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Abstract 

 

An outline of supply chains and differences in the problem types is given. The motivation 

for a generic framework is discussed and explored. A conceptual model is presented along 

with it application to real world situations; and from this a database model is developed. 

A MIP and CP implementations are presented; along with alternative formulation which 

can be use to solve the problems. A local search solution algorithm is presented and shown 

to have significant benefits. 

Problem instances are presented which are used to validate the generic models, including a 

large manufacture and distribution problem. This larger problem instance is not only used 

to explore the implementation of the models presented, but also to explore the practically 

of the use of alternative formulation and solving techniques within the generic framework 

and the effectiveness of such methods including the neighbourhood search solving method. 

A stochastic dimension to the generic framework is explored, and solution techniques for 

this extension are explored, demonstrating the use of solution analysis to allow problem 

simplification and better solutions to be found. Finally the local search algorithm is applied 

to the larger models that arise from inclusion of scenarios, and the methods is 

demonstrated to be powerful for finding solutions for these large model that were insoluble 

using the MIP on the same hardware. 
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1 Introduction and Background 

1.1 Background 

Many projects and studies, both within the business world and the academic arena have 

investigated and implemented supply chain models.  

Much of the research focuses on specific models for specific situations, typically a 

particular company, within a particular field, focusing on answering a particular question. 

These involve problem analysis, abstraction of a model for the representation of the 

specific real world system, the construction of a problem specific data model and problem 

specific solution model. The other area of focus is the solution techniques employed and 

particular aspects of how the method was implemented and often novel variation in 

approaches to the implementation.  

In this work we focus on the common features that are seen in most supply chain problems, 

and consider modelling techniques and solution methods that could be applicable to a wide 

range of supply chain problem instances. We show that it is practical to create an abstract 

and generic framework that can then be implemented and used to solve a variety of SCPPs 

in a way that is independent of any particular solver or mathematical representation. We 

also describe a simple neighbourhood search algorithm that allows solution of bigger SCP 

instances with stochastic features. 

1.2 Different Problem Types 

1.2.1 Strategic 

A strategic view provides the overview, it is usually the view of the whole enterprise and it 

is over a relatively long timescale. When taking this view we are able to ignore many 

detailed variations and interactions which are only relevant on short timescales because 

over a longer timescales these average out. The view is much smoother and more 

continuous. This is the dimension of the problem where the granularity is larger; the time 

units considered will typically be numbers of months or even years.  

Decisions taken in strategic planning will usually involve large financial investments. 

These decisions are likely to leave little flexibility for reversal of the decisions, with high 

financial penalties if the wrong decisions are taken; however, the benefits for making good 

strategic decisions are typically considerable. 
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1.2.2 Tactical 

Tactical problems lie between the extremes of strategic and operational, with finer 

granularity and timescales that are not as long as years, but not as short and fine grained as 

those in operational problems. It is usually necessary to consider some tactical details when 

modelling a strategic problem; this provides the necessary underlying detail for the 

strategic model to be correctly modelled.  

1.2.3 Operational  

The Operational view is the detailed view. This view is over a short period of time; usually 

only a few days or weeks, and may provide details of what is happening minute by minute 

in some cases. The operational view will usually focus on a small area of the supply chain, 

even down to the scheduling of a particular machine or production line in a factory, for 

example. When considering problems in this detail the differences are more significant and 

the specifics of the individual situation are not averaged out as they would have been in a 

longer term view. The relationships and interactions between the various parts of a system 

in an operational view are usually much more complex, with logical dependences and 

exclusions which can usually be ignored or neglected in tactical and strategic views. This 

presents a situation where there is greater complexity, and it is crucial that the huge 

variation in the detail is taken into account in carrying out planning at this level. Decisions 

made at this level are often required to be updated if there is a change in requirements, or 

the previous plan has run into problems.  

These types of problems are typically non linear and require the use of strategies and 

models that are specific to the problem instance in order to reduce the complexity of the 

problem, Hence the specifics of the problem become crucial in finding ways to reduce the 

complexity whilst providing solutions.  

This is where supply chain planning starts to address issues such as scheduling, routing, 

and rostering. Often these different aspects of the same supply chain problem are addressed 

in different ways, producing several operational models for one area within a supply chain.  

1.2.4 Uncertainty  

Real world problems will have uncertain data because we need to plan far enough ahead to 

be able to implement our decisions in time for them to be effective. Demands for products, 

costs of materials, fuel, labour and transport costs are all uncertain. So significant 

quantities of the data used in supply chain models is inevitably based upon forecasts. There 
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has been considerable research into the use of stochastic models to provide more robust 

solutions rather than ones that are solely optimal for a single set of forecast data. Some 

supply chain models have also incorporated stochastic features into the models; mainly in 

terms of demand scenarios. However, most stochastic models rely on a deterministic model 

that is used as the basis of the stochastic procedures. 

1.3 Motivations for a Generic Model 

There are a number of advantages and benefits for creating a generic model and supporting 

framework. 

1.3.1 Faster and Cheaper Results 

For many organisations the supply chain model is only one of several possible decision 

support tools, so it may be difficult to justify huge investment in building a model. A pre-

built framework offers the potential for much quicker and cheaper development of such 

models. 

A generic model offers the potential to demonstrate the benefits of such supply chain 

models at a considerably lower cost. For a large organisation considerable spending on 

data and optimisation can be justified when small percentage savings can lead to 

substantial benefits, but for smaller organisations these same real up-front costs may not be 

justified by corresponding benefits that may be achieved. 

A generic model also offers increased accessibility of optimisation techniques to other 

decisions, where the potential costs and benefits would not justify investment in 

constructing a bespoke supply chain specific model from scratch. 

1.3.2 Reduction of Risk 

Those that have developed such models previously may be confident of a cost benefit to 

the supply chain planner, but for the business planner this will often be unproven 

technology and can be viewed as a high risk investment itself. The availability of a pre-

built framework that has been shown to work before can help to reduce the apparent risk. 

1.3.3 Earlier Delivery of Results 

There is also an issue of the long development cycle for many optimization problems 

including supply chain models. Models need to be completed and further analysis to be 

carried out, before the knowledge gained from the model can be used to aid decision 

making. It may be months before even the study phases for these data and optimization 
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models are completed. A generic model offers the potential for drastically reducing this 

development cycle and delivering results that can be understood and evaluated by the 

business quicker in the project cycle. 

This reflects the common practice in industry such as the providers of Enterprise Resource 

Planning (ERP) systems such as SAP (2011), QAD (2011), Caliach (2011), Infor, IFS etc. 

who provide large and sophisticated software suites which are typically based on relational 

databases and may include a number of more specialised applications. These suites are 

typically applicable across many different industries through customisation. In practice, 

these companies have pre-configured versions of their modules which are specialised for 

different industries, so that they can be implemented more quickly.  

1.3.4 Guidance for Data Gathering 

With the development of these systems, data is usually a significant and difficult issue. Just 

defining the data required can be an extensive task. A clear framework allows much of the 

necessary data and its structure and relationships to be better understood at an early stage 

of the development cycle. 

A set of simple pre-built data structures and models allows a rapid turnaround in being able 

to construct such problem instances, making this information more accessible to decision 

makers.  

1.3.5 Common Terminology 

A generic framework provides a business-independent terminology which can be used as a 

basis to map the business specific-terminology. Often during the development considerable 

effort is required in providing a communications bridge between the business owners and 

the analyst, database and optimisation specialists. 

1.3.6 Clarify General and Specific Problem Aspects 

A generic framework for a class of problems helps to clarify those aspects which are 

common across a range of problem instances in that class of problems, and in consequence 

highlights where particular problems are different from the generic template problem.  

1.3.7 Solver Independence 

We are interested in generating a robust SCPP model that is independent of the details of 

any single supply chain. Along with that objective, we also want to make sure that this 
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SCPP model is also stable and robust with respect to different solvers, even different 

solving technologies. 

Independence of any particular solver, allowing the modelling framework to be validated 

on a variety of different solvers as well as with a variety of different problems and problem 

instances improves confidence in the approach before even starting on a specific problem 

instance. This typically simplifies the validation of the approach for real problem instances. 

The ability to explore the supply chain model with several different solvers allows the 

system to be evaluated and/or proved with one or several solvers, before making a decision 

about choosing any particular solver. 

1.3.8 Practical Implementation 

A major objective of this work is to make sure that we have a relatively pure and clean 

supply chain model that does not become specific to a particular solving technique or 

algorithm. However, we are aware that to be of value, a generic abstract model needs to 

lead to practical implementations and useful solutions.  

1.3.9 Do it right once and reuse 

One mechanism for achieving wider use of the technology is to reduce the entry barrier by 

making it easier, quicker and cheaper to build good solutions. Do the analysis once in such 

a way that it can be re-used in the form of a generic model that fits a range of specific 

problem instances. If the generic analysis and modelling approach is good enough, then it 

should be possible to use the generic framework as a basis to build extensions to cope with 

any aspects of a specific problem instance which are not covered by the generic modelling 

framework. Having a proven generic model would allow more companies to make that 

move with confidence. 

1.4 This Thesis 

The thesis is organised as follows: In chapter two we present a literature review of supply 

chain planning and identify key features.  

In chapter three a representation for generic supply chain planning models and supporting 

data models are presented.  

Chapter four describes two problems and gives details of the problem instances of each of 

these. The implementation of the warehouse location problem are discussed and the results 
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compared with results available in the literature and from two website which host the 

problem data 

In chapter five we present MIP and CP implementations for the generic model. 

Chapter six is an investigation into a number of alternative reformulations of the model.  

Details of result from these experiments provided. 

Chapter seven describes how the generic model has been successfully extended to allow it 

to solve multiple scenario models and methods of analysis of the strategic problem are 

presented. 

Chapter eight describes an approach for solving the mathematical programming problem 

using a neighbourhood search technique and results obtained are presented.  

Finally conclusions are presented in chapter 9. 
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2 Literature Review 

2.1 Supply Chain Planning 

There is an extensive and growing literature on supply chain management, covering a wide 

range of problem types from short-term operational decisions such as scheduling 

production, through mid-term tactical decisions such as supplier selection, to long-term 

strategic decisions such as facility location decisions. 

First, a number of existing reviews of the supply chain planning field were analysed, and 

these provided a basis for a classification of supply chain planning problems that can be 

used to classify other published papers, identifying where common issues are addressed 

and where there are gaps in the published literature. 

2.2 Existing Reviews of the Literature 

A number of extensive literature review papers have been published, which cover many 

contributions to the field and provide useful guidance on classifying other papers. 

Mula et al (2010) is an extensive review of 44 papers on supply chain production and 

transport planning. They describe a taxonomy that they used to classify the literature, 

based on supply chain structure, decision level, modelling approach, purpose, shared 

information, limitations, novelty and practical applications. They found that of the 44 

papers they considered, the majority dealt primarily with tactical decisions; only seven of 

those papers considered strategic decisions, and of those only four considered both tactical 

and strategic decisions. The problem addressed in this thesis includes a combination of 

features and characteristics that none of the 44 papers reviewed covers. 

Melo et al (2009) also provide a review of papers on facility location and supply chain 

management. All of the papers reviewed can be assumed to include strategic decisions as 

they all address the facility location problem to a greater or lesser extent. They classify the 

139 papers reviewed according to several criteria, such as single vs multiple echelons, 

single vs multiple commodities (products), single vs multiple time periods and 

deterministic vs stochastic data. The majority of papers reviewed address single period 

deterministic problems; only one paper was identified that covers three or more echelons, 

multiple commodities and multiple periods, but that paper does not address any stochastic 

issues of uncertain data. They also classify the papers based on the other decisions that are 

considered along with the facility location decisions, looking at decisions for capacity, 

inventory, procurement, production, routing and mode of transport. Again none of the 
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papers reviewed is identified as discussing all of capacity, inventory, procurement, 

production and routing together which are addressed in this thesis. 

Min and Zhou (2002) review contributions from over 70 papers and identify a number of 

key components of supply chain modelling, including the supply chain drivers (customer 

service, financial value, information exchange, risk management) and the variables and 

constraints which define the decisions that are being addressed. They also provide a 

taxonomy of supply chain modelling which over generalises to a large extent but which 

does recognise contributions from a diverse range of fields of study and acknowledges the 

importance of Information Technology developments to this field. They identify a number 

of research areas that they consider likely to be of growing importance, including the 

application of mathematical programming techniques to cover multi-period, multi-echelon 

problems, and the use of other techniques such as game theory, simulation and Theory of 

Constraints to widen the range of issues than can be included in supply chain models. 

Beamon (1988) uses a simple four-way categorisation of the papers reviewed as a starting 

point: deterministic analytic, stochastic analytic, economic and simulation. They also 

discuss supply chain performance measures including both qualitative (e.g. customer 

satisfaction) and quantitative measures (e.g. cost, profit) as another categorisation. Finally 

they discuss the types of decisions and decision variables in each paper as another 

categorisation (scheduling, inventory levels, assignment of DC to customer etc.). Of the 

papers reviewed, most are analytical (about half deterministic, half stochastic) with only 

three papers using simulation and just one using an economic model. Most papers use cost 

as the main performance measure. Most papers address inventory levels and ordering 

(batch) size as the main decisions, with a smaller number addressing scheduling issues; just 

one or two papers address the issue of assignment of production or storage to a site, or 

assignment of which DC will serve each customer. No papers were identified that address 

the assignment of functions to all the sites in the supply chain while minimising cost or 

similar measures with uncertain stochastic data. 

Narasimhan and Mahapatra (2004) list 37 papers with the problem area addressed in each 

case (grouped into strategic, tactical and operational areas) and identify in each case the 

issues addressed. They discuss five “illustrative” models, addressing: (a) investment 

implications of innovation-based competition between buyer and supplier, (b) bidding by a 

prospective supplier of a product, (c) bid evaluation and supplier selection by a buyer 

dealing in multiple products, (d) integrated operations in a supply chain, and (e) market 

integrated distribution. 
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Erengüc et al (1999) breaks the field into three distinct stages; the supplier stage, the 

production (plant) stage, and the distribution stage. They give a very clear explanation of 

the sorts of decisions that need to be addressed in each of these stages of supply chain 

planning, with proposed outline mathematical models. They identify several areas for 

future research, including: 

Current work has primarily focused on single stage or at most, two stage models and has 

indicated that there are substantial benefits which can be achieved by coordinating 

inventory decisions in light of demand uncertainties as well as capacity constraints. 

However, there is a lack of approaches which explore these decisions simultaneously at all 

three stages. Such approaches can explore the impact of shifting capacity within the stages 

of the chain as well as how an uninterrupted flow of materials (due to better management 

of inventories) could lead to cost reductions for the entire chain. 

2.3 Classification Scheme for Published Papers 

The following classification dimensions have been extracted from the other literature 

reviews described above. The supply chain planning literature can be categorised 

according to these dimensions, many of which are widely discussed and used by many 

authors, some of which are inter-related: 

• Strategic vs Tactical vs Operational decisions 

• Purpose: facility location, supplier selection, scheduling, product routing etc 

• Fixed or flexible sites (choose the functions available at each facility) 

• Single vs multi-product 

• Simple vs complex products (Bill of Materials, raw materials, assembly etc) 

• Simple vs complex processes (multiple steps, assembly, packing, storage etc) 

• Single vs multiple echelons or layers 

• Simple vs complex transport routes (inter-layer only, intra-layer allowed, reverse 

routes) 

• Single vs multiple suppliers for each product 

• Single or multiple suppliers to each site or customer 

• Handling of inventory at sites/facilities and across time periods 

• Financial considerations (budget constraints, tax, transfer prices, fixed and variable 

cost components) 

• Customer service issues (shortfall allowed or not, flexible delivery routes) 
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• Deterministic vs stochastic (uncertainty in demands, supplier costs, transport costs, 

final product value) 

• Uni-directional vs bi-directional (reverse logistics, recovery, repair, rework etc.) 

• Objective (maximise profit, minimise costs, robustness) 

• Single vs multi-objective 

2.4 Specific Papers 

Many of the papers referenced by the other literature reviews listed above overlap with the 

work described in this thesis on one or more of the dimensions listed above; however only 

a small number are similar on most of these dimensions. None share all the characteristics 

of the problem and model described in this thesis. Those that are most similar along with 

some later papers are reviewed below. 

All the most similar papers found through the literature searches are listed in Table 2-1, 

where the main characteristics on the dimensions listed above are summarised. In this 

table, it is possible to see most clearly on which characteristics each paper differs from the 

work described here. 

Dogan and Goetschalckx (1999) develop a MILP formulation for a strategic supply chain 

problem, and a decomposition solution method based on Benders’ decomposition. They 

use the problem structure which showed an accelerated convergence when solving their 

larger problem instances. They describe a real-world case study in the packaging industry.  

Hung et al (2006) describe a generic supply-chain node to capture the features present in 

all supply-chain entities and demonstrate it use in a multi-echelon multi-product supply 

chain with five sites and four products. They model the behaviour of this supply chain over 

a two-year period using simulation.  

Timpe and Kallrath (2000) describe a MILP formulation for a deterministic supply chain 

planning, including lot-sizing and inventory issues. All the facilities are known and fixed 

but the production processes can be configured to produce one or several different 

products. Their original target is the chemical process industry. They allow for only one 

change of operating mode per facility per production period. The first feasible solution was 

usually accepted as the objective value was close to that of the LP relaxation (within a few 

percent, well within the error associated with the forecast input data).  

Sabri and Beamon (2000) describe a four echelon supply chain problem with multiple 

products for a single time period, with lead-times. The overall problem is solved iteratively 
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by alternating between strategic MILP and non-linear operational sub-models. They use a 

multi-objective approach, and explicitly include consideration of delivery time and volume 

flexibility. Five scenarios were examined. 

Jayaraman and Pirkul(2001) describe a single-period facility location model for a four 

supply chain problem. Their problems are from health-care products manufacturing and 

result in large MILPs. They present a MILP and an heuristic solution method that uses 

Lagrangian relaxation.  

Goetschalckx et al (2002) extend the problems and approach of e.g. Dogan and 

Goetschalckx (1999) to include more international considerations including tax and 

transfer pricing resulting in a non-convex problem with a linear objective function. The 

bilinear equality constraints are linearised, some by fixing values of variables. A heuristic 

solution procedure is presented which it is observed was highly dependent on the starting 

point and experiments were carried out with alternative procedures for determining the 

starting points. 

Jang et al (2002) describe a system of four modules, model management and data 

management modules which link a supply network design optimization module which uses 

a Lagrangian heuristic and a production and distribution planning module solved which 

uses genetic algorithm which generates real time production and distribution plans. They 

develop mathematical models and solution methodologies for each of these separately. The 

customer demand is deterministic and the problems are considered for a single time period 

and they use a backward planning process, solving the outbound, the distribution and 

finally the inbound sub-problem. 

Kallrath (2002) describes a multi-facility production network problem in the chemical 

industry with facility selection, allowing both opening and closing of facilities. They 

include nonlinear pricing structures for the purchase of raw materials and multi-criteria 

objectives. Production facilities have operating modes which can be changed once per time 

period.  They solve several deterministic problems to compare different scenarios and 

perform sensitivity analyses. 

Aghezzaf (2005) describes a strategic capacity planning and warehouse location problem 

with demand uncertainty and a solution method that uses a decomposition algorithm using 

a Lagrangian relaxation method. The problem is given as a MILP formulation. Their 

proposed decomposition algorithm does not seem to provide much reduction in the 

solution gap or solution time.
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Aghezzaf 2005 Y Y Y Y Y Y X X Y X X X X X X X Y X X 
Bidhandi et al 2009 Y X Y Y X X X X Y X Y X Y Y X X X X X 
Bidhandi & Yusuff 2011 Y X Y Y X X X X Y X Y X Y Y X X Y X X 
Canel et al 2001 Y Y Y Y Y Y X X Y X X X Y X Y X X X X 
Cohen & Lee 1988 X Y Y X X X X X Y X Y Y Y Y Y X Y X X 
Dogan & Goetschalckx 1999 Y Y Y Y X X Y X Y Y Y Y Y X X X X X X 
Fleischmann et al 2006 Y Y Y X X X Y Y X X Y X Y Y X Y X Y X 
Georgiadis et al 2011 X Y Y Y X X X X Y X X Y Y X X X Y X X 
Goetschalckx et al 2002 Y Y Y Y X X Y X Y Y Y Y Y X X X X Y Y 
Guillen et al 2005 Y Y Y Y Y Y X X Y X X Y Y X X X Y Y X 
Gupta & Maranas 2003 X Y Y X X X X X Y Y X Y Y Y Y X Y X X 
Hinojosa et al 2000 Y Y Y Y Y Y X X Y X X X Y X X X X X X 
Hinojosa et al 2008 Y Y Y Y Y Y X X Y X Y Y Y X X X X X X 
Hugo & Pistikopoulos 2005 Y Y Y X X X Y Y Y X X X Y Y X X X X X 
Hung 2006 X Y X X X X X X X X Y Y Y Y Y X X X X 
Jang et al 2002 X X Y Y X X X X Y X Y X Y Y X X X X X 
Jayaraman & Pirkul 2001 X X Y Y X X X Y Y X Y X Y Y X X X X X 
Jiao et al 2009 X X Y X X X X X Y X X X Y Y Y X X X X 
Jung et al 2008 X Y Y X X X X X Y X X Y Y X X X X X X 
Kallrath 2002 Y Y Y Y Y Y Y Y Y Y X Y Y Y Y X X X X 
Ko & Evans 2005 Y Y Y Y Y X X X Y X X X Y X X X X X X 
Lejeune 2006 X Y Y Y X X X X Y X Y Y Y Y X X X X X 
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Listes & Dekker 2005 X X Y Y X X X X Y X X X X X X X Y X X 
Martel 2005 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y X X X X 
Melachrinoudis 2000 Y Y Y Y X X Y Y Y X X X X X X Y X X X 
Melo et al 2005 Y Y Y Y Y Y X X Y Y Y Y Y X X Y X X X 
MirHassani et al 2000 Y Y Y Y Y Y Y Y Y X X X Y X Y X Y X X 
Mirzapour 2011 X Y Y X X X Y Y Y X Y Y Y X X X Y X X 
Ouhimmou et al 2008 X Y Y X X X X X Y X Y Y Y Y X X X X X 
Perron et al 2010 X X X X X X X X Y X Y Y Y Y Y X X Y Y 
Sabri & Beamon 2000 Y X Y Y X X X X Y X Y X Y Y X X X X X 
Saldanha da Gama 1998 X Y X Y Y Y X X X X X X X X X X X X X 
Salema et al 2007 Y X Y Y X X X X Y X X X Y X X X Y X X 
Santoso et al 2005 Y X Y Y X X Y X Y X Y X Y X X X Y X X 
Sodhi & Tang 2009 X Y Y X X X X X X X Y Y Y X X Y Y X X 
Srivastava 2008 X Y Y Y Y X X X Y X X X Y X X X X X X 
Thanh et al 2008 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y X X X X 
Timpe & Kallrath 2000 X Y Y X X X Y Y Y Y X Y Y Y X X X X X 
Tsiakis et al 2001 Y X Y Y X X X X Y X X X Y X X X Y X X 
Ulstein et al 2006 Y Y Y Y Y Y Y Y Y X X X Y X X X X X X 
Vidal 2001 X X X X X X X X Y X Y Y Y Y Y X X Y Y 
Vila et al 2006 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y X X Y X 
Yan 2003 X X Y Y X X X X Y X Y X Y Y X X X X X 

Table 2-1 – Supply chain features documented in papers
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Canel et al (2001) describes an algorithm for solving a deterministic capacitated multi-

product multi-period and multi-stage facility location problem. The approach makes 

extensive use of the known structure of the problem to simplify the solution process, which 

is in multiple phases. Firstly finding which facilities must be open or closed throughout the 

full time horizon of the problem. Then using a branch and bound procedure to repeatedly 

solve the single time period facility location problem to generate a set of candidate 

configurations of the sets of facilities. Finally dynamic programming is use to select one of 

the facility generated configurations for each of the time periods in order to minimise cost.  

Guillén et al (2005) describes a stochastic multi-echelon supply chain problem with 

multiple products and multiple time periods. A multi-objective two-stage stochastic 

optimisation approach is used. Consideration is given to the financial aspects, including 

interest rates, tax rates, depreciation, capital investments, fixed costs and indirect expenses. 

The multiple objectives include maximising net present value, maximising demand 

satisfaction and minimising financial risk. The authors perform extensive analysis of the 

impact of choosing the supply chain design from a single scenario compared to the design 

from the stochastic 100-scenario case, showing benefit in terms of improved net present 

value and reduced financial risk from using the design generated by the stochastic 

approach. 

Fleischmann et al (2006) describe a load-planning model for BMW which includes supply 

of materials, three production departments at eight facilities. It determines the investments 

needed for the departments and impact on cash flows. The MILP determines the allocation 

of known production levels to the facilities based on the demands of eight or 10 sales 

regions allowing transport cost and taxes for each to be calculated. The model used cash 

flow before tax, but the authors provide details of four assumptions they would need to 

make to incorporate the approximate tax impact. 

Hinojosa et al (2000) describes a deterministic multi-period multi-product multi-echelon 

capacitated facility location problem, allowing new facilities to be opened and existing 

ones closed. They model flows of products to customers as a fraction of the demands, and 

the amount transported to warehouses as a fraction of the capacity. The authors state that 

the generated MILP models are very large and solving them directly takes a prohibitive 

amount of CPU time, so they present an approach that uses Lagrangean relaxation with a 

heuristic solution construction phase to generate good feasible solutions.  

Hinojosa et al (2008) generalises Hinojosa et al 2000 to include modelling of inventory to 

be carried over from one time period to the next, and outsourcing of materials and products 
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where the supply chain capacity is insufficient. They report that direct solution of the 

MILP problem was faster than their heuristic for the small problems, but that the heuristic 

algorithm was substantially faster for the largest problems even though the solutions 

generated do not appear to be as good as those from the direct MILP solver.  

Hugo and Pistikopoulos (2005) describe a model including life cycle assessment (LCA) 

criteria as part of the strategic investment decisions. The problem model includes multiple 

time periods and multiple products, with a single supplier. The problem is from the 

chemical industry and includes network configuration and capacity planning strategy that 

minimize the environmental impact of the entire supply chain. They describe a six step 

Multi-objective optimisation algorithm.  

Ko and Evans (2007) describe a mixed integer nonlinear programming model for the 

design of a distribution network including reverse logistics for third party logistics 

providers. It includes warehouse and collection facilities. The problem is divided into two 

sub-problems to model the forward and reverse logistics. A genetic algorithm-based 

heuristic is presented. 

Listes and Dekker (2005) describe a stochastic programming approach to extending a 

deterministic location model for product recovery network design, with a case study for the 

recycling of sieved sand including storage and cleaning. They address uncertainty of 

supply and demand of a single product through a three-stage stochastic programming 

model, with location decisions in the first stage, high or low supply being revealed in the 

second stages and the flow decisions made in the third based on seven demand scenarios.  

Melo et al (2005) describe a supply chain planning problem including dynamic planning 

horizon, generic supply chain network structure, external supply of materials, inventory, 

distribution, facility configuration, availability of capital for investments, and storage 

limitations. Capacity expansion and reduction for the distribution centres only are 

addressed by two extensions of the base model where new facilities can be selected and 

remain until the end of the time horizon, similarly existing facilities that are closed do not 

reopen.  The authors provide a table of comparisons with other models.  

Ulstein et al (2006) describes a multi-product, multi-period supply chain planning problem 

in the high-quality metals manufacturing industry, specifically silicon and related products. 

The model makes an explicit distinction between the facilities and the machinery installed 

at each facility. Complex products and processes mean that some products need specific 

equipment and experience at the facility, and there are complex relationships between 
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customers and products (a customers could even specify a particular furnace for a specific 

product). 

Salema et al (2007) describe single and two product reverse distribution network with 

capacity limits and demand and returns uncertainty. A mixed integer formulation is 

developed. They extended the model to include minimum and maximum capacity 

constraints for each type of facility, which due to constraint redundancy reduces the model 

size, and then extend this to a three-scenario model. 

Santoso et al (2005) describe a supply chain planning problem with multiple products, 

multiple echelons, and configuration of the machines and equipment at each facility. They 

present an initial deterministic MILP formulation of the problem and description of a two 

stage stochastic programming model, with a first stage facility selection and configuration 

and second stage tactical decisions. They use a sample average approximation (SAA) 

scheme to allow them to take potentially very many scenarios into consideration, and 

provide a detailed discussion of the characteristics of this scheme. They solve this problem 

using a Benders decomposition scheme with various additional acceleration schemes used 

singly and in combination.  

Srivastava (2008) describes an integrated holistic conceptual framework for network 

design for reverse logistics that combines descriptive modelling with optimization 

techniques at the methodological level. The model is a multi-product, multi-echelon, profit 

maximizing model for the recovery of televisions, cars, refrigerators, washing machines, 

mobile phones and computers. The demand uncertainty in this case is the likelihood of 

products being taken to a recovery centre. 

Sabri and Beamon (2000) describe a single-period multi-objective four echelon supply 

chain model. The focus on operational performance, such as service levels, inventory 

levels and lead times. They split their problem into a strategic sub-model that optimises the 

set of facilities that will be used, and an operational sub-model that includes the 

uncertainty and non-linearity of variable production, distribution and transportation costs. 

The two sub-models were solved alternately, starting with the strategic sub-model. Finally 

the authors performed some sensitivity analysis by fixing or varying the bounds on volume 

flexibility, delivery flexibility and/or customer service levels. 

Vila et al (2006) describe a supply chain planning problem in the softwood lumber 

industry. The BOM is a divergent with one-to-many relationships starting with trees and 

generating many products. The facilities are configurable, including the selection of the 
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technologies and seasonal shutdowns are included. A mixed-integer program with after tax 

profit objective function was generated.  

Bidhandi et al (2009) describe a deterministic single period four-echelon supply chain 

network problem. The model is split into two parts, covering the strategic and tactical 

decisions. They use Benders’ decomposition, with the strategic decisions in the master 

problem and the tactical decision in the sub-problem.  

Bidhandi and Yusuff (2011) extend their earlier work to include planning under 

uncertainty using a two-stage stochastic program. The first stage includes the strategic 

decisions of facilities selection and the second stage the tactical decisions of processing 

and transportation. Uncertainty is included for operational costs and customer demand. 

They use the SAA (Sample Average Approximation) method, using Bender’s 

decomposition to solve the MIP generated.  

Gupta and Maranas (2003) describe a tactical multi-site, multi-product and multi-period 

supply chain planning problem with uncertain demands. The authors describe a two-stage 

stochastic programming model, where the manufacturing decision variables are considered 

as the first-stage here-and-now decisions while the logistics, inventory and transport 

decisions are modelled as second-stage wait-and-see decisions, given the production levels 

and demand realisations for each product.  

Mirzapour Al-e-Hashem et al (2011) describe a multi-site, multi-period, multi-product 

production planning problem under uncertainty. Their model is a multi-objective mixed 

integer nonlinear programming model including uncertainty in both costs and demands. 

They transform this to a multi-objective linear problem and the multiple objectives are 

handled by optimising each objective separately and then formulating a new objective 

function that minimises the total normalised deviation from the optimal value for each 

objective. They also account for uncertainty in the data through the use of robust 

optimisation techniques, solving over a set of discrete scenarios. They include the costs of 

hiring, firing and training workers in the model.  

Jung et al (2008) describe a negotiation model for tactical planning. The model involves a 

producer and a distributer, and there is incomplete exchange of information. The distributer 

is trying to meet a known demand, and the producer making best decisions about where to 

sell their products.  The negotiation process is to determine supply quantities when the 

price is set by local markets. The objective is to improve the profit for both partners, with 

iterative optimisation steps taken on both sides, starting with the distributer. The model is 
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multi-period, with both the distributer and the supplier having multiple facilities with 

transfers and inventory. 

Lejeune (2006) describes a deterministic three-stage multi-period supply chain planning. 

The three stages are suppliers, production and distribution. A solution algorithm based on a 

variable neighbourhood decomposition search metaheuristic is used, with increasingly 

large neighbourhoods. The integrality requirements on some of the variables in the 

problem are relaxed; CPLEX is used to solve the sequence of sub-problems with 

increasing numbers of the integrality requirements enforced; hence the integrality of the 

initial relaxed solution is incrementally increased.  

Ouhimmou et al (2008) describes a tactical multi-product, multi-period, multi-echelon 

supply chain planning problem for the wooden furniture industry. The problem was 

formulated as a MIP which was then solved with both CPLEX 9.1.2 and a time-

decomposition heuristic that solves for increasing time horizons while fixing the decision 

variables for earlier time periods.  

Sodhi and Tang (2009) describe the extension of a deterministic multi-period supply-chain 

planning problem to include demand uncertainty and cash flows, the focus on inventory 

costs and cash flows and the tactical production plan is not scenario dependent. They 

discuss the role of decomposition, aggregation and scenario sampling in solving these. 

Thanh et al (2008) describe a MILP model for a strategic deterministic multi-echelons, 

multi-periods supply chain planning model with inventory, multiple suppliers, and BOM. 

The authors suggest several directions for further research including the addition of budget 

constraints in the problem and the use of decomposition and metaheuristics to solve larger 

instances. 

Yan et al (2003) describe a single-period multi-product multi-echelon supply chain model 

with supplier and facility selection and BOM. There is also a lot of discussion of how to 

model the logical relationships inherent in many BOM relationships, and how these can be 

linearised.  

Cohen and Lee (1988) describe a model framework for a stochastic multi-product, multi-

echelon tactical/operational supply chain planning problem with BOM. There is an 

extensive discussion of the stochastic modelling required, and they note that minimising 

the costs of the whole supply chain would be the ideal approach but that this was 

computationally infeasible (in the late 1980s). Instead they decompose the problem into 
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four linked sub-models (material control, production control, finished goods stockpile and 

distribution) which are then solved in sequence.  

MirHassani et al (2000) describe a stochastic multi-period, multi-product supply chain 

network planning problem. The problem is decomposed into the strategic “here and now” 

decisions and the tactical “wait and see” decisions. Two approaches were taken for solving 

the problem. First a detailed scenario analysis was carried out, evaluating a range of 

strategic “here and now decisions” by solving the tactical “wait and see” models for many 

scenarios. Secondly a two-stage stochastic programming formulation was solved using 

Benders decomposition, while fixing the strategic decision variables to the values found in 

the earlier scenario analysis.  

Tsiakis et al (2001) describe a MILP model for a single-period, multi-product, multi-

echelon supply chain network problem with fixed manufacturing facilities and customers, 

and dynamic location of warehouses and distribution centres.  

Georgiadis et al (2011) describe a stochastic four echelon, multi-product, three-period 

supply chain network planning model. The plant and customer locations are fixed, whilst 

the locations and capacities of the warehouses and distribution centres are to be decided by 

the model, but those decision are identical throughout the planning horizon. Tactical 

decisions can be reconfigured in each of the three time periods and for each scenario  

Melachrinoudis  and Min (2000) addresses the problem of relocating a single facility 

within a current network. It describes a case study of a firm which plans to move its current 

manufacturing and warehousing facility within the USA. They describe the multi-period, 

multi-echelon, single-product, multiple objective, MILP model. Transport costs are 

included, but no supplier selection, allocation to customers or facility configuration is 

considered. Unusually, the demand per customer is dependent on the choice of new facility 

location.  

Saldanha da Gama and Captivo (1998) describe a dynamic multi-period facility location 

problem which includes opening and closing costs. This is not a supply chain problem; 

rather it is a more general facility location problem that would be suitable for other 

problems such as choosing school locations. The facilities are all identical and demand to 

be met by each facility is based upon the cost of meeting the demand of one or more 

communities from that facility. They use a two-phase heuristic approach. The first phase 

starts with all facilities open in all time periods and removes them one time period at a time 
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whilst maintaining feasibility. The second phase is a local search which allows a single 

switch in facility opening variables in each step.  

Martel (2005) gives a very detailed description of a model for multi-period, multi-product, 

multi-echelon supply chain planning. The problem model includes configuration and 

layout decisions for the facilities. The modelling of the inventory throughput functions 

gives rise to non-linearities in the model. They solve successive linear MIP problems with 

added cuts to strengthen the formulation. The approach did not try to achieve an optimum 

solution: “…rather, it is perceived as a practical scenario improvement method based on 

reasonable approximations of the inventory-throughput functions”.  

2.5 Literature summary 

The existing literature includes a very large number of papers describing variations of the 

supply chain planning problem. However, when a more detailed analysis is done, many of 

the published papers focus on specific aspects of the supply chain planning problem and do 

not include the range of issues addressed in this thesis; for example, many papers are 

focussed on tactical and/or operational decisions and do not include strategic issues of 

supply chain design and configuration. 

Table 2-1summarises the results of the literature review above. The most directly relevant 

(40 in total) have been classified under a set of headings to try to identify what they 

address. 

Table Headings: 

• Strategic and tactical – whether the model supports both strategic and tactical 

decisions at the same time 

• Multiple period – does the model support multiple time periods, or just a single 

time period 

• Facility assignment – allocating of production, storage or other function to a 

facility 

• Facility selection – solving the location selection problem of where to put 

facilities, usually from a finite set of discrete choices 

• Facility commissioning – opening of new facilities during the planning horizon, 

after the start 

• Facility decommissioning – closing of existing facilities during the planning 

horizon, after the start 
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• Facility configuration is the issue of whether the capabilities at a facility also need 

to be decided. At a minimal level this may be deciding the capacity for each 

product at a facility, or more generally (as in this thesis) the decisions on what 

equipment (e.g. production, packing lines, storage) should be installed at a facility. 

Specifically this refers to the internal configuration decisions at a facility rather 

than the overall supply chain network configuration 

• Facility reconfiguration Changes to facility configuration during the planning 

horizon but after the start 

• Routing Inter-echelon – does the model include transport decisions between 

facilities in different echelons 

• Routing intra-echelon – routing within an echelon. Most published papers assume 

all transport and transfers of products and materials are from suppliers to plants, 

plants to warehouse etc., and do not allow transfer of e.g. intermediate products 

between production plants in the same echelon 

• Multiple suppliers – does the model include selection decisions between multiple 

suppliers, or are they assumed fixed either explicitly or implicitly (not mentioned) 

• Inventory – does the model include inventory decisions, such as how much 

material or product to store and where to store it 

• Multiple products – does the model include multiple products 

• BOM refers to modelling of the bill of materials relationships, e.g. the consumption 

of sub-assembly intermediate products to produce a final assembled product. In 

general this can feature either convergent (assembly of several intermediate 

products) or divergent (sawing of timber, paper deckling), one-to-one or a 

combination. 

• Multiple facility production is the issue of production of a final product being 

carried out in multiple stages at multiple facilities, e.g. manufacturing sub-

assemblies at one facility before transport to another facility for final assembly. 

• Investment budget refers to constraints on what facilities can be opened or closed 

and what configuration changes allowed due to a limited budget during each time 

period. Most published papers do not directly limit the changes to the supply chain 

network structure in this way. 

• Stochastic data – is the data assumed to be fully known in advance, or is there 

modelling of uncertainty with multiple scenarios and/or stochastic data 

Several interesting observations can be made from this analysis of the published literature.  
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• The most common shared feature is the allocation of production and/or storage to 

facilities. Only one paper did not do this and that was more related to service 

provision such as school location. 

• The second most common feature is consideration of the routing decisions between 

the echelons in the supply chain – all but three of the papers include this. In 

contrast, only 9 of the papers seem to model transport within an echelon. 

• Almost all the papers identified feature multiple products (36 papers out of 40). 

However only 18 of the papers include modelling of the bill of materials 

relationships; and only 9 support the transfer of intermediate products between 

facilities to allow a product to be made in stages at multiple sites. 

• 75% of the papers include the selection of facility locations (opening new sites). 

However, only 15 of the papers allow the opening of facilities at an intermediate 

time period during the planning horizon rather than at the start, and fewer still (13) 

allow closure of facilities during the planning horizon rather than at the start. 

• Most of the papers (29) cover multiple time periods, allowing changes in costs, 

demands etc. The others are mostly single time period models or steady-state 

models, often associated more with tactical or operational decisions than strategic 

decisions. 

• Only 18 of the 40 papers address the issue of inventory, which is perhaps 

surprising. 

• 14 of the papers model the internal configuration of the facilities at some level, 

from simplistic (capacity can vary) through to more detailed (choice between types 

of production line technologies with different costs, throughputs etc). 

• 13 of the papers address the issues of uncertainly, either through multiple scenarios 

or use of stochastic programming techniques. The other 27 papers deal with 

deterministic data where the costs, demands etc are all known. 

• Only 4 of the papers address the issues of budget constraints which limit the 

changes that can be made to the supply chain network. 

• Solving Techniques 

2.5.1 MILP 

By far the most common technique for solving supply chain planning problems is the use 

of a mixed integer linear programming (MILP) solver. There are a number of commercial 

and non-commercial MILP solvers, and the better-known commercial solvers are now very 

powerful and capable of solving a variety of large MILP problems. A necessary restriction 
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for solving large problems in reasonable time is to keep the objective and all the 

constraints linear; this is not usually a problem as most relations are inherently linear, but 

means that to include some constraints or objectives, linearization methods or 

approximation may have to be used. (Williams 1990, McKinnon and Williams, 1989, Yan 

and Hooker 1999)  

Since many of the supply chain planning problems modelled with MILP techniques create 

MILP problem instances which are large and hard to solve, a number of authors have used 

additional techniques to accelerate the solution process, notably decomposition techniques 

like Benders’ decomposition (Benders 1962, Bidhandi 2011). Another approach to 

decomposition uses a “natural” decomposition into sub-problems, such as the Alternate 

heuristic (Cooper 1964) which alternately solved the location and allocation components of 

a combined location-allocation problem. The same approach has been extended to tackle 

bi-linear problems by alternately solving linear sub-problems while fixing the other part of 

the overall problem (Vidal and Goetschalckx 2001, Perron et al 2010). 

2.5.2 Constraint Programming 

Constraint programming is a powerful modelling and problem solving technique. It has the 

advantage over MILP modelling in that it has no reliance on ensuring that the model is 

linear, so almost any arbitrary logical or non-linear constraint can be directly modelled. 

Many of the principles used for MILP modelling will also apply when implementing a 

constraint programming model, but the ability to directly model more complex 

relationships means that the model is often more compact, without needing to add auxiliary 

variables and constraints to model non-simple parts of the problem (Smith et al, 1996). The 

disadvantage for solving these problems is that the mathematical techniques underlying 

these constraint solvers are inherently much weaker than those which underlie MILP 

solvers, and it is common to have to code significant parts of the search process in order to 

achieve good levels of performance. Even then, finding an optimal solution and proving 

optimality can be very difficult. 

Jiao et al (2009) address a factory loading allocation problem (FLAP) for the case of single 

period, deterministic multi-site, multi-echelon, multi-product supply chain planning 

problem manufacturing. They address the problem of ‘configuration’ of a supply chain in 

terms of allocating which families of products will be processed at each site. The authors 

discuss issues of complicating constraints which they claim may be important to correct 

modelling of all the necessary relationships in the problem and which cannot be easily 

represented in a linearised formulation. Hence they formulate their problem as a constraint 
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satisfaction problem, and solve it using constraint heuristic search (CHS) and a decision 

propagation structure (DPS). They only attempt to find feasible solutions rather than 

optimal solutions. The approach is illustrated on a problem with two product families, two 

sub-assembly facilities and four final assembly sites. This appears to be only a 

tactical/operational single time period problem, and no computational results are presented. 

2.5.3 Local and Neighbourhood Search Heuristics 

Local and Neighbourhood search heuristics are a powerful technique. These rely on the 

idea that, given a solution to a problem, then there is often a better solution to that problem 

that can be found “near” to that known solution. Conceptually, a “neighbourhood” about 

the current solution is defined, i.e. the set of solutions that can be reached from the current 

solution by making small changes to that solution. The neighbourhood is explored for a 

better solution and the processes repeated, defining a new neighbourhood around the new 

current solution. A sequence of improving steps, moving from one solution to the next, 

will converge to at least a local optimum. If no improving solution can be found in the 

neighbourhood, we can change the neighbourhood (e.g. enlarge it, or change how the 

neighbourhood is defined). The solution search process can also be allowed to accept non-

improving moves to escape the (supposed) local optimum. Techniques such as simulated 

annealing (Kirkpatrick et al 1983) and tabu search (Glover 1989, Glover 1990) have been 

developed to manage the acceptance of non-improving steps to help the search escape from 

local optima. 

Perron et al (2010) model a multi-echelon multi-product supply chain planning problem 

which includes transfer pricing and which leads to a bi-linear mathematical model. They 

solve it using both the Alternate heuristic (Cooper 1964) and Variable Neighbourhood 

Search (VNS) (Mladenovic et al 2003). The approach taken in this work is most closely 

related to Large Neighbourhood Search.  The term Large Neighbourhood Search seems to 

have originated in Shaw 1998 for solving vehicle routing problems with constraint 

programming and local search. 

Ahuja et al (2002) is a review of very large-scale neighbourhood (VLSN) search 

techniques, but focuses more on the use of move-based neighbourhoods rather than 

implicit method-based neighbourhood definitions. 

Pisinger and Ropke (2010) gives a good recent overview of the field of large 

neighbourhood search, which they identify as being a sub-class of VLSN search but which 

doesn’t fit well into the three categories identified by Ahuja et al (2002)
.
 They characterise 
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the LNS technique as an iterative sequence of destroy and repair operations on parts of the 

solution. Similar approaches have also been called “Ruin and Recreate” (Schrimpf et al 

2000). 

Caserta and Voß (2009) provide another review of a wide variety of metaheuristics 

including several approaches similar to VLSN and LNS. 

Taillard and Voß (2002) describe the POPMUSIC conceptual framework for local search 

by iterated partial optimisation of sub-problems which can be defined as large 

neighbourhoods. The approach uses a particular scheme to ensure that all sub-parts of the 

overall problem are covered and prevent re-visiting the same neighbourhood. 

Sniedovich & Voß (2006) describe the corridor method which performs a LNS using a 

method-based neighbourhood definition, implementing the neighbourhoods by adding 

constraints to fix the values of (most of) the variables in the problem. 

There has been considerable work on scheduling problems. Applegate and Cook (1991) 

describe the use of a shifting bottleneck heuristic to solve job-shop scheduling problems. 

Danna and Perron (2003) compare the use of structured and unstructured neighbourhoods 

for job-shop scheduling problems, and show that using the problem structure to guide 

neighbourhoods gives better results. The introduction gives a particularly clear explanation 

of the LNS approach. Perron et al (2004) describe the use of information from constraint 

propagation to automatically select good neighbourhoods to explore. Godard et al (2005) 

use information from the current solution in terms of a partial order schedule to select 

neighbourhoods to search for cumulative job-shop scheduling problems. Carchrae and 

Beck (2005) use a measure of the likely impact on the overall objective to define cost-

based neighbourhoods to explore for a scheduling problem. Laborie and Godard (2007) 

describes a self-adapting LNS approach for scheduling problems. They use a portfolio of 

neighbourhood definitions within a LNS framework with ideas from machine learning to 

automatically converge on the most effective neighbourhoods for each problem to give a 

robust scheduling algorithm. Cipriano et al (2009) used a local search library 

(EasyLocal++) with constraint programming (Gecode) to build a hybrid LNS solver for an 

asymmetric TSP, and report that even simplistic random neighbourhoods significantly 

outperform the pure CP approach. All of the above apart from Applegate and Cook (1991) 

used a constraint-programming approach. 

Thompson and Orlin (1989) and Thompson and Psaraftis (1993) describe the use of large 

and complex neighbourhood definitions for vehicle routing problems which perform cyclic 
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transfers of parts of the solution between multiple routes. Pisinger and Ropke (2007) 

describe an adaptive LNS which performs well on a large number of benchmark problems 

of several different types, by using a portfolio of neighbourhoods which are selected 

automatically. He and Qu (2009) describes an approach similar to that used by Perron et al 

(2004) to help guide the selection of neighbourhood using constraint propagation, and 

compare results with simpler structure-driven neighbourhoods for the nurse rostering 

problem. 
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3 Problem Representation  

In this chapter, the Supply Chain Planning Problem (SCPP) is discussed and analysed, and 

a common set of terms, entities and relationships are defined that can be used to describe a 

wide range of supply chain planning problem instances. This abstract framework has been 

created so as to avoid dependence on any specific industry or type of product or process in 

order for it to be generic and flexible. It also does not make reference to or use any 

particular mathematical solver or algorithm, or any particular mathematical representation 

or technology. It will then be shown that this abstract conceptual model for SCPPs can be 

implemented in a reasonably direct manner as a mathematical model, and also as a 

database schema and as an object-oriented model. 

In order for modern optimisation techniques to be made practically available for 

widespread use in commerce and industry, it is important that the initial implementation 

costs and timescales are kept as small as is practically possible. One way to achieve this is 

to standardise on the modelling approach and the supporting tools so that as much as 

possible of the necessary structures and algorithms are available with minimal cost and 

delay. Another benefit of this approach of standardising the terminology and modelling 

approach is that it becomes possible to more directly compare different SCPPs and SCPP 

instances since they can be put into the same representation; and where a SCPP or instance 

cannot currently be represented, that too gives us a better understanding of where and how 

those problems differ and what extensions would be required to include them. 

It is important that a Generic SCPP model incorporate common features seen in supply 

chains, but to avoid hard coding features that are specific to any particular supply chain in 

a way that may lead to the exclusion of other supply chains problems. We aim to 

demonstrate that the SCPP model devised is problem independent and stable in the face of 

changes to the problem instance, mathematical model or underlying solver. 

We describe a conceptual model for the SCPP. Since an abstract conceptual model is only 

a theoretical entity, we also show how the conceptual model can be implemented in terms 

of: 

• a mathematical model suitable for solving using a mathematical modelling tool 

• a relational database schema,  

• an object-oriented model suitable for implementation in C++ or Java 
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Actually several different mathematical models are generated which are shown to be able 

to solve several different problem instances consistently using several different solution 

methods (MIP, CP, Neighbourhood Search). 

In addition we show how this generic model can be made accessible to those with both 

simple and complex problems, by making the views of the data applicable to the problem 

instance. 

3.1.1 Problem Characteristics 

In the literature review a list of key features of supply chain planning problems were 

identified. The problems addressed in this thesis have the following characteristics:   

• Strategic and tactical decisions solved together 

• Site (facility) selection together with assignment of production and routing for each 

product 

• Facilities with one or more different functions with a choice of different equipment 

• Multiple products 

• Complex products which can have multiple raw materials, parts or partial products 

which need to be combined or assembled at each stage 

• Complex multi-stage processes that can be split across sites 

• Multiple echelons, including suppliers, production/manufacturing/assembly, 

packaging, storage and customers 

• Complex routing within and between each echelon 

• Multiple suppliers for each facility and customer 

• Inventory handling 

• Investment budgets, fixed and variable costs for facilities 

• Facilities can be opened or closed just once in the planning horizon, with some 

modelling of ramp-up of availability after each facility is opened 

• Stochastic data handled through multiple scenarios; optimising the strategic 

decisions across multiple scenarios for robustness 
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3.2 Conceptual Model 

Our conceptual model describes the supply chain and the supply chain planning problem in 

terms of some well-defined entities, based upon the concept of transformation processes. 

The model is dependent on a set of underlying dimensions, the detail of which changes the 

strategic and tactical balance of the problem. They allow the description of what is 

transformed, where and when; and of the flows between these points of transformation.   

The main entities in the conceptual model are what is transformed which we will refer to as 

products, these may include raw material and intermediate parts and product, packaged, 

unpackaged, unfinished goods, etc. The products are transformed in facilities and an 

additional level of detail is added within the facilities, referred to as a technology which 

allow the detail of not only production lines, but of storage space, human resources etc. 

which process the products to be modelled. The other dimension is the time periods, which 

defines the time horizon and the level of detail in which the planning is required to take 

place. These provide the main dimensions of the model. 

 

Figure 3-1 - Dimensions of the Model 

The flow of products within the framework is described by  

• the products, 

• the facilities and technologies, 

• the time periods, 
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Figure 3-2 - Flow of Products 

At the facilities these flows are driven by the need to meet the demands for each product at 

customer facilities in each time period. The flows of the products in the generic model are 

described by: 

• the transformations of products at the facilities in each time period,  

• the transfer of products, from supplier facilities into the system,  

• the transfer of products between facilities  

• the transfer of products to customer facilities.  

3.2.1 Model Framework 

3.2.1.1 Products 

Products range from the initial raw materials that enter the supply chain, through the 

intermediate products that are moved within the supply chain, to the final products that 

leave the supply chain. Products may all be considered separately or grouped, changing the 

level of tactical detail that is described within the model. In some cases products within 

one area of the business or trading area may be considered separately to the rest of the 

supply chain, drilling down to the detail in just one or more aspects of the products. 

3.2.1.2 Time Periods 

The chosen time periods determine the granularity of the model, the timescales within 

which events are modelled. The chosen length of the time periods changes whether the 

model is strategic, tactical or operational, with shorter timescales typically providing a 

more operational planning model, through levels of tactical planning to long timescale 

strategic planning models. 

Transformations

Inputs

Outputs

Transfers

Transformations

Inputs

Outputs

Transfers
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The length of the time periods do not need to be uniform enabling longer later time periods 

as well as being able to look in greater detail over some period of time, allowing drilling 

down to the details of the model in this dimension in a similar manner to the other 

dimensions. 

3.2.1.3 Facilities and Technologies 

Facilities include the sites at which transformation of products takes place, along with the 

end point facilities, the customers’ facilities, where the products leave the supply chain and 

the start point facilities, the supplier facilities, where the raw materials and intermediate 

products enter the supply chain.  

A supply chain problem may be more directed to facility location or to configuration 

depending on the facility and technology decision included. The separate decisions for 

technologies allow the configuration to change over time. 

Technologies provide the means of describing the detail within a facility, allowing the 

modeller to include decisions about equipment and infrastructure. Examples of real life 

items within a facility that will be modelled by technologies are production processes such 

as: 

• Batch processes such as brewing or smelting 

• Factory production lines 

• Packaging and sorting 

• Warehousing and human resources at a distribution centre 

Even when a specific technology is not required to carry out processing within a facility 

there will be specific costs associated and capacity limitations as products pass through 

facilities and technologies allow these to be modelled. The detail with which the 

technologies are modelled within the facilities controls the amount of tactical detail that is 

included.  

Most models include a rigid network structure with a set number of echelons often 

modelling suppliers, factories, warehouses and customers. 

3.2.1.4 Demands 

This is the amount of each product that the customers are expected to purchase. Along with 

this is the required price that it is expected they will pay for the products. This is data 
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which must be forecast, and by considering a range of different forecasts it is possible to 

incorporate risk models into the generic framework.  

3.2.1.5 Transformations  

Following a product from its raw material requirements through to the finished product, it 

goes through a series of transformations. It is common to have a BOM (Bill of Materials) 

to describe these and it can be encoded by the use of predecessor products that are required 

for the production of a product. Each transformation will require the use of a technology of 

a specified type, each of these technologies will usually have limited capacities and may 

only be available in certain facilities. The cost of transformations can then be modelled via 

the cost of providing the technology that carries out the transformation. Technology 

capabilities at facilities, may be added or removed, and some technologies may have 

limited lives. Products may also be transferred from one facility to another. 

Transformations and transfer of products will both incur costs.  

This description of production allows for a significant amount of flexibility. The simplest 

production case will be when a single product is processed into another single product 

directly, but more complex flows can also be described, for example cases where a number 

of products are required to produce the next stage product.  

 

Figure 3-3 - Flows with Multiple Predecessor Products 

These sorts of transformations would be found in a situation such as packing boxes of a 

product, although if the consumption of packaging material was also to be included this 

would be a required predecessor product too. 

This more complex system of transformation, not only would be able to describe a simple 

transformation such as packaging including the packing materials, but the assembly of 

complex products from a variety of predecessor products.  
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Products can also be produced by splitting a single predecessor product into multiple 

resulting products.  

 

Figure 3-4 - Multiple Successor Products 

These transformations may produce a set of products which may be identical or different. 

A combination of these transformations allows the description of complex sequences of 

processes, with some processes combining products and some splitting them that may be 

required to describe the production processes in many places.  

Non-concrete products, such as energy requirements, can be included in these 

transformations in the same manner; this can be used when energy is consumed within the 

supply chain, but also if energy is an output too. This may become an issue of greater 

importance when companies may be distributing energy by products, as environmental 

pressures mount for what has previously been considered a waste product to be recycled. 

3.2.1.6 Transfers 

This is the transportation of products within the supply chain, between facilities and from 

facilities within the supply chain to the customers. Facilities may have different 

technologies available and products may be required to go through several facilities in 

order to be transformed into a final product. Some supply chains will be able to perform 

the same transformations at different facilities and modelling of these alternative routes of 

production allows investigation of the efficiency of such transfers of products. Examples of 

these types of transfers may be between factories and distribution centres, or different 

production stages such as production of paper and cutting it or production of metal slabs 

and the casting and machining that may follow, which will commonly be undertaken at 

different facilities. 

Each possible transfer route would be described in the data model, allowing a balance 

between production, consumption, and transfer in and out of a facility to be maintained. 

Also each transfer would have an associated cost.  
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3.2.1.7  Additional Detail 

In order to avoid replicated data, several of the entities have additional higher-level entities 

allowing grouping of lower-level entities and allowing additional details to be added at that 

level, without altering the main structure of the conceptual model.  

In the datamodel implementation description we discuss our choices of these types, some 

of which have been chosen to be modelled by using separate database entities and others 

which are described by the specification of different types where the differences are solely 

in the problem instance data describing the types, for example Facility or Technology 

types. 

3.2.1.8 Facility Detail 

Types of facilities that are included in supply chains are suppliers, customers and those of 

the supply chain under consideration, which include factories, warehouses, distribution 

centre, etc. There may be further categorisation within each of these groups, for example 

facilities that are currently in use and potential facilities. These provide a hierarchy that can 

be useful in constructing models. 

 

Figure 3-5 - Facility Detail 

3.2.1.9 Other Entity Detail 

Similarly, other entities may need categorisation and benefit from using different type 

descriptions within either the data model or the mathematical model. For example 

technology types may require different types for the technologies that carry out 

manufacturing, assembly or packing of products.  
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Product details required may vary, for example between raw materials, outsourced 

products, intermediate products, packaging materials and final products.  

 

Figure 3-6 - Product Detail 

3.2.1.10 Relationships between the Entities 

There are clear relationships between the main entities in the generic model. The following 

diagram (Figure 3-7) gives an overview of these main entities and what can be considered 

the main relationships between them that underpin the generic model.  

 

Figure 3-7 - Entity Overview 

The Facilities house the technologies, which in turn produce products which are supplied 

to another facility, this may be one that further processes a product or an end point 

customer facility. 
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3.3 Problem Specification within the Generic Framework 

The generic model was built using the conceptual model described previously, in order to 

facilitate easy encoding of problem instances by supply chain planners or analysts.  

The data required to fully describe a Supply Chain can be divided into two categories: 

The problem instance data which defines the Supply Chain infrastructure. This is typically 

the factories, warehouses, supply routes and so on, and may include some choices about 

closing existing facilities or opening new ones. Most of this information is usually known 

with relatively high certainty, but some may need to be predicted or forecast. 

The problem instance data that defines supply and demand, prices and costs. This data is 

not known with any certainty, is more prone to variation, and is forecast; it relates to 

decisions at the tactical planning level, but is essential in understanding what effects it has 

on the strategic solution. 

The supply chain infrastructure for the problem instance is defined in terms of the main 

entities within the Generic Model, these are: 

• Facilities (factories, warehouses, distribution centres etc.), 

• Technologies within these Facilities (e.g. production, packing etc), 

• Products produced, 

• Customers who are supplied with the Products from the Facilities, 

• Suppliers who provide the raw materials used in production. 

The tactical planning data would include: 

• Product Demands 

• Production Costs 

• Transportation costs 

This data is not known with any certainty and needs to be predicted or forecast. This can be 

considered as scenario data and for a robust solution to a Supply Chain problem, more than 

one set of this data is likely to be considered.  

3.3.1 Data Model Implementation  

Here we describe in detail the main entities from the conceptual model, and the associative 

entities that link them and how they are implemented in the relational model. The use of 

specialisation and generalisation of entities was discussed in the conceptual model, 
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considering whether these allowed the data model to be better matched to the supply chain 

instances whilst being more efficient, by preventing the duplication of data without 

compromising the generic nature of the model. Both of the strategies have been employed 

in producing the relational model that we have developed.  

There were three clear groups of Facilities that as discussed previously would be better 

modelled with specialised entities. The data requirements of each of these types of 

facilities were clearly different, so the following were modelled as separate entities in the 

relational model that we developed. 

• Supplier Facilities,  

• Facilities belonging to the supply chain problem owner 

• Customer Facilities 

This also led to the specialisation of the relational entities for the transportation of products 

between the supply chain facilities being considered separately from the cost of supply to 

customers and suppliers.  

A simplistic Entity relationship diagram was given in the conceptual model description in 

Figure 3-7, the following diagram shows the relationships with the distinct types of entities 

for the supplier and the customer facilities.  

 

Figure 3-8 - Specialised Entity Overview 
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The following shows the completed Entity Relationship Diagram (ERD) view of the 

generic database that was developed, which is followed with an explanation of each of the 

main entities, and the associative entities linking them. The data fields included below do 

not include the soft information such as names of facilities, customers, products, etc. which 

are included in the database; although these are of great importance to humans in 

interpreting the data and results, they are not important to the functionality of the system. 

This framework also requires the time dimension to be incorporated because the time 

periods underlie all the relationships within the model, as illustrated below. For example 

the Products are supplied to a Supply Chain Facility from a Supplier Facility in a particular 

time period; the cost of doing so may be dependent on the time period in which this 

happens, as well as the product that is supplied and the facility to which it is supplied. The 

framework also allows for a scenario dimension, this allows alternative sets of forecast 

data to be incorporated into the model.  

 

 

Figure 3-9 - Generic Entity Overview 

 

3.3.2 Main Entities 

First we describe each of the main entities in the above model and then consider how the 

relational entities were modelled in the database. 
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Each facility has a unique identifier, facilityId, and a 

facilityTypeId linking it to a FacilityType. The status 

specifies whether the facility is currently open or a potential 

facility that could be used. The capital cost of the site, the 

costs of constructing and the revenue that could be expected 

from the sale of the Facility are given. 

Figure 3-10 - Facility Data 

 

The Facility Type models a group of similar facilities, with the 

same maximum possible capacities, the same time to be set up, 

and the same running and inventory costs. As the percentage rate 

for payment made on the capital investment are the same.   

 

Figure 3-11 - Facility Type Data 

 

Each instance of a technology line is uniquely identified by a 

lineId, specifies which facility the technology is operating at or 

where it can be installed, the status indicates whether it is 

currently operational. Each technology line has technology type. 

Figure 3-12 - Technology Lines Data 

 

The Technology Type contains data about the capital and running 

costs. It also allows the maximum number of this type of lines to 

be the running cost of a line to be specified. 

 

Figure 3-13 - Technology Type Data 

             

Each customer is identified by a CustomerId. An option is 

provided to select whether the customer must be supplied from a 

single source within the supply chain.  
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Figure 3-14 - Customer Data 

Although products are central to supply chain problems and hence form the central thread 

through the groups of data, little information is required about each product, and the only 

field other than the description is the option of specifying the units which the product will 

be measured, which could be a weight, items, bottles, boxes of items or SKUs; we discuss 

later the use of these units in providing visibility of the flow and cost of product through 

the system, and the importance of being able to specify quantities of products in a variety 

of units, in order to provide inbuilt scaling and improve numerical stability of models.   

Most of the data relating to products will be related to the relationships between the 

products, and how they are transformed and transported, and from whom they are obtained 

as raw materials, or to whom they are supplied as finished products. The costs of products 

are all in relation to how much the raw material and equipment to 

produce them cost, the transportation costs given in relation to the 

transport routes in a time period and how much they are sold for 

given in relation to which customer they are sold to and in which 

time period. 

Figure 3-15 - Product Details 

 

Similarly the Supplier entity only describes the suppler without 

any other data. 

 

Figure 3-16 - Suppliers Details 

The Time Periods provide the framework in which the supply chain model instance exists; 

they specify the length of time over which the operation of the supply chain will be 

considered, along with the detail in which it is modelled across this time, the sum of the 

duration of these time periods giving the time horizon for the problem. The time periods 

have a unique identifier, timePeriodId, and an investment amount can be specified to give 

the maximum investment that can be made in each time period on new Facilities and 

Technologies. 
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The duration of the time periods do not have to 

be identical, and there are advantages to be 

gained in modelling if the granularity is varied 

across the time horizon; allowing more detail 

about what will happen in the near future, but 

including a large time horizon without the detail 

and consequent increase in data and mathematical 

model size that would follow if the later part of the horizon were modelled in the same 

detail. 

The scenario entity only has a unique identifier, scenarioId, and a 

description. It allows several sets of data to be specified from 

forecasts, such as customer demands, transportation or production 

cost, or even production rates.   

Figure 3-18 - Scenario Details 

3.3.3 Relational Entities 

Each of these entities is linked in the database by relational entities. We will now describe 

how these have been derived, and how they model the details of the supply chain.  

3.3.3.1 Material Costs 

Consider the relationship between the Suppliers of products, the products which they 

supply, the facilities to which they supply them, the time periods in which this happens, 

and the scenario which is under consideration. This relationship is modelled by the 

Material Costs relational entity, which specifies the cost of a particular Supplier supplying 

a unit of a particular Product to a particular Facility, in a particular Time Period, under a 

particular scenario. There is also a data field for the specification of the units in which the 

product supplied from this manufacturer is measured, allowing visibility of this data to 

help prevent inconsistencies in the data being used. 

Figure 3-17 – Time Period Details 
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Figure 3-19 - Material Cost Data 

3.3.3.2 Technology Throughput 

The relational entity, TechnologyThroughput, provides the data relating to the flow of 

products through a technology. It gives the rate at which a particular technology can 

produce a particular product and the units for this rate can also be stated, which allow the 

users clarity about what the cost data actually means and whether it has been specified 

correctly for the product that is being considered. This cost data is both time period and 

scenario dependent, as well as being dependent on the product produced and the 

technology type being used to produce it. This allows changes that may come about 

because of improvements in production, or changes in working practices, to be considered 

across the time periods or within different scenarios.  

The costing data is not included here but is included in the cost of running the Technology 

of that type, along with the cost of running the Facility, and of any predecessor products 

that will be used in the production. 
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Figure 3-20 - Technology Throughput Data 

 

3.3.3.3 Predecessor Requirements 

As discussed previously the relational entity, Predecessor, provides the information about 

what is used to produce a product. Each product may have more than one predecessor 

product, and different quantities of each predecessor product may be required for each 

product, therefore providing the recipe for the production of the product. The amount of 

each predecessor along with the specified ratio; this gives the number of units of the 

product that are produced from a unit of the predecessor product. This value can be one (ie. 

one unit of the product for each unit of the predecessor); greater than one (ie. several units 

of the predecessor are required to produce a single unit of the product) or less than one (ie. 

several units of the product are produced from a single unit of the predecessor).  

The units are specified for the products, these could be kilos, litres, tonnes, etc. or items, 

which could include bottles, boxes, SKUs etc. This information allows the user to easily 

see that the ratios provided when specifying the predecessor relationships between 

products and its predecessor products, allowing the user to be confident that units are used 

correctly in all the data specification. For example if a product had been specified as being 
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measured in kilos, and the predecessor in tonnes, then the predecessor relationship should 

have a ratio that is specified in kilos per tonne. This may also be of particular use when 

more complex units are required to be used through the evolution of an end product, 

consider a liquid that is then bottled, and then a number of these bottles are boxed together. 

The ratios for the predecessors may need to be in terms of litres per bottle, and bottles per 

box; with the visibility of this unit data providing a confidence in the entered data that 

would not be possible otherwise. 

Specifying products in terms of a variety of units allows an inbuilt scaling in the problem. 

It is common for some materials to be required in significantly smaller quantities to others 

in a production process and if all products were measured throughout the system in the 

same units, for example kilos, requirements for small volume products may not retain the 

precision that they should, providing the provision for this scaling should allow better 

numerical stability in the models. 

 

Figure 3-21 - Predecessor Requirement Data 

3.3.3.4 Transport of Products within the Supply Chain 

The relational entity, TransportInternal, provides the permitted transfer of particular 

products between Facilities within the supply chain and the cost of transporting the 

products. The unit of the cost can be specified allowing the expected units in which the 

quantities of product transported are expected to be measured: £ per kilo, £ per box, £ per 

litre, etc. Again this statement of the units is not intended to provide any conversion 

facilities, just a visibility to the meaning of the data. 
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Figure 3-22 - Transport Internal Data 

This is also Time period and Scenario dependent data, allowing cost to be varied over time 

or by scenario. This allows changes in cost to be considered, the company may need to 

consider the impact of increases in fuel cost, or taxation on fuel and vehicles, or the impact 

of changing a fleet of vehicles for more efficient ones.  

3.3.3.5 Transport of Products to the Customer 

The relation entity TransportCustomer provides the link between the products with which 

a customer is supplied and the facilities from which they are supplied. The costs given for 

transporting a particular product from each facility to each customer not only provides the 

data about how much it costs to take the product to the customer, but also whether the 

supply of any given customer is permissible from each Facility.  
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Figure 3-23 - Transport Customer Data 

For routes between a facility and a customer that are not permitted, a cost is not specified. 

Should a zero cost be required, then this can be explicitly entered, making this route 

permissible at zero cost. These costs can also be varied by time period and by scenario  

allowing consideration of changing costs over time, or different forecasts for the costs to 

be considered. Again the units that are being used to measure the various transport costs 

can be specified allowing a visibility of this information. 

3.3.3.6 Demand of Products by the Customers 

The relation entity, Demand, provides the amount of a product that is to be provided for a 

customer. The quantity, specifies the amount of a product that is required by a customer in 

a time period, as with the preceding relations this can be specified by scenario, to allow 

different demand forecasts to be considered. Again the units of this demand can be 

specified allowing visibility of the true meaning of the data.  
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Figure 3-24 - Demand Data 
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3.3.4 Summary 

The combination of these main entities and the relational entities described above produces 

the following relational database, which has been used for the rest of our investigations. 

 

 

Figure 3-25 - Full Relational Model                     
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4 Problem Instances 

4.1 Introduction 

Here we describe the problem instances for which we were able to obtain data. 

4.2 Osiris Problem Instance 

4.2.1 The problem 

The main realistic-size set of data that was available for this work was the Osiris data 

Baricelli (1996). This problem has been translated into this framework as a supply chain 

which includes factories, distribution centres and customers. At the factories intermediate 

and final products are produced. These are then sent to distribution centres where they are 

labeled and dispatched to the customer.  

 

Figure 4-1 - Problem Instant Entities 

The problem is strategic, but includes the underlying tactical decisions. It aims to identify 

the best long term decisions about which factories and distribution centres to open, retain 

or close, and within each of these which production lines should remain in use and for how 

long and which new ones should be selected and when they should be installed. 

The Strategic decisions need to be made within the deterministic framework of 

tactical/operational decisions including: 
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• Meeting customer demands for each product in each time period. A shortage 

quantity is included in the model and this allows penalties to be imposed for 

shortages. The problem we have been studying has such penalties imposed. 

• Production flows: each product has a set of predecessor products, which are 

represented in the model using a consumed quantity for that predecessor product. 

The current problem data has three production stages and the products and their 

predecessors have one-to-one relationships. The model will allow data with much 

more complexity and could deal with multiple parts being assembled, multiple 

products being packed or items being cut or moulded into multiple products. The 

data required to specify these flows is the requirement of any predecessor product 

for each product, and the possible throughput of a product by a production line.  

• Transportation: this involves the cost of different routes both internal and external 

to the customer. These transportation costs between the sites are also used to 

specify whether a particular route is permissible either between any two sites or 

when supplying a customer from a particular site. 

4.2.1.1 Problem size 

The problem included 23 sites. There are 8 factory sites, of which 5 are currently 

operational and 3 were potential sites. There are also 15 distribution centres which also 

were able to carry out packaging tasks, 10 of these are currently operational and 5 are 

potential sites.  

13 products are produced, packed and labeled and distributed to 30 customers. This leads 

to 39 intermediate and final products to model. All products are produced at a factory site, 

but they can then either be packed at the same site and then shipped, or shipped and then 

packed once they reach the distribution centre. All products, wherever they have been 

packed will be labeled at the distribution centre.  

There were 8 different technology types which carry out the three different processing 

stages.  

The model statistics are as follows: 
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Facilities 23 

Existing Technology Lines 82 

Potential Technology Lines 564 

Technology Line Costs 94 

Technology Line Throughput Rates 103 

Technology Line Production Costs 1794 

Products 39 

Predecessor relationships 26 

Transport Internal Costs 2639 

Time Periods 6 

Customer Zones 30 

Transport Customer Costs 5785 

Demands in each Scenario 1380 

Price and Shortage Penalties 2340 
 

Table 4-1 - Model Statistics 

4.2.2 Complexity of the problem 

The data included 100 different customer demand scenarios. In all of the scenarios for this 

problem instance the customer demands varied only in terms of the quantity of the 

products required and not the range of products to be supplied, so the set of products being 

supplied to a customer were the same in all cases and are shown below (Table 4-2). 

Customer Zone Number of Products Products 

1, 2 5 29, 33, 34, 35, 38 

3, 4 6 29, 30, 32, 33, 34, 36 

5 3 29, 30, 32, 33, 34, 35, 36 

6 3 29, 35, 36 

7, 8 4 28, 32, 35, 36 

9 - 17 9 27, 29, 30, 34, 35, 36, 37, 38, 39 

18 - 26 10 27, 29, 31, 33, 34, 35, 36, 37, 38, 39 

27 - 29 6 27, 29, 30, 35, 36, 39 

30 5 27, 29, 30, 38, 39 
 

Table 4-2 - Customer Details 
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The number of products that need to be supplied to customers varies from between 3 and 

10, but remained the same for each customer across different time periods and demand 

scenarios, although the quantity of the demands varied.  

Product Number of Customers with 

demand for the product  

27 22 

28 2 

29 28 

30 15 

31 9 

32 4 

33 13 

34 22 

35 27 

36 27 

37 18 

38 21 

39 22 
 

Table 4-3 - Product Demands 

The demands of 30 customers for these products have to be fulfilled. We have 100 

different demand scenarios including 1380 demand amounts, 230 for each of 6 time 

periods, the first five covering periods of a year each and a longer final time period of 10 

years.  

Transport is restricted to movement of products from a factory site to a distribution centre 

(8 starting points and 15 destinations), reducing the theoretical number of transport routes 

to 3120. However, there are additional restrictions encoded in the transport cost data, with 

limits these to 2639 routes. There are 5850 theoretical product transports of the 13 final 

products from the 15 sites to 30 customers, but the cost data reduces these to only 5785. 

4.2.3 Results for Osiris Problem Instance 

These results obtained from this problem instance are described in other chapters. 
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4.3 Warehouse Location Problem 

This problem is described in CSPLib (Gent 2011) ; problem is listed as Prob034 and the 

data for 7 problem instances is provided, the cost in these problems have been rounded to 

integer values. It is also described by Beasley (1988) and data, description and results can 

be found on the OR-Library pages Beasley (2011). There are two variants of these 

problems, depending on whether each customer’s demand can be satisfied from multiple 

warehouses or must be supplied by a single warehouse. 

4.3.1 Problem Specification  

In the Warehouse Location problem (WLP) or Facility Location Problem (FLP), a 

company considers opening warehouses (facilities) at some candidate locations in order to 

supply its existing stores (customers). Each potential warehouse has a maintenance cost, 

and a designated maximum capacity for the number of stores that it can supply. For the 

single source problems each store must be supplied by exactly one open warehouse.  The 

supply cost to a store depends on the warehouse.  

The goal is to determine which warehouses to open, and which of these warehouses should 

supply the various stores, such that the sum of the maintenance and supply costs is 

minimized. 

4.3.2 Specification of the Problem using the Generic Model 

A direct implementation of these problem instances using our generic supply chain model 

was relatively straightforward. The warehouses are modelled as potential facilities and the 

stores as customer facilities, whilst the supply costs become the transfer costs from the 

supply chain facilities to the customer facilities. 

There are no predecessor requirements as there is only a single product, nor any raw 

material products or inventory to be considered. Only a single line is required at each 

facility, to model the flow of product through that warehouse to each store that the 

warehouse is to supply.  

The warehouse costs were attributed to the sites, and the capacities which were identical 

for all warehouses in each problem were attributed to the lines, allowing a line type to used 

Shortage penalty costs of a sufficient size were added to make the cost of not supplying a 

store greater than the costs of supplying the stores. These need to be greater than the cost 
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the maximum of the warehouse fixed cost plus the supply cost to a store for any warehouse 

store combination, ensuring that the minimisation of the total cost can be used as the 

objective function. 

4.3.3 Results for Warehouse location Problem Instances 

A number of the benchmark problem instances were solved for both the standard and 

single source variants of the problems. Table 4 gives a comparison of the results from the 

model described here and those quoted in Beasley (1988)  for the standard version of the 

problem in which each customer can be supplied by more than a single supplier 

warehouse. The original paper Beasley (1988) quotes the number of warehouses opened in 

each case in the optimal solution, but does not give objective values.  

Problem Cost Warehouses Number of 

Warehouses 

Quoted 

number of  

warehouses 

CapA1  19240822 16,60,62,68,70,79,89 7 7 

CapA2  18438047 59,65,70,79,83,89 6 6 

CapA3  17828010 16,59,60,70,79 5 5 

CapA4 17346752 16,59,70,79 4 4 

CapB1 13656380 12,14,37,59,60,69,70,76,88,90,97 11 11 

CapB2 13368137 37,46,60,69,70,82,88,90,98 9 9 

CapB3 13234409 37,46,59,60,70,82,85,90 8 8 

CapB4 13082516 37,57,59,60,70,88,90 7 7 

CapC1 11646597 6,9,14,24,35,42,48,66,70,79,87 11 11 

CapC2 11570340 6,9,14,24,35,42,66,70,79,89 10 10 

CapC3 11572855 6,9,12,14,24,35,66,70,79 9 9 

CapC4 11505767 6,14,24,35,53,70,79,81,89 9 9 

 

Table 4-4 - Results for the Capacitated Warehouse Location Problems 

 

Table 5 gives comparison of results obtained for the single source problem and results 

from OR Group, Pisa (2011) and OR-Lib (Beasley 2011). 

 Problem Best Integer 

Solution 

Warehouses Number of 

Warehouses 

Quoted Optimal 

Solution 
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Cap61 932616 1,2,3,4,6,7,8,9,11, 

12,13 

11 932616 

 
Cap62 977799  1,2,3,4,6,7,8,11,13 9 977799  

Cap63 1014100  2,3,4,6,7,8,11,13 8 1014062 

Cap64 1053197 2,3,6,11,12,13 6 1045650 

Cap71  932616  1,2,3,4,6,7,8,9,11, 

12,13 

11 932616 

Cap72  977799 1,2,3,4,6,7,8,11,13 9 977799 

Cap73  1010641  3,7,8,11,13 5 1010641  

Cap74  1034977  3,11,12,13 4 1034977  

Cap91  691648 1,2,4,6,7,8,9,11,13,17,

18,20,23,24,25 

15 796648 

Cap92  858109  1,2,4,6,7,11,12,13,17, 

23,24,25 

12 855734  

Cap93  900760  4,6,7,11,13,17,18, 

23,24 

9 896618  

Cap94  950608  6,11,12,13,17,18,24 7 946051  

Cap101 796648 1,2,4,6,7,8,9,11,13,17,

18,20,23,24,25 

15 796648  

Cap102 854704 1,4,6,7,11,12,13,17,23,

24,25 

11 854704  

Cap103 893782  4,7,11,13,17,23,24,25 8 893782  

Cap104 928942   11,13,18,24 4 928942  

Cap121 793440  6,7,11,13,15,16,18,23, 

27,34,37,41,45,46,49 

15 793440  

Cap122 854900 6,7,11,13,15,23,25, 

27,34,45,46,49 

12 852525 

Cap123 898266  6,11,12,15,23,27,34, 

37,45,46 

10 895302 

Cap124 950608  13,23,25,27,34,37,46 7 946051 

Cap131 793440   6,7,11,13,15,16,18,23,

27,34,37,41,45,46,49 

15 793440 

Cap132 851495  6,11,13,15,23,25,27,34

,45,46,49 

11 851495 

Cap133 893077   6,23,25,27,34,45,46,49 8 893077 

Cap134 928942   23,27,37,46 4 928942  

CapA1  19263319 16,36,60,62,68,70,79 7 19240822 
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CapA2  18440383 59,65,70,79,83,89 6 18438047 

CapA3  17765202 34,36,59,65,79 5 17765202 

CapA4  17163722 34,59,70,79 4 17160439 

CapB1 13659766 12,14,37,59,60,69,70,7

6,88,90,97 

11 13656380 

CapB2 13362779 24,37,46,59,60,69,70,8

2,90 

9 13361927 

CapB3 13201626 37,48,57,59,60,69,70,9 8 13198556 

CapB4 13091335 37,57,59,60,70,99,90 7 13082516 

CapC1 11647534 6,9,14,24,35,42,48,66,

70,79,87 

11 11646597 

CapC2 11570438 6,9,14,24,35,42,66,70,

79,89 

10 11570340 

CapC3 11522067 6,14,24,35,53,70,79,81 9 11518744 

CapC4 11509396 6,9,14,24,58,66,70,79 8 11505767 

 

Table 4-5 - Results for the Single Source Capacitated Warehouse Location Problems 

The results show that when these benchmark problems are represented in the generic 

modelling framework, the resulting models give the same results as the published results 

for those same problems. This helps to confirm that the modelling framework does give a 

faithful translation from the generic representation through to mathematical model. 

4.4 Summary 

The Osiris dataset provided the main validation for the generic framework and the data for 

testing the extension to this described in this thesis. The warehouse location datasets 

provided validation, unfortunately it did not prove possible to obtain another large data set 

to provide further validation, however the framework is consistent with other descriptions 

of SCPPs.  

  



57 

5 The Mathematical Models 

5.1 Introduction 

In order to demonstrate the solution models within the Generic Framework a mathematical 

model description is first given that is not specific to any solution method. This Model is 

then used as the framework for both Mixed Integer Programming (MIP) and Constraint 

Programming (CP) models. Both of these models have been implemented and successfully 

used to solve the problem instances described in the previous chapter.  

The MIP model is used in the following chapters. In chapter 5 it is used to consider the 

potential of model adaptation in solution improvements, in chapter 6 the use of the model 

within a local search method is investigated and finally in chapter 7 the extension of the 

model to incorporate uncertainty is considered. 

5.2 Generic Framework 

For the generic model to be a correct representation of a general supply chain there are a 

minimal set of indices, variables and constraints that must be defined; along with mappings 

from the conceptual and data models that have previously been described. Although 

implementations of  a specific model in a mathematical programming language are likely 

to have additional indices, variables and constraints declared, along with objective 

functions that allow certain measure of the quality of the solution to be maximised or 

minimised, they will not need to be included in this minimal framework. 

5.2.1 Indices 

A minimal set of indices are required for Facilities, Technology Lines, Customers, 

Products, Suppliers, Time Periods and Scenarios. In the cases of Facilities and Technology 

Lines two subsets are defined for Existing and Potential Facilities or Technology Lines, 

where status indicates whether the Facility or Technology Line is an Existing (status 1) or 

a Potential (status 0) one. There are also subsets defined for the sets of Technology Lines 

that are located at each specific Facility. 

F = { Facilities}  

Ff = { (f, f1) | f ∈F, f1 ∈F, f ≠ f1}   

Fe = {f ∈F | statusf  = 1} 

Fp =  {f ∈F | statusf  = 0} 
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L = {Technology Lines} 

Le = {l ∈L | statusl  = 1} 

Lp = {l ∈L | statusl  = 0} 

Lf  = {l ∈L | Facilityl  = f} 

C = {Customers} 

P = {Products} 

Pp = {(p, p1) | p∈P, p1∈P,  p1 is the predecessor product of p} 

S = {Suppliers} 

T = {Time Periods} 

Tt = { (t, t1) | t ∈T, t1 ∈T, t1 is earlier than t}   

Tn= { (t, t1) | t ∈T, t1 ∈T, t1 is the time period before t} 

Z = {Scenarios} 

5.2.2 Variables 

xf,t Indicating whether a Facility, f, is open in Time Period, t. 1 indicating an 

open Facility and 0 a closed Facility. 

zl,t Indicates whether a Technology Line, l, is open in the Time Period, t. 1 

indicating an open Line and 0 a closed Line. 

���,��,�,�,� Transport Internal quantities - the amount of Product, p, transported from 

Facility, f1, to Facility, f2, at time, t, under Scenario z. 

ql,p,t,z  Production quantities – the amount of Product, p, produced on a Line, l, at 

time, t, under Scenario z. 

qf,c,p,t,z Transport external quantities – the amount of Product, p, transported from 

Facility, f, to Customer, c, at time, t, under Scenario z. 

if,p,t,z  Inventory quantities – the amount of a Product, p, held in storage at Facility, 

f, from Time Period, t, to the next Time Period, under Scenario z. 
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mf,p,s,t,z Raw material Product quantities – the amount of a raw material Product, p, 

supplied by supplier, s, to Facility, f, in Time Period, t, under Scenario z. 

5.2.3 Constraints 

For all Facilities that are initially open, if they become closed in any Time Period then they 

must remain closed in all the subsequent Time Periods, in the time horizon. 

1,, tftf ee
ff ≤

             tee TttFf ∈∀∈∀ ),(, 1    

For all Facilities that are not initially open, if they are open in a particular Time Period then 

they must remain open in all the subsequent Time Periods. 

1,, tftf pp
ff ≥

   tpp TttFf ∈∀∈∀ ),(, 1     

Similarly for the Technology Lines, we have. 

1,, tltl ee
ll ≤

     tee TttLl ∈∀∈∀ ),(, 1    

1,, tltl pp
ll ≥

   tpp TttLl ∈∀∈∀ ),(, 1        

A Technology Line cannot be opened at a Facility that is not itself open. 

tftl fl ,, ≤
    TtFfLl f ∈∀∈∀∈∀ ,,   

The number of Technology Lines cannot exceed the capacity of the Facility. 

f

Ll

tl Ml
f

≤∑
∈

,

                   TtFf ∈∀∈∀ ,    

Production can only be carried out on a Technology Line that has been installed, and the 

production is limited by the capacity of the Technology Line. 
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tltl

Pp

ztpl Mlp ,,,,, ≤∑
∈

                ZzTtLl ∈∈∈∀ ,,    

The quantity of a Product supplied, produced or retrieved from inventory must be at least 

as much as is used in production of successor Products, transfers to other Facilities, 

including Customer Facilities and kept as inventory. The quantity of product, p, is given by 

multiplying the quantity if the predecessor product, p1, used in producing product p. 
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Note: In some cases such as the inventory quantity 

     
            ,,, 1 ztpfi  

t1 may be defined for a time period before the first time period in order to provide starting 

conditions. 

5.3 The MIP and CP Implementations 

The MIP and CP models were implemented using OPL Studio and solved from within 

OPL using the inbuilt call to CPLEX and ILOG Solver. Later the MIP model was rewritten 

using C++ and calling CPLEX directly, this allowed the generation of MPS files which 

provided the means of using alternative MIP solvers to solve the same problem instance. 
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The following indices, data and variables are used in the definition of the model. Scenario 

indices have not been included in the model definition for simplicity to improve clarity and 

because the model was initially used for solving only a single selected Scenario. Inclusion 

of scenarios will be considered separately in Chapter 7. Some alternative definitions of 

indices and variables are considered later in this chapter and in Chapter 5. 

The two formulations had much in common, so we present both of them here, describing 

the common features and the differences for each part of the formulation.  

In the CP implementation conditional constraints are used, which evaluate to one when the 

condition is met, and to zero when it is not. For example the conditional (T ≥ fc ) evaluates 

as one when T ≥ fc  and to zero when T < fc  . This allows such conditionals to be used 

directly in constraints as a binary variable would be used, or in pairs of constraints where if 

one condition is met then another must also be enforced.  

5.3.1 Indices 

All of the indices were common across the two formulations 

F  set of f Facilities,{1...|F|}; comprising of Existing Facilities fe, {1...|EF|};  

 and Potential Facilities fp, {1...|PF|}.   

L  set of l Lines,{1...|L|}; comprising of Existing Lines le, {1...|EL|}; and 

Potential Lines lp, {1...|PL|}. 

C  set of c Customers, {1...|C|}.. 

P set of p Products, {1...|P|}. 

S  set of s Suppliers, {1...|S|}. 

T  set of t Time Periods, {1...|T|}. 
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5.3.2 Subsets 

 The subset were common across the two formulations. 

EF   Existing Facilities - subset of F where the Facility is initially open. 

PF Potential Facilities - subset of F where the Facility is not initially available 

and can be opened. 

EL Existing Technology Lines - subset of L where the Line exists initially, each 

Line will be of a specified Technology Line Type lt. 

PL Potential Technology Lines - subset of L where the Line is not available 

initially, requires the Potential Line to be installed, each Line will be of a 

specified Line Technology Type lt. 

Llt subset of Technology Lines that are of type lt. 

Lf subset of Technology Lines that can be installed at Facility f. 

PLf subset of the Potential Technology Lines, pl, that are available for 

installation at Facility f. 

ELf  subset of Existing Technology Lines that are installed at Facility f. 

5.3.3 Data 

Most data was common across the two formulations, with one additional set of data in the 

MIP giving the length of each Time Period, allowing any number of variable length Time 

Periods. Whilst in the CP formulation there were two additional single data items, the 

number of Time Periods and the length of the full time horizon. In the CP formulation the 

only variable length Time Period was the final one, and this was given by the difference 

between the time horizon and the number of Time Periods. Both these formulations 

allowed the main problem instance that is described in Chapter 3 to be modelled as all the 

Time Periods except the final one were of the same length. 

Qc,p,t  Demand quantity of Product, p, by Customer, c, at time, t. 

Pc,p,t Price of a Product, p, demanded by Customer, c, at time, t. 
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Wc,p,t Penalty for not meeting the demand for Product, p, by Customer, c,  

at time, t. 

C f1,f2,p The cost of transporting Product, p, from Facility, f1, to Facility, f2. 

C f,c,p The cost of transporting Product p, from Facility f, to Customer c. 

Cl,p    The cost of producing Product p, on Technology Line l. 

C l    The running cost of a Technology Line, l. 

Cf    The running cost of a Facility f. 

Cf,p,s,t The cost of a Product, p, that is brought into the system at Facility, f, as a 

raw material Product from supplier, s,  in time period, t.. 

Cf,p Inventory cost, at Facility, f for a Product p. 

Rp1,p2   The conversion ratio; the amount of Product, p1, that is required to produce 

one unit of Product, p2. 

Rl The production rate of a Technology Line, l. 

Rf The percentage rate, the fraction of the capital cost of a Facility, f, to be 

assigned to a time period. 

Rp Inventory capacity of a Product , the amount of capacity that a Product p 

takes to store when transferred to inventory. 

 

Ll The capital cost of a Technology Line, l. 

Lf    The land and capital cost for a new Facility, f. 

Vl The revenue received from the disposal of a Technology Line l. 
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Vf,t   The revenue received from the disposal of a Facility, f in time period t. 

Nf   The capacity of a Facility, the number of Technology Lines that can be 

operational at a Facility, f, in any Time Period. 

Mf  The maximum capacity for Products transferred to inventory at a Facility, f, 

in any Time Period. 

Mt The maximum capital available to invest in new Facilities and Technology 

Lines in Time Period, t. 

5.3.3.1 MIP Formulation 

Dt  The duration of a Time Period, t. 

5.3.3.2 CP Formulation 

T   The number of Time Periods   

H  The total time horizon length 

5.3.4 Variables 

5.3.4.1 Binary and Integer Variables  

5.3.4.1.1 Binaries in the MIP Implementation 

	�,�  Whether a Facility, f, is open in Time Period, t. 


��,�  Whether a Potential Facility, p, is opened in the Time Period, t. 


��,�  Whether a Existing Facility, e,  is closed in the Time Period, t. 

zl,t Whether a Technology Line, l, is open in the Time Period, t.  

�
�,� Whether a Potential Technology Line, p, is opened in the Time Period, t. 

�
�,� Whether an Existing Technology Line, e, is closed in the Time Period, t. 
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5.3.4.1.2 Binary variables in the CP Implementation 

A single binary variable was included for each Facility and each Technology Line to 

indicate whether the status of the Facility or Line was changed, this is an additional 

variable that was added to the model for ease of modelling.  

xf  Whether the status of the Facility, f,  changes in any of the Time Periods, an 

open Facility closes or a Potential Facility opens. 

zl  Whether the status of the Technology Line, l, changes in any of the Time 

Periods, an Existing Technology is removed or and Potential Technology 

Line is installed. 

5.3.4.1.3 Integer variables in CP Implementation  

In the CP implementation the variables describing when a Facility is opened or closed are 

described by a single variable for each Facility which indicates which Time Period the 

change in status occurs, so the variables can take any value between 1 and the number of 

Time Periods T+1, which indicates that the Facility or Technology Line remains in its 

initial state, and is not opened or closed. 


��   Which Time Period Potential Facility, fp,  is opened.  


��   Which Time Period Existing Facility, fe,  is closed 

�
�
 Which Time Period Potential Technology Line, lp,  is opened. Takes values 

from 1 to T+1, where the value T+1 indicates that the line does not open. 

�
�
 Which Time Period Existing Technology Line, le,  is closed. Takes values 

from 1 to T+1, where the value T+1 indicates that the line does not close. 

5.3.4.2 Continuous Variables 

All the continuous variables were common across the two formulations. 

sc,p,t  Shortage quantities - the amount by which the demand amount is short for 

each Product, p, that should be delivered to Customer, c, in Time Period, t. 
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qf1,f2,p,t Transport Internal quantities - the amount of Product, p, transported from 

Facility, f1, to Facility, f2, in Time Period, t. 

pl,p,t Production quantities – the amount of Product, p, produced on Technology 

Line, l, in Time Period, t. 

cf,p,t Consumed quantities – the amount of Product, p, consumed at Facility, f, in 

Time Period, t, in producing successor Products. 

qf,c,p,t Transport external quantities – the amount of Product, p, transported from 

Facility, f, to Customer, c, in Time Period, t. 

i f,p,t Inventory quantities – the amount of a Product, p, held in storage at Facility, 

f, from Time Period, t, to the next Time Period. 

mf,p,s,t Raw material Product quantities – the amount of a raw material Product, p, 

supplied by supplier, s, to Facility, f, in Time Period, t. 

 v1 The total cost of the loss in income due to shortage.  

v2 The total penalty imposed for items of shortage, not a real cost but one that 

is intended to reflect the impact on the business in terms of lack of service to 

the Customer. 

v3 The total cost of transporting Products between Facilities belonging to the 

supply chain owner. 

v4 The total cost of transporting Product to Customers. 

v5 The total cost of producing all the Products that were produced at all the 

Facilities.  

v6 The total cost of running the Existing Technology Lines. 

v7 The cost of opening and running the Potential Technology Lines 

v8 The cost of opening and running the Facilities. 
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v9 The total cost of holding Products in inventory. 

v10 The total cost of the supply of raw materials. 

u The maximum possible revenue, if all the demand is met. 

5.3.5 Objective Function Constraints 

The default objective function consists of maximising the profit, which is calculated as the 

maximum possible revenue calculated in constraint (1), less the costs, which are calculated 

in constraints (2) – (11). The cost of different constituents are modelled separately not only 

to ease the modelling but also to allow easy analysis of the relative costs. 

u – v1 – v2 – v3 – v4 – v5 – v6 – v7 – v8 – v9– v10 

This separation of these objective cost constituents not only simplifies the modelling 

process, but it provides a breakdown of the costs from the objective, which is of significant 

importance in a model that is part of a decision making process. This separation also offers 

the option of scaling or ignoring one of more of these costs in the objective function by 

adding a proportion data element for each objective function constituent giving the 

following objective formulation: 

u – δ1v1 – δ2v2 – δ3 v3 – δ4 v4 – δ5v5 – δ6 v6 – δ7v7 – δ8 v8 – δ9v9– δ10 v10 

Where the following give the proportion of the each cost to be included in the objective 

function 

δ1  – proportion of the shortage costs  

δ2 –  proportion of the shortage penalty 

δ3 –  proportion of the internal transport costs 

δ4 –  proportion of the external transport costs 

δ5 –  proportion of the production costs 

δ6 – proportion of the Existing Technology Line costs  
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δ7 – proportion of the Potential Technology Line costs 

δ8 –  proportion of the Facility costs 

δ9 –  proportion of the Inventory costs 

δ10  – proportion of the Material costs 

This allows information to be easily obtained about each aspect of the solution, for 

example the minimum transport or production cost that are possible, should all the demand 

be met.  It also allows for comparisons to be made between each component of the 

objective when solving a set of different scenarios for a problem instance. 

This also made it possible to enforce a zero shortage cost using the shortage constraint 

from this set of constraints to force this to zero, this is discussed further in Chapter 5. 

The formulation of the objective function and calculation of the maximum revenue were 

the same in both the MIP and CP formulations. The calculation of the shortage costs and 

penalties, internal and external transport, production, inventory and material cost were also 

the same in both formulations, but the cost relating to Facilities and Technology Lines 

were formulated differently. 

5.3.5.1 Maximum possible revenue 

A constant value, the summation (1) below gives the amount that would be paid, if all the 

demands by all of the Customers for all of the Products were met; the product of P which 

gives the amount that a Customer, c, would be expected to pay for Product, p, in Time 

Period t and Q the demand for Product, p, made be Customer, c, in Time Period, t.  

∑=
tpc

p,tctpc PQu
,,

,,,   

      (1) 

5.3.5.2 Shortage Costs  

The amount (2) that is deducted for shortage, a straight deduction of the amount that would 

have been paid P, for Product, p, by Customer, c. 
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∑=
tpc

tpctpc sPv
,,

,,,,1

     (2) 

 

5.3.5.3 Shortage Penalty  

An additional penalty, the sum (3) of all the penalties, W, for failing to meet demand of 

Customer, c, for Product, p, in Time Period, t. 

∑=
tpc

tpctpc sWv
,,

,,,,2

       (3) 

5.3.5.4 Internal Transportation Costs  

The total cost (4) of transporting Products from one Facility to another, which is calculated 

on a linear basis only, using the cost, C , of transferring a single unit of a Product, p, from 

one Facility, f, to another Facility, f1. 
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pff qCv ,,,
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                 (4) 

5.3.5.5 External Transportation Costs  

The total cost (5) of transporting the Products to the Customers, again this transportation 

cost is on a linear basis only, using the cost, C, of transferring a single unit of a Product, p, 

from one Facility, f, to a Customer, c. 

tpcf

tpcf

pcf qCv ,,,

,,,

,,4 ∑=

     (5) 
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5.3.5.6 Production Costs  

The cost of producing Products on each Line at each Facility (6) is calculated using the 

quantity, p, of each Product produced and the cost, Cl,p, of producing the Product, p, on 

each Technology Line, l, at the Facility, f. 

∑=
tpl

l,p,tpl pCv
,,

,5  

                (6) 

5.3.5.7 Existing Line Technology Costs  

There are two parts to this cost. There is the running cost of the Technology Line, le, per 

time unit, is given by Cl,p, this is multiplied by the time for which the Technology Line is 

open, d, whilst any revenue that is received if the Technology Line is closed, Vl, is 

deducted from this cost . 

5.3.5.7.1 MIP Implementation 

In the MIP formulation this constraint is formulated by considering the cost for each Time 

Period, t, during which the Technology Line is open which is given by w, multiplied by the 

cost per unit time and the duration of the Time Period, Dt, giving: 

∑
tl

tltl

e

ee
wDC

,

,  

    

Any Technology Line that closes will be indicated by binary w and hence the total revenue 

received will be given by 

tl

tl

l e

e

e
wV ,

,

∑
 

This gives the overall cost (7) for Existing Technology Lines as  
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       (7) 
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5.3.5.7.2 CP implementation 

In the CP implementation the length of time that the Existing Technology Line remains 

open is obtained directly from the value of the variable �
�  .The binary variable value gives 

the Time Period in which the Existing Technology Line closes with the value T+1 

indicating that the line does not close, so the expression (�
�
− �) give the number of 

Time Period which any Existing Technology Line is open, which is multiplied by the 

running cost of an Existing Technology Line �
�  . For Existing Technology Lines which 

remain open until the end of the time horizon, the increased cost to include any extended 

length of the final Period, this only occurs when �
�is zero, as the status of the Technology 

Line does not change, so need to be included when (1 – �
�) is one, this is multiplied by the 

additional time which is given by (H – T) and the running cost per unit of time �
� ; giving 

the following expression. 

∑∑ −−+−
e

ee

e

e

l

ll

l

lel zTHCwC )1()()1(

 

The potential saving from decommissioning of Lines is calculated by summing all the 

revenues of these Lines when there is a change of status, given by the constraint below. 
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Giving the total cost (7a) of the Existing Technology Lines  
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5.3.5.8 Potential Technology Line Costs  

For a Technology Line to be opened there is a capital cost of the Line, L, and then a 

running cost, Cl. The running cost incurred is dependent upon the duration that the 

Technology Line is in use. 

5.3.5.8.1 MIP Implementation 

In the MIP formulation we formulate this constraint by considering the cost for each Time 

Period during which the Technology Line is open which is given by z, multiplied by the 

cost per unit time and the duration of the Time Period giving: 

∑
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p

pp
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Any Technology Line that is opened for the first time will be indicated by binary �
�   and 

the cost incurred will be given by 
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l p

p

p
wL ,
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giving the following overall cost (8) for Potential Technology Lines 
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                                 (8) 

5.3.5.8.2 CP implementation 

In the CP implementation the number of Time Period that a Potential Technology Line will 

be open is given by the total number of Time Periods, T, minus the number of Time Period 

for which the Potential Technology Line is closed which is given by �
�  – 1 giving 

∑ −+
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This needs to be extended by any length of time that is in the final Time Period which is 

given by H - T, which only is required when the Potential Technology Line is opened, so 

this additional running cost is given by  

∑ −
p

pp

l

ll zTHC )(

 

The cost of opening the Technology Line is given by the sum of the costs 

∑
p

pp

l

ll zL  

 

giving the total cost (8a) of the Potential Technology Lines  
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5.3.5.9 Facility Costs  

The cost incurred for each Time Period that a Facility, f, is open is determined by the 

running cost, C, of the Facility and the duration for which it is open. The capital cost that is 

incurred for the Facility, f, in each Time Period, t, is calculated using the percent cost, Rf, 

applied to the capital expenditure, L. This allows the capital costs of a site to be spread 

across or beyond the time horizon, whilst the investment limit is still applied strictly to the 

Time Period in which the capital expenditure was made. It also allows the capital cost of 

sites already in existence to be incorporated if applicable. 
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5.3.5.9.1 MIP implementation 

In the MIP formulation this constraint is formulated as a summation across the Facilities, f,  

and the Time Periods, t. The sum of costs incurred in each Time Period is multiplied by the 

duration of the Time Period, D, and these are summed for all the Time Periods in which 

the Facilities are open. It includes the facility percentage rate, Rf, which gives the cost of 

the capital investment for that facility that is incurred for one unit of time, which when 

multiplied by the duration of the time period gives the cost for that time period. 

∑ +=
tf

f, tfff xDCRLv
,

t8   )(

             (9) 

5.3.5.9.2 CP implementation 

In the CP formulation the summation is only across the Facilities, however, the constraint 

is constructed in three parts, the first two giving the cost for Existing Facilities and the 

third the cost for Potential Facilities.  

As the CP formulation only included fixed length Time Periods for all but the final Time 

Period, the duration that an Existing Facility is obtained directly from 
��, unless the 

Existing Technology Line remains open into the final Time Period, when an adjustment is 

made. The number of Time Periods that the Existing Facility is open is given by 
�� – 1 

and hence the facility cost for this time will be given by  

)1( )( −+∑ e
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This needs to be adjusted to incorporate any additional time in the final time period when 

the Existing Facility does not close, when the variable y indicating the status of the line has 

not changes takes the value 0, therefore the term (1-x) is multiply by the cost and the 

addition length of time H-T giving 

∑ −−+
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The time that a Potential Facility is open is given by the number of Time Period which it is 

open, which is given by T+1-
�� which is then multiplied by percentage of the capital cost 
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to be repaid in the Time period which is given by the product of the Facility capital cost Lf 

and the Facility percentage rate R, plus the running costs C giving 

∑ −++
p

pppp

f

ffff yTCRL )1( )(

 

This is then extended by any additional length of time that is in the final Time Period 

which is given by H - T, when the Potential Technology Line remains open, this is 

indicated by the status, 	�, of the Facility having change and therefore having a value of 1 

and gives the following additional running cost.  
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Finally the cost of the Lines is given by all that are opened will remain open in the final 

Time Period so just a single expression with the adjustment is required. The time that the 

Facility is open is the whole time horizon, H, minus the time before the opening of the 

Facility. 
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Hence the Facility costs (9a) are given by 
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5.3.5.10 Inventory Cost  

The costs, Cf,p, of storing Products, p, at Facilities, f, in the Time Periods, t. 

∑=
tpf

tpfpf iCv
,,

,,,9

                 (10) 

5.3.5.11 Raw Material Product Costs  

The cost of acquiring Raw Material Products, p, which includes both the purchase and the 

transportation from supplier, s, for use at Facility, f, in Time Period, t.  

tsfp
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tspf mCv ,,,
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5.3.6 The Model Structure Constraints 

The model structure constraints have the most significant differences between the MIP 

implementation and those in the CP implementation. The CP framework allows non linear 

constraints which more clearly express the requirements of the real world situation.  

In the CP implementation conditional constraints are used, which evaluate to one (true) 

when the condition is met, and to zero (false) when it is not. For example (T ≥ y ) evaluates 

as one when T ≥ y  and to zero when T < y  . This allows such conditionals to be used 

directly in constraints as a binary variable would be used, or in pairs of constraints such as: 

)1()( =⇔≥ xyT
 

which forces x  to have the value one if T ≥ y   and T to be greater than y   if f  = 1. 

5.3.6.1 Existing Facilities  

5.3.6.1.1 MIP Implementation 

If the Existing Facility, fe, cannot be open in Time Period, t, if it has been closed in that or 

any preceding Time Period, t1. Therefore the value of each open variable, x, for Time 

Period, t, will be less than or equal to one minus the newly closed variables, y, for this and 

each of the previous Time Periods, t1.  
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1,, 1 tftf ee
yx −≤

  efttt ∀∀= ,,..11          (12) 

For every Existing Facility, fe, will still be open in a Time Period, t, if it has not been 

closed in that or any preceding Time Period, t1. Therefore the open variable must be 

greater than or equal to one minus the sum of all the newly closed variables for the 

previous Time Periods, t1, where t1 is the same Time Period or precedes t. An alternative 

formulation of this constraint is considered in Chapter 5 where an equality constraint is 

used. 
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   tf e ,∀         (13) 

5.3.6.1.2 CP Implementation 

A single constraint in the CP formulation is used to link the value of the variable,		��, 

which indicates whether an Existing Facility has been closed at any point during the time 

horizon with the value of the variable, 
�� which specifies the Time Period in which the 

Existing Facility closed, but takes the value T+1 when the Existing Facility is not closed. 

)1()( =⇔≤ efef xTy                                                         (12a) 

5.3.6.2 Potential Facilities  

5.3.6.2.1 MIP Implementation 

Any Potential Facilities, fp, which are closed initially, must be open in Time Period, t, if it 

has been opened in any preceding Time Period, t1. Therefore the open variable, x will be 

greater or equal to each of the newly opened variables, y, for each Time Period pair, t, t1, 

where t1 is the same Time Period or precedes Time Period t. 

1,, tftf pp
yx ≥

   
       

pfttt ∀∀= ,,..11                (14) 

A Potential Facility, fp, will remain closed in Time Period, t, if it has not been opened in 

the current or any of the preceding Time Periods, t1. Therefore the value of each open 



78 

variable, x, will be less than or equal to the sum of all the previous Facility newly opened 

variables, y. An alternative formulation of this constraint is considered in chapter 5 where 

an equality constraint is used. 

∑
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In the MIP formulation we also require a constraint for each Facility to prevent Facilities 

being opened or closed more than once.  

Each Existing Facility, fe, can only be closed once, therefore the sum of the newly closed 

variable, y, over all the Time Periods, t, cannot exceed 1.  

1, ≤∑
t

tfe
y

                  ef∀       (16) 

Each Potential Facility can only be opened once, therefore the sum of the newly opened 

variables, y, over all the Time Periods, t, cannot exceed 1. 

1, ≤∑
t

tf p
y

                                               pf∀       (17) 

Alternative formulations of these constraints are considered in Chapter 5. 

5.3.6.2.2 CP Implementation 

A single constraint in the CP formulation is used to link the value of the variable 	�� which 

indicates whether a Potential Facility has been closed at any point during the time horizon 

with the value of the variable 
�� which specifies the Time Period in which the Potential 

Facility opened, again with the value T+1 indicating that the Facility is not opened. . 

)1()( =⇔≤
pp ff xyT

                      (14a) 

  



79 

5.3.6.3 Existing and Potential Technology Line constraints 

5.3.6.3.1 MIP Implementation  

Every Potential Technology Line, lp, is closed initially, therefore any Potential Technology 

Line must be open in Time Period, t, if it has been opened in any preceding Time Period, 

t1. Therefore the open variable, z will be greater or equal to each of the newly opened 

variables, w, for each Time Period pair, t, t1, where t1 is the same Time Period or precedes 

Time Period t. 

1,, tltl pp
wz ≥

       plttt ∀∀= ,,..11                  (18) 

A Potential Technology Line, lp, will remain closed in Time Period, t, if it has not been 

opened in the current or any of the preceding Time Periods, t1. Therefore the value of each 

open variable, z, will be less than or equal to the sum of all the previous Facility newly 

opened variables, w.  
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Every Existing Technology Line, le, is open initially, therefore every Existing Technology 

Line that is still open in a Time Period, t,  must not have been closed in any preceding 

Time Period, t1. Therefore the open variable, z, must be less than or equal to one minus the 

newly closed variable, w, for each pair of Time Periods, t, t1, where t1 is the same Time 

Period or precedes t. 

1,, 1 tltl ee
wz −≤       elttt ∀∀= ,,..11               (20) 

The Existing Technology Line, le, remains open in Time Period t if not closed in that or a 

preceding Time Period, t1,. Therefore the value of each open variable, z, for Time Period, t, 

will be greater than one minus the sum of all the newly closed variables, w, for the 

previous Time Periods, t1. 
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Potential Technology Lines can only be opened once, therefore the sum of the newly 

opened variable, w, for all the Potential Technology Lines, lp, over all the Time Periods, t, 

cannot exceed one. 

1, ≤∑
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tl p
w

               pl∀               
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Existing Technology Lines, are in use initially and can only be closed once, therefore the 

sum of the newly closed variable, w, for all the Existing Lines, le, over all the Time 

Periods, t, cannot exceed one. 

1, ≤∑
t

tle
w

                 el∀     (23) 

Alternative formulations of these constraints are considered in Chapter 5.  

5.3.6.3.2 CP Implementation  

In the CP formulation constraints similar to those specified for the Facilities were required 

to link the variables indicating which Time Period a Technology Line opened or closed 

with the variables indicating whether the status of the Technology Line had changed.  

A Potential Technology Line has a status one, indicating a change of status, if it is closed 

in a Time Period before the end of the time horizon, so if �
�
 has a value greater or equal 

to the number of Time Periods, T, then it has been closed and the binary variable �
�. 

)1()( =⇔≥
pp ll zwT

   pl∀    (18a)  

An Existing Technology Line has a status one, indicating a change of status, if it is opened 

in a Time Period before the end of the time horizon, so if �
�
 has a value greater or equal 

to the number of Time Periods, T, then it has been opened and the binary variable �
�, 

indicates a change of status. 



81 

)1()( =⇔≥
ee ll zwT

                            el∀       (20a) 

5.3.6.4 Facility Technology Line Capacity Constraint 

There is a limit on the number of Technology Lines that can be accommodated at a 

Facility. The sum of the Existing Technology Lines still in use in a Time Period and new 

Technology Lines that have been opened, in the Time Period or preceding Time Periods, 

must not exceed the limit, Nf, for a Facility, f. These constraints also force the number of 

Technology Lines at the Facility to be zero if the Facility is not open. 

5.3.6.4.1 MIP Implementation  

The MIP implementation sums the binary variables indicating the Technology Lines open 

at a Facility in a Time Period and constrains this to be less than the Facility Capacity when 

the Facility is open. 

 

  ,, tff

Ll

fl xNz
f

≤∑
∈                               tf ,∀              (24) 

 This constraint can easily be extended to allow limits to be placed on groups of lines, for 

example to place a limit on how much packing capacity could be placed at a facility. 
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5.3.6.4.2 CP Implementation  

The CP implementation uses conditional expression for Technology Lines and Facilities 

being open or closed. The following constraint limits the number of Technology Lines 

open at a Facility to Nf when the Facility is open and to zero when it is closed.  
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5.3.6.5 Inventory Capacity Constraint  

There is a limit on the amount of Product that can be held as inventory at each Facility. 

The sum of all the Products, p, that are carried over from Time Period, t, to the next Time 

Period, at Facility, f, cannot exceed the specified limit, Mf, and must be zero if the Facility 

is not open in the Time Period. 

5.3.6.5.1 MIP Implementation 

 In the MIP formulation the variable, xf,t, is one if the Facility is open 

tff

p

tpf xMi ,,, ≤∑
      tf ,∀       (25) 

5.3.6.5.2 CP Implementation 

In the CP model a conditional expression is used, and required different formulations for 

Existing and Potential Facilities. For Existing Facilities this evaluates to one if the Facility 

closes in a Time Period after the one under consideration.  

) (,, tyMi
eee ff

p

tpf >≤∑
      tfe ,∀           (25a) 

For Potential Facilities this evaluates to one if the Facility opens in the Time Period under 

consideration, or any preceding Time Period. 
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5.3.6.6 Investment Constraint  

There is a limit on the amount of investment, Mt, that can be made in each Time Period, t. 

The investment costs are incurred by opening Potential Facilities and Technology Lines, 

however additional capital can be retrieved for other investments by the disposal of 

Facilities and Technology Lines. The amount, Vf, that may be retrieved is dependent on 

which Existing Facility, fe, is closed. The capital costs of each Potential Facility, fp, is 

given by, Lf, and of each Technology Line by, Lf, which is dependent upon the Potential 

Line, lp; these are the full capital costs and not the percentage of the cost that is assigned to 

the cost for each Time Period. 

5.3.6.6.1 MIP Implementation 

The MIP formulation uses the binary variables in summing the investment costs.  
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5.3.6.6.2 CP Implementation 

The CP constraint formulation has the same structure as the MIP formulation but uses 

conditional expression instead of the binary variables in summing the investment costs. 
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5.3.6.7 Production Rate Constraint  

The amount of each Product, p, that can be produced is limited by the availability of 

Technology Lines and their production rate. Each Technology Line has a production rate, 

Rl,p, for each of the Products that the Line is able to produce; this rate is dependent on the 

Product, p, and the Technology Line, l. The sum of the available time for each Line, 

provided by Existing and Potential Technology Lines, must be greater or equal to the time 

that would be required for the production that is carried out on that Line Type.  

5.3.6.7.1 MIP Implementation 

The MIP implementation sums the number of Lines open in a Time Period directly from 

the binary variables indicating whether a site has opened or closed in a preceding Time 

Period.  
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5.3.6.7.2 CP Implementation 

The CP formulation has a similar structure, but uses conditional constraints to identify 

whether a Line is open in the Time Period under consideration. Two constraints for 

Existing Technology Lines and two constraints for Potential Technologies are required in 

order to incorporate the longer final Time Period which was used in the CP formulation. 

For the both the Potential Technology Lines, lp, and Existing Technology Lines, le, 

conditionals are used to identify whether each Technology line is in use in each Time 

Period, t. These are multiplied by the expression (H – T) for the final Time Periods to 

incorporate any extended length final time periods. In each case the amount of Product, p, 

divided by the production rate must be less than this. 
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5.3.6.8 Predecessor Product Constraint  

The amount of a Product consumed is dependent on the quantity of a successor Product 

that is produced and the conversion ratio r between the consumed Product, p, and the 

produced Product, p1. The constraint forces the consumed amount to be equal to the 

amount required for the production of the successor. The consumed Product can include 

Raw Material Products or intermediate Products depending on the problem instance. 

This constraint is the same in both the MIP and CP formulations. 
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                                               p is the predecessor product of p1                  (28) 

5.3.6.9 Product Flow Constraint  

This constraint balances the flow of Products through the system. At any Facility, f, in any 

Time Period, t, the amount of a Product, p,  that is produced on each Technology Lines, l, 
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at the Facility; plus the amount, q, that is transported to the Facility, f, from other 

Facilities, f1, plus the amount of the Product that enters the Facility as Raw Material 

Product, m, from the suppliers, plus the amount that was placed in inventory, i, in the 

previous Time Period, must be at least as great as the amount of a Product consumed, c, 

plus the sum of the amount q of the Product transferred from the Facility, f, to all the other 

Facilities, f2, , plus the amount, q, of the Product transferred to Customers, c, plus the 

amount that is transferred to inventory, i, to be used in next Time Period. Most instances of 

this constraint will simplify, giving a significantly simpler constraint; for example, 

Products that are consumed are predecessor Products and as such are not usually final 

Products that would be transferred to a Customer, but this is dependent on the data 

determining the problem instance. Conversely Raw Material Products that are obtained 

from suppliers are not usually going to be Products that are produced within the system, 

transferred between sites, passed into inventory or transported to Customers.  

Again this constraint is the same in both the MIP and CP formulations. 
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5.3.6.10 Transport Internal Constraint 

This constraint prevents any Products, p, being transported to or from a Facility, f, unless 

the Facility is open. There are no differences in the formulation of this constraint in the 

MIP and CP implementations. The constraint uses a Big M value, B, which is sufficiently 

large to prevent this constraint limiting the transport of products when a Facility is open.   
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5.3.6.11 Demand and Shortage Balance Constraint  

This constraint determines the shortage of a Product in respect of the demand for the 

Product, p, by the Customers, c, in the Time Period, t. The amount delivered from all the 

Facilities, f, plus the shortage must be equal to the demand. This constraint is the same in 

the MIP and the CP formulations. 

p,tc t c,p

f

 p, tcf Qsq ,,,, =+∑
        tpc ,,∀                    (31) 

5.3.7 Modelling changes 

In both the MIP and the CP approaches several different implementations were used that 

reduced the number of variables or constraints that would be generated by a problem 

instance. 

5.3.7.1 Removing some Facilities and Technology Line variables from the model 

In the MIP both Facilities and Technology Lines have variables which specify whether the 

Facility can be open in a specific Time Period and which specify which Time Period a 

Facility and Technology Lines is first opened or closed. All the constraints can be 

reformulated to just use the variables which specify when Facilities and Technology Lines 

are first opened or closed. 

First consider the Facility variables, x, 
��,� and 
��,�. The relationship between x and 
��,� 

is given by constraint (13) which can be tightened to an equality relationship. 

∑
=

−=
t

t

tftf ee
zx

1

,,

1

1
1

                      tfe ,∀     



88 

Whilst the relationship between x and 
��,� is given by constraint (15) again tightening to 

an equality relationship.    
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This expression can then be used as to substitute for y in all the other constraints. The 

Facility cost (9) which was: 
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This is replaced by the following two constraints, as the Existing and Potential Facility 
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Similarly the Inventory Capacity constraint (25)  
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Can be reformulated to use 
��,�.  and 
��,�.  instead of x giving the following pair of 

constraints: 

)1(
1

,,,

1

1∑∑
=

−≤
t

t

tff

p

tpf eee
yMi

       tfe ,∀  



89 

∑∑
=

≤
t

t

tff

p

tpf ppp
yMi

1

,,,

1

1                       tf p ,∀  

Next consider the technology Line variables, z, �
�,�
, and �
�,�

. The relationship between z 

and w is given by constraint (19) which can be tightened to an equality relationship. 
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Whilst the relationship between z and w is given by constraint (21) again tightening to an 

equality relationship.    
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This leads to the reformulation of the Existing Technology Line cost constraint (7) and 

Potential Technology Line cost constraint (8) as: 
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Whilst the production rate constraint (27) becomes the following for Existing and Potential 

Technology Lines: 
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The Facility Technology Line Capacity constraint (24) includes both the variable l and the 

variable f , substituting for both of these gives rise to the following constraint. 
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5.3.7.2 Grouping of Technology Lines by Type 

In both the MIP and the CP implementations Technology Lines can be grouped by Line 

Types allowing a reduction in the number of variables generated by a problem instance. 

The variable pl,p,t which is the amount of each Product produced on each Technology Line 

in each Time Period is replaced by the variable set pf,k,p,t where the quantity of Product 

produced is not modelled separately for each Technology Lines, but is accumulated for all 

Technology Lines of Line Types, k, at a Facility, f. 

This leads to a number of constraint changes, which make the constraints more complex 

algebraically, but reduce the number of variables or number of constraints used in many 

instances. 

The production cost constraint (6) becomes 
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The Production Rate Constraint (27) becomes a constraint that sums across all the 

Technology Lines of a Type at a Facility, Lk,f. 
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The Predecessor Product Constraint (28)  
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Whilst the Product Flow Constraint (29) becomes  
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Consider the implications of this change for the main problem instance described in 

Chapter 4. Table 5-1 gives the details of the Technology Line and Technology Lines Types 

that need to be considered at each of the Facilities. 

In this problem instance there are 13 products that can be produced on the Technology 

Lines. If these are indexed by lines then this leads to 8398 production quantity variables, 

however if these are indexed Technology Lines Types and Facilities then there are only 

1222 variables, a reduction by almost a factor of seven. This leads to a reduction of the 

number of variables in the Production Cost constraint, each of the Predecessor Product 

Facility Technology Lines Technology Types 

1 41 6 

2 46 6 

3 44 6 

4 43 6 

5 41 6 

6 36 6 

7 36 6 

8 36 6 

9 42 6 

10 45 6 

11 43 6 

12 43 6 

13 14 2 

14 17 2 

15 15 2 

16 15 2 

17 14 2 

18 15 2 

19 12 2 

20 12 2 

21 12 2 

22 12 2 

23 12 2 

All Facilities 646 94 

 

Table 5-1 – Technologies and Technology Types at a Facility 
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constraints and each of the Product Flow constraints, without altering the number of these 

constraints. 

However for the Production Rate Constraint the number of constraints generated is 

affected. If Technology Lines are used as the index then with the 6 Time Periods that are 

included in this problem instance 50388 constraints are obtained, whilst only 7332 of these 

constraints are required when the production quantity is indexed by Technology Line 

Type, again a difference of just less than a factor of seven. 

5.3.8 Problem Structure Changes  

Additional optional constraints have been implemented to allow specification of particular 

requirements of problem instances within the MIP. 

5.3.8.1 Limit the number of Facilities that Supply a Customer 

A limit can be specified for how many Facilities, f, can supply each Customer, c 

5.3.8.1.1 Data  

This requires the addition of a set of data, Mc, giving the maximum number of Facilities 

supplying each Customer. 

5.3.8.1.2 Variables 

An additional binary variable rf,c is required to specify whether a Facility, f, supplies 

Customer, c.  

5.3.8.1.3 Constraints 

The amount that can be transferred from a Facility, f, must be less than or equal to the 

demand quantity if that route of supply, cf, is chosen and zero if not. 
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5.3.8.2 Restricting the Facilities supplying Customers each Product  

A limit can be imposed on how many Facilities, f, are supplying each product to each 

Customer, c. 

5.3.8.2.1 Data  

This requires the addition of a set of data, Mp,c, giving the maximum number of Facility, f, 

supplying Product, p, to Customer, c. 

5.3.8.2.2 Variables 

An additional binary rf,c,p variable is required to specify whether a Facility, f, supplies 

Customer, c, with Product, p.  

5.3.8.2.3 Constraints 

The amount that can be transferred from a Facility, f, must be less than or equal to the 

demand quantity if that route of supply, rf,c,p, is chosen, and zero if it is not chosen. 

pcftpctpcf rQq ,,,,,,, ≤
  tpcf ,,,∀       

The number of route of supply, cfp, that can be chosen to a Customer for a Product is less 

than the specified maximum, fmxp,c. 

cp

f

pcf Mr ,,, ≤∑
   pc,∀   

5.3.9 Model Simplification 

We have specified the problem using the most general form of each constraint. This has the 

advantage that there is a high degree of uniformity and consistency in the model, with no 

special cases having to be specified. This may appear to create many unnecessary variables 

and constraints, and to make the constraints unnecessarily complex. However the data 

values from a problem instance are used to control which parts of each constraint are 

included in each case, using only the terms that are relevant and have non zero coefficients; 

and only generating the required constraints. We will illustrate two aspects of 
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simplification of the general formulation of the constraints that are driven by the data using 

the product flow constraint. The first of these is the simplification that comes about due to 

the structure of different parts of the supply chain and the second is the simplification 

which comes about if the supply chain under consideration has a less complex structure. 

5.3.9.1 Product Flow Constraint 

Here we consider the formulation using Technology Line Type, k, as an index for 

production quantities. The most general formulation of this constraint includes production 

and consumption of multiple Products, on multiple Technology Lines, at multiple 

Facilities; supply of multiple Products to multiple Customers; and the acquisition of 

multiple Raw Material Products from multiple suppliers, all of these in multiple Time 

Periods, with inventory carried between consecutive Time Periods. 
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5.3.9.2 Constraint complexity within different parts of the Supply Chain 

However, even in the most complex of problem instances, all instances of this constraint 

should simplify because many of the terms will not exist or have zero coefficients. In order 

for all the component variables of the constraint to be included in one instance the same 

Product would have to be able to be acquired by the Facility from a supplier as a raw 

material, then be consumed and produced in the production process, able to be transported 

to the Facility from at least one other Facility within the supply chain and to be transported 

to at least one other Facility in the supply chain; it would also have to be possible to 

transfer it in and out of inventory and to supply the Product to at least one Customer from 

this same Facility. Which parts of this constraint become active will be dependent on the 

function of the Facility in respect of each Product, as defined by the data. 
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For example, a raw material is likely to be acquired from a supplier and then consumed in 

the production process, without any other transfers in or out of the Facility. This leads to 

the following simplification of the product flow constraint for all Products of this sort: 
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or at most the following constraint if inventory balance is included for that Product: 
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For a Product produced at a Facility, the flow constraint would not usually include any 

acquisition of the Product as a raw material and no consumption of the Product, and this 

Product is likely to be transported either to another Facility within the supply chain or to an 

end Customer, but not usually both, leading to the following constraint if there is no 

inventory included: 
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Not only will the number of variable groups included in a constraint vary depending on the 

structure of the flow of Products through the supply chain, but the complexity of the supply 

chain itself, in terms of how many Facilities, Products and Customer are included, along 

with how many Time Periods are modelled. 

Considering the production of a Product that is produced at a Facility and then supplied 

directly from that Facility to Customers, there will be f.t constraints of this form, modelling 
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this production and distribution; where f is the number of Facilities that produce and 

distribute this Product to Customers and t is the number of Time Periods considered for the 

problem instance, as below: 
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The number of variables in this constraint will be dependent on the number of different 

Technology Types at a Facility that can produce the Product under consideration, giving 

the number of production variables that must be summed to give the total production of the 

Product at the Facility, and upon the number of Customers that are supplied, giving c + k 

variables in the constraint. If there is only a single Line Type capable of this type of 

production then this constraint has only c + 1 variables, and reduces to the following: 

∑≥
c

tpcftpf qp ,,,,,

                  tpf ,,∀  

The following table (Table 5-2) shows the number of Products involved in each stage of 

the supply chain, acquisition of raw materials, first, second and final stage production, for 

the Osiris problem instance when 10 raw materials are acquired from 3 suppliers. 

The first line in the table gives the number of Products of each type included in the 

problem. The supplier line shows the number of suppliers that are involved with the 

Products. Then the number of Facility Types involved with the Product Type, in this case 

there is a Facility Type, which we will call a “Factory”, involved with the production of 

stage one Products from raw materials, and then the production of stage two Products, and 

another Facility Type, which we will refer to as a “Distribution Centre” involved with the 

conversion of stage 2 to final Products and capable of production of stage 2 Products. The 

number of Line Types involved with these conversions is shown, and finally the number of 

Customers who purchase these final Products. This allows us to give an estimate of the 

number of product flow constraints generated and their complexity. 
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  Products 

  Raw 

Materials 

First Stage 

Products 

Second 

Stage 

Products 

Final 

Products 

 
Quantity 10 13 13 13 

 

Number of 

Facilities 

dealing 

with 

Products 

Suppliers 3    

Factories 8 8   

Distribution 

Centres 
  15 15 

Customers    30 

 

Table 5-2 - Product used at stages of the Supply Chain 

The first line in the table gives the number of Products of each type included in the 

problem. The supplier line shows the number of suppliers that are involved with the 

Products. Then the number of Facility Types involved with the Product Type, in this case 

there is a Facility Type, which we will call a “Factory”, involved with the production of 

stage one Products from raw materials, and then the production of stage two Products, and 

another Facility Type, which we will refer to as a “Distribution Centre” involved with the 

conversion of stage 2 to final Products and capable of production of stage 2 Products. The 

number of Line Types involved with these conversions is shown, and finally the number of 

Customers who purchase these final Products. This allows us to give an estimate of the 

number of product flow constraints generated and their complexity. 
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The total number of constraints that will be generated to model the product flow for this 

problem instance will be calculated by f.p.t. With 23 Facilities, 8 Technology Line Types, 

52 Products and 6 Time Periods, a naive view would give a constraint count of  f.p.t., 

which could give a count of 7176 constraints for this problem instance and the variable 

count for each constraint would be k + f + s + 1 + 1 + f + c + 1 = 2f + k + s + c + 3, which 

would give 90 variables in each constraint. 

However, more detailed analysis requires the consideration of each type of Product and the 

Facilities that will be involved with the Product. For the 3 raw material Products there are 

13 Facilities involved, giving a constraint count of 234, for stage one Products there are 8 

Facilities involved giving a constraint count of 624, for stage two Products there are 23 

Facilities and hence a constraint count of 1794, and for the final Product only 15 Facilities 

are involved giving a count of 1170. Hence the total constraint count is actually only 3198, 

less than half the ‘naïve’ figure above. 

The complexity of these constraints can also be estimated. For raw materials the constraint 

reduces to  
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Giving a variable count of s + 1; only 4 variables with non zero coefficients in each of the 

234 product flow constraints of this type.  

For the stage one Products the constraint will have reduced to the form below, with 

production of the Products taking place at factory type Facilities, and being used for 

production of the stage two Products at that Facility or transferred to another factory type 

Facility for use there. 
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This then gives a variable count of k1 + 1 + (f2 – 1); where k1 is the number of Technology 

Lines that produce stage one Products and f is the number of factory type Facilities, which 
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in the variable count must be reduced by one, so as not to include the Facility under 

consideration, as that would be modelling the transfer of Product to itself. This gives a 

variable count estimate of only 2 + 1 + 7 = 11 for each of these 624 constraints.  

For stage two Products, the constraint will simplify to the following for factory type 

Facilities, where the Product can be produced, but must be transferred out to a distribution 

centre type Facility for the next stage of production. 
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This gives a variable count estimate of k + f2, where k is number of Technology Lines that 

produce stage two Products, and f is the number of distribution centre type Facilities; and 

for this problem instance that is 4 + 15 = 19 for the first 624 of these 1794 constraints. The 

constraints for the distribution centre type Facilities only includes transfer in of these 

Products and not transfer out, along with consumption and production; giving the 

following constraint structure 
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and a constraint count estimate of k1+ f1+ 1 where k1 is the number of Technology Line 

Types producing stage two Products and f1 is the number of distribution centre type 

Facilities; giving a variable count estimate of 4 + 15 + 1 = 20 for the remaining 1170 of the 

1794 constraints for this stage of Products. Again these figures are considerably smaller 

than the ‘naïve’ figure of 97 variables with non zero coefficients in each constraint, almost 

reduce to a fifth of the possible terms. 

In the case of the sums of transfers between Facilities there may be further reduction in the 

complexity of the constraint in cases where specific transfers are not permissible. If the 

cost of transfer is not specified in the data then it is assumed that this transfer route is not 

permissible, and the variables for this transfer will not be added to the model, reducing the 

complexity of constraint where they would have been included. This will also be the case 
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where a specific Line Type is not available at a specific Facility, and if there are no Line 

Types available for the production of a particular Product at a Facility, then the variable 

will not be created for the relevant production and consumption quantities, and the 

constraints modelling that Product and that Facility will simplify accordingly. 

The final stage Products have the following product flow constraint structure as below: 

    ,,,,,,,,,

1

1

1 ∑∑∑ ≥+

≠
∈ c

tpcf

ff
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k

tpkf qqp

     

                                                                                      tpf ,,∀  

The constraint count estimate becomes k1+ f1+ c, where lt1is the number of Technology 

Line Types that can produce final Products, f1 is the number of Facilities that can transfer 

Product to this Facility, which in this case will be the total number Facilities less one, 

whilst c is the number of Customer to who the Products can be supplied, giving an estimate 

of 2 + 22 + 30 = 54 for the 1170 constraints for these final stage Products.  

By taking the product of rows and columns give us a measure of the non zeros in model 

matrix, which give us some measure of the size and complexity of the mathematical model 

that is generated. Instead of the 7176 constraints each with 97 variables, which would be 

696072 non zeros, we have: 

• 624 constraints with 13 variables  

• 624 constraints with 19 variables  

• 1170 constraints with 21 variables 

• 1170 constraints with 54 variables 

Which gives 107718 non zeros for our more detailed estimate, with the reductions due to 

model structure, compared to 696072 without this reduction. This is about 15% of the 

original size. In each case, the values in the data drive the form and the number of 

constraints, so that the model contains the minimum number of constraints with the 

minimum number of variables necessary to correctly model this aspect of the problem 

instance, and as said before this may lead to further reductions in the model size where 

data does not permit certain transport routes. 
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5.3.9.3 Constraint complexity within less complex problem instances 

In many supply chains the structure will be simpler than the generic structure we have 

defined. There may be situations where there is only a single Product, a single Technology 

Line, a single Facility or single Customer to be considered, or the problem only needs to be 

considered over a single Time Period, and inventory and raw material acquisition may not 

be included. In these cases the complexity of complete sets of constraints is reduced as the 

set indices which define them are reduced, removing a whole dimension from the model 

when the problem is reduced in this way. 

For example consider the case where the problem instance only included the production 

and the supply of a single Product to a set of Customer from a set of Facilities, without any 

transfer between the Facilities. The resulting constraints would give the amount of the 

Product produced at the Facility must be at least the amount supplied to the Customer from 

that Facility, as below: 

∑≥
c

cff qp , 
                                              f∀  

This gives a set of f constraints of this type, each including c + 1 variables.  

Another example may be where there is only a single Facility producing a set of Products, 

in which case the constraint would be more complex but there would only be a single 

instance of the constraint, as below 

∑∑ ≥
c

c

k

tpk qp  ,,
                                           

It is clear that different supply chain instances will give rise to different complexity of 

constraints. What we have achieved with the specification we have defined and the way it 

has been implemented, is to permit the modelling of complex structure when necessary, 

but for simplification to be driven by the data specification of the model and not to require 

additional inputs for the problem owner to keep the constraint complexity or the number of 

constraints generated in the model to a minimum. 



103 

5.4 Conclusion 

These models along with the database design given in chapter 2 provide the basis for the 

implementation of this generic supply chain framework and the further investigations that 

are reported in the following chapters. In chapter 5 it is used to consider the potential of 

model adaptation in solution improvements, in chapter 6 the use of the model within a 

local search method is investigated and finally in chapter 7 the extension of the model to 

incorporate uncertainty is considered. 

This implementation, unlike other implementations, is not problem-specific and provides 

the basis of a system that can be used for the representation and solution of a whole class 

of problems and not just simple variations of a single problem instance.  

The resulting mathematical models are solvable using current hardware and software, even 

for significant real-world problems. 
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6 Alternative MIP Formulation, Solution Methods and Extensions 

Alternative model formulations can affect how quickly optimisation problems take to 

solve. The aim of the following investigations was to demonstrate the potential for 

integrating a variety of formulations into the generic framework, and to show that these 

different formulations have the potential for improved solution of specific problem 

instances. 

In this chapter seven variations to the original MIP formulations described in the previous 

chapter are considered. Each of the alternative formulations is described along with the 

results that were realised when they were employed with the main problem instance which 

is described in Chapter 3. 

In each case, the variation in the generated mathematical model formulations were 

produced without changing the original generic SCPP representation. This demonstrates 

the separation of the problem representation and description from the transformation into a 

mathematical problem formulation. The consistency of the solutions between the different 

formulations of the problem demonstrates the robustness of the generic framework 

approach in that the SCPP representation is not dependent on the details of the 

mathematical formulation, but is still solvable using current hardware and software. 

6.1 The Formulations 

The seven adaptations of the original MIP formulation investigated were:  

• Fractional Variable Formulation, where the variables for transfer of a Product to a 

customer are in terms of the proportion of the demand that is met, rather than the 

quantity supplied. 

• Linking Constraints, additional constraints providing a direct link between the 

variables for the transfer of a Product from a Facility and the variables for the 

Facility being in use.  

• Subsets of Linking Constraints, the use of a selection of the linking constraint 

described above. 

• Alternative Formulations for Facility Logical Constraints. 

• Special Ordered Sets, as additional constraints or as an alternative to the constraints 

on sets of variables where only one of the set can be non-zero at one time. 
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• Symmetry Breaking Constraints, these constraints were added to remove solutions 

that are effectively identical, such as occur if two identical Technology Lines are 

available to install at a Facility. 

• Forcing Facilities Closed. 

6.1.1 Fractional Variable Formulation 

The original formulation uses variables which represented the quantity of each Product 

shipped from a facility to a customer; these are continuous variables with imposed upper 

bounds. This alternative formulation uses a continuous variable with a lower bound of 0 

and an upper bound of 1 for the fraction of the customer demand that is met for a Product 

by a Facility in a Time period. The shortage variables are also changed to model the 

fraction of the demand which is not met. 

The change in the transportExternal, q, variables leads to the need for changes in constraint 

groups (29) and (31) as follows: 

            1 sq p,c, t 
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Three constraints (2), (3) and (5) used for construction of the objective function also 

required changes giving the new formulation below: 
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6.1.2 Linking Constraints 

An additional group of redundant constraints (in terms of the modeller) directly linking the 

Facility opening variables with products supplied to Customers were added. This group of 

constraints may have implications for the performance of the optimisation; they offer the 

potential of tightening of the model bounds, but add large numbers of constraints to the 

model.  

Demand met from Facility, f, can only be greater than zero if the Facility is open, therefore 

a constraint can be added to give a direct link between the Facility open value and the 

quantity of the demand, Q, for Product, p, met by the Facility, in time period, t. The link in 

the original formulation of the model is indirect, through constraints (24) which prevent a 

Technology Line being used at a Facility which is not open, constraints (27) which 

prevents production of a Product on a Technology Line that is not open, and constraints 

(29) which deals with the transport of Products from Facilities where they have undergone 

their final transformation. 

The formulation of the linking constraint was initially proposed within the fractional 

formulation that was discussed previously. 

  ,, tfp,tc, f fq ≤
   tpfc ,,,∀   (32a) 

However a second formulation was considered so that these linking constraints could be 

used in the original formulation. 

   ,,,, tftpcp,tc, f fQq ≤
  tpfc ,,,∀   (32) 
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Tests were carried out to see whether there was more advantage to be gained by tightening 

the formulation than disadvantage from increasing the size of model by the addition of 

these constraints.  

6.1.3 Subsets of Linking Constraints 

Selection of subsets of the linking constraints were considered, in order to try to maintain 

the positive effect on the lower bounds, whilst still achieving good quality integer 

solutions. This would need a process which could be automated and used within the 

generic framework. Hence the selection of this subset needed to be based on some data 

specified criteria, either from the original problem data, or from some calculated result that 

could be obtained quickly and easily. We show how the solution of the LP relaxation can 

be used. 

The values of the Facility opening variables for those Facilities from the LP relaxation for 

our large problem instance that were involved with the supply of Products to customers 

were considered. Details for Facilities 9-23 only are shown in the table Table 6-1, as 

facilities 1-8 do not produce Products that are supplied to customers. 

Values of ff,t 

  Time Periods 

Facilities 1 2 3 4 5 6 

9 0 0 0 0 0 0 

10 0.175172 0.130887 0.130887 0.130937 0.130968 0.130968 

11 0.274056 0.233472 0.233699 0.234625 0.235089 0.235089 

12 0.511556 0.327747 0.327747 0.327747 0.327747 0.327747 

13 0.389249 0.301909 0.305372 0.33514 0.389249 0.389249 

14 0.00295 0 0 0 0 0 

15 0.059572 0.011928 0.011928 0.011928 0.011928 0.011928 

16 0.292901 0.292901 0.292901 0.292901 0.292901 0.292901 

17 0.102395 0.071442 0.071442 0.08475 0.102395 0.102395 

18 0.085347 0.085347 0.085347 0.085347 0.085347 0.085347 

19 0 0 0 0 0 0 

20 0 0 0 0 0 0 

21 0.09634 0.105685 0.105918 0.105918 0.105918 0.105918 

22 0 0 0 0 0 0 

23 0 0 0 0 0 0 

 

Table 6-1 - Facility opening Variables Values from the LP Solution 
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It can be seen that the opening variables for five of the Facilities were zero in all six time 

periods. Ordering the Facilities according to the maximum value of the opening variables 

gives the results shown below. 

Opening variable 

maximum value  
Facilities Maximum ff,t 

9 0 

19 0 

20 0 

22 0 

23 0 

14 0.00295 

15 0.059572 

18 0.085347 

17 0.102395 

21 0.105918 

10 0.175172 

11 0.274056 

16 0.292901 

13 0.389249 

12 0.511556 

 

Table 6-2 - Facility Opening Variable Maximum Value 

If these requirements from the LP solution are summed, a total Facility requirement of less 

than 2 Facilities is indicated. In order to meet other requirements and minimise other costs, 

more than 2 are likely to be selected in any practical solution; however, it is unlikely that 

all 10 will be required, and this seems to lend weight to the importance of this decision in 

the solution process as well as to the problem owner. 

 A series of experiments were carried out to test different selection criteria for the addition 

of the linking constraints to be added to the model and the effects on the integer solutions 

and the lower bounds that were obtained.  
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6.1.3.1 Selection Criteria 

We considered some selection criteria for grouping these Facilities: 

• Facility opening values of zero, giving the set of Facilities {9, 19, 20, 22, 23}. 

• Facility opening values greater than zero, but less than 0.2, giving the set of 

Facilities {10, 14, 15, 17, 18, 21}. 

• Facility opening values of greater than 0.2, giving the set of Facilities {11, 12, 13, 

16}. 

6.1.4 Alternative Formulations for Facility Logical Constraints 

Two alternative formulations of these constraints were considered, an equality formulation 

where inequality constraints were replaced by equality constraints; and a difference 

formulation where constraints used the difference of ‘adjacent’ variables. 

6.1.4.1 Equality Formulation for the Facility Logical Constraints 

It is possible to replace the constraint groups (12), (13) and (16) in the original 

formulation, with a single set of equality constraints (33). Constraints (13) are relaxed 

versions of these new constraints (33). 
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replaced by 
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Similarly the constraint groups (14), (15) and (17), again repeated below for clarity, can be 

replaced with the single set of constraints (34). Similarly Constraints (15) are relaxed 

versions of these new constraints (34). 
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6.1.4.2 Difference Formulation for Facility Logical Constraints 

The Facility logical constraints (13) and (14) can be replaced by the following formulation, 

which links the opening or closing of the Facility to the change in the open variable 

between the previous and current time periods. Again this relies on the additional 

restriction constraints (16) and (17) on the Facility only opening or closing once. 

tftftf eee
xxy ,1,, −=

−             efTt ∀= ,..1     (13c) 
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0,0, 1
ee ff xy −=

   ef∀     (13d) 

 

1,,, −
−= tftftf ppp
xxy     pfTt ∀= ,..1   (14c) 

 

0,0, pp ff xy =      pf∀     (14d) 

6.1.5 Special Ordered Sets 

A special ordered set of type one (SOS1) was a concept first introduced by Beale and 

Tomlin (1969). The set as proposed by Beale and Tomlin and described by Williams 

(1990) places the restriction that one of the variables in the set must be non-zero, and that 

none of the other variables in the set can be non-zero; this does not allow all of the 

variables in the set to be zero. 

The implementation of SOS1 in the main proprietary software packages is a less rigid 

constraint on the set; that at most one of the variables can be non-zero, allowing the case 

where all the variables are zero valued. The solvers CPLEX
 
(IBM 2009), XpressMP (FICO 

2009), GAMS (Rosenthal
 
 2011), all describe a SOS1 in this way, as do the modelling 

languages AIMMS (Bisschop 2011) , with MPL (Maximal, 2008) using the definition of 

the underlying solver if it supports SOS sets, and ignoring defined SOS in a model where 

the solver employed does not provide this support. 

The effectiveness of the use of SOS was evaluated for the set of variables with and without 

the other Facility logical constraints. 
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6.1.6 Formulation 

There are several sets of variables in the model where constraints could be formulated 

using SOS:  

• Facility newly opened and newly closed variables for each Facility 

• Technology newly open and newly closed variables for each Technology 

• Hence constraints (16), (17), (22) and (23) can all be replaced or supplemented by 

declaring the sets of variables for each Facility or each Technology Line as a SOS1. 

6.1.7 Symmetry Breaking 

Observation of the sequence of MIP solutions obtained when solving for a single scenario 

showed that alternative equivalent solutions were being generated due to symmetry. The 

data for the main problem instance considered contains Technology Lines with identical 

capabilities and costs that could be used at each site. We carried out further investigations 

and consider whether such symmetry could be broken and whether this would have a 

positive impact on the solution process. 

6.1.7.1 Formulation 

The technology lines were given an ordering based on the ID numbers that they had been 

given and an additional constraint was added to the model to prevent subsequent 

Technology Lines in a set of Lines of the same Technology Type being opened before a 

previous one.  

For each pair in the ordering we impose a constraint that the sum of the opening variables 

for that time period and all the preceding time period for the first line must be greater or 

equal to the equivalent sum of opening variables for the subsequent line: 
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6.1.8 Forcing Facilities to be closed 

It was observed that some Facilities were not being employed at all in any of the solutions, 

and when the solutions from the linear relaxation was examined these same Facilities had 

zero valued variables in that solution as well. It was felt that using the linear relaxation to 

remove what was effectively a redundant part of the model may be an effective way to 
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improve the solving process, and that this would be a mechanism that could be 

incorporated within a generic solution framework. 

It was observed that seven Facilities {6, 7, 9, 19, 20, 22, 23} had zero valued opening 

variables in the relaxed solution. These variables were then forced to zero in the model, the 

problem solved and the solution obtained compared with the original formulation.  

Table 6-3 gives the model dimensions for this formulation and for the original formulation. 

Model Dimensions 

 Original Formulation  Formulation with Facilities 

Forced Closed 
 Before 

presolve 

After 

presolve 

Before 

presolve 

After 

presolve 

Constraints 12439 7243 12481 5626 

Variables 58080 41926 58080 27805 
 

Table 6-3 - Model Dimensions 

The number of variables in the model before pre-solve show the additional 42 constraints 

added to the model to prevent the opening of the seven Facilities in each of six time 

periods. However, there is a clear reduction in the problem size after pre-solve. 

6.1.9 Forcing Shortage to be Zero 

It was observed that for good solutions to the problem there was no shortage, so the effect 

on the solution process of forcing the shortage to be zero was investigated. Setting the 

shortage to zero did not reduce the number of constraints in the model, but a small 

decrease in the number of variable in the model was seen after pre-solve. 

6.2 Experimental Results 

A brief overview of the main results for all the adaptations is given, followed by a 

discussion of the main findings for each adaptation; with more detailed results for each of 

the formulation given in appendix 1.  

The comparisons that have been made for these adaptations to the MIP implementation are 

reported for a single problem instance.  
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Access to alternative problem instances with sufficiently large data sets was limited to a set 

of problem instances that varied solely in the demand data that had originally been 

produced to use for stochastic modelling. The results obtained from these alternative 

problem instances were similar and hence have not been reported.  

Clear differences between the use of formulation was more likely to have been 

demonstrated if true sets of different problem instances of sufficient size had been 

available, it is likely that problem instances with different structures would have led to 

constraints having been generated with different structures and the main variation not 

having just been the difference in the coefficients of the variables in the constraints.  

It is acknowledged that comparisons of these techniques using a single problem instance 

were not ideal, but as the main aim of these experiments were to demonstrate the feasibility 

and usefulness of such adaptations to a model within the generic framework this was 

considered sufficient for the purpose. It provides sufficient evidence that a variety of 

formulations could be incorporated into the generic framework allowing access to different 

model formulations that could be tested to find the best choice in a practical situation 

where solution times are likely to vary between formulations. 

The results presented here are from the solution of these models using CPLEX 9.0. 

The effectiveness of the formulation is considered in light of the integer solutions and the 

lower bounds obtained with respect to CPU time and the number of nodes explored in the 

branch and bound.  

A corrected CPU time was used which removed the model build time; this was felt to be a 

separate issue of software engineering which we were not intending to include in this 

comparison.  

A comparison was also made of the solutions obtained with respect to the number of nodes 

explored in the Branch and Bound search. This is a commonly reported result in discussion 

of performance of optimisation problems, and does provide information about whether 

changes to the model have been effective in pruning the search space and helping to find 

solutions and bounds without such an extensive search. It also allows comparison to be 

made between solutions obtained on different hardware. However improvements in 

pruning the search space are often seen to increase the time taken for each step of the 

branch and bound search; an indication of this increased time can often be seen in the 

initial root relaxation time for the problem.   
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In order to make a combined comparison of the effect of the model changes on the best 

integer solution and the lower bound we also include observations of the optimality gap 

obtained with each of these formulations. This is a measure of the relative difference 

between the best integer solution and the best bound; it is sometimes given as a fractional 

value and sometimes as a percentage, as we will use here.  

integerbest 

integerbest  - boundbest 
=gap

 

This gives a measure of the quality of the solution we have obtained and of how confident 

we are about the quality of the solution. This is a very important measure when optimising 

real world problems, allowing the user confidence that the solution is of adequate accuracy 

for the practical application.  

A limit was placed on the CPU time and the number of nodes explored for each 

experiment, but convergence after this time and node limits were very slow and hence this 

was considered a practical action which would not have an adverse effect on the 

comparisons that could be made. Also comparisons were made of the model sizes and the 

root relaxation times. 

6.2.1 Summary 

The following tables give a summary of the results of using the alternative formulations 

that have been described previously. Table 6-4Table 6-5 give the best integer solutions that 

have been found with each formulation at the given corrected CPU times. In this pair of 

tables objective values that were better at the same corrected CPU time have been 

highlighted in green. The only case where there was a clear improvement on the original 

formulation in all cases was when some facilities were forced closed and this is the one 

case included here which is not a true alternative formulation, but a problem simplification 

method. 

 



 

Corrected 

CPU Time 

Original 

Formulation 

Fractional 

Formulation 

Linking Constraints Linking Constraints Subsets 
Facility Logical 

Constraints 

Non 

Fractional 
Fractional 

Facilities 

with zero 

variable 

values 

Facilities 

with low 

variable 

values 

Facilities 

with higher 

variable 

values 

Difference 

Formulation 

Equality 

Formulation 

100 3423660 8406660   6276380 2435690  4424400 8406660 

200 3423660 4924400 6208990  6276380 2435690 3697750 4424400 4924400 

500 3423660 4924400 2357310 7013710 6276380 2435690 3491090 4424400 4924400 

1000 3423660 4254240 1283250 1592860 6276380 2435690 2020910 4424400 4254240 

1500 3423660 1264680 1283250 1044600 6276380 1057280 2020910 4424400 1264680 

2000 3423660 1264680 1283250 1044600 6276380 1057280 2020910 2299630 1264680 

2500 3423660 1228660 1283250 1044600 6276380 1057280 1766540 2299630 1228660 

3000 727310 1228660 1283250 1044600 6276380 1057280 1766540 2299630 1228660 

3500 727310 1228660 1283250 1044600 708045 1057280 1766540 2299630 1228660 

4000 727310 701212 1283250 1044600 708045 1057280 1766540 2299630 701212 

4500 727310 699938 1283250 1044600 708045 1057280 1766540 698378 699938 

5000 727310 695701 1283250 1044600 708045 1057280 1766540 698378 695701 

5500 685963 695701 1283250 1044600 708045 1057280 1766540 698378 695701 

6000 685963 683200 1283250 1044600 708045 1057280 714429 698378 683200 

6500 685963 682211 1283250 1044600 708045 696620 714429 698378 682211 

7000 685963 681905 1283250 1044600 708045 696620 714429 685546 681905 

7500 685963 681905 1283250 1044600 708045 696620 714429 685159 681905 

8000 685963 681905 711623 1044600 708045 685322 714429 685159 681905 

8500 685963 681905 711623 1044600 694577 684651 714429 685159 681905 

9000 685963 681905 692650 1044600 687490 684651 714429 685159 681905 

9500 685963 681905 692650 1044600 687490 684651 714429 685159 681905 

10000 685963 681905 692650 935249 687490 684651 714429 685159 681905 
 

Table 6-4 - Best Integer Solutions with alternative MIP formulations 

 



 

Corrected 

CPU 

Time 

Original 

Formulatio

n 

 

SOS1 in Addition SOS1 as Alternative 

Symmetry 

Breaking 

Facilitie

s Forced 

Closed 

Shortage 

Forced 

to Zero 

On 

Facilities 

variables 

only 

On Line 

Technolog

y variable 

only 

On Facility 

and Line 

technology 

variables 

On 

Facilities 

variables 

only 

On Line 

Technolog

y variable 

only 

On Facility 

and Line 

technology 

variables 

100 3423660 6290240 3423660 6290240 4299050 7920470 8530200    

200 3423660 2903910 3423660 2903910 4299050 5297930 8530200  4117350  

500 3423660 2903910 3423660 2903910 4299050 5297930 6063310 9326270 1218870  

1000 3423660 2903910 3423660 2903910 4299050 5297930 6063310 8649350 746940  

1500 3423660 2903910 3423660 2903910 4299050 5297930 6063310 8649350 746940  

2000 3423660 2903910 3423660 2903910 4299050 5297930 6063310 8649350 682235  

2500 3423660 2903910 790621 2903910 4299050 3564000 6063310 6181020 681505  

3000 727310 2903910 790621 2903910 4299050 788935 6063310 6181020 681505  

3500 727310 2903910 790621 2903910 4299050 788935 5895060 1165330 681505  

4000 727310 1521990 695461 1521990 2659980 788935 3062850 1165330 681505  

4500 727310 1521990 695461 691159 1168380 788935 3062850 1165330 681505 698322 

5000 727310 1521990 695461 691159 1168380 684071 3062850 717496 681505 684608 

5500 685963 1521990 695461 691159 730238 682740 3062850 707648 681505 684608 

6000 685963 1517250 695461 691159 730238 682740 1547490 707648 681505 684608 

6500 685963 1059280 695461 691159 730238 682740 1547490 707648 681505 684608 

7000 685963 752733 695461 691159 690432 682740 1547490 686971 681505 684608 

7500 685963 734148 695461 691159 690432 682740 699278 686971 681505 684608 

8000 685963 734148 695461 691159 690432 682740 699278 686971 681505 684608 

8500 685963 691110 685250 691159 690432 682740 699278 686971 681505 684608 

9000 685963 691110 685250 691159 690071 682740 699278 686971 681505 684608 

9500 685963 691110 685250 690220 690071 682740 699278 686971 681505 684608 

10000 685963 685537 685250 688996 688553 682740 697845 686971 681505 684608 
 

Table 6-5 - Best Integer Solutions with alternative MIP formulations 
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Alternative Formulations 

 

Root 

relaxation 

time 

Number 

of 

constraint 

after 

presolve 

Number 

of 

variables 

after 

presolve 

Best 

Integer 

solution 

in time 

limit 

(10000s) 

Best 

Integer 

Solution 

in node 

limit 

(3500) 

Original Formulation 38s 7243 41928 685963 684107 

Fractional Variable 

Formulation 
18s 7226 41911 681905 681905 

Linking Constraints 128s 26548 41911 692650 686956 

Fractional Variable and 

linking Constraints 
171s 26548 41911 935249 681906 

Subsets of 

Linking 

Constraints 

Zero opening 

values 
37s 13359 41924 687490 687490 

Smaller 

opening 

values 

51s 16176 41921 684651 684651 

Larger 

opening 

values 

87s 12647 41920 714429 683410 

Alternative 

Formulations 

for Facility 

Logical 

Constraints 

Difference 

Formulation 
42.7s 6797 41928 685159 685159 

Equality 

Formulation 
71.0s 9360 41928 762066 762066 

Special 

Ordered Sets 

used as 

alternative 

Facilities 

only 
31.2s 7243 41928 688553 683693 

Technology 

Lines only 
34.8s 6679 41951 682740 682740 

Facilities and 

Technology 

Lines  

32.4s 6679 41951 697845 681321 

Special 

Ordered Sets 

used in 

addition 

Facilities 

only 
35.6s 7266 41928 685537 685537 

Technology 

Lines only 
36.2s 7243 41951 685250 685250 

Facilities and 

Technology 

Lines  

35.0s 7266 41951 688996 682708 

Symmetry Breaking 

Constraints 
71s 9829 41928 686971 686971 

Forcing Facilities Closed 13s 5626 27805 681505 681505 

Forcing Shortage to Zero 37.2s 7423 40548 681843 681843 

 

Table 6-6 - Summary of Model Statistic and Best Integer Solutions 
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Alternative Formulations 

 

Lower 

bound in 

time 

limit 

(10000s) 

Lower 

bound 

in node 

limit 

(3500) 

Early 

lower 

bound 

(before 

500s) 

Optimality 

Gap in 

time limit 

(10000s) 

Optimality 

Gap in 

node limit 

(3500) 

Original Formulation 647926 647926 616629 5.6% 5.3% 

Fractional Variable 

Formulation 
663586 663586 633100 2.7% 2.7% 

Linking Constraints 647926 663592 663592 6.5% 3.4% 

Fractional Variable and 

linking Constraints 
663326 663331 638213 29.1% 2.7% 

Subsets of 

Linking 

Constraints 

Zero opening 

values 
637482 647276 615613 7.3% 5.7% 

Smaller 

opening 

values 

646948 648443 626475 5.5% 5.3% 

Larger 

opening 

values 

654750 656460 635961 8.4% 3.9% 

Alternative 

Formulations 

for Facility 

Logical 

Constraints 

Difference 

Formulation 
649846 656169 656169 5.2% 4.2% 

Equality 

Formulation 
633421 650243 650243 16.9% 14.7% 

Special 

Ordered Sets 

used as 

alternative 

Facilities 

only 
664150 666638 623078 3.54 2.5% 

Technology 

Lines only 
645129 645129 621966 5.5% 5.5% 

Facilities and 

Technology 

Lines  

660052 660300 621026 5.4% 3.1% 

Special 

Ordered Sets 

used in 

addition 

Facilities 

only 
664677 664851 623117 3.0% 3.0% 

Technology 

lines only 
647696 647696 623688 5.5% 5.5% 

Facilities and 

Technology 

Lines  

664596 664596 623117 3.5% 2.7% 

Symmetry Breaking 

Constraints 
650275 654096 616081 5.3% 4.8% 

Forcing Facilities Closed 657065 656937 637145 3.6% 3.6% 

Shortage Forced to Zero 655834 655834 617113 3.8% 3.8% 

 

Table 6-7 - Summary of Lower Bounds and Optimality Gaps 
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The following tables (Table 6-6 and Table 6-7) gives the model statistics, best integer 

solutions, lower bound and optimality gaps for each of the formulations, and again 

improvements have been highlighted in green. 

6.3 Discussion of Results 

Further details, including graphs of results can be found in appendix 1. 

6.3.1 Fractional Variable Formulation 

The fractional formulation performed better than the original formulation during much of 

the search time, and ultimately found a better integer solution within the time limit, 681905 

in comparison to 685963, a difference of just over 4000 (about 0.6%). When this 

comparison was made by the number of nodes explored the difference was not as great, as 

the original formulation obtained a solution of 684107 within the node limit. This was 

despite the root relaxation time being shorter for the fractional formulation in comparison 

to the original formulation. 

The lower bounds obtained were better regardless of whether by corrected CPU times or 

numbers of nodes explored were seen beyond 4000 CPU seconds and beyond 150 nodes 

explored.  

6.3.2 Linking Constraints 

Adding all the linking constraints increased the size of the model considerably and this 

persisted after the application of pre-solve as is shown in Table 6-8. 

Model Sizes 

Original Formulation  

 

Formulation with 

linking constraints 

Before 

Pre-solve 

After   

Pre-solve 

Before  

Pre-solve 

After   

Pre-solve 

12439 7243 54304 26548 

 

Table 6-8 - Rows in the model for the two formulations 

The root relaxation times were increased, however, integer solutions with objective values 

under 1,000,000 were obtained earlier with the linking constraint formulations, but the 
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formulation with linking constraints and fractional variables failed to achieve a good 

integer solution (under 700,000) in the search time. 

The effect on the lower bound was similar to the lower bounds that were seen with the use 

of fractional variables. The optimality gap comparisons reflected the very poor 

performance in obtaining good integer solutions. 

6.3.3 Subsets of Linking Constraints 

None of these formulations gave clear improvements in performance in terms of integer 

solutions, although when the constraints were applied to the set of Facilities with smaller 

non zero values in the LP solution gave a better integer solution by the end of the search 

time.  

None of the lower bounds achieved were as good as was obtained when all the linking 

constraint were used, but significant early improvement with the convergence of the lower 

bound was seen when linking constraints were applied to the two set of Facility variables 

which had non zero values in the LP solution. The bound achieved using linking 

constraints on the Facility variable with the larger values in the LP solution, gave an 

improved bound throughout the search time. 

When the results were compared by nodes explored there was little difference to be seen in 

either the integer solution found or the lower bounds obtained.  

6.3.4 Alternative Formulations for Facility Logical Constraints 

These alternative formulations had a detrimental effect on the ability to find integer 

solutions for this problem instance within the specified time limits; with better solutions 

being obtained at respective times by the original formulation.  

The lower bound was also not improved by these changes; hence a better convergence of 

the optimality gap was seen with the original formulation. Further details of these results 

can be found in appendix 1. 
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6.3.5 Special Ordered Sets 

Using the SOS1 Constraints on the three sets of variables below, in addition to the 

constraints in the original formulation and as an alternative gave six different SOS1 

formulations to investigate.  

• both the Facility and Technology Line variables 

• just the Facility variables  

• just the Technology Line variables 

 

Comparisons made of the model sizes of each formulation showed only small differences. 

The addition of SOS1 to just the Technology Line constraints proved the best of these 

alternatives and although there was no early improvement, better solutions were obtained 

after 5000s. The formulation with SOS1 constraints as an alternative on both Facility and 

Technology Line variables also produced a better final integer solution. 

The addition of SOS1 constraints to the original formulation constraints on the Facility 

variables, with or without the Technology Line variables improved the lower bound.  

Little difference was seen when the comparison was made with respect to number of nodes 

explored. However, the solver was able to find better solutions below 700,000 for all three 

cases where SOS1 constraints were used as an alternative to the original formulation 

constraints. 

The optimality gaps do not show any clear difference due to the improvement in integer 

solutions obtained coinciding with a degradation of the lower bounds obtained, and visa 

versa. Root relaxation times were all very similar to those seen with the original 

formulation. 

6.3.6 Symmetry Breaking 

The inclusion of these symmetry-breaking constraints increased the model size by over 

2500 constraints and this increase in problem size was not reduced at all by the application 

of the CPLEX Presolve,. The constraints did remove the symmetry from the solutions 

obtained.   

It had been noted that the root relaxation time was increased considerably by the addition 

of the symmetry breaking constraints, rising from 42 seconds with the original formulation 

to 71 seconds with the addition of the symmetry breaking constraints. This raised the 
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question as to whether the search had been improved by the addition of the symmetry 

breaking constraints, but the increased root relaxation time was masking any positive effect 

on the branch and bound search.  

No improvement was seen in the integer solution obtained, but the lower bound was 

considerably better by this measure. 

6.3.7 Forcing Facilities to be closed 

In this formulation, constraints were added to the model to force the values of some of the 

Facility variables to zero, this obviously increased the number of constraints in the model, 

but following CPLEX Pre-solve there was a considerable reduction in model size. There 

was a reduction in the number of constraints from 7243 in the original formulation to 5626 

and a reduction in the number of variables from 41926 to 27805. 

Better integer solutions were found at all times during the search, whether the comparisons 

were made by corrected CPU time or by the number of nodes explored, and the root 

relaxation time had been reduced from 38s to only 13s. Lower bounds obtained were also 

improved regardless of which method of comparison was made.  

6.3.8 Forcing Shortage to Zero  

Forcing the shortage to zero meant that earlier integer solutions which have been seen to 

contain high levels of shortage were not found, so obtaining a first integer solutions took 

longer. The best integer solutions found later in the search were a little better than was seen 

in the original formulation. 

6.4 Summary 

The approach taken, to separate the SCPP representation issues as a generic framework, 

and to explicitly handle the transformation of the SCPP representation into a mathematical 

formulation has been shown to be robust in that the resulting mathematical problems can 

be solved to give consistent solutions across a range of different formulations without 

changing the original SCPP representation in the generic framework.  

The different mathematical formulations do exhibit a variety of performance benefits 

although a clear advantage of one particular formulation over another was not shown. It 

was shown that different formulation could be incorporated into a generic framework  and 

allow some tuning of the solver for different SCPPs. 
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7 Strategic Planning with Multiple Scenarios 

In this chapter the practicalities of including multiple scenarios in the generic model are 

considered, along with the implications on the model size and the ability to find good 

integer solutions.   

Analysis of the scenarios is carried out and methods for using multiple scenarios to find 

more robust solutions are considered, while analysis of the solutions obtained from a range 

of scenarios offer the potential to simplify the model to be solved. 

7.1 Background 

When undertaking supply chain planning, most of the data used to make such a plan cannot 

be known with certainty, and forecasts have to be relied on to provide this missing data. 

This is true for the demand levels of the products, the cost of facilities and technologies, 

and also of selling prices for produced goods, buying prices for materials, manufacturing 

overheads and for transport costs. 

We propose a method for incorporating these stochastic features, in terms of scenario 

specifications, into our generic supply chain model and demonstrate their use within our 

main problem instance for demand scenarios and demonstrate that they can be solved 

practically with current hardware and software. 

We acknowledge that the addition of such scenario data for all these aspects is likely to be 

impractical, not only in terms of data generation, but in terms of the size and complexity of 

the mathematical models that would be generated, and the resultant solution times that 

would be required. The size of the single scenario model is potentially large and building a 

combined model for the number of scenarios required to represent real world variability in 

just one of the sets of the data makes resulting models much larger. Extending the model to 

include variability in several sets of these aspects makes the model very much bigger 

again.  

Although in most cases it will not be practical to include stochastic variation in all the 

areas where it occurs, it was considered to be important that these were included within the 

generic framework. Therefore provision of a means of including scenario data for customer 

demands of products, costs of raw materials, cost of transportation of products were added 

to the generic model. Even if it was not practical to include uncertainty in all of these 

areas, it allows the supply chain planner or analyst to investigate the impact of variations in 

any one or several of the factors. For example as well as knowing what the effects of 
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changes in demand may have, there may be concerns about the impact of the changes of 

transportation cost. Some supply chain planners will be well aware of where their 

vulnerabilities to change lie, whilst others may wish to investigate several areas of change 

to determine which aspect’s variability has most impact upon their problem. 

Although for practical reasons the problem instances would currently only be able to 

include minimal scenario data, the continued improvement of solvers and hardware and the 

development of the use of techniques such as neighbourhood search as described in chapter 

8 is likely to provide the ability to solve larger and larger. The discovery of improved 

techniques for combining solutions makes the inclusion of all these scenario-dependent 

sets of data crucial for a truly generic model. Such a generic framework allows 

investigation of how much detail can practically be incorporated. This has a huge 

advantage of being able to work at the limit of what is practical, rather than having to make 

assumptions about whether or not to include such an aspect in a system during the design 

phase.  

There are many well developed techniques in the field of stochastic programming for 

gaining insight into the effects of uncertainty. These make use of “Wait and See”, 

“Expected value” and “Here and Now” approaches. In the “Wait and See” approach we 

solve for the best solution to our strategic problem based on a set of scenarios and the 

probabilities of them occurring. It is the best solution for decision through the time horizon 

assuming that the assumptions are correct.  

7.2 Experiments  

Some simple techniques for inclusion of scenario data are considered. However, the 

intension was not to focus on this area of research other than to clearly demonstrate that 

our generic framework would be applicable in that respect and that some simple techniques 

may provide useful information to the supply chain planner or analyst and that the resulting 

models can be solved in realistic times.  

The problems were solved by the mathematical models described in chapters 4 and in 

chapter 7 we demonstrate the use of neighbourhood search to solve these multi-scenario 

models.  

Since the future is uncertain, making decisions about long-term investment always 

involves risk. Evaluating a number of possible scenarios is one way of reducing that risk, 

or at least being able to go some way to evaluating the risk. For the main SCPP instance 

there was data available to describe 100 different demand scenarios. The framework was 
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used to solve all 100 scenarios separately to get a good solution in each case, providing a 

range of different investment decisions. The impact of choosing each of these solutions 

was investigated for a range of other scenarios. For example, if the investment decisions 

from a high demand scenario are used, but the actual demand is low, what is the impact on 

production and transportation costs as well as overall profit. The strategic solutions from 

the 100 scenarios were also each imposed on all the other scenarios and re-solved 

(requiring the solution of 10000 SCPPs) to get a better understanding of the range of 

impact of choosing the 'wrong' scenario as a basis for making strategic decisions. 

Another way of producing solutions that are less risky is to solve a number of scenarios 

together and hence find a single strategic solution which is good for all the scenarios 

chosen. Obviously solving more scenarios together should give more reliable decisions; 

however, the problem size grows with the number of scenarios solved together. The 

framework was extended to explore these issues. 

7.2.1 Strategic and Tactical Solutions 

One approach to finding a robust solution is to find a strategic solution which is good for a 

wide selection of scenarios. In order to plan across multiple scenarios, a single strategic 

solution (plan) for all the scenarios is required whilst allowing different tactical solutions 

for the different scenarios within the framework of that strategic plan. Within the 

mathematical model this meant that the discrete decisions, the first stage decisions of 

which facilities and technologies are to be used remained common across all the scenarios, 

whilst the continuous decisions, the second stage decisions of which products to produce at 

each facility and the transfers of products between facilities and customers, were allowed 

to vary for each scenario. This parallels the practical implementation of a supply chain plan 

where the long term decisions have to be made and can’t be changed later whereas the 

shorter term tactical decisions can be varied within the set strategic framework.  

7.3 Scenario Dependent Model 

A model was constructed which enforced a common strategic solution across a set of 

scenarios but still calculated separate tactical solutions for each scenario. The combined 

model contained scenario-specific production quantities, internal product transfer rates and 

quantities supplied to the customer (i.e. the scenario-specific tactical solutions), whilst the 

facility and technology availability was shared across all the scenarios (the common 

strategic framework) providing common first stage decisions. 
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The following sets of variables in the mathematical model had an additional index (z) 

added for scenario: 

Production Quantity    pl,p,t,z 

Consumed Quantity    cf,p,t,z 

Transport Internal Quantity   qf1,f2,p,t,z 

Transport Customer Quantity  q f,c,p,t,z 

Shortage Quantity    sc,p,t,z 

Inventory Quantity   i f,p,t,z 

Raw Material Quantity  mf, p,s,t,z 

The constraints linking these quantities in the model also had to incorporate the multiple 

scenarios.  The constraints summing the separate costs that make up the objective are 

easily extended to include all the scenario dependent values. This was implemented by 

summing each of these separate costs for each scenario; see below for a description of how 

the shortage cost constraint (2) was adapted. The Total Cost was then constructed from 

these individual scenario costs, this allowed easy access to the cost of shortage, 

transportation, production etc, for each individual scenario. 

∑=
ztpc

ztpcztpcz Psv
,,,

,,,,,,,1
                             z∀                  (2) 

Similarly the inventory constraint (22) needs only the inclusion of the scenario specific 

inventory quantity, and the summation being carried out for each scenario, as well as 

facility and time period. 

tff

p

sctpf xMi ,,,, ≤∑
                                   ztf ,,∀       (25) 

Similar changes were required to the Production Rate Constraint (27), Predecessor 

Constraint (28), Product Flow Constraint (29), and the Demand and Shortage Balance 

Constraint (31). 
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7.4 Solving Multiple Scenarios 

The investigation of the impact of the inclusion of multiple scenarios was carried out using 

the main problem data set. 100 scenarios were available for this problem, each with 

different forecasts for customer demand, across the products, customer facilities and time 

periods, giving 1380 different demand quantities in each scenario.   

The impact on the model to be solved when multiple scenarios were included was 

investigated. The model sizes and the solution times were recorded for increasing numbers 

of scenarios. 

7.4.1 Model Size  

Table 7-1shows the effect on the size of the model generated when increasing numbers of 

these demand scenarios are included in the model.  

Number of 

Scenarios 

Before pre-solve After pre-solve Integer 

Variables Rows Columns Rows Columns 

1 12439 58080 7243 41928 4014 

2 23001 111920 12859 79642 4014 

3 33560 165757 18465 117359 4014 

4 44119 219594 24081 155076 4014 

5 54678 273431 29691 192787 4014 

6 65237 327268 35311 230502 4014 

7 75796 381105 40931 268217 4014 

8 86355 434942 46539 305932 4014 

9 96914 488779 52168 343656 4014 

 

Table 7-1 - Problem size for multiple demand scenarios 

The addition of each scenario adds approximately 10,500 constraints which is reduced to 

5,600 additional constraints after CPLEX pre-solve, and adds approximately 53,800 

variables or about 37,700 after CPLEX pre-solve has been applied. The number of integer 

variables remains constant as these represent the common strategic solution shared by all 

the scenarios in the model.  

7.4.2 Solution Times 

Table 7-2shows the impact of this additional model size on the solution time. The time to 

reach a gap of 10% was used to give a measure of solution time, as in most cases with a 
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single scenario the gap was reduced below this level relatively quickly (within 5000s) with 

convergence becoming very slow around a 4-6% gap. 

The root relaxation times in each case also show the dramatic increases in solving time as 

more scenarios are included in the model. 

Number of 

Scenarios 

Root 

Relaxation 

Time 

Time to 

10% Gap 

Increased time for 

additional 

Scenario 

1 35.54 4607  

2 189.00 15735 11128 

3 830.85 28109 12375 

4 1526.56 74773 46663 

5 2960.96 > 75000 - 

6 3863.97 > 75000 - 

7 4969.88 > 75000 - 

8 8459.4 > 75000 - 

9 10725.71 > 75000 - 

 

Table 7-2 - Solution times for multiple demand scenarios 

This confirmed that the increased problem sizes and hence solution times were not going to 

allow the solution of a model which included more than a few scenarios and it was 

necessary to consider other methods that could provide reasonable methods for considering 

multiple scenarios. 

7.5 Strategic Solution Analysis  

Solving the most demanding scenario should give a strategic solution that covers all the 

scenarios but is likely do so by using a level of investment in facilities and technologies 

that is excessive for the majority of less demanding scenarios; whilst solving the least 

demanding scenario will give a strategic solution that does not provide sufficient capacity 

and leads to shortfalls for the more demanding scenarios. The implication of choosing a 

high demand strategic plan and the actual demand being low, or choosing a low demand 

strategic plan and the actual demand being high, can be tested. These results can then be 

used to give a measure of the risk being taken in each case. 
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We conducted two series of experiments in which we imposed the strategic solutions from 

each scenario upon the total set of scenarios.  

Each scenario was solved independently generating a set of strategic solutions as the best 

solutions found for each of these scenarios; where the strategic solutions specify the 

opening and closing of facilities and technology lines. These scenarios were then solved 

again forcing the strategic decisions from each of the scenarios upon them in turn. Two 

approaches were taken. In the first these decisions were imposed in their entirety which we 

will refer to as the full strategic solution. For the second set of experiments just the facility 

decisions were imposed which we will refer to as the partial strategic solution. 

The full strategic solution provides values for all the integer variables in the problem and 

hence its imposition reduced the problem to a large LP problem which can be solved 

relatively quickly and the solutions that were obtained were optimal solutions of these 

reduced problems.  However, when the partial strategic solution was imposed the resulting 

problem was still a MIP, although much reduced in size. 

7.5.1  Results of Imposing Scenario Solutions 

When imposing strategic solutions two effects are seen, one is limiting the possible 

solutions and the other is to reduce the search space and in some cases allow the solver to 

find better solutions than were found when the scenario was solved independently. 

When the full Strategic solution is imposed upon a scenario the main effect is to limit the 

possible solutions and it is possible to use this to give a measure of how the strategic 

solution may have an impact on the supply chain’s performance in different situations. 

However, when imposing partial strategic solutions the effect of reducing the search space 

allows the solver to find better solutions than were found solving the scenario 

independently in a significant number of cases. The independent solution is the same as is 

obtained when a strategic solution to a scenario is imposed upon itself. 

7.5.1.1 Effects on Scenarios of Imposing the Full Strategic Solution 

The following box and whisker plots showing range, inter-quartile range and the median of 

the solutions (costs) obtained for each scenario when the full strategic solutions were 

imposed upon the scenario. The independent solutions' costs are shown in black and in all 

cases can be seen to be the lowest cost solutions, whilst the median costs of the imposed 

solutions are marked in red. Figure 7-1 is ordered by scenario number, whilst Figure 7-2 by 

the objective value when the scenario was solved independently.  
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Figure 7-1 - Scenario Solutions when Full Strategic Solution imposed ordered by 

Scenario number 
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Figure 7-2 - Scenario Solutions when Full Strategic Solution imposed ordered by 

independent solution values 
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In all cases the imposition of the strategic solution from a scenario on the same scenario 

led to the same solution as when the scenario was solved independently, providing 

validation of the process.  

If the strategic solutions had been obtained from optimal solutions then it would not be 

possible to find better solutions when imposing different strategic solution. However, in a 

few cases, better solutions were obtained when imposing a strategic solution from another 

scenario than when solving the scenario independently. For 69 of the 100 scenarios there 

was a least one case where imposing another strategic solution allowed a lower cost 

solution to be found, although the largest improvements were only 2.16%, 1.68%, 1.23% 

and 1.09%, with another 16 showing an improved solution that was better by between 

0.5% and 1%, and 48 showing an improvement of under 0.5%. 

Hence this imposition of the full strategic solution could be used to give a measure of the 

impact of choosing a particular strategic decision, and this will be considered later.  

7.5.1.2 Effects on Scenarios of Imposing the Partial Strategic Solution 

The following graphs shows range, inter-quartile range and the median of the solutions 

obtained for each scenario when the partial strategic solutions were imposed upon the 

scenario. The independent solutions are shown by the black line and these are not always 

the best cost that were obtainable. The median solutions are again shown in red, but it can 

be seen that the upper and lower quartile, and median values were all very similar with 

higher and lower outlying values. 

Figure 7-3 show the solution values ordered by scenario number and  

Figure 7-4 the same solution values order by the solution values of the scenarios when 

solved independently. 

The highest objective values were obtained when solving scenario14, but this scenario had 

the highest demand and led to a much highest costs when solved independently too. The 

solutions were examined to see whether it was the strategic solution from low demand 

scenarios that were leading to the poorest solutions for scenario 14, but it was not this 

simplistic and the issues of imposing a low demand strategic solution on high demand 

scenario and visa versa will be considered in more detail later. 
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Figure 7-4 - Scenario Solutions when Partial Strategic Solution imposed, ordered by 

independent solution costs 
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Figure 7-5 - Range of Solutions obtained for each Scenario with Full Strategic 

Solution imposed 
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7.5.1.3 The impact of different Strategic Solutions 

The impact of each strategic solution on each scenario was considered. 

The following graph (Figure 7-5) shows the range, inter-quartile range and median values 

for each strategic solution when used with each scenario ordered by the maximum 

objective value obtained for the strategic solution. These results allow consideration of the 

impact of selecting a particular strategic solution.  

The two strategic solutions which lead to the smallest costs across the scenarios were the 

strategic solutions from the two highest demand scenarios 14 and 36. The strategic 

solutions from the two lowest demand scenarios 15 and 29 led to the highest costs. This 

result was consistent with what was expected as the problem data specifies high penalties 

for shortage. Further detailed analysis of these extreme cases is considered later. 

7.5.1.4 Imposition of Partial Strategic Solution 

The following graph (Figure 7-6) shows the range, inter-quartile range and median values 

for each strategic solution when used with each scenario ordered by the maximum 

objective value obtained for the strategic solution. 

Imposing most of the partial strategic solutions led to a very similar distribution of solution 

values, with the imposition of scenario 32 (a fairly low demand scenario) leading to a 

better range of solutions than when the scenarios were solved independently. However, for 

nine of the Strategic solutions much higher maximum costs were seen for some scenarios, 

although there was not a large rise in either the median or the upper quartile costs. 

7.5.2 Analysis of High and Low Demand Scenario Interaction 

The results from imposing high demand strategic solution on low demand scenarios and 

vice versa were analysed further.   

The objective values obtained when imposing the strategic solutions would be affected by 

excess capacity cost or shortfall for some of the products. It was expected that the shortfall 

costs would be magnified when low demand strategic solutions were imposed on high-

demand scenario, and that excess capacity cost would be seen when high demands strategic 

solution were imposed on low demand scenarios, some of these cases were analysed in 

more detail. 
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Figure 7-6 - Range of Solutions obtained for each Scenario with Partial Strategic 

Solution imposed 
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7.5.2.1 Identifying High and Low Demand Scenarios 

The demand data for the 100 different demand scenarios was analysed. The demand 

profiles were found to all be similar, but giving a range of levels of demand. The following 

graph (Figure 7-1) shows the total demand for each of the products in each time period, for 

all of the customers. The final time period in the demand scenarios had ten year duration, 

so the demand illustrated below for that time period was the average annual demand over 

that ten year period. 

Three high demand and three low demand scenarios were identified; the high demand ones 

were 14, 25, 36 and the low demand ones 15, 29 and 88. 

7.5.2.2 Full Strategic Solution 

When the scenarios that led to high cost solutions were examined it was found that that the 

worst solutions occurred when the three low demand strategic solutions were imposed on 

the highest demand scenario 14, and that their imposition on the high demand scenario 25 

led to the second or third worst solution, however the same was not seen for scenario 36 

which had a lower level of demand. When the strategic solution from scenario 14 was 

imposed on the other scenarios the first, second and fourth worst outcomes were seen with 

scenarios 15, 29 and 88. 

Observation of how these increases were distributed across the different types of costs 

showed that in the case of imposing low demand strategic solution on the high demand 

scenarios led to very large shortage cost which was greater than the total cost increase, as 

reductions were seen in other costs, reducing the overall cost.  

Conversely when high demand strategic solutions were imposed on the low demand 

scenarios the increased costs were distributed across the different types of costs and there 

was no shortage component in any of these cases, due to the high capacities from the high 

demand strategic solution being more than adequate for the production and distribution 

required. Increases of between 33.01% and 69.77% were seen for facilities costs and 

between 71.68% and 98.84% for the technology costs, due to the additional capacity 

enforced in the solution. However, the additional capacity allows lower cost production 

and lower cost transport routes to be utilised, so all the production costs and all but one of 

the transport costs were reduced. Reductions of between 9% and 30.42% were seen for 

production costs and between 8.74% and 42.42% for transport costs, except in one instance 

when an increase of 7.37% was observed.  
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It could be seen from these two sets of comparisons that much more detrimental effects of 

imposing the low demand strategic solutions on the high demand scenarios were many due 

to the severe shortage costs and give a clear indication of which would be the better 

strategic policy to adopt. 

Further details of all of these points can be found in Appendix 3. 

7.5.2.3 Partial Strategic Solution  

In most cases most the cost increases were from shortage costs in the same way as seen 

when the full strategic solution was imposed. However, when imposing scenario 88 on two 

of the high demand scenarios no shortage was seen, as additional capacity was available by 

adding additional technology lines at the facilities which had been included.  

The contributions of other components of the increased cost for transport, production and 

technologies all varied from very small increases or decreases to 101.6%, 63.6% and 

47.9% respectively. The facility costs were reduced in all cases, providing reductions that 

were 1.3% and 61.0% the magnitude of the increase seen in costs.   

In the cases where high demand strategic solutions for facilities only were imposed on the 

low demand scenarios only very small increases in costs were seen in comparison to 

solving the scenario independently, the greatest of which was only 4.1%. 

Further details can be found in Appendix 3. 

7.6 Analysis of Facilities used 

As the imposition of partial strategic solution which fixes just the facility decisions, had 

led to the ability to find better solutions further investigation were made of the facilities 

that were used in each case. 

When the solutions of each of the scenario solved independently were analysed it became 

apparent that there were similarities in the facilities selected to use. It was seen that 

facilities 1, 6, 7, 14, 19, 20, 21, 22 and 23 were not opened in any time period in either the 

low or high demand scenarios. In comparison facilities 3, 5, 12 and 13 were used in all six 

Time periods in both the high and low demand scenarios.  This left all of the variation in 

the facility strategic solutions in just 10 of the 23 facilities that were available: facilities 2, 

4, 8, 9, 10, 11, 15, 16, 17 and 18. 
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Table 7-3shows the variation in the facility solutions between the three high demand 

scenarios 14, 25 and 36; and the three low demand scenarios 15, 29 and 88. 

 Scenario 

Facility 14 25 36 15 29 88 

2 1-6 0 1-6 1-2 1-2 1-3 

4 1-6 1-6 1-6 1 0 1 

8 1-6 1-6 1-6 1 5 1-6 

9 0 0 0 1-2 0 0 

10 1-6 0 1-6 0 1-2 1-3 

11 1-6 1-6 1-6 0 0 0 

15 0 0 0 1 1 0 

16 1-6 1-6 1-6 1 0 1-6 

17 1 0 0 1 0 0 

18 0 1-6 1 0 1 1 

Total used 7 5 7 7 5 6 
 

Table 7-3 - Facilities used in each Scenario 

Including the 4 facilities that were included in all these solutions, the variation in the 

number of facilities used was a minimum of 9 and a maximum of 11. Reducing the 

problem by forcing those facilities that are always used to be open and removing those that 

are never used makes the problem easier to solve as was demonstrated in (Error! 

Reference source not found.) and provides a way to simplify the problem across a group 

of scenarios. 

7.6.1 Imposing Facility and Shortage decisions on multiple Scenarios 

All the facilities that were seen to be unused in all the scenarios of this problem instance 

were forced to be closed in all time periods and those facilities that were seen to be used in 

all the time period were forced to be open in all time periods.  

It had also been observed that shortage was zero in the best integer solutions found for 98 

of the 100 scenarios. In the two cases where shortage was not zero it was small and 

feasible solutions near to the best integer solutions with shortage could be obtained for 

both cases; the cost savings that were being made seemed to be mainly due to additional 

line costs that were incurred. The impact of forcing the shortage to zero, as a strategy on its 

own, and in combination with forcing the facility decisions was investigated on a small set 

of scenarios that did not include the two which found best solutions that included shortage. 
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When Shortage was forced to zero for a single scenario a small improvement was seen in 

the later solutions found (Error! Reference source not found.). Table 7-4 gives the 

number of rows and columns after pre-solve showing reduction in problem sizes that were 

seen. 

 Original  

MIP 

Forcing 

Facilities 

Open/Closed 

Forcing 

Shortage to 

Zero 

Forcing 

Facilities & 

Shortage 

Number 

of 

Scenarios 

Rows Columns Rows Columns Rows Columns Rows Columns 

2 
12859 79642 9724 51981 12859 76882 9724 49221 

3 
18465 117359 14149 79715 18465 113220 14149 72575 

4 
24081 155076 18522 101419 24081 149556 18522 95899 

5 
29691 192787 22900 126103 29691 185887 22900 119203 

 

Table 7-4 - Problem size with different numbers of Scenario 

It can be seen that forcing the facilities reduced the number of variables in the model by 

approximately 25%, whilst forcing the shortage has no impact on the number of variables. 

The number of constraints in the model after pre-solve is reduced by both methods, with 

forcing facilities leading to a reduction of about a third, whilst forcing shortage lead to 

reductions of less than 5%, using both did lead to a larger combined effect that was 

approaching a 40% reduction. The root relaxation times were also compared and the results 

in Table 7-5 showing large reductions when the facilities are forced open and closed and 

small reduction when the shortage is forced to zero. 

 Root Relaxation Times  

Number of 

Scenarios 

Original  

MIP 

Forcing 

Facilities 

Open/Closed 

Forcing 

Shortage 

to Zero 

Forcing 

Facilities & 

Shortage 

2 189 77 164 72 

3 831 301 720 280 

4 1527 680 1501 619 

5 2961 1006 2563 1048 
 

Table 7-5 - Root relaxation times when forcing Facility usage and shortage 
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Solutions found using these methods were then compared. It can be seen that forcing the 

facilities has allowed better solutions to be found within the time limit, but that forcing 

shortage to zero did not improve solutions found and actually made it more difficult for the 

solver to find an integer solution. However, combined with forcing facilities it can be seen 

than better solutions were found when solving two and three scenarios. With Five 

scenarios the model with the shortage forced to zero still failed to find a solution within 

50000s, although both formulations with the facility usage fixed did find good solutions 

given this additional time. 

 Best Solutions within a 10000s time limit  

Number 

of 

Scenarios 

Original  

MIP 

Forcing 

Facilities 

Open/Closed 

Forcing 

Shortage to 

Zero 

Forcing 

Facilities & 

Shortage 

2 1527268 1501830 1544930 1496260 

3 2569870 2400690 No solution 2361350 

4 8835621 6919100 No solution No solution 

5 No solution 14561500 No solution No solution 
 

Table 7-6 - Solution when forcing Facility usage and shortage 

Significant benefit was seen from forcing the facility decisions, this reduced the size of the 

model, and improvements were seen in solve times, integer solutions found and the size of 

the gap. However, when shortage was forced to zero, this seemed to make finding 

solutions more difficult, as many of the poorer solutions seen early in the MIP search 

process have significant levels of shortage.  

7.6.2 Conclusion 

The generic model has been successfully extended to use it to solve multiple scenarios 

models, so that a single strategic solution can be found which is provides a best fit for all 

the included scenarios.  

  



145 

8 Neighbourhood Search 

8.1 Background 

Neighbourhood search is a technique for obtaining good quality solutions to large 

optimisation problems, providing an effective method of finding solutions when the 

problem is so large that solving it directly is computationally very expensive or not 

achievable. 

The starting assumption is that we have a problem and a feasible solution (current 

solution), which will usually be sub-optimal for that problem. The approach is to 

repeatedly explore neighbourhoods of the current solution by solving the sub-problem 

made up of a subset of the variables from the original problem whilst other variables are 

set to values from a known feasible solution. 

There are considerable variations in the way this method is applied and these come from 

the possible variations in how the sub-problem to solve on each cycle is chosen, the 

method used to solve the sub-problem, and how the results of the sub-problem solution are 

integrated back into the solution for the overall problem. This framework is very general 

and can encompass a wide range of apparently unrelated approaches and algorithms.  

A simple neighbourhood search algorithm was devised and implemented as part of the 

generic framework and its performance was compared with that achieved with a standard 

commercial MIP solver for a number of problem instances. 

The work reported here was presented at 9th Metaheuristics International Conference 

(Chippington Derrick 2011a)
 
and submitted as a paper to JORS (Chippington Derrick 

2011b). 

8.2 Method Description 

The local search method employed here first determines a feasible solution to the problem, 

then selects a subset of the variables to be fixed at values from the feasible solution, 

resulting in a smaller sub-problem which is then solved to look for improved solutions. 

Any solution to the sub-problem will also satisfy the parent problem. The new values for 

the variables then provide an updated set of values for the whole problem. This process is 

then be repeated in order to find improving solutions to the parent problem. 
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8.2.1 Mathematical Formulation 

Consider a MIP minimisation problem which can be defined as follows: 

Min    ∑
j

jj xc            

Subject to  
i

j

jij bxa =∑      i∀  

The set J can be partitioned into two disjoint sets 'J  and ''J  where ''' JJJ ∪=  and 

φ=∩ ''' JJ .  

Given a feasible solution to J , 
*

jj xx = where Jj∈ ; then this can be decomposed into 

*

'' jj xx = where '' Jj∈  and 
*

'''' jj xx =  where '''' Jj ∈  

A sub-problem is constructed by simplifying the main problem by fixing a set of solution 

values 'J  in J. Thus: 

Min   ∑
j

jj xc            

Subject to  
i

j

jij bxa =∑      i∀  

*

'' jj xx =                         'j∀  

This sub-problem can  be more efficiently written as: 

Min   ∑∑ +
'

*

''

''

''''

j

jj

j

jj xcxc                       

Subject to  *

'''

jij

j

ijij

j

xabxa ∑∑ −=            i∀      

where II ⊆'  is the subset of constraints involving decision variables ''jx  , '''' Jj ∈ . 

8.2.2 Search Procedure  

The following flow chart (Error! Reference source not found.) shows the procedure that 

was used in applying Local Search using a MIP model instance within the generic 

framework which has been developed.  
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Figure 8-1 - Flow Diagram for Neighbourbood Search Procedure 

The initial step is to determine an integer feasible solution to the main problem. This is 

then followed by three steps iterations of the neighbourhood search. The problem is 

partitioned to produce a smaller neighbourhood to search; the sub-problem is created by 

fixing all the values of the variables outside that are not in the neighbourhood and then the 

sub-problem is solved to provide another integer feasible solution. Hopefully a better 

objective value is obtained and the values of the variables from this new solution update 

the incumbent solution to be use in the next iteration. 

There are decisions to be made about how each of these steps will be implemented. The 

decision about how to obtain the initial integer feasible solution, about how the problem is 

partitioned at each iteration, how the sub-problem is solved at each iteration and how much 

effort is expended on solving each sub-problem before moving on to solving a new sub-

problem are detailed in the following section. 

8.2.2.1 Choosing the sub-problem 

How the problem will be partitioned and the sub-problem constructed at each iteration 

need to be considered. Below is a list of possible alternatives. 

We can make use of our knowledge about the problem structure to help us define our sub-

problems in ways that are likely to make them easier to solve and/or more likely to include 

the potential for improving solutions. 
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We can make use of relaxations of the overall problem to guide the choice of sub-problem. 

We can make use of heuristics to guide the choice of sub-problem 

We can control the size of the sub-problem. Smaller sub-problems can often be solved to 

optimality, but may be too limited in their scope to allow any room for finding improving 

solutions. Larger sub-problems may be too computational intensive to solve to optimality 

in reasonable time, but may offer more opportunities for finding improving solutions. 

8.2.2.2 Solving the sub-problems 

We used a MILP solver to solve the sub-problem, although it would also be possible to 

employ another method, such as Heuristics, Local search or constraint programming. 

One or more stopping criteria must be selected: 

• A measure of the quality of the solution  

• A number of solution steps 

• A time limit 

8.2.2.3 Summary  

We have a structure for Neighbourhood Search that can be used with the Generic Supply 

Chain framework. The MIP solution method that has been defined in chapter 4 can be used 

to find the initial solution and to solve the sub-problems; the following section gives 

further details of this implementation.   

8.3 Integrating Neighbourhood Search into our Generic Supply Chain 

Model 

The local search method was implemented in the C++ framework that had been developed 

for solving the MIP with CPLEX. This allowed different initial solutions to be used, either 

by choosing the values of the integer variables by hand or by finding an integer solution by 

solving the MIP, either a poor solution that may be found relatively quickly or a solution 

that could be found quickly by adding additional constraints to the problem.  

8.3.1 Choice of Initial Solution 

Integer-feasible solutions are often found quickly and these can be used as an initial 

solution for this process. Alternatively it is possible to find solutions that would not be 

good solutions to the problem, but would be known to be feasible such as keeping all the 
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existing Facilities and Technology Lines open and all the potential Facilities and 

Technology Lines closed. These two methods of finding an initial solution for the process 

were both explored. 

8.3.2 Choice of Sub-problem 

Finding values for the continuous variables was very fast and hence all these variables 

could be resolved for each sub-problem. Finding the feasible integer values is the time 

consuming part of the solution process, so how many and which of these variables were 

included in the sub-problem was an area for exploration. The more variables that are 

included in the sub-problem the greater scope for finding a better solution, however, a 

smaller sub-problem whilst having less potential for improving the solution will be quicker 

to solve. 

There are two groups of integer variables, those indicating which facilities are open in 

which time periods, and those indicating which technologies are open at each facility in 

each time period.  

The decisions between opening and closing the facilities and the technologies are closely 

linked; we consider several methods of selection of facilities along with their technologies 

to be included in the sub-problems. 

8.3.3  Solving the sub-problems 

CPLEX was used to find initial solutions and also to solve the sub-problems. Constraints 

were added to the master problem setting the values of the integer variables which were 

not included in the sub-problem, and all other integer variables and the continuous 

variables were not fixed. However, CPLEX also offers the option of providing an initial 

solution and this was done at each cycle using the variable values from the current solution 

to warm start the search process for the sub-problem. 

Investigations were also made of a variety of stopping criteria used for the solution of each 

sub-problem: 

• Number of nodes explored 

• Time limit 

• Optimality Gap 
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8.4 Results of the use of Neighbourhood Search 

8.4.1 Comparison of Neighbourhood Search with MIP 

The results obtained using neighbourhood search were compared with the results obtained 

using the original MIP formulation. These results were compared for the main problem 

when solving single and multiple scenarios. 

Even for some of the single scenario cases the neighbourhood search performed better than 

the MIP, particularly in finding early good solutions; but once several scenario were 

included in the problem the neighbourhood search consistently performed better.  

The choice of the sub-problem, the stopping criteria and the initial solution were important 

to being able to obtain better solutions when using the Neighbourhood Search method; 

choosing these parameters can be considered as tuning the search and in the rest of this 

chapter we report on the experiments carried out on tuning the search. 

8.4.2 Tuning Neighbourhood Search  

Experiments were carried out to compare how changing the selection of the sub-problem, 

the stopping criteria and the initial solution affected the results obtained, and to 

demonstrate the importance of considering the impact of these choices. The different 

criteria that were included in these experiments were:  

Initial Solution Selection 

• Good Integer Solution 

• Feasible Integer Solution 

Sub-problem selection criteria  

• Problem segments for example a selection of Facilities 

• Random selection of percentage of the integer variables 

Stopping criteria for each Iteration 

• Number of Nodes explored 

• Time limit  

• Optimality Gap 

Comparisons of these were made by considering the solutions obtained by number of 

iterations carried out and elapsed corrected CPU time. Corrected CPU time allows for the 
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removal of the build time from the models in the comparison. This is because the build 

time is highly dependent on the implementation of the program, which is a software 

engineering issue and was not the focus of this study. However, it did allow for the 

inclusion of the iteration set ups. Although these were negligible in most cases, in some 

cases where there were many iterations with no improvements in the solutions then 

significant differences were seen between the CPU times and elapsed times. Hence as the 

build times for iterations were mainly involved with selecting and setting variable values, 

and unlikely to be able to be reduced by different implementations it was felt that this 

should be retained in the corrected CPU times that were compared 

8.4.2.1 Initial Solution Selection 

There are two issues which need to be considered when obtaining an initial solution; how 

long it takes to find the initial solution and whether the starting point has an impact on the 

solutions found in the subsequent neighbourhood search. 

The initial solutions considered were 

• first integer solution obtained when solving the MIP 

• all the facilities and technologies closed in all time periods 

• all the facilities and technologies that were already in use left open in all time 

periods and all potential facilities and technologies closed for all time periods. 

The times taken to find these three initial solutions were not significantly different in 

comparison to the times that are required to find good integer solutions. Times to find 

initial solutions along with the root relaxation times, in brackets, are given in the table 

below. 

 Corrected CPU time (s) 

Initial Solution Scenario 1 Scenario 2 

First Integer Solution  78.46                     

(40.87) 

76.27                     

(38.66) 

Solution with all facilities 

forced closed 

0.34                      

(0.01) 

0.33                      

(0.0) 

Solution with facilities 

and technologies 

16.43                     

(13.33) 

13.08                     

(7.66) 

 

Table 8-1 - Corrected CPU Times 
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As shortage has a significant impact on the objective, the solutions for both scenarios with 

the facilities closed have large costs. The impact of shortage on the cost also accounts for 

why the costs seen for scenario 1 are significantly lower than those seen for scenario 2 

when the solution with the current facilities and technologies is imposed; this is because 

most of the demand can still be met for scenario 1 with this limit on resources, but scenario 

2 has a higher demand which requires more resources. 

 Initial Solution Objective Values 

Initial Solution Scenario 1 Scenario 2 

First Integer Solution 3,423,661 3,635,649 

Solution with all facilities 

forced closed 

22,698,800 27,812,400 

Solution with facilities and 

technologies retaining 

current status 

837,439 3,616,479 

 

Table 8-2 - Initial Solution Objective Values 

The difference in the time taken to find these initial solutions was small and hence had 

little impact on the time taken to find solutions using the Neighbourhood Search method. 

For Scenario 1 better results than were obtained with the MIP when using the first integer 

solution, but this gave worse results with Scenario 2. Although the quality of the different 

initial solutions were very different, the impact of these on the quality of the subsequent 

solutions found was small. When the Neighbourhood Search was given a poor initial 

solution, rapid improvement in the early iterations was seen.  For detailed results see 

appendix 2. 

8.4.2.2 Sub-problem Selection 

8.4.2.2.1 Random Selection of Percentage of Variables  

Comparisons were made when the sub-problems for the Neighbourhood Search was 

created by selecting different percentages of the integer variables to be included in the sub-

problem. 

A simple process was used to randomly select variables for each sub-problem, with each 

variable being included or excluded on the basis of whether a random number selected fell 

into the specified range. The pseudo random numbers generator gave values between 0 and 
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1; so when aiming to select 10% of the variables, if the random number was less than 0.1 

the variable was included in the sub-problem and if it was greater or equal to 0.1 then it 

value was fixed and it did not become a variable in the sub-problem. This method provided 

a simple method of iterating through the variables and fixing values or provide starting 

values for the sub-problem model that were being solved by CPLEX at each iteration. 

Although this did not allow the selection of precise percentages of variables at each 

iteration, it did allow selection of percentages of variables that were near to the aim value. 

In addition to this it provided simplicity of implementation and repeatability, but with the 

option of running the pseudo random number generation with a different seed to provide a 

different selection of the same approximate percentages of variables. 

The inclusion of various percentages of variables in the sub-problem was investigated; 

results for sub-problems containing 5%, 10%, 15%, 20%, 25%, 30%, 40% and 50% of the 

integer variables are reported. 

8.4.2.2.1.1 Quality of Integer Solutions for different sub-problem sizes 

Considerable differences were seen in the solutions obtained with the different sized sub-

problems. The smaller sub-problems were fast to solve, but the neighbourhood search 

algorithm was then slow to achieve good integer solutions as can be seen in the graph 

below of the solution obtained for the first problem instance. 

 

Figure 8-2 - Integer Solution for Different Sized Sub-Problems 
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This illustrates that a suitably large sub-problem needed to be selected in order for this 

method to be effective, but if the sub-problem became too large then the speed of the 

convergence, and the quality of the solutions could become less good. 

8.4.2.2.1.2 Implications of the small sub-problem 

Further evidence for the importance of using a suitably large sub-problem was seen in the 

results obtained. It was seen that there were iterations where no improvement was made, 

which occurred more frequently with smaller sub-problems. It was seen that in some cases 

no improvement was possible for the sub-problem which had been constructed, as the 

starting solution proved to be optimal solution for the sub-problem. In these cases CPLEX 

pre-solve was sufficient to find the optimum solution, and although the solution of the sub-

problem was very rapid, at each iteration time was expended setting up the sub-problem. 

The following graph shows the number of occurrences of sub-problems where the starting 

solution was proven optimal and provided no scope for improvement to be made to the 

main problem. It can be seen that these occurrences decreased as the sub-problem size 

increased.  

 

Figure 8-3 - Iterations with no improvement seen 
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Percentage of 

Variables freed 

to create sub-

problems 

Number of iterations 

with optimal sub-

problem starting 

solution 

Number of iterations 

before sub-problems 

starting solutions all 

non optimal 

Percentage of early 

iterations with 

optimal sub-problem 

starting solution 

5% 184 207 89% 

10% 39 48 81% 

15% 25 48 52% 

20% 7 39 18% 

 

Table 8-3 - Sub-Problem Details 

It was also observed that the as the sub-problem size increased so did the size of the 

optimality gaps at the beginning of the search for each iteration. The following table shows 

the maximum and the average gap that were seen for the first 50 iterations for each of the 

neighbourhoods. This gives a measure of the scope for finding an improved solution to the 

main problem. 

Percentage of Variables freed to 

create sub-problems 

Maximum Optimality gap at the beginning of a 

sub-problem search.  

 Scenario 1 Scenario 2 

5% 14.87 15.14 

10% 10.67 26.83 

15% 37.59 40.70 

20% 47.72 39.25 

25% 22.81 38.51 

30% 50.61 51.74 

40% 71.98 66.02 

 

Table 8-4 - Optimality Gap for Different Sub-Problems 
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Percentage of Variables freed to 

create sub-problems 

Average of the Optimality gap at the beginning of 

the first 50 iterations.  

 Scenario 1 Scenario 2 

5% 1.33 1.64 

10% 0.53 1.36 

15% 2.46 1.95 

20% 2.01 2.19 

25% 1.73 2.72 

30% 3.35 2.64 

40% 3.99 3.76 

 

Table 8-5 - Average Optimality Gap 

Further analysis of the larger sub-problems led to further information about the upper 

limits that needed to be placed on sub-problem size for the effective use of this method.  

The early solutions obtained when 30%, 40% or 50% of the integer variables included in 

the sub-problem were similar, but comparing the later solutions indicated that around 30% 

we had reached a limit on improvements seen with increasing sizes of sub-problem. The 

graph below shows the better solutions that are found after the same elapsed time with the 

smaller 30% sub-problems in comparison to the larger 40% sub-problems.  

 

Figure 8-4 - Comparison of Solutions under 780000 by corrected CPU Time 
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Although some of this difference was due to the longer solution times taken with the larger 

sub-problems this was not the only reason for 40% sub-problems not performing as well, 

as was apparent when a comparison was made of the solutions obtained after a given 

number of iterations. It can be seen in the graph below that although there is less difference 

between the two cases the 30% sub-problems still perform better at finding good solutions 

to the overall problem. 

 

Figure 8-5 - Comparison of Solutions by Number of Iterations 
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with the selected facilities were then included as variables in the sub-problem, with the 

remaining variables becoming the fixed part of the problem.  

8.4.2.2.2.1 Quality of Integer Solutions for different sub-problem sizes 

Using a single facility was not expected to be a good technique, as it would not allow any 

switching of processing from one facility to another; however, the ineffectiveness was 

striking with no improvements seen in any of the iterations. 

Differences were seen in the quality of the solutions obtained when different numbers of 

facilities were included in the sub-problem selection process, although improved solutions 

were seen with the local search method when compared with the MIP, these improvements 

were seen across the range of large and small sub-problems, although the small sub-

problem comprising of 4 or less facilities seemed to perform less well.  

The following graph shows the solutions obtained with different numbers of facilities used 

to select the sub-problem for scenario 1. It can be seen that the local search gave good 

results early in the search for all the sub-problem sizes, but for the smaller sub-problem 

less good final solutions were achieved. The solution achieved for scenario 2 were better at 

all times for all the sub-problem sizes, although using more than 4 sets of facility variables 

to construct the sub-problem again led to better solutions. 

 

Figure 8-6 - Integer solutions when selecting a number of facilities 
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Further analysis was carried out on a larger MIP to consider the impact of changing the 

sub-problem size in this case.  

The following graph shows the results that were obtained when a larger main problem was 

solved. The example used below is a multiple Scenario problem and these are discussed in 

more detail in chapter 7. 

 

Figure 8-7 - All Integer Solutions for Larger MIP 
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or 12 facilities; and to over 17000s for 16 facilities. When solving sub-problems for 16 

facilities, improved solutions were being found with similar frequency to that when solving 

the whole problem. 

 

Figure 8-8 - Good Integer Solutions for Larger MIP 
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time periods. This situation is avoided in the case when the approach frees up all the 

variables for a facility. 

 
Percentage of variables freed during iterations when solving 

Scenario 1 

Number of set of 

facilities 
Minimum Maximum Average 

1 78 (1.93%) 282 (7.03%) 169.4 (4.22%) 

2 156 (3.88%) 552 (13.75%) 350.1 (8.72%) 

3 234 (5.83%) 822 (20.48%) 528.4 (13.16%) 

4 330 (8.22%) 1074 (26.76%) 703.9 (17.54%) 

5 432 (10.76%) 1350 (33.63%) 878.0 (21.90%) 

6 528 (13.15%) 1554 (38.71%) 1053.2 (26.24%) 

7 750 (18.86%) 1668 (41.55%) 1229.6 (30.63%) 

8 846 (21.07%) 1974 (49.17%) 1399.0 (34.85%) 

9 972 (24.22%) 2166 (53.96%) 1575.8 (39.26%) 

10 1194 (29.75%) 2304 (57.40%) 1751.5 (43.63%) 

 

Table 8-6 - Percentage of Variables Freed During Iterations 

8.4.2.2.4 Mixing these selection methods  

Changing the way that the program selects the variables to be freed changes the structure 

of the neighbourhoods that are used for the local search, and this directly limits the 

possible changes that can be made to the solution to the main problem. There is no reason 

for the method of selecting the sub-problem to be the same for each iteration. The 

practicality and effectiveness of varying the sub-problem selection method between the 

two previous methods was investigated and shown to be practical. The results obtained on 

this small problem did not provide improved solutions, but there is potential for them to do 

so. 

8.4.2.3 Stopping criteria for each Iteration 

Given that each sub-problem only represents a small part of the overall problem, there may 

be little point in solving each sub-problem to optimality; it takes time and may not produce 

sufficient benefit in practice. Solving to optimality may also make the problem too tight in 

some areas and make it more difficult to find improvement in subsequent iterations. 
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Therefore the sub-problem search is terminated early in order to move onto another sub-

problem. A number of alternative methods of deciding when a sub-problem should be 

terminated were considered. 

8.4.2.3.1 Number of Nodes explored 

The impact of limiting the number of nodes explored at each iteration was investigated 

using the neighbourhoods selected using 3 sets of facility variables, and an initial solution 

with all the facilities closed. Limits of 50, 100, 200, 500, 1000 and 2000 nodes were 

imposed for each of the iterations in each solution process. 

The following graph clearly illustrates that a node limit of 50 nodes explored in solving 

each sub-problem was insufficient to allow good improvement in the solution in each 

iteration and that the 2000 node limit even when it had comparable convergence by 

number of iterations, had less good results as each iteration was long. Allowing a node 

limit between 200 and 1000 showed much better convergence to a good solution 

 

Figure 8-9 - Different number of nodes as the sub-problem stopping criteria 
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initial solution with all the facilities closed. Limits of 20, 30, 40, and 50 seconds were 

imposed on all of the iterations in each solution process. 

Better solutions were seen with intermediate time limits, allowing a sufficient time to let an 

improvement be found, but short enough that excess time is not wasted in searching for 

improvements to the sub-problem solution that do not improve the overall search process.  

Detailed results for imposing nodes and time limits on two problem instances can be found 

in Appendix 2.  

8.4.2.3.3 Comparison of use of node limits and time limits on iterations. 

 Comparisons were made of the results achieved using the more successful time and node 

limit, the following graphs show the 30, 40 or 50 second time limit compared to imposing 

a limit of 100, 500 or 1000 nodes. 

Figure 8-10 shows similar results were obtained using both methods. 

 

Figure 8-10 - Integer Solutions when using Different Sub-Problem Stopping Criteria 
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problems and convergence to a good solution is not very good. Setting a larger optimality 

gap as the terminating condition allows the overall algorithm to complete more iterations 

early in the overall search process, but then leads to the search being terminated too early 

in later iterations with little improvement in the solutions found in those later iterations; 

again the overall convergence is not as good as the other approaches tried.  

Despite these issues there may be several methods that would still allow the optimality gap 

to be used as a stopping criterion, methods that allow the search for the early iterations to 

be limited in a different manner and the optimality gap only used for later iterations, or for 

a variable optimality gap to be used that was reduced as the search proceeds through the 

iterations, or for a limit on the optimality gap to be used in conjunction with a node or time 

limit. 

8.5 Using Neighbourhood Search to solve multiple Scenarios 

The neighbourhood  search  method described above improves the time taken to find good 

solutions with a single scenario and also offered a way to make it possible to find solution 

to the larger models that were obtained when trying to solve multiple scenario problems.   

8.5.1 Comparisons of MIP and Neighbourhood Search methods 

Increasing numbers of scenarios were solved using both the standard MIP approach and a 

neighbourhood search method. The examples given here were with the neighbourhood 

search using three facilities chosen at random, an initial solution obtained by setting all 

sites to be closed in the first time period and an iteration stopping criterion of 100 nodes or 

an optimal solution to the sub-problem. 

The solution times for the MIP and the Local Search method were compared for increasing 

numbers of scenarios. Detailed examples of these comparisons are included in Appendix 3 

With two scenarios in the model the local search method found better integer solutions 

more quickly than the MIP, however after around 10000s (almost 3 hours) the MIP was 

able to find better solutions. A similar effect was seen with models with three scenarios but 

the time before the MIP was able to achieve comparable integer solutions was extended to 

around 30000s (more than 8 hours). 

Figure 8-11 and Figure 8-12 show the integer solutions obtained using the neighbourhood 

search method compared with the MIP solutions when solving 3or 4 scenarios. 
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Figure 8-11 - Integer Solution for 3 Scenarios 

 

Figure 8-12 - Integer Solution for 4 Scenarios 
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integer solutions within the 50000s time limit. However, with the local search, solutions 

were still found when the model contained over 20 scenarios. 

8.5.1.1 Comparison of Results for different numbers of Scenarios 

The follow set of graphs shows the best MIP and neighbourhood search after 10000, 

20000, and 50000s, for 1-10, 15 and 20 scenarios. 

 

Figure 8-13 - Best Integer Solution after 10000 seconds 

 

Figure 8-14 - Best Integer Solution after 20000 seconds 
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Figure 8-15 - Best Integer Solution after 50000 seconds 

The best solutions found show an almost linear relationship between the number of 

scenarios and the total objective value. This is what we might expect if we are reaching a 

similar quality of solution because of the increasing costs due to the additional scenarios. 

Figure 8-16 shows the average cost per scenario when different numbers of scenario are 

solved together, this also seems to indicate that good solutions are being obtained for larger 

numbers of scenarios solved in combination using the neighbourhood search method. 

 

Figure 8-16 - Best Scenario Average after 50000 seconds 
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8.6 Comparison with Alternate Heuristic 

The alternate heuristic described by [Cooper 1964] alternately solved the location and 

allocation components of a combined location-allocation problem. This approach was 

extended to tackle bi-linear problems by (Vidal and Goetschalckx 2001, Perron et al 2010). 

This can be considered as a particular formulation of the neighbourhood search method 

where the problem is partitioned into two parts and they are repeatedly solved alternately.  

Comparisons were carried out for a five scenario problem; all the sub-problems for the 

experiment were created by selecting a set of facilities and freeing the variables associated 

with each facility and its associated technologies. 

The pair of sub-problems for the alternate heuristic were constructed by randomly selecting 

12 facilities and selecting the remaining 11 facilities (Alternate 12|11).  This alternating 

pair of sub-problems were solved repeatedly keeping the same facilities in each of the two 

sub-problems.  Two partitioned sequences of sub-problems were also constructed; firstly 

12 facilities were randomly selected at every other step to create the sub-problems, and the 

remaining 11 facilities were solved in the following step, creating a sequence of partitioned 

problems (partitioned 12|11); this is similar to the alternate approach but changing which 

facilities are in each sub-problem after each pair has been solved. Secondly a partitioning 

created by selecting three groups of 7 facilities until only 2 remained, creating a sequence 

of sub-problems (partitioned 7|7|7|2) these four sub-problem were solved sequentially and 

then the selection process repeated to create further different four sub-problem sequences 

which were solved.  

Figure 8-17 clearly shows that all these formulations provided much better solutions than 

were obtained using the MIP within the 50000s time limit and that all these solutions were 

converging well toward the best known solution for this problem. This best known solution 

was obtained by solving the MIP over many days. 
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Figure 8-17 - Results for alternate and partitioned sub-problems 
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comparison of the convergence. It can be seen that better solutions were obtained with the 
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Figure 8-18 - Results under 420000 for alternate and partitioned sub-problems 
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The inclusion of the alternate heuristic as a solution method that can be used within the 

generic framework provide the potential to extend the problems that can be solved to those 

with bi-linear constraints and objectives, such as would be expected if including transfer 

prices and taxation. 

8.7 Conclusions 

In most cases neighbourhood search finds much better early solution than are found using 

the MIP and even for smaller models the later solutions found are comparable with the 

original MIP formulation. 

The neighbourhood search method with adequate tuning provides a set of improving 

feasible solutions, whereas the MIP has proved much less predictable and considerable 

times have been seen between improving solutions, making decisions about when to curtail 

a search very difficult. The more gradual convergence of solutions obtained using 

neighbourhood search allows better decisions to be made about when a good enough 

solution has been obtained and about when to curtail the solution process. With good 

tuning better integer solutions were able to be obtained than could be obtained in the same 

time using the MIP. 

The methods of selecting sub-problems and terminating the search at each iteration have 

been shown to have a large impact on the effectiveness of this method. It is also likely that 

some problems will be more sensitive to changes in the initial solution than has been 

demonstrated for the problem instances used for the experiments described here. 

The consistency between solutions found by the neighbourhood search algorithm and the 

MIP solver again demonstrates the robustness of the generic framework approach and the 

separation of the representation from the solution technique.  

The neighbourhood search method makes it possible to solve the larger problems that are 

obtained when including many scenarios and the alternate heuristic provides the potential 

to extend the problems to those with bi-linear constraints and objectives, such as would be 

expected if including transfer prices and taxation. 
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9 Conclusion 

In this PhD research investigation many aspects of supply chain planning have been 

studied. We first reviewed the literature on supply chain planning and presented all 

findings in chapter two. Chapter three describes our formal representation of a generic 

supply chain model with the relevant data representation. To illustrate the benefits of our 

generic model, two problem instances have been modelled and described in chapter four. 

The results of the resulting problems were shown to reproduce those already known. By 

looking at different technologies for solving the problem we detailed both a MIP and CP 

reformulation from representing the generic problem. As with all MIP and CP problems 

there is a trade-off between a more sharp representation of the constraints at the cost of 

increasing the model dimensions. In chapter five we describe and analyse a number of 

alternative model representations to gain insight into the trade-offs and give details of our 

results. As with most planning problems, the data is estimated and in reality it is uncertain. 

In chapter seven we investigate how this uncertainty could be represented by discrete 

scenarios about the data. We introduced this to our problem and although faced with the 

curse of dimensionality, we illustrate how solutions could be achieved accounting for this 

random data.  

In all our solution approaches, it is impossible to achieve proven optimality as it is very 

time consuming to solve these problems. As a consequence, we have developed a 

neighbourhood search algorithm which we describe in chapter eight. We have compared 

this approach with a number of other solution approaches and have demonstrated how 

effective this method is in terms of solution quality and computation time.  

In summary, the main conclusions of this PhD research are: 

• the development of a generic SCP problem that is able to represent a wide variety 

of problems 

• the incorporation of multiple features that have only been investigated one by one 

in the past 

• the ability to implement the model in contemporary technologies (relational 

databases, object oriented programming, mathematical programming model, etc.) 

• the capturing and solving of the problem under uncertainty 

• the development of a neighbourhood search algorithm which performed better than 

all other solution approaches in terms of both solution quality and computational 

time 
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