct answer a 

disproportionate number of times. I wanted to also test whether such mal-rules 

served as a very useful diagnostic tool, and whether we could have a high degree of 

confidence in both the nature of student errors using them, this would help generate 

our taxonomy of errors.   

 

It is worth setting out at this stage the fundamental differences between the on-line 

and paper based forms of assessment (a fuller discussion of online testing and 

objective testing is to be found in section 1.5). Some of the differences are: 

 

• On-line assessments are quite often made up from multiple-choice questions, 

whereas on paper-based assessment they are usually not made up in this way.  

• In some cases there are multiple goes at the assessment on-line (with the 

highest score counting). On paper assessments it requires a modular course 

structure to allow such additional goes.  

• On traditional assessment, you only require paper and pen, whereas on-line 

assessment, you require those and other resources (including computer labs 

and invigilation for controlled condition assessment).  

• On-line assessment can give instantaneous marking and feedback, compared 

with longer delays for paper-based assessment.  

 

We also need to distinguish between objective and subjective questions and which 

lend themselves to CAA. Most questions in maths are objective (meaning that they 

are readily assessed online), but proof, modelling (e.g. mechanics or sketch the graph 

of a function) and interpretation of results (e.g. in statistics questions) is subjective 

and is beyond the scope of online objective formats, however delivered. The closest 
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we can usually get is to identify an error in a few lines of solution or proof (often 

defined as “Hot Line questions”, where students identify the wrong “Hot” line in a 

false proof). Even questions where the student has to choose between 

“true/false/undecidable” statements is merely asking students to respond not generate 

the proof/statement for themselves (unprompted). 

  

Then we have to consider the way a CAA system has to communicate with its 

marking scheme. Humans are very flexible, computers not, so CAA marking needs 

even more clear guidance. So this usually means that the question generally has to be 

heavily structured or of multiple-choice format (MCQ). Even with a Numerical Input 

(NI) question the student will know that the answer is a number (possibly not a 

whole one if it specifies the number of decimal places required) and not say a matrix 

or an algebraic expression. For example, an integral with limits gives a number not 

an indefinite integral; the determinant of a matrix is a number not a matrix. Two 

input boxes might suggest there are two roots to be found, not just one etc, so we 

have to be careful how we lead students thinking. 

  

Finally issues of partial credit need addressing for incomplete or inaccurate solutions; 

this can be programmed but a human would respond automatically to a solution that 

is almost correct by giving at least some marks. For a CAA system all we know is 

what was selected or typed in the answer box. 

 

Within the thesis, I set out the main methodology in chapter 2. The basis for 

statistical analysis and choice of technology platforms, a glossary of testing terms as 

well as question pedagogy and question type are all justified here and chapter 1 as 

well. This chapter brings in the rationale for using multiple-choice questions in 

objective testing, and highlights the reasons for using diagnostic testing as well as 

outlining the key features of such tests. The first evidential chapter (3) shows how we 

identify student errors from their own work, firstly using extensive written feedback, 

and observed work at different levels and across different schools / colleges. This 

leads on to the development of a taxonomy of student errors in  chapter 4, where I 

explore different learning styles, objectives and outcomes, and finally demonstrate 
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which taxonomy of errors I propose to use throughout the thesis. I use the end of the 

chapter to show how the body of evidence from chapter 3 can be classified in this 

way, and how likely future mistakes on calculus questions could already be inferred 

from these results without the need for much more evidence.  

 

In chapter 5, I aim to set up a diagnostic test using an algebraic framework, with 

previous paper-based non-objective tests used to generate common student errors, 

and show how this can be written into a new multiple-choice objective test. I 

investigate not only how efficient this test is at diagnosis, but also the issues with 

encoding common mistakes into such tests. I finish the chapter by drawing on the 

limitations of this model based either on paper tests or onscreen tests using Excel as 

our framework. Chapter 6 is the second main evidential chapter, which embarks on a 

thorough analysis of 374 students’ exam scripts, with the aim of diagnosing profile 

errors by topic and skill levels, as well as trying to infer more specific errors on 

questions.  Chapters 7 and 8 use thousands of online maths diagnostic test question 

responses from Brunel University’s 1st year Economics students on differentiation 

and integration. The analysis from these chapters centres on classifying questions by 

difficulty / complexity and cognitive levels and comparing and contrasting between 

groups and cognitive levels. The chapters build on specific student errors, and a 

fuller analysis of the quality of the questions in their present form, particularly the 

efficacy of choice of mistakes to encode into the questions. I finish the thesis in 

chapter 9 with an over-arching conclusion and discussion on possible future 

developments in diagnostic testing, particularly using the computer-based assessment 

framework.  

 

 

1.4 Learning or teaching strategies to avoid errors 

 

Alongside these latest resources supplied by exam boards, more and more teacher 

support courses are offered that help guide teachers to cover all of the crucial points a 

chief examiner wants to see, with a minimum of time wasted on “extraneous” 

material, Emanuel (2010). A successful teacher, these days, seems to be one whose 
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students have achieved the highest possible mark in the GCSE or A-Level 

examination without gaining a single skill or piece of knowledge outside of a 

national curriculum. Thus it could be argued also that the student who listens best to 

the teacher on the subject of what will come up and how to avoid known common 

errors in the nearly always predictable assessments is judged the brightest in the 

class, rather than the inquisitive one who is better at problem solving by themselves. 

 

This digital age is a golden one for the development of technologies to support 

learning. It would be the worst possible moment to abandon the use of technology 

within learning, but exactly the right moment to restart the discussions about how to 

further its implementation, Puttnam 

 

(2011). Teachers themselves also need to 

undergo training in using such technologies, as no education system can be better 

than that enabled by the quality of the teachers.  

However, there is significant division within government on the role of technology in 

education, with plenty who would leave the nature of the classroom as it is, in clear 

opposition to those who want to march education and assessment into the digital age. 

Speaking with those who work in the field of assessment, I sense that within a 

decade we will see widespread, if not wholesale computer-aided assessment or other 

technology platform-aided assessment. There is already a plethora of technology-

aided learning resources available to students and teachers alike, Drought

 

 (2010). 

The thrust of this thesis will examine further how we can embed technology in the 

development of learning resources, diagnostic tools and teaching assistance to 

develop skills, equip students for higher learning and reduce the likelihood of errors 

in summative assessment.   

1.5 Objective tests v non-Objective tests  

 

Objective tests require a user to choose or provide a response to a question whose 

correct answer is predetermined. The converse is that non-objective tests are by 

nature much more subjective and often involve presenting and defending a 
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viewpoint. Grades often reward the quality of the arguments presented rather than the 

position being defended.  

 

Objective questions generally fall into a number of different types (multiple-choice, 

selection of true / false, matching correct statements or answers from a list, 

identifying objects or their positions or supplying a numerical or textual response). 

As the correct answers to objective test questions are pre-determined, they are well 

suited to the many forms of technology platform that involve automated marking. 

The electronic marking of the responses is completely non-subjective as no 

judgement has to be made on the correctness or otherwise of an answer at the time of 

marking. However, it is worth noting that in terms of in-built bias, an objective test is 

only as objective as the test's designer makes it, CAA

 

 (2002), for example in writing 

tests for my own students, my objectivity only tends to span the perceived ability 

range of the cohort.  

The design of such tests, and the selection of the question type is crucial in making 

sure that assessment via objective tests will provide enough accurate information to 

classify students’ understanding. Mathematics assessment lends itself better than 

most subjects to objective tests, as many skills can be tested using questions that 

require a numerical response, or a selection from a list of suitable answers. A popular 

type of question for the objective test developer in mathematics tests is the multiple-

choice question (MCQ), whereby a number of similar possible responses can be 

drafted for each question. The further development of these questions is made 

possible by understanding common errors in students’ understanding of individual 

skills, and by writing some of the possible responses to reflect these same errors 

(mal-rules), a pedagogy explained by Greenhow et al

 

. (2003). However, its 

limitations will be discussed further throughout this thesis, as the whole areas of 

proof, modelling and interpretation in mathematics are ones that are difficult, but not 

impossible, to bring in to objective testing.  
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1.6 Formative Assessment 

 

Whereas Summative Assessment involves measuring what has been learned in 

formal assessment, Formative Assessment in its widest sense refers to any process 

by which pupils are made aware of how they can make progress, Clarke 

Such assessment strategies, as part of e-learning resources have become more and 

more the norm for schools, as students are ever more technology hungry and 

expectant.  

(2010). 

Teachers have always been using formative assessment in the classroom (often via 

paper-based tests, or marking of class / home work) to enhance pupil learning, and 

such assessment should be by nature informative to the pupils (through feedback), 

and quantitative so that there is a measurable pattern of learning records for each 

pupil throughout a given timeframe. Many electronic platforms have embedded 

formative assessment strategies into their learning resources (e-learning), for 

example in regular bite-sized end of unit tests of skills.  

However the key questions still remain: 

• How can we use these formative assessments to guide learning? 

• How well will students use the feedback provided onscreen? 

• How can this prepare students for summative assessments?  

Black & Wiliam (2010) postulated that when formative assessment is most 

successful, students learn effectively, teachers focus more individually on students’ 

needs, wider learning is readily enhanced and even the least able benefit as they 

feel involved in directing their own learning. Thus there is plenty of scope for 

development of wide ranging formative assessment tools embedded into other 

learning resources for students to use through the formal school setting as well as 

through independent learning time. The development of specific tailor-made 

resources online and through many differing technology platforms (e-resources) 

will only enhance technology-driven learning (and in the main that means computer 

aided learning - CAL).  
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Feedback needs to be given as soon after a formative assessment has been 

completed to be most effective, and should give students a sense of what has been 

understood as well as what is yet to be grasped fully. Marks and grades can be very 

empowering to some students, but can de-motivate students to the point that they 

neglect to take up the specific feedback. Clarke

Preparation for summative assessment will only be enhanced if the formative 

assessments accurately mirror the summative ones, provide accurate feedback on 

specific skill deficiencies or gaps in knowledge and are used regularly enough to 

train the students to get the maximum from that style of learning. In short, the e-

resources will be of tremendous help when summative assessment is conducted via 

e-assessment, and when these tools allow for an accurate diagnosis of ability, 

knowledge, and skill development. Until such time (perhaps a decade or so in many 

subjects), then they just serve a purpose of enhancing wider learning and providing 

useful additional backup to traditional teaching and learning strategies. 

 (2010) also advocates the use of 

oral feedback (including discussion) as the most effective type of feedback, as well 

as encouraging students to reflect on the feedback and given time to work on 

improvements as soon as possible after the assessment.  

 

1.7 Question types: by pedagogy and by cognitive level 

 

Question types used in this thesis are those specified by Greenhow (1996)

 

, who 

divides assessment questions into five types, three of which I describe below as 

present during our analysis of computer-aided assessment objective tests: 

• Multiple-choice questions (MCQ) have been highly used and are well 

regarded objective questions, Harper (2003). They are built up from a 

question stem, and a set of options given including the correct answer (the 

key) and a number of associated distracters, so that students check the 

option box onscreen (or input an associated key coded letter). A good 

MCQ should contain plausible, but definitely wrong options as its 

distracters, Baruah (2007). The emphasis on research through this thesis 
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is on derivation and formulation of good distracters. They are highly 

useful for diagnosis, allow ease of marking and delivery of tailored 

feedback and students find them user-friendly. However, they aren’t 

representative of usual paper-based assessment forms, and students can 

either be led to guess a solution, or be disappointed if their answer doesn’t 

appear in the list (even though “None of these” could be correct).  

 

• Numerical Input questions (NI) are often used to test a skill(s) whereby 

the MCQ might give away too many implicit cues for the students or 

“scaffold” their thinking. These questions ask for one or more numerical 

responses in a provided box or on paper. Such questions need to be 

carefully expressed onscreen and on paper to specify accuracy required, 

units required, and objective questions of this form are used most often to 

look at practical applications of laws / rules, rather than the recall of laws 

/ rules. These questions are probably the easiest to formulate and write for 

on-line assessment, are familiar to students, relatively easy to complete 

on-line and quick to mark, but they don’t allow easy scope for writing 

algebraic answers, and can’t give specific diagnosis of errors or tailored 

feedback.  

 

• Responsive Numerical Input questions (RNI) are identical in 

presentation to students as those of NI questions. However, the question is 

encoded with pre-prepared mistakes (hidden distracters), so that the 

feedback to students can provide more tailor-made explanations of where 

they have gone wrong, alongside the specific feedback about the full 

correct working to obtain the correct response. Such questions allow the 

collection of more specific responses from students, to ascertain the 

frequency and type of mistakes made. These serve as useful questions to 

derive distracters for future similar MCQs. They are highly useful for 

diagnosis, allow ease of marking and delivery of tailored feedback and 

students find them user-friendly. Their one weakness is that they don’t 

allow easy scope for writing algebraic answers.  
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Question types can also have metadata for cognitive level or learning objectives, as 

well as by the categorisation of mistakes and number of structures that they are likely 

to require to complete. Such fuller descriptions will be described at the start of 

chapter 4 onwards.  

 

 

1.8 Use of multiple-choice questions in formative and summative assessments 

 

Multiple-choice questions are becoming more and more common through formative 

and summative assessment modes, and students are very much more aware of how 

they can be used in assessment and learning. From an early age, many secondary 

school level students will meet the United Kingdom Mathematics Trust 

(www.ukmt.org.uk) challenge papers, from Junior level (UK school years 7-9), 

Intermediate level (UK school years 9-11) and Senior level (UK school years 9-13). 

There are several stark observations with the nature of this different assessment 

through only multiple-choice questions (as shown in figure 1.1 below): 

 

• The papers are strictly controlled so that candidates have no access to 

calculators, rulers or other measuring implements 

• The papers are very much designed with time constraints that make them 

difficult to fully complete every question 

• On some sections of the papers, there are negative marks available for wrong 

answers, zero marks for blank answers and 4, 5, or 6 marks available for 

correct answers. 

• Answers are designed so that guesswork alone should not be readily 

possible, and a strategy of systematic elimination of answers by inspection 

should also not be successful. 

 

http://www.ukmt.org.uk/�
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Figure 1.1: A screenshot from Q1-5 of the UKMT Senior Maths Challenge paper 

2010 

 

The other areas where students will increasingly come across multiple-choice 

questions are for GCSE revision exercises onscreen. Exam boards (as well as e-

learning websites such as the University of Cambridge’s www.nrich.org.uk site, the 

MyMaths team at www.mymaths.co.uk, or the BBC bitesize revision guides at 

www.bbc.co.uk/bitesize) are increasingly turning to use them as a diagnostic and 

formative assessment tool, so teachers can use them in classes within a computer 

room, or students can have independent access to the site so to practise on their own, 

and use the plethora of associated e-learning resources as spin-offs. Students are 

regularly feeding back to teachers that specific structures and tailor-made revision 

tips are the most useful aid they can get, building confidence and enjoyment of maths 

for the forthcoming assessments and future mathematics courses, Jones (2010)

 

.   

 

 

http://www.nrich.org.uk/�
http://www.mymaths.co.uk/�
http://www.bbc.co.uk/bitesize�


  16 

Exam boards suggest that such practice tests will offer students the chance to see: 

 

• Their test score 

• Test analysis 

• A test review showing model answers 

• Skills map report showing performance vs. relevant GCSE specification 

topics 

 

They are not practice exams, i.e. they are designed primarily to assess students’ 

mastery of GCSE skills and highlight areas of strength and weakness in students’ 

understanding to enable teachers to adapt schemes of work and revision accordingly, 

Cumming (2010)

 

. The tests have the facility to block model answers, although when 

using such tests for teaching and learning, not letting students view and learn from 

mistakes, has limitations.  

GCSEs delivered by onscreen testing offer a real benefit to students, and regularly 

receive very positive feedback from them, as they enhance exam delivery as well as 

students’ enjoyment of the assessment process, CIE (2009). In some international 

centres, such onscreen GSCEs on practical elements of a subject like Geography can 

also engage students in an area they would otherwise not be able to study (e.g. a 

practical test onscreen on rivers in a river-less country like Kuwait), Wood (2009)

 

. 

The transition to summative e-assessment for onscreen GCSEs also makes such 

practice and familiarity of assessment useful for students. From June 2011, a number 

of exam boards are offering computer-based tests as an alternative to traditional 

paper-based assessments, and in some subjects / courses the computer-based test is 

the only option for certification (OCR GCSEs in Law, Environmental Science).  
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Figure 1.2: GCSE maths sample question for onscreen test, Edexcel 

(www.edexcel.com)  

 

A full study of such onscreen GCSEs is warranted, especially the determination of 

the options for students to choose from, and is left to the discussion. At first glance 

above (in figure 1.2), it is clear to see that the five options are pedagogically the 

same, and that they don’t give away any intuitive guesses for the candidate, which 

will increase their usability in the future. Our discussion throughout later chapters 

will centre heavily on the choice of options for the multiple-choice test.  

 

The other area where some students will be exposed to multiple-choice testing is 

again via paper-based format, through the University of Oxford mathematics aptitude 

test (www.ox.ac.uk/maths) in figure 1.3 (below):  

 

http://www.edexcel.com/�
http://www.ox.ac.uk/maths�
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Figure 1.3: Sample questions from the University of Oxford mathematics aptitude 

test  

 

While many students won’t see these tests, they are another illustration of the power 

of multiple-choice testing to help differentiate a cohort of students, and coupled with 

the nature of accessible foundation level GCSE questions to aspiring University of 

Oxford mathematics undergraduates, show how diverse a span of abilities and 

mathematical experiences can successfully be summatively assessed using such 

question formats.   

1.9 Diagnosis 

The LTSN maths team published a guide (2002), on diagnostic testing for 

mathematics. It is interesting to remark how many university departments were using 

diagnostic tests then, and a similar study now would reveal just how many more were 

doing so. The striking point about the 2002 study was not that many departments still 

used a paper-based test, but how well versed in the pedagogy behind such tests they 

were.  

 

At York University, Todd (2002) published a study (for electronics and physics 

students) on the correlation between A-level maths grades and subsequent 

performance, and revealed some striking results. Based on a fifty question paper-

based multiple-choice test (that had not changed in format, style or substance over 15 

years), they found the average mark (out of 60) dropped from around 40 (1986) to 

around 20 (2000), while A-level scores overall maintained a very similar level. They 
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found the more marked decline amongst students who had scored a grade B at A-

level maths, to the extent that the average grade B mathematician scored only 

marginally more on their test than they would have done so by guessing alone. 

Despite the fact the syllabi have changed slightly in content (if not really in style of 

questions) over this time, they found it impossible to explain the year-on-year decline 

in results. 

 

By April 2001, despite the fact that huge numbers used diagnostic tests, only 18% of 

higher education institutions that responded to an LTSN survey used an on-line 

diagnostic test. Many had used paper-based tests for years, and a number didn’t see 

the need to offer online tests. A similar survey of schools would have shown a 

similar or lower proportion using any formal notion of diagnostic tests, as didactic, 

teacher-led learning was still very much at the fore in the classroom.  

 

At tertiary level, in this past decade we have seen the evolution from paper based 

tests to computer-based testing, Robinson & Croft (2003). It has always been a 

learning objective to improve the mathematics education of students with a focus on 

preparation for tertiary transition. Such improvement, whether though drop-in 

surgeries, e-learning tasks, wikis, podcasts and the like are needed before students 

start undergraduate courses, yet often only undertaken once a student has started their 

courses. Such testing is not an end in itself, but only the beginning of a process of 

supported student learning, Lawson (2003)

 

.  

Technology has been key to the development of such testing programmes, and the 

development of a robust summative e-assessment framework has meant that spin-

offs such as diagnostic testing at the start of a course, e-learning resources and online 

feedback have all become ideally suited to boosting individual learning outcomes, 

Ross (2011). Even the running of Open Education resources (OER), You Tube Edu, 

iTunes U has added to the rich number and variety of tools available to the university 

to appeal to learners of the new decade, Rowlett (2010)

 

.  
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The need to tailor-make the diagnostic test is very much upon us. The next chapter 

aims to introduce the evidence from analysis of results files, with the twin aims of 

diagnosing basic errors in students’ attempts at calculus questions and the 

development of sustainable (reusable) questions. This represents a partial solution to 

the problem of changing the nature of assessment, as getting students used to 

diagnostic testing has additional benefits: namely that they will be used to receiving 

feedback and also used to the e-assessment strategies employed in diagnostic testing, 

which will serve them well for the development of future summative e-assessment.  

Greenhow et al. (2003)

 

 pushed ahead with an e-diagnostic testing tool (Mathletics), 

with a user-friendly interface, and where questions are pooled together to make up 

repeatable tests (with marks stored online for comparison and teacher viewing). It 

would also offer direct feedback after each question, and suggested materials (or 

indeed retests) for students to work on in their own time.  

 

1.10 Features of a diagnostic test 

 

In designing a suitable test, we should use the following guiding principles: 

 

Lawson 

(2002), Dalton (2006) 

• To inform staff of the overall level of competence in basic mathematical 

skills of the cohort they are to teach 

• To determine whether a course of further study is right for the student 

concerned. 

• To feedback / inform students of any gaps in the level of mathematical 

knowledge they will be assumed to have – so that they can take action to 

remedy the situation 

• To be able to reuse the test for members of the same cohort and those in 

successive years, carefully refining the test to account for changes in learners 

entry profiles.  
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In follow up, schools and colleges should have in place many of the following to 

help students post diagnostic tests (without which there is little achieved, but to 

demoralise the weakest students): 

 

• Maths surgeries 

• Extra tutorials / classes 

• Advice on which e-resources they can use 

• Close monitoring / re-assessment 

• Provision of paper-based resources / texts 

• Advice on alternative courses / modules 

 

1.11 Feedback 

 

Nicol & McFarlane-Dick (2004), proposed the following seven principles of good 

feedback practice: 

 

• Helps clarify what good performance is (goals, criteria, expected standards) 

• Facilitates the development of reflection and self-assessment in learning 

• Delivers high quality information to students about their learning 

• Encourages teacher and peer dialogue around learning 

• Encourages positive motivational beliefs and self-esteem 

• Provides opportunities to close the gap between current and desired 

performance 

• Provides information to teachers than can be used to help shape the learning 

 

There is a discrepancy about when students can take full ownership of their learning, 

and some pre-GCSE age students may not be mature enough to cope with the 

demands of plugging the gaps themselves, and neither should they. However, there is 

growing anecdotal evidence from colleagues in secondary school maths teaching that 

students are keen to plug gaps as they approach and pass through GCSE and are keen 

to know which areas they need to work on first-hand. Even weak students at GCSE 

level know what they can and can’t understand.  
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Mathletics as written by Greenhow et al. (1999- ) provides extensive feedback to the 

user on each multiple-choice question, and for each topic, based on Nicol & 

McFarlane-Dick’s 7 principles for good feedback. The page is set up to provide an 

instant answer to a question, its full working (with associated general theory for the 

solution to a pedagogically congruent question), and the specific process / reason 

why the student went wrong. The feedback is designed also to help the student get to 

grips independently with the skills tested, so that they can repeat the same test very 

soon afterwards. There is a stark warning, however, in producing feedback for 

students as they work through tests, in that some will take too long looking through 

feedback without moving onto subsequent questions, Gill & Greenhow (2006).

 

  

 

1.12 Testing and measurement of efficacy of tests – a glossary of terms used. 

 

Students make errors, and it is only by assessing these errors and analysing why and 

how often they make them that we can really make feedback and subsequent 

teaching resources useful to the individuals. This pedagogy must underpin our 

accurate writing of diagnostic materials. For each question written, there must be a 

number of learning weaknesses, and break-points from which students fail to 

accurately complete a question. By understanding and using these common errors, 

we can classify “mal-rules” as essentially rules or routes that a student as 

erroneously followed to generate a bad (mal) answer. Mal-rules are wrong paths 

producing errors which can be classified as mechanical, conceptual, procedural or by 

application, Schechter (1994).

 

  

We can also gauge students’ ability to handle questions by measuring the levels of 

difficulty they face on it. Such a measurement, Wood (1960), Crocker & Algina, 

(1986) is defined by:    

 Number of persons who answered it correctly
Number of persons who answered it correctly and incorrectly ip   
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More simply, it is the mean mark obtained by a cohort divided by the total number of 

marks available any question, and is more commonly known as the “facility value” 

for that question. Should a question yield one mark, then the facility (F) will sit on a 

scale of 0 to 1, and this difficulty is really 1 - F. The nature of the question itself may 

well determine the facility value, as a poorly worded question may throw off genuine 

understanding, and a multiple-choice question with poorly chosen possible answers 

may equally allow a student to pick out the wrong choices without demonstrating any 

tangible mathematical skills. McAlpine (2002) proposed the following scale for 

facility value, to distinguish question facility: 

 

0 < F < 0.5  Hard 

0.5 < F < 0.7 Moderate difficulty 

0.7 < F  < 

 

1.0 Easy 

Probably the most useful measure for a question designer is the “discrimination 

index”; in effect a measure of how well a question differentiates between members 

of a cohort. It will allow us to test the extent to which question responses 

discriminate between individuals who have a high score on the test and those that get 

a low score. The discrimination of a question is also a measurement on a sliding 

scale of -1 to 1, which shows how that particular question ranks compared to every 

other question in the test sat and it is obtained statistically as the Pearson product-

moment correlation coefficient between the scores on the item and the scores of the 

total test, 

 

Lomax (2000).  

It is worth pointing out that as the facility value approaches either 0 or 1, then the 

discrimination index will tend to zero quickly. An impossible question or far too easy 

question will not discriminate between candidates. Massey (1995)’s classification 

(figure 1.4) according to their discrimination will help guide the efficacy of questions 

in tests. While this table postures useful ranges of discrimination index for CAA in 

general, I firmly believe that it is applicable to mathematics assessments. 
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Figure 1.4: Description of efficacy of the discrimination index, 

 

Massey (1995) 

1.13 Nature of problem in transition 

There are many other questions that need raising before we embark on a full thesis 

discussion of the role of e-assessment and e-learning. The advent of comprehensive 

databases in schools has considerably eased the ability of departments like the 

Centre for Evaluating & Monitoring (CEM) at the University of Durham 

(http://www.cemcentre.org/) to compile value-added analysis of a school’s results 

year by year. This analysis is only as good as the objective tests at the start of a 

student’s arrival at the school and the summative assessment they sit as they leave. 

Each are graded using paper-based tests, and this too would lend itself to 

technological advancement through the coming years, and will surely progress that 

way as summative assessment becomes computer aided.  

Universities have been much quicker on the uptake of e-assessment, and it is clear 

that many of them have not only run diagnostic tools as part of their e-learning 

resources, but also successfully run end of semester testing for a number of years in 

many subjects. Such summative assessment has allowed a rich harvest of learning 

from e-resources and a major influx of e-resources developed in conjunction with 

those who write the summative assessments so that students can gain the maximum 

from these e-learning tools. Schools and colleges are still at the mercy of QCDA 

(and its predecessor QCA) and, while a number of them have adopted the initial 

pilot e-assessed GCSEs in maths, the wholesale delivery of e-assessment is a long 

way off still. Thus, the change from traditional assessment in schools to CAA in 

tertiary education will be a significant change for many students. This needs careful 

monitoring to make sure that students can be assessed over both assessment forms.  

Discrimination index (D) Quality Recommendations 

>0.39 Excellent Retain 

0.3-0.39 Good Possibilities for improvement. 

0.2-0.29 Mediocre Need to check / review 

0-0.19 Poor Discard or review in depth 

<0 Worst Definitely discard. 

http://www.cemcentre.org/�
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Chapter 2 - Methodology 
 

2.1 E-assessment 

 

My personal motivation for exploring e-assessment comes through contact with the 

University of California at San Diego, and their Department of Mathematics Testing 

and Placement (2001). They set out their aims for their diagnostic testing programme 

as: 

 

• Setting tests for all entering undergraduates intending to begin calculus 

courses 

• Analysing records of results to counsel students effectively 

• Guiding students onto appropriate courses given their attainment levels 

• Providing test materials to pre-college teachers to improve the mathematics 

education of their students with a focus on preparation for college.  

 

As my understanding of diagnostic testing has developed, so I now see that it is not 

an end in itself, rather the beginning of a process of supporting student learning. In 

exploration of how scientists learn maths, I joined the IMA’s conference on the 

mathematical education of engineers, IMA (2003), and saw that in some universities, 

diagnostic testing was happening for over 1000 students per year, and testing was 

already becoming computer-based as opposed to the traditional paper-based 

assessments, Robinson & Croft (2003)

 

. Moreover, my most significant discovery 

from this conference was how important the pedagogy of designing effective (online 

or paper-based) questions was in achieving learning objectives.  

Technology has marched on significantly since 2003, and these enhancements are 

already underpinning many forms of summative as well as formative assessment in 

schools and universities. Computer-Aided Assessment (CAA) is now regularly 

embedded in the framework for learning in these institutions, as well as Computer-

Aided Learning (CAL) both of which are more commonly known as e-assessment 

and e-learning. The pros of using e-assessment are many and far-reaching, McKenna 
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& Bull (2000), but the most important criteria for their successful implementation, 

Paterson (2002)

 

 are:  Reliability, Validity, Usefulness, Fairness and Cost-

effectiveness. In addition, I would add that they should be Sustainable (reusable), 

Interoperable, Instantaneous in marking and feedback and Relevant to future skills 

needed in life outside of the generic subject specific learning objectives.  

Consequently CAA does need to be very carefully generated, as a non-repeatable e-

assessment will not gain us much over its traditional paper-based counterpart. The 

ability to use a database and automatically generate hundreds or thousands of 

pedagogically identical questions at a mouse-click will allow us to use these tests for 

e-learning, and to offer tests to students in the same computer room such that they 

would gain nothing if they could see a neighbouring screen as it would have differing 

numbers in the question(s). Thus direct copying is eliminated, but other forms of 

cheating still exist such as aliasing, use of other software or resources.  

 

Within online objective tests, the ability to obtain the best distracters (incorrect 

answers that can be presented to students as possible correct answers) and understand 

student mistakes is vital to gain an advantage over the paper-based test (which may 

have detailed teacher feedback), as this can allow instantaneous tailored feedback, 

with specific analysis of skill deficiencies and specific mistake identification. If these 

tools are in place, it will only help improve the efficacy of questions and the ability 

for such tests to discriminate between students in the future, 

 

Earl, Land & Wise 

(2000). 

2.2 Test statistics and hypothesis testing 

 

In the course of this research, it will become obvious that we will generate summary 

statistics from our various samples, and wish to compare them to see whether they 

are likely to come from the same parent population, or whether we detect a statistical 

difference between them, such that we can infer differences between the samples and 

offer unique recommendations for future analysis of the distinct samples. Given that 

the samples we take are independent, but not likely to have the same size, variance or 
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likely to come from parent normal distributions, we can rule out using a t-test to 

compare the sample means. However, a Mann-Whitney (1947)

 

 test on the 

differences between the means of the samples can be carried out.  

Thus a null hypothesis, H0 would state: there is no significant difference between 

performances on two sample sets. as opposed to an alternative hypothesis, H1: there 

will be a significant difference between performance of the two sample sets. We 

assume data to be taken uniformly from both sets.  

 

This is a non-directional (2-tailed) hypothesis test, and as a first assumption, I will 

look to carry out the test at a 5% significance level, so that we have a reasonably 

good degree of confidence in our conclusions. We use a Mann-Whitney test, because 

it is a non-parametric test for assessing whether two independent samples of 

observations come from the same distribution. For example, suppose we want to test 

whether or not the samples of answers for the questions from set A are from the same 

distribution as those of set B. Then we can test whether the samples of answers for 

the questions from set B are from the same distribution as those from set A.  

 

If our sample sizes are less than 20 for each sample, we won’t have any justification 

for using a normal approximation to the distribution, but we can find (at a specified 

non-directional significance level, e.g. 5%) a test statistic, U, to be compared with 

tables of critical values for the Mann-Whitney U test: 

http://math.usask.ca/~laverty/S245/Tables/wmw.pdf 

 

So, if U is above this critical value, we can reject H0 in favour of H1, that there is a 

statistical difference between the two samples. We can then adjust the significance 

level of the test downwards, e.g. to 0.01 (still non-directional), and compare again 

with the new critical values to see if we would draw the same conclusion from a 

more stringent test and confidence interval.  

 

http://math.usask.ca/~laverty/S245/Tables/wmw.pdf�
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Table 2.1: Critical values for the Mann-Whitney U test at the 5% non-directional 

level.  

 

 

2.3 Correlation  

 

Within our samples, we have other reasons for comparison, namely that of 

correlation. It is of great interest to us to see if a sample of results from one group or 

year is indicative of either similar or future success, so the ability to see how well the 

data from group 1 fits with that of group 2 will allow us to examine links between the 

two. There are two common mechanisms for calculating correlation, and both depend 

on whether we have a good hypothesis that the data is already linked. Pearson 

(1917)’s Product Moment Correlation Coefficient (PMCC) for the covariance of two 

sets of data relies on them to sit close to a linear regression line, Galton (1888). 

Once we can make this assumption, then the PMCC is a simple calculation on Excel, 

that allows us to draw conclusions about the two sets of data in comparison. We can 

also use Spearman (1904)

 

’s analysis on the correlation between two variables, and 

the assumption here is only that the two sets of data are rank ordered. In practice, 

both calculations often yield a result within 1% difference of each other, so allow an 

identical conclusion to be inferred from the comparison.  
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2.4 Use of technology in the thesis 

 

Alongside the use of paper-based tests written on Microsoft Word, there are a 

number of diagnostic tests and analysis worksheets I have written using Microsoft 

Excel, because of its versatility to generate random numbers, produce test statistics, 

and to display tables, charts and graphs.  On the accompanying CD is the 

“Diagnostic test multi-use version.xls

 

”, which is the pilot diagnostic test developed 

using Excel from chapter 5’s analysis, and which demonstrates some of the pedagogy 

of writing objective test questions using the visual basic structure of Excel’s 

worksheets.  

The Edexcel exam board has also produced its own database, ResultsPlus, with 

dedicated centre login information for schools and colleges, and access to direct 

results for each student from any recent summative assessment completed from 

January 2008 to the present day.  

 

 
Figure 2.2: Edexcel’s ResultsPlus website database selection page 

 

Once inside the website database, I can download any exam paper report from each 

of the sessions listed above, and I receive a feedback worksheet. The feedback of 
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results from the database is via a CSV file, which is easily exported to Excel for 

analysis, and once imported into Excel’s worksheets, it is readily used to produce 

further test conclusions, summary tables and statistics relevant to the analysis in 

chapter 6. A full version of the feedback worksheets is also on the accompanying 

CD, and sample pages are described in section 6.1. Excel is also an invaluable tool in 

constructing the summary statistics used in completing the hypothesis tests in 

chapters 7 and 8 for the Mann-Whitney U test. 

 

 

2.5 Samples used in the thesis 

 

A sample is a finite part of a statistical population whose properties are studied to 

gain information about the whole, Webster (1985)

 

. Research conclusions are only as 

good as the sample that we base those conclusions (or generalisations) on. Taking a 

sample of a parent population is by definition easier, less time-consuming, more cost 

effective, and simpler administratively. The samples used in this thesis come from 

three sources: 

• 1st year Economics undergraduates at Brunel University, studying the 

EC1005 course (2008-2009 and 2009-2010) 

• Year 11 and 12 mathematics students at Warwick School (2002-2003) 

studying a transition from GCSE to AS course in mathematics 

• Year 11 and 12 mathematics students at Harrow School (2003-2007) studying 

a transition from GCSE to AS course in mathematics, and (2008-2010) 

studying an AS course (Core Mathematics 1).  

 

Brunel University is a comprehensive university with approximately 14000 students, 

about 2000 of whom are overseas. It is therefore assumed that the university will be a 

good representative of UK higher education institutes and that the sample will give a 

true indication of the majority of undergraduates studying maths-related courses 

where mathematics diagnosis may be required at an early stage in their first year, 

Baruah (2007). Warwick and Harrow schools are independent secondary schools, 
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both with male only cohorts. The nature of selection from these institutions is 

primarily for ease of access of a large quantity of sample data, and despite this 

yielding less certain generalisations of a parent population, we can compare with data 

generated through a random sample of schools, colleges and other further education 

centres, as in section 3.3.    
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Chapter 3: Determination of student errors in calculus 

questions 
 

3.1 Core Maths 1 scripts from Results Plus 

 

Using 374 “ResultsPlus” answer files from Edexcel, the associated Core Maths 1 

(C1) exam papers and their mark schemes, I have put together an analysis of 9 

differentiation questions sat by candidates at one exam centre and will pick out some 

likely errors from our data (all of the results analysis files are available to view on 

the CD). More than half of the students scored 100% on the topic questions, and all 

bar 100 papers had 80% or higher scores on the differentiation topics alone. It is 

these 100 papers and their associated errors that I will pursue in depth. 

Differentiation, in fact, remains a very well understood topic, across the years as this 

table compares the facility of differentiation questions, with the rank facility of the 

12 topics tested on each exam paper: 

 
 Jun-07 Jan-08 Jun-08 Jan-09 Jun-09 Jan-10   Overall 
Facility (out of 1) 0.95 0.90 0.90 0.93 0.81 0.83   0.89 

Rank (out of 12 topics) 10 12 6 8 1 3   10 

Marks available 13 14 15 13 18 11   14 

 

Table 3.1: Facility of differentiation questions in C1 exam scripts, Jun 07 to Jan 10 

 

The examination in June 2009 caused greater issues, with a larger than average 

number of marks available (18 out of 75 total, verses a long term average of 14), and 

all possible syllabus sub-topics were examined with somewhat tricky, fiddly 

questions.  

 

When we break down the individual marks on each part question into method marks 

(M1), or answer marks (A1), we see can see more detailed patterns emerge. The table 

below shows the marks awarded to each part question per year – I have focussed on 

June 08 to Jan 2010 and on the questions that require polynomial differentiation 

(including fractional and negative powers), thus leaving aside analysis on questions 



  33 

requiring the skills of finding tangents and normals to polynomials at give points. It 

is for low facility values on these individual marks where I can focus my attention to 

the feedback and exam scripts to see where mistakes have been made. 

 

 Figure 3.2: Analysis by question mark for differentiation of polynomials. 

 

3.2 An analysis of student errors through examiners’ reports 

The following analysis is based on the individual scores from the ResultsPlus files, 

and insight from Examiners’ Reports, GCE Mathematics (8371/8374/9371/9374), 

Edexcel (2008-2011). www.edexcel.com

 

  

June 08: Q9a)   Differentiate:   y = kx3 – x2 + x – 5.  

 

Jan-10 Q1 M1 Q1 A1 Q1 A1 Q6a) M1 Q6a) A1 Q6a) M1 Q6a) A1 

Correct 35 34 24 33 29 32 28 

Mistake 0 1 11 2 6 3 7 

        
Jun-09 Q3a M1 Q3a A1 Q3a A1 Q9b) M1 Q9b) A1 Q9ba) A1  

Correct 81 78 77 78 72 75  

Mistake 0 3 4 3 9 6  

        
Jan-09 Q6b) M1 Q6b) A1 Q6b) A1 Q6b) A1 Q11a) M1 Q11a) A1  

Correct 39 38 35 36 38 37  

Mistake 0 1 4 3 1 2  

        
Jun-08 Q4a) M1 Q4a) A1 Q9a) M1 Q9a) A1    

Correct 107 107 107 104    

Mistake 0 0 0 3    

        
Jan-08 Q5b) M1 Q5b) B1 Q5b) A1 Q5b) A1    

Correct 12 11 11 11    

Mistake 0 1 1 1    
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Of the 107 attempts, only 3 failed to score both marks, and given that they all scored 

the method mark (available for finding 1 or more correct terms), then the presumed 

mistakes are almost certainly mechanical, as one new power had to be correct, which 

indicates knowledge of the techniques. The report cited errors with the “k” term, and 

errors of the form: kx2 or 3k2x2 or 3kx3 were all observed.  

 

January 09: Q11a)   (By first differentiating the function), find the gradient 

of the tangent at (2, -3):   89 4y x
x

= − − . 

 

Of the 38 attempts, only 2 failed to get full marks, and one of those gained the 

method mark. It is possible that the full question (which required the tangent gradient 

and didn’t explicitly ask for the derivative), may have not helped those who didn’t 

have the knowledge of the technique for finding the tangent, yet could have 

differentiated the function above if asked specifically for it. It is more likely that this 

happened to one candidate, while the other (1 mark out of 2) candidate made a 

generic mistake with the final term. The popular mistakes were noted in the 

differentiation of the final term with: 2

8
x

 or 8
x

 seen often.  

 

Jan 09 Q6b)   Differentiate:   
3

4 25 3 2y x x x= − + −  

 

Of the 39 entries, 34 successfully completed all four marks. The other 5 candidates 

all scored at least two of the four marks (including the first method mark and one 

answer mark), so clearly lost out with mechanical errors not complete conceptual / 

knowledge based errors. The major challenge in this question was to differentiate the 

fractional power term correctly, and I presume that those five who lost one or other 

mark would have lost them at this point. The common mistakes seen for 

differentiating 
3
22x were: 

3
23x , 

1
22x , 

1
24

3
x .  

 

June 09 Q9b)   Differentiate:   
1 1
2 2( ) 9 16 24f x x x

−
= + −  
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This was the hardest part question of that paper, and 3 candidates of the 81 left it 

blank (scoring 0 out of 3), or made a major error early on in the question that they 

didn’t score the method mark (gained for dropping the power of one term by 1). Such 

errors are more than likely mechanical, as all 3 of them scored the full 3 marks on the 

harder derivation previously to get to the stage above, demonstrating excellent 

algebraic skills and competency with indices. The question offered one follow-

through mark for those who had derived the wrong expression above, but only one of 

those 7 who failed to score full marks would have needed it. Those 7 scored a 

method mark, but they lost one or both answer marks for the two main derivatives. 

Each one needed simplifying, but because the simplifying (16 x ½ or 9 x ½) isn’t as 

difficult a task compared to the differentiation in my view, then it is likely that their 

errors were mechanical mistakes with indices.  

Commonly seen errors for differentiating 
1
29x

−
 were: 

1
24.5x , 

1
24.5x

−
, 

3
24.5x

−
, 

1
24.5x

−
− , 

1
24.5x−  and for differentiating 

1
216x  were: 

1
232x , 

1
232x

−
, 

1
28x  

 

June 09 Q 3a)   Differentiate:  3
2

32y x
x

= +  

 

The 81 candidates who sat this question made short work of it with the exception that 

7 of them dropped a mark at one of the answer stages. Given that the first method 

mark (M1) was awarded to all 81 for showing one or more correct power, then we 

can reasonably clearly identify the candidates’ mistakes on each term through the 

examiners reports for those that dropped this mark. In fact this question would lend 

itself to a numerical input type question, whereby the coefficient and power offered 

by the student would help us tell immediately what sort of mistake was made (given 

a set of 7 or 8 highly likely mistakes as above). For the candidates who got the 

derivative of the cubic term wrong: 22x , 32
3

x  or 36x  were spotted by examiners. 

Similarly, those that got the negative power wrong were most likely to have offered: 

6x, 6x2, -6x3, 26x−−  or 36x− instead.  
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Jan 10 Q1) Differentiate: 
1

4 3 3y x x= + +  

 

At first glances, this was a very innocuous looking question, yet yielded a very poor 

success rate for the 3rd answer mark. For the 35 entries, all scored the method mark 

(for one correct power), and one answer mark for the “0” or “4x3” but 11 of the 35 

failed to get the answer mark for the middle term. Clearly the subtraction of 1 from 

1/3 is harder than it looks, and the mistake was made here. The examiners were quick 

to point out this major error universally, and the major mistakes were: 
1
31

3
x , 

1
31

3
x
−

, 

2
31

3
x , or 

2
3x

−
 

 

3.3 Evidence from different centres in 2002 

 

During 2002, I spent time employed by Edexcel to mark old-style Core maths exam 

papers. The process involved the marking of around 400 papers entitled: Pure Maths 

1 (P1) in January 2002 and Pure Maths 2 (P2) June 2002. From standardisation 

meetings, examiner team meetings and notes taken during the marking process, I 

have sampled two particular differentiation questions that showed up similar errors 

nearly a decade previously from a cohort of students drawn from across the nation. 

This has the advantage of being a random sample of student exam scripts, as the 

centres are allocated randomly to examiners. It won’t show how errors have changed, 

as the style of questions were different (given a change in syllabus), and the 

emphasis and marks available were weighted differently as well.  

 

P1 (Jan 2002):  Differentiate:   y = x3 -5x2 + 5x + 2 

 

One method mark was awarded just for one term where the power had been reduced 

by 1. Such rewards can prompt future mistakes, i.e. differentiating x3 and yielding x2. 

Similarly mistakes on this question were less common, but equally revealing, i.e. the 

“+2” often remained, and the 5x often stayed as 5x or disappeared. The answer mark 

for the question was for the complete answer only, so again didn’t allow any slips.   
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P2 June 2002:   Differentiate:   y = 10 + ln(3x) – 0.5 ex 

 

Again this yielded very many good solutions, but high-lighted the mistakes of 

generally weaker candidates (a good discrimination index here) for differentiating 

the middle term. Most errors involving the first and last terms were to leave the 10 in 

(note the similar mistakes observed in January 2002), or to change the sign in-front 

of the 0.5 ex term. The middle term should yield 1/x, but very commonly I saw: 

1/(3x), 3/x or (1/3)x: 

 

y’ = 1/(3x) – 0.5 ex  

y’ = 3/x – 0.5 ex  

y’ = 10 + 1/(3x) – 0.5 ex 

y’ = 10 + 3/x + or - 0.5 ex 

 

3.4 Core maths examiners ideas of mal-rules: 

 

As well as reading the associated examiners’ reports for each modular A-level exam, 

I have also attended a number of teacher training days run by Edexcel, for which 

examiners’ will systematically dissect previous session exam papers and offer 

specific marking advice, summaries of generic errors across the country and outline 

their vision for assessing certain specific skill sets. It is from these reports and 

feedback meetings, I summarise some additional feedback on differentiation 

problems in Core Maths 1 from June 2009 and June 2008 sessions and IGCSE Maths 

sessions from June 2009 and June 2010.   

 

• Differentiating expressions can sometimes yield an integrand (and/ or +C in 

the answer too) 

• Differentiating 3
1

x , yields: 3
1

3
1 −

x  

• Differentiating 
x

xxy )8)(3( −+
=  proves hard, as sometimes the numerator 

and denominator are differentiated separately, or the final answer is 
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multiplied by x or 1/x if not simplified first. For some the multiplication to 

give x2 – 24 proved too tempting. This again cropped up on an (x2+3)2 

expansion.  

• Differentiating 2

3
x

gave the following wrong answers: 31 6or  6 −− +− xx  

• Multiplying surds: xx 44 −×−  was often given with answers such as 

4
1

16or  16or  4 xxx ±±− . Dividing by x was equally hard, and some 

thought that 1=
x

x . 

• When differentiating 
x

xx
√
− 2

3
22 , candidates found the simplification hard, and 

some multiplied instead of divided, giving 2
5

2 22 xxx =√÷ , and sometimes 

√x was interpreted as 1−x . Some candidates divided only one term by the 

denominator too.  

• Differentiating simple polynomial expressions such as  f(x) = 3x + x3 were 

mostly good for the first term, but a few got the 2nd term wrong (values such 

as 2, ½ or 1/3 were seen).  

• Harder expressions such as  y = kx3 – x2 + x – 5 proved harder to differentiate. 

Some weaker candidates were confused by the k and answers such as 
2 22  or 3kx k  were seen.   

• Differentiation questions reward method marks for reducing the power, so 

some candidates have forgotten to multiply the power to the term in-front of 

the x.  

• The misreading of questions continues, and some still confuse:  
1
35x  with 3 5x , and confusing ( )

1
35x  with 

1
35x , or 4 x with 

1
4x  

• Beware a negative index meaning a negative result – too many students have 

spent years wrongly assuming that negative indices will automatically yield a 

negative result in whatever context.   

• Confusing integration with differentiation – all too commonly there are 

students who will differentiate when given a question including an integral 
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sign, and equally when they see f’(x) will automatically differentiate without 

reading the question that may well ask them for f(x).  

• Use of f’(x) – again this causes students confusion with the inverse function, 

some new function or is a piece of revision that slips the mind.  

• Gradients of polynomials -  students rarely know why the gradient of y = mx 

+ c is “m”, and equally have often confused the first coefficient of an 

expression with the gradient automatically, i.e. for y =ax2 + bx + c, some 

have thought (wrongly) that “a” was the gradient.  

 

 

3.5: IGCSE results plus analysis of student errors 

 

Edexcel’s IGCSE papers provide another source of data for assessing student errors 

with basic calculus. The syllabus for the IGCSE has a good overlap with that of the 

Core Maths 1 paper (June 2007 paper 3 had 58 out of 100 marks specifically on 

topics or skills that overlapped). Specifically, it expected candidates to find the 1st 

derivative for polynomial functions, including those with negative indices (but not 

fractional), and also the extension to finding turning points of basic functions. The 

same ResultsPlus data is available for candidates, but only by part question, i.e. 

yields a numeric score out of 4. What we can deduce from this is more to do with the 

actual question and its relative difficulty than the actual mal-rules.  

 

June 2007 (paper 3H)  Q17) :  2 16y x
x

= + .  The curve has one turning point. 

Find dy
dx

 and use your answer to find the coordinates of this turning point 

 

Looking at the results of this question, it has a facility value of 0.600 for the whole 

cohort of 155 students, and when compared to the final scores (out of 58 marks 

assigned as C1 skill overlap), a discrimination index of 0.6283. Thus it is a good 

discriminator for those who wish to pursue maths further to GCE level and, given the 

relatively high average scores (facility of 0.84) per student for the whole exam paper, 

is considerably more difficult than other areas (ranked 1 out of 10). In fact: 
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Table 3.3: Topic analysis for 2007 paper 3H IGCSE for overlap C1 topics.  

 

It is this that prompts me to look very carefully through the mark scheme for the 

question to work out where students are likely to have gone wrong: (table 3.4 below) 

 
Marks (/4) 0 1 2 3 4 

Frequency 9 13 76 17 37 

 

Those who scored 0 marks clearly left the question out or failed to understand even 

the nature of differentiating, as writing down “2x” would have scored a mark (one 

mark available for reducing the power of any term by 1). Their errors are almost 

certainly a lack of knowledge of the whole topic. The group who scored 1 mark most 

likely scored it on the first answer mark (B1) for writing “2x”, so have shown some 

knowledge of basic polynomial differentiation. Their mistakes are likely to be more 

complex and harder to fathom for the second term and subsequent likelihood of 

blank answers for the turning point (again a lack of knowledge). 

  

The majority of students scored 2 marks. If they were for the correct differentiation 

(scoring two answer marks, “B1 B1”, and nothing for finding the turning point 

“Method 0 Answer 0”), then their error on the 2nd requirement was that they had no 

idea how to start finding the turning point (or perhaps what it was). Thus the error 

was one of unfamiliar terminology or lack of knowledge rather than mechanical. It is 

possible that there were a number of students who scored B1 B0 M1 A0, so had 

knowledge of how to differentiate and achieved the correct answer with one term, 

and then equally had knowledge of how to start finding a turning point but failed to 

complete either exercise accurately afterwards, thus scoring the method mark 

 Quadrat Indices Shape Formula Polynom Percent Pythag 

Inequal 

Lines 

Simult-

aneous dy/dx 

Marks  14 9 8 20 8 7 5 4 6 4 

Facility 0.88 0.76 0.76 0.90 0.85 0.88 0.88 0.85 0.74 0.60 

Difficulty 

ranking 7 3 4 10 6 8 9 5 2 1 
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alongside one answer mark. I am most interested in seeing their scripts, as it is highly 

likely that they wrote down the derivative as 2x something±  and that something 

would yield further clues to the mechanical errors in differentiating a negative power.  

 

Those who scored 3 out of 4 must have scored B1B1M1A0, i.e. only made the 

mistake at the very end. Clearly to jump from 2

162 0x
x

± =  which has scored the 

method M1 mark to the final answer is a serious amount of work for one mark, and 

there are many errors to befall a student between there and the final coordinates. 

Fortunately there were a good number who scored all 4 marks, and thus 

demonstrated a very sound understanding of a number of key skills in one go.  

 

 

June 2009 4H:  Differentiate: y = x2 + 3x , and then find the gradient when y = 

-4, and find the turning point.  

 

This question had a similar facility value as two years previous (0.61), which was 

borne out both nationally and within our centre’s students. Basic procedures 

followed to obtain 2 correct terms of 2x and 3, which were awarded the two marks, 

even if combined to make 6x or 5x incorrectly afterwards. This picks up the first 

likely error – that of combining unlike terms. Viewing sample scripts also showed up 

how x2 often got differentiated to x rather than 2x as well. The 3x term also remained 

as 3x or disappeared on a number of occasions. The advice was clear - getting this 

wrong (even with ax + b left) can lead to 2 out of 5 overall.  

 

In the second part: find gradient when y = -4, follow through only awarded when 

candidates substituted -4 into “ax + b” from (a), and common mistakes were seen 

when some substituted “-4” into the original equation. There were also common 

mistakes on substituting numbers in: 2(-4) + 3 = 11, or 2 (-4) + 3 = -11, were seen 

often. While these parts were well answered, finding the coordinates of a minimum 

point proved harder, and many blank responses indicated a lack of knowledge. Marks 

were only awarded that showed valid algebraic working, typically 2x + 3 = 0 (M1). 
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Both x and y values needed for the accuracy marks (A2, 1 each) – the advice was to 

regularly advise candidates to find BOTH answers (like simultaneous equations). 

Sometimes the use of –b/2a would be seen for the turning points (and accepted, when 

evaluated correctly).  

 

When looking closely at IGCSE scores on C1 overlap topics, we find that indices 

scored only 76% average (9 marks of the 58) and ranked 3rd most difficult topic, with 

Simultaneous equations ranked 2nd. The basics within the GCSE and IGCSE courses 

underpin  the skill development through C1 and associated courses, and it is clear 

that candidates are unlikely to fall down on knowledge of technical aspects of a 

calculus question, but more likely to fall down on the mechanical side with poor 

manipulation of indices. Examiners have always pointed out that students are still 

struggling on calculus questions involving negative and fractional indices, and 

specific questions written to diagnose and help correct these weaknesses are ever 

more needed as one skill underpins another.  
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Chapter 4: Generating a taxonomy of errors and mal-rules 
 

4.1: Learning styles 

 

Learning mathematics is about understanding and applying the rules than make up 

the language of mathematics. Being a real mathematician is about making 

connections which are then demonstrated in the language of mathematics we produce 

and are able to understand, Harte (2010). Defining a useful taxonomy for student 

errors, has also long been a goal of educators, as to second guess where these likely 

errors will occur will not only educate the educator but also guide the learner towards 

understanding of basic skills, application of increased knowledge and creativity in 

the subject. After all, many teachers use intuitive taxonomies to categorise student 

error – a method more often reflective of personal idiosyncrasies than actual mistake 

significance, Anson (2000).

 

  

Understanding learning outcomes and what learning mathematics actually means, is 

key to understanding how students make these mistakes. Bloom (1956) postulated 

his model for taxonomy of learning outcomes via three domains. Using the first 

(cognitive domain) of learning, he suggested that one cannot effectively — or ought 

not try to — address higher levels until those below them have been covered (it is 

thus effectively serial in structure). Thus we start by building up knowledge, then 

comprehension and follow this by comprehension. The upper three levels of the 

pyramid are often thought of as irrelevant for most secondary school students, 

Davies (2010)

 

.  
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Figure 4.1: Bloom (1956

 

): Cognitive domain for learning objectives.  

This taxonomy is a generalised set of categories, and mathematics teachers will often 

concentrate their teaching at the “knowledge” level, as a good mathematician needs 

to have a head full of techniques and formulae. In a similar way to learning a 

language, a good linguist needs to have a head full of vocabulary, verb conjugations, 

noun declensions etc, as without this mass of knowledge and the facility for instant 

recall, a linguist will not get very far, Davies (2010)

 

.  

Many secondary schools who use a taxonomy to guide student learning (or more 

often to satisfy the Ofsted inspectorate) have updated Bloom (1956)

 

 to read as 

follows: 

• Know (Remember) • Presentation • Remember 

• Understand (Concepts) • Practice • Understand 

• Be able to (Apply) • Production • Apply 

 

Table 4.2: Some taxonomies used in secondary schools to define learning objectives 

 

Marzano (2000) updated Bloom’s educational objectives into his “new Taxonomy” 

of three systems and the knowledge domain, mainly in response to syllabus 

guidelines-based instruction in table 4.3 below. Using his cognitive system, he 
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defines four sub-classes to his system, much in the same way as Bloom does, using 

Knowledge, Comprehension, Analysis and Knowledge Utilisation (Application) as 

his headers. The system can prove useful in fleshing out Bloom’s taxonomy, but still 

needs tailoring to suit the mathematical purpose to which I am about to use it.  

 

Table 4.3: Marzano (2000) – a new taxonomy for learning objectives.  
 

Of those who have attempted to redefine these taxonomies for mathematical 

learning, Hatt & Baruah (2005

 

) put forward a version of Bloom’s taxonomy based 

on: Remember, Understand and Apply. They used the pyramid idea from Bloom and 

defined four major classes of errors: 

 

       3rd Floor: Research Section 

                              Create     

                        

  Analyse  Evaluate   2nd Floor: Teaching Section 

 

          Remember  Understand    Apply   

                1st Floor: Student Section 

 

 

 

Figure 4.4:  Error identification in various learning levels, 

Cognitive System 

Hatt & Baruah (2005) 

Knowledge Retrieval Comprehension Analysis Knowledge Utilisation 

Recall 

Execution 

Synthesis 

Representation 

Matching 

Classifying 

Error Analysis 

Generalising 

Specifying 
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4.2: Classification of students’ mistakes 

 

The issue surrounding this work is that the correct identification and classification of 

mistakes can be an arbitrary process, unless we use copious evidence of student work 

to be able to see exactly how they went wrong in their solutions. To build up a 

taxonomy from a theoretical basis is always going to be inaccurate, i.e. when mal-

rules are based on learning misconceptions not different previous mistakes, as we can 

be guilty of subjectively leading question design and learning assessment to fit out 

own taxonomy, Baruah (2007).

 

  I feel most sure of what mistakes students make by 

seeking out their own work – hence my use of an evidence based taxonomy. 

Orton (1983)

 

 also classified the students’ errors in three broad classes as: structural, 

executive and arbitrary. Structural errors arose from failure to grasp some principle 

essential to the solution or appreciate relationships involved.  Executive errors 

involved failure to carry out manipulations accurately or fully, even though the key 

principles or techniques involved may have been understood. Arbitrary errors were 

said to be those in which the student behaved arbitrarily and couldn’t cope with the 

problem at all. He, like many others, showed that the understanding of a single 

concept or skill might be comprised of one or more different classes of error.  

4.3: The taxonomy of SOLO 

 

The taxonomy which I believe fits the mathematical world best is that derived by 

Biggs & Collis (1982)

 

 – SOLO (Structure of Observed Learning Outcomes), which 

divides understanding into five levels. The beauty of this structure is that questions 

can be tagged easily according to the level they aim to assess, and the mistakes from 

the learner are equally easily categorised according to achievement or lack of 

achievement of these levels.  

• Pre-structural. An incorrect process is used in a simplistic way which may 

lead to an irrelevant conclusion. Or the student may even fail to engage in the 

problem, so there is no outcome at all.  
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• Uni-structural. A single process or concept is applied to at least one data 

Item (i.e. a learner has grasped one element of a concept). A conclusion is 

drawn, but unless the single process together with the selected data suffice for 

the correct solution of the problem, the conclusion will be invalid. 

 

• Multi-structural. A number of processes or concepts are used on one or 

more data items, but with no synthesis of information or intermediate 

conclusions. This lack of synthesis may be acceptable in the case of a 

straightforward question, or may indicate cognitive performance below 

that required for successful solution of the larger problem, i.e. I have a pile of 

bricks but can’t yet see how they fit together to build the house. 

 

  

 

 
 

Table 4.5:  Response structure at different levels of the SOLO model 

Biggs & Collis, (1982), Watson, (1994

 

). 

• Relational. A relational response is characterised by the synthesis of 

information, processes, and intermediate results. In order to achieve the 

conclusion, concepts are applied to some of the data, giving interim results 

which are then related to other data and/or processes (i.e. I can now see how 

to build the house from the bricks I have been given). 
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• Extended abstract. Extended abstract responses are structurally similar to 

relational responses, but here data and/or concepts and processes (more 

usually the latter two) are drawn from outside the domain of knowledge 

and experience that is assumed in the question. 

 

Typically, how we can use SOLO is that teachers, in setting the problems, will 

provide the students with data in the problem (explicit cues), expecting the students 

to use concepts taught in the unit of work which may not be specifically identified in 

the question (implicit cues). Such implicit and explicit cues will be said to be in the 

student’s domain of knowledge, Chick (1998).

 

 To exemplify the nature of this 

taxonomy, consider the range of questions depicted in the analysis in chapter 3. The 

analysis above can be summarised succinctly in the following table (4.6), whereby I 

have selected 12 commonly used terms in polynomial differentiation questions, and 

attached 7 common error types as evidenced through chapter 3 to each required 

derivative (the questions are given in the left-hand column). The error types are 

described below the table, and each error was evidenced through student work.  

d/dx of Error 1 Error 2 Error 3 Error 4 Error 5 Error 6 Error 7 

2 2 2x      

5x 5x 0      

2x3 6x3 2x2 2x2 (½) x2  x2 (2/3) x2  

kx3 3kx3 3k2  kx2 2kx2 (k/2) x2 (k/3) x2  

3x-2 -6x-2 6x-3 3x-3 9x-3 -x-3 -(3/2)x-3 16x−−  

2x3/2 3x3/2  2x ½ x ½  4x ½  (4/3)x ½  

-8/x 8/x  -8/x2 16/x2 -4/x2 8/x2  

9x-½  -4.5x-½   -4.5x½   9x -3/2 (27/3) x-3/2 -6x-3/2 -18x-3/2  

16x½   8 x½   16x- ½  -16x- ½  -32x- ½   32x- ½    

x 1/3  (1/3)x 1/3 (1/3)x-2/3 x -2/3 -(2/3)x -2/3 -(3/2)x 1/3 3x 1/3 3
1

3
1 −

x  

ln(3x) 3/x (1/3)x 1/(3x)     

 

Table 4.6: An error analysis table for differentiation of polynomial functions 
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• Error 1: No reduction of the power, but correct multiplication of the old 

coefficient by the old power  

• Error 2: Confusion with definitions (e.g. 5x having the same derivative as 5, 

or 2 having the integrand of x2 – recognition of something similar being the 

result, or sign error). 

• Error 3: Correct reduction of power, but no multiplication of the old 

coefficient by the new power. The new coefficient is the same as the old 

coefficient. 

• Error 4: Correct reduction of power, but multiplication of the old coefficient 

by the new power.  

• Error 5: Correct reduction of power, but division of the old coefficient by the 

new power.  

• Error 6: Correct reduction of power, but division of the old coefficient by the 

old power. Notice how this “error” leads to the correct result in the 

differentiation of -8/x 

• Error 7: Additional mistakes pointed out by examiners that look intuitively 

correct, but involve raising the power or wrongly subtracting 1 from a 

fraction.  

 

Each of these question types falls under the remit of needing a multi-structural 

response, as there are responses that show uni-structural levels but are not completely 

correct. Indeed, many similar questions (facility value) will be multi-structural 

problems, because they require the student to demonstrate a number of processes on 

one or more data items. They have to complete the differentiation of a polynomial 

function, which requires implicit skills from their domain of knowledge (recognise 

the need to differentiate, re-write the question if needed with fractional or negative 

power prominently displayed, reduce the power of the x term by one, multiply the 

coefficient by the original power, simplify the final expression).  
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Error 3, 4, 

5, 6, 7 

Uni-structural 

response 

A single process or concept has been grasped (i.e. power reduction or 

manipulation of the coefficient) but the conclusion drawn will be invalid. 

Error 2 Pre-structural 

response 

An incorrect process is used in a simplistic way leading to the wrong 

solution or no solution. 

Error 1 Pre-structural 

response 

An incorrect process is used in a simplistic way leading to the wrong 

solution or no solution. 

 

Table 4.7: Summary of SOLO tags to errors on polynomial differentiation questions 

 

Once we recognise that some answers are pre-structural in level (to a multi-structural 

level question), then we can flag up warnings that the students need to undergo some 

further testing to confirm these results or go straight back to remedial work on this 

skill development. While there is no concept of a pre-structural question, only pre-

structural error, it does make sense to include the notion of uni-structural problems, 

and worth noting that setting too many uni-structural problems will leave the 

students often unable to solve similar questions in different representations, Robin & 

Rider (2010).  If we set up assessments for students based on these levels, and could 

analyse the responses accordingly, then we can assign an overall level to students 

based on how well they achieved learning outcomes for this skill, Watson, Chick & 

Collis (1988)

 

. 

4.4: The use of taxonomy in deriving mal-rules 

 

Priem (2010) also focuses on mistakes from e-learning, and notes how little work 

has been done to answer the question posed at the start of the thesis: whether students 

make the same mistakes on paper-based tests as online. He proposes a three-fold 

taxonomy to error classification for e-learning tools: Learning mistakes, technology 

mistakes (e.g. closing browsers, submitting solutions prematurely) and general 

mistakes. Re-categorised each area as with SOLO; pre-structural mistakes (learning 

mistakes and general mistakes) or uni-structural mistakes (technology mistakes), 

which leaves us really with only two error levels in this model. However he still 

comes to the same conclusions, that examining error types will help students plan 

strategies for error reduction and encourage appreciation of valuable learning errors.  
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Schecter (1994), Orton (1983), and Greenhow (1996), all show through their 

independent research that the same errors are found in higher dependency skills, i.e. 

an error in basic differentiation shows up again as same error for a question 

involving the solution of an Ordinary Differential Equation (e.g. using a Laplace 

transform). In fact, Baruah (2007)

 

 also demonstrated through her work that errors in 

differentiation questions on polynomial functions led directly to similar errors in 

differentiation on functions that required use of the product, quotient and chain rules.   

The point is shown in table 4.8 (below), where I use a simple content course 

dictionary for differentiation in the core maths 1 (C1) module. It is clear to see the 

interdependency of many GCSE skills and topics even before differentiation is first 

explored with students, and as such, many students will make several of these uni-

structural errors on differentiation of polynomial functions, because their knowledge, 

understanding and ability to apply rules about indices, surds, straight lines etc is 

patchy at best.  

 
GCSE Skills C1 Topics C1 Skills Specific Skills Subsequent topic  

     

   Using the formula Quadratics 

Indices  Solutions Factorising  

   Completing the Square  

Surds     

 Differentiation Graphs Maxima / Minima Maximising 

problems 

Algebraic manipulation     

     

Straight Line equations     

  Tangents and Normals Generating straight line 

equations 

Numerical 

Solutions 

     

  Polynomials Algebraic manipulation Integration 

   Expanding brackets  

   Surds & Indices  

   Manipulating  

 

Table 4.8: A content course dictionary for differentiation in Core Maths 1 (C1).  
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4.5 Conclusion and future direction 

 

Only when mal-rules are fully understood (and re-evaluated regularly) can they be 

encoded successfully into questions to provide the required discrimination within 

those questions, and equally provide useful feedback to students once they select the 

distracter thus encoded. The successful categorisation of such mistakes leading to 

refinement of questions, learning outcomes and student profiling for teaching and 

assessment will be of equal importance too, as developed through the SOLO error 

taxonomy above.  

 

The observation that most errors (as depicted in table 4.6) for the differentiation of a 

polynomial revolve around uni-structural solutions, could lead us to hypothesise 

most mal-rules for similar multi-structural problems (for such questions or topics 

where we had little or no evidence or student errors). In these cases, we would only 

need to break down a tested skill into its component processes, a failure of each of 

which would lead to a new mal-rule. The scope for collection of student errors across 

all topics is beyond most researchers, but the more accurate the mal-rules, the more 

accurate the diagnosis and feedback. With accurate error accumulation across all 

topic areas, we can build up specific tailor-made mal-rule banks for import into our 

question banks.  
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Chapter 5 – A new diagnostic test  
 

5.1: Setting up a diagnostic test 

 

This chapter presents a simple resource that allows the teacher to accurately diagnose 

some key weak areas that I see as integral before embarking on an AS course. This 

will allow students the chance to go off and practise those skills themselves with as 

much help as they / the teacher wants before the course starts. It should provide ideas 

(and easy adaptation) for teachers to come up with more advanced or parallel 

diagnostic tests, which can also be used by students for revision. Moreover, for 

higher aiming higher-tier students, this AS diagnostic test would double up as a 

formative GCSE algebra revision test.   

 

The previous chapters have outlined the need for accurate diagnosis, and even more 

to the discovery of mal-rules and associated student errors through evidence from 

student work alongside hypothesised errors based on working out which key 

processes are required to answer each question.  

 

The diagnostic test presented in this chapter is a versatile multiple-choice question 

Excel worksheet, full of distracters based on mal-rules (with answers and feedback 

available to the students). The rationale behind multiple-choice questions here is 

four-fold: 

 

• It is a new style to the students, so they see immediately that there is a 

different style of questions set for sixth-form mathematics 

• The multiple-choice answers are coded with mal-rules – common and likely 

mistakes as alternative answers to the correct ones, to clearly identify where 

students go wrong and also to encourage them not to guess (a random answer 

being: “none of the above”).  

• It is very easy for the students / teachers to mark and also to redo as many 

times as needed.  
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• It has been set up easily as a non-calculator paper, testing obvious mental 

maths skills, in preparation for the non-calculator C1 paper. 

 

The previous chapter showed just how many possible errors from uni-structural 

questions were possible, for a skill of differentiation of polynomials. Given that 

calculus underpins much future mathematical work, and algebraic skills underpin 

some of those skills required to be successful at calculus questions, it would seem 

prudent to start our design of tests using algebraic questions, covering a wide range 

of skills, so that each question in a test could look not only at different skills, but 

pose the question to need a multi-structural response. Following the basic GCSE 

syllabus overlap with the AS course (see figure 5.1), the University of Glasgow 

diagnostic tests, Gibson (2004), and University of Denver entry profile survey: 

(http://www.du.edu/nsm/departments/mathematics/coursesandadvising/mathproficie

ncysurvey.html ), the following skills sets were written into this diagnostic test (and 

the test is shown in full in Appendix 1): 

 

• Simplifying expressions with indices 

• Solving linear equations (with brackets) 

• Factorising linear expressions  

• Simplifying algebraic expressions (including algebraic fraction) 

• Multiplying and simplifying / factorising algebraic fractions 

• Multiplying our quadratic brackets 

• Solving linear inequalities 

• Evaluating expressions containing numeric fractional terms 

• Solving linear equations with fractional coefficients 

• Solving quadratic equations (including word-based algebraic problems) 

• Algebra – solving equations and simplifying using the modulus function 

 

I have included a small final section on the modulus function – two simple questions 

based on evaluation and solving of a simple linear modulus equation. The rationale 

behind such an inclusion is two-fold: 

 

http://www.du.edu/nsm/departments/mathematics/coursesandadvising/mathproficiencysurvey.html�
http://www.du.edu/nsm/departments/mathematics/coursesandadvising/mathproficiencysurvey.html�
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• It should be a new concept to many of them, albeit readily understood within 

a few minutes teaching time before the assessment. 

• It serves as a control section, i.e. should serve as a great discriminator on 

these assessments, and allows a measure of control and necessary comparison 

of facility value and discrimination via other questions.  

 
 

Figure 5.1: Topic dependency spider diagram for C1 

GCSE Skills: Algebra, Brackets, Fractions, 
Inequalities, Graphs, Transformations 

 
 

Quadratic Equations 
 

Geometry: 
Straight lines 

 
 

Graph 
Transformations 

 
 

Surds 
 

Indices 
 
 

Sequences 
 

 

Polynomial 
Graphs 

 
 

Differentiation 
 

 

Integration 
 

 

GCSE Skills: Coordinates, Straight 
Lines, Gradients, Areas 

 
 



  56 

5.2 Question design and mal-rules 

 

In building up any multiple-choice test, we must recognise that the questions are 

testing skills, not topics, and the same goes with designing mal-rules, if we are to 

devise effective ‘distracters’ (wrong answers) to questions, Greenhow (2000). While 

there has been much recent work completed on understanding students’ 

misconceptions in foundation algebra courses, my work in chapter 3 has equally 

shown that in designing useful distracters for this present test needs much evidential 

help, 

 

Gill & Greenhow (2006). 

 

I chose to use a sample of 25 students from two independent centres who sat the 

initial paper-based test of 16 questions between June and September of 2003. The 

multi-structural questions demanded a final numerical response or final algebraic 

simplification and aside from the initial questions, I offered them no other explicit 

cues to determine their strategy or structure of response. From these solution sets, I 

was able to categorise many of the common misconceptions, pre-structural mistakes 

and uni-structural mistakes on each of the test questions and so start to hypothesise 

the best mal-rules and hence the most useful diagnostic distracters to build in to the 

multiple-choice answer scheme, Greenhow (1996).

 

  

Some of the pre-structural responses included clear mis-reading of questions, mis-

understanding terms (factorise instead of solve), sign errors, and wrongly assuming 

the question was like another sort of problem they knew how to solve. The uni-

structural errors involved basic calculation slips, and even adding in invisible 

brackets or ignoring visible ones. I include two analyses of the questions (Q5 and 

Q15) on the test to show how I arrived at the mal-rules: 

 

Question 5:    Simplify: [ ])3(425 −+− xxx  

 

Despite appearances, this was the hardest question on the paper (lowest facility value 

of 0.24), with only 6 correct responses of the cohort of 25 students. The most 
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common mistake was to insert another bracket and treat it as if it would result in a 

quadratic expression: 

 

[ ] [ ])14)(32()14(32 −−=−− xxxx  

 
Solution -x+12 -x-12 7x-12 3x-8 5x-6x+12 -x+3 2x2+7x-12 30(x2-2x) x5-60 Blank 

Frequency 6 4 2 1 1 1 4 3 1 2 

Error Nil US US PS US US PS PS PS PS 

Mistake Correct Misread 

+ for - 

Misread 

+ for - 

Wrong 

factorised 

x term 

Not 

simplified 

Ignored 

4 

multiply 

by -3 

Multiplied 

out inner 

brackets 

(as above) 

5x has 

multiplied 

not -  the 

inside term 

Unclear 

pre-

structural 

mistake 

No 

idea 

 

Figure 5.2: Initial results for pilot diagnostic test Q5 without mal-rules (25 students): 

PS = Pre-structural mistake, US = Uni-structural mistake 

 

One answer with a quadratic is understandable, but mistakes resulting in higher 

powers do show a serious pre-structural issue for students sitting problem like this. 

However, it is important to set more problems of this nature because, like question 2, 

brackets inside brackets do seem to cause many problems for students as they require 

many processes to be correct en route to the correct final response and yield many 

types of solutions. To use most of these solutions in a multiple choice answer would 

be prudent, as many mistakes were being repeated. I used the 4 most common 

mistakes, making sure two of them were pre-structural and two were uni-structural, 

alongside the box “None of these”, another pre-structural response. When building a 

repeatable test like this, it is important that the errors are not only categorised, but 

clearly identified, so that a generic mal-rule is encodable into a question when we 

change the coefficients in the question.  

 

Thus my suggested answers are (including re-writing –x+12 as 12-x): 
A) B) C) D) E) F) 

7x-12 2x2+7x-12 -x+3 30(x2-2x) 12-x None of these 

 

Figure 5.3: Suggested multiple-choice answers for Q5 on the pilot AS diagnostic test 
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Question 15:    Solve for x: 0562 =+− xx  

 

While different to Question 5, this was designed as a simple quadratic question that 

should have been accessible for any GCSE student, as I aimed to test rudimentary 

understanding of the twin skills of solving quadratics and understanding the nature of 

basic polynomials.  Such a question would allow the student the choice of three or 

four processes or structures to find x. Pleasingly, the vast number of solutions were 

correct (facility of 0.64), but there were still a handful who made uni-structural 

mistakes when factorising the expression / using the quadratic formula or indeed pre-

structural mistakes when not solving it at all. Designing mal-rules based on evidence 

becomes even more reliant on the nature of the pre-structural and uni-structural 

mistakes when the facility value is high. 

 
  Solution 1, 5 1, 2 -1, -5 (x-1)(x-5) (x-2)(x-3) Blank 

Frequency 16 1 1 1 1 5 

Error PS US US US PS PS 

Mistake Correct Mistake on 

formula / 

factorising 

Mistake on 

formula / 

factorising 

Factorised 

only (albeit 

correctly) 

Mis-factorised 

and not solved 

 

 

Figure 5.4: Initial results for AS diagnostic test Q15 without mal-rules (25 students): 

PS = Pre-structural mistake, US = Uni-structural mistake 

 

The main tested skill in this question is intended to be solving the quadratic equation, 

not specifically on the definition of the word ‘solve’, so I propose only using factor 

pairs in the main solutions, rather than leaving answers in a factorised form. The 

logic behind this goes as follows: as solutions indicating factors will be a) a 

giveaway of part of the solution and b) likely to draw students towards the other 

solutions when they see the contrast, the solution set should, in my view, just include 

root pairs. Although this gets round one hurdle, it does allow a substitution checking 

method to be used, yet I feel this is a price worth paying to get the students to think 

about the processing involved in solving equations of this form. I thus chose pairs 

which are easily generated by mistakes with signs in factorising and in the formula 
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itself. The nature of these choices is that two of them would clearly be the result of 

one sign error in the factorising process (uni-structural mistake), while two other 

distracters would need more than one error to be made with signs in factorising (or 

using the quadratic formula) which I would deem a pre-structural mistake (alongside 

the “none of these” choice). Figure 5.5 below: Suggested multiple-choice answers - 

Q15 on the pilot AS diagnostic test: 
 

A) B) C) D) E) F) 

1, 2 1, 5 -1, -5 1, -5 1, -2 None of these 

 

5.3 Overall Results 

 

Summary 11 12 13 14 15 16 All Q1-16 %  

               

Correct 89 75 22 54 67 67 967 59.84 

US 6 9 36 12 12 11 236 14.6 

Misread (US) 0 5 0 0 0 0 9 0.557 

PS 3 8 37 18 11 9 302 18.69 

Blank (PS) 3 4 6 17 11 14 102 6.312 

              1616 100 

         

Question 11 12 13 14 15 16   

Facility 0.881 0.74 0.218 0.53 0.663 0.663   

Difficulty rank 15 14 1 8 12 13   

AS diagnostic test scores (101 students) 

                      

Summary 1 2 3 4 5 6 7 8 9 10 

                  

Correct 69 51 92 64 57 45 47 48 69 51 

US 12 27 8 12 18 21 10 11 9 22 

Misread (US) 0 0 0 0 3 0 1 0 0 0 

PS 20 21 1 22 23 32 29 29 20 19 

Blank (PS) 0 2 0 3 0 3 14 13 3 9 

           

Question 1 2 3 4 5 6 7 8 9 10 

Facility 0.683 0.505 0.911 0.634 0.564 0.45 0.465 0.475 0.683 0.505 

Difficulty rank 10 5 16 9 7 2 3 4 11 6 
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Table 5.6 (overleaf): Overall scores on AS diagnostic test by question, subdivided by 

PS = pre-structural mistake, US = Uni-structural mistake.  

 

The table (5.6) overleaf shows the results gained from the first 101 students who sat 

the AS multiple-choice diagnostic test between 2004 and 2007 with the test complete 

with distracters. As can be clearly seen, there is one standout question with very low 

facility (Q13), and two questions (Q3 and Q11) for which the facility was around 0.9, 

i.e. almost all students achieved the correct answer. None of these questions would 

serve as useful discriminators. To achieve a roughly average question facility of 

around 0.60 is a level consistent with any diagnostic tests (and hence much more 

useful for discrimination). 

 

Within the test summary, I have subdivided the uni-structural mistakes into those 

where I can see a clear mis-read of the question, and the majority which have been 

part correct processes. Within the pre-structural mistakes, I have subdivided the 

categories into blank (where I have no clue which if not all of the processes where 

outside of the students’ domain of knowledge) or other pre-structural mistakes, 

where the question yielded a multi-structural mistake in their response.  

 

In short, a pre-structural or uni-structural mistake is really too overarching to be a 

useful classification for designing mal-rules on its own, so the fact that there are 

roughly the same numbers (and proportions) of uni-structural and pre-structural 

mistakes gives weight to writing an equal number of distracters that cover both levels 

of error. This itself, coupled with the evidence gained from the first 25 students to sit 

a paper-based (non-objective) version of the test, should help us feel confident in our 

selection of evidence-based mal-rules.  

 

As detailed earlier, our control section (modulus questions) yielded a facility of 

0.564 (from table 5.7 below), which sat in the middle of the topic areas on difficulty. 

This begs the question: why are some questions harder than others or indeed harder 

than the control set? In some cases, it is the simple nature of number of processes or 

operations needed to complete the question (so each time adding to the opportunities 
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to make a uni-structural mistake). While in other cases, the concept depth is much 

more than other questions (i.e. Q8 when simplifying an algebraic fraction), and there 

are fewer if any explicit cues to start off the question. The other reason why some 

questions have lower facility values is down to the question reusability – and 

pedagogy. Have I written the wrong mal-rules or written them in such a way as to 

overly distract a student from the correct answer by phrasing it in an unfamiliar way? 

I have only used one question on each of inequalities and numerical fractions, so it is 

not easy to draw conclusions from a one-question section. Even if I were to use a 

much greater length test to make generalisations, I suspect that similar difficulties 

would show up from my own experience. 

 

Summary Q 
areas 
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Correct 114 120 263 146 159 22 51 

US 33 31 44 24 33 36 27 

Misread  (US) 0 0 5 3 1 0 0 

PS 52 39 46 26 80 37 21 

Blank (PS) 3 12 46 3 30 6 2 

          

Facility value 0.564 0.594 0.651 0.723 0.525 0.22 0.505 

Difficulty rank 4 5 6 7 3 1 2 

 

Table 5.7: Summary of AS diagnostic test results by question area.  

 

This test has the benefit of fitting neatly into a 40 minute window (regularly the 

length of single lessons in secondary schools), as the timescale was developed in 

conjunction with the length of time needed to complete the paper-based test by the 

first 25 students. Getting the length of test wrong (for the time available), is never 

ideal, and difficult to plan without pre-testing of students as a pilot scheme, Gill & 

Greenhow (2006).
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Where the test falls down here is that it is non-reusable, paper-based and students 

must all sit exactly the same test (thus allowing for potential direct copying or just 

collusion). It also doesn’t yield individual feedback easily, as the tests need to be 

marked, and student selections need to be matched to a pre-prepared paper-based 

answer sheet showing which types of mistakes they have made based on their wrong 

choices. Such diagnostic tests become really useful only when they become reusable 

objects, Greenhow (1996)

 

, and so I turned this paper-based test on these questions 

into an Excel worksheet, with random parameters in the questions and associated 

random parameters in the answers based on the same mal-rules.  

It works especially well when the mal-rules in the answers can be coded to produce 

exact answers the students might (in error) achieve themselves. Students tend to be 

drawn to integer solutions or “nice numbers” e.g. ½ rather than more random 

decimal or surd answers, and such distracters can be easily discarded by students 

keen to take a short-cut. Thus, some questions are reverse engineered, i.e. I started by 

generating the integer solutions using mal-rules of a generic question type (e.g. Q15 

when solving a quadratic equation), and reversed the processes to lead to that 

specific question. Using Excel’s functionality, if we start with the generation of 

random parameters as solutions, we can codify the inverse function that yields the 

question. Each question will produce a minimum of 5 and maximum of 1092 

realisations. Thus millions of pedagogically and algebraically equivalent tests can be 

generated Gill & Greenhow (2006). There is also a column, F, “none of these”, and 

only Q14 is set fulfil that criteria for this first iteration.  



  63 

 
 

Figure 5.8: Excel version (dynamic) of the AS diagnostic test (Q1 – 10 only).  

 

5.4 Solutions and Feedback  

 

What is also needed are full answers for the paper-based test (so students can take 

that away as practice worked solutions) and also a feedback / answer sheet for 

teachers to use when looking through students’ work with them. Such a test can be 

sat with questions online and students submitting their responses via paper-based 

answer sheet. The nature of the feedback, and its efficacy is thus very important 

when using this as a reusable diagnostic tool, especially is the feedback can be 

delivered onscreen.  A sample of the Excel feedback screenshots is shown in 

Appendix 2, and it is already clear that the formatting issues with Excel leave 

feedback challenges.  
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Figure 5.9 – Answer sheet for columns A to E (Q1-10) of the AS diagnostic test.  

 

There is need for careful consideration here about when students are mature enough 

to be able to plug gaps themselves, as indicated earlier on, and also the whole realm 

of feedback use for students who are keen to build up skill levels. Gill & Greenhow 

(2006)

 

 explored how students were often being distracted by their excellent and 

detailed feedback and not moving quickly onto sufficient numbers of questions to 

make useful practice gains. For those unable to work through this e-learning for 

themselves, at least knowing weak areas or weak skills will allow those who want to 

bridge the gap to do so with their teachers and learning mentors.  
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5.5 Further discussion 

 

In conclusion of this chapter, I present some further analysis of results gained by 

students taking the AS diagnostic test and their subsequent performances on AS 

exams (especially C1 papers). It is no surprise that there is a reasonably good 

correlation between scores on the diagnostic test and subsequent scores throughout 

their sixth-form courses. This positive result does show the power of diagnosis.  
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Figure 5.10 – Score distribution for the 126 students who have sat the AS diagnostic 

test, 2003-2007 

 

As can be seen clearly, there is a vague bell-shaped distribution to the results gained 

by students sitting the diagnostic test, and it is noted that students scoring 5 or less 

out of 16 on the test are highly unlikely to achieve a high grade at AS maths. There 

were a couple of exceptions (those who scored 5/16 on the test and then an A grade 

at AS maths), but all of those who scored a grade C or less on the AS maths exams 

had scored 8 or less on the diagnostic test.  

 
Rank Correlation  Diagnostic score  v C1 score 0.551869 

   Diagnostic score  v AS total score 0.649064 

   Diagnostic score  v A-Level total score 0.514488 

   C1 score v AS total score 0.877785 

 

Table 5.11 – Rank correlation results for Diagnostic test score v other scores 
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Clearly students doing well on C1 went on to do well at AS overall (correlation of 

0.88), and those who did well at the diagnostic test had a good ranking agreement 

with the overall AS score (correlation of 0.65), but the comparisons between 

diagnostic test score and C1 or A-level score were less convincing (0.51-0.55).  

 

One reason why students went on to do well at AS maths overall is through using the 

feedback well from the diagnostic test. Those who built on their domains of 

knowledge as well as ability to understand and apply the knowledge best of all will 

have achieved the highest grades overall. It is the nature of support given to students 

to improve skills and cut out uni-structural mistakes that yields greater potential final 

scores, and schools and colleges should be motivated to offer an ever-increased and 

tailor-made set of courses and help for students. The efficacy of such support, 

whether through e-learning, maths clinics, additional teaching time, one-to-one tutor 

support or the like is something that needs investigating further.  

 

5.6 Retakes and retests 

 

When the first two cohorts of students were retested (one week later), using the 

multiple-choice answer sheets (and additional time spent practising processes and 

skills in the classroom), the average marks improved from 7.0 to 10.0 out of 16. The 

correlation between the average of retest score and overall AS score improved to 

0.76. This gives a good indication of the use of the follow-up retest to help us make 

predictions of final AS grades, and to underpin future skill development with further 

time spent consolidating basic skills needed in transition. Once on the C1 course, and 

successfully completing a remedial course in specific key GCSE skills that were 

lacking, students should have the best chance of realising their potential upper 

grades. Clearly the better the diagnosis and better remedial action available to 

students, the better the final result.   

 

This is exemplified through a further investigation of the nature of retests through 

retakes on C1 papers (and differentiation skills) based on data from Edexcel’s 

ResultsPlus format and using data from chapter 3. Of the 65 retake papers sat by 
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students, all but 9 of them either improved their percentage score on differentiation 

or achieved the same (100%) understanding of the topic 2nd time round. The average 

improvement was 12% on this topic alone from the 1st to the 2nd retake. However, for 

those who sat the paper for a 3rd time, 4 improved, 8 stayed the same and 5 went 

down (an average of 1 %). Clearly this is a topic where the weaker candidates are 

learning to some extent from their mistakes, but the very weakest candidates are not 

learning enough from their returned exam scripts, diagnosis of errors or revision 

work to make the inroads on this particular topic.  

 

A computer-based learning and assessment scheme is therefore likely to yield the 

sort of improvement that they need by the 3rd attempt at such a paper, and shows 

equally that learning for retests needs to be very specifically focussed and supported, 

as students are likely to assume that they understood a skill previously, so they can 

handle any questions on that topic or skill next time round. Revision of students’ own 

perceived strengths is often discarded at the expense of time spent on students’ own 

perceived weaknesses.   

 

5.7 Issues with encoding mal-rules 

 

One target question at the start of the thesis was whether students made the same 

mistakes on a paper-based test as onscreen.  

 

On some of the questions from the diagnostic test, there is danger that students will 

guess the correct response by the similarity of neighbouring possible choices, or 

indeed rule out distracters by the difference from other possible solutions. If a 

question changes facility value greatly between a paper-based test and onscreen test, 

I have to ask myself: have I written the wrong mal-rules or written them in such a 

way as to overly distract a student from the correct answer by phrasing it in an 

unfamiliar way?  

 

In Q5: the danger of adding both –x+12 and –x-12 to our multiple-choice solution set 

is one whereby students could guess the correct answer by similarity, so as such, I 
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have ignored one mal-rule that would lead to a solution too close in stature to the 

final correct response. The pre-structural mistake involving (much) higher powers, is 

another one I have also ignored, as such a response could intuitively look so different 

to the other responses that it could overly distract a student from considering it. In 

Q15, however, I chose pairs of integers which are easily generated by mistakes with 

signs in factorising and in the formula itself, rather than encode some of the more 

popular mal-rules as distracters. I mentioned earlier that students were often drawn in 

some way to intuitive solutions, be they integer solutions or numbers like “½” rather 

than more random answers, and so distracters must be worked out carefully to stop 

short-cuts.  

 

Having written the multiple choice answers to these questions, and the next 100 

students sat the test, Q5 improved from being the hardest question to become only 

the 7th most difficult question, whereas Q15 had no change on the difficulty rank 

(12th out of 16) between paper-based numerical response format and multiple-choice 

response format. Clearly the nature of selection of mal-rules has changed the facility 

of Q5 considerably. There is a question of analysis in the future on the role mal-rules 

play in guiding students away from or towards specific answers, Greenhow (2009)

 

. 

When looking further into this change on Q5, the pre-structural mistake of including 

an invisible bracket caught out many students with a paper-based response format 

but, when offered as a distracter, it was clearly seen as wrong, and hardly selected at 

all. Our preliminary investigation here suggests that the nature of some multiple-

choice answers will clearly cause the students not to follow that same process.  

 

Using the templates from Greenhow at al. (2003) for diagnostic question design of 

multiple-choice questions, we can include a null (“none of the above” or “I don’t 

know”) choice as well. They showed the need for a null choice answer box in 

Mathletics, which was the correct answer an author prescribed probability (usually 

0.1), to make sure students fully considered every option  and so didn’t guess based 

on partial knowledge. It also aimed to dissuade students from attempting to eliminate 

all of the answers bar one in case some distracters proved to be too far-fetched (i.e. 
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very unlike any of the others) and ruled themselves out by observation (as seen with 

the transition from paper-based to onscreen test Q5 above). In the first two cohorts of 

students (30 students) who sat the multiple-choice version of the test, the number of 

correct choices of the “none of these” answers was around 66%, which shows that it 

was neither overly nor under-used.  

 

5.8 Limitations of model 

 

Our diagnostic test can be sat with questions online and students submitting their 

responses via paper-based answer sheet. A discussion point for the future would 

involve selection of responses using a macro-program embedded within the Excel 

worksheet that would generate the summary / feedback sheet on-screen after the end 

of the test, and record the students’ marks for summative assessment purposes. In the 

short term, the many varied CAA and e-learning resources, like Mathletics, will 

serve us well as an evolution of diagnostic tool available to students and teachers.   
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Chapter 6 - An analysis of common errors and their associated diagnosis 

from “results plus” feedback of Core maths 1 scripts. 
 

6.1: A study of Core Maths 1 exam script results via ResultsPlus 

 

The motivations for studying a vast number (374) of Core Maths 1 (C1) scripts are: 

 

• To diagnose generic weak area (skills and topics) from students within the 

same centre, so to impact teaching for future students and retake preparation 

for present students. 

• To learn how best to structure revision aids and practice exam papers, in 

preparation of sitting such C1 exams in future. 

• To diagnose specific weak areas (skills and topics) for students who wish to 

retake the module, as well as for those wishing to sit further modules in core 

maths. 

• To assist in writing further CAA revision and examination materials using 

common skill requirements, and identification of key skills that need to be 

understood from A-Level before students at tertiary level can build on this 

foundation level maths.  

• To further categorise common errors and misconceptions and derive common 

mal-rules in order to help develop future e-assessment and e-learning 

diagnostic and formative assessment tools.  

 

Edexcel ( via : www.edexcel.com/resultsplus) offers immediate post results feedback 

to centres (and candidates) via results files in Excel, which break down the 75 mark 

core maths 1 paper on a mark by mark basis, providing binary feedback (as in table 1 

below) for each candidate on the same mark by mark basis. The screenshot below is 

the first 21 marks of the paper from January 2008, for the 12 candidates who sat it 

via our centre. Candidate names have been replaced with letters A – L.  

 

 

http://www.edexcel.com/resultsplus�
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ResultsPlu

s                      

EXAMINATION GCE JANUARY 2008                 

SUBJECT 6663 CORE MATHEMATICS 

1                 

                      

CANDIDA

TE 

A

1 

A

2 B M 

a

B 

b

A 

b

M 

A

1 

A

2 

M

1 

M

2 

aA

1 

aA

2 

aM

1 

aM

2 

bA

1 

bA

2 

b

M 

aB

1 

aB

2 

bA

1 

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 

B 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 

C 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

E 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

F 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 

G 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 

H 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 

I 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

J 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

K 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 

L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 

 

Table 6.1: Screenshot of the results file (CSV) from Edexcel’s results plus facility, 

January 2008 C1 module scores.  

 

The headers for each column refer to the following examiners’ shorthands: 

 

 
M1 or aM1 Method mark allocated for stage 1 of the process in a one part question (aM1 

is the mark allocated to the 1st stage in part (a) of the multi-part question. 

M2 or aM2 Method marks allocated for stage 2 of the process in a one part question 

(aM2 are the marks allocated to the 2nd stage in part (a) of the multi-part 

question. 

A1 or aA1 or bA1 or bA Answer mark allocated for the question following on from Method (M1) 

mark previously achieved (aA1 or bA1 / bA are the answer marks allocated 

to in part (a) or (b) of the multi-part question). 

A2 or aA2 or bA2 Answer marks allocated for the question following on from Method (M1) 

mark previously achieved (aA2 or bA2 are the answer marks allocated to in 

part (a) or (b) of the multi-part question). 
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B or aB1 or aB2 Answer mark allocated for the question without any derived method shown 

(aB1 or aB2 are the answer only marks allocated to in part (a) of the multi-

part question.) 

M or bM Method mark allocated for stage 1 of the process in a one part question (bM 

is the mark allocated to the 1st stage in part (b) of the multi-part question.  

 

Table 6.2: Categorisation of examiners’ feedback marks for Edexcel maths scripts.  

 

The disadvantage of such a results file is that it clearly doesn’t give us the exact 

candidate answers for us to analyse exactly where students have gone wrong. In an 

ideal world, we would wish to access all 374 student scripts, and to look through 

similar questions or skill tags to seek out common student errors and misconceptions. 

To attempt this by hand is impossibly time consuming and exceptionally expensive 

(by a factor of over 3 times the standard entry costs per module).  

 

Results Plus answer files’ real advantage over the raw scripts is that we can easily 

analyse trends over one exam session (given sufficient candidates), as the data is 

exportable to Excel format. By categorising each mark / question with suitable tags, 

we can also seek collective weak areas / skills / topics, and we can infer general 

trends temporally across exam sessions to assess whether weak areas / skills / topics 

continue to trouble students that have undergone almost identical preparation year by 

year.  

 

We can also identify from these files those candidates who have sat the same paper 

more than once (and of the 374 answer files, I have identified 17 candidates who 

have sat this same module 3 times, and a further 130 students who have sat the paper 

twice), results summarised at the end of the previous chapter. From these repeat 

performances, we can work out the efficacy of the students’ revision for the retake(s) 

have been by topic area or skill, and also pick up trends in continued weak area / 

topics / skills. 

 

I have already discussed the importance of understanding student errors and how 

they can lead to mal-rules, and equally categorising them using the SOLO taxonomy.  
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In this analysis, I will show how mal-rules can be inferred, as well as topic / skill 

deficiencies either by individual feedback or by cohort from raw marks. Subsequent 

chapters will allow an alternative focus on errors, mal-rules and diagnosis from CAA 

data and e-assessment.  

 

6.2: Results by topic for core maths 1 

 

Over a period of 3 years (and 6 exam sessions from June 2007 through to and 

including January 2010), covering 374 candidate scripts, I have analysed the results 

files from Edexcel. The first stage of analysis of these results was to take the paper 

apart and carefully allocate each mark to a topic, sub-topic and skill (s) set.  

 

 
ResultsPlus  Ind Int Frac Transf Differ Quadr Polyn AP Lines Inequ Formula 

EXAMINATION GCE JANUARY 

2008 19 10 4 7 14 20 13 7 11 7 22 

SUBJECT 6663 CORE MATHEMATICS 1          

 Question 1 1 1 1 2 2 2 3 3 3 3 

 Mark type A A B M B A M A A M M 

 Topic Int Int Int Int Ind Ind Ind Surd Surd Surd Surd 

 Sub-Topic Ind Ind Ind Ind Frac Frac Frac Quadr Quadr Quadr Quadr 

 Skill Simp Simp Iden Manip Iden Simp Iden Manip Simp Iden Manip 

 Skill 2   Simp Simp Eval Eval Simp Eval Eval Manip Simp 

 

Other skill / 

topic Indef Indef Indef Indef 

Frac 

1/a 

Frac 

1/a 

Frac 

1/a     

             

CANDIDATE  1A1 1A2 1B 1M 2aB 2bA 2bM 3A1 3A2 3M1 3M2 

A  1 1 1 1 1 1 1 1 1 1 1 

B  1 1 1 1 1 1 0 1 1 1 1 

C  1 1 1 1 1 1 0 1 1 1 1 

D  1 1 1 1 1 1 1 1 1 1 1 

E  1 1 1 1 1 1 0 1 1 1 1 

F  1 1 1 1 1 1 0 1 1 0 0 

G  1 1 1 0 1 1 1 1 1 1 1 

H  1 1 1 1 1 0 0 1 0 0 0 

I  1 1 1 1 1 0 0 1 1 1 1 

J  1 1 1 1 1 1 0 1 1 1 1 

K  1 1 1 1 1 1 0 1 0 0 0 

L  1 1 1 1 1 1 1 1 1 1 1 

 

Table 6.3: Results plus file from January 2008 (C1) annotated with skill and topic 

headers.  
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 The first four columns refer to the question 1:  Find ⌡
⌠ −+ xxx d)743( 52 .  [4] 

 

Question 1 1 1 1 

Key to short form of 

terms 

Mark type A A B M Int = Integration 

Topic Integrate Integrate  Integrate  Integrate  Ind = Indices 

Sub-Topic Indices Indices Indices Indices Simp = Simplify 

Skill Simplify Simplify Identify Manipulate Iden = Identify 

Skill 2   Simplify Simplify Manip = Manipulate 

Other skill / 

topic Indefinite Indefinite Indefinite Indefinite 

 

Indef = Indefinite 

 

Table 6.4: Sub-categorisation of marks on Q1 of January 2008 C1 paper by topic and 

skill 

  

The mark scheme for this paper divides up the marks for each question and part into 

3 distinct areas: M (method), A (answer derived from a previous method), and B 

(answer derived without prior method, in this case the “+c”), as detailed in table 6.2. 

I have used a number of short forms (as shown in column 6 in table 6.4) throughout 

the analysis to simplify character and box sizes on the Excel analysis chart. In 

question 1 above, we have a question on indefinite Integration (Int), with associated 

sub-topic: Indices (Ind). The marks are allocated firstly for method (the 

demonstration of an attempt to correctly integrate one term, for which I have 

designated the skills: Manipulate and Simplify), and then three marks for correct 

answers (the first of which requires one correct power term, the second and third for 

the correct other terms). These subsequent answer marks, I have designated the skills 

required as: Identification / Remember (Iden) of both the (+c) and also the nature of 

solutions, and also Simplification (Simp) for the fractions. A fuller description of 

how skills are allocated per question is carried out later in the chapter.  

 

The “ResultsPlus” spreadsheet tells me clearly which candidates have scored which 

marks on question 1, and where they lost the marks if at all.  In the above table, we 

can clearly see that only candidate G lost a mark at all on this question, and that for 
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the “B” mark, i.e. his mistake was forgetting the “+C” on his solution (i.e. detailed in 

the examiners’ solutions). All other candidates had scored the correct answer in its 

entirety. Interestingly, should we use a similar question in a multiple choice objective 

test, with associated mal-rule (forgetting the “+ C”), then I could hypothesise that 

candidates are likely to rule out this answer when they see a clutch of other solutions 

that do include the “+C” term, as they are likely to jog the students’ memories of the 

correct form of the integrand, so such a skill would need to be tested using other 

objective formats. From a teaching perspective, it shows one major deficiency on 

that question can become a useful revision tip.   

 

Question Number Scheme Marks 

   

1.          cxxx +−+ 7
3
2 63    

M1 A1 

A1 B1 (4) 

  (4 marks) 

 

Figure 6.5: The mark scheme for Q1 of January 2008 Core Maths 1 

 

6.3 Topic Analysis 

 

What I set about constructing here was a fuller description of each part of every 

question and the topics and skills required to score every mark on the paper. I 

subdivided each mark into five categories: Topic, sub-topic, Skill 1 required, Skill 2 

required and other information to help categorise the mark concerned. Within this 

analysis, I was able to carefully allocate every mark to a topic or two and also to one 

or more skills that were required to be demonstrated. Too few topics / skills and the 

analysis would be meaningless to the candidate, and too many topics / skills and 

there would be difficulty classifying the marks as well as usefully highlighting 

patterns in errors or learning gaps for the candidates.  

 

Topics considered were taken from the June 2007 through to January 2010 papers 

(source: Edexcel Core Maths 1 Specification, www.edexcel.com): 

http://www.edexcel.com/�
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Indices Integration Area Transformations Differentiation Quadratics Polynomials 

Lines Inequalities Formula Sequences Pythagoras 

Arithmetic 

Progressions Surds 

 

Figure 6.6: Topic sections for C1 papers 

 

For each mark, the main topic of that part of the question was selected from the 

above list, and the sub-topic was also added to the spreadsheet if appropriate. For 

example, question 1 of the January 2008 paper (as depicted above) was an 

integration question (main topic), with secondary emphasis on indices (sub-topic), 

and thus all 4 marks were allocated to those topics. Question 2 (June 2008) was a 

Polynomial topic question (“Polyn”), which also required knowledge of Quadratics 

(“Quadr”), and related to the study of Cubic equations. So I built up spreadsheets for 

each of the 6 exam papers with all 75 marks allocated to one or (mainly) two topics, 

which yielded roughly 130-140 topic allocations per paper, as some questions fell 

overlapping two topics, and others only one.  

 

One aim being to total up how many marks there were for each topic, and then see 

how many marks a candidate scored on any one topic to produce an analysis chart on 

a paper by paper basis, before combining the analysis for the whole cohort per paper 

and then temporally across all 6 papers. For each of the other topic areas, I 

constructed grids which showed where the candidates scored marks for that topic 

only, i.e. for the topic “Indices”, I include a selection of the columns for this table 

below in figure 6.7. The score at the end in bold is the percentage achieved on this 

topic by the candidate.  

 

Figure 6.7: A selection of results for Indices questions in June 2008 for candidates A 

- C. 

NAME Indices Indices Indices 

………………… 

Indices Indices Indices 

Indices % 
score 

A 1 1 1 ……………. 1 0 0 100 

B 1 1 1 ……………. 1 0 0 100 

C 1 1 1 ……………. 1 0 0 89 
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Once the calculations by topic have been completed, a final table for candidate 

results by topic is prepared for June 2008 C1, a selection of which is displayed in 

figure 6.8: 

 
15 Indices Integration Area Transformation 

A 100 100 50 100 

B 100 100 100 60 

C 89 67 100 60 

D 100 100 100 100 

E 100 100 100 100 

F 56 33 100 80 

G 89 78 100 100 

H 100 100 50 40 

I 100 89 75 100 

J 100 100 100 100 

K 56 33 100 40 

L 56 33 0 60 

 

Figure 6.8: A selection of final results by topic for C1 June 2008 by candidate. 

 

In each case, the result if given as a strict percentage, and where the candidate has 

scored 70 or more %, I have left the square white, where the score is 50-69 inclusive, 

they are awarded a yellow box (to indicate a warning notice on this topic or uni-

structural responses to questions on this topic), and a red box (likely to make pre-

structural mistakes on these questions) for scores below 50%. Such a table can easily 

be used to identify candidate’s own weaknesses (e.g. candidate “L”), and also topic 

areas that were harder than others / could do with a whole centre improvement (e.g. 

Integration above).  
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Table 6.9: Summary data for 374 candidates’ C1 performances based on topic 

analysis (June 2007 to January 2010).  

 

Looking temporally (as in table 6.9), we can see huge variations from paper to paper 

on topic difficulty, and year to year, and so it is almost impossible to judge the 

relative merits of each paper unless we look at the average for that topic (percentage 

wise) and also a weighted mean to take account of the marks available. Over time, 

we can see very little differences that are meaningful, nor are trends suggesting 

certain areas of increasing difficulty or decreasing difficulty. However, the summary 

data in the bottom of this table gives a few very important pointers for teachers 

preparing students for this exam paper: 

 

• Formula occurs in 10 out of the 75 marks on each paper (each mark has two 

topics, so we divide the 20 by 2), so a healthy amount of time needs to be 

dedicated to questions involving the use of formulae, although it is ranked 

13th in difficulty, so represents one of the easiest topics.  

• Pythagoras Theorem, Sequences and Surds represent the easiest topics for 

candidates.   
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• Quadratics (10 marks), Straight lines (8 marks), Differentiation (7 marks), 

Indices (7 marks), Polynomials (5 marks) and Arithmetic Progressions (5 

marks) all feature prominently in the table, and occur in every paper.  

• Algebraic fractions, Graphs, Simultaneous equations, while featuring 

significantly in the syllabus, have failed to turn up often on these recent past 

papers, and have not attracted that many marks when they have done so.   

• Area questions (while only averaging 4 marks on the one time it occurred) 

represents the most difficult topic by quite some way (72% average scored, 

compared to 82% for the next most difficult).  

• Integration interests me most, as many years it appears to be the easiest part 

of the paper (rank 10th or 11th), but a couple of years (June 08 and January 

10) it is about the hardest question on the paper.  

 

 

6.4 Skills Analysis 

 

With a very similar approach, I completed the analysis for the C1 results by 

candidate on a skills basis. A “skill” is an overarching header for a collection of 

processes that leads to the desired response. For example, to “simplify” an 

expression requires at least knowledge that similar terms can be collected together, 

the role of the BIDMAS rule needs to be adhered to, and a consummate 

understanding of how terms separated by fractions need to be collected differently. 

While topic classification is unambiguous to all, skill classification could be more 

subjective. To demonstrate the selection process: I use June 2008 C1 (with associated 

frequencies for this paper, using mostly two skills per mark): 

 
Manipulate Identify Simplify Factorise Evaluate Draw Substitute Previous Show 

15 10 29 5 29 6 20 7 5 

 

Table 6.10: Skill set by frequency for June 2008 C1.  

 

 

In addition, I chose to use a further four skills in the January 2009 C1 paper: 
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Solve Derive Symbol Fraction 

2 2 3 4 

 

These last four skills are of low frequency to the other major 9 skills, and as such are 

not really indicative of any major failings or success of a candidate. The skill 

“Factorise” could be incorporated into either “Manipulate” or “Simplify”, and 

because of this ambiguity, it is left as its own skill set. Its frequency just about 

justifies this stance too.  

 

 

 

Definitions of the skills 

Manipulate An attempt to use a core technique (e.g. differentiation) or algebraic skill (multiplying 

out brackets) as part of a method to yield an evaluate or expression.  

Identify A recall of formulaic, factual or technical information which generates either a straight 

answer (B mark), or leads to derivation of an expression or equation for future solving 

or manipulation. 

Simplify An attempt to take an expression or equation and move / gather terms such that the 

equation / expression will yield an evaluate or simplificate.  

Factorise An attempt to install brackets separating multiplicative factors involved in an 

expression or equation. 

Evaluate To take an expression or equation that has been manipulated and simplified such that it 

yields an evaluate. 

Draw To display graphically the results of an identification or evaluation. 

Substitute An attempt to input data or information from the question, a previous part, or from an 

identification in order to form a new expression or equation.   

Previous Use of an evaluate from a previous part, an expression or equation from a previous 

part, or information generated in the calculation in a previous part for future 

substitution, manipulation, simplification or evaluation.  

Show To successfully demonstrate what was required to be demonstrated (e.g. derivation or 

proof), having previously manipulated and / or simplified an expression or equation to 

yield an expression, equation or evaluate as dictated by the question concerned.  

 

Table 6.11: A definition of the skills required for C1 exam papers 
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As a demonstration of how to allocate the skills for each question, I use the June 

2008 C1 paper, and have allocated the following skills to Questions 1 and 2 as 

below: 

 

1. Find ⌡
⌠ + xx d)52( 2 .        (3) 

2. Factorise completely x3
 – 9x.       (3) 

 1 1 1 2 2 2 

 M A A B M A 

Skill Manipulate Simplify Identify Factorise Factorise Evaluate 

Skill 2  Evaluate Evaluate Manipulate Simplify  

Other skill / topic Indefinite Indefinite Indefinite Cubic Cubic Cubic 

 Q01M Q01A1 Q01A2 Q02B Q02M Q02A 

 

Figure 6.12: Questions 1, 2 from June 2008 C1 with associated skill set required.  

 

For question 1, the first (method) mark goes for manipulating the integrand (a 

technique only). The first answer mark requires the candidate to simplify the cubic 

expression, i.e. to correctly arrive at (hence: simplify and then evaluate skills used):  

3

3
5 x  

 

The second answer mark is for identifying the (+c) – a factual recall, and then 

Evaluating the final two terms: 2x + c 

 

In question 2, the first mark (B) is for factorising out one bracket, hence the factorise 

and manipulate skills needed to remove one term and leave the rest of the expression 

correct. The next (method) mark is for a second attempt to factorise into three 

multiplicative terms, simplifying the answer as one goes. The final answer mark is 

for evaluating the correct expressions within the brackets from the earlier method.  

 

Subsequent questions have been tackled with the same approach, some yielding two 

distinct skills, a few marks only one (typically for the final evaluate). A full table of 
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skill allocations is found on the 2nd tab of the “FINAL Jun 08 C1 HS analysis.xls” 

spreadsheet.  

 

Once the allocation of skills had been done, I carried on evaluating the percentage 

correct for each skill by candidate, and produced the same topic based table for 

skills, a snap-shot shown below: 

 
 Manipulate Identify Simplify Factorise Evaluate 
A 100 100 93 100 84 
B 93 80 90 80 81 
C 93 100 93 100 71 
D 100 90 97 80 97 
E 100 90 97 80 97 
F 86 90 86 100 81 
G 100 80 100 100 94 
H 93 60 86 100 84 
I 93 90 90 100 87 
J 100 100 100 100 100 
K 71 60 72 100 74 
L 71 80 62 80 52 

 

Figure 6.13: A snap-shot of the skills analysis by candidate, C1 June 08.  

 

What this analysis was in part aiming to pick up was a handful of key skill areas for 

individual candidates to go away and work on with their teachers, but also some key 

topic and skill deficiencies across the centre that could be improved on with sharing 

of teacher resources and strategies, and also feedback and helpful tips from the exam 

board training and feedback training days. For candidate L, we would obviously 

recommend work on Simplifying and Evaluation questions.  
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Table 6.14: Skills analysis across C1 papers for 374 candidates.  

 

Conclusions from the whole set of results are equally important as topic based data: 

 

• Use of symbols and remembering how to manipulate and simplify them is 

marginally the hardest skill to master, but occurs so infrequently (just in one 

paper) and is hardly worth many marks 

• Solving / Evaluating expressions and equations are the next two hardest 

skills, again indicative of similar grasp of both skills. They occur very often 

with a combined total of 14 marks per paper on these skills.  

• Simplifying / Manipulating occur very often and make up 25 marks on the 

paper – the largest share of any skill pairing, and both have the same success 

rating (89%), indicative of students’ similar grasp of both skills.   

• Identification / Substitution occur on every paper too, and account for 18 

marks on each paper, again with similar success and levels of marks 

available.  
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What is really striking is that virtually every skill set scores between 80 and 90% 

success fairly consistently across the papers, across the years. The weakest years 

were January 08 (which is to be explained as all 12 (weaker than average) candidates 

were retaking the paper from the previous year), and January 09 (again mostly retake 

students from the previous summer sitting). Equally striking is the fact that the 

summer peak in June 08 (where we had more bright students sitting the paper for the 

first time) is not matched again by the results in June 09. After the June 08 paper, 

there seems to be a negative trend thenceforth. What has caused skills to decline 

slightly here and yet left topic success unaffected warrants further investigation, as 

shown in Figure 6.15: 

Skill averages
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Figure 6.15: Skills analysis average percentage by paper.  

 

6.5 Diagnosis of student errors 

 

This research is also aiming to provide accurate diagnosis and categorisation of 

student errors. At present, the major usage of diagnosis of topic and skill deficiency 

is for candidates wishing to resit the exact same paper, although some tangible 
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benefits can be derived by knowledge of specific weaknesses (if any are present) and 

the candidates don’t wish to resit the paper. The first group of candidates I wish to 

study are a group of 12 students who first sat the paper in June 07. They all re-sat in 

January 08 (and were the only students entered for January 08), and then 8 of them 

re-sat the paper again in June 08. The topic analysis for the students makes very 

interesting viewing, in table 6.16:  

 

 

Figure 6.16: Results topic analysis for 12 of group A retakes.  

 

 

 

Jun-

07 AP Area Differ Form Frac Ind Inequ Int Lines Polyn Pythag Quadr Sequ Simult Surd Transf Mark 

A 100   77 79   94 67 100 86 83   82 71 100   80 64 

B 100   69 75   94 67 89 64 58   55 100 57   60 56 

C 100   92 79   100 100 100 86 58   82 57 71   0 62 

D 100   77 93   100 67 100 93 83   64 100 71   60 66 

E 67   100 64   100 100 100 71 58   82 43 71   0 58 

F 100   100 71   76 100 67 64 50   82 57 71   0 54 

G 100   100 75   94 67 67 64 100   73 100 57   100 62 

H 67   100 71   100 100 100 86 83   82 43 71   60 63 

I 100   100 79   94 100 100 100 92   82 14 71   100 65 

J 100   69 61   88 33 67 64 75   64 43 71   40 52 

K 100   100 93   100 100 100 86 75   82 100 71   60 68 

                  

Jan-

08 AP Area Differ Form Frac Ind Inequ Int Lines Polyn Pythag Quadr Sequ Simult Surd Transf Mark 

A 100   86 95 100 89 71 80 73 69 100 90 100   100 43 64 

B 43   43 68 75 89 29 90 64 85 67 45 75   100 71 50 

C 100   100 95 75 95 100 100 100 92 100 100 100   100 100 73 

D 57   100 77 75 95 71 100 100 69 100 90 75   100 43 63 

E 57   86 73 75 95 57 100 100 85 100 65 75   60 86 60 

F 57   79 77 75 58 71 70 91 85 67 85 63   80 71 56 

G 57   100 86 50 84 86 100 100 100 100 80 100   20 100 65 

H 86   100 95 50 89 71 100 100 100 100 90 100   100 100 70 

I 57   100 86 75 95 100 100 100 100 100 100 100   100 100 71 

J 57   93 68 75 63 29 40 73 100 100 60 75   40 100 52 

K 100   100 95 100 100 57 100 91 100 100 85 100   100 100 71 

                  

Jun-

08 AP Area Differ Form Frac Ind Inequ Int Lines Polyn Pythag Quadr Sequ Simult Surd Transf Mark 

A 100 100 80 100   56 100 33 88 100 100 100 100     80 65 

B 100 75 67 100   100 100 89 75 100 100 100 100     100 68 

E 100 100 93 100   56 100 33 96 100 100 100 100     60 66 

F 100 0 73 100   100 100 89 63 75 100 100 100     60 61 

G 80 0 100 87   100 100 100 79 92 100 100 100     100 68 

H 100 100 100 100   100 80 100 100 100 100 94 100     100 74 

J 100 0 93 100   56 80 33 75 75 100 82 100     100 60 

K 100 100 100 100   100 100 100 100 100 100 100 100     100 75 
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As is plainly clear from the retake analysis: 

 

• Of those who thought they had mastered Arithmetic Progressions (AP) and 

Inequalities on the first paper, it clearly tripped them up badly 2nd time round, 

but the improvement on the 3rd paper is remarkable having received such 

“feedback” in the form of searching questions in their 2nd attempt.  

• The scores on transformations for each group improve from 51% average to 

83% average 2nd time round to 88% average third time, suggesting how much 

work had gone in to improving and learning the material on this topic 

between retakes. The chart of averages by topic is below in figure 6.17: 

• Quadratics, Sequences, Formula and Polynomials all improve similarly to 

transformations, suggesting vast improvements in revision and practice.  

• However, Differentiation stays almost exactly the same, Indices drops in 

success by over 10%, and Integration by nearly 20% by the 3rd attempt. 

Straight lines improve very well before dropping slightly on the 3rd attempt.   

 

Figure 6.17: Changes by topic average for each retake.  

 

There are clearly some very important conclusions to be drawn here, and the major 

revision topics of Indices and Integration have been neglected between retakes, 

despite how much they are built on in future core maths papers. Some topics, like 

Arithmetic progressions will be easily forgotten if not revised again, as they are more 

stand-alone in nature, so will need additional time and practice devoted to them. 

 

 

What is remarkable is how little changes are made from the 1st attempt to the 2nd 

attempt. Clearly very little additional work has gone on to improve on the paper, but 

this changes remarkably by the 3rd attempt. Candidates gained only 2 more marks 2nd 

 AP Area Differ Form Frac Ind Inequ Int Lines Polyn Pythag Quadr Sequ Transf 

Jun-

07 93.939   89.51 76.299   94.652 81.818 89.899 78.571 74.242   75.207 66.234 50.909 

Jan-

08 70.13   89.61 83.471 75 86.603 67.532 89.091 90.083 89.51 93.939 80.909 87.5 83.117 

Jun-

08 98 59 88 98   83 95 72 84 93 100 97 100 88 
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time round, but had improved by 7.5 marks on average (13%) by the 3rd attempt on 

the paper. Interestingly four candidates failed to improve at all (out of the 12) after 

the 2nd attempt, and one candidate managed to improve by 32% over the 3 attempts, 

as shown below in figures 6.18 and 6.19.  

 

 

Figure 6.18: Changes to scores after 1 or 2 retakes.  

 

 
 

 2nd – 1st 

% 

change 

A 0 0.00 

B -6 -10.71 

C 11 17.74 

D -3 -4.55 

E 2 3.45 

F 2 3.70 

G 3 4.84 

H 7 11.11 

I 6 9.23 

J 0 0.00 

K 3 4.41 

Av 2.27 3.57 

  

 
3rd - 
1st 

% 
change 

3rd - 
2nd 

% 
change 

A 1 1.56 1 1.56 

B 12 21.43 18 32.14 

     

     

E 8 13.79 6 10.34 

F 7 12.96 5 9.26 

G 6 9.68 3 4.84 

H 11 17.46 4 6.35 

     

J 8 15.38 8 15.38 

K 7 10.29 4 5.88 

Av 7.50 12.82 6.13 10.72 
 

 

Table 6.19: Retake analysis from 3rd to 2nd and 2nd to 1st papers.  

 

Jun-

07 Jan-08 

Jun-

08 Retake analysis Group A

50
52
54
56
58
60
62
64
66
68
70
72
74
76

May-07 Dec-07 Jun-08

Paper taken

M
ar

k 
(/7

5)

A
B
C
D
E
F
G
H
I
J
K

 

A 64 64 65 

B 56 50 68 

C 62 73  

D 66 63  

E 58 60 66 

F 54 56 61 

G 62 65 68 

H 63 70 74 

I 65 71  

J 52 52 60 

K 68 71 75 
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6.6 Conclusions and future direction 

 

We can equally easily build up a difficult and challenging paper (like in the first 

chapter), based on those topics that ranked 1st or 2nd by difficulty in any year as 

follows: 

 

June 07  - Transformation and Simultaneous Equations 

January 08 – Inequality and Arithmetic Progression 

June 08 – Area and Integration 

January 09 – Straight Lines and Quadratic Equations 

June 09 – Differentiation, Surds and Indices 

January 10 – Indices and Integration 

 

Such a paper would be a very good challenge to students, and I have put it together 

in appendix 3 as an exercise in writing challenging preparation material based on 

what previous students have found hardest. It covers virtually the whole syllabus, 

and would suffice as an excellent practice exam to stretch talented students. I have 

generated a reusable version of this paper in Excel format (as in chapter 5), and a 

screenshot of such a C1 dynamic paper in appendix 4. Again, as in chapter 5, this 

process is time-consuming, fiddly and the format is difficult to really make user-

friendly. The present purpose of this chapter is to elicit useful error analysis and 

student feedback from ResultsPlus files. Such reusable papers lead in to the 

following chapter on analysis of and writing future CAA materials. CAA test data 

will allow much more refined topic analysis by errors and also allow tailor made 

tests for candidates / cohorts to be made to help improve on specifics. Where this 

analysis is useful for teaching staff, is that they readily use non-CAA methods in the 

classroom and tailor make lessons and exam preparation based on such specific topic 

areas and the nature of previous exam questions by repetition.  

 

The next stage of development here is the realisation that to be successful at retaking 

exam papers, we need further accurate diagnosis of errors and skills / topic 

improvements. We also need tailor-made questions easily accessible to students so 
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that they can self-motivate to prepare for the retakes, especially when class time is 

often devoted to new courses rather than retakes. This mode of analysis, while very 

informative to the teacher, and quite informative to the student, really doesn’t give 

the student many further practice materials or skill or topic specific questions that 

they can go away and practise repeatedly. The format of ResultsPlus is also not as 

informative as we would hope in categorising student errors as our pilot paper-based 

(and onscreen) test was. CAA can answer all of these requests.  
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Chapter 7 – Analysis of a CAA test on Differentiation 
 

7.1 CAA Tests  

 

Brunel University, along with almost every other tertiary institution, has recognised 

the benefits of running diagnostic testing for 1st year undergraduate students, as well 

as foundation year students. They have been using formative and diagnostic 

computer aided assessment (CAA) for several years now, primarily for mathematics 

students, and more recently for students on courses that required a high degree of 

mathematical skills to underpin future learning (Psychology, Economics, IT). For 

Economics students, understanding the foundations of Calculus (in particular 

differentiation) is key to understanding future economic courses.  

 

Given our major question, “do students make the same mistakes on paper as 

online?”, touched upon in the development of our online pilot test (in chapter 5) from 

its paper-based version, then we are motivated to ask similar questions using CAA to 

help answer this.  We developed a taxonomy of student errors in chapter 3 and 4 

equally based on differentiation, so it would be prudent to explore the use of CAA in 

diagnosing and categorising student errors also through differentiation. I am also 

keen to see CAA develop tests spanning a range of skills, not just for diagnosis 

purposes, but also to develop accurate and reusable formative assessments.   

 

A sample of differentiation questions was tested on Economics first year students 

(course code: EC1005) at Brunel University during 2008-2009 and 2009-2010, 

Greenhow (2010). The Economics students sitting level 1 (a compulsory course in 

the 1st semester) are largely expected to achieve 300 UCAS points for entry to the 

course, and level 1 students must have at least AS mathematics course (thus 

incorporating many foundation skills in calculus). About 80% of 2008-2009 students 

have achieved A Level mathematics, in roughly equal proportions of each grade A to 

E, Greenhow (2009)

 

.  

The objectives of these tests were as follows: 
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• To diagnose basic calculus deficiencies at an early stage, and allow for 

correction 

• To homogenise the mathematical levels of the cohort (who had a range of 

backgrounds in maths from GCSE through to A-Level) 

• To understand basic differentiation rules and apply them to differentiate 

polynomials and algebraic functions (lower level skills) 

• To understand the product rule and apply it to polynomials and exponentials 

(mid level skills) 

• To understand the chain rule and apply it to harder questions on binomial 

functions (hard level skills) 

 

In these tests, the practical application of calculus to Economics was not being tested, 

and this link and usage is expected to have been introduced to students at an early 

stage to encourage motivation for learning the harder rules. As set out in the aims 

and objectives above, I will also subdivide the test questions into five distinct skill 

levels each with a difficulty tag, and aim to compare performances across the skill 

levels with the facilities generated in the tests, as detailed in Table 7.1. The difficulty 

tags (cognitive groupings) are used primarily to cluster the skills together based on 

similarity of scores in table 7.2 

 

Skill descriptor Difficulty tag 

Differentiation\Polynomials  Lower 

Differentiation\Product rule\Polynomials  Middle 

Differentiation\Algebraic functions  Lower 

Differentiation\Chain rule\Binomials  Higher 

Differentiation\Product rule\Exponentials  Middle 

 

Table 7.1: Skill descriptors for questions used in EC1005 assessment.  



  92 

The 35 differentiation questions were offered as part of formative objective tests for 

these students, and they were allowed up to 7 attempts to complete the tests. The test 

comprised mostly Multiple-Choice (MCQ) questions (29), with 3 Numerical Input 

(NI) questions, 1 Hot Line (HL) question (where an erroneous proof is given and a 

“hot” error line is needed to be chosen) and 1 Responsive Numerical Input (RNI) 

question. Results from both 2008-2009 and 2009-2010 are summarised in figure 7.2 

by facility value (given as a %): 

 

 
 

Figure 7.2 Facility by skill area for 2008-2009 and 2009-2010 students on EC1005 

courses  

 

I personally recognise the difficulties students have at a higher cognitive level in 

grasping and using the chain rule on binomial functions at A-Level, and if 20% of 

students on EC1005 have never seen the last four skill areas, and many of those will 

grades C, D and E on A Level maths have never grasped these skill areas, then we 

already have an area to explore in more depth by evidence through the results 
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generated by these two cohorts. If we can break down the skills needed to complete a 

differentiation question using the chain rule for binomial functions, (a multi-

structural problem), we can hopefully identify the uni-structural mistakes students 

make, and go back a few levels to fewer-structured problems on similar skills to 

work out where the underlying domain of knowledge resides, and where the remedial 

work needs to begin.  

 

Within these tests, 854 performances were returned in 2008-2009 (at an average of 

2.44 tests per student), and 643 tests were returned in 2009-2010 (at an average of 

1.84 tests per student). The 35 questions (of which a full list by skill level is included 

in Appendix 5) were offered to students in 2008-2009, and of these questions, only 

one was not present in the database offered to 2009-2010, and is thus only included 

for reference and for the initial Mann-Whitney hypothesis test, but is rejected for the 

basis of comparison. The rejected question (present in 2008-2009, not in 2009-2010): 

 

Find ( )nm pd ax bx
dx

+ , whereby both “a” and “n” are positive integers (i.e. question 

realisations given with distracters calculated on the “a” and “n” random parameters. 

 

Within the analysis generated by results files from the assessment tests, question 

descriptors appear as the following (a, b are fractions): 

 

sqrt((x^a)^b); MC Differentiation\Algebraic functions 

 

This refers to: Multiple choice questions on Differentiation of Algebraic Functions. 

In mathematical form, it appears onscreen as: Find:  ( ) 





 bax

dx
d  

 

7.2: Comparison of student performances across skill levels 

 

A Mann-Whitney test is used to compare the averages of these three cognitive 

grouping in section 7.2, to demonstrate whether there are inherent differences in the 

skill levels required for each cluster of topics.  
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To carefully analyse student performances, the reports generated by the software 

produce data for each question for all completed attempts. Of 3593 attempts in 2008-

2009, 3577 were completed with an answer (99.56%). In 2009-2010, 2516 questions 

were attempted, and 2494 were answered (99.13%). For reasons unknown to us, 

students may have exited the tests so leaving this tiny percentage unanswered, and 

thus we must ignore this from the analysis.  The full spreadsheet listing results for 

both cohorts can be found on the Differentiation tab of the 

EC1005_CAA_question_stats.xls

 

. The summary statistics for both groups 

(including weighted mean (facility) and standard deviations) are shown below: 

 
 

 

Figure 7.3: Weighted mean and standard deviation by cognitive area for EC1005. 
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Question descriptor Level Facility 

Weighted St. 

Devn Rank Means 

sqrt((x^a)^b); MC L 0.840 0.367 13 

sqrt(x^a); MC L 0.829 0.377 14 

(ax^b+c)^n,x,a,b,c); MC H 0.817 0.389 18 

(ax^m+bx^p)^n; a,n +ve; MC H 0.427 0.497 34 

(ax+b)^3; HL H 0.647 0.481 30 

(ax+b)^n; a,b +ve/-ve,n+ve; NI H 0.700 0.462 28 

(ax+b)^n; a,n +ve/-ve; RNI H 0.625 0.488 33 

(ax+b)^n; a,n +ve; MC H 0.783 0.415 21 

(ax+bx^3)^3; a,b +ve; MC H 0.852 0.357 11 

(b+cx)^3 ; b,c +ve; MC H 0.709 0.457 27 

diff ax^b; a,b +ve; MC L 0.961 0.197 1 

diff cubic version 1; MC L 0.914 0.285 5 

diff cubic version 2; MC L 0.929 0.261 3 

diff cubic; +ve coeffs; evaluate at x=1/a; MC L 0.820 0.388 16 

diff cubic; +ve coeffs; evaluate at x=a; MC L 0.802 0.402 19 

diff polynomial n=4...12 version 1; MC L 0.924 0.268 4 

diff polynomial n=4...12; MC L 0.906 0.294 6 

diff polynomial n=4...6; +ve coeffs; eval at x=1/a; 

MC L 0.789 0.412 20 

diff polynomial n=4...6; +ve coeffs; eval at x=a; 

MC L 0.879 0.329 8 

diff quadratic version 1; MC L 0.932 0.254 2 

diff quadratic version 2; MC L 0.904 0.298 7 

diff quadratic; +ve coeffs; evaluate at x=1/a; MC L 0.855 0.356 10 

diff quadratic; +ve coeffs; evaluate at x=a; MC L 0.824 0.384 15 

Min of f(x)=Ax^2+Bx+C, A, B, C +ve; NI L 0.639 0.487 32 

x+y given. Find y for TP of xy^2. x,y +ve; NI L 0.361 0.486 35 

diff(cubic* Exp(cubic); MC M 0.756 0.432 23 

diff(quadratic* Exp(ax); MC M 0.856 0.352 9 

diff(quadratic* Exp(cubic); MC M 0.687 0.466 29 

diff(quadratic* Exp(linear); MC M 0.844 0.365 12 

diff(quartic* Exp(quadratic); MC M 0.762 0.428 22 

diff cubic*cubic; MC M 0.645 0.480 31 

diff quadratic*cubic; MC M 0.743 0.439 24 

diff quadratic*quartic; MC M 0.726 0.448 25 

diff quartic*quartic; MC M 0.713 0.454 26 

diff(a+bx^2+cx^3)(dx+ex^3+fx^5); MC M 0.818 0.387 17 

 

Table 7.4: Weighted mean and standard deviation for both cohorts.  

 

The weighted mean (facility value) of the questions clearly rises (0.695, 0.755, 0.83) 

as we progress from High to Low cognitive levels, with a couple of notable 
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exceptions (Question 2 of High level and the last two questions of Low level). This 

Question 2 has previously been identified as not appearing on cohort 2009-2010: 

Find ( )nm pd ax bx
dx

+ , whereby both “a” and “n” are >0, and as such is discounted 

from the overall conclusions, yet included here for reference.  

 

The weighted standard deviation falls as we progress from High to Low cognitive 

levels (0.443, 0.425, 0.344), indicative of much closer scoring on these questions. 

Overall, the weighted mean score of 76.6 % in 2008-2009 increased slightly to 

78.3% in 2009-2010, but this is not statistically significant over the number of tests 

carried out.  

 

However, a Mann-Whitney test on the differences between the averages of these 

cognitive levels can be carried out. If we suppose, as a null hypothesis, that there is a 

significant distinction between performances on questions requiring higher cognitive 

skills than lower ones, we can test for this difference by testing the Low and Middle 

skills, and then testing the Middle and Higher skills questions in a separate test. If we 

draw conclusions that there is significant difference on either of these comparative 2-

sample tests, it stands to reason that there will be statistically significant differences 

between the lower and higher cognitive skill groups.  

 

Thus a null hypothesis, H0 would state: There is no significant difference between 

performances on questions covering the lower cognitive skills to those covering 

middle cognitive skills. As opposed to an alternative hypothesis, H1: There will be a 

significant difference between performance on questions covering the lower 

cognitive skills to those covering middle cognitive skills. We assume data to be taken 

uniformly from both years, thus this test does not test between the years (i.e. no 

significant temporal changes).  

 

This is a non-directional (2-tailed) hypothesis test, and as a first assumption, I will 

look to carry out the test at a 5% significance level, so that we have a reasonably 

good degree of confidence in our conclusions. We use a Mann-Whitney test, because 
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is a non-parametric test for assessing whether two independent samples of 

observations come from the same distribution. In this first case, we want to test 

whether or not the samples of lower cognitive questions are from the same 

distribution as the middle cognitive ones. Then we can test whether the samples of 

questions from middle cognitive levels are from the same distribution as those from 

higher cognitive levels.  

 

Following Mann & Whitney (1947)

 

, we group observations (in this case the mean / 

facility score per question) into the two groups and rank them against the whole set 

of 27 questions. The groups contain 10, 17 questions respectively (for Middle and 

Lower cognitive level skills). Thus we can’t consider this a paired test (and it is 

worth noting that we are not confident the samples came from the same population). 

At the non-directional 5% level (i.e. the probability that we incorrectly reject the null 

hypothesis is 5% or less), we require U (test statistic) to be 45 or more. The 

respective sum of ranks for group 1 and 2: R1, R2 respectively, with N1 and N2: 

number in each group respectively. Each of our two tests will require the calculation 

of “U” values for each group, and the summary statistics are given in table 7.5 

below.  

Mann-Whitney   H + M M + L 

R1   88 190 

R2   83 188 

N1   8 10 

N2   10 17 

U1   52 135 

U2   28 35 

Crit values   17 45 

Lower U   28 35 

Test result   Accept Ho Reject Ho 

U1 + U2 check 80 170 

N1 x N2 check 80 170 

 

Table 7.5: Mann-Whitney U test values for Groups Higher + Middle (H + M) and 

Middle + Lower (M + L) skills of EC1005 across 2008-2010 inclusive.  
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Given that N (N1 and N2) is less than 20 for each sample, we won’t have 

justification for using a normal approximation to the distribution, but the results are 

very clear nonetheless. Taking the lower U values (28 and 35 respectively), we see 

this is below the critical value in the Middle and Lower skill question comparison, 

but above it in the Higher and Middle skill comparison (as given in table 7.6 below), 

courtesy of: http://math.usask.ca/~laverty/S245/Tables/wmw.pdf 

 

So we can reject H0 in favour of H1, that there is a statistical difference between the 

middle and lower skills samples, namely that there is a significant difference between 

performance on middle cognitive questions than lower cognitive ones. Even if the 

significance level of the test was reduced to 0.01 (non-directional), we still have a 

critical value for U of 34, given n1 = 10, n2 = 17, so we would almost draw the same 

conclusion, only with a more stringent test and confidence interval.  

 

However, the test failed to reject Ho for the comparison between middle and higher 

skill questions, namely that there is insufficient evidence to show that there is a 

difference in performance on middle skill questions as on higher skill questions. This 

could indicate that the lower to middle skill overlap should be the major area for 

testing and thus differentiating between the students. More work is also still needed 

for students preparing for test questions at a higher cognitive level, but this test may 

suggest that weaker students who can do lower skill questions are likely to be equally 

stumped by middle and higher skill questions.  

 

 
 

Table 7.6: Critical values for the Mann-Whitney U test at the 5% non-directional 

level.  

http://math.usask.ca/~laverty/S245/Tables/wmw.pdf�
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7.3: Comparison of student performances and analysing differences between 

tests 

 

There is shown to be a slight improvement in average score (76.6% to 78.3%) from 

2008-2009 to 2009-2010 and such a difference is again shown up when we look at 

the difference between the facility values on each question. The correlation between 

the two sets of data is measured as 0.853 (Spearman) and 0.854 (Pearson), indicating 

a very good agreement with question by question scores and limited major changes 

either on single questions or across cognitive skill areas. One significant difference 

between the 08/09 and 09/10 cohort is that the later one have had exposure to 

Mathletics throughout the academic year, and all other factors appear to be the same, 

so we should be tempted to conclude that the computer-aided learning has enhanced 

the scores from one year to another. The average facility increase per question is 0.03 

– a 3% increase across questions, which is fairly well mirrored across skill levels. 

Lower skill questions increase by 3.2%, middle skill questions by 3.8%, and higher 

skill questions by 2.6%. Given that the improvement in marks across the skill levels 

are very similar, suggests that the whole cohort has improved from one year to the 

next.  

 

However what catches the eye are the questions where the difference is of the order 

of 0.1 (where we know that there has been a major change, as the question facility 

has increased by 10% or more). In this case, I can highlight four such questions (in 

yellow) in table 7.7.  

 

The other major spin-off of these results in table 7.7 is that the questions that have 

decreased by the most in facility value could also be included in a new test for future 

groups that really allows good students to be stretched and allows those who haven’t 

done enough practise to be found out if they have been reliant on “easier” questions 

coming up randomly in the test. Such a test is detailed in Appendix 6.  
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Question descriptor Difference of means 

sqrt((x^a)^b); MC 0.04 

sqrt(x^a); MC -0.002 

(ax^b+c)^n,x,a,b,c); MC 0 

(ax+b)^3; HL -0.03 

(ax+b)^n; a,b +ve/-ve,n+ve; NI 0.083 

(ax+b)^n; a,n +ve/-ve; RNI -0.033 

(ax+b)^n; a,n +ve; MC 0.016 

(ax+bx^3)^3; a,b +ve; MC 0.198 

(b+cx)^3 ; b,c +ve; MC -0.053 

diff ax^b; a,b +ve; MC 0.024 

diff cubic version 1; MC 0.01 

diff cubic version 2; MC 0.053 

diff cubic; +ve coeffs; evaluate at x=1/a; MC 0.044 

diff cubic; +ve coeffs; evaluate at x=a; MC 0.004 

diff polynomial n=4...12 version 1; MC 0.005 

diff polynomial n=4...12; MC 0.009 

diff polynomial n=4...6; +ve coeffs; evaluate at x=1/a; MC -0.023 

diff polynomial n=4...6; +ve coeffs; evaluate at x=a; MC 0.114 

diff quadratic version 1; MC -0.037 

diff quadratic version 2; MC 0.045 

diff quadratic; +ve coeffs; evaluate at x=1/a; MC 0.05 

diff quadratic; +ve coeffs; evaluate at x=a; MC 0.038 

Min of f(x)=Ax^2+Bx+C, A, B, C +ve; NI 0.144 

x+y given. Find y for TP of xy^2. x,y +ve; NI 0.023 

diff(cubic* Exp(cubic); MC 0.071 

diff(quadratic* Exp(ax); MC -0.021 

diff(quadratic* Exp(cubic); MC 0.064 

diff(quadratic* Exp(linear); MC -0.062 

diff(quartic* Exp(quadratic); MC -0.025 

diff cubic*cubic; MC 0.093 

diff quadratic*cubic; MC 0.149 

diff quadratic*quartic; MC 0.008 

diff quartic*quartic; MC 0.087 

diff(a+bx^2+cx^3)(dx+ex^3+fx^5); MC 0.012 

 

Table 7.7: Results of differences by question 2008-2009 and 2009-2010 of EC1005.  

 

Clearly much work has been done between the year-groups (whether this has been 

noticeably different in lectures, practice materials or indeed in the background of the 

cohorts) that the following questions have been significantly better answered: 
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Question descriptor Difference of means 

(ax+bx^3)^3; a,b +ve; MC 0.198 

diff polynomial n=4...6; +ve coeffs; evaluate at x=a; MC 0.114 

Min of f(x)=Ax^2+Bx+C, A, B, C +ve; NI 0.144 

diff quadratic*cubic; MC 0.149 

 

Table 7.8: Positive improvements in question response from EC1005 2008-2010 

 

The first question of these questions is the only one that has been designated a high 

level skill, and the next two questions low level skills with the last question a middle 

level skill. Clearly much work has been done over the year to improve on certain 

aspects of the understanding of the chain rule, and I could hypothesis that the lecturer 

has specialised in a very similar example question to teach students these skills, so 

such a question was this year better answered. The high level question increased its 

facility value from 0.763 to 0.961, again indicating help was given as this facility 

value is almost anomalous within the higher cognitive level question group. 

Curiously and anecdotally, a very similar question was asked in the cohort EE1083 

(first year electrical and computer engineering students at Brunel), who sat the same 

question:  (ax+bx^3)^3; a,b +ve; MC , with a and b given as 1. This question yielded 

the highest discrimination of any question on their papers on calculus, which would 

suggest that this type of question has caused problems in the past and has thus been 

looked at between students across courses over the last year.  

 

7.4 Discrimination differences and high-lights between the tests 

 

The higher the discrimination / correlation, the better a question is in assessing the 

skills required to be tested.  
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Figure 7.9: Discrimination by skill level compared by year. 

 

In figure 7.9 (above), we have a very clear trend from high level questions to low 

level questions (0.65, 0.59, 0.54 in 2008-2009 and 0.69, 0.66, 0.48 in 2009-2010) 

whereby, in this particular case, the higher the skill level, the higher the 

discrimination index. The one negative discrimination result, could indicate that 

weaker students very slightly tending to do better on the question that the stronger 

students. This is not unknown as a poorly designed question could throw strong 

students off but not the weaker ones. One observation is that low level questions 

have dropped by 0.056 in discrimination index from 2008-2009 to 2009-2010, below 

0.5, indicating possibly that lower level questions have become weaker at 

differentiating between students than harder or middle cognitive level questions 

should be used to assess such cohorts. One hypothesis is that students have spent 

much time working on these easier cognitive level questions on Mathletics and 

mastered the basic skills without spending as much time on the harder level 

questions. Thus good students can still make errors on low skill questions and weak 

students don’t necessarily get the low skill questions correct either (symptomatic of 

strategic guesswork or pre-structural responses in some cases). It is also worth 

pointing out that the average discrimination didn’t change from one year to the next.  
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Table 7.10 below: Results of discrimination year by year and the associated 

differences:  

Question descriptor Level 2008-2009 2009-2010 Difference  

(ax^b+c)^n,x,a,b,c); MC H 0.667 0.727 0.060 

(ax+b)^3; HL H 0.541 0.696 0.155 

(ax+b)^n; a,b +ve/-ve,n+ve; NI H 0.568 0.790 0.222 

(ax+b)^n; a,n +ve/-ve; RNI H 0.707 0.779 0.072 

(ax+b)^n; a,n +ve; MC H 0.599 0.656 0.057 

(ax+bx^3)^3; a,b +ve; MC H 0.771 0.513 -0.258 

(b+cx)^3 ; b,c +ve; MC H 0.727 0.679 -0.048 

diff(cubic* Exp(cubic); MC M 0.542 0.662 0.120 

diff(quadratic* Exp(ax); MC M 0.521 0.587 0.066 

diff(quadratic* Exp(cubic); MC M 0.557 0.741 0.184 

diff(quadratic* Exp(linear); MC M 0.583 0.617 0.034 

diff(quartic* Exp(quadratic); MC M 0.608 0.643 0.035 

diff cubic*cubic; MC M 0.672 0.763 0.091 

diff quadratic*cubic; MC M 0.648 0.551 -0.097 

diff quadratic*quartic; MC M 0.637 0.675 0.038 

diff quartic*quartic; MC M 0.584 0.755 0.171 

diff(a+bx^2+cx^3)(dx+ex^3+fx^5); MC M 0.577 0.615 0.038 

sqrt((x^a)^b); MC L 0.598 0.534 -0.064 

sqrt(x^a); MC L 0.577 0.633 0.056 

diff ax^b; a,b +ve; MC L 0.276 0.072 -0.204 

diff cubic version 1; MC L 0.543 0.316 -0.227 

diff cubic version 2; MC L 0.588 -0.040 -0.628 

diff cubic; +ve coeffs; evaluate at x=1/a; MC L 0.678 0.546 -0.132 

diff cubic; +ve coeffs; evaluate at x=a; MC L 0.566 0.613 0.047 

diff polynomial n=4...12 version 1; MC L 0.425 0.299 -0.126 

diff polynomial n=4...12; MC L 0.26 0.617 0.357 

diff polynomial n=4...6; +ve coeffs; evaluate at x=1/a; MC L 0.736 0.771 0.035 

diff polynomial n=4...6; +ve coeffs; evaluate at x=a; MC L 0.524 0.644 0.120 

diff quadratic version 1; MC L 0.223 0.425 0.202 

diff quadratic version 2; MC L 0.601 0.492 -0.109 

diff quadratic; +ve coeffs; evaluate at x=1/a; MC L 0.694 0.245 -0.449 

diff quadratic; +ve coeffs; evaluate at x=a; MC L 0.554 0.697 0.143 

Min of f(x)=Ax^2+Bx+C, A, B, C +ve; NI L 0.744 0.716 -0.028 

x+y given. Find y for TP of xy^2. x,y +ve; NI L 0.576 0.638 0.062 
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The following question:  

 

provided much evidence of increase in performance and facility from 2008-2009 to 

2009-2010, was the question in 2008-2009 with highest discrimination for the 

foundations of IT: EE1083, yet its discrimination has dropped by more than 25% 

from one year to the next, backing up my hypothesis that specific target coaching for 

this exact question had gone on, as its ability to discriminate has dropped it to the 

bottom 8 questions in usefulness on this scale in 2009-2010.  Looking overall, the 

higher level questions have increased in discrimination by 0.037, the middle skill 

questions have increased by 0.068, while the lower skill questions have decreased by 

0.056 in discrimination. Thus we can very readily draw the conclusions that from one 

year to the next, the middle and (to a lesser extent) higher cognitive level questions 

are proving the better discriminators, while the lower cognitive questions are much 

better answered and are a poor guide to subsequent performance on harder skill 

questions. All of the low discrimination values appear in the low cognitive level 

questions. When we compare the facility index with discrimination score on the 

overall set of questions, we also see an interesting result: 
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Figure 7.11: Facility and Discrimination scores for the EC1005 cohort from 2008-

2010 inclusive. 

(ax+bx^3)^3; a,b +ve; MC H 0.771 0.513 -0.258 
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Not only does this test represent a very good test, as all of the questions have facility 

values over 0.3, and all bar 2 of them over 0.6, but the discrimination index is above 

0.5 for all questions bar 4. However, Baruah (2007)

 

’s classification of difficulties 

for tests would classify 27 of our 34 questions as “easy”. This classification would 

render the level descriptors meaningless and the relative facility values equally so, 

thus I propose judging the questions on their discrimination. After all, the graph 

above shows a very good negative correlation between facility and discrimination of 

-0.6254 (Pearson).  We could question the internal consistency of such a test given 

this correlation index, but it makes sense to look at the harder questions. As the 

facility decreases so the discrimination increases, and thus the harder questions 

clearly discriminate between the students, something that our Mann-Whitney U test 

equally told us. A similar conclusion can be drawn by subdividing the questions into 

their levels.  

As seen in Figure 7.12 below, facility is negatively skewed for this data (the bulk of 

values between 0.6 and 1.0), whereas discrimination is much more normally 

distributed. For robust comparisons, we would like Facility values to be normally 

distributed (0.55 – 0.65) and Discrimination very much skewed (near to unity).  
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Figure 7.12: Facility and Discrimination scores across EC1005 between 2008-2010 

inclusive.  

 



  106 

What remains to be understood therefore, are the specific errors students make, in 

light of these easier questions, to ascertain where exactly the main understanding 

ceases and guesswork creeps in, or indeed up to which point the students’ scores are 

really representative.  

 

 

7.5 Question analysis and Specific student errors (mal-rules) 

 

Looking through the answer files for the 35 differentiation questions yields some 

important clues as to why some questions prove harder than others, why some are 

better differentiators and why some can be very informative as to the specific student 

error (particularly if it is replicated across the cohort in any significant quantity). 

There are sufficiently few questions that are not MCQ (the RNI, NI and HL 

questions) to be unable to draw conclusions from them, as they a) only yield facility 

value, and b) the facility values lies in the middle of the distribution for their level, so 

are not significantly harder or easier than other question types.  

 

I start by looking at a selection of questions from the lower cognitive level and then 

progress through to some medium cognitive level as there is a statistical difference 

between performances at these two levels (Mann-Whitney U test). At the lower 

cognitive levels (differentiation of algebraic functions), there were two questions set, 

both of which were multiple choice, and yielded facilities of 0.823 and 0.83, with 

discrimination indexes of 0.598 and 0.577 respectively. So both were easy questions 

that yielded a high number of correct answers but which told us relatively little 

(lower discrimination) about the likely overall performance given success on these 

questions. The harder of the two questions is given in figure 7.13: 
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Figure 7.13: “sqrt((x^a)^b) MC” screenshot of question.  

 

Looking carefully through the coding and the associated answer files, it is clear that 

there are 4 major error groups (mal-rules) encoded to diagnose student weakness, and 

are listed below with relative frequencies of response: 

 

Table 7.14: Mal-rules for differentiation of algebraic functions questions EC1005.  

 

Clearly on such lower cognitive level questions, the teaching aim for those who 

make mistakes is to remember the basic rules (as hinted in the question by the 

explicit cue “POWER RULE”); firstly to turn the expression into an index 

expression, and then to remember how to differentiate the power of x correctly. Thus 

Correct / Mal-

l  

Error 

 

Sqrt (x^a) Sqrt((x^a)^b) Total Percentage 

Correct Nil 298 307 605 82.3 

Ignore square 

 

PS 17 14 31 4.2 

Wrong power 

 

 

  

US 20 9 29 3.9 

Integrated PS 5 3 8 1.1 

None of the 

 

PS 30 23 58 7.9 

Other PS 2 2 4 0.5 



  108 

it is a multi (2)-structural question, and both processes could yield uni-structural 

mistakes (as in the wrong power (+1) mistake, or the other pre-structural mistakes 

(integrated, ignore square-root, none of the above). The relatively high frequency 

(7.9%) of “None of the above”, clearly suggests that students were finding other 

answers to those listed, or just guessing. My work in table 4.6 shows just how many 

other evidenced-based mal-rules could have been used for the construction of this 

question, and will remain a development point.  

 

On middle skill questions, we see the facility values range much more (0.659 to 

0.871), and looking at a selection of MC questions from use of the product rule on 

exponential functions, we see that the questions involve both the use of product and 

(to a lesser extent) chain rules. As described previously with the skill group: 

Differentiation / Chain Rule / Binomials, students have generally struggled more 

with this skill than others.  

 
 Cubic*Exp(cubic) Quadratic*Exp(ax) Quadratic*Exp(cubic) Quadratic*Exp(linear) Quartic*Exp(quadr) 

Facility 0.727 0.864 0.659 0.871 0.773 

Discrimination 0.542 0.521 0.557 0.583 0.608 

 

Table 7.15: Facility and Discrimination indices for middle cognitive questions 

 

The following example in figure 7.16 is typical of such a question, which requires 

two rules (and thus is a multi-structured problem) to be correctly applied to yield the 

correct response.  
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Figure 7.16: Differentiation of exponentials using product and chain rule for 

EC1005.  

 

The structure of the mal-rules and distracters in the answer boxes is that of a full 

product rule solution (i.e. the question has a product of two terms and all solutions 

have two products of two terms), with generic chain rule form (i.e. the coefficient in 

front of one term). These explicit cues for the students should show them that both 

product and chain rules need to be used, so errors are likely to be consigned to uni-

structural form, rather than pre-structural form (“None of these”).  

 

In this question, all the candidates need to do in reality is identify the derivative of 

the quadratic function and select that option based on the secondary answer term, as 

the primary term is identical for all options. The mal-rules are based on uni-structural 

mistakes candidates have shown themselves likely to make on differentiation of 

polynomial functions here, rather that testing the nature of the product or chain rules. 

A weak candidate may indeed spot that (-5 + 20x) is indeed the correct derivative 

and thus go for this answer without recourse to the product or chain rule. If this is the 

testing aim of the question, then this question would be better off not in MC format, 
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or be written with a few more distinct distracters to test the uni-structural mistakes 

from product rule (or chain rule) usage. As such, the nature of ease in obtaining the 

correct solution goes most of the way to explaining why it has a low discrimination 

index (0.521). 

 

The very nature of writing suitable MC responses is key to completing the testing 

aims of these questions. Arriving at distracters that are too similar to each other or to 

the answer is liable to lead the students to choose the correct answer 

disproportionately often or infrequently, so a fuller evaluation of the choice of 

distracters in these similar cognitive level questions will allow not only to evaluate 

likelihood of specific student errors, but to test the efficacy of diagnosis of errors (i.e. 

whether the spread of distracters is wide enough and helpful enough in the questions 

to allow confidence in the spread of frequencies of each choice).  

 

Table 7.17: Results by question for product rule / exponential questions for EC1005.  

 

On the answer files, each distracter (leading to a specific mal-rule) is labelled merely 

D1 to D4, and the answer “None of these” will feature as the correct answer 

randomly 10% of times. This will fulfil Gill & Greenhow (2006)’

 

s twin aims of 

making sure that students don’t guess all of the time, and also that they develop 

confidence in their answers rather than relying on them appearing all of the time in 

the options. The “None of these” figures above are for those candidates who 

incorrectly chose this answer, when the correct one was sitting above that. For each 

Cubic*Exp(

cubic) 

Quadratic*

Exp(ax) 

Quadratic*Ex

p(cubic) 

Quadratic*Exp(

linear) 

Quartic*Exp(

quadr) 

Tot

als 

% 

Correct 101 133 85 108 102 529 77.6 

D1 3 7 7 4 4 25 3.7 

D2 18 2 23 4 12 59 8.7 

D3 6 5 5 3 4 23 3.4 

D4 4 0 3 0 3 10 1.5 

None of 

these 

7 6 6 3 6 28 4.1 

Do not know 

/ Blank 

2 2 0 2 2 8 1.2 
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distracter, there is a 2.5% chance that it will not appear (as with “None of these” 

being correct), and in most cases, the incidence of each distracter being chosen is 

quite small. However, the significant observation is that the selection of D2 is highest 

of all in Questions 1, 3 and 5 (which are the ones with lowest facility values).  

 

Looking in more depth at the first question: “Differentiate cubic * Exp (cubic)”, we 

can see how the distracters were formed and how the question is testing which skills: 

 
Figure 7.18: Differentiate cubic * Exp (cubic) screenshot for EC1005. 

 

Here, again the structure of all four solutions is identical, i.e. the testing process isn’t 

looking to test whether candidates can use the formulaic process of the product rule, 

or the format of the chain rule, but merely can they differentiate two cubic 

expressions correctly. The associated errors built into the distracters are merely those 

found in differentiating basic polynomials. For each distracter, the coding is based on 

supposed mistakes that candidates are likely to make, Greenhow et al. (2006)

 

: 
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Answer 1 2 3 4 

Distracter  D2 D3 C1 D1 

Description Correct first half, but 

used derivative of 

cubic in 2nd half 

instead of derivative 

of quadratic. 

Used division instead of 

multiplication for derivative of 

ax^b: 

Uses  a/b x ^ b-1 instead of ab 

x ^b-1 

Correct Differentiates the polynomials 

wrongly, i.e. no multiplication. 

Chooses: ax^b becomes ax^b-1 

instead of ab x ^b-1 

 

Table 7.19: Distracter definitions for “Differentiate cubic * Exp (cubic)” for EC1005 

 

Distracter 4 (only used when the answer is “none of these”), has the same correct 

format as C1, but includes a rogue “+C” inside the brackets of the differentiated 

terms. The lack of incidence partly explains why it is hardly ever chosen, and equally 

the “+C” should trigger alarm bells for candidates on a differentiation question as it 

stands out differently from the other questions. Distracter 2 has the same generic 

description across all three harder middle skill questions as in table 7.19 above, and 

is chosen more often than all other wrong answers in these questions. Candidates are 

scanning the solutions looking for the right structure. Once they spot that all answers 

have the same structure they may well be looking for commonalities, i.e. they see 

both D2 and C1 answers with the same first half. Mentally they are now likely to 

discount the other two answers. In both of these, they can scan across and see that 

there is commonality of the terms in the 2nd half of the D2 answer, which must be 

appealing from work done with chain rule questions in the past. Thus the distracter 

has itself become very distracting, without really identifying a particular mal-rule.  

 

While the other distracters are well chosen, and would have tripped up those who 

have yet to grasp some polynomial differentiation, the nature of these mal-rules is 

such that students are likely to take the easier route and scan solutions before 

attempting the question. Thus our testing aim of understanding and application of the 

product or chain rules is not being met.  

 

When looking at product rule questions based purely on polynomials (thus no chain 

rule to complicate matters), we see a strikingly different set of results (despite being 

all MC question types): 
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Table 7.20: Results by question for product rule / polynomial questions for EC1005.  

 

Not only are these questions better differentiators with the discrimination index 

(0.624 compared to 0.562), they are also quite a bit harder given the lower facility 

levels (69.9% correct compared to 77.6% correct). The distracters don’t seem to 

attract attention anything like as much as the exponential product rule questions and 

mistakes are liberally spread between D1, D2 and D3. What really jumps out is the 

level of mistakes by wrongly selecting “None of these” (11.3%).  

 

Looking further at “Cubic * Quadratic” questions, the type of distracters used are 

typical of all of these types of questions.  

 

 Cubic*Cubic Quadratic*Cu

bic 

CubibExp(ax) 

Quadratic*Quarti Quartic*Quartic Cubic*Quintic Total % 

Facility 0.606 0.681 0.723 0.677 0.813   

Discriminat

ion 

0.672 0.648 0.637 0.584 0.577   

Correct 86 96 112 86 109 489 69.9 

D1 7 10 5 12 4 38 5.4 

D2 11 11 9 11 8 50 7.1 

D3 8 6 12 8 1 35 5.0 

D4 0 0 1 0 2 3 0.4 

None of 

these 

28 16 15 10 10 79 11.3 

Do not 

know 

 

2 2 1 0 1 6 0.9 



  114 

 
Figure 7.21: Screenshot of cubic * quadratic question for EC1005.  

 

We can see that the first answer jumps out at us as different from the rest given the 

powers of the last term in each bracket, and thus intuitively warrants little further 

attention. From pattern recognition, we can equally see that the first term is repeated 

in answers 2 and 3, and the last term is repeated in answers 3 and 4. Thus, without 

any working, it would be instinctive to select answer 3 without completing any 

formal checking or indeed solving in the first place. Unfortunately, this strategy 

would yield the correct answer in this instance.  

 

At least if we had the sense to check simply by multiplying the last terms of each 

bracket yields -24x5, and when differentiated this gives -120x4. A further quick check 

along each of the answers shows that answer 3 is also the only one to sum to -120x4.  

The dangers of answer spotting are very clear in these questions. The same logic 

doesn’t work every time, as there is a scenario encoded here whereby all four 

answers are wrong, and there are two matching pairs of first term and last term, 

overlapping with one (wrong) answer.  
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Answer 1 2 3 4 

Distracter / 

Correct 

D2 D3 C1 D1 

Description Wrong product rule: 

Uses v dv/dx + u 

du/dx instead of: 

v du/dx + u dv/dx 

Correct first term (from u dv/dx), 

but the 2nd term is wrong. The 

product v du/dx has the wrong 

du/dx: (-10x + 8x2) instead of (2-

20x+12x2), multiplying by the new 

power not the old one, and 

forgetting the 2 from 2x.  

Correct Correct second term (from v 

du/dx), but the 1st term is wrong. 

The product u dv/dx has the 

wrong dv/dx: (2 -10x) instead of 

(-1-12x), mis-multiplying the 

quadratic term, and forgetting the 

2 disappears 

 

Table 7.22: Distracter definitions for Differentiate cubic * quadratic question for 

EC1005 

 

Looking critically at this question and others in the product rule / polynomial group, I 

can see how many students could “guess” the correct answer, or indeed use the 

sensible check of the final term to isolate the only possible correct answer. How 

many would then check the full working to make sure it was correct is hard to work 

out, but I suspect rather few. The distracters here (including D4 which is a variation 

of D1) don’t inspire likely choosing given the nature of the mistakes seeming 

unusual (as evidenced from table 4.6).  

 

A more sensible plan to me would be to use D2 (wrong way round for the product 

rule) as our primary uni-structural mal-rule, and then to use other distracters based on 

differentiating the quadratic / cubic without one term (again obtained via a uni-

structural mistake), or using the logical evidenced based mal-rules from table 4.6 

whereby polynomial differentiation mistakes are incorporated as uni-structural 

mistakes within the product rule format, i.e. where: ax b goes to ax b-1 instead of 

 ab x b-1 or  ax b goes to a/b x b-1 instead of ab xb-1.  

 

The fiddly nature of these questions also makes it very hard to correctly arrive at the 

exact answer, and even one term out would lead a student to select “None of these” 

almost certainly wrongly, which explains the high incidence of these choices 

(11.3%). They are a better discriminator than the other product rule questions, but 

there is huge mileage in re-writing each set of questions with evidence-based mal-
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rules (or as RNI questions) to cope with more likely errors, and also to select mal-

rules that don’t yield an intuitively guessable solution from the selection of options.  

 

7.6 Feedback 

 

All that remains to be added in this results section is a thought about the feedback for 

students on these questions. Here below, showing a screenshot of the feedback page 

(following a wrong answer), we see the standard pattern that the question is given, 

followed by the correct answer. Then follows some general theory (including the 

product rule formula), and the intermediate calculation steps, showing the derivatives 

of each function – to high-light possible errors), before putting the steps together at 

the end.  

 

 
Figure 7.23: Screenshot of feedback after a product rule / exp question for EC1005.    

 

Such a piece of feedback can only serve as very helpful for improving students 

scores, but it depends entirely on: 
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• Whether the students look at feedback. 

• Whether they understand the basic theory enough to follow the solution 

(printing off for future retakes). 

• Whether they can then translate the theory into analysing their own working 

to see where they went wrong. 

• Whether they can then follow the theory and worked example with a new 

question that has the same structure but different numbers enough times to be 

confident of doing the question again without notes. 

• Anecdotal evidence suggests that students say they learn maths from this 

feedback rather than from books or lecture notes.  

 

7.7 Conclusions 

 

• Students may be good at guessing / eliminating some MC answers if they 

give away too much of the correct answer 

• Students won’t use “Don’t know”, but will use “None of these” often for 

fiddly questions 

 

More work is needed to iron out likely differentiation mistakes, particularly at the 

basic skill end (polynomials), to make questions better differentiators at this level 

and also to help write questions at the middle and higher cognitive levels.  
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Chapter 8.  Analysis of CAA tests on Integration 
 

8.1 Integration  

 

As shown in chapter 7, for Economics students, a sound understanding of the 

foundations of Calculus is key to understanding future economic courses. In the 

previous chapter, I focussed on differentiation questions in part to help answer 

whether students made the same mistakes on paper-based tests as online, and to look 

temporally to see whether questions became harder or better discriminators over time 

with increased teaching resources and preparation. I showed that more work is 

needed to iron out likely differentiation mistakes, particularly at the basic skill end 

(polynomials), to make questions better differentiators at this level and also to help 

write questions at the middle and higher cognitive levels. Our major question, “do 

students make the same mistakes on paper as online?”, was also informative as we 

showed that students could easily make different mistakes online when faced with a 

set of distracters that looked unhelpful to them.  

 

Equally students are inclined to guess the answer if the distracters give away too 

many explicit cues, or are too similar to each other to suggest elimination. Students 

too may well select “None of these” too often when the distracters were not well 

based on evidence of previous mistakes (a posteriori) and their attempts which 

resulted in a common uni-structural mistake didn’t appear in the likely list of 

distracters. Anecdotal evidence from Nottingham University suggests that students 

who fail to check answers will often choose “None of these” when they don’t see 

their first solution present. I am still keen to see CAA develop tests spanning a range 

of skills, not just for diagnosis purposes, but also to develop accurate and reusable 

formative assessments. Such careful analysis of efficacy of questions and mal-rules 

is thus vital for the future use of these tests.   

 

A sample of integration questions was tested on Economics first year students 

(course code: EC1005) at Brunel University during 2008-2009, Greenhow (2010). 

The Economics students sitting level 1 (a compulsory course in the 1st semester) are 
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largely expected to achieve 300 UCAS points for entry to the course, and level 1 

students must have at least AS mathematics course (thus incorporating many 

foundation skills in calculus). About 80% of 2008-2009 students have achieved A 

Level mathematics, in roughly equal proportions of each grade A to E, Greenhow 

(2009)

 

.  

The objectives of these tests were as follows: 

 

• To diagnose basic calculus deficiencies at an early stage, and allow for 

correction 

• To homogenise the mathematical levels of the cohort (who had a range of 

backgrounds in maths from GCSE through to A-Level) 

• To understand basic integration rules and apply them to integrate polynomials 

and algebraic functions (basic level skills) 

• To understand intermediate integration rules and apply them to integrate 

exponential and logarithmic functions (intermediate level skills) 

• To understand integration by parts and apply it to harder questions on 

function products including exponential functions (advanced level skills) 

769 tests (see Appendix 6) were generated from the EC1005 “Integration 

ASSESSMENT test”, of the 2008-2009 cohort, Greenhow (2009)

  

.  The 32 questions 

for the test were selected from the Mathletics suite of questions, as detailed in figure 

8.1: 
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The following topics had been included 

in the EC1005 course: 

 

Integration\Algebraic Functions 

 

Integration\By parts\Exponential 

Functions 

 

Integration\Exponentials 

 

Integration\Polynomials 

 

Integration\Rational 

Functions\Logarithmic form 

 

Table 8.1: Integration topic areas in Question Manager 

 

8.2 Learning objectives 

 

Within the set of integration questions, I plan to use of an assessment taxonomy to 

classify questions by focussing on the cognitive skills involved in each. Expanding 

Bloom (1956)’s taxonomy, namely: Remember, Understand, Apply or Analyse, can 

categorise most questions in mathematics well, Baruah (2007).  However it can 

sometimes fail to describe accurately certain questions or tested skills. Integration is 

one topic whereby each skill in this test is built on foundations of basic integration 

and polynomial manipulation, and we can easily appreciate how these questions get 

harder and more multi-structural by building on understanding and recollection of 

ideas from a basic level.  
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I have also designated a cognitive level for questions that required a much more 

advanced “Problem Solving” ability often required and tested in tertiary level 

mathematics, as a mixture of Bloom’s “Analyse” , “Synthesise” and “Evaluate” skills 

at the top of the learning objectives pyramid.  

 

For these questions, one standard approach will not suffice, as there will be some 

initial simplification or expansion needed in the question so that it is re-written as 

either two questions, each of which can be solved in a standard way, or the problem 

is reduced to a simpler problem by means of a “trick”, that requires some conscious 

creativity (a “relational” problem as defined under the SOLO taxonomy). 

 

The learning objectives of these integration tests were categorised according to four 

cognitive levels as follows: 

 

1) Basic level (Remember): 

a) Integration being “the opposite” of differentiation, 

b) Indefinite integrals of polynomial and exponential functions. 

 

2) Intermediate level (Remember and Understand): 

a) Indefinite integrals of rational functions (using established rules), 

b) Definite integrals of polynomial and exponential functions, evaluating and 

simplifying answers.  

 

3)  Advanced level (Remember, Understand and Apply) 

a)  Integration by parts general formula, choosing which function to differentiate, 

b)  Simplification ideas, or a known general formula for integrating (f’(x) / f(x)) 

resulting in a logarithm form or the application of symmetry to an integral 

with limits from –S to S. 

 

4)  Super advanced level (Remember, Understand, Apply and Problem solve) 
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a)  To apply prior learning skills to new integration problems, including 

simplification of a rational function before integrating (e.g. use of partial 

fractions), 

b)  Changing a (new) product of two functions into separate functions each of 

which could be integrated separately. 

 

In these questions (in the five main integration topics), there are no questions which 

require modelling of a situation or analysis of a physical situation for forming and 

then solving such problems.   

 

Of the 32 different questions used in this analysis (detailed below in table 8.1), I have 

designated them into the five different skills, and each skill has been allocated one or 

more of the four cognitive levels I proposed in section 8.2 using in this analysis: 

  

 
Skill 

 

Cognitive level required 

 

Integration\Algebraic functions Basic 

Integration\By Parts\Exponential functions Advanced / Super Advanced 

Integration\Exponentials Intermediate 

Integration\Polynomials Basic / Intermediate / Advanced 

Integration\Rational functions\Logarithmic form Advanced 

 

Table 8.2: Classification of skills and difficulty of integration questions 

 

In classifying the questions by cognitive levels, I used the definitions at the 

beginning of this section, i.e. Integration\Algebraic functions are all basic 

cognitive levels, as they just require remembering of rules and are all indefinite 

integrals.  
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Similarly, Integration\Exponentials are intermediate cognitive level questions, as 

they require memory and understanding of integration rules and are all definite 

integrals.  

 

Integration\Rational functions\Logarithmic are all questions at the Advanced 

cognitive level, as they require memory, understanding and application of integration 

rules.   

 

Primarily, I designated the skill of Integration\Polynomials is at a basic cognitive 

level for indefinite integrals, and intermediate cognitive levels for those questions 

which require definite integrals. The one exception to this was the indefinite integral 

question from –S to S, which could be achieved using symmetry of the integrand, 

and thus tagged it at an Advanced cognitive level.  

 

Integration\By Parts\Exponentials is tagged at the Advanced cognitive level also 

by definition, but the structure of three questions, I designate Super Advanced 

cognitive level:  

 

e.g.:  ( ) bxax c e dx+∫  requires the splitting of the product, or careful 

integration by parts.  

 

e.g.:  
2( ) xx Ax e dx−∫  requires the application of integration by parts twice.  

e.g.:  cos( )bxe Cx dx∫  requires the application of integration by parts twice. 

 

(Ax+C)exp(bx); MC Integration\By 

Parts\Exponential functions 

Super 

(x^2-Ax)e^x; NI Integration\By 

Parts\Exponential functions 

Super 

Int(exp(Bx)cos(Cx),x), B,C +ve; 

MC 

Integration\By 

Parts\Exponential functions 

Super 
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 Table 8.3: Integration questions for EC1005 students categorised by summary 

statistics.   

  Q
ue

st
io

n 
D

es
cr

ip
tio

n 

To
pi

c 

C
og

ni
tiv

e 
le

ve
l 

Ti
m

es
 p

re
se

nt
ed

 

Ti
m

es
 a

ns
w

er
ed

 

M
ea

n 
(fa

ci
lit

y)
 

 D
iff

ic
ul

ty
 

S
ta

nd
ar

d 
D

ev
ia

tio
n 

int b x^(1/q); q +ve; MC Integration\Algebraic functions Basic 232 231 0.887 0.113 0.317 

int b x^(1/q); q -ve; MC Integration\Algebraic functions Basic 264 262 0.874 0.126 0.332 

int b x^(p/q); q +ve; MC Integration\Algebraic functions Basic 243 243 0.877 0.123 0.33 

(Ax+C)exp(bx); MC Integration\By Parts\Exponential functions Super 59 58 0.621 0.379 0.489 

(x^2-Ax)e^x; NI Integration\By Parts\Exponential functions Super 72 72 0.694 0.306 0.959 

Axexp(Bx); MC Integration\By Parts\Exponential functions Advan 63 62 0.758 0.242 0.432 

int((x/a)(exp(x/q+p)),x,a,q,p); MC Integration\By Parts\Exponential functions Advan 75 75 0.507 0.493 0.503 

int(ax(exp(px)),x,a,p); MC Integration\By Parts\Exponential functions Advan 74 74 0.514 0.486 0.503 

int(ax(exp(px/q)),x,a,p,q); MC Integration\By Parts\Exponential functions Advan 73 72 0.528 0.472 0.503 

int(bx(exp(x/q)),x,b,q); MC Integration\By Parts\Exponential functions Advan 77 77 0.455 0.545 0.501 

Int(exp(Bx)cos(Cx),x), B,C +ve; MC Integration\By Parts\Exponential functions Super 6 6 0.167 0.833 0.408 

x*exp(bx); MC Integration\By Parts\Exponential functions Advan 81 81 0.679 0.321 0.47 

x^2exp(px); MC Integration\By Parts\Exponential functions Advan 72 71 0.38 0.62 0.489 

int(exp(px),x,a,b); MC Integration\Exponentials Inter 185 185 0.703 0.297 0.458 

int(exp(px/q),x,a,b); MC Integration\Exponentials Inter 176 176 0.597 0.403 0.492 

int(exp(x/q),x,a,b); MC Integration\Exponentials Inter 182 182 0.582 0.418 0.495 

Int(x^n+exp(-mx),x,A,B), A, B +ve; NI Integration\Exponentials Inter 172 172 0.459 0.541 0.5 

int(a+bx+cx^2,x); MC Integration\Polynomials Basic 89 88 0.886 0.114 0.319 

int(ax^b,x); MC Integration\Polynomials Basic 66 66 0.848 0.152 0.361 

int(ax^b,x,0,1); MC Integration\Polynomials Inter 65 65 0.846 0.154 0.364 

int(ax^b,x,l,u)... 0 lt l lt u; MC Integration\Polynomials Inter 78 78 0.859 0.141 0.35 

int(ax^b,x,l,u)... fractional l & u; MC Integration\Polynomials Inter 88 88 0.886 0.114 0.319 

int(ax^b,x,l,u)... l lt 0 lt u; MC Integration\Polynomials Inter 62 62 0.71 0.29 0.458 

int(ax^b,x,l,u)... l lt u lt 0; MC Integration\Polynomials Inter 70 70 0.771 0.229 0.423 

int(ax^b,x,l,u)... u lt 0 lt l; MC Integration\Polynomials Inter 87 87 0.816 0.184 0.39 

int(ax^b,x,-s,s); MC Integration\Polynomials Advan 76 76 0.842 0.158 0.367 

int(ax^b+cx^d,x); MC Integration\Polynomials Basic 78 78 0.897 0.103 0.305 

int(ax^(n-1)/(bx^n+g),x); MC Integration\Rational functions\Logarithmic  Advan 135 135 0.681 0.319 0.468 

int(Ax^(n-1)/(Bx^n+G),x,a,b), a>b +ve Integration\Rational functions\Logarithmic  Advan 118 115 0.539 0.461 0.501 

int(Ax^(n-1)/(Bx^n+G),x,a,b), a > b -v Integration\Rational functions\Logarithmic  Advan 138 133 0.436 0.564 0.498 

int(Ax^(n-1)/(Bx^n+G),x,a,b), a,b +ve; Integration\Rational functions\Logarithmic  Advan 126 126 0.5 0.5 0.502 

int(Ax^(n-1)/(Bx^n+G),x,a,b), a,b -ve; Integration\Rational functions\Logarithmic  Advan 150 145 0.476 0.524 0.501 
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8.3 Outcomes from the tests 

 

The 32 questions are listed in full with outcome proportions in Appendix 7. Using 

the Integration tab on the EC1005 (EC1005_CAA_analysis_stats.xls

 

), we can see 

that each question (aside from one anomaly that occurred 6 times) presented itself 

between 59 and 243 times (mean of 110.8), with 3532 questions presented in all. 

Given there were 769 tests realised, then the students sat an average of 4.593 

questions each.  

Of the 32 types of questions, 26 of them are Multiple Choice (MC), 4 are of the 

form: Responsive Numerical Input (RNI) and 2 requiring a Numerical Input (NI). As 

described in chapter 7, it is very difficult to draw meaningful comparisons (aside 

from facility level) for outputs for NI question formats as the responses (incorrect) 

are not recorded, but it can still be useful for comparisons between the discrimination 

values for the question types.  

 

It is worth pointing out again that the facility value is calculated from the total 

number of correct responses out of the total number of submitted answers (rather 

than the number of times the question was presented, as some candidates may default 

on a question, or have IT issues so not complete that question). Overall, given that 

3511 responses were given out of 3532 presentations (99.4%), there is scope for 

further research whether student default or IT issues or other reason accounts for this 

figure.  

   

Comparisons of performance over the different skill areas leads to very interesting 

results for the EC1005 cohort. Looking purely at the average difficulty values for the 

topic areas, we find three skills which are well set and are a medium challenge to 

students (0.5 < facility < 0.6), and two skills which have a very low difficulty level 

and hence high facility value : (0.8 < facility < 0.9) as detailed in table 8.4 below.  
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Skill 

 

Facility 

 

Integration\Algebraic functions 0.8793 

Integration\By Parts\Exponential functions 0.5303 

Integration\Exponentials 0.5852 

Integration\Polynomials 0.8361 

Integration\Rational functions\Logarithmic form 0.5264 

 

Table 8.4a: Summary statistics for facility by skill for EC1005 students on 

Integration  

 

As a comparison, we define Difficulty as 1 – Facility value

Difficulty by topic for EC1005
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, and the summary 

statistics for difficulty shown in figure 8.3b very clearly indicate the relative 

difficulty of these skills for students: 

 
Graph 8.4b: Graphical summary for difficulty by skill for EC1005 integration 
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8.4 Comparisons between the cognitive levels 

 
  
Cognitive 

Level Basic Intermediate Advanced Super Advanced 

 

Difficulty 0.121833 0.2771 0.43676 0.506 

 

Number of 

Questions 6 10 13 3 

 

Table 8.5a: Cognitive Level difficulty statistics 

 

Difficulty by Cognitive Level

0
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Graph 8.5b: Cognitive Level difficulty statistics 

 

If we suppose that there is a significant distinction between performance on 

questions requiring higher cognitive skills than lower ones, we can test for this 

difference by grouping the Basic and Intermediate questions into one cognitive 

cluster (1), and the Advanced and Super Advanced questions in another cognitive 

cluster (2).  

 

Thus a null hypothesis, H0 would state: There is no significant difference between 

performances on questions covering the lower cognitive skills to those covering 
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higher cognitive skills. As opposed to an alternative hypothesis, H1: There will be a 

significant difference between performance on questions covering the lower 

cognitive skills to those covering higher cognitive skills.  

 

This is a non-directional (2-tailed) hypothesis test, and a reasonable assumption 

would be to look for a 5% significance level, so that we have a reasonable degree of 

confidence in our conclusions. We use a Mann-Whitney test, because is a non-

parametric test for assessing whether two independent samples of observations come 

from the same distribution. In this case, we want to test whether or not the samples of 

lower cognitive questions are from the same distribution as the higher cognitive ones.  

 

Following Mann & Whitney (1947)

 

, we group observations (in this case the mean 

scores per question) into the two clusters and rank them against the whole set of 32 

questions. Each cluster contains 16 questions, so we could consider this a paired test 

if we were confident the samples came from the same population (which we aren’t). 

As the non-directional 5% level, we require the “U” (test statistic) to be 75 or more. 

The respective sum of ranks for group 1 and 2, R1, R2 respectively, with N1 and N2 

(16 for the number in each group respectively and consequent U values for each 

cluster are given in table 8.6 below.  

R1 R2 

165 362 

N1 N2 

16 16 

U1 U2 

37 234 

 

Table 8.6: Mann-Whitney U test values for Clusters 1 and 2 of EC1005.  

 

Given that N is less than 20 for each sample, we won’t have justification for using a 

normal approximation to the distribution, but the results are very clear nonetheless.  

Taking the lower U value (37), we see this is way below the critical value (as given 

in table 8.6 below), courtesy of: http://math.usask.ca/~laverty/S245/Tables/wmw.pdf 

http://en.wikipedia.org/wiki/Non-parametric_statistics�
http://en.wikipedia.org/wiki/Non-parametric_statistics�
http://en.wikipedia.org/wiki/Sampling_(statistics)�
http://math.usask.ca/~laverty/S245/Tables/wmw.pdf�


  129 

So we can reject H0 in favour of H1, that there is a statistical difference between the 

two samples, namely that there is a significant difference between performance on 

higher cognitive questions than lower cognitive ones. Even if the significance level 

of the test was reduced to 0.01 (non-directional), we still have a critical value for U 

of 60, given n1 = n2 = 16, so we would draw the same conclusion, only with a more 

stringent test and confidence interval. More work is needed for students preparing for 

test questions at a higher cognitive level.  

 
Table 8.7: Critical values for the Mann-Whitney U test at the 5% non-directional 

level.  

 

8.5 Analysis of the quality of the basic level questions 

 

Consider the skill area for which we find the difficulty to be very low (and requiring 

a basic cognitive level): “Integration\Algebraic Functions” below in table 8.7 

 
Question description Topic Cognitive 

Level 

Times 

presented 

Times 

answered 

Facility Difficulty 

int b x^(1/q); q +ve; MC Integration\Algebraic functions Basic 232 231 0.887 0.113 

int b x^(1/q); q -ve; MC Integration\Algebraic functions Basic 264 262 0.874 0.126 

int b x^(p/q); q +ve; MC Integration\Algebraic functions Basic 243 243 0.877 0.123 

 

Table 8.8: Summary statistics for Integration\Algebraic Functions for EC1005 
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Table 8.9: Screen shot for Integration of Algebraic functions 

 

The nature of these questions is that if you can achieve one correctly, then you 

should (in theory) not have many problems with the others, as the processes for 

solution are generic across the question styles, and this fact is borne out by almost 

identical facility values in table 8.10, roughly 1% different, and standard deviations 

differ by less than 5% (0.317 to 0.332).  

 

To compare further, I will consider the role of mal-rules and distracters in setting up 

and construction of these questions.    

 

 

The question description: 

 

“int b x^(1/q); q +ve; MC” 

 

Refers to the following Multiple Choice 

question: 

 

Evaluate:         

1
qbx dx∫  

Where b and q are random integer 

parameters given 
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int b x^(1/q); q 

+ve; MC 

Integration\Alg

ebraic 

functions 

232 231 0.8

87 

0.1

13 

Outcome name Times 
answere
d 

Percentag
e 
answered 

Mean for 
outcome 

Correct 205 88.36% 68.69% 

not p+1 3 1.29% 19% 

diff & not p+1 1 0.43% 0% 

Diff 12 5.17% 32.25% 

Guess 1 0.43% 0% 

None Of These 8 3.45% 19.13% 

did not know 1 0.43% 0% 

Not Answered 1 0.43% 40% 

int b x^(1/q); q -

ve; MC 

Integration\Alg

ebraic 

functions 

264 262 0.8

74 

0.1

26 

Outcome name Times 
answere
d 

Percentag
e 
answered 

Mean for 
outcome 

Correct 229 86.74% 65.47% 

not p+1 10 3.79% 28% 

diff & not p+1 5 1.89% 16% 

diff 5 1.89% 4% 

guess 7 2.65% 28.57% 

None Of These 6 2.27% 22.83% 

Did Not Know 0   - 

Not Answered 2 0.76% 60% 

int b x^(p/q); q 

+ve; MC 

Integration\Alg

ebraic 

functions 

243 243 0.8

77 

0.1

23 

Outcome name Times 
answere
d 

Percentag
e 
answered 

Mean for 
outcome 

Correct 213 87.65% 67.12% 

not p+1 4 1.65% 32.50% 

diff & not p+1 2 0.82% 10% 

diff 14 5.76% 34.50% 

guess 4 1.65% 0% 

None Of These 5 2.06% 32% 

Did Not Know 1 0.41% 0% 

Not Answered 0   - 

Table 8.10: Outcome distribution for Integration of Algebraic Functions 

The question: 
p
qbx dx∫ ,  where  a)  p = 1, q > 0,  b)  p = 1, q < 0 (not -

1), and c) p anything, q > 0  refers to the three different classes of 

questions referred to in table 8.10.  

 

The choices of correct answer are randomly rotated through the four distracters and 

“None of these” (which occurs 10% of the time), so that either 3 or 4 distracters can 

be used in the selection of outcomes. The feedback from the distracters and in the 

outcomes box above shows that the mal-rules are encoded as follows (outcome short-

form from table 8.11 listed in quotes): 
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D1 You have not increased the power of x by 1 when doing the integration (“not p+1”) 

D2 Two mistakes here. You appear to have differentiated the x term, not integrated it. You 

have not increased the power of x by 1 when doing the integration (“diff and not p+1”). 

D3 You appear to have differentiated the x term, not integrated it. (“diff”) 

D4 Your answer is wrong. Check your working against the solution to identify your mistake.  

(“guess”).  

 

In analysing these mal-rules, it is important to look carefully at such CAA results 

above to see if any distracters never get selected, or indeed get over-selected, and to 

look carefully at questions where “None of these” is wrongly selected more 

commonly than any of the distracters. Above, in table 8.9, it is clear that the majority 

of (the admittedly small number of mistakes) are pre-structural in nature, and caused 

by selecting the “diff” option, some 31 out of 736 responses (4.2%). Here the student 

has merely differentiated the function (and selected an option similar to a derivative, 

despite the rogue “+C” floating after it).  

 

The option “None of these” is selected wrongly 19 times out of 736 solutions 

(around 2.6%). This compares favourably with EC1005 differentiation responses in 

section 7.5, whereby 11.3% of wrong selections were for this option. Clearly this low 

figure for Integration questions on algebraic functions shows that the range of 

distracters is good enough to catch most mal-rules. However, the much higher 

facility value also indicates that distracters are seldom going to be selected anyhow, 

so we need to analyse much harder questions to see if this selection of “None of 

these” is similarly replicated.   

 

However, in encoding such mal-rules to the MC answers, it is clear that the one 

answer without a “+C” at the end will spring alarm bells in students minds and rule 

itself out (and this type of question cannot thus test this recall skill), and also cause 

the student to remember the “+C” term. So if we were to offer integrands without a 

“+C”, and derivatives (without it), then this might allow us further scope for 

development of these questions by offering them a clear choice. Given likely 
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mistakes with finding derivatives instead of integrating (as detailed in table 4.6), we 

could make the following additions to distracters to decrease question facility: 

 

1) Correct derivative  

 

2) The power term correct, constant term found by multiplying not dividing by p+1. 

 

3) The dividing by (p+1) has been ignored.  

 

4) The correct constant term in front but the power decreased by one.  

 

8.6 Analysis of the quality of the intermediate level questions 

 

There are 10 other questions on integrating Polynomials, 8 of them following the 

pattern: 
u

b

l

ax dx∫ , where L and U conform to certain restrictions, signs, or fractions.  

The other two questions are of the form: b dax cx dx+∫ , which builds on the same 

skill set and similar skill set to that required in table 4.6 for differentiation. However, 

it is the definite integral questions I wish to compare here, as they require advanced 

skills.   

 
Question style Number of 

attempts 

Facility Difficulty Most common wrong selection 

Indefinite 66 0.848 0.152 Distracter: No constant 

Definite: L = 0, u = 1 65 0.846 0.154 None of these 

Definite: 0 < L < U 78 0.859 0.141 None of these 

Definite: L, U fraction 88 0.886 0.114 None of these 

Definite: L < 0 < U 62 0.71 0.29 Distracter: Evaluation of limits 

Definite: L < U < 0 70 0.771 0.229 Distracter: Evaluation of limits 

Definite: U < 0 < L 87 0.816 0.184 None of these 

Definite: L = -S, U = S 76 0.842 0.158 Distracter: Twice evaluation 0 – S 

 

Table 8.12: Summary statistics for definite integral polynomial integration questions. 
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For the average facility between those questions (0.8495 without the two harder 

questions), the definite integral question where: L < 0 < U is nearly 20% harder that 

the rest, while the definite integral question where: L < U < 0 is around 10% harder 

that the overall facility mean without them. Thus there is a significant difficulty 

challenge for students being assessed on those two questions, such that parity must 

be questioned in tests that randomly select one or other of those questions to compare 

overall understanding.  

 

Interestingly, the question which comes out easiest for the students is the definite 

integral with fractional limits: 

 

 
Figure 8.13: Screenshot of fractional limit definite integral of polynomial question. 

 

The theory is that:  
1 11

1 11

u
u b b

b

l
l

b
au alax dx
b b

ax
b

+ +
+

= = −
+ +

 
∫  + 

, so it should just be a 

small amount of “bookwork”, and then evaluating using a calculator: 

Here:  

3.5

3.5 4 4
3

1.5
1.5

4
3.5 1.52

2 2
2
4

x dx
x

= = −
 

∫  
 

= 72.5 (roughly) 

 

So 72.5 is the correct answer from figure 8.13. 
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This multi-structural problem has many processes even before the use of a calculator 

to derive mal-rules based on uni-structural responses, so could yield many possible 

distracters. One reason this might be easier to evaluate than with integer limits is 

probably because a canny student could see that it is not going to produce a negative 

response (from the nature of the cubic curve for x > 0), and the fractional limits 

would likely yield a fractional answer, hence the one choice (72.5). The difference 

between this mean (0.886) and the next highest mean (0.859) is still around 3%, so 

there is reason to suggest that such distracters on this question to encourage some 

students to guess.   

 

In this question the majority of student errors here were in selection of “None of 

these”, which tells us tellingly that none of the other options worked well as a 

distracter. This warrants further thought, as the level and choice of distracters is very 

clearly linked to the difficulty of the questions, so it is worth revisiting these mal-

rules to make sure the questions are not overly easy or difficult owing to our choice 

of mal-rules and do encourage the students to work through the questions carefully 

without guessing.  

 

The major distracters encoded into the definite integral questions were: 

 

D1: Integrated but failed to divide by (b+1) 

D2: Differentiated the expression (and evaluated with limits) 

D3: Integrated but used b as a divisor, not (b+1) 

D4: The negative of the actual answer.  

 

In addition to these answers, I would add in a few other distracters: 

 

1) Evaluation of the function with the limits (i.e. no integration or differentiation 

taken place) 

2) Evaluation of integrand with “+” not “-“, i.e. F(u) + F (L), not F(u) – F(L) 

3) Division of (b+1) replaced by multiplication of (b+1) 

4) Evaluation of only the upper most limit, i.e. F(u) 
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It is only in the careful construction of these questions with well chosen distracters 

that we can achieve parity across the questions and evaluate errors made by students 

in order to tailor make their feedback. To leave 35 out of 103 (some 34%) of the 

wrong answers as either “None of these” shows up nothing of the students’ mistakes, 

and renders the questions little more than NI format in those cases, indicative of 

guesswork. A more realistic MC question would, in my view, encode 5/6 distracters 

in with the main solution, which should allow very realistic diagnosis of the common 

student mistakes and misconceptions in the minority of cases (roughly 15% overall) 

who failed to understand this topic by making pre-structural mistakes or guessing.  

 

 

8.7 Analysis of the quality of the advanced level questions 

 

While basic polynomial integration seems to be grasped by a healthy majority of 

students sitting those questions, the skill of integration by parts (with exponential 

functions) is clearly one that causes many more errors and a much lower incidence of 

success. The topic: “Integration\By parts\Exponential functions” generates questions 

of the form: ( )
px d
qax c e dx

 
+ 

 +∫  , where some of c, d = 0 and some of a, p, q are 1.  

 
Question style Number of 

attempts 

Facility Most common wrong selection 

q = 1, d = 0 58 0.621 Distracter: Integrated each term separately, 

formula incorrect sign.  

c = 0, q = 1, d = 0 62 0.758 Distracter: Differentiating exp (bx) instead of 

integrating it 

a = frac, c = 0, p = 1 75 0.507 Distracter: Chose exp(x) to be v instead of dv 

c = 0, q = 1, d = 0 74 0.514 Distracter: Formula incorrect sign 

c = 0, d = 0 72 0.528 Distracter: Formula incorrect sign 

c = 0, p = 1, d = 0 77 0.455 Distracter: Formula incorrect sign 

c = 0, a = 1, q = 1, d = 0 81 0.679 Distracter: Differentiating exp (bx) instead of 

integrating it and wrong sign in parts formula 

Table 8.14: Question styles for Integration by Parts \ Exponentials  
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In every case bar one of the above formula, c = 0 and likewise d = 0, so the question 

should unravel like a standard integration by parts question, where the “By parts” 

strategy is used once if we carefully choose which function is our “u(x)”, and which 

will be our “dv(x)”. In fact, intuitively, it would appear that setting q = 1 would also 

greatly simplify the problem, but this is not proved in the two cases (question 2 and 

question 4 in table 8.14) above. Both realisations of the question look identical from 

the table, but the screenshots show the one key difference. 

 

  
Facility = 0.758 Facility = 0.514 

 

Table 8.15: Two almost identical realisations of “by parts questions” 

 

In the question on the right, the skill is harder because there is no guidance or 

strategy given to the student (no explicit cues), whereas the one on the left, the 

student is clearly told to use “Integration by Parts”. Should this one explicit cue make 

such a significant difference? Or are the mal-rules different for the question as well? 

Looking more carefully in table 8.15, it does appear that any of the answers to the 

right hand question could be correct, so no distracters instantly remove themselves 

from likely selection. However, on the left hand side, one’s eye is drawn to the 

middle two answers to the question on the left as the 1st and 4th answer look like they 
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are in a different form that “seems” wrong, or are too simple or missing something so 

could be discounted.  

 

This student can go further in checking responses, in that by remembering the “by 

parts formula”  has a middle negative sign, and the idea that we reduce order in 

products, specifically powers of x, so there is high likelihood of the 3rd answer (C) 

being correct on the left hand question without doing any calculation. In fact it turns 

out to be a very good hunch, as the correct answer would be (C) on the left question 

and respectively (B) on the right hand side, namely: 

2

1qx qx
qx qxpxe pe ppxe dx c x e c

q q q q
 

= − + = − + 
 

∫  

     

Guesswork on the right-hand question would perhaps only knock out the one answer 

without a minus sign in it as distinct from the others. Could it be that these questions 

are hard enough to persuade students to guess more than we might expect them to? 

The analysis of outcomes from both questions yields 8.11% and 9.52% selections 

respectively for the option “None of these”, which is more indicative of either pre-

structural mistakes of unspecified form, or a poor guess.  

 
Axexp(Bx); MC Integration\By 

Parts\Exponential 

functions 

63 62 0.758 0.758 Outcome name Times 

answered 

Percentage of times 

answered 

 Correct 47 74.60% 

integrated each term separately 2 3.17% 

differentiated exp(Bx) instead of 

integrating 

4 6.35% 

incorrect sign in the formula 2 3.17% 

differentiation instead of integration 0   

None Of These 6 9.52% 

Did Not Know 1 1.59% 

Not Answered 1 1.59% 

int(ax(exp(px)),

x,a,p); MC 

Integration\By 

Parts\Exponential 

functions 

74 74 0.514 0.514 Outcome name Times 
answered 

Percentage of times 
answered 

Correct 38 51.35% 

formula incorrect, sign. 19 25.68% 

choose exp(x) to be v instead of dv 6 8.11% 

integral of dv wrong, sign 4 5.41% 

integral of dv wrong, constant 0   

None Of These 6 8.11% 

Did Not Know 1 1.35% 

Not Answered 0   

Table 8.16: Outcomes for two integration by parts questions 
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8.8 Further discussion 

 

The way students will learn how to eradicate errors on such questions would be to 

practise repeatedly onscreen until they were scoring above average success on 

similar type of questions. In order to draw comparisons and assess the categorisation 

of outcomes across cohorts, this chapter aimed firstly to categorise different topics 

and question styles for common skill requirements, and secondly to compare results 

within different topics in order to categorise difficulty tags for the questions for 

future cohort assessments.  

 

Within those aims, I have unearthed yet more evidence that changing the mal-rules to 

a question, or adding in explicit introductory clues will change the facility of the 

question greatly. The other tangible conclusion here is that without properly 

structured mal-rules, the students are likely either to strategically eliminate options 

and head for a distracter or the correct answer a disproportionately high frequency, or 

else choose “None of these” rather more often than I would expect.  

 

Feedback too will form the basis of further discussion as formulating effective 

feedback to the students is more and more key, and has a knock-on effect of being 

able to inform a larger trend / skill deficiency analysis for the cohort.    
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Chapter 9 – Conclusions and future direction 
 

9.1:  Online testing vs. paper-based testing 

 

• Do students made the same mistakes on a paper-based test as an onscreen 

test? 

 

If a question changes facility value greatly between a paper-based test and onscreen 

test, (and there are the same explicit cues given in the question stem), I have to ask 

myself: have I written the wrong mal-rules or written them in such a way as to overly 

distract a student from the correct answer by phrasing it in an unfamiliar way? Initial 

analysis, Greenhow (2008)

 

, indicated that mal-rules play a large part in guiding 

students away from or towards specific answers. 

Clearly the nature of selection of our mal-rules has changed the facility of Q5 on our 

algebraic diagnostic test considerably (section 5.2). Having changed from paper-

based test to MC objective test, and 100 students sat the test, Q5 improved from 

being the hardest question (out of 16) to become only the 7th most difficult question, 

whereas Q15 had no change on the difficulty rank (12th out of 16). When looking 

further into this change on Q5, the pre-structural mistake of including an invisible 

bracket caught out many students (most common mistake) with a numeric paper-

based response format but, when offered as a distracter on the MC test, it was clearly 

seen as wrong, and hardly selected at all. One preliminary conclusion suggests also 

that the nature of some multiple-choice answers will clearly cause the students not to 

follow that same mistake as if the question were NI format.  

 

Looking further at the selection of paper-based mistakes in sections 5.2, and 

summarised from examiners’ reports in table 4.6, it is clear that an equal number of 

pre-structural mistakes as uni-structural mistakes were made by students, and as 

such, we ought to include an equal balance of these as mal-rules for our distracters. 

However, virtually all mal-rules on CAA questions are encoded with uni-structural 

mistakes, which pre-suppose that students know some rudimentary theory on the 
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topic tested, and also apply some process correctly even if on route to a wrong final 

response.  

 

Greenhow & Gill (2004), and Greenhow at al. (2002)

 

 include a null (“none of the 

above” or “I don’t know”) choice as well. Such an option was not specifically 

available on paper-based tests, and so students who left an answer blank or arrived at 

a response not using a common mal-rule, would now have the option of selecting this 

option when sitting the onscreen test (without ever knowing how often that was the 

correct option). I focussed on looking carefully at the proportions selecting this 

option onscreen, and where the selection was above 5%, or it became the most 

popular wrong response, I concluded that the distracters were too poorly written to 

trap the likely mistakes made by students, and thus needed careful revision.  

9.2: One diagnostic test fits all 

 

 

• Can we devise a diagnostic test spanning skills? 

• What are the limitations of the Excel worksheets as a diagnostic tool?  

• Where will CAA improve on this? 

 

Our MC objective C1 Excel diagnostic test can be sat with questions online and 

students submitting their responses via paper-based answer sheet. Its main limitation 

is that there is no facility to select responses onscreen to generate summary feedback 

onscreen after the end of the test. The process for designing such worksheets is also 

time-consuming, fiddly and the format is difficult to really make user-friendly.  

 

Given that one major purpose of this thesis is to elicit useful error analysis and 

student feedback from diagnostic tests, then I can conclude that such formats are not 

appropriate for designing tests spanning large skill areas. However, CAA tests are 

reusable and the results data will allow much more refined topic analysis by errors 

and also allow tailor made tests for candidates / cohorts to be made to help improve 

on specifics.  
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Where this analysis is useful for teaching staff, is that they readily use non-CAA 

processes for generating feedback from formative (paper-based) assessment in the 

classroom and tailor make lessons and revision on such specific analysis, so to 

achieve that feedback at the click of a mouse would save an enormous amount of 

time and labour, thus avoiding repetition.  

 

In the short term, the many varied CAA and e-learning resources, like Mathletics, 

will serve us well as an evolution of diagnostic tool available to students and 

teachers.   

 

 

9.3: A classification of student errors leading to improving CAA questions 

 

• Can we infer, identify and classify student mistakes using evidence from 

students’ work (ResultsPlus)? 

• Can we generate a taxonomy for student errors? 

• Can we use these known student mistakes and our own evidence basis 

(previous chapters) to improve CAA?  

 

The data from the ResultsPlus files, while informative to the teacher, and quite 

informative to the student, really doesn’t give the student many further practice 

materials or skill or topic specific questions that they can go away and practise 

repeatedly. ResultsPlus is also not as informative as we would hope in categorising 

student errors as our pilot paper-based (and onscreen) test was. Evidence of students’ 

mistakes is readily inferred from results in chapter 3, and equally easily classified 

using the SOLO taxonomy in chapter 4. It is once we have successfully classified 

them that we can start to improve CAA questions by improving the mal-rules and 

hence distracters in the options.  

 

In conclusion from the work completed in chapters 7 and 8, our aims when 

constructing improved CAA questions should be: 
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• Well-defined pedagogy for the topics / skills (items). To increase the efficacy 

of these tests, the learning objective of each of the item is determined before 

the construction of the questions. 

• Parity across the questions on similar topics, so that no student produces a 

lower assessment score because they have randomly been allocated the one 

anomalously difficult question on that topic owing to structure, choice of 

distracters or fiddly nature of the numerical inputs.  

• A careful evaluation of specific errors made by students in order to tailor-

make their feedback. Such accurate diagnosis of errors and skills / topic 

improvements should lead to tailor-made questions easily accessible to 

students so that they can independently prepare for the summative assessment 

(whether for the first or subsequent time), especially when class time is often 

devoted to new skills / topics rather than the summative assessment. 

 

9.4: The need for accurate selection of mal-rules 

 

• Can we understand how the choice of mal-rules affects the difficulty of 

multiple-choice objective questions on calculus? 

• How can we avoid commonality between distracters giving the answer away? 

• Can we generate a reliable model for choosing and refining mal-rules for 

diagnostic calculus questions? 

 

Students tend to be drawn to integer solutions or “nice numbers” e.g. ½ rather than 

more random decimal or surd answers, and such distracters can be easily discarded 

by students keen to take a short-cut. Lazy students (whether they are clever or not) 

will instinctively approach every question and systematically seek out the mal-rules 

that look obvious. On the other hand, the student who genuinely misunderstands the 

question may give a similar response by guesswork.  
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What the research undertaken in chapters 7 and 8 has particularly shown is that some 

objective multiple-choice questions have a high proportion of: “None of these” 

wrongly selected, and in some questions, a disproportionately high choice of a 

particular distracter over the other possible distracters.  In questions where the 

majority of student errors were of “None of these”, tells us most likely that none of 

the other options worked well as a distracter, or that the student guessed. They also 

add little to our understanding of common student mistakes, and the MC objective 

question becomes more of a NI question instead.  

 

The level and choice of distracters is also very clearly linked to the difficulty of the 

questions, so it is worth revisiting mal-rules often to make sure the questions are not 

overly easy or difficult relative to other similarly pedagogical questions owing to our 

choice of mal-rules. 

 

However we structure mal-rules to build our distracters, we need to encourage the 

students to work through the questions carefully without guessing. The very nature of 

writing suitable responses for MCQs is key to completing the testing aims of these 

questions. My main conclusions for writing such responses are: 

 

• Select distracters that are not too similar to each other (commonality), as this 

can lead to selection by elimination. 

• Make sure we are meeting our objective test aims so that the correct skills are 

still being tested, and not fitting our responses to specifically hide the correct 

answer.  

• Be aware that fiddly multi-structural problems that either require RNI or a 

selection from a MCQ list have very carefully chosen mal-rules that are 

completely evidence based mal-rules, not theoretical mal-rules, so that 

students don’t select “None of these” too often.  

• Be aware that questions with fractional / decimal inputs as part of the multi-

structural approach are perceived to yield fractional / decimal responses, so 

distracters in-built to produce integer responses are more likely to be 

intuitively eliminated. 
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• The facility of a question changes greatly when there is no guidance or 

strategy given to the student (no explicit cues), so a pedagogically identical 

set of responses to a question can give very different responses depending on 

how the question stem is set up. 

• Students won’t use “Don’t know” as a response, but will use “None of these” 

often when unsure, and as such the response yields no useful information 

about their pre-structural mistakes.  

 

9.5: The need for an accurate classification of mal-rules 

 

Given the over-arching finding of this thesis is the importance of writing carefully 

constructed mal-rules for distracters of objective test questions. It is also worth 

looking carefully at how we classify them, so to better understand how we improve 

our selection policies. Baruah (2007

 

) defined mal-rules as such: “for each distracter, 

the associated mal-rule is defined to be understood as the learning weakness(s) 

behind such item.”  

These mal-rules are determined from the structure of the problem (break points – 

where an error could be made or is likely to be made) or evidence a posteriori by 

administering the tests and analysing the answer files or from exam scripts.  

 

By breaking this determination down into three classes, I conclude that there are 

times when each class is appropriate, and when some classes are the most 

appropriate for determining appropriate mal-rules. They can be categorised as 

follows: 

 

• Evidence-based mal-rules 

 

Genuine mal-rules as seen through paper-based test solutions, feedback from exam 

board examiners’ reports, observed errors in marking random centre exam scripts 
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(chapter 3), and confirmed errors selected by students using MC or RNI objective 

tests onscreen.  

 

• Theory-led mal-rules 

 

More anecdotal derived mal-rules, ideas generated by student questions and errors on 

paper in the classroom, recent surveys of perceptions of mathematics teachers and 

lecturers, mistakes generated by students when purposely trying to derive mal-rules 

themselves (see section 9.7). Idea for cases where there is no empirical data as to 

common student errors.  

 

 

• Solution-led mal-rules 

 

Mal-rules derived by splitting a multi-structural problem into its uni-structural 

processes and isolating a common known mistake at each independent process, while 

then following through to a solution, e.g.: 

 

 
Figure: 9.1: The worked multi-structural solution to an integration question 

 

In every line, there is scope for making a mistake, even if following the correct 

general theory. The student could easily use (p-1) instead of (p+1) for both or either 

the x-power or the divisor. They could equally fail to correctly evaluate the divisor if 

it turns out to be a fraction (i.e. mis-remembering that dividing by 1 ½ is the same as 
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multiplying by 2/3), and they could easily fail to correctly multiply the constant in 

front of the x term by the new (1/divisor).  

 

The likely solution-led mal-rules for re-coding  as distracters for such topic 

questions: 

 

1) Not remembering integration rules, i.e. that the power of x goes up by 1 to 

p+1 

2) Not remembering that the new divisor is p+1 in the integrand 

3) Dividing by a fractional (p+1) is the same as multiplying by a fractional 

(p+1) 

4) Multiplying by the negative of the divisor -(p+1)  

5) Forgetting the + c for the indefinite integral 

6) Differentiating the term correctly 

 

This is not an evidence based collection of mal-rules, as there is no evidence that 

students would back up these choices, but if we assume that students have a 

rudimentary understanding of the topic and skill, then they are likely to make uni-

structural mistakes, so a systematic breakdown of every possible opportunity to go 

wrong on the multi-structural route should lead us to a number of (student) easy to 

achieve mal-rules. How often these mistakes did indeed crop up would need further 

study. 

 

 

9.6: Further conclusions and observations from the results 

 

We can build really good objective tests year on year by using the previous year’s 

results. Not only should we build up mal-rules again each year to take into account 

the mistakes the previous year’s cohort had arrived at, but we should also look 

carefully at a selective exam based on those questions that yielded significant 

discrimination (above 0.5) in two successive years.  
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This work doesn’t have to be left entirely to the mathematical domain. I postulated in 

chapter 4 that the pedagogy of learning a modern foreign language was equally built 

on Bloom’s taxonomy, or indeed more up-to-date versions such as SOLO, and the 

remit to explore the use of diagnostic testing using similar objective tests for learning 

languages is very apparent to me. It could equally be applied to musical training, as 

the rationale for systematic elimination of errors is common here also.  

 

 

9.7: Recommendations for future work 

 

From the current study, it is clear that e-assessment is successfully implemented in 

tertiary education, at least at the early diagnostic stage of the courses, and is being 

piloted across schools at GCSE level. We do expect that students with A Level maths 

would do well in these Calculus and Algebra tests, but anecdotal evidence suggests 

that many students arrive at university “trained” to achieve a grade C or B, yet have 

very limited or transferable understanding. This would in itself be an ideal starting 

point for researching to what extent a notional grade at A Level justified certain 

assumed learnt skills.  

 

There are many other research questions that have come to light during the course of 

this work that I attach here with brief discussion of where to start; 

 

• How can CAA / e-assessment be embedded in secondary schools curricula? 

 

Following discussions with a senior manager at the Edexcel exam board, I have been 

led to believe that we may see the online GCSE being the only mode of summative 

assessment within 10 years. Thus the many varied constraints on computer suites in 

schools, network capabilities, and practice resources will need to be planned now for 

such assessments in the next decade. What is clear is that these assessments will be 

going across to online versions, and so it isn’t an option of whether schools can 

embed e-assessment into their curricula but when they do it. After all, there are many 

benefits and opportunities for them to take advantage of once they go down this road.  



  149 

 

 

• What are students’ own perceptions of mal-rules? Can they identify likely 

errors themselves when learning topics? Will the exercise help them to 

improve understanding and future performance?  

 

 

As an experiment, I put a group of year 9, 10, 11 and 12 students through an paper-

based test exercise that was appropriate to their levels, and asked them to find not 

only the correct solution but also identify three wrong solutions to go alongside the 

correct one. The year 9 students, on basic GCSE maths, found the correct solution 

relatively easily enough, but their choice of distracters was almost impossible to 

discern, as they seemed to make up responses, and I could hypothesise that they 

didn’t fully understand what mistakes other students could make as they only saw 

either the correct approach or had no clue how to solve the questions. The year 10 

students were set an exercise on GCSE statistics, and their responses were more 

mature, yet often peppered with either random or superfluous responses that didn’t 

yield any generic patterns. Yet for the 29 year 11 and 12 students who sat an 

identical exercise on basic C1 level mathematics, their solutions yielded many of the 

same natural mistakes as in table 4.6. They perceived many natural uni-structural 

mistakes such as common sign errors, failure to complete the multiplication or 

subtract one from the power when differentiating a polynomial function, or 

forgetting the “+C” with an indefinite integration question. Some even spotted pre-

structural mistakes such as differentiation and integration swapped around in a 

question.  

 

Clearly this isn’t a scientific study as they did receive verification from me during 

the exercise and were allowed to confer with one another, but it does add useful 

anecdotal evidence supporting my findings in chapter 3 and 4, and should encourage 

others to conduct a larger survey using students to diagnose potential mal-rules. The 

learning benefits are three fold; namely that they practise useful formative 

assessment questions, they gain an understanding of likely mistakes so have a greater 
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chance of remembering not to make them in the future, and also benefit assessment 

authors with further accurate mal-rules to incorporate. After all, the Duckworth-

Lewis algorithm for determining rain-affected cricket matches is an evolving 

algorithm that takes into account every match played in history. In the youngest 

format of cricket (20 over innings), the early matches provided little evidence for 

which to formulate the model, but subsequent iterations with ever more data have 

proved to be much more accurate, so the same should hold here with more evidence 

of student errors for which to base our mal-rules on.  

 

• What use do students actually make of feedback and how effective / 

ineffective is it? 

 

Also see page 153 to further explore the measurable benefits of CAA testing. As 

discussed previously, the efficacy of post question feedback, tailor-made support, 

whether through e-learning, maths clinics, additional teaching time, one-to-one tutor 

support or else is something that needs investigating further. Anecdotal evidence 

suggests that students do look at feedback, but this has come from various 

unscientific hand-raising surveys in lecture halls. If the software for e-assessment is 

useful, then we need to investigate how we collect evidence that students learn 

anything from it (e.g. questionnaires and analysis of exam scripts). 

 

• What would be the effect of mixed question types, different scoring systems 

or use of confidence based questions? 

 

 

We have plenty of options for development of different question styles, e.g. more 

RNI, Hot Line, or Sequential questions using Mathletics and many have already been 

written for calculus topics already. The challenge is to make them objective enough 

to deliver useful feedback on mistakes made, and robust enough to be sustainable 

through multiple usages. I also ask whether different modes of scoring on questions 

would be worth exploring. Some work has been done on confidence based questions 

(where students give a proportion of their confidence in their own answer, or select 
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from a number of word ranges of confidence), and thus the higher the confidence the 

more marks they gain if correct and equally more lost if wrong. Different scoring 

systems (like confidence based questions, or negative marks for wrong answers) 

force students to think strategically, and may well counter a guessing culture 

amongst them. The Russian scoring system 

(http://www.mathcomp.leeds.ac.uk/pdfs/IMOK%20guidance%20notes.pdf ) dictates 

whether a question is substantially correct (scoring between 70-100%) or 

substantially wrong (scoring 0-40%). Such a model will complicate the marking as 

the negative scoring will look punitative, and the positive marking will look 

generous.  

 

• How robust are the objective questions for onscreen GCSEs? Especially how 

are the options for students determined? Do they fully test the same skills as 

paper-based GCSEs? 

 

The example of one practice GCSE question shown in chapter 2, shows a robust 

looking question with no distracters that looked immediately wrong, so wasn’t 

intuitively likely to lead to a guess from the students. It remains to be seen whether 

online GCSE practice questions will ever be robust and reusable, as the aim of the 

GCSE summative assessment is to set novel questions testing the same skills. A 

piece of research on these tests as they become main-stream would also answer the 

questions of how the options are determined and whether the same skills are tested 

exactly as paper-based tests, although again it remains to be seen whether specific 

mal-rules are built in to options to offer such specific feedback (as opposed to just 

generic feedback including a score, topic analysis and worked solutions).  

 

 

• Can we generate a multi-use diagnostic test using excel that has a web-style 

user interface and provides onscreen feedback as easily and quickly as any 

other diagnostic tool used in e-assessment? 

 

 

http://www.mathcomp.leeds.ac.uk/pdfs/IMOK%20guidance%20notes.pdf�
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As shown earlier, the format of the Excel worksheet makes it very difficult to clearly 

depict anything other than basic arithmetic, as typesetting is done by columns and 

some fractions look very odd when they arrive onscreen. I also suggested that those 

with expertise in Visual Basic could write a macro that gives a number of selection 

boxes for multiple-choice answers for the questions, and that a final submission box 

would lead to a revised screen with analysis of the number of correct responses and 

feedback on which errors were likely to have been made with any wrong selections. 

Such feedback could record the marks for that student as a summative assessment, 

but would be much more suitable to formative assessment. However, while random 

parameters make such tests reusable, we are stuck with the same style of question 

realisations, rather than the much better ability to pick a selection of questions from a 

database – a series of diagnostic tests spanning skills is much more useful, just as a 

specific results profile is more important than the marks.  

 

We did, through results in chapters 6 and 7, generate a very hard C1 practice paper 

which could equally be turned into a multi-use Excel worksheet and also some 

specifically hard calculus questions for EC1005 students that could also be turned 

into a multi-use excel spreadsheet if we wanted to stretch the best students or offer 

warnings to those who we perceived weren’t working hard enough.  

 

 

• Can we compile a full dictionary of student errors or mistakes by topic or 

skill level using evidence from others? 

 

 

There is more than a large thesis of work that could be undertaken here, and a 

plethora of common error sources that could be tapped (see table 9.2), to better guide 

us with encoding mal-rules / improving taxonomy of errors.  

 

The first 8 sources below would serve as a good starting point for such work, half 

from the US and half from the UK. A spin-off question would look at the differences 
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(if any) between errors derived from the US high-school teaching world and that in 

the UK.  

 
www.math.vanderblit.edu/~schechtex/commerrs/ US 

http://mathmistakes.org/ US 

www.calvin.edu/~schofield/courses/materials/tae/ US 

www.teachernet.gov.uk/teachers/issue42/rimary/features/Mathsmisconceptions/ UK 

www.math.hmc.edu/calculus/tutorials/algebrareview/ US 

www.mathsyear2000.co.uk/resources/misconceptions/ UK 

www.cimt/plymouth.ac.uk/resources/help/miscon.htm UK 

www.amazon.co.uk/gp/product/1844450325/ref=sib_rdr_dp UK 

 

Table 9.2: A resource list of generic mistakes made by students in mathematics.  

 

 

• Can we objectively demonstrate the benefits of CAA testing and measure the 

performance effects? 

 

 

Again, this question arises as a consequence of seeing an increase in pass marks on 

paper-based summative assessments (A Levels etc year on year), and also the 

improvement in scores on the summative tests for EC1005 students. Greenhow 

(2009), pointed out that exam marks for EC1005 increased by 5% by from the 2007-

2008 to 2009-2009, with the base intake analysis of the cohort the same for both 

years. Within chapter 7, we conclude also that general performances rise by 3% from 

2008-2009 to 2009-2010. He hypothesised that this was down to the formative 

capability of Mathletics and use of Maths café by students during the semester. 

Clearly much careful control samples and temporal analysis over a number of 

cohorts would need to take place before generalisations could be made.  

http://www.math.vanderblit.edu/~schechtex/commerrs�
http://mathmistakes.org/�
http://www.calvin.edu/~schofield/courses/materials/tae/�
http://www.teachernet.gov.uk/teachers/issue42/rimary/features/Mathsmisconceptions/�
http://www.math.hmc.edu/calculus/tutorials/algebrareview/�
http://www.mathsyear2000.co.uk/resources/misconceptions/�
http://www.cimt/plymouth.ac.uk/resources/help/miscon.htm�
http://www.amazon.co.uk/gp/product/1844450325/ref=sib_rdr_dp�
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• Will we generate significantly different results if we looked at mistakes made 

solely by a sample from a school / college that were made up from a 100% 

female cohort? Or a comprehensive school with a mixed cohort? 

 

Warwick and Harrow schools are independent secondary schools, both with male 

only cohorts. The nature of selection from these institutions is primarily for ease of 

access of a large quantity of sample data, and this may well yield less certain 

generalisations of a parent population. The results taken from my own marking of 

old style P1 and P2 papers drew from a random set of centres, so cross educational 

establishments cross gender and provided some very useful backup of earlier 

findings. A greater selection of centres would, indeed, provide a rich set of data in 

which to compare these findings.   

 

• What can we glean from the nature of retakes of module or unit papers? Will 

the same mistakes be generated on the retake or will they be fewer of the 

same mistakes, or yet more different mistakes? 

 

Of the 65 retake papers in C1 sat by our students, all but 9 of them either improved 

their % on differentiation or achieved the same (100%) understanding of the topic 2nd 

time round. The average improvement was 12% on this topic alone from the 1st to the 

2nd retake. However, for those who sat the paper for a 3rd time, 4 improved, 8 stayed 

the same and 5 went down (an average of 1 %). Clearly this is a topic where the 

weaker candidates are learning to some extent from their mistakes, but the very 

weakest candidates are not learning enough from their returned exam scripts or 

revision work to make the inroads on this particular topic. A computer-based 

learning and assessment scheme is therefore likely to yield the sort of improvement 

that they need by the 3rd attempt at such a paper.  
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Appendix 1: C1 pilot diagnostic test with multiple-choice distractors built in: 

 

Question  Question Multiple choice solutions Answer 

1 Evaluate: |1026| +−  A) B) C) D) E) F) 

-16 |16| 36 16 -36 None 
 

 

2 Evaluate: 















 −−

−
2
1

4
3

2
1

3
2

5
3  

 

A) B) C) D) E) F) 

-1/40 -13/40 -3/120 -1/16 -4/72 -39/120 

 

3 Factor: 315 −x  A) B) C) D) E) F) 

x = 1/5 3(5x-3) 3(5x-1) 5(3x-1) 5x-

1 

x = 3/15 

 

 

4 Simplify: 
yx
75

−  A) B) C) D) E) F) 

    xy 

(5y-7x) 5y-7x  -2

(x-y) 

   7x-5y 

     xy 

(7x-

5y) 

None 

 

 

5 Simplify: 

[ ])3(425 −+− xxx  

A) B) C) D) E) F) 

7x-

12 

2x2+x-12 3x-8 30(x2-

2x) 

12-x None 

 

 

6 Solve for x: 

6|4| =+x  

A) B) C) D) E) F) 

-2 2, 10 2 2, -2 2, -10 None 
 

 

7 Simplify: 

63
9.

3
42

−
−

xx
x  

A) B) C) D) E) F) 

x2-

6x+8 

 

-18x 

-36 

 x 

-2 3x2-

18x+24 x+2 

  x   None 

 

 

8 Simplify: 
2

84
2 −−

−
xx

x  A) B) C) D) E) F) 

  

x+2 

4 

x+1 

4x 

x+1 

  4 -4x-8 

 x2 

-2 None 

 

 

9 Simplify: 

( )( )2432 26 baba−  

A) B) C) D) E) F) 

-

12a8b5 

-

12a8b6 

-

12a8b8 

-

12a6b6 

-12a5b5 None 

 

 

10 
Simplify: 

3

3

27

4
2









xy

yx  
A) B) C) D) E) F) 

3

1

6

2 







−y

x  








3

16

8y
x  









3

7

8y
x  









6

18

8y
x  









3

18

8y
x  None of 

these 
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11 Simplify: 

( )( )7253 +− xx  

A) B) C) D) E) F) 

6x2+11x-

35 

6x2-

11x-

35 

6x2+11x+35 5x2+11x-

35 

6x-

35 

None 

 

 

12 Solve for x 

( ) 104126 +−=+− xx ,  

A) B) C) D) E) F) 

-0.5 -1 -2 -0.25 -9/8 None 
 

 

13 Solve for x:: 

xx 7962 +−≤−  

A) B) C) D) E) F) 

x53 ≤  x≤6.0  x≥5/3  3≤− x  x≤3/5  None 
 

 

14 Solve for x::  

6
19

5
2

+=+ xx  

A) B) C) D) E) F) 

8
515−  15 11 

18
1314−  

6
18−  None 

 

 

15 Solve for x:: 

0562 =+− xx  

A) B) C) D) E) F) 

1, 2 1, 5 -1, -5 1, -5 1, -2 None 
 

 

16 If 7 is subtracted 

from three times a 

number, we get the 

same result as we 

get from adding 9 to 

one third of the 

number. What is the 

number? 

A) B) C) D) E) F) 

24 4.8 17 6 3 None 
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Appendix 2: Sample feedback screen for Q 9-13 (answers A-C) of AS diagnostic 

test.  

 

 

   A      B       C   

9 
-24 a 20 b 7   -24 a 20 b 12    -24 a 20 b 15 

 
Multiplied wrong    Multiplied Indices      Multiplied wrong pairs  

 
first indices      Not added them       and not  added  

10  

 
 

  x 
4 

 
3 

 

  X 
36 

 

   

 

 
 

  x 

4 

 
 

 4 y 
5 

  64 Y 
15 

    64 y 
15 

 
Not multiplied out brackets    

Multiplied x powers not 

added      Not raised the x power  

11 
28 x2 + 30 x -  18   28 x2 - 30 x -  18    28 x2 + 30 x + 18 

 
Correct      Wrong sign for x term     Wrong sign  for x term  

12 
x =  6      x =  3       x = 12    

 
Factor of two out    Forgot to divide by      Correct     

 
check division     denominator at end          

13 
5 

 

5 x    x 

 

1      -1 
 

x   

 
Not finished off     Correct       Wrong sign on division  

 
In terms of x                  

≤ ≤
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Appendix 3: C1 hard questions derived from ResultsPlus.  

 
Paper Reference(s) 

6663/01 
Edexcel GCE 
Core Mathematics C1 

Advanced Subsidiary 
Hard C1 past questions 

Time:  1 hour 30 minutes 
 
    
Materials required for examination                       Items included with question papers 

 

Mathematical Formulae (Pink or Green)                    Nil 
  

 
 
Calculators may NOT be used in this examination. 
 
 
Instructions to Candidates 

Write the name of the examining body (Edexcel), your centre number, candidate 
number, the unit title (Core Mathematics C1), the paper reference (6663), your 
surname, initials and signature. 

 
 
Information for Candidates 

A booklet ‘Mathematical Formulae and Statistical Tables’ is provided. 
Full marks may be obtained for answers to ALL questions. 
The marks for the parts of questions are shown in round brackets, e.g. (2). 
There are 10 questions in this question paper. The total mark for this paper is 75. 
 
 
Advice to Candidates 

You must ensure that your answers to parts of questions are clearly labelled. 
You must show sufficient working to make your methods clear to the Examiner.  
Answers without working may not gain full credit. 
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1. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 1 
 

Figure 1 shows a sketch of the curve with equation 0 ,3
≠= x

x
y . 

 

(a) On a separate diagram, sketch the curve with equation ,2 ,
2

3
−≠

+
= x

x
y  

showing the coordinates of any point at which the curve crosses a coordinate axis. 
(3) 

(b) Write down the equations of the asymptotes of the curve in part (a). 
(2) 

 
2. (a) By eliminating y from the equations 

,4−= xy  

,82 2 =− xyx  

 show that  
0842 =−+ xx . 

(2) 

(b) Hence, or otherwise, solve the simultaneous equations 

,4−= xy  

,82 2 =− xyx  

 giving your answers in the form a ± b√3, where a and b are integers. 
(5) 

x 

y 

O 
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3. The equation 

x2 + kx + 8 = k 

 has no real solutions for x. 
 
(a) Show that k satisfies k2 + 4k – 32 < 0. 

(3) 

(b) Hence find the set of possible values of k.  
 (4) 

 
 
 
4. The first term of an arithmetic sequence is 30 and the common difference is –
1.5.  
 
 (a) Find the value of the 25th term. 

 (2) 
 

 The rth term of the sequence is 0. 
 
 (b) Find the value of r. 

(2) 
 

 The sum of the first n terms of the sequence is Sn. 
 
 (c) Find the largest positive value of Sn.  

 (3) 
 
 

 
5. Simplify 
 
(a) (3√7)2 

(1) 

(b)  (8 + √5)(2 − √5) 
(3) 

 

6. Given that 32√2 = 2a, find the value of a. 
(3) 

 
 

7.  Given that y = 2x3 + 2

3
x

,   x≠ 0,   find 

 
x
y

d
d ,  



  168 

(3) 

8.  

 
Figure 2 

 
The points Q (1, 3) and R (7, 0) lie on the line 1l , as shown in Figure 2. 
 
The length of QR is a√5. 
 
 
(a)  Find the value of a. 

(3) 

The line 2l  is perpendicular to 1l , passes through Q and crosses the y-axis at the point 
P, as shown in Figure 2. Find 
 
 
(b)  an equation for 2l , 

(5) 

 

(c)  the coordinates of P, 
(1) 

(d)  the area of ΔPQR. 
 

(4) 

 
 

9. The gradient of a curve C is given by 
x
y

d
d  = 2

22 )3(
x

x + ,  x ≠ 0. 
 

The point (3, 20) lies on C. 
 
 
Find an equation for the curve C in the form y = f(x).    (6) 
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10. The line l1 passes through the point A(2, 5) and has gradient – 2

1 . 
 
 (a) Find an equation of l1, giving your answer in the form y = mx + c.    

(3) 
 

 The point B has coordinates (–2, 7), and lies on l1. 
 

  

 (b) Find the length of AB, giving your answer in the form k√5, where k is an 
integer. 

(3) 
 

 The point C lies on l1 and has x-coordinate equal to p. 
 
 The length of AC is 5 units. 
 
 (c) Show that p satisfies 

p2 – 4p – 16 = 0. 
(4) 

 
 

 

11. Given that y = x4 + 3
1

x  + 3, find 
x
y

d
d .  

 (3) 
 

 

12. 
x
y

d
d  = 2

1

5
−

x  + x√x,        x > 0. 

 
Given that y = 35 at x = 4, find y in terms of x, giving each term in its simplest form. 

 (7) 
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Appendix 4: Screenshot of C1 practice paper (dynamic) and answers (Excel).  
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Appendix 5: Description of the questions included in differentiation tests for EC1005  

Question description Topic 

sqrt((x^a)^b); MC Differentiation\Algebraic functions 

sqrt(x^a); MC Differentiation\Algebraic functions 

(ax^b+c)^n,x,a,b,c); MC Differentiation\Chain rule\Binomials 

(ax+b)^3; HL Differentiation\Chain rule\Binomials 

(ax+b)^n; a,b +ve/-ve,n+ve; NI Differentiation\Chain rule\Binomials 

(ax+b)^n; a,n +ve/-ve; RNI Differentiation\Chain rule\Binomials 

(ax+b)^n; a,n +ve; MC Differentiation\Chain rule\Binomials 

(b+cx)^3 ; b,c +ve; MC Differentiation\Chain rule\Binomials 

diff ax^b; a,b +ve; MC Differentiation\Polynomials 

diff cubic version 1; MC Differentiation\Polynomials 

diff cubic version 2; MC Differentiation\Polynomials 

diff cubic; +ve coeffs; evaluate at x=1/a; MC Differentiation\Polynomials 

diff cubic; +ve coeffs; evaluate at x=a; MC Differentiation\Polynomials 

diff polynomial n=4...12 version 1; MC Differentiation\Polynomials 

diff polynomial n=4...12; MC Differentiation\Polynomials 

diff polynomial n=4...6; +ve coeffs; evaluate at x=1/a; MC Differentiation\Polynomials 

diff polynomial n=4...6; +ve coeffs; evaluate at x=a; MC Differentiation\Polynomials 

diff quadratic version 1; MC Differentiation\Polynomials 

diff quadratic version 2; MC Differentiation\Polynomials 

diff quadratic; +ve coeffs; evaluate at x=1/a; MC Differentiation\Polynomials 

diff quadratic; +ve coeffs; evaluate at x=a; MC Differentiation\Polynomials 

Min of f(x)=Ax^2+Bx+C, A, B, C +ve; NI Differentiation\Polynomials 

x+y given. Find y for TP of xy^2. x,y +ve; NI Differentiation\Polynomials 

diff(cubic* Exp(cubic); MC Differentiation\Product rule\Exponentials 

diff(quadratic* Exp(ax); MC Differentiation\Product rule\Exponentials 

diff(quadratic* Exp(cubic); MC Differentiation\Product rule\Exponentials 

diff(quadratic* Exp(linear); MC Differentiation\Product rule\Exponentials 

diff(quartic* Exp(quadratic); MC Differentiation\Product rule\Exponentials 

diff cubic*cubic; MC Differentiation\Product rule\Polynomials 

diff quadratic*cubic; MC Differentiation\Product rule\Polynomials 

diff quadratic*quartic; MC Differentiation\Product rule\Polynomials 

diff quartic*quartic; MC Differentiation\Product rule\Polynomials 

diff(a+bx^2+cx^3)(dx+ex^3+fx^5); MC Differentiation\Product rule\Polynomials 
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Appendix 6: Test on differentiation for EC1005 based on hardest questions 

Such a test would include the following ten questions, where there has been no 

improvement: 

 

Question descriptor 
 Difference of means 

diff(quadratic* Exp(linear); MC 
 -0.062 
(b+cx)^3 ; b,c +ve; MC 
 -0.053 
diff quadratic version 1; MC 
 -0.037 
(ax+b)^n; a,n +ve/-ve; RNI 
 -0.033 
(ax+b)^3; HL 
 -0.03 
diff(quartic* Exp(quadratic); MC 
 -0.025 
diff polynomial n=4...6; +ve coeffs; 
evaluate at x=1/a; MC 
 -0.023 
diff(quadratic* Exp(ax); MC 
 -0.021 
sqrt(x^a); MC 
 -0.002 
(ax^b+c)^n,x,a,b,c); MC 
 0 
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Appendix 7: Integration ASSESSMENT test report for EC1005 cohort 2008-2009.  
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(Ax+C)exp(bx); MC Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

59 58 0.621 0.621 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 36 61.02% 88.89% 
integrated each term 
separately 

6 10.17% 56.67% 

differentiated exp(Bx) instead 
of integrating 

5 8.47% 56% 

incorrect sign in the formula 6 10.17% 50% 
differentiation instead of 
integration 

0   - 

None Of These 5 8.47% 44% 
Did Not Know 0   - 
Not Answered 1 1.69% 40% 

(x^2-Ax)e^x; NI Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

72 72 0.694 0.347 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Both Correct 25 34.72% 88.60% 
None Right 47 65.28% 47.21% 
Not Answered 0   - 

Axexp(Bx); MC Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

63 62 0.758 0.758 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 47 74.60% 85.53% 
integrated each term 
separately 

2 3.17% 30% 

differentiated exp(Bx) instead 
of integrating 

4 6.35% 55% 

incorrect sign in the formula 2 3.17% 30% 
differentiation instead of 
integration 

0   - 

None Of These 6 9.52% 36.67% 
Did Not Know 1 1.59% 40% 
Not Answered 1 1.59% 40% 

int b x^(1/q); q +ve; MC Integratio
n\Algebrai
c 
functions 

Expla
natio
n 

232 231 0.887 0.887 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 205 88.36% 68.69% 
not p+1 3 1.29% 19% 
diff & not p+1 1 0.43% 0% 
diff 12 5.17% 32.25% 
guess 1 0.43% 0% 
None Of These 8 3.45% 19.13% 
did not know 1 0.43% 0% 
Not Answered 1 0.43% 40% 

int b x^(1/q); q -ve; MC Integratio
n\Algebrai
c 
functions 

Expla
natio
n 

264 262 0.874 0.874 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 229 86.74% 65.47% 
not p+1 10 3.79% 28% 
diff & not p+1 5 1.89% 16% 
diff 5 1.89% 4% 
guess 7 2.65% 28.57% 
None Of These 6 2.27% 22.83% 
Did Not Know 0   - 
Not Answered 2 0.76% 60% 

int b x^(p/q); q +ve; MC Integratio
n\Algebrai
c 
functions 

Expla
natio
n 

243 243 0.877 0.877 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 213 87.65% 67.12% 
not p+1 4 1.65% 32.50% 
diff & not p+1 2 0.82% 10% 
diff 14 5.76% 34.50% 
guess 4 1.65% 0% 
None Of These 5 2.06% 32% 
Did Not Know 1 0.41% 0% 
Not Answered 0   - 

int((x/a)(exp(x/q+p)),x,a,q,p); 
MC 

Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

75 75 0.507 0.507 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 38 50.67% 85.26% 
formula incorrect, sign. 8 10.67% 45% 
choose exp(x) to be v 
instead of dv 

13 17.33% 44.62% 

integral of dv wrong, sign 9 12% 60% 
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integral of dv wrong, 
constant 

0   - 

None Of These 7 9.33% 68.57% 
Did Not Know 0   - 
Not Answered 0   - 

int(a+bx+cx^2,x); MC Integratio
n\Polyno
mials 

Expla
natio
n 

89 88 0.886 0.886 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 78 87.64% 67.05% 
No Constant 0   - 
Integration (xply b+1) 2 2.25% 20% 
Differentiated 0   - 
Integration (no div b+1) 5 5.62% 26% 
None Of These 3 3.37% 13.33% 
Did Not Know 0   - 
Not Answered 1 1.12% 0% 

int(ax(exp(px)),x,a,p); MC Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

74 74 0.514 0.514 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 38 51.35% 83.68% 
formula incorrect, sign. 19 25.68% 51.58% 
choose exp(x) to be v 
instead of dv 

6 8.11% 50% 

integral of dv wrong, sign 4 5.41% 35% 
integral of dv wrong, 
constant 

0   - 

None Of These 6 8.11% 50% 
Did Not Know 1 1.35% 0% 
Not Answered 0   - 

int(ax(exp(px/q)),x,a,p,q); MC Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

73 72 0.528 0.528 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 38 52.05% 88.95% 
formula incorrect, sign. 15 20.55% 52% 
choose exp(x) to be v 
instead of dv 

8 10.96% 45% 

integral of dv wrong, sign 2 2.74% 70% 
integral of dv wrong, 
constant 

2 2.74% 50% 

None Of These 7 9.59% 42.86% 
Did Not Know 0   - 
Not Answered 1 1.37% 40% 

int(ax^(n-1)/(bx^n+g),x); MC Integratio
n\Rational 
functions\
Logarithm
ic form 

Expla
natio
n 

135 135 0.681 0.681 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 92 68.15% 82.11% 
Missing n 12 8.89% 46.67% 
Wrong Integration 15 11.11% 40% 
Substitute 4 2.96% 65% 
No Constant 3 2.22% 33.33% 
None Of These 7 5.19% 41.86% 
Did Not Know 2 1.48% 20% 
Not Answered 0   - 

int(Ax^(n-1)/(Bx^n+G),x,a,b), a 
greater b +ve; RNI 

Integratio
n\Rational 
functions\
Logarithm
ic form 

Expla
natio
n 

118 115 0.539 0.539 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 62 52.54% 87.60% 
dis1 0   - 
dis2 2 1.69% 40% 
dis3 1 0.85% 40% 
dis4 1 0.85% 40% 
dis5 0   - 
dis6 5 4.24% 36% 
unidentified error or Not 
Answered 

44 37.29% 47.95% 

int(Ax^(n-1)/(Bx^n+G),x,a,b), a 
greater b -ve; RNI 

Integratio
n\Rational 
functions\
Logarithm
ic form 

Expla
natio
n 

138 133 0.436 0.436 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 58 42.03% 85.29% 
dis1 0   - 
dis2 3 2.17% 60% 
dis3 0   - 
dis4 0   - 
dis5 0   - 
dis6 3 2.17% 37.67% 
unidentified error or Not 
Answered 

69 50% 44.01% 

int(Ax^(n-1)/(Bx^n+G),x,a,b), 
a,b +ve; RNI 

Integratio
n\Rational 
functions\
Logarithm
ic form 

Expla
natio
n 

126 126 0.5 0.5 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 63 50% 84.14% 
dis1 0   - 
dis2 4 3.17% 57.50% 
dis3 1 0.79% 40% 
dis4 0   - 
dis5 0   - 
dis6 1 0.79% 50% 
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unidentified error or Not 
Answered 

57 45.24% 49.88% 

int(Ax^(n-1)/(Bx^n+G),x,a,b), 
a,b -ve; RNI 

Integratio
n\Rational 
functions\
Logarithm
ic form 

Expla
natio
n 

150 145 0.476 0.476 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 69 46% 85.90% 
dis1 0   - 
dis2 3 2% 60% 
dis3 1 0.67% 0% 
dis4 0   - 
dis5 0   - 
dis6 9 6% 52.22% 
unidentified error or Not 
Answered 

63 42% 45.48% 

int(ax^b,x); MC Integratio
n\Polyno
mials 

Expla
natio
n 

66 66 0.848 0.848 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 56 84.85% 67% 
No Constant 6 9.09% 30% 
Integration (xply b+1) 1 1.52% 0% 
Differentiated 2 3.03% 70% 
Integration (no div b+1) 0   - 
None Of These 1 1.52% 0% 
Did Not Know 0   - 
Not Answered 0   - 

int(ax^b,x,0,1); MC Integratio
n\Polyno
mials 

Expla
natio
n 

65 65 0.846 0.846 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 55 84.62% 69.02% 
Evaluation Of Limits 1 1.54% 0% 
multiplied by power plus one 1 1.54% 100% 
Differentiated 2 3.08% 20% 
Integration (xply b+1) 0   - 
None Of These 5 7.69% 24% 
Did Not Know 1 1.54% 0% 
Not Answered 0   - 

int(ax^b,x,l,u)... 0 lt l lt u; MC Integratio
n\Polyno
mials 

Expla
natio
n 

78 78 0.859 0.859 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 67 85.90% 73.34% 
Integration (no div b+1) 2 2.56% 10% 
Integration (no div b+1) and 
sign error 

0   - 

Differentiation 2 2.56% 30% 
Integration (div b) 0   - 
None Of These 7 8.97% 28.57% 
Did Not Know 0   - 
Not Answered 0   - 

int(ax^b,x,l,u)... fractional l & u; 
MC 

Integratio
n\Polyno
mials 

Expla
natio
n 

88 88 0.886 0.886 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 78 88.64% 65.22% 
Evaluation Of Limits 3 3.41% 26.67% 
Integration (no div b+1) 0   - 
Differentiated 2 2.27% 10% 
Integration (div b) 0   - 
None Of These 5 5.68% 40% 
Did Not Know 0   - 
Not Answered 0   - 

int(ax^b,x,l,u)... l lt 0 lt u; MC Integratio
n\Polyno
mials 

Expla
natio
n 

62 62 0.71 0.71 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 44 70.97% 74.43% 
Evaluation Of Limits 9 14.52% 15.22% 
Integration (no div b+1) 1 1.61% 40% 
Differentiated 3 4.84% 40% 
Integration (div b) 1 1.61% 60% 
None Of These 4 6.45% 55% 
Did Not Know 0   - 
Not Answered 0   - 

int(ax^b,x,l,u)... l lt u lt 0; MC Integratio
n\Polyno
mials 

Expla
natio
n 

70 70 0.771 0.771 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 54 77.14% 60.87% 
Evaluation Of Limits 9 12.86% 31.11% 
Integration (no div b+1) 1 1.43% 20% 
Differentiated 1 1.43% 0% 
Integration (div b) 1 1.43% 0% 
None Of These 4 5.71% 10% 
Did Not Know 0   - 
Not Answered 0   - 

int(ax^b,x,l,u)... u lt 0 lt l; MC Integratio
n\Polyno
mials 

Expla
natio
n 

87 87 0.816 0.816 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 71 81.61% 66.10% 
spurious factor of -2 1 1.15% 40% 
Integration (no div b+1) 2 2.30% 16.50% 
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Differentiated 4 4.60% 30% 
Integration (div b) 1 1.15% 20% 
None Of These 8 9.20% 30% 
Did Not Know 0   - 
Not Answered 0   - 

int(ax^b,x,-s,s); MC Integratio
n\Polyno
mials 

Expla
natio
n 

76 76 0.842 0.842 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 64 84.21% 66.83% 
Twice Evaluation 0-S 8 10.53% 15% 
Minus Twice Evaluation 0-S 1 1.32% 20% 
Evaluation 0-S Only 1 1.32% 0% 
Twice Derivative 0-S 0   - 
None Of These 1 1.32% 0% 
Did Not Know 1 1.32% 0% 
Not Answered 0   - 

int(ax^b+cx^d,x); MC Integratio
n\Polyno
mials 

Expla
natio
n 

78 78 0.897 0.897 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 70 89.74% 63.53% 
No Constant 3 3.85% 26.67% 
Differentiated 3 3.85% 6.67% 
Integration (no div b+1) 1 1.28% 40% 
Integration (xply b+1) 0   - 
None Of These 1 1.28% 60% 
Did Not Know 0   - 
Not Answered 0   - 

int(bx(exp(x/q)),x,b,q); MC Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

77 77 0.455 0.455 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 35 45.45% 80.57% 
formula incorrect, sign. 13 16.88% 53.08% 
choose exp(x) to be v 
instead of dv 

7 9.09% 51.43% 

integral of dv wrong, 
constant 

12 15.58% 50% 

integral of dv wrong, no 
constant 

2 2.60% 50% 

None Of These 7 9.09% 45.71% 
Did Not Know 1 1.30% 40% 
Not Answered 0   - 

Int(exp(Bx)cos(Cx),x), B,C +ve; 
MC 

Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

6 6 0.167 0.167 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 1 16.67% 80% 
Algebraic error 1 16.67% 60% 
Differentiation 2 33.33% 80% 
Integration 0   - 
error 0   - 
None Of These 1 16.67% 0% 
Did Not Know 1 16.67% 0% 
Not Answered 0   - 

int(exp(px),x,a,b); MC Integratio
n\Expone
ntials 

Expla
natio
n 

185 185 0.703 0.703 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 130 70.27% 78.29% 
int(exp(nx))=exp(nx) 17 9.19% 36.47% 
int(exp(nx))=n*exp(nx) 18 9.73% 31.28% 
int like power 4 2.16% 38.25% 
guess 2 1.08% 60% 
None Of These 14 7.57% 44.29% 
Did Not Know 0   - 
Not Answered 0   - 

int(exp(px/q),x,a,b); MC Integratio
n\Expone
ntials 

Expla
natio
n 

176 176 0.597 0.597 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 105 59.66% 76.42% 
int(exp(nx))=exp(nx) 15 8.52% 42.67% 
int(exp(nx))=n*exp(nx) 18 10.23% 45.56% 
int like power 5 2.84% 28% 
guess 2 1.14% 75% 
None Of These 31 17.61% 55.26% 
Did Not Know 0   - 
Not Answered 0   - 

int(exp(x/q),x,a,b); MC Integratio
n\Expone
ntials 

Expla
natio
n 

182 182 0.582 0.582 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 106 58.24% 80.47% 
int(exp(nx))=exp(nx) 13 7.14% 39% 
int(exp(nx))=n*exp(nx) 33 18.13% 45.55% 
int like power 2 1.10% 0% 
guess 0   - 
None Of These 27 14.84% 40.70% 
Did Not Know 1 0.55% 0% 
Not Answered 0   - 
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Int(x^n+exp(-mx),x,A,B), A, B 
+ve; NI 

Integratio
n\Expone
ntials 

Expla
natio
n 

172 172 0.459 0.459 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 79 45.93% 77.82% 
Wrong 93 54.07% 40.75% 
Not Answered 0   - 

Introduction to tests; WI authoring 
templates
\Introducti
on 
screens 

Expla
natio
n 

769 769 0 0 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

yes 760 98.83% 60.31% 
no 8 1.04% 6.25% 
Not Answered 1 0.13% 0% 

x*exp(bx); MC Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

81 81 0.679 0.679 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 55 67.90% 83.64% 
integrated each term 
separately 

3 3.70% 53.33% 

differentiated exp(Ax) instead 
of integrating 

8 9.88% 27.50% 

incorrect sign in the formula 8 9.88% 42.50% 
differentiation instead of 
integration 

0   - 

None Of These 6 7.41% 56.67% 
Did Not Know 1 1.23% 40% 
Not Answered 0   - 

x^2exp(px); MC Integratio
n\By 
Parts\Exp
onential 
functions 

Expla
natio
n 

72 71 0.38 0.38 Outcome name Times 
answered 

Percentage of 
times 
answered 

Mean for outcome 

Correct 27 37.50% 78.52% 
integrate term by 
term)=exp(nx) 

8 11.11% 42.50% 

int(exp(nx))=n*exp(nx) 8 11.11% 40% 
int like power 9 12.50% 60% 
guess 1 1.39% 20% 
None Of These 17 23.61% 52.94% 
Did Not Know 1 1.39% 60% 
Not Answered 1 1.39% 60% 
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