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There has been much interest in testing from finite state machines. If the system
under test can be modeled by the (minimal) FSM N then testing from a (minimal)
finite state machine (FSM) M is testing to check that N is isomorphic to M . In
the distributed test architecture, there are multiple interfaces/ports and there
is a tester at each port. This can introduce controllability/synchronization and
observability problems. This paper shows that the restriction to test sequences
that do not cause controllability problems and the inability to observe the global
behaviour in the distributed test architecture, and thus relying only on the
local behaviour at remote testers, introduces fundamental limitations into testing.
There exist minimal FSMs that are not equivalent, and so are not isomorphic, and
yet cannot be distinguished by testing in this architecture without introducing
controllability problems. Similarly, an FSM may have non-equivalent states
that cannot be distinguished in the distributed test architecture without causing
controllability problems: these are said to be locally s-equivalent and otherwise
they are locally s-distinguishable. This paper introduces the notion of two states
or FSMs being locally s-equivalent and formalizes the power of testing in the
distributed test architecture in terms of local s-equivalence. It introduces a
polynomial time algorithm that, given an FSM M , determines which states of M

are locally s-equivalent and produces minimal length input sequences that locally
s-distinguish states that are not locally s-equivalent. An FSM is locally s-minimal
if it has no pair of locally s-equivalent states. This paper gives an algorithm
that takes an FSM M and returns a locally s-minimal FSM M

′ that is locally
s-equivalent to M .
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1. INTRODUCTION

The finite state machine (FSM) model of deterministic
Mealy machines has been widely used to specify the
behaviour of systems in diverse areas such as sequential
circuits, lexical analysis, pattern matching, machine
learning, and telecommunications as well as to describe
the control structure of concurrent and distributed
systems specified using a language such as SDL, Estelle
or Statecharts (see, for example, [1, 2, 3, 4, 5]). Given
an FSM M , an input sequence x̄ distinguishes between
states s1 and s2 if it leads to different output sequences
when applied in these states. States s1 and s2 of M are
said to be equivalent if no input sequence distinguishes
between them. An FSM M is minimal if no two states
of M are equivalent. Every FSM can be converted into
an equivalent minimal FSM.

A particular example for the use of the FSM
model is the specification of the control structures

of distributed systems that are event-driven systems
whose functionality is well-characterized by state-based
models in terms of sequences of interactions between the
system and its environment [6, 7]. Such a system has
a number of interfaces, called ports, that are remote to
each other. Programs or users at these ports are sources
of inputs and destinations of outputs of the system.

When testing a distributed system in order to ensure
its correct functionality, a distributed test architecture
is needed where a tester is placed at each port of
the system under test (SUT) and a test sequence
(a sequence of input/output pairs constructed from
the FSM model of the required behaviour of the
SUT) is applied. During the application of a test
sequence within a distributed test architecture, the
existence of multiple remote testers and the absence of
a global clock brings out the possibility of coordination
problems among testers known as controllability (also
known as synchronization) and observability problems.
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A controllability problem occurs if a tester cannot
determine when to send a particular input to the SUT.
Let us suppose, for example, that there are two ports
U and L, the first input x1 is at port U and is expected
to lead to output y1 at port U only and the second
input x2 is at L. Since the tester at L does not observe
either the input or output at U it does not know when
this has occurred and so cannot determine when to send
input x2. An observability problem occurs when a tester
cannot determine whether a particular output from the
SUT is generated in response to a specific input. Let
us suppose, for example, that the first input x1 is to be
applied at port U , this is expected to lead to output
y1 at L only, this is to be followed by input x2 at L,
which should lead to output y2 at U . If, instead, the
input of x1 leads to output y1 at L and y2 at U and
the input of x2 leads to no output then the remote
testers at each port observe the behaviour they were
expecting: the tester at U sees input x1 and then output
y2 while the tester at L sees output y1 and then input
x2. Thus, the difference between the expected and
observed behaviours are not observed in testing: fault
masking has occurred. There has been much interest in
the problem of testing in order to avoid controllability
and observability problems (see, for example, [8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]).

This paper shows that, in the distributed test
architecture, it is necessary to use a different notion
of what it means for an input sequence to distinguish
between two states. Where an input sequence x̄
distinguishes states s1 and s2 in this test architecture
without causing a controllability problem then x̄ is said
to locally s-distinguish s1 and s2. This requires both
that the input sequence x̄ can be applied in states s1

and s2 without causing a controllability problem but
also that if x̄ is applied in states s1 and s2 then a
different sequences of inputs and outputs is observed
at one or more ports. Where states, and machines,
cannot be locally s-distinguished they are said to be
locally s-equivalent and testing in the distributed
test architecture without introducing controllability
problems is testing for local s-equivalence. This
paper proves that local s-equivalence is weaker than
classical FSM equivalence. While it has previously been
observed that the distributed test architecture can lead
to faults being missed in testing, this is the first paper
to characterize the power of testing in this architecture.

The notion of local s-equivalence leads to a natural
definition of minimality: an FSM is locally s-minimal
if it does not contain locally s-equivalent states. If an
FSM is minimal in the classical sense it is said to be
globally minimal. We show, in this paper, that an FSM
can be globally minimal but not locally s-minimal.

Testing from a globally minimal (deterministic and
completely specified) FSM M is testing to decide
whether the SUT is isomorphic to M . This is not
the case in the distributed test architecture since it
is only possible to test for local s-equivalence. Thus,

the SUT may be locally s-equivalent to M , and
thus indistinguishable from M in the distributed test
architecture, without being isomorphic to M . This
shows that there is a fundamental limitation to testing
within the distributed test architecture: if we wish to
avoid controllability problems then rather than test to
check that the SUT is globally equivalent, and thus
isomorphic, to M testing can at most check that the
SUT is locally s-equivalent to M .

While many notions of equivalence, such as
bisimulation, failure equivalence, and trace equivalence,
have been explored within the literature on testing from
labelled transition systems (see, for example [23, 24]),
all of these collapse to isomorphism when testing
from globally minimal, initially connected, completely
specified, deterministic FSMs. This contrasts with the
notion of local s-equivalence which is strictly weaker
than isomorphism in such cases.

This paper makes the following contributions. It
introduces the notion of two states of an FSM
being locally s-distinguishable or locally s-equivalent
and shows that in the distributed test architecture
testing can distinguish between two states or FSMs,
without introducing a controllability problem, if and
only if they are locally s-distinguishable. Testing
in the distributed test architecture without causing
controllability problems is thus testing for local s-
equivalence rather than isomorphism. It is proved that
if an FSM M has n states and m ports and s1 and s2 are
states of M then s1 and s2 are locally s-distinguishable
by an input sequence starting with input at a given port
pi if and only if they are locally s-distinguished by an
input sequence of length at most m(n − 1) that starts
with input at pi. We also prove that this is a tight
bound. The paper gives a polynomial time algorithm
that takes an FSM M and produces minimal length
input sequences that locally s-distinguish the locally s-
distinguishable states of M . As a consequence, this
algorithm decides whether there is such a sequence in
polynomial time. It can also decide whether two FSMs
can be distinguished within this test architecture since
we can apply the algorithm to the disjoint union of these
FSMs. A second polynomial time algorithm takes an
FSM M and generates a locally s-minimal FSM M ′ that
is locally s-equivalent to M .

The results of this paper could have several practical
ramifications. First, many algorithms for generating
test sequences in the distributed test architecture have
been motivated by the objective of deciding whether
the SUT is equivalent to the FSM M , in the presence
of a fault domain3, without causing controllability
problems. Such test generation algorithms typically
place many restrictions on the FSM M and this means
that they are not generally applicable: these restrictions
can be seen as conditions under which equivalence and

3A fault domain is a set of models such that the tester believes
that the SUT is behaviourally equivalent to an (unknown)
element of this set [25].
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local s-equivalence coincide for the given fault domain.
However, since we now know that testing can only
distinguish FSMs if they are not locally s-equivalent,
the challenge is to produce test generation algorithms
that are motivated by local s-equivalence and not
equivalence and thus that do not place restrictions on
M . Second, by capturing the power of testing in the
distributed test architecture the consequences of using
this test architecture should be clearer. This could help
a tester to decide whether to use this architecture, which
can be relatively easy and inexpensive to implement, or
to add an external network through which messages can
be sent between the remote testers in order to overcome
the controllability and observability problems (see, for
example, [9, 16, 18]). Finally, if the use of the SUT
should correspond to input sequences that do not cause
controllability problems and in use we only observe
behaviour locally then we may be happy to produce
a locally s-minimal FSM M ′ from M and this may lead
to a smaller model and thus a more compact SUT.

This paper is structured as follows. Section 2
describes the distributed test architecture, multi-
port FSMs, and controllability and observability
problems introduced by the use of the distributed test
architecture. Section 3 states what it means to globally
distinguish two states and shows that a sequence x̄ that
globally distinguishes two states s1 and s2 of an FSM
need not help distinguish these states in the distributed
test architecture. It then introduces the notion of
an input sequence locally s-distinguishing two states
of an FSM. Section 4 places an upper bound on the
length of a minimal length input sequence that locally
s-distinguishes two states and shows that this bound
is tight. Section 5 gives a polynomial time algorithm
that produces input sequences that locally s-distinguish
states of an FSM and Section 6 gives a polynomial
time algorithm that takes an FSM and transforms it
into a locally s-minimal FSM. Finally, Section 7 draws
conclusions.

2. PRELIMINARIES

2.1. Multi-port FSMs

A multi-port FSM has m > 1 interfaces/ports at
which it interacts with its environment as shown in
Figure 1. The set of ports will be denoted P =
{p1, . . . , pm}. All examples use two ports denoted L and
U . A (completely-specified and deterministic) multi-
port FSM is defined by a tuple (S,X, Y, δ, λ, s0) in
which:

• S is the finite set of states of M ;
• s0 ∈ S is the initial state of M ;
• X = X1 ∪ . . . ∪ Xm is the finite input alphabet of

M , where for 1 ≤ i ≤ m, Xi is the input alphabet
at port pi and for all 1 ≤ i < j ≤ m we have that
Xi ∩ Xj = ∅;

• Y = (Y1 ∪ {−}) × . . . × (Ym ∪ {−}) is the output

SUT

Tester

Tester

Tester

FIGURE 1. An SUT with multiple-ports

alphabet of M , where for 1 ≤ i ≤ m, Yi is the
output alphabet at port pi, − denotes no output,
and for all 1 ≤ i < j ≤ m we have that Yi ∩Yj = ∅;

• δ is the transition function of type S×X → S; and
• λ is the output function of type S × X → Y .

This paper only considers completely-specified and
deterministic FSMs. Note that while a transition
can send output to multiple ports it can receive
input from one port only. There is thus an implicit
assumption that inputs are processed individually but
it seems likely that the results in this paper can be
extended to the case where multiple inputs can trigger
a transition. Naturally, the inputs may be buffered to
be processed when the system is ready or the SUT might
process inputs sufficiently quickly so that buffering
is not required (the ‘slow environment’ assumption).
However, we can restrict testing so that an input is only
sent once the previous input has been processed.

A variable that represents an element of Y will have
a ‘hat’ above its name in order to distinguish it from
an element of some Yi, an example being ŷ. Normally
the elements of ŷ will be denoted y1, . . . , ym and so
ŷ = (y1, . . . , ym).

This paper deals with multi-port FSMs and thus a
multi-port FSM will simply be called an FSM and will
be denoted by M . An FSM in which there is only
one port will be called a single-port FSM. A variable
name will have a bar over it (for example, x̄) if this
variable represents a sequence and ε will denote the
empty sequence. A sequence or word will be expressed
by the listing of its elements. For example abc will
denote the sequence with three elements: a then b and
then c. Given a sequence ā = a1 . . . ak, a sequence z̄ is a
prefix of ā if z̄ = a1 . . . aj for some 1 ≤ j ≤ k. Further,
z̄ is a suffix of ā if z̄ = aj . . . ak for some 1 ≤ j ≤ k.

A transition of an FSM M is a triple (sj , sk, x/ŷ),
where sj , sk ∈ S, x ∈ X, and ŷ ∈ Y such that δ(sj , x) =
sk, λ(sj , x) = ŷ and the input/output pair x/ŷ is the
label of the transition. A transition (sj , sk, x/ŷ) is a
self-loop if sj = sk.
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A sequence of consecutive transitions ρ̄ = t1 . . . tk of
M , ti = (si, si+1, xi/ŷi), is said to be a path. The path
ρ̄ has label z̄ = x1/ŷ1 . . . xk/ŷk and z̄ has input portion
x1 . . . xk.

It is possible to extend δ and λ to input sequences in
the following way.

δ(s, ε) = s

δ(s, xx̄) = δ(δ(s, x), x̄)

λ(s, ε) = ε

λ(s, xx̄) = λ(s, x)λ(δ(s, x), x̄)

An FSM M is initially connected if every state s of M
can be reached from the initial state using some input
sequence: for every state s ∈ S there exists an input
sequence x̄s such that δ(s0, x̄s) = s. If M is not initially
connected then the unreachable states can be removed
if we require an initially connected FSM. An FSM M
is globally minimal4 if none of its states are globally
equivalent5 (i.e., for all si, sj ∈ S, si 6= sj , there exists
an input sequence x̄ ∈ X∗ such that λ(si, x̄) 6= λ(sj , x̄)).
An FSM M is said to be completely specified if, for each
input x ∈ X, there is a transition with input x defined
from each state of M .

Given two FSMs M1 = (S1, X, Y, δ1, λ1, s01) and
M2 = (S2, X, Y, δ2, λ2, s02) with S1 ∩ S2 = ∅ we can
define the FSM M1 ⊕ M2 produced by taking their
disjoint union. More formally, M1 ⊕ M2 is the FSM
(S1 ∪ S2, X, Y, δ, λ, s00) in which for all x ∈ X and s ∈
S1 ∪ S2 we have that: if s ∈ S1 then λ(s, x) = λ1(s, x)
and δ(s, x) = δ1(s, x) and otherwise λ(s, x) = λ2(s, x)
and δ(s, x) = δ2(s, x). Naturally, the initial state
s00 of M1 ⊕ M2 is one of s01 and s02 but the use of
M1 ⊕M2 in this paper will make this choice irrelevant.
M1 ⊕ M2 will be used in order to be able to apply
results, regarding distinguishing states, to reason about
distinguishing machines. Thus, since M1 ⊕ M2 is not
initially connected, in this paper we do not assume that
any FSM considered is initially connected.

Given state s and input sequence x̄, γ(s, x̄) will
denote the input/output sequence resulting from
applying x̄ when M is in state s. This may be
recursively defined in the following manner.

γ(s, ε) = ε

γ(s, xx̄) = (x/λ(s, x))γ(δ(s, x), x̄)

In this paper we assume that in testing we can wait
for all output to be produced in response to an input

4Normally such an FSM is said to be minimal. In this paper
the phrase globally minimal is used in order to distinguish this
from the notion of locally s-minimal defined in Section 3.

5The term globally equivalent is used, rather than equivalent,
in order to distinguish this from the term locally s-equivalent
introduced in Section 3.

SUT SUT

a) b)

Global
Tester

Upper Tester

Lower Tester

FIGURE 2. Two test architectures: a) local; b)
distributed

before the next input is applied. This is the case where
communication is synchronous or the time taken to
receive the output in response to an input is negligible
(the slow environment assumption). It has also been
shown how this can be achieved in the case that the
testers can directly communicate and there are bounds
on the time taken for messages transmitted [16].

2.2. The distributed test architecture

An FSM M defines the expected global behaviour of
any potential implementation. Each expected global
behaviour is expressed as the label of a sequence of
transitions from M . An expected global behaviour is
called a global test sequence.

Testing an SUT whose externally observable be-
haviour is defined by an FSM M can be carried out as a
fault detection experiment in some specific test architec-
ture. Two such architectures [26] are shown in Figure
2 for a two-port SUT. The two ports, called U and L,
represent the upper interface and lower interface of the
SUT respectively. The local architecture in Figure 2a)
has a global tester that controls and observes both in-
terfaces of the SUT during the application of a global
test sequence constructed from the FSM specification of
the SUT. Figure 2b) shows the distributed test architec-
ture where the lower interface and the upper interface of
the SUT are controlled and observed by the lower tester
and by the upper tester, respectively. In a distributed
test architecture involving multiple testers, each tester
applies a local test sequence constructed from a global
test sequence for the SUT and there is no global clock.
In the local test sequence, a tester can’t observe the
inputs or outputs of the other testers.

In this architecture, two remote testers at ports U
and L are required to coordinate the application of a
preset test sequence. However, they cannot directly
communicate with one another and there is no global
clock. This requirement may lead to controllability and
observability problems, in addition to those that stem
from the black box nature of the SUT.

The controllability and observability problems are a

The Computer Journal, Vol. 00, No. 0, 2006



The effect of the distributed test architecture on the power of testing 5

consequence of the tester at each port seeing only a
portion of an input/output sequence: the parts that
involved that port. This may be considered to be the
actual local behaviour. The tester then compares this
with the expected local behaviour. Let z̄ be the label of
a transition sequence of an FSM M . The sequence z̄
is thus an expected global behaviour. Given z̄, πi(z̄)
will denote the expected local behaviour at pi. The
function πi can be recursively defined in the following
way in which z̄ is an input/output sequence and x is an
input.

πi(ε) = ε

πi((x/(y1, . . . , ym))z̄) = πi(z̄) if x 6∈ Xi ∧ yi = −

πi((x/(y1, . . . , ym))z̄) = xπi(z̄) if x ∈ Xi ∧ yi = −

πi((x/(y1, . . . , ym))z̄) = yiπi(z̄) if x 6∈ Xi ∧ yi 6= −

πi((x/(y1, . . . , ym))z̄) = xyiπi(z̄) if x ∈ Xi ∧ yi 6= −

2.3. The controllability problem

Let us suppose that the distributed test architecture is
being used and the intention is to input x1x2 when M
is in state s, x1 is input at port P ∈ {U,L}, and x2 is
input at port Q ∈ {U,L}. If P 6= Q and, when in state
s, M does not send output to Q in response to x1 then
the tester at Q cannot know when to send x2. This
introduces a controllability (synchronization) problem.
A controllability (synchronization) problem exists when
a tester is required to send an input to the SUT in
the current transition, and because it is not involved
in the previous transition, i.e., it didn’t send the input
or receive an output in the previous transition, it does
not know when to send the input. Where a sequence of
transitions does not have this problem it is said to be
synchronized.

Definition 2.1. A sequence of two tran-
sitions t1t2, t1 = (s1, s2, x/(y1, . . . , ym)),
t2 = (s2, s3, x

′/(y′

1, . . . , y
′

m)), in which x′ is input
at port pi ∈ P is synchronized if t1 either has input
from port pi or sends output to pi (πi(t1) 6= ε).

Definition 2.2. A sequence t1 . . . tk of transitions
starting at s1 is synchronized if for all 1 ≤ i < k, titi+1

is synchronized. If z̄ is the label of t1 . . . tk and this has
input portion x̄ then z̄ and x̄ are said to be synchronized
from s1 or simply synchronized if s1 is clear.

When working within the distributed test architec-
ture, if a sequence of transitions in M is not syn-
chronized then the corresponding test sequence cannot
be applied without causing a controllability problem.
However, in general there may be no such test sequence
that satisfies a given test objective such as executing a
particular transition [19]. In common with other work
in this area, in this paper we only consider synchronized
test sequences. This paper investigates the impact of
the distributed test architecture on the effectiveness of

testing. If this impact is too severe then it is often pos-
sible to introduce an external network through which
the testers can communicate and use this to overcome
controllability and observability problems (see, for ex-
ample, [9, 16, 18]).

2.4. The observability problem

In the distributed test architecture each tester sees
only the behaviour at a single port. This section
discusses some consequences of this more limited ability
to observe the behaviour.

Let us suppose that the distributed test architecture
is being used and x1x2 is to be input when M is in
state s, x1, x2 ∈ XU . Suppose further that the input
of x1 is expected to trigger output (yU , yL) and the
input of x2 is expected to trigger output (y′

U ,−). Then
x1yUx2y

′

U should be observed at U and yL should be
observed at L. These are still the observations if (yU ,−)
is produced in response to x1 and (y′

U , yL) is produced
in response to x2. Thus, since only local sequences of
interactions are observed, it is possible for one output
fault6 to mask another. Each of these transitions might
lead to incorrect output in use if it is executed within
a different sequence. By contrast, output faults are
always observed when testing a single-port FSM or
using the local test architecture. Note that if x2 had
been from XL, this combination of faults would have
been detected, in the distributed test architecture, by
the tester at port L since this would have observed x2yL

rather than yLx2.
The faults described above mask one another because

the correct value yL is observed at L and, while it is
produced in response to the wrong transition, the tester
at port L does not know when to stop waiting for yL.
A similar situation would have occurred if output at L
is expected in response to x2 but not x1 and instead
it was produced in response to x1. These situations
correspond to the notion of an undetectable output-
shifting fault in which output can be seen as being
shifted between (not necessarily adjacent) transitions
in a sequence (see, for example, [22]).

Note that when such fault masking between two
transitions t and t′ occurs in the given sequence tt̄t′, the
faults may be detectable if one or more of the transitions
t and t′ are used in a different sequence. Where this is
the case, and we wish to test t and t′, we need a test
sequence that contains t and t′ in contexts in which such
fault masking cannot occur.

Undetectable output-shifting faults describe situa-
tions in which the distributed test architecture allows
output faults to mask one another. This masking is a
consequence of the structure of the test sequence used:
such faults might not be masked in other sequences and
thus may be observed by the user. However, the focus
of this paper is finding input sequences that can be used

6An output fault is a fault in which a transition produces the
wrong output.
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to distinguish states or machines in the distributed test
architecture and thus observability problems are only a
concern when they lead to an input sequence failing to
achieve this.

3. GLOBALLY DISTINGUISHING AND LO-

CALLY S-DISTINGUISHING STATES

In order to distinguish two states in the distributed test
architecture, it is necessary to apply an input sequence
that leads to different sequences of local observations
at some port. This section defines what it means for
an input sequence to achieve this. Section 4 proves
that the length of such sequences is bounded above by
m(n − 1) for an FSM with n states and m ports: for
every pair of states s and s′ and port pi if s and s′ can
be distinguished in the distributed test architecture by
a synchronized input sequence starting at pi then they
can be distinguished in the distributed test architecture
by a synchronized input sequence of length at most
m(n − 1) that starts at pi. It also proves that this
bound is tight. Section 5 gives a polynomial time
algorithm that determines whether such sequences exist
and generates them when they do. This algorithm may
thus be used to decide, in polynomial time, whether
such sequences exist for a pair of states and thus which
states of an FSM are locally s-equivalent.

3.1. Testing with a global tester

If there is a global tester, an input sequence x̄
distinguishes two states if the input of x̄ leads to
different output sequences when applied in these states.

Definition 3.1. Input sequence x̄ globally distin-
guishes states s1 and s2 of M if λ(s1, x̄) 6= λ(s2, x̄).

This corresponds to the classical notion of distin-
guishing states of a single-port FSM M .

3.2. Testing in the distributed test architecture

Consider the FSM M0 given in Figure 3 in which
x1, x2 ∈ XU , a1, a2 ∈ YU , and b ∈ YL. The
input sequence x1x2 globally distinguishes states s1 and
s2. However, neither tester observes a difference: the
expected local behaviour at L is b and the expected
local behaviour at U is x1a1x2a2. In the distributed
test architecture, this input sequence does not help
distinguish between s1 and s2; instead it is necessary
to observe a different sequence of input and output
values at one of the ports. Thus, it is not sufficient that
an input sequence globally distinguishes two states: a
stronger property is required if we wish to distinguish
between them. Note that in the example the prefix x1

of x1x2 does allow us to distinguish the states.
If input sequence x̄ is applied when M is in state s1

the sequence πi(γ(s1, x̄)) is observed at port pi. This
leads to the following definition.

s

s

s1 2

3

x /(a ,b)1 1

x /(a ,-)1 1x /(a ,-)1 1

x /(a ,b)22

x /(a ,b)22

x /(a ,-)22

FIGURE 3. The FSM M0

Definition 3.2. Input sequence x̄ locally s-
distinguishes states s1 and s2 of M at port
pi ∈ P if x̄ is synchronized from s1 and s2 and
πi(γ(s1, x̄)) 6= πi(γ(s2, x̄)). Further, x̄ locally s-
distinguishes states s1 and s2 of M if there exists a
port pi ∈ P such that x̄ locally s-distinguishes s1 and
s2 at pi.

These definitions can be extended to locally s-
distinguishing FSMs.

Definition 3.3. Synchronized input sequence x̄ lo-
cally s-distinguishes FSMs M1 = (S1, X, Y, δ1, λ1, s01)
and M2 = (S2, X, Y, δ2, λ2, s02) at port pi ∈ P if x̄
locally s-distinguishes states s01 and s02 of M1 ⊕ M2

at port pi. Synchronized input sequence x̄ locally s-
distinguishes M1 and M2 if there exists a port pi ∈ P
such that x̄ locally s-distinguishes M1 and M2 at pi.

Proposition 3.1. If x̄ ∈ X∗ locally s-distinguishes
states s1 and s2 of M then x̄ globally distinguishes
s1 and s2. However, an input sequence may globally
distinguish two states s1 and s2 of M but not locally
s-distinguish them.

Proof
The first part of the result follows immediately from

the definitions.
Consider the FSM M0 shown in Figure 3. Recall that

x1, x2 ∈ XU , a1, a2 ∈ YU , and b ∈ YL. The input
of x1x2 from s1 should lead to the output sequence
(a1, b)(a2,−) and the input of x1x2 from s2 should lead
to the output sequence (a1,−)(a2, b). It is clear that
the input of x1x2 is synchronized from s1 and s2.

Input sequence x1x2 globally distinguishes states
s1 and s2 since it leads to different input/output
sequences. However, in each case x1a1x2a2 is observed
at U and b is observed at L. Thus, x1x2 does not locally
s-distinguish s1 and s2 as required. �

Proposition 3.2. Given states s1 and s2 of an FSM
M and input sequence x̄, it is possible to decide whether
x̄ locally s-distinguishes s1 and s2 in O(|x̄|) time.
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Proof
Observe that given state s1 and input sequence x̄,

it is possible to determine πi(γ(s1, x̄)) in O(|x̄|). The
result now follows from the fact that it is sufficient to
find πi(γ(s1, x̄)) and πi(γ(s2, x̄)) for each pi ∈ P and
then apply syntactic comparisons. �

If an input sequence x̄ is synchronized from states s1

and s2 and globally distinguishes s1 and s2 then s1 and
s2 must be locally s-distinguishable.

Proposition 3.3. Let us suppose that x̄ is synchro-
nized from states s1 and s2 of M and globally dis-
tinguishes s1 and s2. If x̄1 is a minimal prefix of x̄
that globally distinguishes s1 and s2 then x̄1 locally s-
distinguishes s1 and s2.

Proof
Let x̄1 = x̄′

1x2 for some x2 ∈ X, x̄′

1 ∈ X∗. By
the minimality of x̄1, λ(s1, x̄

′

1) = λ(s2, x̄
′

1) and thus
πi(γ(s1, x̄

′

1)) = πi(γ(s2, x̄
′

1)) for all pi ∈ P . It is now
sufficient to observe that since x̄1 globally distinguishes
between s1 and s2, λ(δ(s1, x̄

′

1), x2) and λ(δ(s2, x̄
′

1), x2)
must differ at some port pi and thus that πi(γ(s1, x̄1)) 6=
πi(γ(s2, x̄1)). �

This helps illustrate an important property of testing
in the distributed test architecture: test sequence
effectiveness is not monotonic in that in some cases we
can take an input sequence x̄ that locally s-distinguishes
two machines M1 and M2 and extend it to an input
sequence x̄x̄′ that does not locally s-distinguish M1 and
M2. An example of this is given by the FSM M0 shown
in Figure 3: we can take M0 and the FSM formed
by making s2 the initial state. We have already seen
that x1x2 globally distinguishes these states but does
not locally s-distinguish them and it is straightforward
to see that x1 does locally s-distinguish them. This
property, of test sequence effectiveness not being
monotonic, is not a problem when applying a single
sequence x̄ that is intended to locally s-distinguish
two states or FSMs if we can terminate testing after
applying x̄. However, it is likely to have practical
consequences when generating sequences to locally s-
distinguish states with the intention of embedding these
sequences within a larger test sequence: here we will
want to ensure that the effectiveness of a sequence is
not affected by the sequences that precede it and follow
it.

If the distributed test architecture is used and we
wish to avoid controllability problems then in order to
distinguish between two states it is necessary to locally
s-distinguish these states. This leads to a new definition
of equivalence.

Definition 3.4. Two states s1 and s2 of M are
locally s-equivalent if no input sequence locally s-
distinguishes s1 and s2. This is denoted s1 ≈ s2 and
otherwise s1 6≈ s2.

It is now possible to say what it means for M to be
minimal within this architecture.

s

ss

s1 2

34

x   /(y  ,-)U U

x   /(y  ,-)U U

x   /(y  ,-)U U

x   /(y  ,-)U U

Ux  /(y  ,y )LL

x  /(-  ,y )LL

x  /(-  ,y )LL

x  /(-  ,y )LL

FIGURE 4. The FSM M1

Definition 3.5. M is locally s-minimal if for every
pair (s1, s2) of states of M (s1 6= s2) we have that s1

and s2 are locally s-distinguishable.

Proposition 3.4. A globally minimal FSM need not
be locally s-minimal.

Proof
Consider the FSM M1 shown in Figure 4 in which

there is one input xU at U , one input xL at L, one
output yU at U and one output yL at L. It is clear that
M1 is globally minimal. However, any synchronized
input sequence from s1 or s4 must be in either {xU}

∗

or {xL}
∗. By observing the corresponding output

sequences, it is clear that s1 and s4 are not locally s-
distinguishable at either U or L. Thus, M1 is not locally
s-minimal. �

If two states are locally s-equivalent then it is not
possible to distinguish between them when testing
in the distributed architecture without causing a
controllability problem. The SUT may only be
distinguished from an FSM M , by testing in the
distributed test architecture without encountering
controllability problems, if the initial states of the SUT
and M are not locally s-equivalent. Thus, testing
involves checking a weaker notion of correctness than
that used when there is a global tester. For example,
the FSM M2 shown in Figure 5 is locally s-equivalent
to M1 but is not globally equivalent to M1. When
there is a global tester, testing can distinguish between
M1 and M2. By contrast, in the distributed test
architecture, a synchronized input sequence cannot
distinguish between M1 and M2 since their initial states
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s

s

s1 2

3

x   /(y  ,-)U U

x   /(y  ,-)U U

x   /(y  ,-)U U

Ux  /(y  ,y )LL

x  /(-  ,y )LL

x  /(-  ,y )LL

FIGURE 5. The FSM M2

are locally s-equivalent. This is despite the fact that M1

and M2 are globally minimal and are not isomorphic.
In order to locally s-distinguish FSMs M and

M ′ using an input sequence x̄ we need to be able
to apply x̄ to both M and M ′ and a different
sequence must be observed at one or more ports.
We can thus see that two FSMs M and M ′ can be
distinguished by a synchronized input sequence when
testing within the distributed test architecture if and
only if their initial states are locally s-distinguishable
and so that this notion captures the power of testing
in the distributed test architecture without causing
controllability problems.

4. THE LENGTH OF SEQUENCES THAT

LOCALLY S-DISTINGUISH STATES

This section contains a proof that if two states of
an FSM M with n states and m ports are locally s-
distinguished by an input sequence starting with input
at a given port pi then they are locally s-distinguished
by an input sequence of length at most m(n − 1)
that starts with input at pi. It also proves that the
bound is tight. Finally, we show that the result is not
significantly altered if we allow the input sequence to
start at any port. Section 5 gives a polynomial time
algorithm that generates such sequences.

The following result shows that if an input sequence
x̄ of length greater than one locally s-distinguishes
two states then a shorter input sequence locally s-
distinguishes two states.

Lemma 4.1. If x̄ locally s-distinguishes states s1 and
s2 of M at port pi ∈ P and x̄ = x̄1x̄2 then either

1. x̄1 locally s-distinguishes states s1 and s2 at pi;
or
2. x̄2 locally s-distinguishes states δ(s1, x̄1) and
δ(s2, x̄1) at pi.

Proof

Proof by contradiction: let us suppose that
x̄ locally s-distinguishes states s1 and s2 at pi

but the above conditions do not hold. Since
the first condition does not hold, πi(γ(s1, x̄1)) =
πi(γ(s2, x̄1)). Since the second condition does not
hold, πi(γ(δ(s1, x̄1), x̄2)) = πi(γ(δ(s2, x̄1), x̄2)). But
πi(γ(sj , x̄)) = πi(γ(sj , x̄1))πi(γ(δ(sj , x̄1), x̄2)) (j ∈
{1, 2}), providing a contradiction as required. �

The following result will be used in reasoning about
the length of sequences that locally s-distinguish states.

Lemma 4.2. Let us suppose that x̄1x̄2 is synchronized
from states s1 and s2 of M , x̄1 does not locally s-
distinguish s1 and s2 and x̄2 locally s-distinguishes
δ(s1, x̄1) and δ(s2, x̄1) at port pi ∈ P . Then x̄1x̄2 locally
s-distinguishes s1 and s2 at port pi.

Proof
Since x̄1 does not locally s-distinguish s1 and

s2, πi(γ(s1, x̄1)) = πi(γ(s2, x̄1)). Since x̄2 lo-
cally s-distinguishes δ(s1, x̄1) and δ(s2, x̄1) at pi,
πi(γ(δ(s1, x̄1), x̄2)) 6= πi(γ(δ(s2, x̄1), x̄2)). The
result now follows from observing that since
πi(γ(sj , x̄)) = πi(γ(sj , x̄1))πi(γ(δ(sj , x̄1), x̄2))
(j ∈ {1, 2}), πi(γ(s1, x̄)) 6= πi(γ(s2, x̄)). �

The following definition is inspired by Gill [27].

Definition 4.1. States s1, s2 of M are (k, i)-
equivalent if no input sequence of length k or less, that
starts with input at port pi ∈ P , locally s-distinguishes
s1 and s2; otherwise they are (k, i)-separable. This
defines a relation ≈i

k: s1 ≈i
k s2 if and only if s1 and

s2 are (k, i)-equivalent. Further, s1, s2 are locally s-
equivalent at pi if no input sequence, that starts with
input at port pi, locally s-distinguishes s1 and s2. This
is denoted s1 ≈i s2.

Proposition 4.1. s1 ≈ s2 if and only if for all
pi ∈ P we have that s1 ≈i s2.

Let us suppose that an input sequence x̄ is
synchronized from one state s1 of an FSM M but
not from another state s2 of M . The failure of x̄
to be synchronized from s2 must be due to some
difference between the input/output sequences γ(s1, x̄)
and γ(s2, x̄) and if we find the first such difference then
the corresponding input sequence locally s-distinguishes
s1 and s2.

Proposition 4.2. For an FSM M and states s1 and
s2 of M , if input sequence x̄ is synchronized from s1

but not from s2 then there is a prefix of x̄ that locally
s-distinguishes s1 and s2.

Proof

Proof by contradiction: let us suppose that x̄ =
x1 . . . xl is synchronized from s1 but not from s2 but
no prefix of x̄ locally s-distinguishes s1 and s2. Let
x̄1 = x1 . . . xk denote the longest prefix of x̄ that is
synchronized from both s1 and s2 and so k ≥ 1 and
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x̄1xk+1 is a prefix of x̄. Let x̄2 = x1 . . . xk−1 and so if
k = 1 then x̄2 is the empty sequence.

Since x̄1 is synchronized from s1 and s2 but no
prefix of x̄ locally s-distinguishes s1 and s2, for all
pi ∈ P we have that πi(γ(s1, x̄1)) = πi(γ(s2, x̄1)) and
πi(γ(s1, x̄2)) = πi(γ(s2, x̄2)). Thus, since x̄1 = x̄2xk

and x̄2 does not locally distinguish s1 and s2, for
all pi ∈ P we must have that πi(γ(δ(s1, x̄2), xk)) =
πi(γ(δ(s2, x̄2), xk)).

Since x̄1xk+1 is synchronized from s1 we must have
that πi(γ(δ(s1, x̄2), xk)) involves the port pj at which
xk+1 is input and so πi(γ(δ(s2, x̄2), xk)) also involves
port pj . Thus, x̄1xk+1 is synchronized from s2. This
provides a contradiction as required. �

Lemma 4.3. The relation ≈i
k is an equivalence

relation.

Proof
It is clear that ≈i

k is symmetric and reflexive and it
thus suffices to prove that ≈i

k is transitive. Proof by
contradiction: let us suppose that there exists s1, s2, s3

such that s1 ≈i
k s2, s2 ≈i

k s3 but s1 6≈i
k s3. Thus there is

an input sequence x̄ of length at most k that starts with
input at pi, is synchronized from s1 and s3, and that
locally s-distinguishes s1 and s3. Since s1 ≈i

k s2, by
Proposition 4.2 we know that x̄ is synchronized from s2

and does not locally s-distinguish s1 and s2. Similarly,
since s2 ≈i

k s3, x̄ is synchronized from s2 and does
not locally s-distinguish s2 and s3. This provides a
contradiction as required. �

Since ≈i
k is an equivalence relation it defines a set P i

k

of equivalence classes that partition the set of states.
Specifically, two states s and s′ are in the same set A
from P i

k if s ≈i
k s′.

Proposition 4.3. s1 ≈i s2 if and only if for all
k ≥ 0, s1 ≈i

k s2.

Theorem 4.1. The relation ≈ is an equivalence
relation.

This follows from Lemma 4.3 and Propositions 4.1
and 4.3. �

Since ≈ is an equivalence relation, it has a set
of equivalence classes. It will transpire that these
equivalence classes can be used to transform M into
a locally s-minimal FSM.

The proofs of the following results use a similar logic
to the proof that, given a single-port (globally) minimal
FSM M with n states, there is an input sequence of
length at most n − 1 that (globally) distinguishes any
two states s1 and s2 of M [27]. The results demonstrate
that for all s1, s2 ∈ S, if s1 and s2 are locally s-
distinguishable then they are locally s-distinguished by
an input sequence of length at most m(n−1). The proof
will operate by considering the equivalence relations of
the form ≈i

k, using the fact that each can have at most
n equivalence classes and that for all k1 > k2, ≈

i
k1

has

at least as many equivalence classes as ≈i
k2

.

Lemma 4.4. Let us suppose that states s1 and s2 of
M are locally s-distinguishable at pi ∈ P and they are
(k, i)-equivalent. Then there exists a port pj ∈ P and
states s′1, s′2 of M that are (k, j)-equivalent but (k+1, j)-
separable.

Proof

Let x̄ denote a shortest input sequence that starts
with input at pi and locally s-distinguishes s1 and
s2. Then |x̄| > k. Let x̄′ denote the prefix of x̄ of
length |x̄| − k − 1 and thus x̄ = x̄′x̄′′ for some x̄′′

with |x̄′′| = k + 1. Let pj denote the port with the
property that the first element of x̄′′ is from Xj . By
the minimality of x̄, x̄′ does not locally s-distinguish s1

and s2.

Consider the states s′l = δ(sl, x̄
′) (1 ≤ l ≤ 2). Since

x̄′x̄′′ locally s-distinguishes s1 and s2, and x̄′ does not
locally s-distinguish s1 and s2, by Lemma 4.1 x̄′′ must
locally s-distinguish s′1 and s′2. By the minimality of x̄
and Lemma 4.2, s′1 and s′2 are locally s-distinguished by
no shorter input sequence that starts with input from
Xj . But |x̄′′| = k + 1 and thus s′1 and s′2 are (k + 1, j)-
separable. As s′1 and s′2 are locally s-distinguished by
no shorter sequence, that starts with input from Xj , s′1
and s′2 are (k, j)-equivalent, as required. �

Theorem 4.2. Let M denote an FSM with n states
and m ports. Given states s1, s2 of M and port pi ∈ P ,
if s1 and s2 are locally s-distinguished by an input
sequence starting with an element of Xi then they are
locally s-distinguished by an input sequence of length at
most m(n − 1) that starts with an element of Xi.

Proof

Let x̄ be a shortest input sequence, starting with
an element of Xi, that locally s-distinguishes s1 and
s2 and |x̄| = k. Proof by contradiction: assume that
k > m(n − 1). Then for all 0 ≤ q < k, s1 and s2 are
(q, i)-equivalent.

By Lemma 4.4, there is a function f such that for
all 0 ≤ q < k, there is port pf(q) ∈ P and states sq

1

and sq
2 that are (q, f(q))-equivalent but (q + 1, f(q))-

separable. If for some 0 ≤ q1 < q2 < k we have that
f(q1) = f(q2) = j then since there are states of M that
are (q1, j)-equivalent but (q1 + 1, j)-separable, ≈j

q2
has

more equivalence classes than ≈j
q1

.

Since k > m(n − 1), there is a port pj ∈ P
that appears more than n − 1 times in the sequence
pf(0) . . . pp(k−1). Let i denote the smallest non-negative
integer such that f(i) = j. It is now sufficient to note
that each ≈j

q has at most n equivalence classes and each
also has at least one equivalence class. There can be at
most n− 1 (proper) refinements of ≈j

i . This provides a
contradiction as required. �

In order to show that this bound is tight we will define
an FSM Mmn with n states and m ports such that in
order to locally s-distinguish states s0 and s1 we must
apply an input sequence that passes through each state
and in order to change state we must apply input at
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FIGURE 6. The FSM Mmn

every port. Throughout the rest of this section, where
integer arithmetic is applied in a subscript of a port it is
modulo m and integer arithmetic in subscripts of states
is modulo n. Since it is normal to start the range at 0 in
modular arithmetic, throughout the rest of this section
the states are denoted s0, . . . , sn−1 and the ports are
denoted p0, . . . , pm−1. The FSM Mmn is illustrated in
Figure 6.

Definition 4.2. Given n > 1 and m > 1 the FSM
Mmn = (S,X, Y, δ, λ, s0) is defined by the following in
which P = {p0, . . . , pm−1} and S = {s0, . . . , sn−1}. We
have two inputs at each port and so for all pj ∈ P we
set Xj = {xj , x

′

j}.
For 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1, input xj

in state si leads to no change in state and only output
yj+1 ∈ Yj+1. Thus, the (self loop) transition from si

with input xj can be followed by input at either pj or
pj+1. Thus, transitions with input xj cannot change the
state but allow the next input to be at a different port
(pj+1).

Now consider the transitions with input of the form
x′

j. All of these are self-loops with the following
exceptions: for all 0 ≤ i < n−1 the transition from state
si with input x′

m−i changes the state to si+1. Thus, all
transitions in sn−1 are self-loops and a transition can
only change the state from si (0 ≤ i < n − 1) if the
input is x′

m−i. For the output there are two cases:

1. The input of x′

m−n+1 in state sn−1 leads only to
output y′

m−n+1 ∈ Ym−n+1 with y′

m−n+1 6= ym−n+1.
2. If i 6= n− 1 or j 6= m− n + 1 then the transition
from si with input x′

j leads only to output yj.

Observe that the only way in which we can choose
states s and s′ and input x such that λ(s, x) 6= λ(s′, x)
is to have exactly one of s and s′ being sn−1 and x being
x′

m−n+1.
We now prove some results regarding Mmn.

Lemma 4.5. Let x̄ denote an input sequence that is
synchronized from states s0 and s1 of Mmn and x̄ = x̄′x
for some x ∈ X. If x̄ locally s-distinguishes states s0

and s1 of Mmn and no proper prefix of x̄ locally s-
distinguishes states s0 and s1 then x = x′

m−n+1 and
either δ(s0, x̄

′) = sn−1 or δ(s1, x̄
′) = sn−1.

Proof

This result follows immediately from the fact that the
only opportunity for producing a different output from
two states in response to an input is if one of the states
is sn−1 and the input is x′

m−n+1.�

Lemma 4.6. There is an input sequence of length
m(n − 1) starting with input at port p0 that locally s-
distinguishes state s0 and s1 of Mmn.

Proof

In order to locally s-distinguish the states it is
sufficient to apply an input sequence that takes exactly
one of these states to sn−1 and then applies input
x′

m−n+1. We will build such an input sequence from
n − 1 subsequences x̄1, . . . , x̄n−1. Each subsequence,
when applied in the state sj reached from s1, will apply
inputs of the form xi a total of m − 1 times in order
to be able to apply the input x′

m−j to take the FSM to
state sj+1.

The first section is x̄1 = x0x1 . . . xm−2x
′

m−1. It is
clear that this is synchronized from both s0 and s1. If
n = 2 then this sequence locally s-distinguishes s0 and
s1 as required and so we assume that n > 2. Thus,
x̄1 leads to the same output sequences from s0 and s1,
and in each case can be followed only by input at port
pm−1. In addition, δ(s1, x̄1) = s2 and since n > 1 we
have that either δ(s0, x̄1) = s0 or δ(s0, x̄1) = s1 .

We now define the remaining subsequences in a
similar manner, starting each with input at the
port that received the final input in the previous
subsequence. For 0 < j ≤ n − 1, the subsequence
x̄j = xm−j+1 . . . x1 . . . xm−j−1x

′

m−j .

It is now sufficient to observe that x̄ = x̄1 . . . x̄n−1

takes Mmn from state s1 to sn−1 and applies x′

m−n+1

and that it does not take Mmn from state s0 to sn−1.
�

Lemma 4.7. Let x̄x denote an input sequence that is
synchronized from state sj of Mmn, starts with input at
pm−j+1 and ends with the input x′

m−n+1. If δ(sj , x̄) =
sn−1 then |x̄x| ≥ m(n − j).

Proof
Proof by induction on n − j. The base case, where

j = n − 1, follows immediately. Inductive hypothesis:
assume that the result holds for all j > k. Then it is
sufficient to prove that the result holds for j = k.

In order to reach state sn−1 from state sk we need to
pass through state sk+1. Let x̄1 denote the minimum
length prefix of x̄ such that δ(sk, x̄1) = sk+1 and so x̄ =
x̄1x̄2 for some x̄2. Clearly x̄1 must end in input x′

m−k.
However, by construction, for a sequence starting at sk

with input at pm−k+1 to end with input x′

m−k it must
include xm−k+1, . . . , xm−k−1 and so |x̄1| ≥ m. By the
inductive hypothesis, |x̄2x| ≥ m(n− (k +1)) and so the
result follows. �

Theorem 4.3. Given integers n > 1 and m > 1 there
exists an FSM M with n states and m ports that has
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states s0 and s1 and port pj ∈ P such that s0 and s1 are
locally s-distinguishable by an input sequence starting
with input at pj but cannot be locally s-distinguished by
any input sequence of length less than m(n − 1) that
starts with input at pj.

Proof
It is sufficient to consider Mmn, states s0 and s1 and

port p0. By Lemma 4.6 it is possible to distinguish
these states using an input sequence starting at p0. By
Lemma 4.5, the application of x̄ from state s1 must end
in the application of x′

m−n+1 in state sn−1. The result
thus follows from Lemma 4.7. �

The above result concerns the worst case when we
have specified the port p at which the first input must
be applied. The following shows that the result is not
significantly different if we allow the sequence to start
with input at any port.

Theorem 4.4. Given integers n > 1 and m > 1 there
exists an FSM M with n states and m ports that has
locally s-distinguishable states s0 and s1 that cannot be
locally s-distinguished by any input sequence of length
less than m(n − 2) + 1.

Proof
If we consider states s0 and s1 of Mmn then the result

follows from Lemma 4.7. �

5. GENERATING SEQUENCES THAT LO-

CALLY S-DISTINGUISH STATES

This section gives a polynomial time algorithm with
the following property: if it is applied to FSM M then,
given two states s1 and s2 of M and pi ∈ P , if some
input sequence starting with an element of Xi locally
s-distinguishes s1 and s2 then the algorithm returns
a minimal length input sequence that achieves this.
Thus, as a side-effect, it decides which pairs of states
of M can be locally s-distinguished by input sequences
starting with an element of Xi. It may thus be used to
determine which states of M are locally s-equivalent and
so by considering M1⊕M2 it can also be used to decide
whether FSMs M1 and M2 are locally s-equivalent.

Algorithm 1 is a variant on the classical algorithm for
generating sequences that (globally) distinguish states
of a single-port FSM. It works in the following manner.
It builds a partition P i

k, 1 ≤ i ≤ m, in which two
states are in the same set of some P i

k if and only if
they are (k, i)-equivalent. It will be assumed that each
set A in a partition P i

k has a label that identifies it —
this guarantees that A cannot be confused with a set
from a partition Pj

k, j 6= i. At each step, the partition

Pi
k+1 is built from the Pj

k. Associated with each set
A ∈ Pi

k is a set DA of input sequences that start with
elements of Xi and, between them, locally s-distinguish
the states in A from those in each A′ ∈ Pi

k with A′ 6= A.
Thus, in order to decide whether two states s1 and s2

are locally s-distinguished by an input sequence starting

Algorithm 1. 1. Input FSM M .
2. For 1 ≤ i ≤ m let P i

0 = {S}.
3. Let P i

1 denote the partition of the states of M
defined by ≈i

1 (1 ≤ i ≤ m).
4. For set A ∈ P i

1 let DA denote a minimal subset
of Xi such that: for all s1 ∈ A and s2 ∈ S \ A,
there is some x ∈ DA that locally s-distinguishes
s1 and s2.
5. While there exists 1 ≤ i ≤ m such that P i

k 6=
Pi

k−1 do
6. Set P i

k+1 = Pi
k (1 ≤ i ≤ m).

7. While there is some 1 ≤ i ≤ m and A ∈ P i
k+1

such that at least one of the following holds:

(a) there exists input x ∈ Xi and states s1, s2 ∈ A
such that δ(s1, x) and δ(s2, x) are in different
elements of P i

k (choose two of these elements
of Pi

k denoted B1 and B2); or
(b) there exists input x ∈ Xi and states s1, s2 ∈ A

such that the input of x in a state in A leads
to an output at port pj 6= pi and δ(s1, x) and

δ(s2, x) are in different elements of Pj
k (choose

two of these elements of Pj
k denoted B1 and

B2).

8. Choose a minimal length input sequence x̄ from
DB1

that locally s-distinguishes the elements of B1

from those of B2 and:

(a) Partition A on the basis of xx̄ forming new
sets A1, . . . , Al and set P i

k+1 = (Pi
k+1 \{A})∪

{A1, . . . , Al}.
(b) Set DAj

= DA ∪ {xx̄} for all 1 ≤ j ≤ l.

9. Endwhile
10. Set k = k + 1
11. Endwhile
12. Output P1

k , . . . ,Pm
k , and every DA for A ∈

P1
k ∪ . . . ∪ Pm

k .

FIGURE 7. Generating input sequences that locally s-
distinguish states

with an element of Xi it is sufficient to apply Algorithm
1 and determine whether s1 and s2 are in different sets
in the final partition P i

k. If s1 and s2 are locally s-
distinguished by an input sequence starting with an
element of Xi and s1 is in the set A ∈ P i

k then DA

contains a minimum length input sequence that starts
with an element of Xi and locally s-distinguishes s1 and
s2.

Algorithm 1 is given in Figure 7. The following shows
how Algorithm 1 works.

Theorem 5.1. States s1 and s2 of M are (k, i)-
separable if and only if they are in different sets in the
partition P i

k produced in the application of Algorithm 1.

Proof
Case 1: ⇒. Proof by induction on k. The base cases,
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in which k = 0 and k = 1, follow immediately. Inductive
hypothesis: assume that this holds for all values of k less
than a (a > 1).

Let us suppose that s1 and s2 are (a, i)-separable.
From Lemma 4.4 it is clear that the algorithm cannot
terminate with P1

k . . .Pm
k for any k < a. It is sufficient

to prove that s1 and s2 are in different sets from P i
a.

Proof by contradiction: assume that s1 and s2 are in the
same set from P i

a. If s1 and s2 are (a−1, i)-separable the
inductive hypothesis gives a contradiction as required
and so s1 and s2 must be (a − 1, i)-equivalent. Let
xx̄ denote an input sequence of length a that locally
s-distinguishes s1 and s2 (x ∈ Xi, x̄ ∈ X∗). Since x
does not locally s-distinguish s1 and s2, by Lemma 4.1,
x̄ must locally s-distinguish states s′1 = δ(s1, x) and
s′2 = δ(s2, x). Further, since xx̄ is synchronized from s1

and s2, one of the following must be the case:

1. x̄ starts with input from pi. By the inductive
hypothesis, s′1 and s′2 are in different sets in P i

a−1.
2. x̄ starts with input from pj 6= pi and λ(s1, x) and

λ(s2, x) include output at pj . By the inductive

hypothesis, s′1 and s′2 are in different sets in Pj
a−1.

In each case, in Algorithm 1, s1 and s2 will be
locally s-distinguished in forming P i

a. This provides a
contradiction and thus completes the inductive case.

Case 2: ⇐. Proof by induction on k. The base cases,
in which k = 0 and k = 1, follow immediately. Inductive
hypothesis: assume that this holds for all values of k less
than a (a > 1).

Let us suppose that s1 and s2 are in different sets
from P i

a and these sets are A1 and A2 respectively. It
is sufficient to prove that s1 and s2 are (a, i)-separable.
If s1 and s2 are in different sets for P i

a−1 the result
follows from the inductive hypothesis and so assume
that s1 and s2 are in the same set A of P i

a−1. Since s1

and s2 are in different sets from P i
a, there are two cases

to consider.

1. There is an input x that takes s1 and s2 from A to
different sets of P i

a−1. Let s′l = δ(sl, x) (l ∈ {1, 2}).
By the inductive hypothesis, s′1 and s′2 are (a−1, i)-
separable and so there is an input sequence x̄ of
length a − 1 that locally s-distinguishes s′1 and
s′2 such that x̄ starts with input from Xi. Since
x̄ is synchronized from s′1 and s′2 and x̄ starts
with an input from Xi, xx̄ is synchronized from
s1 and s2. If λ(s1, x) 6= λ(s2, x) then s1 and
s2 are (1, i)-separable and the result follows. If
λ(s1, x) = λ(s2, x) then s1 and s2 are locally s-
distinguished by xx̄ and the result follows from
observing that xx̄ has length a.

2. There is an input x that takes s1 and s2 from A
to different sets of Pj

a−1, j 6= i, such that λ(s1, x)
and λ(s2, x) have output at pj . Let s′l = δ(sl, x)
(l ∈ {1, 2}). By the inductive hypothesis, s′1
and s′2 are (a − 1, j)-separable and so there is an
input sequence x̄ of length a − 1 that locally s-

distinguishes s′1 and s′2 such that x̄ starts with
input from Xj . xx̄ is synchronized from s1 and
s2. If λ(s1, x) 6= λ(s2, x) then s1 and s2 are (1, i)-
separable and the result follows. If λ(s1, x) =
λ(s2, x) then s1 and s2 are locally s-distinguished
by xx̄ and the result follows from observing that
xx̄ has length a.

The result thus follows. �

Theorem 5.2. If there is an input sequence that
locally s-distinguishes states s1 and s2 of M and
starts with input at port pi ∈ P then Algorithm 1
produces a minimum length input sequence that locally
s-distinguishes s1 and s2 and starts with input at pi.

Proof
Let us suppose that s1 and s2 are locally s-

distinguished by an input sequence of length a but by
no shorter input sequence. From Lemma 4.4 it is clear
that the algorithm cannot terminate with P1

k , . . . ,Pm
k

for some k < a. Given a partition P i
k, 1 ≤ i ≤ m, and

set A ∈ P i
k, the input sequences in DA have length at

most k. The result thus follows from Theorem 5.1. �

Theorem 5.3. Let us suppose that Algorithm 1,
when applied to M , returns partitions P1

k , . . . ,Pm
k .

Then states s1 and s2 of M are locally s-equivalent if
and only if for all 1 ≤ i ≤ m there exists a set Ai ∈ Pi

k

such that s1, s2 ∈ Ai.

Proof
This follows from Theorem 5.1 and the fact that s1

and s2 are locally s-equivalent if and only if for all
1 ≤ i ≤ m they cannot be locally s-distinguished by
an input sequence starting with input at pi. �

From this it is clear that the intersections of
the partitions produced by Algorithm 1 gives the
equivalence classes of ≈. Section 6 gives an algorithm
that, based on these equivalence classes, transforms M
into a locally s-minimal FSM M ′.

Algorithm 1 adapts an algorithm that produces input
sequences to pairwise distinguish the states of a single-
port FSM with n states and p inputs in O(pn2) time.
It is clear that Algorithm 1 also takes time that is of
O(pn2). An interesting question is whether Hopcroft’s
O(np log n) algorithm [28] can be adapted.

6. PRODUCING A LOCALLY S-MINIMAL

FSM

This section gives an algorithm that takes the
equivalence classes of ≈ for M produced by Algorithm
1 and returns a locally s-minimal FSM M ′.

Algorithm 2 operates in the following way. Given
two states s1 and s2 of M that are locally s-equivalent
in M , s1 and s2 are merged. In order to merge two
states s1 and s2 each transition of the form (s, s2, x/ŷ)
is rewritten to (s, s1, x/ŷ) and then s2 and all transitions
leaving s2 are deleted.
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FIGURE 8. The FSM M3

Algorithm 2. 1. Input M and the partition P
of the state set S of M defined by ≈.
2. Let M ′ = M .
3. While there exists a set A ∈ P such that |A| > 1
do
4. Choose a set A ∈ P such that |A| > 1 and an
ordered pair (s1, s2) of states with s1, s2 ∈ A and
s1 6= s2.
5. If s2 is the initial state of M ′ then make s1 the
initial state of M ′.
6. Rewrite each transition of M ′ of the form
(s, s2, x/ŷ) to (s, s1, x/ŷ).
7. Delete all transitions of M ′ that leave s2 and then
delete s2 from M ′ and A.
8. endwhile
9. Output M ′.

FIGURE 9. Generating a locally s-minimal FSM

Note that the order in which states are merged may
affect the FSM produced. For example, the states s1

and s4 of FSM M1 (Figure 4) may either be merged by
deleting state s4 to get M2 (Figure 5) or may be merged
by deleting state s1 to get M3 (Figure 8). Clearly
M2 and M3 are not globally equivalent. However,
the alternative locally s-minimal FSMs are locally s-
equivalent (their initial states are locally s-equivalent)
and thus are unique up to local s-equivalence.

Lemma 6.1. Let us suppose that states s1 and s2 of
M = (S,X, Y, δ, λ, s0) are locally s-equivalent and FSM
M ′ = (S′, X, Y, δ′, λ′, s′0) is formed by taking a copy of
M , in which the state names are primed, and rewriting
every transition of the form (s′k, s′2, x/ŷ) to (s′k, s′1, x/ŷ).
Then for every state si ∈ S, si and s′i are locally s-
equivalent.

Proof

It is sufficient to prove that for all x̄ ∈ X∗ and si ∈ S,
x̄ does not locally s-distinguish si and s′i. Proof will
be by induction on the length of x̄. The base case, in
which x̄ = ε, clearly holds. Inductive hypothesis: for
every state si and input sequence x̄ of length less than
a (a ≥ 1), x̄ does not locally s-distinguish si and s′i.
Inductive case: let us suppose that x̄ is an arbitrary
input sequence of length a. It is sufficient to prove that
for all si ∈ S, x̄ does not locally s-distinguish si and s′i.

There exists x ∈ X and x̄1 ∈ X∗ such that x̄ = xx̄1.
Consider a state si ∈ S. Clearly λ(si, x) = λ′(s′i, x).
There are two cases.

1. Case 1: δ(si, x) 6= s2. Then δ(si, x) = sj and
δ′(s′i, x) = s′j for some sj ∈ S. By the inductive
hypothesis, x̄1 does not locally s-distinguish sj and
s′j . Thus, since λ(si, x) = λ′(s′i, x), x̄ does not
locally s-distinguish si and s′i.

2. Case 2: δ(si, x) = s2. Then δ(si, x) = s2 and
δ′(s′i, x) = s′1. By the inductive hypothesis, x̄1

does not locally s-distinguish s1 and s′1. Further,
s1 and s2 are locally s-equivalent. Thus, x̄1 does
not locally s-distinguish s2 and s′1. Thus, since
λ(si, x) = λ′(s′i, x), x̄ does not locally s-distinguish
si and s′i.

In each case x̄ does not locally s-distinguish si and s′i.
The result thus follows. �

Theorem 6.1. If Algorithm 2 takes an FSM M and
returns M ′ then M ′ is locally s-minimal and M and M ′

are locally s-equivalent.

Proof

By Lemma 6.1, given states s′1 and s′2 of M ′ (s′1 6= s′2),
there are states s1 and s2 of M such that si and s′i
are locally s-equivalent (i ∈ {1, 2}) and s1 and s2 are
locally s-distinguishable. Thus, s′1 and s′2 are locally s-
distinguishable. Since, for every pair states s′1 and s′2 of
M ′ with s′1 6= s′2, s′1 and s′2 are locally s-distinguishable,
M ′ is locally s-minimal. It thus remains to prove that
M and M ′ are locally s-equivalent. This follows by
observing that the process of generating M ′ from M
proceeds through a sequence of transformations that,
by Lemma 6.1, preserve local s-equivalence. �

Theorem 6.2. Algorithm 2 takes O(pn2) time, where
p denotes the size of the input alphabet of the FSM M to
which the algorithm is applied and n denotes the number
of states of M .

Proof

There are O(n) iterations of the loop. Each iteration
transforms each transition entering a particular state
and there are at most pn such transitions. The result
thus follows. �
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7. CONCLUSIONS

When testing a distributed system under test (SUT),
it may be necessary to have more than one tester:
one at each port of the SUT. If these testers cannot
directly communicate and there is no global clock
then testing is taking place within the distributed
test architecture. In this test architecture it is only
possible to observe the sequences of interactions at each
port locally and this can introduce controllability and
observability problems.

When testing from a globally minimal (deterministic
and completely specified) FSM M , if there is a global
tester then testing is capable of distinguishing between
M and any (minimal) SUT that is not isomorphic
to M . This paper has shown that this is not the
case in the distributed test architecture: it is possible
to distinguish the SUT from M without introducing
controllability problems if and only if the SUT is not
locally s-equivalent to M .

We have defined a new form of equivalence called
local s-equivalence that captures the power of testing
within the distributed test architecture when we
avoid controllability problems. In contrast to notions
of equivalence that come from the literature on
testing from labelled transition systems, this notion
of equivalence is strictly weaker than isomorphism
when testing from an FSM that is globally minimal,
deterministic, initially connected, and completely
specified.

This paper has proved that if an FSM M has n states
and m ports, s1 and s2 are states of M , and pi is a
port then s1 and s2 are locally s-distinguishable using
an input sequence starting at pi if and only if they are
locally s-distinguished by an input sequence starting at
pi that has length at most m(n− 1). It has also proved
that this bound is tight. It has given a polynomial time
algorithm that takes an FSM and returns a partition
of the state set of M into sets of locally s-equivalent
states. The algorithm also returns minimum length
input sequences that locally s-distinguish the locally
s-distinguishable states of M . The output of this
algorithm is used in a second algorithm that transforms
FSM M into a locally s-minimal FSM M ′.

There may be cases where it is important that
testing checks for global equivalence rather than local
s-equivalence. Where this is the case, it is not
sufficient to use a distributed test architecture, with no
global clock, in which remote testers cannot directly
communicate with one another. Instead one could
consider introducing channels through which the local
testers may send coordination messages to one another
(see, for example, [9, 16, 18]).

The notion of local s-equivalence captures the power
of testing in the distributed test architecture. There
remain a number of open questions and challenges. The
first challenge is to devise test generation algorithms
that produce test sequences that, in the presence of a

fault domain, determine whether the SUT is locally s-
equivalent to the specification FSM M . By contrast,
current algorithms aim to check equivalence and thus
place very strong restrictions on M . These restrictions
can be seen as conditions under which equivalence and
local s-equivalence coincide for a given fault domain.
Future research might also investigate conditions under
which local s-equivalence and global equivalence are
identical. Where for a specification FSM M there is
a smaller locally s-minimal FSM M ′, if the distributed
test architecture represents actual usage then we may
be able to implement the smaller model M ′ rather than
M . Where it is important to test for global equivalence,
there is the question of how this can be achieved in a
manner that minimizes either the number of channels
required between testers or the number of coordination
messages used. There may also be scope for using test
sequences that introduce controllability problems but
still achieve a given test objective. Finally, this work
has not considered the situation in which a transition
can be triggered by multiple input (see, for example
[29]) and it would be interesting to extend it to such
situations.
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