
DATA CLEANING TECHNIQUES FOR

SOFTWARE ENGINEERING DATA SETS

A thesis submitted towards the degree of

Doctor of Philosophy

by

GERNOT ARMIN LIEBCHEN

School of Information Systems, Computing and Mathematics

Brunel University

October 2010

Abstract

Data quality is an important issue which has been addressed and recognised in research

communities such as data warehousing, data mining and information systems. It has been

agreed that poor data quality will impact the quality of results of analyses and that it

will therefore impact on decisions made on the basis of these results. Empirical software

engineering has neglected the issue of data quality to some extent. This fact poses the

question of how researchers in empirical software engineering can trust their results without

addressing the quality of the analysed data. One widely accepted definition for data quality

describes it as ‘fitness for purpose’, and the issue of poor data quality can be addressed by

either introducing preventative measures or by applying means to cope with data quality

issues. The research presented in this thesis addresses the latter with the special focus on

noise handling.

Three noise handling techniques, which utilise decision trees, are proposed for application

to software engineering data sets. Each technique represents a noise handling approach:

robust filtering, where training and test sets are the same; predictive filtering, where training

and test sets are different; and filtering and polish, where noisy instances are corrected. The

techniques were first evaluated in two different investigations by applying them to a large

real world software engineering data set. In the first investigation the techniques’ ability to

improve predictive accuracy in differing noise levels was tested. All three techniques improved

predictive accuracy in comparison to the do-nothing approach. The filtering and polish was

the most successful technique in improving predictive accuracy. The second investigation

utilising the large real world software engineering data set tested the techniques’ ability to

identify instances with implausible values. These instances were flagged for the purpose of

evaluation before applying the three techniques. Robust filtering and predictive filtering

decreased the number of instances with implausible values, but substantially decreased the

size of the data set too. The filtering and polish technique actually increased the number of

implausible values, but it did not reduce the size of the data set.

Since the data set contained historical software project data, it was not possible to know

i

the real extent of noise detected. This led to the production of simulated software engineering

data sets, which were modelled on the real data set used in the previous evaluations to ensure

domain specific characteristics. These simulated versions of the data set were then injected

with noise, such that the real extent of the noise was known. After the noise injection

the three noise handling techniques were applied to allow evaluation. This procedure of

simulating software engineering data sets combined the incorporation of domain specific

characteristics of the real world with the control over the simulated data. This is seen as a

special strength of this evaluation approach.

The results of the evaluation of the simulation showed that none of the techniques per-

formed well. Robust filtering and filtering and polish performed very poorly, and based on

the results of this evaluation they would not be recommended for the task of noise reduction.

The predictive filtering technique was the best performing technique in this evaluation, but

it did not perform significantly well either.

An exhaustive systematic literature review has been carried out investigating to what ex-

tent the empirical software engineering community has considered data quality. The findings

showed that the issue of data quality has been largely neglected by the empirical software

engineering community.

The work in this thesis highlights an important gap in empirical software engineering. It

provided clarification and distinctions of the terms noise and outliers. Noise and outliers are

overlapping, but they are fundamentally different. Since noise and outliers are often treated

the same in noise handling techniques, a clarification of the two terms was necessary.

To investigate the capabilities of noise handling techniques a single investigation was

deemed as insufficient. The reasons for this are that the distinction between noise and

outliers is not trivial, and that the investigated noise cleaning techniques are derived from

traditional noise handling techniques where noise and outliers are combined. Therefore

three investigations were undertaken to assess the effectiveness of the three presented noise

handling techniques. Each investigation should be seen as a part of a multi-pronged approach.

This thesis also highlights possible shortcomings of current automated noise handling

techniques. The poor performance of the three techniques led to the conclusion that noise

ii

handling should be integrated into a data cleaning process where the input of domain knowl-

edge and the replicability of the data cleaning process are ensured.

Publications Resulting from the Work Presented in this Thesis

The work presented in this thesis resulted in the publication of four conference papers [108,

110, 111, 109].

iii

Contents

1 Introduction 1

1.1 Importance of Data Quality . 2

1.2 What is Data Quality? . 3

1.3 What is Noise? . 5

1.4 Class and Attribute Noise . 8

1.5 Research Goals and Thesis Objectives . 10

1.6 Thesis Structure . 12

2 Noise Detection and Noise Handling 13

2.1 Noise Detection and Noise Handling . 13

2.2 The Data Cleaning Process . 13

2.3 Robust Algorithms and Filtering . 16

2.3.1 Filtering . 17

2.4 Correction of Instances . 18

2.5 Summary . 19

3 Noise Handling in Empirical Software Engineering 21

3.1 Introduction . 21

3.2 Objective for the Literature Review . 23

3.3 Method of Identification of Relevant Literature 24

3.4 Findings of the Systematic Literature Review 28

3.4.1 How Was Poor Data Quality Dealt With? 32

iv

3.4.2 Automated Noise Checking . 34

3.4.3 Empirical Analysis of the Data Quality 35

3.4.4 Automated Noise Handling with Empirical Analysis of the Data Quality 38

3.5 Concluding Remarks about Data quality in Empirical Software Engineering

Literature . 44

4 Robust Filtering, Predictive Filtering and Filtering and Polish 46

4.1 Introduction . 46

4.2 Decision Trees . 47

4.3 Decision Trees for The Three Data Cleaning Techniques 48

4.4 Robust Filtering . 51

4.5 Predictive Filtering . 57

4.6 Filtering and Polish . 59

4.7 Summary . 60

5 Studies Based on the Analysis of a Large Real World Software Engineering

Data Set 62

5.1 Introduction . 62

5.2 The Data Set . 64

5.2.1 Data Quality Issues in the Data Set 70

5.3 Comparison of Predictive Accuracy of the Three Data Cleansing Techniques . 71

5.3.1 Methodology . 71

5.3.2 Results and Conclusion . 72

5.4 Comparison of Implausible Value Cleansing of Three Data Cleansing Techniques 74

5.4.1 Methodology . 74

5.4.2 Results and Conclusion . 75

5.5 Conclusion of Investigations Based on a Real World Data Set 78

6 Evaluating Noise Handling Techniques With Simulated Data 80

6.1 Introduction . 80

v

6.2 Methodology . 82

6.2.1 Simulation of Test Data Sets and Artificial Noise Imputation 82

6.2.2 Data Cleansing . 84

6.3 Results . 86

6.3.1 Noise Detection Capabilities . 86

6.3.2 Noise Reduction Capabilities . 89

6.4 Conclusion of Investigations Based on Simulated Data Sets 91

7 Conclusions 93

7.1 Summary of Research . 93

7.2 Contributions . 99

7.3 Limitations and Possible Future Work . 101

Appendix A 134

Appendix B 137

Appendix C 156

Appendix D 166

vi

List of Figures

1.1 Noise, Exceptional Instances and Outliers . 7

3.1 Data Quality Papers Retrieved by Year . 29

4.1 Unpruned Tree . 53

4.2 Pruned Tree . 54

4.3 Pruning of a Tree . 55

5.1 Project Start Year Histogram . 67

5.2 Project Close Year Histogram . 67

5.3 Pie Chart of Project Types . 68

vii

List of Tables

3.1 Initial Search and Second Search Compared 26

3.2 Paper Categorisation vs Domains . 31

4.1 Algorithm for the preparation of a data set for all noise handling techniques . 50

4.2 Complexity Parameter Table . 53

4.3 Algorithm for robust filtering procedure . 56

4.4 Algorithm for predictive filtering procedure 58

4.5 Algorithm for filtering and polish procedure 60

5.1 Descriptive Statistics for UFP . 65

5.2 Descriptive Statistics for Effort . 66

5.3 Number of Projects for Industry Sector . 69

5.4 Classification accuracy - EDS data . 73

5.5 Misclassified v. Classified Instances by Data Quality Technique 77

6.1 Summary of the Simulated Data Sets . 85

6.2 Comparison of Precision, Recall, F1-Score and Cohen’s Kappa 88

6.3 Summary of the Residual Mean Comparisons 90

7.1 Innovation . 157

7.2 Concurrency, Team/Customer Complexity . 160

7.3 Team/Management Experience . 162

7.4 General Project Attributes . 164

viii

7.5 Country, Industry Sector, Project Type . 164

7.6 Derived Variables . 165

7.7 SDS1 Robust Filtering Classifications . 167

7.8 SDS1 PF 1+ Classifications . 167

7.9 SDS1 PF 2+ Classifications . 167

7.10 SDS2 Robust Filtering Classifications . 167

7.11 SDS2 PF 1+ Classifications . 168

7.12 SDS2 PF 2+ Classifications . 168

7.13 SDS3 Robust Filtering Classifications . 168

7.14 SDS3 PF 1+ Classifications . 168

7.15 SDS3 PF 2+ Classifications . 169

7.16 SDS4 Robust Filtering Classifications . 169

7.17 SDS4 PF 1+ Classifications . 169

7.18 SDS4 PF 2+ Classifications . 169

7.19 SDS1 Robust Filtering Mean Comparison . 170

7.20 SDS1 Predictive Filtering Mean Comparison 171

7.21 SDS1 Filtering and Polish Mean Comparison 172

7.22 SDS2 Robust Filtering Mean Comparison . 173

7.23 SDS2 Predictive Filtering Mean Comparison 174

7.24 SDS2 Filtering and Polish Mean Comparison 175

7.25 SDS3 Robust Filtering Mean Comparison . 176

7.26 SDS3 Predictive Filtering Mean Comparison 177

7.27 SDS3 Filtering and Polish Mean Comparison 178

7.28 SDS4 Robust Filtering Mean Comparison . 179

7.29 SDS4 Predictive Filtering Mean Comparison 180

7.30 SDS4 Filtering and Polish Mean Comparison 181

ix

Acknowledgments

First and foremost I would like to thank my supervisor Martin Shepperd, not only for his

academic guidance and assistance, but also for his patience and personal support. I am truly

grateful.

I would also like to thank Bhekisipho Twala. His input and supervision was crucial for

large parts of this thesis. Ngiyabonga!

Thanks to Michelle Cartwright and Steve Counsell for their work as second supervisors.

Many thanks to Traci Hall who showed a lot of patience and goodwill. I hope I was not

too testing.

Thanks too to Mark Stephens and Ambikesh Jayal for their practical assistance in the

investigations carried out for this thesis, and thanks to Rahul Premraj for his help in the

early stages of this PhD.

I would also like to thank my grandfather, Gerhard Liebchen for his interest and financial

support.

x

Chapter 1

Introduction

“[...]they can be analyzed to unearth costly corporate habits; they can be manipulated to divine

future trends. Just one problem: Those huge databases may be full of junk. . . .”[193]

1

Importance of data quality Chapter 1

1.1 Importance of Data Quality

In empirical software engineering the most important input is data. Data are used to predict,

discover and to decide on new strategies. They are also used to indicate that new strategies

are working, or what impact new techniques have. It is interesting to see then, that data

quality in empirical software engineering appears to be somewhat neglected in publications

and even in data analyses. It is all the more astonishing since, as De Vaux and Hand [37]

stated, 60-95% of the effort of data analysis is spent on the cleaning of data. This poses the

question: Is data quality not as important in empirical software engineering?

In other research areas like information systems and data mining the impact of poor

data has been recognised as an issue which needs to be addressed by database designers and

data users alike. Redman [147] for instance stated that poor data quality is an issue which

impacts on “all segments of the economy: companies, governments, and academia and their

customers”, and Wand and Wang [193] warned of the “severe impact of poor data quality on

the effectiveness of an organisation”. Therefore poor data quality is likely to have a ‘severe

impact’ on empirical software engineering too!

Redman stated that low data quality increases operational costs and can impact on oper-

ations, tactics and strategies. As operational impacts he listed lowered customer satisfaction,

increased cost and lowered employee satisfaction. Tactical impacts affect decision making,

implementation and re-engineering. They also increase organisational mistrust. Strategic

impacts result in difficulties in setting and executing strategies. They contribute to issues of

ownership, affect the ability to align organisations with strategies, and they divert manage-

ment attention. What does that mean for empirical software engineering? The customers

of empirical software engineers are practitioners. If the results researchers are producing is

of low quality, practitioners will ignore the research community since it does not provide

meaningful answers, rendering the researchers’ efforts pointless exercises.

2

What is data quality? Chapter 1

1.2 What is Data Quality?

The most widely used definition of data quality defines it as “fitness for purpose” [194,

147, 175, 63, 145]. This definition for data quality is derived from a more general quality

definition as used by Crosby for instance [34]. Since this purpose is subjective and important

to consider, data quality’s characteristics or dimensions are subjective too [147, 194], and

cannot be assessed independent of the people who use the data [175]. This means that the

domain the data are used in has to be an important consideration. There does not appear

to be a general agreement on the dimensions of data quality [195]. Whilst Wand and Wang

[193] define accuracy, completeness, consistency, and timeliness as dimensions of data quality;

Redman [147] lists more than 10 dimensions. Redman [147] made the trenchant observation

that his list cannot be comprehensive since as indicated above data quality dimension depend

on the user’s view of the data, pointing towards a reason for this lack of consensus about

data quality dimensions. Redman categorised his dimensions into four groups:

(i) Dimensions related to the data model,

(ii) Dimensions related to the data values,

(iii) Dimensions related to data presentation and

(iv) Dimensions related to information technology.

Redman also mentioned a possible fifth group which includes dimensions related to the

enterprise level of an organisation. From these groups Redman categorised issues of data

quality:

• “Issues associated with data views (the models of the real world captured in the data),

such as relevancy, granularity, and level of detail.

• Issues associated with data values, such as accuracy, consistency, currency, and com-

pleteness.

• Issues associated with the presentation of data, such as the appropriateness of the

format, ease of interpretation, and so forth.

3

What is data quality? Chapter 1

• Other issues such as privacy, security, and ownership.” [148]

In empirical software engineering the analysis of data is often based on historical data pro-

vided by industry [66]. Since most analysts do not have influence on the ‘data views’, the

presentation of the data and issues of privacy, security, and ownership, and since these issues

do not generally pose problems to researchers due to their academic background and educa-

tion, the issues associated with the data values are of special interest to empirical software

engineering research.

Timeliness and currency, that is, how valid historical data is at a given point in time,

are interesting issues for empirical software engineering, considering that old project data

might no longer be relevant any more, and predictions or decisions based on this data could

be compromised by this non-currency or untimeliness. For example, research suggests that

productivity changes over time [144]. Therefore historical software productivity data might

not reflect current software processes leading to inaccurate conclusions.

De Vaux and Hand [37] also pointed to timeliness when they mention that data quality

can deteriorate due to transformations, changed definitions and changed understanding. In

contrast Orr stated, “if data quality is a function of its use, there is only one sure way

to improve data quality-improve its use!” According to this statement the usage of data

promotes its quality revision.

In terms of the quality of a single data item De Vaux and Hand [37] simply categorised

data quality issues, or “bad data” (as De Vaux and Hand name them), as missing or distorted

data. Missing data can easily be identified, but distortions or noise are less easy to discover.

Whilst it might be possible to demonstrate the presence of noise, the absence of noise cannot

be proven. Noise can be introduced and is created in all phases of data evolution; during

data collection, during preliminary analyses and in the data modelling phase. Noise can be

created by distorting data from the outset during data collection. It may also be introduced

whilst transcribing, transferring, merging or copying the data, or, as mentioned above, data

quality issues might be introduced due to the deterioration of the data. This means that

analysts should at least be suspicious of the data they are using.

4

What is Noise? Chapter 1

1.3 What is Noise?

Whilst there is consensus about the data quality definition of “fitness for purpose”, there is

no consensus about the definition of noise. Manago and Kodratoff [118] stated that “noise

is present when a knowledge base does not truly reflect the environment we want to learn

from”. They are indicating that the causes of noise lead analysts to build inaccurate models.

According to their definition, noise is “wrong information, lack of information or unreliable

information”. The term “unreliable information” is interesting, since the information is not

incorrect, but “unreliable”. Manago’s and Kodratoff’s definition is also interesting since it

incorporates missingness. Thus their definition of noise includes any instance which could

pose problems for a machine learner.

Brodley and Friedl [23, 24] declared that noise can be identified because it goes “against

the ’laws of the domain’”. This is slightly confusing since it overlaps with their definition of

outliers. They defined an outlier as an instance “that does not follow the same model as the

rest of the data, appearing as though it comes from a different probability distribution”. This

definition of noise is also adopted in a later paper by Brodley and Friedl [25]. Gamberger

et al. [58] distinguished between two types of errors, systematic and random, where random

errors are seen as noise. In [57] Gamberger and Lavrač also defined only random errors

as noise, but in [59] Gamberger et al. used the term noise in a broader sense and included

not only random errors but also outliers, which is similar to Brodley’s and Friedl’s defintion

of noise. The conflation of the terms noise and outliers is typical in the machine learning

domain, since both issues pose problems to machine learners. Brodley and Friedl attempt to

solve this problem by searching for instances which are “outliers in any model” [23, 24, 25].

For this purpose Brodley and Friedl used several outlier detection algorithms and combined

their results according to majority and consensus rules, where for the consensus rule all

algorithms have to identify an instance as outlier in order to be considered as noise, and

where for the majority rule the majority of algorithms have to identify an instance as outlier

in order to be considered as noise. 1

1Brodley and Friedl’s approach will be discussed again in Chapter 2.

5

What is Noise? Chapter 1

The issue arising, considering these views on noise and outliers, is whether outliers are

poor data quality instances. Are they ‘bad data’ as defined by De Vaux and Hand [37]? They

are not missing, and if data are exceptional instances as accepted by Brodley and Friedl they

are not necessarily inaccurate. Noise can be seen as “unwanted disturbance” of signals or

data [124, 70]. Outliers do not have to be ‘unwanted’. If they are ‘true’ instances they

can contain valuable information about new trends in a domain. Therefore the distinction

between ‘true’ instance and inaccurate instance is important, depending on the domain.

This thesis investigates data quality in software engineering data sets, with specific focus

on accuracy of data. ‘True’ instances which are exceptional and appear as outliers are not

seen as ‘unwanted’ since they contain valuable information about the problem domain. In

order to resolve the conflation of the terms noise and outliers, they will be defined as follows:

• Outliers are instances with exceptional values in comparison with the rest of the data.

• Noisy instances are unwanted instances with inaccurate values.

The Venn diagram in Figure 1.12 shows the relationship of noise, outliers, ‘true’ instances

and exceptional ‘true’ instances. Noise are data which are inaccurate. Since their creation

differs fundamentally from ‘true’ instances, even if these ‘true’ instances are exceptional,

they theoretically reflect this difference in creation in their values and therefore appear as

outliers. Noted should also be another type of noise, marked as ‘masked’ noise in Figure 1.1.

These are instances, which appear ‘true’, but which are inaccurate. This ‘masking’ can be

due to two factors. Firstly, random values can coincidentally take on values which appear

‘true’. This should be a seldom occurrence if the noise is ‘truly’ random. Secondly, noise can

be fabricated intentionally such that it appears ‘true’. In this thesis the focus is on random

noise and not on systematic noise. As the intentional fabrication of ‘masked’ noise follows a

system, it is considered beyond the scope of this thesis.

2Note that the diagram shows that the proportion of outliers identified as noise is higher than the pro-

portion of ‘true’ exceptional instances. This is expected since ‘true’-outlier instances are considered to be

exceptional.

6

What is Noise? Chapter 1

Figure 1.1: Noise, Exceptional Instances and Outliers

7

Class and Attribute Noise Chapter 1

1.4 Class and Attribute Noise

Another aspect related to noise is whether the noisy values exist in dependent or independent

variables. A number of researchers from the machine learning community [210, 181, 89, 205]

extended the discussion about noise to two subcategories of noise; attribute noise (noise in

the independent variables) and class noise (noise in the dependent variables). Zhu and Wu

[210] stated that there has been substantial research carried out in the detection and handling

of class noise, but attribute noise has been neglected. Zhu and Wu provided the following

definitions for attribute and class noise: “The quality of the attributes indicates how well

the attributes characterize instances for classification purpose; and the quality of the class

labels represents whether the class of each instances is correctly assigned.” The class label,

according to Zhu and Wu, is also a target concept which when performing classification is

characterised by the attributes. Therefore it is an issues which is very much tied to the

specific problem of learning a classifier, since attribute noise will hamper the classifier’s

ability to predict a class variable.

The importance of the difference between attribute and class noise has to be tightly

coupled to the “fitness for purpose” as well as the domain of the data, and is not always

appropriate. In software effort analysis for instance, the target concept is measured effort.

For the application of decision trees which assumes the classification of problems this target

concept has to be discretised. These discretised values do still have to be considered as

measured values since they are based on measured values. One could say that only the

granularity is changed. It is not classified (or ‘assigned’) through the analysis of the remaining

attributes. In fact, it is only one attribute which was chosen to be the class variable by the

analysts.

The notion of a class label combines two aspects. Firstly, the class variable is a target

concept with association to attributes describing an instance and their relationship to the

class variable. In respect of effort analysis the target concept is chosen from a number of

attributes of a data set. Each of the other attributes could be used as target concept if it

would serve a purpose. That means that the quality of the “other” non-target attributes can

8

Class and Attribute Noise Chapter 1

be treated as class variable too and cleaned in the same way as the “original” class variable.

In fact this is an approach Teng [179, 180, 181] followed when polishing data sets. Secondly,

Zhu and Wu suggested a difference in the creation process of class values and attribute

values, when they stated that class noise is likely to be cleaner since, as they explain with

an example from the medical domain, the analyst will take more care to allocate a class to

a set of attributes. This suggests that the class variable according to Zu and Whu is not

measured, but allocated and due to being allocated, cleaner. Since class variables are not

necessarily allocated and since they can be measured values too, the conclusion that class

variables are cleaner is not necessarily true.

One of Zhu and Wu’s conclusions based on a number of experiments states that attribute

noise is usually “less harmful” than class noise. Brodley and Friedl [25] came to the same

conclusion and subsequently focussed their work on class noise. Since class noise is considered

more “harmful” the main focus of this thesis is class noise too. Also, since the data is mea-

sured software project data and class variables and attribute variables are interchangeable,

this distinction between the two terms is not considered to be necessary for the discussion

of noise in this thesis.

9

Thesis Objective and Contribution Chapter 1

1.5 Research Goals and Thesis Objectives

This thesis aims to investigate data quality and specifically noise in software engineering

data sets. Three data cleaning approaches, represented by one cleaning technique each, will

be compared for their data cleaning effectiveness. Outliers and noise are often treated as

one, but in this thesis the focus is on noise solely. Whilst the three approaches are usually

used to deal with noise and outliers, the three representing techniques are tested for ability

to deal with ‘true’ noise.

The following additional objectives were identified for this thesis. To:

• Provide clarification and distinctions of the terms noise and outliers

The terms outliers and noise are often used interchangeably. Whilst they are overlap-

ping, they are fundamentally different in creation and concept. This thesis provides

clarification of the two terms 3.

• Carry out a systematic literature review searching the empirical software

engineering literature for evidence of data quality considerations

The work in this thesis highlights an important gap in empirical software engineering.

This thesis will show to what extent data quality and noise have been dealt with in

the empirical software engineering community.

• Conduct a multi-pronged approach to investigate the effectiveness of three

noise handling techniques

A single investigation is deemed insufficient to investigate the capabilities of noise han-

dling techniques, since differentiating between noise and outliers is not trivial, and

since the investigated noise cleaning techniques are derived from traditional noise han-

dling techniques where noise and outliers are combined. Therefore a multi-pronged

approach will be conducted to investigate the effectiveness of the three noise handling

techniques. A multi-pronged approach is also beneficial in order to overcome short-

comings of a single investigation. Whilst the two investigations are based on a real

3This has largely be done in this chapter already.

10

Thesis Objective and Contribution Chapter 1

world dataset where the ‘true’ noise level cannot be known, the third investigation

is based on simulated data in order to have complete certainty about the underlying

noise levels. A disadvantage of simulated data however is that it could be questioned

how realistic it is. This is addressed by modelling the simulated dataset on a cleaned

version of a real world dataset.

• Highlight possible shortcomings of current automated noise handling tech-

niques

Noise handling is only one part of a bigger data cleaning process. It will be shown that

noise handling techniques should be integrated into a data cleaning process.

11

Thesis Structure Chapter 1

1.6 Thesis Structure

Chapter 2 describes data cleaning and noise handling in disciplines other than empirical

software engineering. It shows that noise handling is only a subtask of the data cleaning

process. It presents the three noise cleaning approaches, which are represented by three noise

cleaning techniques tested in this thesis. Chapter 3 reports on a systematic literature review,

focussing on how data quality has been dealt with in the empirical software engineering

community.

Chapter 4 describes three noise cleaning techniques which are tested in this thesis.

Chapter 5 presents two investigations comparing the effectiveness of the previously pre-

sented noise cleaning techniques on the basis of the analysis of a real world data set. Since

the true level of noise in the data set cannot be known, two separate proxy measures, namely

predictive accuracy and the detection of implausible values, are applied to evaluate the three

noise cleaning techniques. The studies presented in Chapter 5 highlighted limitations of anal-

yses based on real world software engineering data sets. The subsequent study presented in

Chapter 6 is based on simulated data sets modelled on a real world software engineering data

set. Random noise was introduced in these simulated data sets and they were then subjected

to the three noise cleaning techniques introduced in Chapter 4. This has the advantage that

the noise cleaning techniques’ abilities can be tested in an environment where the noise levels

are known.

The thesis concludes with Chapter 7 providing a summary of the presented work, listing

the contributions of this thesis. Limitations of the work with pointers to possible future work

in the field of noise handling in empirical software engineering are listed too.

12

Chapter 2

Noise Detection and Noise

Handling

2.1 Noise Detection and Noise Handling

Chapter 1 provided an introduction to the topic of data quality with a brief discussion about

the importance of data quality considerations and the issue of noise. Since this thesis has

its focus on data quality and data accuracy in software engineering data, the topic of how

data quality has been addressed in research communities other than the empirical software

engineering community with a special focus on noise handling needs to be discussed first.

This chapter continues the data quality discussion from Chapter 1 by first addressing the

data cleaning process. It then continues with a discussion of noise treatment options.

2.2 The Data Cleaning Process

Since data quality is defined as fitness of data for the purpose the data was intended for,

the purpose will also influence data cleaning definitions. Maletic and Marcus stated in

[116] and later in [117] that various definitions exist for data cleansing depending on the

academic field they are used in. Whilst some areas like data warehousing connect the terms

data cleansing and data cleaning with the merge/purge problem, where the focus is on the

13

The Data Cleaning Process Chapter 2

elimination of duplicate records resulting from merging two or more databases, other research

areas connect the term with different data quality dimensions. For instance Müller and

Freytag [131] classified data anomalies into syntactic, semantic and coverage anomalies, which

are affected by the data quality dimensions completeness, validity, schema conformance,

uniformity, density and uniqueness. These categorisations are reflected in the data cleansing

approaches identified by Müller and Freytag. They listed parsing, data transformation (where

data is transformed such that it adheres to a given format), integrity constraint enforcement,

duplicate elimination and statistical methods. Only statistical methods deal with the type

of noise that this thesis is concerned with.

Maletic and Marcus described data cleansing as an interactive procedure and state that

“serious data cleansing involves decomposing and reassembling the data” [117]. Kimball [96]

broke down this process of decomposition and reassemblance into six steps:

1. Elementising

2. Standardising

3. Verifying

4. Matching

5. Householding

6. Documenting

This means that data cleaning is a non-trivial process which not only consists of identifying

problematic instances (Kimball’s first four steps) and dealing with these instances (house-

holding), but it also comprises the documentation of the data cleaning process and its results

to allow replicability of the whole process.

Other variations [116, 131, 117] of the data cleaning process models exist, but the basic

structure is the same:

• Define and determine error types [116, 131, 117] (Kimball’s steps 1 and 2)

For example values for the age of a person between 0 and 110 are considered plausible.

14

The Data Cleaning Process Chapter 2

Values outside of this range are considered implausible.1

• Search and identify error instances [116, 131, 117] (Kimball’s steps 3 and 4)

Search for instances containing age values outside of the range identified in the previous

step.

• Correct the uncovered errors [116, 131, 117] (Kimball’s step 5)

Delete or correct implausible-age instances.

• Post-processing [131] (Kimball’s step 6)

Document which instances were corrected or deleted.

Post-event data cleaning, cleaning already collected data, often focusses on outlier detec-

tion where outliers and noise are treated as unwanted [117]. This is likely connected with the

fact that it is difficult to distinguish ‘true’ noise from outliers without domain knowledge.

Maletic and Marcus stated also that exceptions are often indicators of the presence of noise.

The problem with treating all outliers as noise can lead to the elimination of valid values

which are not noisy [180]. However, outlier detection can be seen as a starting point for noise

detection, especially if one follows Brodley and Friedl’s assumption that noisy instances are

“outliers in any model” [25].

Maletic and Marcus [117] classified outlier detection approaches into four categories: sta-

tistical, clustering, pattern-based and association rules. Statistical outlier detection utilises

descriptive statistics such as the mean, the standard deviation and the range. These are used

in conjunction with statistical confidence intervals. Although this approach is not considered

very precise it is simple and fast. Clustering is a distance based outlier detection approach

often using measures such as Euclidian distance. Pattern-based approaches attempt to es-

tablish a pattern in the majority of the data and instances not conforming with this pattern

are seen as outliers or noise. Association rules establish associations between different at-

tributes, therefore they also establish patterns. Instances not conforming with these patterns

are seen as suspect and treated as noise [117].

1This step also ensure that domain knowledge is integrated into the data cleaning process.

15

Robust Algorithms and Filtering Chapter 2

As mentioned earlier data errors can be either eliminated or corrected. Teng [181] identi-

fied another outlier/noise handling approach2 where errors can be ignored and left unchanged

in the source. This approach would require the incorporation of robust algorithms, such that

the influence of data errors can be limited.

The following two sections will discuss practical implementation of the three noise han-

dling approaches.

2.3 Robust Algorithms and Filtering

The problem with ignoring noise and outliers is that the analyses of the data can lead to

issues such as overfitting3. In order to avoid these problems robust algorithms need to be

applied which avoid spurious results by reducing the influence of noise and outliers from

the analyses [31]. According to Teng [181] the issue with ignoring noise and outliers is that

they can still influence findings and therefore result in incorrect data analysis. That means

a model is built and its complexity is reduced by ignoring outliers, but the outliers still have

influence on the built model.

Gamberger and colleagues [58, 59, 60] used this principle for their saturation filter in order

to filter out the ignored instances. Their saturation filter builds a model which is simplified

when too complex, by eliminating instances leading to overfitting. They argued that their

filtering algorithm avoids overfitting since the results of the noise elimination process will

not influence the following analysis of the data and that therefore a hypothesis based on

this analysis will not be influenced by the noise, thus combining robust algorithms and the

filtering principle. In [60, 59] Gamberger and colleagues combined this saturation filter with

a classification filter. Their tests on medical data sets indicate that all variations of the filters

improve predictive accuracy. Saturation filter and the combination of saturation filter and

2Remember, in machine learning outliers equal noise. Whilst this is not sufficient for the work presented

in this thesis it has to be recognised as an starting point for noise handling.
3Overfitting is a phenomenon where the results of an analysis describe relationships of a specific set of

data, but these relationships are not transferable to other sets of data because they are spurious and therefore

misleading in regards to the ’real’ underlying relationships [134].

16

Robust Algorithms and Filtering Chapter 2

classification filter performed better than the classification filter by itself. They concluded

that the combination of saturation and classification filter eliminated the instances which

had the highest probability of being noisy. Their evaluation was based on two data sets from

the medical domain with categorical dependent variables.

John [78] also utilised robust algorithms. A decision tree model is built which is simplified

by pruning back over complex nodes. The difference between John’s approach and the

saturation filter approach by Gamberger et al. is that John repeats the pruning process until

no more instances can be removed using this approach. He argued that the repetition of

the process decreases the influence of noisy instances. He argued that excluding noise and

outliers from the data set limits the impact of spurious findings but leads to information

inefficiency since less data is available for the analysis. This approach was tested by John on

21 data sets from the UCI [136] database repositories. Whilst increasing predictive accuracy

it reduced the size of the decision trees by on average 70%. Since reducing the size of a model

(in John’s case the decision trees) reduces the influence of data instances by ignoring them,

instances are essentially eliminated after an initial model is built. This therefore reduces the

data sets substantially too.

2.3.1 Filtering

Brodley and Friedl [25] noted that it is important to find algorithms which distinguish

between noise and exceptional data values such that valid data does not get deleted during

the noise elimination process. They compared a single algorithm filter, a consensus ensemble

filter and a majority ensemble filter against each other. Brodley and Friedl stated that their

approach differed from conventional outlier detection methods (the single algorithm filter)

since it did not define outliers “relative to a particular model” as robust algorithms do. Their

approach to noise detection is built on the premise that noise is independent of the data’s

underlying model. It combines a partitioning filter with an ensemble filter. A partitioning

filter splits a data set into training set and test set. A data set is split into n parts creating

n training sets each out of n-1 parts of the original data set, as such producing n classifiers

which test n test sets. A classifier “tags” an instance as noisy if the classifier predicted value

17

Correction of Instances Chapter 2

for the dependent variable does not match the actual value.

Additionally Brodley and Friedl introduced the concept of multiple base classifiers for

their ensemble filter. A base classifier is a noise detection algorithm. Brodley and Friedl

used three base classifiers, a decision tree classifier, a nearest neighbour algorithm and a

linear machine algorithm. For a consensus ensemble filter all of the base classifiers have to

misclassify an instance to identify it as noisy. For a majority ensemble filter more than half

of all of the base classifiers have to “tag” an instance as noisy. The single algorithm filter

represented the traditional outlier detection mechanisms in their tests where training data

and test data are the same. Brodley and Friedl evaluated the methods on five data sets

with nominal and ordinal dependent variables. They concluded that the ensemble filters

performed better in identifying noisy instances. The consensus ensemble filter was judged to

retain most instances whilst eliminating less noisy instances. The majority filter eliminated

more noisy instances, but also more ‘true’ instances.

Summarising two approaches of filtering can be applied. In both a model is built on

a set of data and tests of misclassification or adherence to rules identify noisy instances.

The two approaches differ by either keeping test set and training set the same (like robust

algorithms), or by training a model on a different set of data and using it to test another set

of data.

2.4 Correction of Instances

The third noise handling approach is noise correction which is also sometimes referred to as

polishing. Correcting the imperfections has the advantage that more data for the analysis

of the dataset will be available. It is based on two phases. The first step is identification of

noisy instances. This is followed by the adjustment of the identified instances. This method

was used by Teng [179, 180, 181]. Teng utilised a C4.5 decision tree for the identification

of noisy instances by using misclassifications of instances utilising cross-validation similar

to Brodley and Friedl [25]. The filtered data set was then used to build a new C4.5 tree

model to predict new values for all attributes by switching each attribute from independent

18

Summary Chapter 2

to dependent variable. Teng stated that the correction or polishing can successfully repair

the data to some extend and therefore enhance the quality of the dataset. Teng evaluated the

method on data sets with nominal or ordinal attributes only, and concluded that polishing

was more successful in improving predictive accuracy than robust algorithms and predictive

filtering.

2.5 Summary

This chapter discussed the issue of how data cleaning has been addressed in research commu-

nities other than the software engineering community with a special focus on noise handling

and noise detection. It showed that the data cleaning process is a non-trivial process, and that

noise handling and noise detection are subtasks of the overall data cleaning process. They

have to be integrated into a data cleaning process to allow the input of domain knowledge

and allow replicability of the data cleaning task. Noise detection identifies noisy instances by

analysing a set of data and identifying instances which do not follow an established model.

This chapter identified two different noise detection approaches:

• Training and test sets are the same, allowing the influence of identified instances.

• Training and test sets differ, thus reducing the influence of identified instances.

In both cases the identified instances are eliminated from the data sets. A third noise handling

approach corrects instances rather than filtering them out, aiming to ensure information

retention.

This chapter also showed that noise detection and noise handling is often combined with

outlier detection and outlier handling. Since as shown noise and outliers are overlapping

but fundamentally different, the focus in this thesis is purely on noise. There are many

outlier detection mechanisms available, but their true noise handling capabilities are not

tested. This is essentially the motivation for the work carried out for this thesis. Instead of

proposing new algorithms, existing algorithms should be evaluated for their appropriateness

for the different domains in empirical software engineering.

19

Summary Chapter 2

In this thesis the three approaches of noise handling will be tested for their adequacy

for software engineering data. The three approaches are represented by three noise handling

techniques, robust filtering, where training and test sets are the same, predictive filtering,

where training and test sets are different, and filtering and polish, where noisy instances are

corrected.

Before describing the three noise handling techniques in detail in Chapter 4 the following

chapter will focus on the treatment of noise in the software engineering community.

20

Chapter 3

Noise Handling in Empirical

Software Engineering

3.1 Introduction

Whilst Chapter 1 and 2 highlighted the importance of data quality for data analyses, defined

the basic terminology needed in order to distinguish noise from outliers and examined the

treatment of noise in research communities other than the empirical software engineering

community, this chapter describes to what extent the empirical software engineering com-

munity has addressed data quality issues and specifically noise in software metrics data.

Although data quality dimensions and issues might be recognised in empirical software engi-

neering literature, the issue of noise in the raw data sets appear to be addressed sparsely. In

their well known book Fenton and Pfleeger [51] list amongst other data quality dimensions

the accuracy of data, but noise is only discussed as a difference between actual and predicted

values (i.e. the goodness of a model’s fit).

In order to assess the current state of affairs of data quality and noise handling in empirical

software engineering a systematic literature review has been carried out. The objectives of

this literature review are described in Section 3.2 and the method of literature identification is

described in Section 3.3. Section 3.4 describes the findings with a more detailed examination

21

Introduction Chapter 3

of key papers relevant to the investigations of this thesis. Section 3.5 concludes this chapter

summarising the state of affairs of data quality in empirical software engineering literature

with connections drawn to the work presented in this thesis.

22

Objective for the Literature Review Chapter 3

3.2 Objective for the Literature Review

The aim of this literature review is to identify all relevant studies and provide an overall and

coherent picture of how data quality has been addressed in the empirical software engineering

community. In order to produce a literature review as unbiased and repeatable as possible

a systematic literature review [98] was carried out.

The main objective for the literature search was to discover which studies explicitly

considered noise or data quality in empirical software engineering, and how these studies

addressed this problem. Since the focus of this thesis is data accuracy, the focus of this

literature review was also on accuracy (noisiness) as a measure for data quality, and not on

other dimensions of data quality, described in Chapter 1. These dimensions might still have

featured in some of the retrieved papers, but accuracy must have featured in some form too.

The following further sub-objectives were identified to aid the analysis of the results of

the literature review:

• How significant do the community consider noise to be (in principle and in practice)?

• How do empirical analysts address this problem?

• Are there techniques that might be deployed to independently assess the quality of a

given data set?

The results of the separate searches described in the next section were combined and

then the retrieved articles were checked against the inclusion criteria. These criteria are that

the article must:

• Focus on an empirical investigation of some aspect of software engineering or address

some methodological issue relevant to such empirical research,

• Address data noise explicitly,

• Be refereed,

• Be written in English.

The next section describes the adopted method of identifying relevant literature.

23

Method of Identification of Relevant Literature Chapter 3

3.3 Method of Identification of Relevant Literature

In order to survey the empirical software engineering literature concerning the subject of

data quality, a systematic literature review was carried out. In recent years there has been

increasing interest in establishing software engineering as an evidence based discipline and

a crucial part of this process is the systematic review [98]. Systematic reviews are widely

adopted in many other disciplines such as medicine, social policy, educational psychology,

etc.. A systematic review is the process which requires an exhaustive scanning of all avail-

able literature that satisfies some agreed protocol that, amongst other things, will contain

an unambiguous description of the inclusion criteria, which for the presented review were

provided in Section 3.2, that a study must satisfy in order to be entered into the review.

The literature review consists of two parts. An initial literature search was carried out

and the results of the subsequent analysis were presented to researchers of the software engi-

neering community at PROMISE 2008 [109] where the audience, which included experienced

researchers, expressed surprise. The feedback from the participants of the PROMISE 2008

workshop [65] resulted in a review of the initial search with special focus on the search

terms. In order to improve the literature search the members of the program committee of

PROMISE were contacted and asked to point at any of their publications or publications

they were aware of which might fit the search objective listed in Section 3.2. The email

used to ask the 23 program committee members is attached in Appendix A. Attached to

the email was the list of papers found during the initial search. 11 replies were received of

which five replies suggested 25 papers not retrieved by the initial search. 12 of these papers

were deemed to conform to the search criteria. The relevant papers were then examined

and suitable search terms were extracted. These search terms were then applied on several

search engines.

Table 3.1 shows a comparison of the initial search strategy and the subsequent search

strategy. It can be seen that the first search only used the search phrase “‘data quality’ AND

software”. This was deemed too limiting. The second search was adjusted such that search

terms extracted from the PROMISE program committee papers were included. This was

24

Method of Identification of Relevant Literature Chapter 3

done to allow re-capture of the already captured papers. Some of these search terms may

appear as very specific (i.e. “Issues Arising from the Data Collection” and “recorded with

enough consistency and completeness”), but the method of extracting search terms from

the papers was seen as a systematic approach. It also aimed to ensure that the PROMISE

program committee papers were retrieved by the search. Whilst the initial search only

utilised the bibliographic databases ScienceDirect, SCOPUS and IEEE Xplore, the second

search additionally utilised the ACM and Springer databases. Note, Table 3.1 shows that in

the initial search the journal Empirical Software Engineering was searched separately. This

was not necessary in the subsequent search since it is published by Springer Verlag and since

the Springer search engine was used.

Issues were encountered with the bibliographic search engines. Since the first search the

interface of IEEE Xplore was changed, and the search results were not consistent with the

first search. It is recognised that this is a problem for the validity of this literature review. To

overcome this issue a name search was carried out to find additional publications of authors

who resulted in a positive hit in the initial search and the second search.

Both searches omitted duplicate papers1, which brought the final number of retrieved

papers to 161. To reach this number hundreds of abstracts of papers retrieved from the

bibliographic databases were scanned to determine if they concerned empirical software en-

gineering applications. This was supplemented by an exhaustive, hand search of those sources

considered to be particularly relevant, namely the conference series of ESEM, METRICS,

ISESE, PROMISE and EASE2. It is recognised that the lack of online availability of pub-

lished studies may slightly restrict the results of the literature review, however the author of

this thesis is confident that the search has covered the major empirical software engineering

publication venues. Therefore it is considered that the results provide an adequate view of

the state of affairs in the empirical software engineering community.

After the search papers which were difficult to categorise were re-examined to clarify the

1Papers that report the same empirical study are only counted once using the most recent publication,

e.g. [41, 82, 83] describe the same study and so only [83]
2Results from EASE proceedings were limited to 2008, 2007 and 2006 due to the lack of online availability

of the remaining proceedings.

25

Method of Identification of Relevant Literature Chapter 3

Table 3.1: Initial Search and Second Search Compared

Initial Search Second Search

Time January 2008 January 2009

Search Terms “data quality” and

software

derived from terms found in papers

from PROMISE PC - software AND

(“noisy data” OR “data quality” OR

noise OR “inconsistent pieces” OR “er-

roneous data” OR “clean the data” OR

“data cleaning” OR “Issues Arising from

the Data Collection” OR “recorded with

enough consistency and completeness”

OR “not very consistent”)

Bibliographic

Databases

ScienceDirect, SCO-

PUS, IEEE Xplore

ACM, IEEE Xplore, ScienceDirect, Sco-

pus, Springer

Conferences ESEM, METRICS,

ISESE, PROMISE

and EASE

(2006,2007)

ESEM, METRICS, ISESE, PROMISE

and EASE (2006, 2007, 2008)

Additional

Search

Journal Empirical

Software Engineer-

ing

Name search of leading authors from

found papers

Inclusion of previous hits

Hits 23 161

Inclusion

Criteria

written in English, published in peer reviewed publication,

mentioning of data quality and noise according to our definition

26

Method of Identification of Relevant Literature Chapter 3

categorisation3.

3The searches were carried out by G. Liebchen. The flagged papers were read and categorised by M.

Shepperd (30%) and G. Liebchen (%70). If a paper’s categorisation was difficult, both researchers read the

paper and discussed the categorisation in order to find agreement.

27

Findings of the Systematic Literature Review Chapter 3

3.4 Findings of the Systematic Literature Review

161 papers were considered relevant following a extensive literature review. This could

be seen as surprising considering how many papers are written in the empirical software

engineering domain every year4, and considering that one of the inclusion criteria was that

papers should simply address data quality in some respect. One would expect more papers

at least mentioning some sort of data quality or noise consideration. A reference to all papers

and their classifications for this literature analysis can be found in Appendix B in Table 7.3.

Figure 3.1 gives a breakdown of the 161 papers by year. Note that 2010 is incomplete.

Nonetheless there seems something of an increase over time, suggesting that the community

is giving the topic of data quality more explicit attention.

The earliest paper which the literature search could locate is by Li and Malaiya [106], who

considered noise in the software quality domain in 1993. They state that noise is problematic

for the prediction of software reliability growth models, and they applied smoothers to deal

with this effect. Li and Malaiya’s definition of noise falls into what is considered a mixture

of outliers and noise in this thesis. The paper was included in the search nevertheless since

its aim was to improve data quality.

Although a substantial majority of papers, 138 out of 161, considered data quality to

be a threat to analysis of empirical data (see Table 7.3), not all papers agreed with this

proposition. Indeed one author, Wesslén, suggested that the random, i.e. unbiased nature

of noise meant that it could be ignored since presumably it would average out in the long

run [199]. Whilst this may mean that measures of centre are largely unaffected there may

be considerable impact upon the variance and the ability to fit and differentiate between

predictors, and therefore noise can still pose a problem. Thus one cannot remain so sanguine.

4Note, that the literature review did not put any limits on the age of the papers. In order to get a feel for

the number of papers written in the empirical software engineering domain, the search phrase “empirical AND

“software engineering”’ was entered in the basic searches of the ACM, IEEE Xplore, ScienceDirect, Scopus

and Springer databases (data: 01/08/2010), resulting in the following counts of retrieved papers; ACM-6345,

IEEE Xplore-1343, ScienceDirect-5103, Scopus-2382, Springer-2152. The total is in excess of 17000. Therefore

only 161 out of 17000 (about 1%) papers written in the empirical software engineering literature explicitly

discussed data quality.

28

Findings of the Systematic Literature Review Chapter 3

Figure 3.1: Data Quality Papers Retrieved by Year

29

Findings of the Systematic Literature Review Chapter 3

Wesslén also notes the possibility of intentional errors and states that these should be dealt

with by validating the data, a sentiment hard to disagree with!

A small minority (14%) did not explicitly state if poor data quality could have a negative

impact. In those cases Table 7.3 indicates this with a “?”. Biffl and Gutjahr explain their

trust in the quality of the data by referring to a quality data collection process and state that

the remaining noise will not impact the results of their analysis since they are believed robust

“enough”. The concept of robust “enough” results is interesting, since the robustness should

be able to be measured. This robustness could be tested by injecting noise and observing

how robust the concept is at differing noise levels. This approach has been adopted by for

instance by Berlin et al. [15] and Ahmed and Muzaffar [2].

The papers cover a range of topics within empirical software engineering. These in-

clude: meta-analysis, defect prediction and reliability modelling, effort prediction, PSP,

reuse, change data analysis and studies evaluating different noise reduction strategies in

software engineering datasets. Two of the domains were predominant, cost/effort prediction,

which included productivity and schedule analysis, and software quality analysis, which

included defects and defect predictions. Table 3.2 summarises the findings for these two

domains of the papers. It shows the categorisations of the quality domain, the cost domain,

the other remaining domains and the categorisations of all papers. 55 papers (34%) con-

cerned the quality domain. 52 papers (32%) fell into the cost domain, and 60 papers (37%)

were attributed to the “other” group. Some papers covered more than one domain. That

explains why the counts do not equal the absolute total of 161. Four papers concerned both

the software quality domain and the cost domain, of which one paper was found to cover all

three groups, which was in fact the paper reporting about the initial literature search [109].

The majority of papers, 122 (76%), focussed on data quality of quantitative data, 17

papers (11%) were concerned with quantitative and qualitative data and 45 papers (28%)

were concerned with data quality of qualitative data (e.g the papers by Li et al. [105]

and Babar and Zhang [11] focused on data derived from interviews). An early paper by

Johnson [80] highlighted the importance of quality review documents as a basis for software

development reviews, but Johnson also pointed out the importance of accuracy of the metrics

30

Findings of the Systematic Literature Review Chapter 3

Table 3.2: Paper Categorisation vs Domains

() = Paper in software quality domain and in cost prediction domain; 〈 〉 = Paper in all domains;

{ } = Paper concerns qualitative and quantitative data;

n.a. = Paper did not state clearly if the concern was with quantitative/qualitative data.

Q
u

an
ti

ta
ti

ve

Q
u

al
it

at
iv

e

D
at

a
C

ol
le

ct
io

n

M
an

u
al

N
o
is

e
C

h
ec

k
in

g

A
u

to
m

at
ed

N
o
is

e
C

h
ec

k
in

g

E
m

p
ir

ic
al

A
n

al
y
si

s
of

N
oi

se

D
at

a
Q

u
al

it
y

M
et

a
D

at
a

T
ot

al

n.a. Y n.a. Y Y Y Y Y Y Y

Software Quality 2

(1)

45

(3〈1〉)

{6}

2

(1)

13

(1〈1〉)

{6}

15

(1)

6 10

(1)

13

(1)

2

(1)

54

(4〈1〉)

Cost Prediction 3

(1)

48

(3〈1〉)

{2}

3

(1)

3

(1〈1〉)

{2}

10

(1)

9 3

(1)

5

(1)

15

(1)

52

(4〈1〉)

Other Domains 7 33

〈1〉

{10}

7 31

〈1〉

{10}

26 19 3 4 1 60 〈1〉

All Papers 11 122

{17}

11 45

{17}

50 35 15 21 17 161

31

Findings of the Systematic Literature Review Chapter 3

used in the review process. The data quality considerations raised in this paper were picked

up by Lappalainen in [102] who added that quality issues may arise in PSP data because

the data collection is one of two tasks software engineer have, and their need “to switch her

context of thought from solving the problem (design, coding, etc.) to the recording of data”

causes issues. Johnson and Zhang [79] only refer to data quality by citing [80].

11 papers did not specify whether the data quality concern was about quantitative or

qualitative data.

3.4.1 How Was Poor Data Quality Dealt With?

After reporting what domains considered data quality and what data was subject of the data

quality concerns, this subsection focusses on the approaches researchers have adopted to deal

with poor data quality.

The results in table 3.2 indicate that the most favoured method (50 papers) of combating

poor data quality is to avoid data quality problems through the data collections process.

This was merely a suggestion in most papers which commended this course of action, since

researchers in empirical software engineering most of the time are not included in the data

collection process and therefore have to work with secondary data [66]. Frequently suggested

was the use of automation of data collection processes and input validations, like range

checking, in order to avoid data input errors. Combating data quality during the data

collection phase could be characterised as a noise prevention activity.

Since as indicated above data analysis in empirical software engineering is often reliant

on the use of historical software engineering datasets, noise prevention as data quality im-

provement will not be available for most researchers. This leads to researchers applying data

cleaning procedures to data sets post event. Possibly due to the apparent ease of application

the most prominent form of data cleaning is the manual data quality checking. Typically

this involves increasing one’s confidence in a data set by some manual intervention such as

independent scrutiny or the use of triangulation, for example measuring the same attribute in

different ways or through inter-rater reliability analysis. This cleaning or scrubbing precedes

the main analysis.

32

Findings of the Systematic Literature Review Chapter 3

An example for this is [33] where automatically collected data was compared with man-

ually collected data in order to determine how error prone manual data collection process is.

The quality of the base line data quality of the automatically collected data was ensured by

a visual inspection.

18 papers (11%) used data quality meta data in order to improve data quality. Some

data sets, most notably the ISBSG project [75] effort and productivity benchmark data set,

contain meta data that describe the perceived quality of each case or project. For ISBSG

quality is graded between A (highest quality) and D (lowest quality). This is quite important

for situations where organisations elect to contribute project data to a central repository and

thus there is a reduction in control over collection procedures. In the situation of ISBSG the

classification is principally guided by the completeness of a case, in other words high quality

data are interpreted as possessing low levels of missingness, which could be misleading for

analysts if they equate this classification to the level of noise in a data set. In this literature

review the studies that utilised the ISBSG adopted the strategy of only using data graded

as A or B. Note though that this does not accord with the view that noise concerns the

difference between the “true” and recorded values for a data item. Indeed a complete case

may contain many inaccuracies.

Two areas of data quality discussion in empirical software engineering which are directly

related to the research presented in this thesis are the automated noise detection and the

empirical analysis of noise prevalence. Table 3.2 shows that 16 papers (10%) carried out some

sort of automated noise detection, and 21 papers (13%) carried out a empirical analysis of

noise in software engineering data sets.

Next, papers which utilised automated noise checking are going to be discussed. After

this, papers with empirical analysis of noise are going to be focussed on, followed by a

discussion of paper which reported on automated noise checking combined with and empirical

analysis of noise with the aim to assess the effectiveness of the noise checking procedures

presented.

33

Findings of the Systematic Literature Review Chapter 3

3.4.2 Automated Noise Checking

As mentioned in Chapter 2 automated noise checking is mostly carried out by utilising a

machine learning algorithm to identify the noise.

Moses [130] presented a Bayesian probability model to assess the correctness of subjec-

tive categorisations of inter-modular cohesion. He used the cohesion classifications for six

FORTRAN modules of 163 students to show that subjectivity could be inferred from agree-

ment established using a Bayesian probability model. He states that this method could also

possibly be used to quantify subjectivity in the field of cost/effort prediction. Moses also

commented that no judgement about the quality of the student data could be made due to

lack of information, but he suggested that the quality of the data might not have been the

best due to interactions of the student raters.

Colombo et al. [32] also employed a Bayesian approach to deal with the impact of noise

in software process data in order to avoid overfitting. The utilisation of a Bayesian network

as robust algorithm has to be done since software process data “typically” contains noise.

They investigated if class/switch events could be allocated to the developer who produced

them. They analysed the log files of three Java programmers who produced about 10,000

class/switch events each. The results of their analysis showed that the Bayesian approach

can be used to establish if a change was carried out by the same developer or by two different

developers.

Rubin et al. [152] automatically eliminate incorrect change log entries by applying rules

for correct change log entries in a software process mining tool (i.e. ignoring exceptional

and infrequent change commits). Their results showed that their tool can be used to obtain

process models and to analyse and verify some properties of software processes.

The remaining papers which utilised automated noise checking incorporated their inves-

tigations with empirical analyses of the data quality problem and will be discussed following

the next subsection which only discusses papers carrying out empirical analysis of data qual-

ity without the employment of automated noise checking.

34

Findings of the Systematic Literature Review Chapter 3

3.4.3 Empirical Analysis of the Data Quality

The topics of noise detection and handling are important, but their effectiveness can only be

tested empirically. It is also important to consider the impact of poor data and its magnitude

in software engineering data. In order to do this empirical investigations gathering and

analysing data about data quality must be carried out. This is a non-trivial task since

in many cases the ‘true’ value of a data item may be unknown. Thus unless the value is

implausible in some way, the level of noise in a data set may be difficult to measure. However,

an important example of data quality assessment, and an early paper on the topic, comes

from Johnson and Disney [83]. They report that as part of the data recording process of

the Personal Software Process (PSP) for 89 projects completed by ten participants they

discovered 1539 primary errors. However, it must be stated that almost half (46%) of the

errors were incorrect calculations and so can be addressed by the provision of better tool

support. Another significant problem they encountered were missing data. There is a good

deal of research on data imputation [112], but it is considered to be beyond the scope of this

thesis. Overall Johnson and Disney concluded that poor PSP data could lead to misleading

conclusions about the PSP itself, and in order to improve data quality manual data collection

should be avoided and “external measures” should be used which can be interpreted for

triangulation purposes.

At times the empirical analyses were rather limited. For instance, as mentioned earlier

Counsell et al. [33] carried out a visual inspection of automatically and manually gathered

data, and concluded that manual gathered data is error prone. Koru and Tian [99] included

a question in their questionnaire for 119 contributors of open source projects where they

enquire about the “consistency” of data in defect databases, when they carried out a survey

about defect handling strategies in open source projects. The majority of contributors stated

that their data was consistent, which appears not surprising since they were judging their

own efforts.

In [184] Thomson and Holcombe inspected the change data repositories for 17 student-led

software projects manually with the aid of comparison tools, and three types of errors were

discovered. According to the authors type one error related to missingness or non-usage of

35

Findings of the Systematic Literature Review Chapter 3

the repository, type two error related to inaccurate data, and type three error related to

errors which were due to “well known limitation” of the change data system used. Thomson

and Holcombe warned in conclusion about the quality not only of data collected by students,

but also of data in change data repositories in general.

Bachmann and Bernstein [12] investigated the data quality of software process data in

change data repositories. The bug tracking data bases, which were also partially used for

change requests, of five open source systems and one closed source system were checked

for inconsistencies. First rules were applied to identify suspect instances which followed an

additional manual inspection. Their quality measures included the rate of fixed bug reports,

the rate of duplicate bug reports, the rate of invalid bug reports, and the rate of empty

commit messages and the rate of linked bug reports. The closed source project showed

lower values for duplicate bug reports and invalid bug reports than the open source projects

(both about 1%). These lower values were due to the closed source project bug tracking

database not being publicly available, and due to “well-planned” testing activities. Since

the remaining data quality measures fell in the same range of the open source projects, the

authors concluded that data quality differs “from project to project”, and that it was not

possible to differentiate between open source or closed source data based on data quality

alone. The bug reports in all databases were “badly” linked, and source code changes were

untraceable “due to empty messages or missing bug report links”. Invalid and duplicate bug

reports for open source projects varied between 12 and 34 % (duplicates) and 4 and 34 %

(invalid reports), which indicates poor quality bug report information.

The investigations by Mendes[120] and Mendes et al. [123] were both based on the same

data when investigating cost estimations for web projects. According to the authors data

quality of effort data was ensured by asking the companies which collected the data how the

data was collected. 83% of the projects based their effort data on more than just guestimates

indicating sound data. Whether this fact can really be seen as an indicator for good data

quality appears arguable.

In [92] Khoshgoftaar et al. investigated the impact of noise on missing data imputation

in software quality data. They used a large military command, control, and communications

36

Findings of the Systematic Literature Review Chapter 3

system data set (CCCS) to produce four data sets with varying noise levels. Two of the

produced data sets contained inherent noise, noise already in the data set for the outset,

and artificial noise. One data set only contained inherent noise, and one according to the

authors did not contain any noise. This is interesting considering the statement by De Vaux

and Hand that the absence of noise cannot be proven [37]. Koshgoftaar et al. reported that

the noise free data set was achieved with the help of “expert input and several [unspecified]

data analysis procedures”. The authors concluded that regardless of the imputation method

used, “ignoring data quality can lead to erroneous conclusions”.

In [190] Van Hulse and Khoshgoftaar investigated the impact of noise on 11 machine

learning algorithms using five NASA software project data sets containing fault data and

two data sets from the UCI repository [136]. They injected differing levels of artificial

noise and concluded that noise has an adverse effect on the learners’ abilities to predict

unseen instances. Their results showed that simple algorithms like näıve Bayes and nearest

neighbour algorithms performed better in noisy environments than more complex algorithms

like support vector machines and random forest algorithms. They also tested seven data

sampling techniques on the noisy data sets again concluding that simpler sampling techniques

were more effective.

The previous paragraphs showed that some researchers attempted to quantify the extent

of poor data quality in software engineering data sets. Some of these investigations were

very limited and only part of the main investigations. The investigations indicate that noise

problems can be assessed by means of proxy measures and verifications like expert judgements

and predictive accuracy of learners. These measures could then be used to investigate the

effectiveness of data cleaning techniques. Automated noise checking techniques have the

benefit that they can make the data cleaning process less onerous to analysts, and they do

not need costly manual interventions, but their effectiveness needs to be proven in order to

prove their true value to the person charged with the data cleaning task.

37

Findings of the Systematic Literature Review Chapter 3

3.4.4 Automated Noise Handling with Empirical Analysis of the Data

Quality

Apart from the two already mentioned papers by Khoshgoftaar and colleagues, in which

the authors carry out an empirical investigation into the impact of noise, Khoshgoftaar

and colleagues provided most papers combining automated noise handling with an empirical

analysis of data quality, thus attempting to prove the value of their different automated noise

cleaning techniques. As with the papers above their investigations utilise software quality

data sets with nominal or ordinal dependent variables.

In [209] Zhong et al. used a clustering- and expert-based software quality estimation

method, where instances are first clustered using both a k-means algorithm5 or a Neural-

Gas6 algorithm in comparison followed by expert inspection of the results. The authors tested

their approach on a data set provided by NASA containing software quality metrics for 520

modules. They suspected that the data set contained noise. They compared the effectiveness

of their method in identifying noise by comparing instances which were considered noisy by

their proposed method with instances identified as noisy by an ensemble classification filter.

Their results show a high degree of consistency. This only indicates though that the ensemble

filter and their technique identified the same instances. It does not really show if the instances

were noisy or not.

In [86] Khoshgoftaar and Rebours compared different settings of an ensemble partition-

ing filter resulting in the comparison of a classification filter, an ensemble filter, a multiple-

partitioning filter and an iterative partitioning filter when filtering out instances identified as

noise. Again a NASA data set was used which contained originally data about the faultiness

of 10883 software modules. After removing inconsistent modules, modules with identical

software metrics but different class labels (faulty/ not faulty), 8850 modules remained. The

resulting data set was named JM1-8850. The different filters were applied and their agree-

5The k-mean clustering algorithm groups a number of instances (observations) by attributing them to the

kth group (cluster) with the nearest centroid [115].
6Similar to the k-means clustering the Neural-Gas clustering algorithm compares the distance between

observations and clusters, but it also revises the distance following several iterations [119].

38

Findings of the Systematic Literature Review Chapter 3

ments were compared. According to the authors the classification filter was the most aggres-

sive, removing most instances, and the ensemble filter removed the least instances. Whilst

retaining of good instances should be a good outcome it is not clear if the identified instances

were noisy or not. Seemingly addressing this point the authors stated that an agreement of

all filters “provides a good indicator of the true quality of the instances”. This statement

appears unproven.

The NASA data set JM1-8850 was used in [178] by Tang and Khoshgoftaar together with

another NASA software quality data set, named KC2 and which they left as is, in order to

evaluate a k-means based noise detection technique. The authors tested the noise detection

capabilities of a k-means outlier detection method by comparing the predictive accuracy of

models built from the cleaned data. The authors noted that outliers are not equal to noise,

but state that a subtask of outlier detection methods is the detection of noise. They stated

that after applying their technique the predictive accuracy increased significantly.

In [91] the NASA data set JM1-8850 was cleaned further using clustering and predictive

filtering resulting in a data set with 2445 instances, named JM1-2445, which was said to

be “noise-free” by Khoshgoftaar et al. . This cleanliness was verified with “perfect 10-fold

cross-validation classification results of a C4.5 classifier”. It seems questionable if this true

“noise-free status” could really be verified in such way, since it only indicates how well the

data predicts the instances contained in itself. JM1-2445 was then used to evaluate a rule-

based noise detection technique. Noise was artificially introduced and the ‘effectiveness’

and ‘efficiency’ of the technique were compared against a C4.5-based classification filter.

The authors defined ‘effectiveness’ as “the number of instances correctly predicted as noise

divided by the total number of noisy instances in the data set”. ‘Efficiency’ was define as the

number of actual noisy instances in the number of predicted as noisy divided by the total

number of instances predicted. This is essentially gratuitous new terminology for precision

and recall. Their results indicated that their proposed method showed higher ‘efficiency’ and

higher ‘effectiveness’ compared against the classification filter when the number of attributes

injected with noise increased. Also the performance of their technique “did not seem” to

be impacted by increased noise levels (increased artificial noise levels from 10% to 20%) as

39

Findings of the Systematic Literature Review Chapter 3

opposed to the classification filter.

The “clean” data set JM1-2445 was used by Khoshgoftaar and Van Hulse as basis for the

investigation in [89], but 418 “known” noise instances from JM1-8850 were left in place. The

noisiness of the 418 instances was verified by software metrics expert judgement. The re-

sulting data set JM1-2863 was used to evaluate their method “Attribute of Interest” (AOI),

which is a methodology where the noisiness of a variable is determined by making it the

dependent variable and applying their noise ranking technique PANDA (Pairwise Attribute

Noise Detection Algorithm). PANDA ranks instances according to noisiness summing the

combination of a distance measure extracted from the mean and standard deviation of a

distribution, which the authors called “noise factor”. The authors compared their methodol-

ogy against a classification filter and a ensemble filter, and their results indicated that their

method AOI showed higher effectiveness and efficiency as defined in the previous paragraph.

Ranking instances according to noisiness is an interesting concept and potentially very useful.

The issue of setting boundary values, which ranks are considered noisy, is difficult, especially

if there are no clues about the level of noise in a data set.

PANDA’s noise detection capabilities were also investigated by Van Hulse et al. in [191],

this time without the incorporation of PANDA into AOI. PANDA was compared against

a nearest neighbour distance-based outlier detection technique. This technique was cho-

sen by the authors because like PANDA it does not rely on the incorporation of a class

variable (see the discussion of class versus attribute noise in Chapter 1). Both techniques

produced a ranking of instances from a data set according to the likelihood of the presence

of noise. A software engineering expert then compared both lists categorising each instance

independently. Two data sets were used to compare the two techniques. JM1-2445 which

was considered “clean” in [91] and [89] was subjected to the two techniques. The 250 highest

ranked instances where then inspected by a software metrics expert in order to distinguish

between noise, outlier and exception. Outliers according to the authors are instances, which

appear “inconsistent with the remainder of a set of data, or which deviates so much from

other observations so as to arouse suspicions that it was generated by different mechanism.”

Noisy instances according to Hulse et al. are instances with one or more attributes “corrupted

40

Findings of the Systematic Literature Review Chapter 3

or incorrect relative to the values of the other attributes”. Hulse et al. defined exceptions

as instances, which appear noisy due to attributes in an instance, which do not follow the

general distribution in comparison to other instances and their attributes in the data set. It

appears unclear what Hulse et al. recognise as the difference between outliers and exceptions.

It is not described how the expert distinguished between the three problematic categories

of instances. The second data set used to compare the two techniques was the CCCS data

set which did not undergo any preprocessing. This time the 30 noisiest, highest ranked, in-

stances were inspected by the software metrics expert. In conclusion the authors stated that

PANDA identified more noisy instances, fewer outliers and fewer “typical” (clean) instances

than the nearest neighbour outlier detection technique. The employment of a software met-

rics expert for the identification of noisy instances is interesting, but the lack of description

of the expert’s noise identification process does not aid replicability of the evaluation process.

In [192] Van Hulse et al. investigated noise correction using Bayesian multiple imputation.

The CCCS data set, which contained noise, was again inspected by a software metrics expert.

20 ‘unmistakably’ noisy instances were identified and the expert calculated corrected values

for the inherent noise. The author’s technique is compared against a linear-regression based

technique for correcting the values of a continuous dependent variable (number of faults in

a module). Unsurprisingly the author’s technique is more accurate than the simple linear-

regression based correction of noisy instances.

The main focus of Seliya and Khoshgoftaar in [157] was the software quality estimation

accuracy of an ensemble filter. A ensemble filter combines the outcomes of several clas-

sifiers with a majority vote, to clean noise. The authors used the JM1-8850 data set to

investigate the effectiveness of missing value imputation for unlabelled instances, but they

also investigated the noisiness of these unlabelled instances, suggesting that the reason they

were unlabelled was an indicator for poor data quality. They stated that about half of the

unlabelled instances were identified as noisy by the ensemble filter. Their definition of noise

follows a machine learning paradigm where noise and outliers are combined. The effectiveness

of the ensemble filter as noise detection technique was not investigated.

In [87] Koshgoftaar and Rebours compared the data cleansing abilities of two versions of

41

Findings of the Systematic Literature Review Chapter 3

a partitioning filter; multiple-partitioning filter and iterative-partitioning filter. Again JM1-

8850 was used as a basis for their investigation. The predictive accuracy of a model built

from the clean data was utilised as indicator of the effectiveness in noise elimination of the

used filters. Their conclusions showed that number of cross-validations and the number of

agreements of different filters can significantly impact on the predictive accuracy of models

built from cleaned data.

In all their papers Khoshgoftaar and colleagues refer to class and attribute noise, but this

issue was discussed already in Chapter 1 and deemed as not appropriate for the purposes of

this thesis7.

Comparing the counts of papers which focussed on automated noise checking and the

empirical analysis analysis of data quality across domains, it can be seen that the strongest

represented domain is the software quality domain. This is due to the efforts of Khoshgoftaar

and colleagues who found a niche for their research. In the effort prediction domain only three

papers reported on empirical analyses of data quality, of which two were by the author of this

thesis and his colleagues [110, 111], and one paper which commented on the work presented

in this thesis [205]. Only five papers in the effort prediction domain discussed automated

noise checking techniques. Again the three papers which reported on empirical analyses are

included in this count. The two remaining papers were by Mendes and colleagues [120, 123],

and incorporated interview responses about the quality of data, but their conclusions drawn

from these responses were likely to be overoptimistic. Research into self-relevant feedback

and estimation has indicated a tendency to overoptimism [26, 161]. It is also questionable if

data would likely to be criticised by the people who build their estimations and predictions

on this data, since poor data quality would devalue these estimations and predictions.

None of the papers retrieved by the literature search described datasets before and after

7Reasons for focus on Class noise in this thesis:

• Class noise is seen as more harmful than attribute noise.

• A attribute variable can be swapped with the class variable, making it the class variable in order to

consider noise in any variable.

42

Findings of the Systematic Literature Review Chapter 3

data cleaning, listing all as noisy identified instances. This lack of documentation in form of

protocols of the preprocessing of data sets is clearly an issue since it reduces replicability of

studies.

The discussion of four papers which focussed on noise in empirical software engineering

data sets is postponed until later. Their categorisations are included in the counts presented

in Tables 3.2 and 7.3. Papers [108, 110, 111, 109] reported on investigations which are

presented in this thesis. The fourth paper is a recent paper by Yoon and Bae [205] which

will be discussed in Chapter 7 since it cites and builds upon some of the work presented in

this thesis.

43

Concluding Remarks about Data quality Chapter 3

3.5 Concluding Remarks about Data quality in Empirical Soft-

ware Engineering Literature

This chapter presented a systematic literature review investigating how the empirical software

engineering community has addressed data quality issues with a specific focus on noise.

The literature search retrieved 161 papers, which appears a relatively low number consid-

ering that the papers only had to mention noise or data quality without actually proposing

actions to tackle the issue, and also given the number of papers written in the empirical soft-

ware domain every year. This means that the issue of data quality is somewhat neglected in

a domain where the most important input is data. Poor data quality clearly poses a threat

to the validity of conclusions from analyses, and it is questionable if poor quality data sets

should be used if the ability to produce meaningful conclusions is limited, if not impossible.

Whilst the majority of the retrieved papers considered poor data quality an issue, very

little has been done to combat poor data quality. The majority of papers suggested improve-

ment of data quality during the data collection phase, recommending preventative techniques

such as appropriate tool support for data collection. This is not always possible since an-

alysts of empirical software engineering data are often limited to the analysis of historical

data only [66].

No evidence has been found of the application of data quality protocols which describe

what preprocessing steps have been taken to improve the quality of a data set, and which

instances have been identified as noisy.

The dominant practical approach to deal with poor quality of historical data is manual

noise checking. Data quality meta-data has also been used for the elimination of poor data

quality instances from data sets, but unfortunately these data quality meta-data tend to be

surrogates for missingness only.

Presently there appears to be little work available, which independently assesses the qual-

ity of a given data set. Researchers who investigated automated noise handling techniques

did not always make their evaluations transparent and partly based their work on ‘clean’

real world data sets, which is a rare occurrence. ‘New’ techniques were introduced, but their

44

Concluding Remarks about Data quality Chapter 3

data cleaning abilities were tested only by utilising unproven proxy measures. Since the

‘true’ extent of noise cannot be known [37] the use of one proxy measure alone to test a

technique’s ‘true’ data cleaning ability appears insufficient.

Automated noise checking and handling are still at a relatively early stage, and the

effectiveness of the proposed methods in identifying and handling of noise seem not proven.

Investigations which provide a multi-angled approach for the prove of effectiveness should

be employed without fear of failure of the investigated technique.

The lack of work investigating independent means for assessing the quality of empirical

software engineering data is another motivation of the research presented in this thesis.

Instead of creating new algorithms and testing them with measures which appear to have

little meaning for data quality in software engineering data sets, existing algorithms ought

to be tested for their appropriateness for software engineering data.

In this thesis three noise handling approaches are compared to each other in the form

of three techniques each representing one approach. Their data cleaning effectiveness is

compared in the software engineering domain. More specifically the three techniques are

compared for their data cleaning abilities of software project effort data.

The next chapter presents the three techniques, robust filtering, predictive filtering and

filtering and polish.

45

Chapter 4

Robust Filtering, Predictive

Filtering and Filtering and Polish

4.1 Introduction

The results from the systematic literature review presented in the previous chapter show that

data quality has been somewhat neglected in empirical software engineering. In particular

automated noise checking and empirical investigations into the effectiveness of automated

noise checking techniques are lacking attention.

In this chapter three noise handling techniques will be described, and their data cleaning

capabilities will be evaluated in the following chapters of this thesis. The techniques are

robust filtering, predictive filtering, and filtering and polish, each representing one of the

approaches for dealing with noise. Filtering where the training set and test set are the

same are represented by the robust filtering technique. It builds a classifier which is pruned

in order to avoid overfitting. The pruned instances are filtered from the data set, but

subsequent models still are partially influenced by them. The filtering where training set

and test set differ are represented by the predictive filtering technique. It predicts values of

a class (dependent) variable for unseen instances which are then compared with the actual

values. Mismatches are considered as noise and deleted from the data set. Corrections of

46

Decision Trees Chapter 4

instances are represented by the filtering and polish technique which uses the predictive

filtering technique as initial step. A classifier is built using the remaining instances left

after predictive filtering. This classifier is used to predict and alter values for the instances

filtered out during the predictive filtering procedure leaving a ‘polished’ data set. All three

techniques utilise classification decision trees as the classifier. Decision trees were chosen as

the basis for all three techniques since they are widely adopted and are relatively simple to

use. The terms classification tree and classifier are from now on used interchangeably in this

chapter.

The chapter continues with a brief discussion about decision trees, followed by a descrip-

tion of the three techniques.

4.2 Decision Trees

The three techniques presented in this chapter utilise decision trees in the form of the CART

(Classification and Regression Trees) algorithm as introduced by Breiman, Friedman and

Ohlsen and implemented in the RPART package [183]. CART is a trademark and the

RPART package is a freely available version for R and S-Plus. Decision trees are simple

to use and have been widely and successfully applied in machine learning in order to build

models of data relationships [179, 180, 181, 25, 87]. Decision trees are popular since they are

easily understood by humans. They can build models without the assumption of underlying

relationships of the included attributes.

A decision tree is a tool which allows prediction of target values on the basis of mapped

observations and subsequent conclusions about these observation. Decision trees come in

two variations, as classification trees which predicted discrete outcomes, and as regression

trees which can predict continuous outcomes. A decision tree can be thought as a sequence

of questions, which leads to a final outcome. Each question depends on the previous question

which is represented as a branch in the tree.

The two most commonly used decision tree algorithms are the C4.5 and the CART

builders, which differ in the number of nodes after each split. Whilst the CART algorithm

47

Decision Trees for The Three Data Cleaning Techniques Chapter 4

is binary based meaning that every node must result in two branches the C4.5 algorithm is

not necessarily binary based. As mentioned above all three data cleaning techniques utilise

an implementation of a CART decision tree.

Decision trees are robust and can deal with problems like missing values. The CART

algorithm does this by applying a surrogate test in order to approximate the outcome. That

is, examining the combination of the non-missing values in an instance with the missing

value and searching for similar combinations in other instances in order to approximate the

missing values.

4.3 Decision Trees for The Three Data Cleaning Techniques

For the investigations presented in this thesis a classification tree is constructed using the

CART algorithm. A subset of a given data set is used to train the classification tree. Since

the application domain is effort prediction, effort is chosen as class variable (dependent

variable). For this purpose effort was discretised. Discretisation is necessary for the purpose

of comparison. It can help to distinguish if a value is correctly classified or not. As mentioned

above decision tree algorithms can also be used to create regression trees, but this complicates

the classification of noisy and non-noisy instances. A regression tree could also be used to

achieve noise classification by creating intervals, where a value within a range from a guide

value is considered as not noisy and a value out of that range is considered as noisy. The

difficulty here lies at determining the size of the mentioned range or interval. For instance a

value y is the actual value of a class variable in a data set, and the regression tree predicts

the value ŷ for this class variable. How big has the interval n to be, when ŷ - n ≥ y ≤ ŷ+n,

to consider a value as noisy?

The experiments presented in this thesis utilise the discretisation of the class variable.

The discrete values are used as categories, where a misclassified instance can be seen as

noisy. Whilst the first study, presented in Chapter 5.3 only utilised five bins1 for these

categories, the subsequent investigations use 10 bins. This was done because a lower number

1The boundaries of each bin was calculated by creating percentiles from minimum and maximum values.

48

Decision Trees for The Three Data Cleaning Techniques Chapter 4

of bins decreases the likelihood of misclassification since the classification categories will be

too coarse. Another issue with a small number of bins becomes apparent when predicting

values using a model based on the given bins. Since, as mentioned in the first example,

only five bins were available, only five different values can be predicted. This issue will be

discussed in more detail in the Section 4.6.

All noise handling techniques described in this chapter utilise cross-validation. Cross-

validation is a standard procedure in machine learning which aims to test a model on an

independent by equivalent dataset to the dataset a model is built from. It comprises splitting

the dataset into k folds, using k-1 folds to build, or train the model and one fold to test

the model. All techniques split the dataset into five folds where 80% of the data are used to

train the trees and, in the case of predictive filtering, 20% to test. For this purpose the data

set needs to be split in equal parts such that each part can be used as part of the training

set or as test set. These parts (folds) were non-overlapping, and the order of all instances

in the dataset was randomised. As mentioned above, for the purpose of classification the

chosen response variable needs to be discretised. Both steps, the splitting of the dataset and

the discretisation are described in Table 4.1 which shows an initialising algorithm.

The following sections will describe the noise handling techniques evaluated in this thesis

in more detail, starting with robust filtering, followed by predictive filtering, and the filtering

and polish technique.

49

Decision Trees for The Three Data Cleaning Techniques Chapter 4

Table 4.1: Algorithm for the preparation of a data set for all noise handling techniques

Algorithm for the preparation of a data set for all noise handling

techniques

1. Discretise the response variable by creating bins according to deciles.

2. Split data set DSO into 5 equal parts, DS1, DS2, DS3, DS4 and DS5.

3. Create overlapping subsets of DSO

(a) Create TS1 by combining DS1, DS2, DS3 and DS4.

(b) Create TS2 by combining DS2, DS3, DS4 and DS5.

(c) Create TS3 by combining DS1, DS3, DS4 and DS5.

(d) Create TS4 by combining DS1, DS2, DS4 and DS5.

(e) Create TS5 by combining DS1, DS2, DS3 and DS5.

50

Robust Filtering Chapter 4

4.4 Robust Filtering

Robust filtering, sometimes referred to as pruning, is essentially a robust algorithm avoiding

overfitting by utilising a pruning strategy to reduce the size of a decision tree. This can be

used as a method to detect outliers, however in this thesis its noise detection effectiveness

is investigated. Chapter 2 has shown that the issues of outliers and noisy instances are

very closely related. Instances with random noise are often discovered due to the fact that

they can exhibit characteristics which are different to the rest of the instances in a data

set. Outliers are instances which are also exceptional, but ’true’ in so far that they are

caused by exceptional circumstances rather than errors. Since noise and outliers are so

difficult to distinguish they are treated as the same by a large part of the machine learning

community. In this thesis the focus is noise in data sets in the domain of software effort

prediction. Therefore the noise detection and cleansing properties of the presented techniques

are investigated rather than the ability of discovering outliers, which can be done with

conventional outlier detection methods.

The robust filtering technique is sometimes referred to as a robust algorithm since a tree

is built using all instances, but which is reduced after analysing the tree’s properties. This

differs to other filtering methods in that the pruned, or filtered, instances from the robust

algorithm are used to build the first model which is the basis for the subsequent ‘pruned’ or

cleaned model. The training set is essentially the same that is filtered. In the other filtering

approach presented in this chapter the identified noisy instances are filtered out before a

model is built, and these instances therefore have less influence on the new ‘clean’ model.

Robust filtering is still a filtering method since it singles out instances leading to overfitting,

which are then excluded from subsequent analysis. John [78] utilises the pruning strategy to

clean a data set by iterating the pruning technique, and argues that the influence of noise

on the final model will be reduced due to the iteration of the pruning technique. The robust

algorithm used in the investigations presented in this thesis repeats the pruning procedure

for all combinations of n-1 parts of a n split, where n is the number of cross validation

folds. Pruning is not continued after this for two reasons. Firstly all three techniques were

51

Robust Filtering Chapter 4

kept as basic as possible in order to allow the comparison of robust algorithms, predictive

filtering and filtering and polish. Secondly each pruning iteration results in the elimination of

instances from a data set, resulting in information loss. In order to minimise this information

loss the decision trees will only be pruned n times.

An n fold cross validation is carried out by splitting the data set into n, five in case of

the investigations presented in this thesis, parts. This step is described in Table 4.1. The

next step is to combine n-1 parts in order to create n overlapping parts of the data set.

A tree model is built, utilising the RPART tree builder, of each of the overlapping subsets.

These tree models are pruned utilising the 1-standard error (1-SE) rule, which incorporates

Occam’s razor where a simpler model is to be preferred to a complicated model. This is

essentially an implementation of the saturation filter proposed by Gamberger and colleagues

[58, 59, 60]. Occam’s razor is realised by inspecting each split in the tree focussing on the

cross-validation error. The aim is to find the best number of splits which takes the smallest

cross validation error (xerror) adding the corresponding standard error (xstd). According

to the 1-SE rule the complexity parameter (CP) for the least overfitted tree is established

by ensuring that xerror + xstd of the most complex model is smaller than the xerror for all

valid splits, so preventing an overly complex tree and avoiding overfitting. Instances which

are in the pruned branches are removed from subsequent models and analysis.

The method is explained by the following example. A tree is built and the complexity

parameter table (Table 4.2) showing a summary of the overall fit of the model is produced.

According to the 1-SE rule, xerror and xstd are added together, resulting in 0.866927. Now

this number is used to inspect the xerror column. It can be seen that xerror is smaller for all

split steps 5 - 6. Therefore the tree will be pruned setting the CP value between 0.034483

and 0.045977. A new tree is built by stopping the growth of a tree after the CP fell below

0.045977. This new tree is pruned.

By comparing the unpruned tree in Figure 4.1 with the pruned tree in Figure 4.2, the

pruned nodes can be identified. Figure 4.3 shows which nodes are pruned, resulting in the

exclusion of the corresponding instances from the data set.

The steps for the robust filtering are explained in the algorithm in Table 4.3.

52

Robust Filtering Chapter 4

Table 4.2: Complexity Parameter Table

Split Step CP nsplit rel error xerror xstd

1 0.126437 0 1.00000 1.11494 0.011435

2 0.114943 1 0.87356 1.09195 0.019602

3 0.091954 2 0.75862 1.02299 0.032861

4 0.045977 3 0.66667 0.87356 0.047477

5 0.034483 4 0.62069 0.79310 0.051939

6 0.022989 5 0.58621 0.80460 0.051404

7 0.011494 7 0.54023 0.81609 0.050837

8 0.010000 8 0.52874 0.81609 0.050837

Figure 4.1: Unpruned Tree

53

Robust Filtering Chapter 4

Figure 4.2: Pruned Tree

54

Robust Filtering Chapter 4

Figure 4.3: Pruning of a Tree

55

Robust Filtering Chapter 4

Table 4.3: Algorithm for robust filtering procedure

Algorithm for robust filtering procedure

1. Build classification trees.

• Build classification trees TS1 Tree to TS5 Tree for each training set TS1 to TS5.

2. Prune the trees

• Prune each tree TS1 Tree to TS5 Tree by applying the 1SE-approach creating

new trees TS1 Tree Pruned to TS5 Tree Pruned.

3. Identify instances leading to overfitting.

• Compare each unpruned tree (TS1 Tree to TS5 Tree) with its pruned version

(TS1 Tree Pruned to TS5 Tree Pruned), identify pruned leaf nodes and related

instances in data set TS1 to TS5 creating data set TS1P to TS5P.

4. Combine TS1P, TS2P, TS3P, TS4P and TS5P. Each instance in the data sets is iden-

tified and highlighted as noisy or not-noisy. This results in 5 additional boolean values

for each instance TS1 noisy, TS2 noisy, TS3 noisy, TS4 noisy and TS5 noisy which

indicate if an instance was identified to be noisy in any of the data sets TS1P, TS2P,

TS3P, TS4P and TS5P. The result is data set DSP.

5. DSP is split in DSP clean and DSP noise. DSP noise contains all instances which

hold ”true” in four of the values for TS1 noisy, TS2 noisy, TS3 noisy, TS4 noisy and

TS5 noisy. DSP noise contains the remaining instances.

6. The noise cases are discarded.

56

Predictive Filtering Chapter 4

4.5 Predictive Filtering

This noise handling technique deletes misclassified instances from a data set after training

the decision tree on a data set and testing if instances in a different data set are classified

correctly. For this purpose the data set is split into n parts and as with the previous technique

n-1 parts are combined in order to create n overlapping parts of the original data set in order

to enable cross-validation. Another requirement is, as mentioned earlier, the discretisation of

the class variable, effort, to allow categorisation and therefore comparison of the actual values

against the predicted values. Both steps can again be followed in the algorithm described

Table 4.1. This filter works under the same principle as Brodley and Friedl’s [23, 24, 25]

partitioning filter. For the purpose of maintaining the simplicity and ease of comparison of

the approach only a single filter algorithm identifies an instance as noisy.

Each of the overlapping parts of the data set (training sets) are used in turn to train a

tree, which will be used to predict the class variable in the remaining parts of the data set

(test sets). Instances in the test sets where actual values of the class variable are not equal

to the predicted values of the class variable are considered as noisy and are filtered from the

data set.

The algorithm shown in Table 4.4 describes this procedure.

57

Predictive Filtering Chapter 4

Table 4.4: Algorithm for predictive filtering procedure

Algorithm for predictive filtering procedure

1. Build classification trees.

• Build classification trees TS1 Tree to TS5 Tree for each training set TS1 to TS5.

2. Predict discretised effort.

(a) Used TS1 Tree to predict discrete effort for DS5 resulting in probability values

for each of the ten possible bins for each instance.

(b) Used TS2 Tree to predict discrete effort for DS1 resulting in probability values

for each of the ten possible bins for each instance.

(c) Used TS3 Tree to predict discrete effort for DS2 resulting in probability values

for each of the ten possible bins for each instance.

(d) Used TS4 Tree to predict discrete effort for D3 resulting in probability values for

each of the ten possible bins for each instance.

(e) Used TS5 Tree to predict discrete effort for DS1 resulting in probability values

for each of the ten possible bins for each instance.

3. Assign predicted bin for discretised effort by choosing the bin with the highest proba-

bility. If a tie occurs, all predicted bins are considered to be correct.

4. Compare predicted against actual for TS1, TS2, TS3, TS4 and TS5. Instances where

predicted is not equal to actual are considered as noisy and are put into data set

DSF noise, the remaining instances are put into DSF clean.

5. The noisy instances are discarded.

58

Summary Chapter 4

4.6 Filtering and Polish

The polishing technique is based on a list of noisy instances which will be altered, or polished,

utilising a model built from a cleaned version of a data set. Whilst in Teng’s original imple-

mentation only ordinal or nominal values were tested, this test was altered to accommodate

the continuous nature of some of the variables in the software effort domain. As mentioned

above this was done by discretising the dependent variable.

The data set is cleaned, with the predictive filtering technique (see Section 4.5). The clean

data set is used to build a regression tree model which is used to predict the independent

variables and the dependent variable in turn. The CART algorithm only uses a subset of

all attributes to build the decision tree models. It establishes this subset by calculating

each attributes influence on the dependent variable. As a result only attributes included in

this subset are polished by using the predictions of the built regression tree. This polishing

approach was introduced by Teng in [179] and successfully evaluated by Teng in [180, 181].

Whilst in the first two investigations (presented in Chapter 5) Teng’s approach is taken as

is and noise is handled by polishing all attributes including the dependent variable, in the

final investigation (presented in Chapter 6) only the dependent variable is polished. This is

done for two reasons. The first reason is the fact that the study presented in Chapter 6 is a

simulation where random noise is artificial introduced exclusively to the dependent variable.

The second reason is in relation to the notion that data quality is strongly linked to a domain

and to the usage of a data. Since the problem domain in this thesis is effort prediction, noise

in the dependent variable effort is the focus. Noise is here seen as values destroying the

‘true’ relationship between the independent and dependent variables. By eradicating the

noise from this relationship from either side, the independent variables or the dependent

variables this relationship is theoretically rebuilt.

Table 4.3 shows the steps for the filter and polish approach.

59

Summary Chapter 4

Table 4.5: Algorithm for filtering and polish procedure

Algorithm for filtering and polish procedure

1. Build regression tree DSF clean Tree using DSF clean as training

set. The dataset cleaned by the predictive filtering technique was

used to train a new tree.

2. Predict values for attributes used by DSF clean Tree for DSF noise

one by one by swapping attributes from attribute to class variable.

Values for all attributes in turn are changed by predicting them

using the tree built in the previous step. Each attribute is being

used as dependent variable, allowing the polishing of all attributes.

4.7 Summary

This chapter presented three automated data cleaning techniques for software engineering

data sets. The three techniques are robust filtering, predictive filtering and filtering and

polish each representing one of three different noise handling approaches. Robust filtering

filters by combining training set and test set. Predictive filtering filters with different training

set and test set, and filtering and polish alters the values of instances flagged as noisy.

Robust filtering builds a classification tree based which is pruned and instances in pruned

nodes of the tree are eliminated. Therefore the pruned instances still have influence on a

new model.

Predictive filtering eliminates instances by predicting values for the class variable. If

predicted value does not match the actual value the instance is considered to be noisy, and

it will be eliminated without influence on a new model.

Filtering and polish predicts new values for the eliminated instances from the predictive

filtering technique, which minimises information loss.

60

Summary Chapter 4

The following two chapters (Chapter 5 and Chapter 6) describe three investigations in

which the three data cleaning techniques were tested for their noise cleansing effectiveness.

The Chapter 5 reports on two investigations which utilised a large real world data set, and

Chapter 6 reports on an investigation which utilised simulated data.

61

Chapter 5

Studies Based on the Analysis of a

Large Real World Software

Engineering Data Set

5.1 Introduction

This chapter and the next present investigations carried out to test the noise handling abil-

ities of the data cleaning techniques presented in the previous chapter. The investigations

presented in this chapter are testing the data cleaning techniques on a new real world data set

(EDS data set). A metrics expert familiar with the data set assisted with the investigations,

and provided insight into the data as well as verification and clarification of assumptions made

during the investigations presented in this thesis. The first investigation uses predictive ac-

curacy as a measurement for the effectiveness of the noise handling techniques. Predictive

accuracy has been used in machine learning to assess the effectiveness of cleaning algorithms

[181, 60, 87]. It is a clear, tangible and easily understood measurement, but it might lack

meaning, since it tends to distance the analyst from the real world problem domain and the

actual issues of data collection. The second investigation presented in this chapter used a

different proxy measure for the noise level. The EDS metrics expert provided benchmark

62

Introduction Chapter 5

values for plausible productivity values. These were then used to identify instances with

implausible productivity values. The techniques’ abilities to identify these instances will be

compared. This is seen as a more meaningful measure to the software engineering domain.

The chapter starts with a description of the EDS data set which was used in both studies

presented in this chapter. The EDS data set is new to the research community, and it was

an excellent opportunity to investigate data quality issues in an unknown real world software

engineering data set. Following the description of the data set are two sections on the two

investigations, which used the EDS data set in which the methodology, the results and the

conclusion of each investigation will be reported on.

63

The Data Set Chapter 5

5.2 The Data Set

This section provides some background information and a description of the software engi-

neering data set used in the investigations presented in this chapter.

The data in the data set was provided by EDS in form of a Microsoft Access file extracted

from a larger database (this file is from now on referred to as the ‘database’). EDS is a

large multinational computer service company, established in 1962, which is now known as

HP Enterprise Services [71]. It has maintained a metrics program for several years. The

database was provided by EDS in order to better analyse and understand their own data.

The initial focus was software productivity and its determining factors, which influenced the

extraction of related data. The database contains 213 tables which capture different aspects

of software engineering projects.

Two main views of the database - contained data were seen as of interest for possible

analysis and extraction. Project data was collected by EDS on a monthly basis providing a

snapshot of each month, and data was also gathered at completion of each project. Since the

focus of the initial analysis at the time of the data extraction was software productivity and

its influencing factors, productivity data were of special interest. It was decided to extract

data about closed projects only, in order to allow comparability. Tables 7.1, 7.2, 7.3, 7.4

and 7.5 in Appendix C list and describe the extracted attributes. Another two attributes,

described in Table 7.6, were derived from the extracted attributes Unadj FP Count Sum

(count of unadjusted function points of a project) and SumOfEffort Hours (count of effort

hours spent on a project). These were derived in order to allow productivity analysis.

The attributes Project ID and Project Full Name are purely administrative and were

extracted in order to aid identification purposes. These two attributes assisted the re-

examination of particular projects in more detail. Throughout the work on this data set

close contact with an EDS software metrics expert was maintained.

The extracted data set consists of 10434 entries for closed project from over 30 countries.

The extracted size measure for the single projects is unadjusted function points (UFP)

[51]. UFP were chosen to allow a comparability of the size measure of the single projects.

64

The Data Set Chapter 5

Table 5.1: Descriptive Statistics for UFP

Statistic Value

Mean 311.545

Standard Error 20.13

Median 128

Standard Deviation 797.82

Skewness 13.04

Range 19625

Minimum 1

Maximum 19626

Count 1571

EDS also captured size for some projects in lines of code (LOC), but this size measure

was not extracted from the database since comparability of projects is dependable on the

technology used and on adopted counting rules. EDS followed the IFPUG standard [74] to

calculate the adjusted function point count. Since there have been discussions about the

appropriateness of the function point adjustment it has been decided to extract UFP only.

A more comprehensive discussion about the issues related to size measures can be found in

[51].

The result of extracting only UFPs led to large numbers of missing values for the size

attribute. Only 1571 (15%) of the 10434 projects therefore contain size values. There are also

large amounts of missing values for effort. 8888 projects contained non-zero values for effort.

The projects vary in size as can be seen in Table 5.1 which contains descriptive statistics

for the UFP variable. The projects consequently vary also in the collected values for effort,

which is shown in Table 5.2.

65

The Data Set Chapter 5

Table 5.2: Descriptive Statistics for Effort

Statistic Value

Mean 5326.70

Standard Error 141.84

Median 1782.88

Standard Deviation 13372.18

Skewness 11.00

Range 410348.5

Minimum 0.5

Maximum 410349

Count 8888

The projects in the data set were collected from the beginning of the 1990’s until 2004

with the number of start and closing dates peaking in 2003 as can be seen in Figures 5.1 and

5.2, which show the histograms for the data set’s project start and close dates respectively.

The projects also vary in type and for which industry sector they were produced. The

project types in the data set are as follows:

• Enhancement

• New Development

• Infrastructure

• Maintenance

• Production Support

• Other Projects & Services

Figure 5.3 shows a pie chart showing the proportion of projects according to type. It can be

seen that most projects are related to production support and other services, thus explaining

66

The Data Set Chapter 5

Figure 5.1: Project Start Year Histogram

Figure 5.2: Project Close Year Histogram

67

The Data Set Chapter 5

Figure 5.3: Pie Chart of Project Types

missing values for the size measure since they do not involve the development or fixing of

source code.

Table 5.3 lists the industry sectors for projects in the data set, and how many projects

for each industry sector exist in the data set. It can be seen that the manufacturing sector

provides most projects (49%).

68

The Data Set Chapter 5

Table 5.3: Number of Projects for Industry Sector

Industry Sector Number of Projects

Academic 6

Aerospace 152

Communications 962

Distribution 64

Military 29

Electrical 7

Engineering 115

Financial 1442

Government 540

Leisure 3

Manufacturing 5085

Health 440

Oil 20

Retail 109

Service 112

Transportation 676

Systems Integration 220

Utility 52

Other 314

Missing Entries 86 (1%)

69

Data Quality Issues in the Data Set Chapter 5

5.2.1 Data Quality Issues in the Data Set

An early investigation of the data set [108] highlighted possible data quality issues. The

analyses of the data set without addressing these data quality issues was seen as futile. This

recognition was one of the motivations leading to the work presented in this thesis.

As already mentioned earlier in this chapter the data set contains large amounts of missing

values. The most crucial here considered are effort and size. In one of the investigations

presented this chapter (Section 5.4.2) missingness was considered as an contributing factor

for the issues with one of the data cleansing techniques. In terms of this thesis missingness

is recognised as a dimension of data quality and as a possible data quality issue, but it is

beyond of the scope of the present work.

Other data quality issues recognised during the preliminary analysis presented in [108]

were double entries and extreme productivity values, which were considered implausible by

the metrics expert who assisted with the data analyses.

The issues in the data set can be caused by different reasons. A possible cause could be

data entry issues where mistakes are made unintentionally due to unclear entry procedures

and unclear entry units. For instance, effort could be recorded in hours or days. A confusion

of the two would clearly lead to erroneous records. Another cause is the fact that collecting

software project data is usually only one of many tasks of software engineers [102], and

workload pressures paired with relative low priority of the data collection task can also lead to

unintentional mistakes. A further possible cause for data quality issues can be deduced from

information elicited during discussions with the software metrics expert. It is appears that

possible management pressures led to software engineers obscuring exceptional performance

data.

The following section will describe the first of two investigations presented in this chapter

testing the merit of three different noise handling techniques .

70

Comparison of Predictive Accuracy Chapter 5

5.3 Comparison of Predictive Accuracy of the Three Data

Cleansing Techniques

This investigation is the first of two presented in this chapter. It was first reported on in [110].

It compared the predictive accuracy of models built after applying the three noise handling

techniques predictive filtering, robust filtering and filter and polish. Predictive accuracy is

a measure used to assess the effectiveness of classifiers and can be used to evaluate noise

reduction techniques.

5.3.1 Methodology

The effectiveness of filtering, robust filtering, and filtering and polish were assessed using

misclassification as a proxy measure of their effectiveness at dealing with noise. This study

included 8911 instances rather then the 8888 instances used in the second study presented in

this chapter. This is due to the inclusion of instances that contained zero values for effort1.

These zero effort values were excluded from the subsequent study, since after discussion

with the EDS metrics expert they were seen as missing values for effort. As mentioned in

the previous chapter the discretisation of the class variable only produced five bins in this

investigation. This was altered in the subsequent investigations to 10 bins since five bin

discretisation was seen as too coarse for a continuous variable as effort.

The data were then artificially corrupted by manually introducing labelling or random

errors into the attributes of 0 to 40% of instances. For nominal attributes, a noise level

of x% means that the value of each attribute and the target class is assigned a random

value x% of the time, with each alternative value being equally likely to be selected. For a

numerical attribute, a random value was selected after discretisation of each attribute. Each

bin resulting from the discretisation had an equal probability to be selected other than the

the present value. This ensured that an attribute would be recognisable as noise even after

discretisation, since an altered value could still fall in the same bucket as the not-noisy value.

With this scheme of inducing noise, the actual percentage of noise is always lower than the

1The reduction of the data set was not seen of much impact since 23 out of 8911 is less than half a percent.

71

Comparison of Predictive Accuracy Chapter 5

theoretical noise level, as sometimes the random assignment would pick the original value

(especially for nominal attributes). The actual percentages of noise (“Actual Noise Level

(%)”) are shown with the intended noise levels (“Artificial Noise Level (%)”) in Table 5.4.

After the data set was subjected to the three different data cleaning techniques each

cleaned version of the data set was split into test set (20%) and training set (80%) in order

to produce five classifiers. The percentage of classification accuracy of all classifiers was

averaged and noted to allow a comparison of the performance of the different noise handling

methods under different noise levels.

5.3.2 Results and Conclusion

The results of this study are shown in Table 5.4. It presents the level of accuracy of the

classifier built from cleaned versions of the EDS data set using predictive filtering, robust

filtering, and filtering and polish. The accuracy level for the classifier built from the uncleaned

data set is shown too to provide a comparison of the different cleaning methods against the

do-nothing approach. It should be noted that higher accuracy implies less noise. The first

row of the table reports the noise level used to corrupt the data and the second row shows

the actual percentages of the corrupted training data (see previous section). It can be seen

that filtering and polish, and robust filter performed equally well when no artificial noise was

introduced. They showed higher accuracy to the do-nothing approach and the predictive

filtering approach which was not significantly different to the do-nothing approach. As the

noise level was increased it can be seen that the filtering and polish approach had higher

classification accuracy in comparison to the other approaches. Summarising the results given

in Table 5.4 it can be seen that filtering and polish out performed the other two data cleaning

techniques. Filtering and polish was followed in overall performance by the robust filtering

technique and then by the predictive filtering technique.

These results were considered as encouraging, but predictive accuracy only indicates how

well a model built from a data set predicts instances of another data set and it does not

consider domain specifics. The second investigation presented in this chapter was designed

to assess the data quality from a software engineering point of view considering the specifics

72

Comparison of Predictive Accuracy Chapter 5

Table 5.4: Classification accuracy - EDS data

Artificial Noise

Level (%)

0 10 20 30 40

Actual Noise Level

(%)

0.0 9.6 17.2 25.6 34.1

Methods:

Do nothing 73.9 70.8 66.5 61.9 57.3

Robust filter 79.3 75.2 73.1 70.7 65.0

Filtering 74.8 71.6 69.2 66.7 62.5

Filter & Polish 80.3 77.4 76.1 73.1 67.9

of software effort data.

73

Comparison of Implausible Value Cleansing Chapter 5

5.4 Comparison of Implausible Value Cleansing of Three Data

Cleansing Techniques

This study was designed to approach the issue of validating the three noise handling tech-

niques with a stronger focus on domain specific characteristics of the EDS data set. It was

believed that the previous investigation provided a good indicator for the effectiveness of the

noise handling techniques, but it did not accommodate any domain knowledge. This follow-

up study was first reported on in [111]. It utilised the expertise of the EDS metrics expert

mentioned above and his specific domain knowledge about the data set. Metrics experts have

also been used by Khoshgoftaar and colleagues in [89], [191] and [192], but in these papers it

is not clear what specific information was provided by the metrics expert. In [89] the domain

expert identified noisy instances in a data set, but it is not apparent what characteristics

constitute a noisy instance. In [191] and [192] the metrics expert evaluated ranks of potential

noisy instances provided by the authors’ noise handling techniques. How this evaluation was

carried out and against what guidelines the ranks were tested is not clear. For investigation

presented in the following sections the EDS metrics expert provided benchmark values for

plausible values for productivity. Thus enabling the employment of these proxy measures to

count the number of highlighted problematic instances and the noise handling techniques’

ability to identify and cleans them.

5.4.1 Methodology

For the experiment presented in this section problematic instances in the data set were iden-

tified and flagged. Since the original data set contained historical data it was impossible to

determine with complete certainty if an instance is noise. The EDS metrics expert provided

minimum and maximum values for possible productivity levels to be used to compare in-

stances remaining in the cleaned versions of the data set. Values that did lay outside these

bounds were deemed to be implausible. These were then searched for in the remaining 8888

instances and in the cleaned versions of the data set produced by predictive filtering, robust

filtering, and filter and polish.

74

Comparison of Implausible Value Cleansing Chapter 5

5.4.2 Results and Conclusion

Table 5.5 shows a comparison of the three different noise handling techniques and the bench-

mark approach of doing nothing. Recall that since the EDS data set is drawn from the real

world any definitive statements cannot be made concerning the ‘true’ noise level. Conse-

quently proxy measures were used based upon the ability of a rule tree classifier to correctly

classify the project effort of each instance and also to isolate implausible instances. The ini-

tial data set contained n = 8888 instances after projects are eliminated where development

effort was unknown. The number of instances eliminated, e depended upon the technique.

However, note that the filtering and polish method eliminated zero instances (also the do-

nothing strategy) since values were edited rather than removed. This might be seen as an

advantage compared with the robust filtering method which eliminated more than 6200 in-

stances (i.e. in excess of 70% of all cases) and the filtering method which eliminated more

than 5800 instances (i.e. in excess of 65% of all instances)2. Next it can be observed the

relative number of implausible instances, i that were not identified and therefore not elim-

inated. For the do-nothing technique all 347 remained whereas the robust filter was able

to eliminate just over 88% of such instances. This is indicative of the effectiveness of the

approach inasmuch as it may be believed that this gives an indication of the ability of the

technique to remove the non-implausible noisy and therefore unidentified instances. The

surprising value for i is for the filtering and polish technique which actually generated new

(i.e. not previously contained in the data set) implausible instances. This is a consequence

of the way in which new values are imputed for those cases that are filtered. It is also consis-

tent with Teng’s results [179, 180]. Ultimately it is not believed that this fact is too serious

since implausible instances can always be detected algorithmically. The other instances that

are contained in the data set that are problematic were those that had zero productivity

values. These may be considered as a special instances of implausible value, however, the

cause is due to missing values rather than noise. As stated previously the data set contained

a substantial number, 7436, of problematic instances where size information was unavailable

2This very high level of instance elimination may seem surprising but it should be noted that the majority

of instances did not even contain size information so that even productivity rates could not be calculated.

75

Comparison of Implausible Value Cleansing Chapter 5

so productivity cannot be computed. Since these cases were demonstrably of low quality one

might expect an effective noise detection approach to eliminate a significant proportion of

these instances. The number remaining is given as z in Table 5.5 such that low values are

to be preferred. It can be seen that the identification of these values by all three methods

was similarly effective. The filter and polish approach left the same number of zero pro-

ductivity values in the cleaned data set as the filter approach. This is due to the technique

applied to polish the noisy instances. Whilst the values of noisy instances are altered, the

instance which were identified by the filter method as not noisy are left as is. It has to be

noted that even if all three methods identified nearly equal numbers of zero productivity

levels the ratio of zero levels against remaining instances was best for the filter and polish

method. This is also partially reflected in the overall level of problematic instances after the

application of the three methods. Whilst the filter methods’ performance was just under

the baseline, the robust filter method resulted in a increase of the ration of problematic

instances against remaining instances. The best performance could be observed for the filter

and polish method. Therefore it can be argued that when using either misclassification rate

or proportion of implausible instances not eliminated the filter and polish technique is to

be preferred. Another interesting observation of this investigation is that variables which

might be considered as crucial for effort prediction were not always used in the building of

the trees. The size measure was in some cases omitted from the final models. This might be

due to the large amount of missing and therefore imputed data.

76

Comparison of Implausible Value Cleansing Chapter 5

Table 5.5: Misclassified v. Classified Instances by Data Quality Technique

Noise Handling Technique

Measurements ‘do-

nothing’

Predictive

Filtering

Robust

Filtering

Filtering

and

Polish

Total # of instances (n) 8888 8888 8888 8888

Noisy instances eliminated (e) 0 5873 6243 0

of instances remaining (n-

e)

8888 3015 2645 8888

of implausible instances re-

maining (i)

347 113 39 1267

of zero-productivity in-

stances remaining (z)

7436 2469 2430 2469

% of implausible instances re-

maining (i / n-e) x 100

3.90 3.75 1.47 14.26

% of implausible instances re-

maining of original identified

(i/347) x 100

100 32.56 11.24 365.13

% of zero-productivity re-

maining of original identified

(z / 7436) x 100

100 33.20 32.68 33.20

% of implausible instances

and zero-productivity in-

stances remaining of original

identified ((i+z) / n-e) x 100

87.57 85.64 93.35 42.03

77

Conclusion of Investigations Based on Real World Data Set Chapter 5

5.5 Conclusion of Investigations Based on a Real World Data

Set

This chapter presented two investigations which were based on a new large software engi-

neering data set and which tested the data cleansing capabilities of the three noise handling

techniques presented in Chapter 4 against the do-nothing approach. The two investigations

had to utilise proxy measures since the true noise level of a real world data set cannot be

known.

The first investigation used predictive accuracy as a measure for the data cleansing ca-

pabilities. The data set was induced with additional artificial noise, and after application of

the techniques the classifier’s predictive accuracy was tested. The results indicated that the

filtering and polish technique performed best in increasing predictive accuracy. The robust

filtering technique performed second best followed by the predictive filtering approach. All

three data cleansing techniques resulted in higher predictive accuracy than the do-nothing

approach.

For the second investigation, implausible values were identified by a metrics expert fa-

miliar with data set. After applying the noise cleansing techniques the numbers of identified

implausible values were compared. The robust filtering technique performed best in lowering

the number of implausible values, followed in performance by the predictive filtering tech-

nique and the do-nothing approach. The filtering and polish technique actually increased

the number of implausible values. However this negative impact was moderated by the fact

that implausible values are easily identified and since the filtering and polish technique re-

tained all instances whilst eliminating zero values in the dependent variable. Nevertheless,

the inconsistencies in the results between the first and the second investigation are puzzling.

Since the true noise level of a real world data set cannot be known with 100% certainty,

there are limitations to accuracy of investigations based on real world data. Real world data

provide opportunity to test techniques in a real context, but introduce uncertainty to the

measurements. Therefore a subsequent investigation should deal with this uncertainty.

The next chapter presents an investigation which introduced certainty by simulating data

78

Conclusion of Investigations Based on Real World Data Set Chapter 5

sets with known noise levels. The creation of the simulated data sets were based on the data

set presented in this chapter in order to assure continuity of the overall research questions,

and to ensure domain specific characteristics are maintained.

79

Chapter 6

Evaluating Noise Handling

Techniques With Simulated Data

6.1 Introduction

The previous chapter reported on investigations which tested the data cleaning capabilities

of robust filtering, predictive filtering and filtering and polish on a large real world data set.

Whilst the investigations indicated that the techniques can improve the quality of a given

data set against the do-nothing approach, the fact that the true extent of noise in a given real

world data set cannot be known is a limitation of using real data for the evaluation of noise

handling techniques. Another issue with real world data is the influence of factors which

might obscure the true noise detection capabilities such as missingness, which is beyond the

scope of this thesis. A solution to these issues of uncertainty of noise in a real world data

set is to use simulated data to evaluate the noise handling techniques.

This chapter reports on an investigation which used simulated software engineering data

sets, which were modelled on the real world software engineering data set presented in Chap-

ter 5 as basis for tests of the performance of the three noise handling techniques. Simulation

of the data sets ensured that the true values for each instance in a data set is known. The

simulated data sets were then introduced with artificial noise, with varying noise levels, such

80

Introduction Chapter 6

that the true noise levels are known to the analysts.

The simulation process provides control in empirical investigations, and it has been suc-

cessfully used in the software cost domain by Pickard et al. [143] and Shepperd and Kadoda

[163]. It can also be used to control different aspects of noisy environments, like missingness

and unknown noise levels, which can confound the results of investigations. The investi-

gation presented in this chapter only tests the data cleaning techniques on random noise.

Systematic noise is beyond the scope of this investigation.

The chapter starts by describing the methodology, which includes a description of the

data simulation process, the noise imputation method and the noise cleansing process. This

is followed by a results and conclusion section.

81

Methodology Chapter 6

6.2 Methodology

The investigation presented in this chapter relies on a blind evaluation, where the data

cleaning assessments were carried out without knowledge about the production of the test

data. This blind evaluation was achieved by separating the simulation process from the

data cleaning process through allocation of these tasks to two different researchers. The

simulated data sets were created and induced with artificial noise by one researcher, and

another researcher applied the data cleaning techniques without knowledge of the underlying

model of the data and without knowledge of the induced noise levels. The test data was

comprised of four simulated data sets which were induced with artificial noise. The separation

of data creation and noise handling technique assessment is believed to be a strength of this

investigation since it aided an unbiased evaluation.

6.2.1 Simulation of Test Data Sets and Artificial Noise Imputation

The simulated data sets were modelled on a cleaned version of the EDS data set, which

was presented in Chapter 5. The EDS data set was cleaned using the predictive filtering

technique, since this technique did not produce new noisy instances like the filtering and

polish technique, and since it proved to be less information expensive, meaning it eliminated

fewer instances, than the robust filtering technique as shown in the investigations presented in

the previous chapter1. Additionally the EDS data set was also cleared of instances containing

missing values in any of its attributes. This was done to avoid the influence of missingness

on the results, which was beyond the scope of this investigation. The resulting data set

contained 123 instances2.

The next step of the preparation of the simulated data sets was the examination of the

relationship of Data 123’s attributes. From previous investigations it was found that the size

attribute was the single most influential attribute in the prediction of the response variable

effort. The previous investigations and the work by Kitchenham [97] led to the assumption

that the underlying relationship between effort and size is a linear one. Therefore the four

1All three techniques were described in Chapter 4
2The cleaned version of the data set will from now on be called Data 123, since it contains 123 instances.

82

Methodology Chapter 6

simulated data sets were created using the model Y = a1X1 + a2z1 + a3z2 where Y is effort,

the response variable, X is size and z1 and z2 are two levels, in form of dummy variables

taking on the values of either ’1’ or ’0’ of a categorical variable Z (note that the model can

contain more than one categorical variable, which would be added in the same way as Z by

creating dummy variables.). Each simulated data set had a different linear distribution. The

simulated data sets were all of the same size, 123 instances, and had no missing values. It is

important to note again that, whilst missingness is an important issue, it is beyond the scope

of the investigations of this thesis. As indicated in the previous chapter it is suspected that

missingness contributed to issues with one of the three noise handling techniques when the

filtering and polish technique created more implausible values then were originally present

in the data set.

Noise Imputation

The four simulated data sets were induced with noise in the response variable at levels of

10, 30, 60 and 90 percent. Considering that noisy values are essentially values destroying

and confounding the relationship between the input attributes and the response variable

adding artificial noise to the response variable is sufficient, since the model used to create

the relationship is not appropriate any more. Also the artificial noise introduced into the

simulated data sets consisted only of random noise since systematic noise is beyond the scope

of the presented investigation.

For the simulated data sets noise was produced using a random number generator creating

normally distributed values between +3000 and -3000. Table 6.1 shows that the actual

values generated by the random number generator were between 2679.06 (highest maximum)

and -1488.65 (lowest maximum). The statistics in this table indicate normally distributed

values were produced. Since this thesis did not investigate the causes of noise, only random

noise has been investigated. Systematic noise, since it follows some system and therefore is

influenced by some mechanism, is beyond the scope of this investigation. The suspicion is,

that systematic noise is more complex to deal with than random noise, and more knowledge

about the underlying mechanisms need to be available in order to identify systematic noise.

83

Methodology Chapter 6

For simulated data set one (SDS1) 12 instances were induced with noise producing an

approximate noise level of ten percent (Table 6.1 also shows the actually achieved noise

level). Simulated data set two (SDS2) had 37 instances induced with noise resulting in an

approximate noise level of 30 percent. Simulated data set three (SDS3) had 74 instances

induced with noise resulting in an approximate noise level of 60 percent. Simulated data set

four (SDS4) had 111 instances induced with noise resulting in an approximate noise level of

90 percent. The instances to be corrupted with noise were chosen at random. If the addition

of noise in an instance resulted in negative or zero values in the response variable due to

negative noise values a different instance was chosen for the addition of noise, since negative

or zero effort is not possible in the real world.

6.2.2 Data Cleansing

As mentioned above this part of the investigation has been carried out without the author’s

knowledge of the underlying distribution of the data in the clean data sets. This was done

in order to avoid bias, and to avoid unconscious assistance for one or all cleansing methods.

The three techniques robust filtering, predictive filtering and filtering and polish were applied

as described in Chapter 4.

84

Methodology Chapter 6

Table 6.1: Summary of the Simulated Data Sets

Statistic SDS1 SDS2 SDS3 SDS4

Mean -52.84 182.01 131.43 -120.78

Standard Error 304.39 160.52 115.31 87.67

Median -67.41 220.06 134.46 -101.11

Standard Deviation 1054.44 976.42 991.92 923.68

Sample Variance 1111845.24 953386.43 983908.92 853176.17

Kurtosis -0.93 0.10 -0.57 0.19

Skewness 0.33 -0.26 0.06 0.15

Range 3402.28 4476.02 4839.91 4758.05

Minimum -1488.65 -2076.57 -2160.85 -2318.90

Maximum 1913.63 2399.45 2679.06 2439.15

Sum -634.12 6734.25 9726.03 -13406.07

Count 12 37 74 111

Total number of

instances in the data

sets

123 123 123 123

Noise in X % of

instances

10 30 60 90

Actual Noise Level

in %

9.76 30.08 60.16 90.24

85

Results Chapter 6

6.3 Results

This section discusses the results of the investigation presented in this chapter. First a

comparison of the noise detection capabilities of two of the data cleaning techniques are

presented, followed by a presentation of the noise reduction

6.3.1 Noise Detection Capabilities

This section of the paper compares the noise detection capabilities of two of the three data

cleaning techniques. Only robust filtering and predictive filtering were compared for their

noise detection capability since filtering and polish does not discover noisy instances, but only

alters the instances flagged as noisy by the filtering technique. It was investigated if the two

techniques could correctly identify noisy instances. Robust filtering and predictive filtering

eliminate instances which they identify as noisy, thus categorising an instance as noisy or

not noisy. This was compared to the actual noisiness, i.e. noisy or not noisy, allowing a

comparison of matches and mismatches.

Tables 7.7 to 7.18 show the match/mismatch of the instances highlighted by robust fil-

tering and predictive filtering and the instances actually containing noise. Tables 7.7, 7.10,

7.13 and 7.16 in Appendix D show the match/mismatch for the robust filtering technique.

The tables 7.8 to 7.18 show the match/mismatch for the predictive filtering technique. The

predictive filtering technique required the descretisation of the response variable effort into

deciles. The predictive filtering technique then predicted the values and any mismatch was

highlighted as noisy. Whilst Tables 7.8, 7.11, 7.14 and 7.17 in Appendix D show the agree-

ment for all misclassified instances, Tables 7.9, 7.12, 7.15 and 7.18 in Appendix D only show

the instances where the misclassification was greater or equal than two3.

Table 6.2 summarises these results in the statistics precision, recall, F1-score and Cohen’s

Kappa. Whilst precision, recall and F1-score allow the comparison of the detection capa-

3Due to n-fold cross validation n classifiers are built. Each classifier either predicts correctly or not. If

correctly predicted an instance is classified as noisy, otherwise the instance classified as not-noisy. Since each

classifier predicts instances for n-1 parts a a data set classification can vary between 0 and n-1, where 0 is

the result of no classifier flagging the instance as noisy, and where n-1 all classifiers flag the instance as noisy.

86

Results Chapter 6

bilities of the two techniques, they do not provide a general judgement of the techniques.

The Cohen’s Kappa statistic with Landis and Koch’s [101] interpretation4 of the Cohen’s

Kappa statistic provide a benchmark to compare the classification agreement against. The

statistics for the robust filtering (RF in Table 6.2) technique for SDS1 could not be calcu-

lated since zero noisy instances were correctly identified. This comparably bad performance

of the robust filtering technique can also be observed in the results of the other data sets.

Whilst its performance increased with increasing noise level5 it was still performing worse

than the predictive filter technique. It can be seen that the Cohen’s Kappa for the robust

filtering technique never exceeds 0.06. Therefore the agreement is negligible. The predictive

filter approach rejecting all misclassifications (PF +1) and the predictive filtering approach

rejecting only misclassifications greater or equal than two (PF +2) performed better than

the robust filtering technique. Whilst precision is higher in all data sets for PF +2 recall is

higher in all data sets for PF +1. Apart from the 10% noise level in SDS1 where F1-score

and Cohen’s Kappa is lower for PF +1 than PF +2 and the lower Cohen’s Kappa for the

30% noise level in SDS2, PF +1 slightly outperforms PF +2. It has to be stated that both

approaches do not exceed fair agreement either. Overall, it appears that the PF +1 approach

was the best performing approach.

4The Kappa value benchmarks for agreements vary depending on the number of categories and their

weighting, and they might be based on researchers experiences [167]. Often quoted are the Landis and Koch

standards, which provide the following interpretation of kappa values: < 0 = poor, 0.00 to 0.20 = slight, 0.21

to 0.40 = fair, 0.41 to 0.60 = moderate, 0.61 to 0.80 = substantial, and 0.81 to 1 = almost perfect [101].
5Remember; noise levels for data sets: SDS1 10%, SDS2 30%, SDS3 60% and SDS4 90%

87

Results Chapter 6

Data set/Technique Precision Recall F1-Score Cohen’s Kappa Landis-Koch

Interpretation

SDS1 RF n/a n/a n/a ∼-0.07 no agreement

SDS1 PF 1+ ∼0.17 ∼0.83 ∼0.14 ∼0.14 slight agreement

SDS1 PF 2+ ∼0.38 ∼0.42 ∼0.20 ∼0.33 fair agreement

SDS2 RF ∼0.38 ∼0.14 0.10 ∼0.05 slight agreement

SDS2 PF 1+ 0.50 ∼0.58 ∼0.27 ∼0.31 fair agreement

SDS2 PF 2+ 1 ∼0.27 ∼0.21 ∼0.34 fair agreement

SDS3 RF ∼0.68 ∼0.26 ∼0.19 ∼0.06 slight agreement

SDS3 PF 1+ ∼0.76 ∼0.59 ∼0.33 ∼0.29 fair agreement

SDS3 PF 2+ ∼0.96 ∼0.30 ∼0.22 ∼0.24 fair agreement

SDS4 RF ∼0.90 ∼0.32 ∼0.23 ∼0 no agreement

SDS4 PF 1+ ∼0.95 ∼0.66 ∼0.39 ∼0.14 slight agreement

SDS4 PF 2+ 1 ∼0.37 ∼0.27 ∼0.10 slight agreement

Table 6.2: Comparison of Precision, Recall, F1-Score and Cohen’s Kappa

88

Results Chapter 6

6.3.2 Noise Reduction Capabilities

This section of the chapter compares the noise reduction capabilities of the three noise

handling techniques. For this purpose the residuals noise levels of each technique in data

sets SDS1, SDS2, SDS3 and SDS4 were compared against the do-nothing approach, where

the data set was left as is. Tables 7.19, 7.20, 7.21, 7.22, 7.23, 7.24, 7.25, 7.26, 7.27, 7.28,

7.29 and 7.30 in Appendix D show the results of a Mann-Whitney tests to show the mean

comparisons of the residual noise levels against the do-nothing approach.

Table 6.3 summarises the results of the outcomes of the Mann-Whitney tests. It is shown

if the noise level was increased or decreased. A statistically significant difference of the means

within a 95% confidence interval is indicated by a “Y”. A “N” indicates that the difference

was not significant. For each data set an interpretation of the performance is given as either

“Best”, “Middle” or “Worst”. The predictive filtering technique appears to be the most

effective technique in reducing the noise levels of the data sets. The reduction is not always

statistically significant, but the technique was consistent in its outcome. The robust filtering

technique was less consistent in its outcome, decreasing the noise level for data sets SDS2

and SDS3, but increasing the noise levels for data sets SDS1 and SDS4 6. The filtering

and polish technique was consistently increasing the noise levels. The differences between

the noise levels of the untreated data set (do-nothing) and noise levels of the the data set

cleaned with the filtering and polish were not statistically significant, but the increase of

noise is the opposite of what was actually attempted and is seen as very problematic.

6As mentioned before, the noise levels were 10% for SDS1, 30% for SDS2, 60% for SDS3 and 90% for

SDS4.

89

Results Chapter 6

Robust Filtering Predictive Filtering Filtering and Polishing

Data set Significant

Difference

Technique

Comparison

Significant

Difference

Technique

Comparison

Significant

Difference

Technique

Comparison

SDS1 Y

Increased

Noise

Worst Y

Decreased

Noise

Best N

Increased

Noise

Middle

SDS2 Y

Decreased

Noise

Best Y

Decreased

Noise

Best N

Increased

Noise

Worst

SDS3 Y

Decreased

Noise

Best N

Decreased

Noise

Middle N

Increased

Noise

Worst

SDS4 Y

Increased

Noise

Worst N

Decreased

Noise

Best N

Increased

Noise

Middle

Table 6.3: Summary of the Residual Mean Comparisons

90

Conclusion of Investigations Based on Simulated Data Sets Chapter 6

6.4 Conclusion of Investigations Based on Simulated Data

Sets

This chapter reported on an investigation based on simulated data sets which were corrupted

with artificial random noise testing the three data cleaning techniques presented in Chapter

4. The data sets were based on the real world software engineering data set which was used

in the previous two investigations reported on in Chapter 5. Simulated data was used since

it allowed to control confounding factors. It also provided a test environment with known

noise levels.

The first part part of the investigation compared the noise detection capabilities of ro-

bust filtering and predictive filtering. The results showed that predictive filtering performed

better than the robust filtering technique in identifying noisy instances, but none of the two

techniques performed convincingly well. The second part of the investigation compared the

noise reduction capabilities of robust filtering, predictive filtering and filtering and polish.

Again the predictive filtering technique performed best, followed by the robust filtering tech-

nique leaving the filtering and polish technique performing worst, but the changes in noise

levels were not always significant.

Overall concluding from the results of the simulated data investigation it can be said

that none of techniques performed convincingly well. In fact, concluding from these results

robust filtering and filtering and polish performed very poor, and based on the presented

results, they would not be recommended to be used. The predictive filtering technique was

the best performing technique out of the three, but its performance was also not convincing.

Comparing these results to the results of the investigations presented in Chapter 5 these

results appear confusing. Whilst in the first investigation presented in Chapter 5 the filtering

and polish technique clearly performed best in improving predictive accuracy, its ability

in dealing with implausible values was very weak. In fact, it created more implausible

values. One redeeming feature of the filtering and polish technique was that it retained all

instances of the data set and decreased the number of zero values. The poor performance

of the filtering and polish technique was repeated in the investigation which was based on

91

Conclusion of Investigations Based on Simulated Data Sets Chapter 6

simulated data. This reversal of performance could also be observed comparing the results

of predictive filtering in all three investigations. Whilst it performed least well in improving

predictive accuracy, it performed second best in reducing implausible values, and it was

the best performing technique for the simulated data investigation. The robust filtering

technique was second best in improving predictive accuracy, it was the best technique in

identifying implausible values, and the performance of the robust filtering technique for the

simulated data investigation were a weak second best.

Very concerning are the differences of the outcomes of the investigation using predictive

accuracy and the other two investigations, raising doubts about the usefulness of measures

like predictive accuracy in measuring the effectiveness of data cleaning techniques. It also

provides an indication of the magnitude of the issues data quality and noise. The underlying

model in the simulation was very simplistic (i.e. linear), and the noise was symmetric and

random. This should have helped the noise detection techniques, but they still performed

badly.

The next chapter will summarise the findings of this thesis, discuss raised issues and

conclude with comments about the wider impact of the presented work. It will also discuss

limitations of the presented investigations with possible pointers to future research into data

quality in software engineering data sets.

92

Chapter 7

Conclusions

7.1 Summary of Research

The work presented in this thesis investigated data cleaning in empirical software engineering

with a specific focus on noise cleaning. It has been established that data quality can be

defined as ‘fitness for purpose’ of the data. Therefore domain purpose and data characteristics

are important factors for establishing the quality of data. In this thesis three noise cleaning

techniques namely predictive filtering, robust filtering and filtering and polish have been

evaluated for their ability in dealing with noise and not just outliers in software effort data.

Each of these techniques represent an approach for dealing with noise. Firstly, noise can be

identified by building a model which is built on a data set and instances in this data set not

following the rules of the majority of instances are filtered or ignored. Noise contributes to

the development of an initial model which will be penalised for being over complex. This

approach is represented by robust filtering. Secondly, noise can be filtered by training a model

on a different set of data then another set of data to be tested, such attempting to minimise

the association between underlying model and identified noisy instance. This approach is

represented by predictive filtering. For the third approach, noise is altered, polished, after

being identified first. This is done in order to retain maximum of information. This approach

is represented by the filtering and polish approach.

Since quality is domain dependent, it was essential to establish which instances were

93

Summary of Research Chapter 7

considered poor data quality, or in other words which instances were noisy. Noise can be

defined as an ‘unwanted’ disturbance in data. Outliers can also work as disturbance for

models, but they are not necessarily unwanted in software engineering data since they can

for instance indicate the start of new trends. In this thesis the position is taken that outliers

and noise differ in their creation and meaning for data analyses. Yet, they are often treated

as one by many researchers especially those who come from a machine learning background.

Outliers are instances which exhibit exceptional values from the rest of a given population,

and such might appear suspicious, but might be the result of valid data creation mechanisms

which are either not understood or neglected. Noise are data which can appear exceptional,

but result from intentional or unintentional erroneous data creation or corruption.

Since there has been little research carried out in the effectiveness of automated noise

handling techniques in the empirical software engineering community, this thesis presented

three separate investigations assessing the data cleansing capabilities of the three noise han-

dling techniques, robust filtering, predictive filtering and filtering and polish, which were

presented in Chapter 4. These techniques represent each a different noise handling approach

and their effectiveness in cleaning software effort data from noise was tested.

A comprehensive literature review has been carried out to survey the empirical software

engineering literature in order to establish how noise, in the above described sense, has been

dealt with in the empirical software engineering community. The results of this systematic

literature review were presented in Chapter 3. The literature review clearly showed that

there is a gap in the research in empirical software engineering concerning the treatment of

noise. Whilst out of the 161 retrieved papers the majority considered poor data quality as

an issue, very little has been done to combat this issue. In particular the field of automated

noise detection and handling and the empirical assessment of poor data quality was under-

represented. Only 15 papers employed automated data cleansing techniques and only 21 out

of 161 papers attempted to assess data quality of software engineering data sets.

The first two investigations presented in Chapter 5 utilised a large industrial software

engineering data set (EDS data set), provided by a large multinational computer service

company, containing software project effort data. Following initial analysis of the EDS data

94

Summary of Research Chapter 7

set it was found to contain substantial levels of noise. Since the true noise level of a given

real data set cannot be known [37, 66] proxy measures had to be utilised to test the noise

cleansing capabilities in the two investigations utilising the EDS data set.

The first investigation using the EDS data set utilised the predictive accuracy of a clas-

sifier built from data sets cleaned with the three techniques. The most successful technique

was the filtering and polish technique, followed by robust filtering and predictive filtering.

All three techniques improved predictive accuracy against the do-nothing approach.

The second investigation, using the EDS data set, used the number of identified prob-

lematic instances as proxy measure for the data cleansing performance of the noise cleaning

techniques. A metrics expert familiar with the EDS data set provided thresholds values

for implausible productivity values enabling the identification of implausible instances. The

techniques’ ability to identify the instances with implausible productivity values and zero

productivity values was then compared. The robust filtering technique was the most effec-

tive technique in identifying implausible values, followed in performance by the predictive

filtering technique. The filtering and polish technique actually increased the number of im-

plausible values, but retained all instances of the data set. Robust filtering and predictive

filtering reduced the number of instances significantly hence being less information efficient.

The third investigation was based on simulated data sets, which were based on a cleaned

version of the EDS data set. Simulated data has the benefit, that the ‘true’ noise level of

a data set can be known, and specifics of a given domain can be incorporated. Since the

simulated data sets were based on the EDS data set, the domain specifics of the software effort

data were retained. The uncertainty about the ‘true’ noise level in real world data complicates

the assessment of noise cleaning techniques since proxy measures need to be utilised which

approximate noise cleaning capabilities. In simulated data noise levels are known. They

therefore provide analysts with a precise comparison of noise cleaning techniques. This

investigation was split into two parts. First, the noise detection capabilities of robust filtering

and predictive filtering were compared. Since filtering and polish utilises the predictive

filtering technique for identification of noisy instances, its noise detection capabilities did

not need to be compared. The predictive filtering technique performed marginally better

95

Summary of Research Chapter 7

than the robust filtering technique, but both techniques did not preform convincingly well in

identifying noisy instances. The second part of the investigation compared the noise cleaning

capabilities, that is the reduction of the overall noise levels, of all three techniques. Again the

predictive filtering technique performed better then robust filtering and filtering and polish,

and again none of the techniques performed significantly well.

A comparison of the results of the three investigations show that none of the techniques

performed particularly well. The first investigation utilising predictive accuracy resulted in

filtering and polish outperforming the other two techniques. In the two following investiga-

tions filtering and polish performed least well, but it had one redeeming feature, it retained

all instances. How helpful this feature is when the overall noise level is increased appears

questionable. Whilst performing better than the do-nothing approach in both investigations

based on the EDS data set, the two filtering techniques also did not perform exceptionally

well in the simulated data investigation.

In conclusion, what can be learned from these results? When applying automated noise

cleaning techniques caution about the confidence in these techniques should be taken. It has

been shown in this thesis that noise cleaning techniques can improve predictive accuracy, but

this does not necessarily mean that noise levels are lowered. Relying purely on predictive

accuracy can lead to a false sense of success as highlighted in differences of the results

of the three investigations. Whilst the first investigation clearly showed the merit of all

presented noise handling techniques the subsequent investigations reduced this confidence

into the findings of the first investigation. It should be remembered that predictive accuracy

is purely a measure of how well a classifier predicts new unseen instances. A combination of

investigations based on real world software engineering data and simulated data should be

utilised in order to investigate the ‘true’ effectiveness of noise cleaning techniques.

This was recently done by Yoon and Bae [205]1 when they compared the outlier detection

capabilities of five techniques against their own outlier detection technique in the software

effort domain. One of the five techniques was the filtering and polish technique, but es-

sentially Yoon and Bae compared the outlier detection capability of the predictive filtering

1This paper was published after the bulk of the work for this thesis was completed already.

96

Summary of Research Chapter 7

technique, since it is used by the filtering and polish technique. The noise correction abil-

ities of the filtering and polish technique were not tested. The other techniques compared

were hierarchical clustering, a frequent pattern analyser (less frequent patterns are seen as

noise) and the two techniques proposed by Khoshgoftaar and colleagues, PANDA and AOI2.

Yoon and Bae’s technique combines a measure of normality for each attribute with a pattern

analysis. When Yoon and Bae refer to outliers they seem to mean noise in the sense used in

this thesis since they introduced artificial noise into three real world project data data sets

and 48 simulated project data data sets. They criticise the filtering and polish technique

for comparing the interaction of attributes with the class variable one by one, when in fact

interactions between attributes in software project data exists, but in this thesis a more

practical approach was taken, where the the noise detection capabilities of the techniques

were tested without focussing on theoretical soundness. This practicality in approach is not

new in empirical software engineering. For instance ordinary least square regression, which

is based on the assumption that variables are orthogonal to each other when this is not

necessarily so, has been utilised widely in software effort predictions. The results from the

real world data showed that Yoon and Bae’s approach were the most effective and accurate

in identifying noise in all attributes. The predictive filtering technique detected most noisy

instances in dependent variable, but was least effective in identifying noise in all attributes.

This is related to the issue of class noise and attribute noise as discussed in Chapter 2. Since

independent and dependent variables can be swapped this is not seen as problematic. There-

fore it is believed that the full potential of the predictive filtering algorithm was not observed.

The AOI technique (which utilised PANDA) was least accurate since it identified too many

instances. Yoon and Bae’s simulated data evaluation indicated that with increasing size

of the data set their approach, AOI and hierarchical clustering showed increased detection

accuracy. PANDA and the frequent pattern analyser did not change in detection accuracy,

and predictive filtering actually decreased detection accuracy. The decrease of detection

accuracy is due to the fact that predictive filtering identified the same number of instances

as noisy in different sizes of data sets, indicating that increased number of instances in the

2Chapter 3 Briefly describes the papers where these two techniques were proposed.

97

Summary of Research Chapter 7

training set does not aid the discovery of new noisy instances. With increased noise levels

Yoon and Bae’s technique’s detection accuracy stayed stable. Predictive filtering was the

most effective in identifying noise in the dependent variable, but least effective in identifying

noise in dependent variables.

Yoon and Bae’s efforts are remarkable, especially since they systematically compared

noise cleaning techniques in different environments and combining the benefits of real world

data and simulated data. The problem in relation to the results of the filtering and polish

technique is that the purpose of the method has been misinterpreted. The technique has

been evaluated against its noise detection capabilities, but as mentioned above, filtering and

polish utilises predictive filtering for the detection of noisy instances, and its actual purpose

is to alter the identified instances. Also, it was criticised for only identifying noise in the

dependent and not in the independent variables, but again as mentioned above, this can be

changed by swapping dependent and independent variables. The relative poor performance

the technique showed in Yoon and Bae’s investigation is hardly relevant, as long as techniques

are compared for what they are.

Techniques can be improved. The aim of this thesis was to investigate data quality and

data cleaning in software engineering data. Therefore three noise cleaning techniques were

chosen which represented three noise cleaning approaches and their ‘true’ noise handling

capabilities were investigated. For instance filtering and polish could possibly be improved

by utilising more effective noise detection techniques, and more effective missing value im-

putation techniques could be applied to correct filtered instances.

Apart from the issue of evaluation of noise cleaning techniques, a practical conclusion

of the work presented in this thesis for empirical software engineering should be the incor-

poration of automated noise cleaning techniques into a holistic approach such as Kimball

[96], with elementising, standardising, verifying, matching, householding and documenting

as steps of preprocessing of data sets before analyses. Whilst the first four steps could be

partially fulfilled by automated noise cleaning techniques, householding and documentation

have to follow in order to make investigations replicable and thus increasing academic rigour.

The evaluations of the noise cleaning techniques presented in this thesis showed that that

98

Summary of Research Chapter 7

noise cleaning techniques should be applied cautiously, since effectiveness of a noise cleaning

technique indicated in an investigation does not necessarily prove its ‘true’ noise cleaning

effectiveness. Householding therefore would incorporate inspection of instances flagged as

noisy, and assuring noise correction was adequate if applied. Documentation also has to hap-

pen such that assumed noisy instances can be re-inspected in future analyses, such limiting

information loss if misclassified instances are re-validated.

7.2 Contributions

This section lists the contributions of this thesis.

• Provided clarification and distinctions of the terms noise and outliers

In this thesis noise and outliers are defined and their differences are clarified. Noise are

instances in a data set which result from intentional and non-intentional entry errors.

They are problematic since they distort and falsify the true underlying relationships

of attributes in the data set. Outliers are instances which are exceptional and could

be considered as problematic since they can have a leverage effect on the analysis of a

distributions. In contrast to noise, outliers can be valuable to the analyst since they

can indicate new trends in the data or the importance of unrecognised but still analysis

influencing factors.

• Systematic literature review of the empirical software engineering literature

searching for evidence of data quality considerations

An exhaustive systematic literature review has been carried out investigating to what

extent the empirical software engineering community has considered data quality. The

findings have bee quantified and provided a snapshot of the state of the issue of data

quality in empirical software engineering. The findings are:

– 161 papers considered noise or data quality. This is a very small proportion (about

1%) of all papers published in the empirical software engineering domain. This

shows that the issues of noise and data quality have been largely neglected by the

99

Summary of Research Chapter 7

community.

– The most dominant approach (31% of all 161 retrieved papers) to deal with poor

data quality was the improvement of data collection procedures. This often not

possible since analysts in the empirical software engineering domain have to work

with historical data and do not have influence on the data collection process [66].

Therefore it can only be a suggestion in many cases.

– The most dominant practical approach (22% of all retrieved papers) was manual

data quality checking. This is a costly process since it requires the full-time

attention of a analyst.

– 11% of all retrieved papers utilised data quality meta-data in order to identify

and eliminate poor data quality instances from a data set, but these meta-data

were surrogates for missingness only, and not for inaccuracy.

– To fields largely neglected by the community are the application of automated

noise handling, and empirical analyses of the data quality. The research into both

issues is limited and at time not replicable.

– None of the papers retrieved utilised data quality protocols. This is very prob-

lematic since it makes replicated studies difficult.

• Conducted a multi-pronged approach to investigate the effectiveness of

three noise handling techniques

Three complementary investigations have been carried out to research the effective-

ness of three noise handling techniques. The first investigation focussed on predictive

accuracy a measure widely used in the machine learning community. The results of

this investigation were quite positive especially for the filtering and polish technique.

The results of the following investigations contradicted the findings of the initial in-

vestigation for all techniques. This highlighted a potential weakness of the predictive

accuracy measure. In retrospect this seems logical since it only measures how well a

model built using a set of data predicts the outcomes of another set of data. Therefore

the conclusion is that reliance on predictive accuracy solely to measure the effectiveness

100

Summary of Research Chapter 7

of noise handling techniques to discover ’true’ noise is insufficient, especially not in a

domain where outliers are considered to be valuable instances.

• Highlight possible shortcomings of current automated noise handling tech-

niques

Whilst this thesis only investigated three noise handling techniques, their question-

able effectiveness highlights a shortcoming of automated noise handling techniques.

It is concluded that automated noise handling should be integrated into data quality

procedures like the one suggested by Kimball [96], where the domain knowledge is a

constant input into the data cleaning process. A silver bullet automated cleansing

technique might not be possible.

7.3 Limitations and Possible Future Work

The work carried out for this thesis resulted in the ascertaining of several issues which might

have limiting impact on the presented results and could pose threads to validity. Where

appropriate future work opportunities are listed.

• Multi-pronged approach to investigate the effectiveness of other noise han-

dling techniques

This thesis has only investigated the effectiveness of noise handling techniques which

utilised decision trees. Other machine learning techniques especially in the effort esti-

mation domain which can incorporate the continuous nature of the dependent variable

could be more effective. It should also be considered if these techniques could ac-

commodate more domain knowledge such that they could be fine tuned for the noise

cleaning task.

• Inefficiencies of bibliographic databases

Some of the bibliographic databases used for the systematic literature review created

problems for the literature search. The issues encountered were:

– The user interfaces of the databases were not all user friendly. Especially the

101

Summary of Research Chapter 7

ScienceDirect database had to incorporate iterative search refinement and could

not deal with very long search strings.

– The IEEE Explore database changed its user interface in between searches, thus

forcing editing and customising the initial searches to accommodate the new search

interface.

• Search terms with many synonyms

Data quality has many different synonyms. Not all synonyms might have been found

resulting in possibly missing some relevant papers. This issue was attempted to be

overcome by carrying out a pilot search and searching through candidate papers in

order to find possible search terms, but still not all possible synonyms might have been

found.

• Simplistic simulation

The simulated data sets used in this thesis were based on only one real world data set.

A simple linear relationship between independent and dependent variables was assumed

and used as underlying model. This might have aided the noise detection techniques,

which makes the findings even more poignant. Future investigations could investigate

different underlying models. Valid outliers could be modelled by introducing separate

models for their creation.

Apart from the future research opportunities connected to the above listed limitations

further research opportunities are:

• Development of unified data quality protocols for the empirical software

engineering community

The results of the systematic literature review show that none of the investigations used

data quality protocols. Data cleaning should utilise the usage of protocols describing

the data cleaning process. This would ensure rigour and repeatability of future em-

pirical software engineering investigations. The development of a unified data quality

protocol could help with easy identification of applied noise handling techniques and

102

Summary of Research Chapter 7

the identification of the noisy instances which then could be examined again by other

researchers improving academic rigour.

• More analyses of automated algorithms

More existing noise cleaning algorithms should be investigated, testing the algorithms’

effectiveness in different environments and on a range of data sets. Different envi-

ronments like data sets with occurrences of ‘true’ exceptional instances (outliers) with

modelled underlying relationships could be created, and an algorithm’s ability to detect

noise rather than the introduced ‘true’ exceptional instances could be tested.

103

Bibliography

[1] Bram Adams, Zhen Ming Jiang, and Ahmed E. Hassan. Identifying cross-

cutting concerns using historical code changes. In ICSE ’10: Proceedings of

the 32nd ACM/IEEE International Conference on Software Engineering, pages

305–314, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-719-6. doi:

http://doi.acm.org/10.1145/1806799.1806846.

[2] Moataz A. Ahmed and Zeeshan Muzaffar. Handling imprecision and uncer-

tainty in software development effort prediction: A type-2 fuzzy logic based

framework. Inf. Softw. Technol., 51(3):640–654, 2009. ISSN 0950-5849. doi:

http://dx.doi.org/10.1016/j.infsof.2008.09.004.

[3] Maurcio Amaral De Almeida and Stan Matwin. Machine learning method for software

quality model building. In Proceedings of the Eleventh International Symposium on

Methodologies for Intelligent Systems (ISMIS, pages 565–573, 1999.

[4] James H. Andrews and Tim Menzies. On the value of combining feature subset selec-

tion with genetic algorithms: faster learning of coverage models. In PROMISE ’09:

Proceedings of the 5th International Conference on Predictor Models in Software Engi-

neering, pages 1–10, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-634-2. doi:

http://doi.acm.org/10.1145/1540438.1540456.

[5] Oliver Arafat and Dirk Riehle. The commenting practice of open source.

In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference compan-

ion on Object oriented programming systems languages and applications, pages

104

Bibliography

857–864, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-768-4. doi:

http://doi.acm.org/10.1145/1639950.1640047.

[6] Jorge Aranda and Gina Venolia. The secret life of bugs: Going past the errors and

omissions in software repositories. In ICSE ’09: Proceedings of the 31st International

Conference on Software Engineering, pages 298–308, Washington, DC, USA, 2009.

IEEE Computer Society. ISBN 978-1-4244-3453-4.

[7] Erik Arisholm. Empirical assessment of the impact of structural properties on the

changeability of object-oriented software. Information and Software Technology, 48

(11):1046–1055, 2006.

[8] Phillip G. Armour. Software: hard data. Communication of the ACM, 49(9):15–17,

2006. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/1151030.1151043.

[9] Yoris A. Au, Darrell Carpenter, Xiaogang Chen, and Jan G. Clark. Virtual organi-

zational learning in open source software development projects. Inf. Manage., 46(1):

9–15, 2008. ISSN 0378-7206. doi: http://dx.doi.org/10.1016/j.im.2008.09.004.

[10] Martin Auer and Stefan Biffl. Increasing the accuracy and reliability of analogy-based

cost estimation with extensive project feature dimension weighting. In ISESE ’04:

Proceedings of the 2004 International Symposium on Empirical Software Engineering,

pages 147–155, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-

2165-7. doi: http://dx.doi.org/10.1109/ISESE.2004.22.

[11] Muhammad Ali Babar and He Zhang. Systematic literature reviews in software engi-

neering: Preliminary results from interviews with researchers. In ESEM ’09: Proceed-

ings of the 2009 3rd International Symposium on Empirical Software Engineering and

Measurement, pages 346–355, Washington, DC, USA, 2009. IEEE Computer Society.

ISBN 978-1-4244-4842-5. doi: http://dx.doi.org/10.1109/ESEM.2009.5314235.

[12] Adrian Bachmann and Abraham Bernstein. Software process data quality and char-

acteristics: a historical view on open and closed source projects. In IWPSE-Evol ’09:

105

Bibliography

Proceedings of the joint international and annual ERCIM workshops on Principles of

software evolution (IWPSE) and software evolution (Evol) workshops, pages 119–128,

New York, NY, USA, 2009. ACM. ISBN 978-1-60558-678-6.

[13] Sohaib Shahid Bajwa and Cigdem Gencel. What are the significant cost drivers for

cosmic functional size based effort estimation? In IWSM ’09 /Mensura ’09: Proceed-

ings of the International Conferences on Software Process and Product Measurement,

pages 62–75, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-05414-3.

[14] K. Bennett, E. Burd, C. Kemerer, M. M. Lehman, M. Lee, R. Madachy,

C. Mair, D. Sjoberg, and S. Slaughter. Empirical studies of evolving sys-

tems. Empirical Software Engineering, 4(4):370–380, 1999. ISSN 1382-3256. doi:

http://dx.doi.org/10.1023/A:1009869705323.

[15] Stanislav Berlin, Tzvi Raz, Chanan Glezer, and Moshe Zviran. Comparison of estima-

tion methods of cost and duration in it projects. Inf. Softw. Technol., 51(4):738–748,

2009. ISSN 0950-5849.

[16] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and

Thomas Zimmermann. What makes a good bug report? In SIGSOFT ’08/FSE-16:

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of

software engineering, pages 308–318, New York, NY, USA, 2008. ACM. ISBN 978-1-

59593-995-1. doi: http://doi.acm.org/10.1145/1453101.1453146.

[17] S. Bibi, I. Stamelos, and L. Angelis. Combining probabilistic models for explanatory

productivity estimation. Inf. Softw. Technol., 50(7-8):656–669, 2008. ISSN 0950-5849.

doi: http://dx.doi.org/10.1016/j.infsof.2007.06.004.

[18] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahavas. Regression via classification

applied on software defect estimation. Expert Syst. Appl., 34(3):2091–2101, 2008. ISSN

0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2007.02.012.

[19] Stefan Biffl and Walter J. Gutjahr. Using a reliability growth model to control software

106

Bibliography

inspection. Empirical Software Engineering, 7(3):257–284, 2002. ISSN 1382-3256. doi:

http://dx.doi.org/10.1023/A:1016396232448.

[20] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,

Vladimir Filkov, and Premkumar Devanbu. Fair and balanced?: bias in bug-fix

datasets. In ESEC/FSE ’09: Proceedings of the the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on The founda-

tions of software engineering, pages 121–130, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-001-2.

[21] Barry W. Boehm and Kevin J. Sullivan. Software economics: a roadmap. In

ICSE ’00: Proceedings of the Conference on The Future of Software Engineer-

ing, pages 319–343, New York, NY, USA, 2000. ACM. ISBN 1-58113-253-0. doi:

http://doi.acm.org/10.1145/336512.336584.

[22] Grant Braught, Craig S. Miller, and David Reed. Core empirical concepts and skills

for computer science. SIGCSE Bull., 36(1):245–249, 2004. ISSN 0097-8418. doi:

http://doi.acm.org/10.1145/1028174.971388.

[23] Carla E. Brodley and Mark A. Friedl. Identifying and eliminating misla-

beled training instances. In AAAI/IAAI, Vol. 1, pages 799–805, 1996. URL

citeseer.ist.psu.edu/brodley96identifying.html.

[24] Carla E. Brodley and Mark A. Friedl. Improving automated land cover mapping by

identifying and eliminating mislabeled observations from training data, 1996. URL

citeseer.ist.psu.edu/brodley96improving.html.

[25] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of

Artificial Intelligence Research (JAIR), 11:131–167, 1999.

[26] R. Buehler and D. Griffin. Planning, personality, and prediction: The role of future

focus in optimistic time predictions. Organizational Behavior and Human Decision

Processes, 92:80–90, 2003. Both expts based on undergrad students. Tasks were to

107

Bibliography

predict Xmas shopping completion and completing coursework. Both expts give strong

confirmation of the planning fallacy ie future planning increases optimism and therefore

bias. This is not moderated either by personality or time framing (predicting using an

absolute date or deadline minus n days) or past reflections. It also generalised across

2 different problem domains.

[27] Luigi Buglione and Cigdem Gencel. Impact of base functional component types on

software functional size based effort estimation. In PROFES ’08: Proceedings of the

9th international conference on Product-Focused Software Process Improvement, pages

75–89, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-69564-6.

[28] Cagatay Catal and Banu Diri. Investigating the effect of dataset size, metrics sets,

and feature selection techniques on software fault prediction problem. Inf. Sci., 179

(8):1040–1058, 2009. ISSN 0020-0255.

[29] Jr-Shian Chen and Ching-Hsue Cheng. Software diagnosis using fuzzified attribute base

on modified mepa. In Moonis Ali and Richard Dapoigny, editors, Advances in Applied

Artificial Intelligence, 19th International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems, IEA/AIE 2006, Annecy, France,

June 27-30, 2006, Proceedings, volume 4031 of Lecture Notes in Computer Science,

pages 1270–1279. Springer, 2006.

[30] Zhihao Chen, Barry Boehm, Tim Menzies, and Daniel Port. Finding the right data

for software cost modeling. IEEE Softw., 22(6):38–46, 2005. ISSN 0740-7459. doi:

http://dx.doi.org/10.1109/MS.2005.151.

[31] Peter Clark and Tim Niblett. The cn2 induction algorithm. Mach. Learn., 3(4):261–

283, 1989. ISSN 0885-6125. doi: http://dx.doi.org/10.1023/A:1022641700528.

[32] Alberto Colombo, Ernesto Damiani, and Gabriele Gianini. Discovering

the software process by means of stochastic workflow analysis. Jour-

nal of Systems Architecture, 52(11):684–692, 2006. ISSN 1383-7621. doi:

http://dx.doi.org/10.1016/j.sysarc.2006.06.012.

108

Bibliography

[33] Steve Counsell, George Loizou, and Rajaa Najjar. Quality of manual data collection

in java software: an empirical investigation. Empirical Software Engineering, 12(3):

275–293, 2006. ISSN 1382-3256. doi: http://dx.doi.org/10.1007/s10664-006-9028-y.

[34] Philip B. Crosby. Quality without tears: The art of hassle free management. McGraw-

Hill, New York, USA, 1984. ISBN 007014530X.

[35] Juan J. Cuadrado-Gallego, Miguel Garre, Ricardo J. Rejas, and Miguel-Ángel Sicilia.

Analysis of software functional size databases. pages 195–202, 2008.

[36] Juan J. Cuadrado-Gallego, Luigi Buglione, Maŕıa J. Domı́nguez-Alda, Marian

Fernández de Sevilla, J. Antonio Gutierrez de Mesa, and Onur Demirors. An experi-

mental study on the conversion between ifpug and cosmic functional size measurement

units. Inf. Softw. Technol., 52(3):347–357, 2010. ISSN 0950-5849.

[37] Richard D. De Veaux and David J. Hand. How to lie with bad data. Statistical Science,

20(3):231–238, 2005.

[38] Prem Devanbu, Sakke Karstu, Walcélio Melo, and William Thomas. Analytical and

empirical evaluation of software reuse metrics. In ICSE ’96: Proceedings of the 18th

international conference on Software engineering, pages 189–199, Washington, DC,

USA, 1996. IEEE Computer Society. ISBN 0-8186-7246-3.

[39] E. Dillon and Christophe Meudec. Automatic test data generation from embedded c

code. In SAFECOMP, pages 180–194, 2004.

[40] Liping Ding, Qiusong Yang, Liang Sun, Jie Tong, and Yongji Wang. Evaluation of the

capability of personal software process based on data envelopment analysis. In Mingshu

Li, Barry W. Boehm, and Leon J. Osterweil, editors, Unifying the Software Process

Spectrum, International Software Process Workshop, SPW 2005, Beijing, China, May

25-27, 2005, Revised Selected Papers, volume 3840 of Lecture Notes in Computer Sci-

ence, pages 235–248. Springer, 2005.

109

Bibliography

[41] Anne M. Disney and Phillip M. Johnson. Investigating data quality problems in the

psp. Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pages 143–152, 1998. URL www.scopus.com. Cited By (since 1996): 2.

[42] R. Geoff Dromey. Software quality—prevention versus cure? Soft-

ware Quality Control, 11(3):197–210, 2003. ISSN 0963-9314. doi:

http://dx.doi.org/10.1023/A:1025162610079.

[43] Roland Ducournau, Floréal Morandat, and Jean Privat. Empirical assessment of

object-oriented implementations with multiple inheritance and static typing. In OOP-

SLA ’09: Proceeding of the 24th ACM SIGPLAN conference on Object oriented pro-

gramming systems languages and applications, pages 41–60, New York, NY, USA, 2009.

ACM. ISBN 978-1-60558-766-0.

[44] Christof Ebert. Experiences with criticality predictions in software develop-

ment. SIGSOFT Softw. Eng. Notes, 22(6):278–293, 1997. ISSN 0163-5948. doi:

http://doi.acm.org/10.1145/267896.267916.

[45] Christof Ebert. Technical controlling and software process improvement. Jour-

nal of Systems and Software, 46(1):25–39, 1999. ISSN 0164-1212. doi:

http://dx.doi.org/10.1016/S0164-1212(98)10086-9.

[46] Christof Ebert, Thomas Liedtke, and Ekkehard Baisch. Improving reliability of

large software systems. Ann. Softw. Eng., 8(1-4):3–51, 1999. ISSN 1022-7091. doi:

http://dx.doi.org/10.1023/A:1018971212809.

[47] Jason B. Ellis, Shahtab Wahid, Catalina Danis, and Wendy A. Kellogg. Task and

social visualization in software development: evaluation of a prototype. In CHI

’07: Proceedings of the SIGCHI conference on Human factors in computing systems,

pages 577–586, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-593-9. doi:

http://doi.acm.org/10.1145/1240624.1240716.

[48] Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Lukasz Radlinski, and

110

Bibliography

Paul Krause. Project data incorporating qualitative factors for improved software de-

fect prediction. In ICSEW ’07: Proceedings of the 29th International Conference on

Software Engineering Workshops, page 69, Washington, DC, USA, 2007. IEEE Com-

puter Society. ISBN 0-7695-2830-9. doi: http://dx.doi.org/10.1109/ICSEW.2007.171.

[49] Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Lukasz Radliński,

and Paul Krause. On the effectiveness of early life cycle defect prediction with

bayesian nets. Empirical Softw. Engg., 13(5):499–537, 2008. ISSN 1382-3256. doi:

http://dx.doi.org/10.1007/s10664-008-9072-x.

[50] Norman E. Fenton and Martin Neil. A critique of software defect prediction models.

IEEE Transactions on Software Engineering, 25(5):675–689, 1999. ISSN 0098-5589.

doi: http://dx.doi.org/10.1109/32.815326.

[51] Norman E. Fenton and Shari L. Pfleeger. Software Metrics: A Rigorous and Practical

Approach. PWS, 2nd edition, 1996.

[52] Xiaoli Fern, Chaitanya Komireddy, Valentina Grigoreanu, and Margaret Burnett. Min-

ing problem-solving strategies from hci data. ACM Trans. Comput.-Hum. Interact.,

17(1):1–22, 2010. ISSN 1073-0516.

[53] G. R. Finnie, G. E. Wittig, and J.-M. Desharnais. A comparison of software effort es-

timation techniques: using function points with neural networks, case-based reasoning

and regression models. Journal of Systems and Software, 39(3):281–289, 1997. ISSN

0164-1212. doi: http://dx.doi.org/10.1016/S0164-1212(97)00055-1.

[54] G. R. Finnie, G. E. Wittig, and J. M. Desharnais. Estimating software development

effort with case-based reasoning. In ICCBR ’97: Proceedings of the Second Interna-

tional Conference on Case-Based Reasoning Research and Development, pages 13–22,

London, UK, 1997. Springer-Verlag. ISBN 3-540-63233-6.

[55] Gavin R. Finnie and Gerhard E. Wittig. Ai tools for software development effort

estimation. In SEEP ’96: Proceedings of the 1996 International Conference on Software

111

Bibliography

Engineering: Education and Practice (SE:EP ’96), page 346, Washington, DC, USA,

1996. IEEE Computer Society. ISBN 0-8186-7379-6.

[56] Andres Folleco, Taghi Khoshgoftaar, Jason Van Hulse, and Lofton A. Bullard. Soft-

ware quality modeling: The impact of class noise on the random forest classifier. In

Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, June 1-6,

2008, Hong Kong, China, pages 3853–3859. IEEE, 2008.

[57] Dragan Gamberger and Nada Lavrač. Noise detection and elimination applied to

noise handling in a krk chess endgame. In ILP ’96: Selected Papers from the 6th

International Workshop on Inductive Logic Programming, pages 72–88, London, UK,

1997. Springer-Verlag. ISBN 3-540-63494-0.

[58] Dragan Gamberger, Nada Lavrač, and Sašo Džeroski. Noise elimination in in-

ductive concept learning: a case study in medical diagnosis. In Algorithmic

Learning Theory, 7th International Workshop, ALT ’96, Sydney, Australia, Oc-

tober 1996, Proceedings, volume 1160, pages 199–212. Springer, 1996. URL

citeseer.ist.psu.edu/article/gamberger96noise.html.

[59] Dragan Gamberger, Nada Lavrač, and Ciril Grošelj. Experiments with noise detection

algorithms in the diagnosis of coronary artery disease. In IDAMAP-98, Third Workshop

on Intelligent Data Analysis in Medicine and Pharmacology, pages 29–33, Brighton,

UK, 1998. University of Brighton. URL citeseer.ist.psu.edu/224846.html.

[60] Dragan Gamberger, Nada Lavrač, and Ciril Grošelj. Experiments with noise filtering

in a medical domain. In Proceedings of the 16th International Conference on Ma-

chine Learning, pages 143–151. Morgan Kaufmann, San Francisco, CA, 1999. URL

citeseer.ist.psu.edu/article/gamberger99experiments.html.

[61] Markus M. Geipel and Frank Schweitzer. Software change dynamics: evidence from

35 java projects. In ESEC/FSE ’09: Proceedings of the the 7th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium on The

112

Bibliography

foundations of software engineering, pages 269–272, New York, NY, USA, 2009. ACM.

ISBN 978-1-60558-001-2.

[62] Cigdem Gencel and Luigi Buglione. Do base functional component types affect the

relationship between software functional size and effort? pages 72–85, 2008.

[63] Michael Gertz, M. Tamer Özsu, Gunter Saake, and Kai-Uwe Sattler. Report on the

Dagstuhl seminar: “Data quality on the web”. SIGMOD Record, 33(1):127–132, 2004.

ISSN 0163-5808. doi: http://doi.acm.org/10.1145/974121.974144.

[64] Maŕıa Paula González, Jesús Lorés, and Antoni Granollers. Enhancing usability testing

through datamining techniques: A novel approach to detecting usability problem pat-

terns for a context of use. Inf. Softw. Technol., 50(6):547–568, 2008. ISSN 0950-5849.

doi: http://dx.doi.org/10.1016/j.infsof.2007.06.001.

[65] The PROMISE Group. Promise data. Available: http://promisedata.org/, Last ac-

cessed 21 July, 2010.

[66] Ronald Gulezian. Software quality measurement and modeling, maturity, control and

improvement. Proceedings of the IEEE International Software Engineering Standards

Symposium, pages 52–59, 1995. URL www.scopus.com.

[67] Volkmar H. Haase. Software process improvement planning with neural networks. In

EUROMICRO ’98: Proceedings of the 24th Conference on EUROMICRO, page 20808,

Washington, DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-8646-4-2.

[68] Stuart Hansen and Erica Eddy. Engagement and frustration in programming projects.

In SIGCSE ’07: Proceedings of the 38th SIGCSE technical symposium on Computer

science education, pages 271–275, New York, NY, USA, 2007. ACM. ISBN 1-59593-

361-1. doi: http://doi.acm.org/10.1145/1227310.1227407.

[69] Martin Hirzel. Data layouts for object-oriented programs. SIGMET-

RICS Perform. Eval. Rev., 35(1):265–276, 2007. ISSN 0163-5999. doi:

http://doi.acm.org/10.1145/1269899.1254915.

113

Bibliography

[70] Ray Horak. Webster’s New World Telecom Dictionary. 2007. ISBN 047177457X.

[71] HP. Eds is now hp enterprise services, July 2010.

[72] Sun-Jen Huang and Nan-Hsing Chiu. Optimization of analogy weights by genetic

algorithm for software effort estimation. Information & Software Technology, 48(11):

1034–1045, 2006.

[73] Sun-Jen Huang, Nan-Hsing Chiu, and Yu-Jen Liu. A comparative evaluation on the ac-

curacies of software effort estimates from clustered data. Inf. Softw. Technol., 50(9-10):

879–888, 2008. ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2008.02.005.

[74] IFPUG. Ifpug: The international function point users group, July 2010.

[75] International Software Benchmarking Standards Group. Isbsg, July 2010.

[76] Shamsi T. Iqbal and Brian P. Bailey. Understanding and developing models for

detecting and differentiating breakpoints during interactive tasks. In CHI ’07:

Proceedings of the SIGCHI conference on Human factors in computing systems,

pages 697–706, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-593-9. doi:

http://doi.acm.org/10.1145/1240624.1240732.

[77] Daniel R. Jeske and Xuemei Zhang. Some successful approaches to software reliability

modeling in industry. Journal of Systems and Software, 74(1):85–99, 2005. ISSN

0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2003.10.024.

[78] George H. John. Robust decision trees: Removing outliers from databases, 1995. URL

citeseer.comp.nus.edu.sg/john95robust.html.

[79] Philip Johnson and Shaoxuan Zhang. We need more coverage, stat! classroom ex-

perience with the software icu. In ESEM ’09: Proceedings of the 2009 3rd Interna-

tional Symposium on Empirical Software Engineering and Measurement, pages 168–

178, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-4842-5.

114

Bibliography

[80] Philip M. Johnson. Reengineering inspection. Communications of the ACM, 41(2):

49–52, 1998. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/269012.269020.

[81] Philip M. Johnson. Leap: a “personal information environment” for software engineers.

In ICSE ’99: Proceedings of the 21st international conference on Software engineer-

ing, pages 654–657, New York, NY, USA, 1999. ACM. ISBN 1-58113-074-0. doi:

http://doi.acm.org/10.1145/302405.302919.

[82] Phillip M. Johnson and Anne M. Disney. Personal software process: A cautionary case

study. IEEE Software, 15(6):85–88, 1998.

[83] Phillip M. Johnson and Anne M. Disney. A critical analysis of psp data quality: Results

from a case study. Empirical Software Engineering, 4(4):317–349, 1999.

[84] Sachin Katti, Balachander Krishnamurthy, and Dina Katabi. Collaborating against

common enemies. In IMC ’05: Proceedings of the 5th ACM SIGCOMM conference on

Internet Measurement, pages 34–34, Berkeley, CA, USA, 2005. USENIX Association.

[85] Taghi Khoshgoftaar and Edward B. Allen. Ordering fault-prone software mod-

ules. Software Quality Control, 11(1):19–37, 2003. ISSN 0963-9314. doi:

http://dx.doi.org/10.1023/A:1023632027907.

[86] Taghi Khoshgoftaar and Pierre Rebours. Generating multiple noise elimination filters

with the ensemble-partitioning filter. In Proceedings of the 2004 IEEE International

Conference on Information Reuse and Integration, pages 369–375, Las Vegas, NV,

November 2004.

[87] Taghi Khoshgoftaar and Pierre Rebours. Improving software quality prediction by

noise filtering techniques. Journal of Computer Science and Technology, 22(3):387–

396, 2007.

[88] Taghi Khoshgoftaar and Naeem Seliya. The necessity of assuring quality in software

measurement data. In METRICS ’04: Proceedings of the Software Metrics, 10th In-

115

Bibliography

ternational Symposium, pages 119–130, Washington, DC, USA, 2004. IEEE Computer

Society. ISBN 0-7695-2129-0. doi: http://dx.doi.org/10.1109/METRICS.2004.41.

[89] Taghi Khoshgoftaar and Jason Van Hulse. Identifying noise in an attribute

of interest. In ICMLA ’05: Proceedings of the Fourth International Confer-

ence on Machine Learning and Applications (ICMLA’05), pages 55–62, Wash-

ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2495-8. doi:

http://dx.doi.org/10.1109/ICMLA.2005.39.

[90] Taghi Khoshgoftaar and Jason Van Hulse. Imputation techniques for multivariate

missingness in software measurement data. Software Quality Control, 16(4):563–600,

2008. ISSN 0963-9314. doi: http://dx.doi.org/10.1007/s11219-008-9054-7.

[91] Taghi Khoshgoftaar, Naeem Seliya, and Kehan Gao. Rule-based noise detection for

software measurement data. In IRI, pages 302–307, 2004.

[92] Taghi Khoshgoftaar, Andres Folleco, Jason Van Hulse, and Lofton A. Bullard. Software

quality imputation in the presence of noisy data. In Proceedings of the 2006 IEEE

International Conference on Information Reuse and Integration, IRI - 2006: Heuristic

Systems Engineering, September 16-18, 2006, Waikoloa, Hawaii, USA, pages 484–489.

IEEE Systems, Man, and Cybernetics Society, 2006.

[93] Taghi Khoshgoftaar, Angela Herzberg, and Naeem Seliya. Resource oriented selection

of rule-based classification models: An empirical case study. Software Quality Control,

14(4):309–338, 2006. ISSN 0963-9314. doi: http://dx.doi.org/10.1007/s11219-006-

0038-1.

[94] Taghi Khoshgoftaar, Naeem Seliya, and Nandini Sundaresh. An empirical study of

predicting software faults with case-based reasoning. Software Quality Control, 14(2):

85–111, 2006. ISSN 0963-9314. doi: http://dx.doi.org/10.1007/s11219-006-7597-z.

[95] Taghi M. Khoshgoftaar and Edward B. Allen. A comparative study of ordering and

classification of fault-pronesoftware modules. Empirical Softw. Engg., 4(2):159–186,

1999. ISSN 1382-3256. doi: http://dx.doi.org/10.1023/A:1009876418873.

116

Bibliography

[96] Ralph Kimball. Dealing with dirty data. DBMS, 9(10):55–60, 1996. ISSN 1041-5173.

[97] B. A. Kitchenham. Empirical studies of assumptions that underlie software cost-

estimation models. Inf. Softw. Technol., 34(4):211–218, 1992. ISSN 0950-5849. doi:

http://dx.doi.org/10.1016/0950-5849(92)90077-3.

[98] Barbara Kitchenham. Procedures for performing systematic reviews (technical report

tr/se-0401). Technical Report Technical Report TR/SE-0401, Keele University, Keele,

UK, July 2004.

[99] A. Güneş Koru and Jeff Tian. Defect handling in medium and large open

source projects. IEEE Softw., 21(4):54–61, 2004. ISSN 0740-7459. doi:

http://dx.doi.org/10.1109/MS.2004.12.

[100] A. Güneş Koru, Khaled El Emam, Dongsong Zhang, Hongfang Liu, and Divya Mathew.

Theory of relative defect proneness. Empirical Softw. Engg., 13(5):473–498, 2008. ISSN

1382-3256. doi: http://dx.doi.org/10.1007/s10664-008-9080-x.

[101] J. R. Landis and G. G. Koch. The measurement of observer agreement for cat-

egorical data. Biometrics, 33(1):159–174, March 1977. ISSN 0006-341X. URL

http://view.ncbi.nlm.nih.gov/pubmed/843571.

[102] Jouni Lappalainen. Tool support for personal software process. In Frank Bomarius and

Seija Komi-Sirviö, editors, Product Focused Software Process Improvement, 6th Inter-

national Conference, PROFES 2005, Oulu, Finland, June 13-15, 2005, Proceedings,

volume 3547 of Lecture Notes in Computer Science, pages 545–559. Springer, 2005.

[103] Luigi Lavazza. Convertibility of functional size measurements: new insights

and methodological issues. In PROMISE ’09: Proceedings of the 5th In-

ternational Conference on Predictor Models in Software Engineering, pages 1–

12, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-634-2. doi:

http://doi.acm.org/10.1145/1540438.1540451.

117

Bibliography

[104] Meir M. Lehman and Juan F. Ramil. Software evolution and software evolu-

tion processes. Ann. Softw. Eng., 14(1-4):275–309, 2002. ISSN 1022-7091. doi:

http://dx.doi.org/10.1023/A:1020557525901.

[105] Jingyue Li, Finn Olav Bjrnson, Reidar Conradi, and Vigdis B. Kampenes. An empirical

study of variations in cots-based software development processes in the norwegian it

industry. Empirical Software Engineering, 11(3):433–461, 2006. ISSN 1382-3256. doi:

http://dx.doi.org/10.1007/s10664-006-9005-5.

[106] Naixin Li and Yashwant K. Malaiya. Enhancing accuracy of software reliability pre-

diction. In 4th International Symposium on Software Reliability Engineering, pages

71–79, Denver, November 1993.

[107] Y. F. Li, M. Xie, and T. N. Goh. A study of project selection and feature weighting

for analogy based software cost estimation. Journal of Systems and Software, 82(2):

241–252, 2009. ISSN 0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2008.06.001.

[108] Gernot A. Liebchen and Martin Shepperd. Software productivity analysis of a large

data set and issues of confidentiality and data quality. Proceedings of the 11th IEEE

International Software Metrics Symposium (METRICS’05), 00:46, 2005. ISSN 1530-

1435. doi: http://doi.ieeecomputersociety.org/10.1109/METRICS.2005.43.

[109] Gernot A. Liebchen and Martin Shepperd. Data sets and data quality in software engi-

neering. In PROMISE ’08: Proceedings of the 4th international workshop on Predictor

models in software engineering, pages 39–44, New York, NY, USA, 2008. ACM. ISBN

978-1-60558-036-4. doi: http://doi.acm.org/10.1145/1370788.1370799.

[110] Gernot A. Liebchen, Bheki Twala, Martin Shepperd, and Michelle Cartwright. Assess-

ing the quality and cleaning of a software project data set: An experience report. In

Proceedings of 10th International Conference on Evaluation and Assessment in Soft-

ware Engineering (EASE). British Computer Society, 2006.

[111] Gernot A. Liebchen, Bheki Twala, Martin Shepperd, Michelle Cartwright, and Mark

118

Bibliography

Stephens. Filtering, robust filtering, polishing: Techniques for addressing qual-

ity in software data. First International Symposium on Empirical Software Engi-

neering and Measurement (ESEM 2007), 0:99–106, 2007. ISSN 1938-6451. doi:

http://doi.ieeecomputersociety.org/10.1109/ESEM.2007.48.

[112] Roderick J. A. Little and Donald B. Rubin. Statistical analysis with missing data. John

Wiley & Sons, Inc., New York, NY, USA, 1986. ISBN 0-471-80254-9.

[113] Chris Lokan and Emilia Mendes. Cross-company and single-company effort mod-

els using the isbsg database: a further replicated study. In ISESE ’06: Proceed-

ings of the 2006 ACM/IEEE international symposium on Empirical software engi-

neering, pages 75–84, New York, NY, USA, 2006. ACM. ISBN 1-59593-218-6. doi:

http://doi.acm.org/10.1145/1159733.1159747.

[114] Chris Lokan and Emilia Mendes. Applying moving windows to software effort estima-

tion. In ESEM ’09: Proceedings of the 2009 3rd International Symposium on Empirical

Software Engineering and Measurement, pages 111–122, Washington, DC, USA, 2009.

IEEE Computer Society. ISBN 978-1-4244-4842-5.

[115] J. B. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth Berkeley Symposium

on Mathematical Statistics and Probability, volume 1, pages 281–297. University of

California Press, 1967.

[116] Jonathan I. Maletic and Andrian Marcus. Data cleansing: Beyond integrity analysis.

In Fifth Conference on Information Quality (IQ 2000), pages 200–209. MIT, 2000.

[117] Jonathan I. Maletic and Andrian Marcus. Data cleansing - a prelude to knowledge

discovery. In Oded Maimon and Lior Rokach, editors, The Data Mining and Knowledge

Discovery Handbook, pages 21–36. Springer, 2005. ISBN 0-387-24435-2.

[118] Michel Manago and Yves Kodratoff. Noise and knowledge acquisition. In Proceedings

of the 10th International Joint Conference on Artificial Intelligence, pages 348–354,

1987.

119

Bibliography

[119] T. Martinetz, S. Berkovich, and K. Schulten. “Neural-gas” Network for Vector Quan-

tization and its Application to Time-Series Prediction. IEEE-Transactions on Neural

Networks, 4(4):558–569, 1993.

[120] Emilia Mendes. The use of a bayesian network for web effort estimation. In ICWE’07:

Proceedings of the 7th international conference on Web engineering, pages 90–104,

Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-73596-0.

[121] Emilia Mendes and Chris Lokan. Replicating studies on cross- vs single-company effort

models using the isbsg database. Empirical Software Engineering, 13(1), 2008. ISSN

1382-3256. doi: 10.1007/s10664-007-9045-5.

[122] Emilia Mendes, Ian Watson, Chris Triggs, Nile Mosley, and Steve Counsell. A

comparative study of cost estimation models for web hypermedia applications.

Empirical Software Engineering, 8(2):163–196, 2003. ISSN 1382-3256. doi:

http://dx.doi.org/10.1023/A:1023062629183.

[123] Emilia Mendes, Sergio Di Martino, Filomena Ferrucci, and Carmine Gravino. Ef-

fort estimation: how valuable is it for a web company to use a cross-company data

set, compared to using its own single-company data set? In Carey L. Williamson,

Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, Proceed-

ings of the 16th International Conference on World Wide Web, WWW 2007, Banff,

Alberta, Canada, May 8-12, 2007, pages 963–972. ACM, 2007.

[124] Merriam-Webster Online. Merriam-Webster Online, 2010. URL

http://www.merriam-webster.com.

[125] Audris Mockus. Software support tools and experimental work. In Proceedings of the

2006 international conference on Empirical software engineering issues, pages 91–99,

Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-71300-5.

[126] Audris Mockus. Succession: Measuring transfer of code and developer productivity. In

ICSE ’09: Proceedings of the 31st International Conference on Software Engineering,

120

Bibliography

pages 67–77, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-

3453-4. doi: http://dx.doi.org/10.1109/ICSE.2009.5070509.

[127] Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and economic benefits

of software reuse: a review of industrial studies. Empirical Software Engineering, 12(5):

471–516, 2007. ISSN 1382-3256. doi: http://dx.doi.org/10.1007/s10664-007-9040-x.

[128] Sandro Morasca and Günther Ruhe. A hybrid approach to analyze empirical soft-

ware engineering data and its application to predict module fault-proneness in main-

tenance. Journal of Systems and Software, 53(3):225–237, 2000. ISSN 0164-1212. doi:

http://dx.doi.org/10.1016/S0164-1212(00)00014-5.

[129] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of the

efficiency of change metrics and static code attributes for defect prediction. In Wilhelm

Schäfer, Matthew B. Dwyer, and Volker Gruhn, editors, 30th International Conference

on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, pages

181–190. ACM, 2008.

[130] J. Moses. Bayesian probability distributions for assessing measurement of subjective

software attributes. Information and Software Technology, 42(8):533–546, 2000. ISSN

0950-5849. doi: DOI: 10.1016/S0950-5849(00)00097-5.

[131] Heiko Müller and Johann-Christoph Freytag. Problems, methods, and challenges in

comprehensive data cleansing. Technical report, Humboldt University Berlin, 2003.

[132] John C. Munson and Allen P. Nikora. Toward a quantifiable definition of software

faults. In ISSRE ’02: Proceedings of the 13th International Symposium on Software

Reliability Engineering, page 388, Washington, DC, USA, 2002. IEEE Computer Soci-

ety. ISBN 0-8186-1763-3.

[133] John C. Munson, Allen P. Nikora, and Joseph S. Sherif. Software faults: A quantifiable

definition. Advances in Engineering Software, 37(5):327–333, 2006.

121

Bibliography

[134] Volker Nannen. The paradox of overfitting. Master’s thesis, Rijksuniversiteit Gronin-

gen, the Netherlands, 2003.

[135] Richi Nayak and Tian Qiu. Use of data mining in system development life cycle. In

Graham J. Williams and Simeon J. Simoff, editors, Data Mining - Theory, Methodology,

Techniques, and Applications, volume 3755 of Lecture Notes in Computer Science,

pages 105–117. Springer, 2006.

[136] C.L. Blake D.J. Newman and C.J. Merz. UCI Repository of machine learning

databases, 1998. URL http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[137] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Where the bugs are.

In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT international symposium on

Software testing and analysis, pages 86–96, New York, NY, USA, 2004. ACM. ISBN

1-58113-820-2. doi: http://doi.acm.org/10.1145/1007512.1007524.

[138] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Predicting

the location and number of faults in large software systems. IEEE Trans-

actions in Software Engineering, 31(4):340–355, 2005. ISSN 0098-5589. doi:

http://dx.doi.org/10.1109/TSE.2005.49.

[139] Parag C. Pendharkar. An exploratory study of object-oriented software component size

determinants and the application of regression tree forecasting models. Inf. Manage.,

42(1):61–73, 2004. ISSN 0378-7206. doi: http://dx.doi.org/10.1016/j.im.2003.12.004.

[140] Parag C. Pendharkar and James A. Rodger. The relationship between software devel-

opment team size and software development cost. Communication of the ACM, 52(1):

141–144, 2009. ISSN 0001-0782.

[141] Parag C. Pendharkar, James A. Rodger, and Girish H. Subramanian. An empir-

ical study of the cobb-douglas production function properties of software develop-

ment effort. Inf. Softw. Technol., 50(12):1181–1188, 2007. ISSN 0950-5849. doi:

http://dx.doi.org/10.1016/j.infsof.2007.10.019.

122

Bibliography

[142] Yi Peng, Guoxun Wang, and Honggang Wang. User preferences based software defect

detection algorithms selection using mcdm. Information Sciences, In Press, Corrected

Proof:–, 2010. ISSN 0020-0255.

[143] Lesley Pickard, Barbara Kitchenham, and Stephen G. Linkman. Using simulated data

sets to compare data analysis techniques used for software cost modelling. IEE Pro-

ceedings - Software, 148(6):165–174, 2001.

[144] Rahul Premraj, Martin Shepperd, Barbara Kitchenham, and Pekka Forselius. An

empirical analysis of software productivity over time. In METRICS ’05: Proceedings

of the 11th IEEE International Software Metrics Symposium, page 37, Washington,

DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2371-4.

[145] Rossane Prince and Graeme G. Shanks. A semiotic information quality framework. In

Proceedings of IFIP International Conference on Decision Support Systems (DSS2004):

Decision Support in an Uncertain and Complex World, 2004.

[146] Radliski, N. E. Fenton, M Neil, and D Marquez. Modelling prior productivity and

defect rates in a causal model for software project risk assessment. Polish Journal of

Environmental Studies, 16(4A):256–260, 2007. Hard, Olsztyn.

[147] Thomas C. Redman. Data Quality for the Information Age. Artech House, Inc.,

Norwood, MA, USA, 1996. ISBN 0890068836. Foreword By-A. Blanton Godfrey.

[148] Thomas C. Redman. The impact of poor data quality on the typical enter-

prise. Communications of the ACM, 41(2):79–82, 1998. ISSN 0001-0782. doi:

http://doi.acm.org/10.1145/269012.269025.

[149] Romain Robbes and Michele Lanza. Spyware: a change-aware development toolset. In

ICSE ’08: Proceedings of the 30th international conference on Software engineering,

pages 847–850, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-079-1. doi:

http://doi.acm.org/10.1145/1368088.1368219.

123

Bibliography

[150] Gregorio Robles, Jesus M. Gonzalez-Barahona, and Juan Julian Merelo. Beyond

source code: the importance of other artifacts in software development (a case study).

Journal of Systems and Software, 79(9):1233–1248, 2006. ISSN 0164-1212. doi:

http://dx.doi.org/10.1016/j.jss.2006.02.048.

[151] Li Ruan, Yongji Wang, Qing Wang, Mingshu Li, Yun Yang, Lizi Xie, Dapeng Liu,

Haitao Zeng, Shen Zhang, Junchao Xiao, Lei Zhang, M. Wasif Nisar, and Jian Dai.

Empirical study on benchmarking software development tasks. In ICSP’07: Proceed-

ings of the 2007 international conference on Software process, pages 221–232, Berlin,

Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-72425-4.

[152] Vladimir Rubin, Christian W. Günther, Wil M. P. Van Der Aalst, Ekkart Kindler,

Boudewijn F. Van Dongen, and Wilhelm Schäfer. Process mining framework for soft-

ware processes. In ICSP’07: Proceedings of the 2007 international conference on Soft-

ware process, pages 169–181, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-

540-72425-4.

[153] Guenther Ruhe. Rough set based data analysis in goal oriented software measure-

ment. In METRICS ’96: Proceedings of the 3rd International Symposium on Software

Metrics, page 10, Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-

7364-8.

[154] Holger Schackmann, Henning Schaefer, and Horst Lichter. Evaluating process quality

based on change request data — an empirical study of the eclipse project. In IWSM

’09 /Mensura ’09: Proceedings of the International Conferences on Software Process

and Product Measurement, pages 227–241, Berlin, Heidelberg, 2009. Springer-Verlag.

ISBN 978-3-642-05414-3.

[155] Joost Schalken and Hans van Vliet. Measuring where it matters: Determining starting

points for metrics collection. Journal of Systems and Software, 81(5):603–615, 2008.

ISSN 0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2007.07.041.

124

Bibliography

[156] Carolyn B. Seaman, Forrest Shull, Myrna Regardie, Denis Elbert, Raimund L. Feld-

mann, Yuepu Guo, and Sally Godfrey. Defect categorization: making use of a decade

of widely varying historical data. In ESEM ’08: Proceedings of the Second ACM-

IEEE international symposium on Empirical software engineering and measurement,

pages 149–157, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-971-5. doi:

http://doi.acm.org/10.1145/1414004.1414030.

[157] Naeem Seliya and Taghi M. Khoshgoftaar. Software quality estimation with limited

fault data: a semi-supervised learning perspective. Software Quality Control, 15(3):

327–344, 2007. ISSN 0963-9314. doi: http://dx.doi.org/10.1007/s11219-007-9013-8.

[158] Panagiotis Sentas and Lefteris Angelis. Categorical missing data imputa-

tion for software cost estimation by multinomial logistic regression. Jour-

nal of Systems and Software, 79(3):404–414, 2006. ISSN 0164-1212. doi:

http://dx.doi.org/10.1016/j.jss.2005.02.026.

[159] Panagiotis Sentas, Lefteris Angelis, Ioannis Stamelos, and Georgios L. Bleris. Software

productivity and effort prediction with ordinal regression. Information & Software

Technology, 47(1):17–29, 2005.

[160] Panagiotis Sentas, Lefteris Angelis, and Ioannis Stamelos. A statistical framework for

analyzing the duration of software projects. Empirical Software Engineering, 13(2):

147–184, 2008.

[161] J. Shepperd, J. Ouellette, and J. Fernandez. Abandoning unrealistic optimism: Per-

formance estimates and the temporal proximity of self-relevant feedback. Journal of

Personality and Social Psychology, 70(4):844–855, 1996. Possible that self-verification

theory (opportunity to find out) causes a loss of optimism eg just before an exam. There

is also research on defensive pessimism [prob not relevant for software projects?] Re-

sults show self-relevant feedback reduces optimism [durr!]. Also found low-self esteem

participants displayed this effect more than high-self esteem.

[162] Martin Shepperd. Software project economics: a roadmap. In FOSE ’07: 2007 Future

125

Bibliography

of Software Engineering, pages 304–315, Washington, DC, USA, 2007. IEEE Computer

Society. ISBN 0-7695-2829-5. doi: http://dx.doi.org/10.1109/FOSE.2007.23.

[163] Martin Shepperd and Gada Kadoda. Comparing software prediction techniques using

simulation. IEEE Transactions on Software Engineering, 27(11):1014–1022, 2001. ISSN

0098-5589. doi: http://dx.doi.org/10.1109/32.965341.

[164] Miyoung Shin and Amrit L. Goel. Modeling software component criticality using

a machine learning approach. In Tag Gon Kim, editor, Artificial Intelligence and

Simulation, 13th International Conference on AI, Simulation, and Planning in High

Autonomy Systems, AIS 2004, Jeju Island, Korea, October 4-6, 2004, Revised Selected

Papers, volume 3397 of Lecture Notes in Computer Science, pages 440–448. Springer,

2005.

[165] Forrest Shull, Jeffrey Carver, and Guilherme H. Travassos. An empirical method-

ology for introducing software processes. In ESEC/FSE-9: Proceedings of the

8th European software engineering conference held jointly with 9th ACM SIG-

SOFT international symposium on Foundations of software engineering, pages

288–296, New York, NY, USA, 2001. ACM. ISBN 1-58113-390-1. doi:

http://doi.acm.org/10.1145/503209.503248.

[166] Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch. Sufficient mutation

operators for measuring test effectiveness. In ICSE ’08: Proceedings of the 30th interna-

tional conference on Software engineering, pages 351–360, New York, NY, USA, 2008.

ACM. ISBN 978-1-60558-079-1. doi: http://doi.acm.org/10.1145/1368088.1368136.

[167] Julilus Sim and Chris C. Wright. The kappa statistic in reliability studies: Use, inter-

pretation, and sample size requirements. Physical Therapy, March 2005.

[168] Jan Sinschek, Andreas Sewe, and Mira Mezini. Vm performance evaluation with func-

tional models: an optimist’s outlook. In VMIL ’09: Proceedings of the Third Workshop

on Virtual Machines and Intermediate Languages, pages 1–2, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-874-2.

126

Bibliography

[169] Raymund Sison, David Diaz, Eliska Lam, Dennis Navarro, and Jessica Navarro.

Personal software process (psp) assistant. In APSEC ’05: Proceedings of the 12th

Asia-Pacific Software Engineering Conference (APSEC’05), pages 687–696, Wash-

ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2465-6. doi:

http://dx.doi.org/10.1109/APSEC.2005.87.

[170] Sulayman K. Sowe, Ioannis Stamelos, and Lefteris Angelis. Identifying knowledge bro-

kers that yield software engineering knowledge in oss projects. Information & Software

Technology, 48(11):1025–1033, 2006.

[171] Sulayman K. Sowe, Ioannis Stamelos, and Lefteris Angelis. Understanding knowl-

edge sharing activities in free/open source software projects: An empirical study.

Journal of Systems and Software, 81(3):431–446, 2008. ISSN 0164-1212. doi:

http://dx.doi.org/10.1016/j.jss.2007.03.086.

[172] Witawas Srisa-an, Myra B. Cohen, Yu Shang, and Mithuna Soundararaj. A self-

adjusting code cache manager to balance start-up time and memory usage. In CGO ’10:

Proceedings of the 8th annual IEEE/ACM international symposium on Code generation

and optimization, pages 82–91, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-

635-9.

[173] Ioannis Stamelos, Lefteris Angelis, Maurizio Morisio, Evaggelos Sakellaris, and

George L. Bleris. Estimating the development cost of custom software. Inf. Man-

age., 40(8):729–741, 2003. ISSN 0378-7206. doi: http://dx.doi.org/10.1016/S0378-

7206(02)00099-X.

[174] Erik Stensrud, Tron Foss, Barbara Kitchenham, and Ingunn Myrtveit. A fur-

ther empirical investigation of the relationship between mre and project size.

Empirical Software Engineering, 8(2):139–161, 2003. ISSN 1382-3256. doi:

http://dx.doi.org/10.1023/A:1023010612345.

[175] Diane M. Strong, Yang W. Lee, and Richard Y. Wang. Data quality in con-

127

Bibliography

text. Communications of the ACM, 40(5):103–110, 1997. ISSN 0001-0782. doi:

http://doi.acm.org/10.1145/253769.253804.

[176] Giancarlo Succi, Witold Pedrycz, Milorad Stefanovic, and Barbara Russo. An in-

vestigation on the occurrence of service requests in commercial software applications.

Empirical Software Engineering, 8(2):197–215, 2003.

[177] Thomas Tan, Qi Li, Barry Boehm, Ye Yang, Mei He, and Ramin Moazeni. Productivity

trends in incremental and iterative software development. In ESEM ’09: Proceedings

of the 2009 3rd International Symposium on Empirical Software Engineering and Mea-

surement, pages 1–10, Washington, DC, USA, 2009. IEEE Computer Society. ISBN

978-1-4244-4842-5.

[178] Wei Tang and Taghi M. Khoshgoftaar. Noise identification with the k-means algorithm.

In ICTAI ’04: Proceedings of the 16th IEEE International Conference on Tools with

Artificial Intelligence, pages 373–378, Washington, DC, USA, 2004. IEEE Computer

Society. ISBN 0-7695-2236-X. doi: http://dx.doi.org/10.1109/ICTAI.2004.93.

[179] Choh M. Teng. Correcting noisy data. In Proceedings of the 16th International Con-

ference on Machine Learning (ICML 99), pages 239–248, San Mateo, California, USA,

1999. Morgan Kaufmann.

[180] Choh M. Teng. Evaluating noise correction. In Proceedings of the 6th Pacific Rim

International Conference on Artificial Intelligence. Springer-Verlag, 2000.

[181] Choh M. Teng. Combining noise correction with feature selection. pages 340–349,

2003.

[182] Thomas Thelin, H̊akan Petersson, Per Runeson, and Claes Wohlin. Applying sampling

to improve software inspections. Journal of Systems and Software, 73(2):257–269, 2004.

ISSN 0164-1212. doi: http://dx.doi.org/10.1016/S0164-1212(03)00249-8.

[183] Terry M. Therneau and Elizabeth J. Atkinson. An introduction to recursive partition-

ing using the rpart routines. Technical report, Mayo Foundation, 1997.

128

Bibliography

[184] Christopher Thomson and Mike Holcombe. Correctness of data mined from cvs. In

MSR ’08: Proceedings of the 2008 international working conference on Mining software

repositories, pages 117–120, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-024-

1. doi: http://doi.acm.org/10.1145/1370750.1370777.

[185] Dwayne Towell and Jason Denton. A software implementation progress model. In

Luciano Baresi and Reiko Heckel, editors, Fundamental Approaches to Software En-

gineering, 9th International Conference, FASE 2006, Held as Part of the Joint Euro-

pean Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria,

March 27-28, 2006, Proceedings, volume 3922 of Lecture Notes in Computer Science,

pages 93–106. Springer, 2006.

[186] Jos J. Trienekens, Rob J. Kusters, Michiel J. Van Genuchten, and Hans Aerts. Targets,

drivers and metrics in software process improvement: Results of a survey in a multina-

tional organization. Software Quality Control, 15(2):135–153, 2007. ISSN 0963-9314.

doi: http://dx.doi.org/10.1007/s11219-006-9007-y.

[187] Sylvie Trudel and Alain Abran. Functional size measurement quality challenges for

inexperienced measurers. In IWSM ’09 /Mensura ’09: Proceedings of the International

Conferences on Software Process and Product Measurement, pages 157–169, Berlin,

Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-05414-3.

[188] Medha Umarji and Carolyn Seaman. Gauging acceptance of software metrics: Com-

paring perspectives of managers and developers. In ESEM ’09: Proceedings of the

2009 3rd International Symposium on Empirical Software Engineering and Measure-

ment, pages 236–247, Washington, DC, USA, 2009. IEEE Computer Society. ISBN

978-1-4244-4842-5. doi: http://dx.doi.org/10.1109/ESEM.2009.5315999.

[189] Jason Van Hulse and Taghi Khoshgoftaar. A comprehensive empirical evaluation of

missing value imputation in noisy software measurement data. Journal of Systems and

Software, 2007. doi: 10.1016/j.jss.2007.07.043.

129

Bibliography

[190] Jason Van Hulse and Taghi Khoshgoftaar. Knowledge discovery from imbalanced and

noisy data. Data Knowl. Eng., 68(12):1513–1542, 2009. ISSN 0169-023X.

[191] Jason Van Hulse, Taghi Khoshgoftaar, and Haiying Huang. The pairwise attribute

noise detection algorithm. Knowledge and Information Systems, 11(2):171–190, 2006.

URL www.scopus.com.

[192] Jason Van Hulse, Taghi Khoshgoftaar, Chris Seiffert, and Lili Zhao. Noise correction

using bayesian multiple imputation. In Proceedings of the 2006 IEEE International

Conference on Information Reuse and Integration, IRI - 2006: Heuristic Systems En-

gineering, September 16-18, 2006, Waikoloa, Hawaii, USA, pages 478–483. IEEE Sys-

tems, Man, and Cybernetics Society, 2006.

[193] Yair Wand and Richard Y. Wang. Anchoring data quality dimensions in ontological

foundations. Communincations of the ACM, 39(11):86–95, 1996. ISSN 0001-0782. doi:

http://doi.acm.org/10.1145/240455.240479.

[194] Richard Y. Wang, Henry B. Kon, and Stuart E. Madnick. Data quality requirements

analysis and modeling. In Proceedings of the Ninth International Conference on Data

Engineering, pages 670–677, Washington, DC, USA, 1993. IEEE Computer Society.

ISBN 0-8186-3570-3.

[195] Richard Y. Wang, Veda C. Storey, and Christopher P. Firth. A framework for analysis

of data quality research. IEEE Transactions on Knowledge and Data Engineering, 7

(4):623–640, 1995. ISSN 1041-4347. doi: http://dx.doi.org/10.1109/69.404034.

[196] Xiaobo Wang, Guanhui Lai, and Chao Liu. Recovering relationships between documen-

tation and source code based on the characteristics of software engineering. Electron.

Notes Theor. Comput. Sci., 243:121–137, 2009. ISSN 1571-0661.

[197] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An approach to

detecting duplicate bug reports using natural language and execution information. In

ICSE ’08: Proceedings of the 30th international conference on Software engineering,

130

Bibliography

pages 461–470, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-079-1. doi:

http://doi.acm.org/10.1145/1368088.1368151.

[198] Xiaoyin Wang, David Lo, Jing Jiang, Lu Zhang, and Hong Mei. Extracting paraphrases

of technical terms from noisy parallel software corpora. In ACL-IJCNLP ’09: Proceed-

ings of the ACL-IJCNLP 2009 Conference Short Papers, pages 197–200, Morristown,

NJ, USA, 2009. Association for Computational Linguistics.

[199] Anders Wesslén. A replicated empirical study of the impact of the methods in the

psp on individual engineers. Empirical Software Engineering, 5(2):93–123, 2000. ISSN

1382-3256. doi: http://dx.doi.org/10.1023/A:1009811222725.

[200] Isabella Wieczorek. Improved software cost estimation - a robust and inter-

pretable modelling method and a comprehensive empirical investigation. Em-

pirical Software Engineering., 7(2):177–180, 2002. ISSN 1382-3256. doi:

http://dx.doi.org/10.1023/A:1015206216560.

[201] Jeff Winter, Kari Rönkkö, and Mats Hellman. Reporting usability metrics experiences.

In CHASE ’09: Proceedings of the 2009 ICSE Workshop on Cooperative and Human

Aspects on Software Engineering, pages 108–115, Washington, DC, USA, 2009. IEEE

Computer Society. ISBN 978-1-4244-3712-2.

[202] Gerhard E. Wittig and Gavin R. Finnie. Estimating software development effort with

connectionist models. Information & Software Technology, 39(7):469–476, 1997.

[203] Ye Yang, Mei He, Mingshu Li, Qing Wang, and Barry Boehm. Phase distribution

of software development effort. In ESEM ’08: Proceedings of the Second ACM-

IEEE international symposium on Empirical software engineering and measurement,

pages 61–69, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-971-5. doi:

http://doi.acm.org/10.1145/1414004.1414016.

[204] Cemal Yilmaz, Amit Paradkar, and Clay Williams. Time will tell: fault localization

using time spectra. In ICSE ’08: Proceedings of the 30th international conference on

131

Bibliography

Software engineering, pages 81–90, New York, NY, USA, 2008. ACM. ISBN 978-1-

60558-079-1. doi: http://doi.acm.org/10.1145/1368088.1368100.

[205] Kyung-A Yoon and Doo-Hwan Bae. A pattern-based outlier detection method identi-

fying abnormal attributes in software project data. Inf. Softw. Technol., 52(2):137–151,

2010. ISSN 0950-5849.

[206] Du Zhang and Jeffrey J. P. Tsai. Machine learning and software engineer-

ing. Software Quality Control, 11(2):87–119, 2003. ISSN 0963-9314. doi:

http://dx.doi.org/10.1023/A:1023760326768.

[207] Shen Zhang, Yongji Wang, Ye Yang, and Junchao Xiao. Capability assessment of indi-

vidual software development processes using software repositories and dea. In ICSP’08:

Proceedings of the Software process, 2008 international conference on Making globally

distributed software development a success story, pages 147–159, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 3-540-79587-1, 978-3-540-79587-2.

[208] Zhenyu Zhang, Bo Jiang, W. K. Chan, T. H. Tse, and Xinming Wang. Fault localiza-

tion through evaluation sequences. Journal of Systems and Software, 83(2):174–187,

2010. ISSN 0164-1212.

[209] Shi Zhong, Taghi M. Khoshgoftaar, and Naeem Seliya. Unsupervised learning for

expert-based software quality estimation. In HASE, pages 149–155, 2004.

[210] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study

of their impacts. Artificial Intelligence Review, 22(3):177–210, 2004. ISSN 0269-2821.

doi: http://dx.doi.org/10.1007/s10462-004-0751-8.

[211] Thomas Zimmermann and Peter Weigerber. Preprocessing cvs data for fine-grained

analysis. In Proceedings of the First International Workshop on Mining Software Repos-

itories, pages 2–6, May 2004.

[212] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining

version histories to guide software changes. In ICSE ’04: Proceedings of the 26th

132

Bibliography

International Conference on Software Engineering, pages 563–572, Washington, DC,

USA, 2004. IEEE Computer Society. ISBN 0-7695-2163-0.

[213] Thomas Zimmermann, Valentin Dallmeier, Konstantin Halachev, and Andreas Zeller.

erose: guiding programmers in eclipse. In OOPSLA ’05: Companion to the 20th annual

ACM SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, pages 186–187, New York, NY, USA, 2005. ACM. ISBN 1-59593-193-7.

doi: http://doi.acm.org/10.1145/1094855.1094927.

133

Appendix A

Letter To PROMISE Program Committee

134

Letter To PROMISE Program Committee Appendix A

Dear X,

I am conducting a systematic review of the empirical software engineering literature on

data quality. This is an extension of the paper published at PROMISE 2008 (and also at-

tached), which resulted in a very interesting and encouraging discussion.

I am approaching you as an expert in this field of research and who has served on the

program committee of PROMISE 2008.

In order to establish how effective my search (see below) of the literature has been, I would

be grateful if you were able to identify one or more papers that you have authored or co-

authored that you believe touch on issues of data quality (even if tangentially). I can then

use these additional papers to test the thoroughness of my search protocol, and if necessary

extend the search.

Whilst I appreciate how very busy you must be, a response (even a null response) would

very much assist me in updating my literature review for my doctoral thesis which I hope to

submit in the near future.

If you would like to receive a copy of the extended systematic review please let me know.

Many thanks in anticipation!

All the best,

Gernot Liebchen

CURRENT SEARCH PROTOCOL:

135

Letter To PROMISE Program Committee Appendix A

Search Terms: ”data quality”AND software”

Searched Bibliographic Databases: ScienceDirect, SCOPUS and IEEExplore

Exhaustive Hand Search Of: Journal Empirical Software Engineering and the conference

series of ESEM, METRICS, ISESE, PROMISE and EASE

Inclusion Criteria: The article must focus on an empirical investigation of some aspect

of software engineering or address some methodological issue relevant to such empirical re-

search. The article must address data quality explicitly. The article must be refereed. The

article must be written in English.

Sub-Objectives: How significant do the community consider noise to be (in principle and

in practice)? How do empirical analysts address this problem? Are there techniques that

might be deployed to independently assess the quality of a given data set?

Last Search: January 2008

136

Appendix B

Paper Categorisations

137

Paper Categorisations Appendix B

Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[106] 1993 Y Y Y

[66] 1995 Y Y Y Y Y

[153] 1996 Y Y Y

[55] 1996 Y Y Y

[38] 1996 Y Y Y

[44] 1997 Y Y Y

[53] 1997 Y Y Y

[54] 1997 Y Y Y

[202] 1997 Y Y Y

[67] 1998 Y Y Y Y

[80] 1998 Y Y Y Y Y

[3] 1999 Y Y Y Y

Continued on the next page

138

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[95] 1999 Y Y Y Y

[46] 1999 Y Y Y

[50] 1999 Y Y Y

[45] 1999 Y Y Y Y

[14] 1999 ? ? ? Y

[81] 1999 Y Y Y Y

[83] 1999 Y Y Y Y Y Y

[128] 2000 Y ? Y

[21] 2000 Y Y Y

Continued on the next page

139

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[199] 2000 Y Y Y

[130] 2000 Y Y Y Y

[165] 2001 Y Y Y Y Y

[132] 2002 Y Y Y Y

[19] 2002 Y Y Y Y Y

[200] 2002 Y Y ? Y

[104] 2002 Y Y Y

[85] 2003 Y Y Y Y

[42] 2003 Y Y Y Y

Continued on the next page

140

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[173] 2003 Y Y Y Y Y

[174] 2003 Y Y Y

[122] 2003 Y Y Y

[206] 2003 Y Y Y

[176] 2003 Y Y Y

[99] 2004 ? ? Y Y ? Y

[209] 2004 Y Y Y Y Y

[91] 2004 Y Y Y Y Y

[178] 2004 Y Y Y Y Y

Continued on the next page

141

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[86] 2004 Y Y Y Y Y

[88] 2004 Y Y Y

[39] 2004 Y Y Y

[137] 2004 Y Y Y Y

[139] 2004 Y ? Y

[10] 2004 Y Y Y Y

[182] 2004 Y Y Y

[212] 2004 Y Y Y Y

[211] 2004 Y Y Y Y Y

Continued on the next page

142

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[22] 2004 Y Y Y

[77] 2005 Y Y Y Y

[89] 2005 Y Y Y Y Y

[164] 2005 Y Y Y

[138] 2005 Y Y Y Y

[159] 2005 Y Y ? Y

[30] 2005 Y Y Y Y

[108] 2005 Y Y Y Y

[40] 2005 Y Y Y

Continued on the next page

143

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[213] 2005 Y Y Y Y

[84] 2005 Y Y Y Y

[102] 2005 Y Y Y Y

[169] 2005 Y Y Y Y

[29] 2006 Y Y Y

[192] 2006 Y Y Y Y Y

[92] 2006 Y Y Y Y Y

[93] 2006 Y Y Y

[94] 2006 Y Y Y

Continued on the next page

144

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[133] 2006 Y Y ? Y

[191] 2006 Y Y Y Y Y

[158] 2006 Y Y ? Y

[113] 2006 Y Y Y Y

[110] 2006 Y Y Y Y Y Y

[7] 2006 Y Y Y Y Y

[72] 2006 Y Y Y Y

[8] 2006 Y Y Y

[170] 2006 Y Y Y Y Y

Continued on the next page

145

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[185] 2006 Y Y Y Y

[32] 2006 Y Y Y Y

[150] 2006 Y Y ? Y

[135] 2006 ? ? Y Y Y

[33] 2006 Y Y Y Y Y Y

[105] 2006 Y Y Y Y ? Y

[146] 2007 ? ? Y ? Y Y

[151] 2007 Y Y ? Y Y

[87] 2007 Y Y Y Y Y

Continued on the next page

146

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[48] 2007 Y Y ? Y

[189] 2007 Y Y Y

[157] 2007 Y Y Y Y Y

[47] 2007 Y Y Y Y

[162] 2007 ? ? Y Y

[111] 2007 Y Y Y Y Y

[141] 2007 Y Y ? Y

[120] 2007 Y Y ? Y

[123] 2007 ? ? Y Y Y

Continued on the next page

147

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[76] 2007 Y Y Y Y

[186] 2007 ? ? Y ? Y

[68] 2007 Y Y Y Y Y

[69] 2007 Y Y ? Y

[152] 2007 Y Y ? Y ? Y

[125] 2007 ? ? Y Y Y

[127] 2007 ? ? Y Y Y

[109] 2008 Y Y Y Y Y Y

[100] 2008 Y Y Y ? Y

Continued on the next page

148

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[18] 2008 Y Y Y Y Y

[56] 2008 Y Y Y

[49] 2008 Y Y Y Y Y

[9] 2008 Y Y Y Y

[90] 2008 Y Y Y

[204] 2008 Y Y Y

[166] 2008 Y Y Y

[156] 2008 Y Y Y Y

[129] 2008 Y Y Y Y

Continued on the next page

149

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[35] 2008 Y Y Y Y Y

[17] 2008 Y Y Y Y Y

[27] 2008 Y Y Y Y

[62] 2008 Y Y Y Y

[73] 2008 Y Y Y Y

[203] 2008 Y Y Y Y Y

[121] 2008 Y ? Y

[160] 2008 Y Y ? Y

[16] 2008 Y Y Y Y

Continued on the next page

150

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[197] 2008 Y Y Y

[184] 2008 Y Y Y Y Y Y Y

[207] 2008 Y Y Y Y Y Y

[171] 2008 Y Y Y Y Y

[155] 2008 ? ? Y ? Y

[149] 2008 ? ? Y Y Y

[64] 2008 Y Y Y

[4] 2009 Y Y Y

[28] 2009 Y Y Y

Continued on the next page

151

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[190] 2009 Y Y Y Y

[2] 2009 Y Y Y

[13] 2009 Y Y Y Y

[15] 2009 Y Y Y

[103] 2009 Y Y Y Y

[107] 2009 Y Y Y

[114] 2009 Y Y Y Y

[126] 2009 Y Y Y Y

[140] 2009 Y Y Y Y

Continued on the next page

152

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[177] 2009 Y Y Y Y

[187] 2009 Y Y Y Y

[5] 2009 Y Y Y Y Y

[6] 2009 Y Y Y Y

[11] 2009 Y Y Y

[12] 2009 Y Y Y Y Y

[20] 2009 Y Y Y Y

[43] 2009 Y Y Y Y

[61] 2009 Y Y Y Y

Continued on the next page

153

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[79] 2009 Y Y Y Y

[154] 2009 Y Y Y

[168] 2009 Y Y Y

[188] 2009 Y Y Y

[198] 2009 Y Y Y

[201] 2009 Y Y Y

[205] 2010 Y Y Y Y Y Y

[142] 2010 Y Y Y Y

[208] 2010 Y Y Y

Continued on the next page

154

Paper Categorisations Appendix B

Continued: Paper Categorisations (“Y” = Yes; Space = No; “?” = Not Stated)
P

ap
er

R
ef

er
en

ce

Y
ea

r

Q
u

an
ti

ta
ti

ve

Q
u

al
it

a
ti

ve

D
a
ta

C
ol

le
ct

io
n

M
an

u
a
l

N
oi

se
C

h
ec

k
in

g

A
u

to
m

a
te

d
N

oi
se

C
h

ec
k
in

g

E
m

p
ir

ic
al

A
n

a
ly

si
s

o
f

N
o
is

e

D
a
ta

Q
u

al
it

y
M

et
a

D
at

a

Is
N

o
is

e
A

P
ro

b
le

m
?

Q
u

a
li

ty

C
os

t

O
th

er

[36] 2010 Y Y Y Y

[1] 2010 Y Y Y

[52] 2010 Y Y Y Y

[172] 2010 Y Y Y Y

[196] 2010 Y Y Y Y

155

Appendix C

Extracted Attributes from the EDS Database

156

Extracted Attributes from the EDS Database Appendix C

Table 7.1: Innovation

Variable Descriptive Name Values Comments

tech innovation

Innovation Desc

Technical Innova-

tion • “Previously done by

work group”

• “Done by others in

EDS”

• “Done by others in the

industry”

• “Industry prototype ex-

ists, not operational”

• “New to industry, never

done before”

An indicator for

the technical in-

novation of the

project.

Continued on the next page

157

Extracted Attributes from the EDS Database Appendix C

Continued: Innovation

bus innovation

Innovation Desc

Business Innova-

tion • “Previously done by

work group”

• “Done by others in

EDS”

• “Done by others in the

industry”

• “Industry prototype ex-

ists, not operational”

• “New to industry, never

done before”

An indicator for

the business in-

novation of the

project.

Continued on the next page

158

Extracted Attributes from the EDS Database Appendix C

Continued: Innovation

appl innovation

Innovation Desc

Application Inno-

vation • “Previously done by

work group”

• “Done by others in

EDS”

• “Done by others in the

industry”

• “Industry prototype ex-

ists, not operational”

• “New to industry, never

done before”

An indicator of

the degree if inno-

vation of the ap-

plication

159

Extracted Attributes from the EDS Database Appendix C

Table 7.2: Concurrency, Team/Customer Complexity

Variable Descriptive Name Values Comments

Concurrency Desc Concurrency

• “Not applicable”

• “Hardware and Applica-

tion”

• “Hardware and Soft-

ware”

• “Application Code and

System Software”

• “Application Code, Sys-

tem Software, Hard-

ware”

Indicates whether

a project involves

concurrent work

on hardware, ap-

plications or sys-

tem software.

Continued on the next page

160

Extracted Attributes from the EDS Database Appendix C

Continued: Concurrency, Team/Customer Complexity

Complex Desc Customer Com-

plexity • “high”

• “medium”

• “low”

Indicates some

degree of cus-

tomer complexity.

Complexity Desc Team Complexity

• “Single Person Single

Team Multiple Teams”

• “Same Location Multi-

ple Sites Multiple Sites”

• “Different Cities Multi-

ple Sites”

• “Different Time Zones

Multiple Sites”

• “Different Countries

Subcontracted to a

Third Party”

Indicates team

complexity.

161

Extracted Attributes from the EDS Database Appendix C

Table 7.3: Team/Management Experience

Variable Descriptive Name Values Comments

sys experience

Experience Desc

System Experi-

ence • “Less Than 1 Year”

• “1 - 3 Years”

• “Greater Than 3 Years”

Indicates the de-

velopment team’s

experience with

the system.

tool experience

Experience Desc

Tool Experience

• “Less Than 1 Year”

• “1 - 3 Years”

• “Greater Than 3 Years”

Indicates the de-

velopment team’s

experience with

the development

tools.

info tech

experience

Experience Desc

Information

Technology Expe-

rience

• “Less Than 1 Year”

• “1 - 3 Years”

• “Greater Than 3 Years”

Indicates the de-

velopment team’s

experience with

the information

technology.

Continued on the next page

162

Extracted Attributes from the EDS Database Appendix C

Continued: Team/Management Experience

language

experience

Experience Desc

Language Experi-

ence • “Less Than 1 Year”

• “1 - 3 Years”

• “Greater Than 3 Years”

Indicates the de-

velopment team’s

experience with

the programming

language.

computer

experience

Experience Desc

Computer Expe-

rience • “Less Than 1 Year”

• “1 - 3 Years”

• “Greater Than 3 Years”

Indicates the de-

velopment team’s

experience with

the computers.

methodology

experience

Experience Desc

Methodology Ex-

perience • “Less Than 1 Year”

• “1 - 3 Years”

• “Greater Than 3 Years”

Indicates the

development

team’s experience

with the adopted

methodology.

Proj Mgt

experience

Experience Desc

Project Manage-

ment Experience • “Less Than 1 Year”

• “1 - 3 Years”

• “Greater Than 3 Years”

Indicates the

project manage-

ment’s experi-

ence.

163

Extracted Attributes from the EDS Database Appendix C

Table 7.4: General Project Attributes

Variable Descriptive Name Values Comments

Proj ID Project ID numerical This is the ID with

which the projects can

be retrieved from the

database.

Proj Close Date Project Close

Date

date The date the project

was finished and closed.

Proj Full Name Project Name alphanumerical The name the project

is entered with in the

database.

Unadj FP

Count Sum

Unadjusted FP numerical The size of the project

in FPs.

SumOfEffort

Hours

Effort numerical The amount of ef-

fort hours the project

needed for completion.

Proj Start Date Project Start

Date

date The date the project

was started.

Table 7.5: Country, Industry Sector, Project Type

Variable Descriptive Name Values Comments

Country Name Country character The country the project

was developed in.

Industry Desc Industry Sector character The industry sector the

project was developed

for.

Proj Type Desc Project Type character The type of project.

164

Extracted Attributes from the EDS Database Appendix C

Table 7.6: Derived Variables

Variable Descriptive Name Values Comments

Delivery Delivery Rate numerical Derived delivery

rate from the

original data

(effort divided by

size).

Productivity Productivity numerical Derived produc-

tivity from the

original data(size

divided by effort).

165

Appendix D

Results from Investigation Based on Simulated Data

166

Results from Investigation Based on Simulated Data Appendix D

Table 7.7: SDS1 Robust Filtering Classifications

True Noise Y True Noise N

Robust Filtering Noise Y 0 6

Robust Filtering Noise N 12 105

Table 7.8: SDS1 PF 1+ Classifications

True Noise Y True Noise N

PF 1+ Noise Y 10 49

PF 1+ Noise N 2 62

Table 7.9: SDS1 PF 2+ Classifications

True Noise Y True Noise N

PF 2+ Noise Y 5 8

PF 2+ Noise N 7 103

Table 7.10: SDS2 Robust Filtering Classifications

True Noise Y True Noise N

Robust Filtering Noise Y 5 8

Robust Filtering Noise N 32 78

167

Results from Investigation Based on Simulated Data Appendix D

Table 7.11: SDS2 PF 1+ Classifications

True Noise Y True Noise N

PF 1+ Noise Y 21 21

PF 1+ Noise N 16 65

Table 7.12: SDS2 PF 2+ Classifications

True Noise Y True Noise N

PF 2+ Noise Y 10 0

PF 2+ Noise N 27 86

Table 7.13: SDS3 Robust Filtering Classifications

True Noise Y True Noise N

Robust Filtering Noise Y 19 9

Robust Filtering Noise N 55 40

Table 7.14: SDS3 PF 1+ Classifications

True Noise Y True Noise N

PF 1+ Noise Y 44 14

PF 1+ Noise N 30 35

168

Results from Investigation Based on Simulated Data Appendix D

Table 7.15: SDS3 PF 2+ Classifications

True Noise Y True Noise N

PF 2+ Noise Y 22 1

PF 2+ Noise N 52 48

Table 7.16: SDS4 Robust Filtering Classifications

True Noise Y True Noise N

Robust Filtering Noise Y 35 4

Robust Filtering Noise N 76 8

Table 7.17: SDS4 PF 1+ Classifications

True Noise Y True Noise N

PF 1+ Noise Y 73 4

PF 1+ Noise N 38 8

Table 7.18: SDS4 PF 2+ Classifications

True Noise Y True Noise N

PF 2+ Noise Y 41 0

PF 2+ Noise N 70 12

169

Results from Investigation Based on Simulated Data Appendix D

Table 7.19: SDS1 Robust Filtering Mean Comparison

Data set/Technique Residuals Comparison

SDS1 Robust Filtering

Do Nothing Robust Filtering

Sample Size = 123 Sample Size = 117

Mean = 89.876 Mean = 94.485

Rank Sum = 14785.5 Rank Sum = 14134.5

Test Statistics = 7159.500 Test Statistics = 7231.500

Expectation of Test Statistics = 7195.500

Variance of Test Statistics = 289019.250

Z-Score 0.067

One-Sided P-Value for Do Nothing<Robust Filtering: 0.473

Two-Sided P-Value for Do Nothing not equal to

Robust Filtering: 0.947

170

Results from Investigation Based on Simulated Data Appendix D

Table 7.20: SDS1 Predictive Filtering Mean Comparison

Data set/Technique Residuals Comparison

SDS1 Predictive Filtering

Do Nothing Predictive Filtering

Sample Size = 123 Sample Size = 64

Mean = 89.876 Mean = 0.000

Rank Sum = 11946.0 Rank Sum = 5632.0

Test Statistics = 4320.000 Test Statistics = 3552.000

Expectation of Test Statistics = 3936.000

Variance of Test Statistics = 123328.000

Z-Score -1.093

One-Sided P-Value for Predictive Filtering<Do Nothing: 0.137

Two-Sided P-Value for Do Nothing not equal to

Predictive Filtering: 0.274

171

Results from Investigation Based on Simulated Data Appendix D

Table 7.21: SDS1 Filtering and Polish Mean Comparison

Data set/Technique Residuals Comparison

SDS1 Filtering and Polish

Do Nothing Filtering and Polish

Sample Size = 123 Sample Size = 123

Mean = 89.876 Mean = 439.213

Rank Sum = 12314.0 Rank Sum = 18067.0

Test Statistics = 4688.000 Test Statistics = 10441.000

Expectation of Test Statistics = 7564.500

Variance of Test Statistics = 311405.250

Z-Score 5.155

One-Sided P-Value for Do Nothing<Filtering and Polish: 0.000

Two-Sided P-Value for Do Nothing not equal to

Filtering and Polish: 0.000

172

Results from Investigation Based on Simulated Data Appendix D

Table 7.22: SDS2 Robust Filtering Mean Comparison

Data set/Technique Residuals Comparison

SDS2 Robust Filtering

Do Nothing Robust Filtering

Sample Size = 123 Sample Size = 110

Mean = 234.083 Mean = 232.335

Rank Sum = 14449.0 Rank Sum = 12812.0

Test Statistics = 6823.000 Test Statistics = 6707.000

Expectation of Test Statistics = 6765.000

Variance of Test Statistics = 263835.000

Z-Score -0.113

One-Sided P-Value for Robust Filtering <Do Nothing: 0.455

Two-Sided P-Value for Do Nothing not equal to

Robust Filtering: 0.910

173

Results from Investigation Based on Simulated Data Appendix D

Table 7.23: SDS2 Predictive Filtering Mean Comparison

Data set/Technique Residuals Comparison

SDS2 Predictive Filtering

Do Nothing Predictive Filtering

Sample Size = 123 Sample Size = 81

Mean = 234.083 Mean = 86.679

Rank Sum = 13225.0 Rank Sum = 7685.0

Test Statistics = 5599.000 Test Statistics = 4364.000

Expectation of Test Statistics = 4981.500

Variance of Test Statistics = 170201.250

Z-Score -1.497

One-Sided P-Value for Predictive Filtering<Do Nothing: 0.067

Two-Sided P-Value for Do Nothing not equal to

Predictive Filtering: 0.134

174

Results from Investigation Based on Simulated Data Appendix D

Table 7.24: SDS2 Filtering and Polish Mean Comparison

Data set/Technique Residuals Comparison

SDS2 Filtering and Polish

Do Nothing Filtering and Polish

Sample Size = 123 Sample Size = 123

Mean = 234.083 Mean = 618.472

Rank Sum = 13874.0 Rank Sum = 16507.0

Test Statistics = 6248.000 Test Statistics = 8881.000

Expectation of Test Statistics = 7564.500

Variance of Test Statistics = 311405.250

Z-Score 2.359

One-Sided P-Value for Do Nothing <Filtering and Polish: 0.009

Two-Sided P-Value for Do Nothing not equal to

Filtering and Polish: 0.018

175

Results from Investigation Based on Simulated Data Appendix D

Table 7.25: SDS3 Robust Filtering Mean Comparison

Data set/Technique Residuals Comparison

SDS3 Robust Filtering

Do Nothing Robust Filtering

Sample Size = 123 Sample Size = 95

Mean = 506.421 Mean = 499.704

Rank Sum = 13589.5 Rank Sum = 10281.5

Test Statistics = 5963.500 Test Statistics = 5721.500

Expectation of Test Statistics = 5842.500

Variance of Test Statistics = 213251.250

Z-Score -0.262

One-Sided P-Value for Robust Filtering<Do Nothing: 0.397

Two-Sided P-Value for Do Nothing not equal to

Robust Filtering: 0.793

176

Results from Investigation Based on Simulated Data Appendix D

Table 7.26: SDS3 Predictive Filtering Mean Comparison

Data set/Technique Residuals Comparison

SDS3 Predictive Filtering

Do Nothing Predictive Filtering

Sample Size = 123 Sample Size = 65

Mean = 506.421 Mean = 331.344

Rank Sum = 12351.5 Rank Sum = 5414.5

Test Statistics = 4725.500 Test Statistics = 3269.500

Expectation of Test Statistics = 3997.500

Variance of Test Statistics = 125921.250

Z-Score -2.052

One-Sided P-Value for Predictive Filtering<Do Nothing: 0.020

Two-Sided P-Value for Do Nothing not equal to

Predictive Filtering: 0.040

177

Results from Investigation Based on Simulated Data Appendix D

Table 7.27: SDS3 Filtering and Polish Mean Comparison

Data set/Technique Residuals Comparison

SDS3 Filtering and Polish

Do Nothing Filtering and Polish

Sample Size = 123 Sample Size = 123

Mean = 506.421 Mean = 721.583

Rank Sum = 14219.5 Rank Sum = 16161.5

Test Statistics = 6593.500 Test Statistics = 8535.500

Expectation of Test Statistics = 7564.500

Variance of Test Statistics = 311405.250

Z-Score 1.740

One-Sided P-Value for Do Nothing<Filtering and Polish: 0.041

Two-Sided P-Value for Do Nothing not equal to

Filtering and Polish: 0.082

178

Results from Investigation Based on Simulated Data Appendix D

Table 7.28: SDS4 Robust Filtering Mean Comparison

Data set/Technique Residuals Comparison

SDS4 Robust Filtering

Do Nothing Robust Filtering

Sample Size = 123 Sample Size = 84

Mean = 649.489 Mean = 733.015

Rank Sum = 12466.0 Rank Sum = 9062.0

Test Statistics = 4840.000 Test Statistics = 5492.000

Expectation of Test Statistics = 5166.000

Variance of Test Statistics = 179088.000

Z-Score 0.770

One-Sided P-Value for Do Nothing<Robust Filtering: 0.221

Two-Sided P-Value for Do Nothing not equal to

Robust Filtering: 0.441

179

Results from Investigation Based on Simulated Data Appendix D

Table 7.29: SDS4 Predictive Filtering Mean Comparison

Data set/Technique Residuals Comparison

SDS4 Predictive Filtering

Do Nothing Predictive Filtering

Sample Size = 123 Sample Size = 46

Mean = 649.489 Mean = 432.308

Rank Sum = 11104.0 Rank Sum = 3261.0

Test Statistics = 3478.000 Test Statistics = 2180.000

Expectation of Test Statistics = 2829.000

Variance of Test Statistics = 80155.000

Z-Score -2.292

One-Sided P-Value for Predictive Filtering<Do Nothing: 0.011

Two-Sided P-Value for Do Nothing not equal to

Predictive Filtering: 0.022

180

Results from Investigation Based on Simulated Data Appendix D

Table 7.30: SDS4 Filtering and Polish Mean Comparison

Data set/Technique Residuals Comparison

SDS4 Filtering and Polish

Do Nothing Filtering and Polish

Sample Size = 123 Sample Size = 123

Mean = 649.489 Mean = 813.670

Rank Sum = 14218.5 Rank Sum = 16162.5

Test Statistics = 6592.500 Test Statistics = 8536.500

Expectation of Test Statistics = 7564.500

Variance of Test Statistics = 311405.250

Z-Score 1.742

One-Sided P-Value for Do Nothing<Filtering and Polish: 0.041

Two-Sided P-Value for Do Nothing not equal to

Filtering and Polish: 0.082

181

