
Traces, extensions and co-normal derivatives for elliptic

systems on Lipschitz domains

Sergey E. Mikhailov∗

Brunel University West London, Department of Mathematics,
Uxbridge, UB8 3PH, UK

J. Math. Analysis Appl. 378, 2011, 324-342

Abstract

For functions from the Sobolev space Hs(Ω), 1
2 < s < 3

2 , definitions of non-unique generalized and
unique canonical co-normal derivative are considered, which are related to possible extensions of a
partial differential operator and its right hand side from the domain Ω, where they are prescribed, to
the domain boundary, where they are not. Revision of the boundary value problem settings, which
makes them insensitive to the generalized co-normal derivative inherent non-uniqueness are given. It is
shown, that the canonical co-normal derivatives, although defined on a more narrow function class than
the generalized ones, are continuous extensions of the classical co-normal derivatives. Some new results
about trace operator estimates and Sobolev spaces characterizations, are also presented.
Keywords. Partial differential equation systems, Sobolev spaces, Classical, generalized and canonical
co-normal derivatives, Weak BVP settings.

1 Introduction

While considering a second order partial differential equation for a function from the Sobolev space Hs(Ω),
1
2 < s < 3

2 , with a right-hand side from Hs−2(Ω), the strong co-normal derivative of u defined on the
boundary in the trace sense, does not generally exist. Instead, a generalized co-normal derivative operator
can be defined by the first Green identity. However this definition is related to an extension of the PDE
operator and its right hand side from the domain Ω, where they are prescribed, to the domain boundary,
where they are not. Since the extensions are non-unique, the generalized co-normal derivative operator
appears to be non-unique and non-linear unless a linear relation between the PDE solution and the extension
of its right hand side is enforced. This leads to the need of a revision of the boundary value problem settings,
which makes them insensitive to the co-normal derivative inherent non-uniqueness. For functions u from a
subspace of Hs(Ω), 1

2 < s < 3
2 , which can be mapped by the PDE operator into the space H̃t(Ω), t ≥ −1

2 ,
one can still define a canonical co-normal derivative, which is unique, linear in u and coincides with the
co-normal derivative in the trace sense if the latter does exist.

These notions were developed, to some extent, in [15, 16] for a PDE with an infinitely smooth coefficient
on a domain with an infinitely smooth boundary, and a right hand side from Hs−2(Ω), 1 ≤ s < 3

2 , or

extendable to H̃t(Ω), t ≥ −1/2. In [17] the analysis was generalized to the co-normal derivative operators
for some scalar PDE with a Hölder coefficient and right hand side from Hs−2(Ω), 1

2 < s < 3
2 , on a bounded

Lipschitz domain Ω.
In this paper updating [18], we extend the previous results on the co-normal derivatives to strongly

elliptic second order PDE systems on bounded or unbounded Lipschitz domains with infinitely smooth
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coefficients, with complete proofs. We also give the week BVP settings invariant to the generalized co-
normal derivatives non-uniqueness. To obtain these results, some new facts about trace operator estimates
and Sobolev spaces characterizations are also proved in the paper.

The paper is arranged as follows. Section 2 provides a number of auxiliary facts on Sobolev spaces,
traces and extensions, some of which might be new for Lipschitz domains. Particularly, we proved Lemma
2.4 on two-side estimates of the trace operator, Lemma 2.6 on boundedness of extension operators from
boundary to the domain for a wider range of spaces, Theorem 2.9 on characterization of the Sobolev space
Hs

0(Ω) = H̃s(Ω) on the (larger than usual) interval 1
2 < s < 3

2 , Theorem 2.10 on characterization of the
space Ht

∂Ω, t > −3
2 , Theorem 2.12 on equivalence of Hs

0(Ω) and Hs(Ω) for s ≤ 1
2 , Theorem 2.13 on non-

existence of the trace operator, Lemma 2.15 and Theorem 2.16 on extension of Hs(Ω) to H̃s(Ω) for all
s < 1

2 , s ̸=
1
2 − k.

The results of Section 2 are applied in Section 3 to introduce and analyze the generalized and canonical
co-normal derivative operators on bounded and unbounded Lipschitz domains, associated with strongly
elliptic systems of second order PDEs with infinitely smooth coefficients and right hand side from Hs−2(Ω),
1
2 < s < 3

2 . The weak settings of Dirichlet, Neumann and mixed problems (revised versions for the latter
two) are considered and it is shown that they are well posed in spite of the inherent non-uniqueness of the
generalized co-normal derivatives. It is proved that the canonical co-normal derivative coincides with the
classical (strong) one for the cases when they both do exist.

The results of Section 3 are generalized to Hölder-Lipschitz coefficients in [14], see also [18].

2 Sobolev spaces, trace operators and extensions

2.1 Notations

Suppose Ω = Ω+ is a bounded or unbounded open domain of Rn, which boundary ∂Ω is a simply connected,
closed, Lipschitz (n− 1)−dimensional set. Let Ω denote the closure of Ω and Ω− = Rn\Ω its complement.
In what follows D(Ω) = C∞

comp(Ω) denotes the space of Schwartz test functions, and D∗(Ω) denotes the
space of Schwartz distributions; Hs(Rn) = Hs

2(R
n), Hs(∂Ω) = Hs

2(∂Ω) are the Sobolev (Bessel potential)
spaces, where s ∈ R is an arbitrary real number (see, e.g., [12]).

We denote by H̃s(Ω) the closure of D(Ω) in Hs(Rn), which can be characterized as H̃s(Ω) = {g :
g ∈ Hs(Rn), supp g ⊂ Ω}, see e.g. [13, Theorem 3.29]. The space Hs(Ω) consists of restrictions on Ω of
distributions from Hs(Rn), Hs(Ω) := {g|Ω : g ∈ Hs(Rn)}, and Hs

0(Ω) is closure of D(Ω) in Hs(Ω). We
recall that Hs(Ω) coincide with the Sobolev–Slobodetski spaces W s

2 (Ω) for any non-negative s. We denote
Hs

loc(Ω) := {g : φg ∈ Hs(Ω) ∀φ ∈ D(Ω)}. For infinite (unbounded) domains Ω we will use also the notation
Hs

loc(Ω) := {g : φg ∈ Hs(Ω) ∀φ ∈ D(Ω)} (for bounded domains Hs
loc(Ω) = Hs(Ω)).

Note that distributions from Hs(Ω) and Hs
0(Ω) are defined only in Ω, while distributions from H̃s(Ω)

are defined in Rn and particularly on the boundary ∂Ω. For s ≥ 0, we can identify H̃s(Ω) with the subset
of functions from Hs(Ω), whose extensions by zero outside Ω belong to Hs(Rn), cf. [13, Theorem 3.33], i.e.,
identify functions u ∈ H̃s(Ω) with their restrictions, u|Ω ∈ Hs(Ω). However generally we will distinguish
distributions u ∈ H̃s(Ω) and u|Ω ∈ Hs(Ω), especially for s ≤ −1

2 .

We denote by Hs
∂Ω

the subspace of Hs(Rn) (and of H̃s(Ω)), which elements are supported on ∂Ω, i.e.,
Hs

∂Ω
:= {g : g ∈ Hs(Rn), supp g ⊂ ∂Ω}. To simplify notations for vector-valued functions, u : Ω → Cm,

we will often write u ∈ Hs(Ω) instead of u ∈ Hs(Ω)m = Hs(Ω;Cm), etc.
As usual (see e.g. [12, 13]), for two elements from dual complex Sobolev spaces the bilinear dual product

⟨·, ·⟩Ω associated with the sesquilinear inner product (·, ·)Ω := (·, ·)L2(Ω) in L2(Ω) is defined as

⟨u, v⟩Rn :=

∫
Rn

[F−1u](ξ)[Fv](ξ)dξ =: (F ū,Fv)Rn =: (ū, v)Rn , u ∈ Hs(Rn), v ∈ H−s(Rn), (2.1)

⟨u, v⟩Ω := ⟨u, V ⟩Rn =: (ū, v)Ω if u ∈ H̃s(Rn), v ∈ H−s(Ω), v = V |Ω with V ∈ H−s(Rn),

2



JMAA, 378, 2011, 324-342 S.E.Mikhailov

⟨u, v⟩Ω := ⟨U, v⟩Rn =: (ū, v)Ω if u ∈ Hs(Rn), v ∈ H̃−s(Ω), u = U |Ω with U ∈ Hs(Rn) (2.2)

for s ∈ R, where ḡ is the complex conjugate of g, while F and F−1 are the distributional Fourier transform
operator and its inverse, respectively, that for integrable functions take form

ĝ(ξ) = [Fg](ξ) :=

∫
Rn

e−2πix·ξg(x)dx, g(x) = [F−1ĝ](x) :=

∫
Rn

e2πix·ξ ĝ(ξ)dξ.

For vector-valued elements u ∈ Hs(Rn)m, v ∈ H−s(Rn)m, s ∈ R, definition (2.1) should be understood as

⟨u, v⟩Rn :=

∫
Rn

û(ξ) · v̂(ξ)dξ =

∫
Rn

û(ξ)⊤v̂(ξ)dξ =: (û, v̂)Rn =: (ū, v)Rn ,

where û · v̂ = û⊤v̂ =
∑m

k=1 ûkv̂k is the scalar product of two vectors.
Let J s be the Bessel potential operator defined as

[J sg](x) = F−1
ξ→x{(1 + |ξ|2)s/2ĝ(ξ)}.

The inner product in Hs(Ω), s ∈ R, is defined as follows,

(u, v)Hs(Rn) := (J su,J sv)Rn =

∫
Rn

(1 + ξ2)sû(ξ)v̂(ξ)dξ =
⟨
u,J 2sv

⟩
Rn , u, v ∈ Hs(Rn), (2.3)

(u, v)Hs(Ω) := ((I − P )U, (I − P )V )Hs(Rn) , u = U |Ω, v = V |Ω, U, V ∈ Hs(Rn).

Here P : Hs(Rn) → H̃s(Rn\Ω̄) is the orthogonal projector, see e.g. [13, p. 77].
For a general Lipschitz domain Ω, let {ωj}Jj=1 ⊂ Rn be a finite open cover of ∂Ω and {φj(x) ∈ D(ωj)}Jj=1

be a partition of unity subordinate to it,
∑J

j=1 φj(x) = 1 for any x ∈ ∂Ω. For any j there exists a half-space
domain Ωj such that ωj

∩
Ωj = ωj

∩
Ω and Ωj can be linearly transformed by a rigid translation κj to a

Lipschitz hypograph Ω̃j = {x′ ∈ Rn−1 : xn > ζj(x
′)}, where ζj are some uniformly Lipschitz functions.

Let also κj : R
n → Rn be the Lipschitz-smooth invertible functions (evidently related to ζj and κj) such

that Rn
+ ∋ x 7→ κj(x) ∈ Ωj , while Dj(x

′) are the Jacobians of the corresponding boundary mappings
Rn−1 ∋ x′ 7→ κj(x

′) ∈ ∂Ωj and Dj ∈ L∞(Rn−1).
Similar to [19, page 85] we introduce the following definition.

DEFINITION 2.1. Let Ωk, Ω be Lipschitz domains. We say that Ωk → Ω as k → ∞ if ∂Ωk are
represented using the same system of covering charts ωj as ∂Ω for all sufficiently large k, and

lim
k→∞

|ζjk − ζj |C0,1(ω̄j) = 0, (2.4)

where ζjk and ζj are the corresponding Lipschitz functions for the boundary representation.

2.2 Sobolev spaces characterization, traces and extensions

To introduce generalized co-normal derivatives in Section 3, we will need several facts about traces and
extensions in Sobolev spaces on Lipschitz domain. First we give the following usual definition of the trace
operator.

DEFINITION 2.2. An operator γ+ : Hs(Ω+) → Hσ(∂Ω) is a trace operator if for each u ∈ Hs(Ω) and
for any sequence ϕk ∈ D(Ω) converging to u in Hs(Ω), the sequence of the boundary values ϕk|∂Ω converges
to γ+u in Hσ(∂Ω). The trace operator γ− : Hs(Ω−) → Hσ(∂Ω) is defined similarly. If γ+u = γ−u we
denote them as γu.

We have the following well-known trace theorem [4, Lemma 3.6].
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THEOREM 2.3. If 1
2 < s < 3

2 , then the trace operators

γ : Hs(Rn) → Hs− 1
2 (∂Ω) and γ± : Hs(Ω±) → Hs− 1

2 (∂Ω), (2.5)

are continuous for any Lipschitz domain Ω.

Let γ∗ : H
1
2
−s(∂Ω) → H−s(Rn) denote the operator adjoined to the trace operator,

⟨γ∗v, w⟩ = ⟨v, γw⟩ ∀ w ∈ Hs(Rn), v ∈ H
1
2
−s(∂Ω).

Now we can prove two-side estimates for the trace operator and its adjoined, which particularly imply a
statement about the trace operator unboundedness (cf. [12, Chapter 1, Theorem 9.5] for the unboundedness
statements in domains with infinitely smooth boundary).

LEMMA 2.4. Let Ω be a Lipschitz domain and 1
2 < s ≤ 1. Then

C ′
√

Cs∥v∥
H

1
2−s(∂Ω)

≤ ∥γ∗v∥H−s(Rn) ≤ C ′′
√

Cs∥v∥
H

1
2−s(∂Ω)

∀v ∈ H
1
2
−s(∂Ω) (2.6)

and thus
C ′

√
Cs ≤ ∥γ∥

Hs(Rn)→Hs− 1
2 (∂Ω)

= ∥γ∗∥
H

1
2−s(Rn−1)→H−s(Rn)

≤ C ′′
√

Cs, (2.7)

where

Cs :=

∫ ∞

−∞
(1 + η2)−sdη,

C ′ and C ′′ are positive constants independent of s and v. The norm of the trace operator γ : Hs(Rn) → Hs− 1
2 (∂Ω)

tends to infinity as s ↘ 1
2 since Cs → ∞, while the operator γ : H

1
2 (Rn) → L2(∂Ω), if it does exist, is

unbounded.

Proof. Let first consider the lemma for the half-space, Ω = Rn
+ = {x ∈ Rn : xn > 0}, where x = {x′, xn},

x′ ∈ Rn−1. For v ∈ H
1
2
−s(Rn−1), taking into account the uniqueness of the trace operator for s > 1

2 , the
distributional Fourier transform gives

Fx→ξ{γ∗v} = Fx′→ξ′{v(x′)} =: v̂(ξ′).

Then we have,

∥γ∗v∥2H−s(Rn) =

∫
Rn

(1 + |ξ|2)−s|v̂(ξ′)|2dξ

=

∫
Rn−1

[∫
R

(1 + |ξ′|2 + |ξn|2)−sdξn

]
|v̂(ξ′)|2dξ′ = Cs∥v∥2

H
1
2−s(Rn−1)

, (2.8)

where the substitution ξn = (1 + |ξ′|2)
1
2 η was used, cf. [3, Chap. 2, Proposition 4.6]. Thus

∥γ∥
Hs(Rn)→Hs− 1

2 (Rn−1)
= ∥γ∗∥

H
1
2−s(Rn−1)→H−s(Rn)

=
√

Cs → ∞ as s ↘ 1

2
.

On the other hand, by (2.8) the norm ∥γ∗v∥
H− 1

2 (Rn)
is not finite for any non-zero v. This means the

operator γ∗ : H0(Rn−1) → H− 1
2 (Rn) and thus the operator γ : H

1
2 (Rn) → H0(Rn−1) is not bounded,

which completes the lemma for Ω = Rn
+ with C ′ = C ′′ = 1.

Let now Ω be a general Lipschitz domain. For v ∈ L2(∂Ω), w ∈ D(Rn), using the boundary cover and
corresponding partition of unity as in Section 2.1 we have,

4
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⟨γ∗v, w⟩Rn = ⟨v, γw⟩∂Ω =

∫
∂Ω

v(x)w(x)dσ(x) =
J∑

j=1

∫
∂Ω

φj(x)v(x)w(x)dσ(x) =

J∑
j=1

∫
Rn−1

[(φjv) ◦ κj ](x
′)[w ◦ κj ](x

′)Dj(x
′)dx′ =

J∑
j=1

⟨Dj(φjv) ◦ κj , γ0[w ◦ κj ]⟩Rn−1 =

J∑
j=1

⟨γ∗0 [Dj(φjv) ◦ κj ], w ◦ κj⟩Rn ,

where γ0, γ
∗
0 are the trace operator on Rn

+ and its adjoined, respectively. Taking into account density of

D(Rn) in Hs(Rn) and of L2(∂Ω) in H
1
2
−s(∂Ω), we have,

∥γ∗v∥H−s(Rn) = sup
w∈Hs(Rn)

|⟨γ∗v, w⟩Rn |
∥w∥Hs(Rn)

= sup
w∈Hs(Rn)

∣∣∣∣∣∣
J∑

j=1

⟨
γ∗0 [Dj(φjv) ◦ κj ],

w ◦ κj

∥w∥Hs(Rn)

⟩
Rn

∣∣∣∣∣∣ (2.9)

for any v ∈ H
1
2
−s(∂Ω).

It is well known (see e.g. [13, Theorem 3.23 and p. 98]) that

∥v∥2
H

1
2−s(∂Ω)

=
J∑

j=1

∥Dj(φjv) ◦ κj∥2
H

1
2−s(Rn−1)

,
1

2
< s ≤ 3

2
, (2.10)

C̃ ′∥w∥Hs(Rn) ≤ ∥w ◦ κj∥Hs(Rn) ≤ C̃ ′′∥w∥Hs(Rn), j = 1, ..., J, 0 ≤ s ≤ 1, (2.11)

where C̃ ′, C̃ ′′ are some positive constants independent of s. By (2.8) and (2.10),

∥γ∗0 [Dj(φjv) ◦ κj ]∥H−s(Rn) =
√
Cs∥Dj(φjv) ◦ κj∥

H
1
2−s(Rn−1)

≤
√

Cs∥v∥
H

1
2−s(∂Ω)

.

Then (2.9) and (2.11) imply

∥γ∗v∥H−s(Rn) ≤ C̃ ′′J
√

Cs∥v∥
H

1
2−s(∂Ω)

∀v ∈ H
1
2
−s(∂Ω),

which is the right inequality in (2.6).
On the other hand, we have for v ∈ L2(∂Ω), w ∈ D(Rn),

⟨φjγ
∗v, w⟩Rn = ⟨v, γ(φjw)⟩∂Ω =

∫
∂Ω

v(x)φj(x)w(x)dσ(x) =∫
∂Ω∩ωj

v(x)φj(x)w(x)dσ(x) =

∫
Rn−1

[(φjvj) ◦ κj ](x
′)[w ◦ κj ](x

′)Dj(x
′)dx′ =

⟨Dj [(φjvj) ◦ κj ], γ0[w ◦ κj ]⟩Rn−1 = ⟨γ∗0{Dj [(φjvj) ◦ κj ]}, w ◦ κj⟩Rn .

By (2.11) this implies,

∥φjγ
∗v∥H−s(Rn) = sup

w∈Hs(Rn)

∣∣∣∣∣
⟨
γ∗0{Dj [(φjv) ◦ κj ]},

w ◦ κj

∥w∥Hs(Rn)

⟩
Rn

∣∣∣∣∣ =
sup

w∈Hs(Rn)

∣∣∣∣∣
⟨
γ∗0{Dj [(φjv) ◦ κj ]},

w ◦ κj

∥w ◦ κj∥Hs(Rn)

⟩
Rn

∥w ◦ κj∥Hs(Rn)

∥w∥Hs(Rn)

∣∣∣∣∣ ≥
C̃ ′ sup

w∈Hs(Rn)

∣∣∣∣∣
⟨
γ∗0{Dj [(φjv) ◦ κj ]},

w ◦ κj

∥w ◦ κj∥Hs(Rn)

⟩
Rn

∣∣∣∣∣ = C̃ ′∥γ∗0{Dj [(φjv) ◦ κj ]}∥H−s(Rn), (2.12)

5
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that is by (2.8) and (2.10),

J∑
j=1

∥φjγ
∗v∥2H−s(Rn) ≥ C̃ ′2

J∑
j=1

∥γ∗0{Dj [(φjv) ◦ κj ]}∥2H−s(Rn) =

C̃ ′2Cs

J∑
j=1

∥Dj [(φjv) ◦ κj ]∥2
H

1
2−s(Rn−1)

= C̃ ′2Cs∥v∥2
H

1
2−s(∂Ω)

. (2.13)

Since
C̃j∥γ∗v∥H−s(Rn) ≥ ∥φjγ

∗v∥H−s(Rn) (2.14)

for φj ∈ D(Rn), (2.13) gives the left inequality in (2.6).
Obviously, (2.6) implies (2.7) for γ∗ and thus for γ.
As was shown in the first paragraph of the proof, the functional γ∗0{Dj [(φjv) ◦ κj ]} is not bounded on

H
1
2 (Rn) for any non-zero v, then (2.12), (2.14) imply that the operator γ∗ : H0(∂Ω) → H− 1

2 (Rn) and thus

the operator γ : H
1
2 (Rn) → H0(∂Ω) is not bounded.

For s > 3/2 the trace operators (2.5) are not continuous on Lipschitz domains, however the following
weaker statement holds, which was mentioned in [5] without a proof but can be indeed proved by appropriate
estimates of an integral on p. 598 of [5] for this case.

LEMMA 2.5. If Ω is a Lipschitz domain and s > 3/2, then the trace operators

γ : Hs(Rn) → H1(∂Ω) and γ± : Hs(Ω±) → H1(∂Ω)

are continuous.

LEMMA 2.6. For a Lipschitz domain Ω there exists a linear bounded extension operator γ−1 : H
s− 1

2 (∂Ω) →
Hs(Rn), 1

2 ≤ s ≤ 3
2 , which is right inverse to the trace operator γ, i.e., γγ−1g = g for any g ∈ Hs− 1

2 (∂Ω).
(For s = 1

2 the trace operator γ is understood not as in Definition 2.2 but in the non-tangential sense, see,
e.g. [8].) Moreover, ∥γ−1∥

Hs− 1
2 (∂Ω)→Hs(Rn)

≤ C, where C is independent of s.

Proof. For Lipschitz domains and 1
2 < s ≤ 1, the boundedness of the extension operator is well known, see

e.g. [13, Theorem 3.37].
To prove it for the whole range 1

2 ≤ s ≤ 3
2 , let us consider the Green operator G∆ that solves the

Dirichlet Problem for the Laplace equation in Ω and continuously maps Hs− 1
2 (∂Ω) to Hs(Ω) if Ω is a

bounded domain and to Hs
loc(Ω) if Ω is an unbounded domain. Particularly one can take G∆ = V∆V−1

∆ ,

where the single layer potential V∆φ with a density φ = V−1
∆ g ∈ Hs− 3

2 (∂Ω), solves the Laplace equation in
Ω with the Dirichlet boundary data g and V∆ is the direct value of the operator V∆ on the boundary. The
operators V−1

∆ : Hs− 1
2 (∂Ω) → Hs− 3

2 (∂Ω) and V∆ : Hs− 3
2 (∂Ω) → Hs

loc(R
n) are continuous for 1

2 ≤ s ≤ 3
2

as stated in [9, 8, 10, 21, 4]. Thus it suffice to take γ−1 = χG∆, where χ ∈ D(Rn) is a cut-off function
such that χ = 1 in a sufficiently large open ball such that it includes the boundary ∂Ω. The estimate
∥γ−1∥

Hs− 1
2 (∂Ω)→Hs(Rn)

≤ C, where C is independent of s, then follows.

Note that continuity of the operator γ was not needed in the proof.
Let us denote by E0 the operator of extension of a function defined in Ω by zero outside Ω to a function

defined in Rn.

THEOREM 2.7. Let Ω be a Lipschitz domain and s ≥ 0 while s ̸= 1
2 + k for any integer k ≥ 0. Then

H̃s(Ω) = Hs
0(Ω)

6
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in the sense that u|Ω ∈ Hs
0(Ω) for any u ∈ H̃s(Ω), and E0v ∈ H̃s(Ω) for any v ∈ Hs

0(Ω). Moreover

∥u|Ω∥Hs(Ω) ≤ ∥u∥
H̃s(Ω)

, ∥E0v∥H̃s(Ω)
≤ C∥v∥Hs(Ω), (2.15)

where C depends only on s and on the maximum of the Lipschitz constants of the representation functions
ζj for the boundary ∂Ω, see Section 2.1.

Proof. The first claim is proved in [13, Theorem 3.33]. The first estimate in (2.15) is evident, while the
second follows from the proofs of the same Theorem 3.33 and Lemma 3.32 in [13].

To characterize the space Hs
0(Ω) = H̃s(Ω) for 1

2 < s < 3
2 , we will need the following statement.

LEMMA 2.8. If Ω is a Lipschitz domain and u ∈ Hs(Ω), 0 < s < 1
2 , then∫

Ω
dist(x, ∂Ω)−2s|u(x)|2dx ≤ C∥u∥2Hs(Ω) (2.16)

and for a given boundary cover the constant C depends only on s and on the maximum of the Lipschitz
constants of the boundary representation functions ζj, see Section 2.1.

Proof. Note first that the lemma claim for u ∈ D(Ω) follows from the proof of [13, Lemma 3.32]. To prove
it for u ∈ Hs(Ω), let first the domain Ω be such that

dist(x, ∂Ω) < C0 < ∞ (2.17)

for all x ∈ Ω, which holds true particularly for bounded domains. Let {ϕk} ∈ D(Ω) be a sequence converging
to u in Hs(Ω). If we denote w(x) = dist(x, ∂Ω)−2s, then w(x) > C−2s

0 > 0. Since (2.16) holds for functions
from D(Ω), the sequence {ϕk} ∈ D(Ω) is fundamental in the weighted space L2(Ω, w), which is complete,
implying that ϕk ∈ D(Ω) converges in this space to a function u′ ∈ L2(Ω, w). Since both L2(Ω, w) and
Hs(Ω) are continuously imbedded in the non-weighted space L2(Ω), the sequence {ϕk} converges in L2(Ω)
implying the limiting functions u and u′ belong to this space and thus coincide. Then from (2.16) for ϕk

we immediately obtain it for arbitrary u ∈ Hs(Ω).
For the unbounded domains for which condition (2.17) is not satisfied, let χ(x) ∈ D(Rn) be a cut-off

function such that 0 ≤ χ(x) ≤ 1 for all x, χ(x) = 1 near ∂Ω, while w(x) < 1 for x ∈ supp (1 − χ). Then
(2.17) is satisfied in Ω′ = Ω

∩
suppχ(x) and∫

Ω
w(x)|u(x)|2dx =

∫
Ω
(1− χ(x))w(x)|u(x)|2dx+

∫
Ω
χ(x)w(x)|u(x)|2dx ≤

∥u∥2L2(Ω) +

∫
Ω′

w(x)|
√

χ(x)u(x)|2dx ≤ ∥u∥2Hs(Ω) + C∥
√

χ(x)u∥2Hs(Ω′) ≤ C1∥u∥2Hs(Ω)

due to the previous paragraph.

Lemma 2.8 allows now extending the following statement known for 1
2 < s ≤ 1, see [13, Theorem

3.40(ii)], to a wider range of s.

THEOREM 2.9. If Ω is a Lipschitz domain and 1
2 < s < 3

2 , then

Hs
0(Ω) = {u ∈ Hs(Ω) : γ+u = 0}. (2.18)

Proof. Equality (2.18) for 1
2 < s ≤ 1 is stated in [13, Theorem 3.40(ii)].

Let 1 < s < 3
2 . If u ∈ Hs

0(Ω) then evidently γ+u = 0 since D is dense in Hs
0(Ω) and the trace operator

γ+ is bounded in Hs(Ω). To prove that any u ∈ Hs(Ω) with γ+u = 0 belongs to Hs
0(Ω), it remains, due to

7
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Theorem 2.7, to prove that E0u ∈ Hs(Rn). We remark first of all that E0u ∈ H1(Rn) due to the previous
paragraph and Theorem 2.7, and then make estimates similar to those in the proof of [13, Theorem 3.33],

∥E0u∥2Hs(Rn) ∼ ∥E0u∥2W 1
2 (R

n) +

∫
Rn

∫
Rn

|∇E0u(x)−∇E0u(y)|2

|x− y|2(s−1)+n
dx dy

= ∥u∥2W 1
2 (Ω) +

∫
Ω

∫
Ω

|∇u(x)−∇u(y)|2

|x− y|2(s−1)+n
dx dy

+

∫
Rn\Ω

∫
Ω

|∇u(x)|2

|x− y|2(s−1)+n
dx dy +

∫
Ω

∫
Rn\Ω

|∇u(y)|2

|x− y|2(s−1)+n
dx dy

= ∥u∥2W s
2 (Ω) + 2

∫
Ω
|ws−1(x)∇u(x)|2 dx,

where

ws−1(x) :=

∫
Rn\Ω

dy

|x− y|2(s−1)+n
, x ∈ Ω,

and W s
2 (Ω) is the Sobolev-Slobodetski space. Introducing spherical coordinates with x as an origin, we

obtain, ws−1(x) ≤ αn
2(s−1)dist(x, ∂Ω)

−2(s−1) for x ∈ Ω, where αn is the area of the unit sphere in Rn. Then,

taking into account that ∇u ∈ Hs−1(Ω) and ∥∇u∥Hs−1(Ω) ≤ ∥u∥Hs(Ω), we have by Lemma 2.8,

∥E0u∥2Hs(Rn) ≤ ∥u∥2W s
2 (Ω) + 2C∥u∥2Hs(Ω) ≤ Cs∥u∥2Hs(Ω) .

Theorem 2.7 completes the proof.

Let us now give a characterization of the space Ht
∂Ω.

THEOREM 2.10. Let Ω be a Lipschitz domain in Rn.
(i) If t ≥ −1

2 , then Ht
∂Ω = {0}.

(ii) If −3
2 < t < −1

2 , then g ∈ Ht
∂Ω if and only if g = γ∗v, i.e.,

⟨g,W ⟩Rn = ⟨v, γW ⟩∂Ω ∀ W ∈ H−t(Rn), (2.19)

with v = γ∗−1g ∈ Ht+ 1
2 (∂Ω), i.e.,

⟨v, w⟩∂Ω = ⟨g, γ−1w⟩Rn ∀ w ∈ H−t− 1
2 (∂Ω), (2.20)

where v is independent of the choice of the non-unique operators γ−1, γ
∗
−1, and the estimate ∥v∥

Ht+1
2 (∂Ω)

≤
C∥g∥Ht(Rn) holds with C independent of t.

Proof. We will follow an idea in the proof of Lemma 3.39 in [13] (see also [3, Proposition 4.8]), extending
it from a half-space to a Lipschitz domain Ω.

Let Ω+ = Ω and Ω− = Rn\Ω̄. For any ϕ ∈ D(Rn), let us define

ϕ±(x) =

{
ϕ(x) if x ∈ Ω±,

0 if x ̸∈ Ω±.

Let t > −1
2 . Then ϕ± ∈ H̃−t(Ω±) (see e.g. [13, Theorem 3.40] and Theorem 2.7 for −1

2 < t ≤ 0, for greater
t it then follows by embedding), ∥ϕ − ϕ+ − ϕ−∥H−t(Rn) = 0, and there exist sequences {ϕ±

k } ∈ D(Ω±)

converging to ϕ± in H̃−t(Ω±) as k → ∞. Hence ⟨g, ϕ⟩Rn = limk→∞⟨g, ϕ+
k + ϕ−

k ⟩Rn = 0 for any ϕ ∈ D(Rn)
proving (i) for t > −1

2 since D(Rn) is dense in H−t(Rn) = [Ht(Rn)]∗.

8
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Let us prove (ii). For g ∈ Ht
∂Ω, −

3
2 < t < −1

2 , let v ∈ Ht+ 1
2 (∂Ω) be defined by (2.20), where existence

and continuity of γ−1 : H
−t− 1

2 (∂Ω) → H−t(Ω) is proved in Lemma 2.6. Observe that

|⟨v, w⟩∂Ω| ≤ ∥g∥Ht(Rn)∥w∥H−t− 1
2 (∂Ω)

∥γ−1∥
H−t− 1

2 (∂Ω)→H−t(Rn)
,

so ∥v∥
Ht+1

2 (∂Ω)
≤ ∥γ−1∥

H−t− 1
2 (∂Ω)→H−t(Rn)

∥g∥Ht(Rn) ≤ C∥g∥Ht(Rn), where C is independent of t due to

Lemma 2.6 if γ−1 is chosen as in that lemma. We also have that

⟨g,W ⟩Rn − ⟨v, γW ⟩∂Ω = ⟨g, ρ⟩Rn ∀ W ∈ H−t(Rn),

where
ρ = W − γ−1γW ∈ H−t(Rn).

Then we have γρ = 0, which due to Theorems 2.7, 2.9 implies ρ̃± ∈ H̃−t(Ω±), where ρ̃± are extensions
of ρ|Ω± by zero outside Ω±, and ρ = ρ̃+ + ρ̃−. Thus there exist sequences {ρ±k } ∈ D(Ω±) converging to

ρ̃± in H̃−t(Ω±), implying ⟨g, ρ⟩Rn = 0 since g ∈ Ht
∂Ω, and thus ansatz (2.19). To prove that v is uniquely

determined by g , i.e., independent of γ−1, let us consider v′ and v′′ corresponding to different operators
γ′−1 and γ′′−1. Then by (2.19),

⟨v′ − v′′, w⟩∂Ω = ⟨γ∗′−1g − γ∗′′−1g, w⟩∂Ω = ⟨g, γ′−1w − γ′′−1w⟩Rn

= ⟨v′, γ(γ′−1w − γ′′−1w)⟩∂Ω = 0 ∀ w ∈ H−t− 1
2 (∂Ω).

It remains to deal with the case t = −1
2 in (i). Let g ∈ H

− 1
2

∂Ω . Since H
− 1

2
∂Ω ⊂ Ht

∂Ω for −3
2 < t < −1

2 , then

g = γ∗v for some v ∈ Ht+ 1
2 (∂Ω) ∀t ∈ (−3

2 ,−
1
2), and ∥g∥Ht

∂Ω
= ∥γ∗v∥Ht

∂Ω
≥ C ′√C−t ∥v∥

H
1
2+t(∂Ω)

owing to

Lemma 2.4. Since C−t → ∞ as t ↗ −1
2 , this means ∥v∥

H
1
2+t(∂Ω)

→ 0 as t ↗ −1
2 implying v = 0.

Combining (2.19) and (2.20) we have the following useful statement.

COROLLARY 2.11. Let Ω be a Lipschitz domain in Rn. If g ∈ Ht
∂Ω with −3

2 < t < −1
2 , then g = γ∗γ∗−1g

for any choice of γ∗−1.

THEOREM 2.12. Let Ω be a Lipschitz domain in Rn and s ≤ 1
2 . Then D(Ω) is dense in Hs(Ω), i.e.,

Hs(Ω) = Hs
0(Ω).

Proof. The proof for 0 ≤ s ≤ 1
2 is available in [13, Theorem 3.40(i)]. To prove the statement for any

s ≤ 1
2 we remark that if w ∈ Hs(Ω)∗ = H̃−s(Ω) satisfies ⟨w, ϕ⟩ = 0 for all ϕ ∈ D(Ω), then w ∈ H−s

∂Ω and
Theorem 2.10(i) implies w = 0. Hence, D(Ω) is dense in Hs(Ω), i.e., Hs(Ω) = Hs

0(Ω).

Theorem 2.12 implies that for any u ∈ D(Ω) and s ≤ 1
2 there exists a sequence {ϕk} ∈ D(Ω) converging

to u in Hs(Ω). Evidently ϕk|∂Ω converges to 0 in Hσ(∂Ω) for any σ since ϕk|∂Ω = 0. On the other hand,
u ∈ D(Ω) is the limit in Hs(Ω) of the sequence {ϕ′

k} = u, meaning that ϕ′
k|∂Ω converges in Hσ(∂Ω) to

u|∂Ω, which is generally non-zero. This leads to the following conclusion of non-existence.

COROLLARY 2.13. For s ≤ 1
2 the trace operators γ± : Hs(Ω±) → Hσ(∂Ω), understood as in Defini-

tion 2.2, do not exist for any σ.

REMARK 2.14. (i) Evidently, Corollary 2.13 holds also if the space Hσ(∂Ω) is replaced with any Banach
space of distributions on ∂Ω.

(ii) The trace operator γ± : B(Ω±) → Hσ(∂Ω) can, of course, still exist on some Banach subspaces on
Ω±, B(Ω±) ⊂ Hs(Ω±), s ≤ 1

2 , with the norms stronger than the norm in Hs(Ω±), particularly on Ht(Ω±),
t > 1

2 .

9
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The following two statements give conditions when distributions from Hs(Ω) can be extended to dis-
tributions from H̃s(Ω) and when the extension can be written in terms of a linear bounded operator. The
first of them can be considered as a counterpart of Theorem 2.7 for negative s.

LEMMA 2.15. Let Ω be a Lipschitz domain, s < 1
2 , s ̸= 1

2 − k for any integer k > 0. Then for any

g ∈ Hs(Ω) there exists g̃ ∈ H̃s(Ω) such that g = g̃|Ω and ∥g̃∥
H̃s(Ω)

≤ C∥g∥Hs(Ω), where C > 0 does not

depend on g.

Proof. Any distribution g ∈ Hs(Ω) is a bounded linear functional on H̃−s(Ω). On the other hand, for any
v ∈ H−s

0 (Ω) ⊂ H−s(Ω) its zero extension ṽ = E0v belongs to H̃−s(Ω) with

∥ṽ∥
H̃−s(Ω)

≤ C∥v∥H−s(Ω) (2.21)

for s ≤ 0, s ̸= 1
2 − k, by Theorem 2.7. This holds true also for 0 < s < 1

2 since then H̃−s(Ω) = [Hs(Ω)]∗ =

[Hs
0(Ω)]

∗ = [H̃s(Ω)]∗ = H−s(Ω) by Theorems 2.12 and 2.7, while the extension ṽ ∈ H̃−s(Ω) is defined as

⟨ṽ, w⟩ := ⟨v,E0w⟩ ∀ w ∈ Hs(Ω), 0 < s <
1

2
,

and by Theorems 2.12 and 2.7,

∥ṽ∥
H̃−s(Ω)

= sup
w∈Hs(Ω)\{0}

|⟨ṽ, w⟩|
∥w∥Hs(Ω)

= sup
w∈Hs(Ω)\{0}

|⟨v,E0w⟩|
∥w∥Hs(Ω)

≤ C sup
w∈Hs(Ω)\{0}

|⟨v,E0w⟩|
∥E0w∥H̃s(Ω)

≤ C∥v∥H−s(Ω).

giving estimate (2.21).
Thus the functional g ∈ Hs(Ω) continuous on H̃−s(Ω) and thus on H−s

0 (Ω) can be extended by

the Hahn-Banach theorem to a functional g̃ ∈ H̃s(Ω) continuous on H−s(Ω) such that ∥g̃∥
H̃s(Ω)

=

∥g̃∥[H−s(Ω)]∗ = ∥g∥[H−s
0 (Ω)]∗ . Then by estimate (2.21) for s < 1

2 , s ̸=
1
2 − k, we have,

∥g∥[H−s
0 (Ω)]∗ = sup

v∈H−s
0 (Ω)\{0}

|⟨g, v⟩|
∥v∥H−s

0 (Ω)

≤ C sup
ṽ∈H̃−s(Ω)\{0}

|⟨g, ṽ⟩|
∥ṽ∥

H̃−s(Ω)

≤ C∥g∥
[H̃−s(Ω)]∗ = C∥g∥Hs(Ω),

which completes the proof.

THEOREM 2.16. Let Ω be a Lipschitz domain and −3
2 < s < 1

2 , s ̸= −1
2 . There exists a bounded

linear extension operator Ẽs : Hs(Ω) → H̃s(Ω), such that Ẽsg|Ω = g, ∀ g ∈ Hs(Ω). For −1
2 < s < 1

2 the

extension operator is unique, (Ẽs)∗ = Ẽ−s and

∥Ẽsg∥
H̃s(Ω)

≤ C∥g∥Hs(Ω), (2.22)

where C depends only on s and on the maximum of the Lipschitz constants of the representation functions
ζj for the boundary ∂Ω, see Section 2.1.

Proof. If 0 ≤ s < 1
2 , then H̃s(Ω) = {E0u, u ∈ Hs(Ω)}, which implies that one can take Ẽs = E0, where

the operator E0 : Hs(Ω) → H̃s(Ω) of extension by zero is continuous by the Theorems 2.7 and 2.12 with
the estimate (2.22) following from estimate (2.15).

If −1
2 < s < 0, we define Ẽs as

⟨Ẽsg, v⟩Ω := ⟨g,E0v⟩Ω, ∀g ∈ Hs(Ω), ∀v ∈ H−s(Ω),

10
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i.e., Ẽs = E∗
0 = (Ẽ−s)∗, which is continuous with the estimate (2.22) following from the previous paragraph.

Theorem 2.10 implies that the extension operator Ẽs : Hs(Ω) → H̃s(Ω) is unique for −1
2 < s < 1

2 .

Let now −3
2 < s < −1

2 . For s in this range, the trace operator γ+ : H−s(Ω) → H−s− 1
2 (∂Ω) is bounded

due to [4, Lemma 3.6] (see also [13, Theorem 3.38]), and there exists a bounded right inverse to the trace

operator γ−1 : H−s− 1
2 (∂Ω) → H−s(Ω), see Lemma 2.6. Then (I − γ−1γ

+) is a bounded projector from
H−s(Ω) to H−s

0 (Ω) = H̃−s(Ω) due to Theorem 2.7. Thus any functional v ∈ Hs(Ω) can be continuously

mapped into the functional ṽ ∈ H̃s(Ω) such that ⟨ṽ, u⟩ = ⟨v,E0(I − γ−1γ
+)u⟩ for any u ∈ H−s(Ω). Since

ṽu = vu for any u ∈ H̃−s(Ω), we have,

Ẽs := [E0(I − γ−1γ
+)]∗ : Hs(Ω) → H̃s(Ω)

is a bounded extension operator.

Since the extension operator Ẽs : Hs(Ω) → H̃s(Ω) is unique for −1
2 < s < 1

2 , we will call it canonical

extension operator (as opposite to other possible extensions from Hs(Ω) to H̃σ(Ω), σ < −1
2). For −3

2 <

s < −1
2 , on the other hand, the operator γ−1 : H

−s− 1
2 (∂Ω) → H−s(Ω) in the proof of Theorem 2.16 is not

unique, implying non-uniqueness of Ẽs : Hs(Ω) → H̃s(Ω).
We will later need the following two results.

LEMMA 2.17. Let Ω and Ω′ ⊂ Ω be open sets, and s ≤ 0. If u ∈ Hs(Ω), then ∥u∥Hs(Ω′) → 0 as the
Lebesgue measure of Ω′ tends to zero.

Proof. Let ϕ ∈ D(Ω). Then

∥u∥Hs(Ω′) ≤ ∥u− ϕ∥Hs(Ω′) + ∥ϕ∥Hs(Ω′) ≤ ∥u− ϕ∥Hs(Ω) + ∥ϕ∥L2(Ω′).

For any ϵ > 0 we can chose ϕ such that ∥u− ϕ∥Hs(Ω) < ϵ/2 due to the density of D(Ω) in Hs(Ω) and then
chose Ω′ with sufficiently small measure so that ∥ϕ∥L2(Ω′) < ϵ/2.

LEMMA 2.18. Let Ωk ⊂ Ω be a sequence of Lipschitz domains converging to a Lipschitz domain Ω and
−1

2 < s < 1/2. If u ∈ Hs(Ω) and ũk = Ẽsu|Ωk
, then there exists a constant C independent of u and k such

that ∥ũk∥H̃s(Ωk)
≤ C∥u∥Hs(Ω) for all sufficiently large k.

Proof. By Theorem 2.16,
∥ũk∥H̃s(Ωk)

≤ Ck∥u|Ωk
∥Hs(Ωk) ≤ Ck∥u∥Hs(Ω),

where Ck depend only on s and on the maximum of the Lipschitz constants of the representation functions
ζjk for the boundaries ∂Ωk. By (2.4), the Lipschitz constants are bounded and henceforth so are Ck.

3 Partial differential operator extensions and co-normal derivatives for
infinitely smooth coefficients

Let us consider in Ω a system of m complex linear differential equations of the second order with respect
to m unknown functions {ui}mi=1 = u : Ω → Cm, which for sufficiently smooth u has the following strong
form,

Au(x) := −
n∑

i,j=1

∂i[aij(x) ∂ju(x)] +
n∑

j=1

bj(x) ∂ju(x) + c(x)u(x) = f(x), x ∈ Ω, (3.1)

where f : Ω → Cm, ∂j := ∂/∂xj (j = 1, 2, ..., n), a(x) = {aij(x)}ni,j=1 = {{aklij (x)}mk,l=1}ni,j=1, b(x) =

{{bkli (x)}mk,l=1}ni=1 and c(x) = {ckl(x)}mk,l=1, i.e., aij , bi, c : Ω → Cm×m for fixed indices i, j. If m = 1, then

11
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(3.1) is a scalar equation. In this paper we assume that a, b, c ∈ C∞(Ω); the case of non-smooth coefficients
is addressed in [14], see also [18].

The operator A is (uniformly) strongly elliptic in an open domain Ω if there exists a bounded m ×m
matrix-valued function θ(x) such that

Re{ζ̄⊤θ(x)
n∑

i,j=1

aij(x)ξiξjζ} ≥ C|ξ|2|ζ|2

for all x ∈ Ω, ξ ∈ Rn and ζ ∈ Cm, where C is a positive constant, see e.g. [7, Definition 3.6.1] and references
therein. We say that the operator A is uniformly strongly elliptic in a closed domain Ω̄ if its is uniformly
strongly elliptic in an open domain Ω′ ⊃ Ω̄. We will need the strong ellipticity in relation with the solution
regularity, starting from Theorem 3.11.

3.1 Partial differential operator extensions and generalized co-normal derivative

For u ∈ Hs(Ω), f ∈ Hs−2(Ω), s ∈ R, equation system (3.1) is understood in the distribution sense as

⟨Au, v⟩Ω = ⟨f, v⟩Ω ∀v ∈ D(Ω),

where v : Ω → Cm and
⟨Au, v⟩Ω := E(u, v) ∀v ∈ D(Ω), (3.2)

E(u, v) = EΩ(u, v) :=
n∑

i,j=1

⟨aij∂ju, ∂iv⟩Ω +
n∑

j=1

⟨bj∂ju, v⟩Ω + ⟨cu, v⟩Ω . (3.3)

Bilinear form (3.3) is well defined for any v ∈ D(Ω) and moreover, the bilinear functional E : {Hs(Ω), H̃2−s(Ω)} →
C is bounded for any s ∈ R. Since the set D(Ω) is dense in H̃2−s(Ω), expression (3.2) defines then a bounded
linear operator A : Hs(Ω) → Hs−2(Ω) = [H̃2−s(Ω)]∗, s ∈ R,

⟨Au, v⟩Ω := E(u, v) ∀v ∈ H̃2−s(Ω). (3.4)

Let now 1
2 < s < 3

2 . In addition to the operator A defined by (3.4), let us consider also the aggregate
partial differential operator Ǎ, defined as,

⟨Ǎu, v⟩Ω := Ě(u, v) ∀v ∈ H2−s(Ω), (3.5)

where

Ě(u, v) = ĚΩ(u, v) :=
n∑

i,j=1

⟨
Ẽs−1(aij∂ju), ∂iv

⟩
Ω
+

n∑
j=1

⟨
Ẽs−1(bj∂ju), v

⟩
Ω
+

⟨
Ẽs−1(cu), v

⟩
Ω

(3.6)

and Ẽs−1 : Hs−1(Ω) → H̃s−1(Ω) is a bounded extension operator, which is unique by Theorem 2.16. Note
that by (2.2) one can rewrite (3.5) also as

(Ǎu, v)Ω := Φ(u, v) ∀v ∈ H2−s(Ω),

where Φ(u, v) = Ě(u, v̄) is the sesquilinear form.
If s = 1, i.e. u, v ∈ H1(Ω), evidently

Ě(u, v) = E(u, v) =
∫
Ω

 n∑
i,j=1

(aij∂ju) · ∂iv +
n∑

j=1

(bj∂ju) · v + cu · v

 dx.

12
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The aggregate operator Ǎ : Hs(Ω) → H̃s−2(Ω) = [H2−s(Ω)]∗ is bounded since ∂iv ∈ H1−s(Ω), v ∈
H2−s(Ω) ⊂ H1−s(Ω). For any u ∈ Hs(Ω), the functional Ǎu belongs to H̃s−2(Ω) and is an extension of the
functional Au ∈ Hs−2(Ω) from the domain of definition H̃2−s(Ω) ⊂ H2−s(Ω) to the domain of definition
H2−s(Ω).

The distribution Ǎu is not the only possible extension of the functional Au, and any functional of the
form

Ǎu+ g, g ∈ Hs−2
∂Ω (3.7)

gives another extension. On the other hand, any extension of the domain of definition of the functional
Au from H̃2−s(Ω) to H2−s(Ω) has evidently form (3.7). The existence of such extensions is provided by
Lemma 2.15.

For u ∈ Hs(Ω), s > 3
2 , the strong (classical) co–normal derivative operator

T+
c u(x) :=

n∑
i,j=1

aij(x) γ
+[∂ju(x)]νi(x) (3.8)

is well defined on ∂Ω in the sense of traces. Here γ+[∂ju] ∈ Hs− 3
2 (∂Ω) ⊂ L2(∂Ω) if

3
2 < s < 5

2 , while the
outward (to Ω) unit normal vector ν(x) at the point x ∈ ∂Ω belongs to L∞(∂Ω) for the Lipschitz boundary
∂Ω, implying T+

c u ∈ L2(∂Ω). Note that for Lipschitz domains one can not generally expect that T+
c u

belongs to Hs(∂Ω), s > 0, even for infinitely smooth u.
We can extend the definition of the generalized co–normal derivative, given in [13, Lemma 4.3] for s = 1

(cf. also [11, Lemma 2.2] for the generalized co–normal derivative on a manifold boundary), to a range of
Sobolev spaces as follows.

DEFINITION 3.1. Let Ω be a Lipschitz domain, 1
2 < s < 3

2 , u ∈ Hs(Ω), and Au = f̃ |Ω in Ω for some

f̃ ∈ H̃s−2(Ω). Let us define the generalized co–normal derivative T+(f̃ , u) ∈ Hs− 3
2 (∂Ω) as⟨

T+(f̃ , u) , w
⟩
∂Ω

:= Ě(u, γ−1w)− ⟨f̃ , γ−1w⟩Ω = ⟨Ǎu− f̃ , γ−1w⟩Ω ∀ w ∈ H
3
2
−s(∂Ω), (3.9)

where γ−1 : H
3
2
−s(∂Ω) → H2−s(Ω) is a bounded right inverse to the trace operator.

The notation T+(f̃ , u) corresponds to the notation T̃+(f̃ , u) in [17].

THEOREM 3.2. Under the hypotheses of Definition 3.1, the generalized co–normal derivative T+(f̃ , u)
is independent of the operator γ−1, the estimate

∥T+(f̃ , u)∥
Hs− 3

2 (∂Ω)
≤ C1∥u∥Hs(Ω) + C2∥f̃∥H̃s−2(Ω)

(3.10)

takes place, and the first Green identity holds in the following form,⟨
T+(f̃ , u) , γ+v

⟩
∂Ω

= Ě(u, v)− ⟨f̃ , v⟩Ω = ⟨Ǎu− f̃ , v⟩Ω ∀ v ∈ H2−s(Ω). (3.11)

Proof. For s = 1 the theorem proof is available in [13, Lemma 4.3], which idea is extended here to the
whole range 1

2 < s < 3
2 .

By Lemma 2.6, a bounded operator γ−1 : H
3
2
−s(∂Ω) → H2−s(Ω) does exist. Then estimate (3.10)

follows from (3.9).
To prove independence of the co-normal derivative T+(f̃ , u) of γ−1, let us consider two co-normal

derivatives generated by two different operators γ′−1 and γ′′−1. Then their difference is

⟨T ′+(f̃ , u)− T ′′+(f̃ , u), w⟩∂Ω = ⟨Ǎu− f̃ , γ′−1w − γ′′−1w⟩Ω ∀ w ∈ H
3
2
−s(∂Ω).

13
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By definition, Ǎu− f̃ ∈ Hs−2
∂Ω , which by Corollary 2.11 implies that

⟨Ǎu− f̃ , γ′−1w − γ′′−1w⟩Ω = ⟨Ǎu− f̃ , γ′−1w − γ′′−1w⟩Rn = ⟨γ∗γ∗−1(Ǎu− f̃), γ′−1w − γ′′−1w⟩Rn =

⟨γ∗−1(Ǎu− f̃), γγ′−1w − γγ′′−1w⟩∂Ω = ⟨γ∗−1(Ǎu− f̃), w − w⟩∂Ω = 0 ∀ w ∈ H
3
2
−s(∂Ω).

To prove (3.11), let V ∈ H2−s(Rn) be such that v = V |Ω implying γ+v = γV . Taking again into
account that Ǎu− f̃ ∈ Hs−2

∂Ω , we have by Corollary 2.11,⟨
T+(f̃ , u) , γ+v

⟩
∂Ω

= ⟨Ǎu− f̃ , γ−1γ
+v⟩Ω = ⟨Ǎu− f̃ , γ−1γV ⟩Rn

= ⟨γ∗γ∗−1(Ǎu− f̃), V ⟩Rn = ⟨Ǎu− f̃ , V ⟩Rn = ⟨Ǎu− f̃ , v⟩Ω

as required.

Because of the involvement of f̃ , the generalized co-normal derivative T+(f̃ , u) is generally non-linear
in u. It becomes linear if a linear relation is imposed between u and f̃ (including behavior of the latter
on the boundary ∂Ω), thus fixing an extension of f̃ |Ω into H̃s−2(Ω). For example, f̃ |Ω can be extended as
f̌ := Ǎu, which generally does not coincide with f̃ . Then obviously, T+(f̌ , u) = T+(Ǎu, u) = 0, meaning
that the co-normal derivatives associated with any other possible extension f̃ appears to be aggregated in
f̌ as

⟨f̌ , v⟩Ω = ⟨f̃ , v⟩Ω +
⟨
T+(f̃ , u) , γ+v

⟩
∂Ω

(3.12)

due to (3.11). This justifies the term aggregate for the extension f̌ , and thus for the operator Ǎu.
As follows from Definition 3.1, the generalized co-normal derivative is still linear with respect to the

couple (f̃ , u), i.e.,

T+(α1f̃1, α1u1) + T+(α2f̃2, α2u2) = T+(α1f̃1 + α2f̃2, α1u1 + α2u2)

for any complex numbers α1, α2.
In fact, for a given function u ∈ Hs(Ω), 1

2 < s < 3
2 , any distribution τ ∈ Hs− 3

2 (∂Ω) may be nominated

as a co-normal derivative of u, by an appropriate extension f̃ of the distribution Au ∈ Hs−2(Ω) into
H̃s−2(Ω). This extension is again given by the second Green formula (3.11) re-written as follows (cf. [2,
Section 2.2, item 4] for s = 1),

⟨f̃ , v⟩Ω := Ě(u, v)−
⟨
τ, γ+v

⟩
∂Ω

= ⟨Ǎu− γ+∗τ, v⟩Ω ∀ v ∈ H2−s(Ω). (3.13)

Here the operator γ+∗ : Hs− 3
2 (∂Ω) → H̃s−2(Ω) is adjoined to the trace operator, ⟨γ+∗τ, v⟩Ω := ⟨τ, γ+v⟩∂Ω

for all τ ∈ Hs− 3
2 (∂Ω) and v ∈ H2−s(Ω). Evidently, the distribution f̃ defined by (3.13) belongs to H̃s−2(Ω)

and is an extension of the distribution Au into H̃s−2(Ω) since γ+v = 0 for v ∈ H̃2−s(Ω).
For u ∈ C1(Ω) ⊂ H1(Ω), one can take τ equal to the strong co-normal derivative, T+

c u ∈ L∞(∂Ω), and
relation (3.13) can be considered as the classical extension of f = Au ∈ H−1(Ω) to f̃c ∈ H̃−1(Ω), which is
evidently linear.

3.2 Boundary value problems

Consider the BVP weak settings for PDE system (3.1) on Lipschitz domain for 1
2 < s < 3

2 .

The Dirichlet problem: for f ∈ Hs−2(Ω) and φ0 ∈ Hs− 1
2 (∂Ω), find u ∈ Hs(Ω) such that

⟨Au, v⟩Ω = ⟨f, v⟩Ω ∀v ∈ H̃2−s(Ω), (3.14)

γ+u = φ0 on ∂Ω. (3.15)

14
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The Neumann problem: for f̌ ∈ H̃s−2(Ω), find u ∈ Hs(Ω) such that

⟨Ǎu, v⟩Ω = ⟨f̌ , v⟩Ω ∀v ∈ H2−s(Ω). (3.16)

Here Au and Ǎu are defined by (3.4) and (3.5), respectively.
To set the mixed problem, let ∂DΩ and ∂NΩ = ∂Ω\∂DΩ be nonempty, open sub–manifolds of ∂Ω,

and Hs
0(Ω, ∂DΩ) = {w ∈ Hs(Ω) : γ+w = 0 on ∂DΩ}. We introduce the mixed aggregate operator Ǎ∂DΩ :

Hs(Ω) → [H2−s
0 (Ω, ∂DΩ)]

∗, defined as

⟨Ǎ∂DΩu, v⟩Ω := ⟨Ǎu, v⟩Ω = Ě(u, v) ∀ v ∈ H2−s
0 (Ω, ∂DΩ).

The mixed operator Ǎ∂DΩ is bounded by the same argument as the aggregate operator Ǎ. For any
u ∈ Hs(Ω), the distribution Ǎ∂DΩu belongs to [H2−s

0 (Ω, ∂DΩ)]
∗ and is an extension of the functional

Au ∈ Hs−2(Ω) from the domain of definition H̃2−s(Ω) = H2−s
0 (Ω) ⊂ H2−s

0 (Ω, ∂DΩ) to the domain of

definition H2−s
0 (Ω, ∂DΩ), and a restriction of the functional Ǎu ∈ H̃s−2(Ω) from the domain of definition

H2−s(Ω) ⊃ H2−s
0 (Ω, ∂DΩ) to the domain of definition H2−s

0 (Ω, ∂DΩ).

For v ∈ H2−s
0 (Ω, ∂DΩ), the trace γ+v belongs to H̃

3
2
−s(∂NΩ). If Au = f̃ |Ω in Ω for some f̃ ∈ H̃s−2(Ω),

then the first Green identity (3.11) gives,

⟨Ǎ∂DΩu, v⟩Ω = ⟨f̌m, v⟩Ω,

⟨f̌m, v⟩Ω = ⟨f̃ , v⟩Ω +
⟨
T+(f̃ , u) , γ+v

⟩
∂NΩ

∀ v ∈ H2−s
0 (Ω, ∂DΩ), (3.17)

where, evidently, f̌m ∈ [H2−s
0 (Ω, ∂DΩ)]

∗. This leads to the following weak setting.

The mixed (Dirichlet-Neumann) problem: for f̌m ∈ [H2−s
0 (Ω, ∂DΩ)]

∗ and φ0 ∈ Hs− 1
2 (∂DΩ), find u ∈

Hs(Ω) such that

⟨Ǎ∂DΩu, v⟩Ω = ⟨f̌m, v⟩Ω ∀v ∈ H2−s
0 (Ω, ∂DΩ), (3.18)

γ+u = φ0 on ∂DΩ. (3.19)

The Neumann and the mixed problems are formulated in terms of the aggregate right hand sides f̌ and
f̌m, respectively, prescribed on their own, i.e., without necessary splitting them into the right hand side
inside the domain Ω and the part related with the prescribed co-normal derivative. If a right hand side
extension f̃ and an associated non-zero generalized co-normal derivative T+(f̃ , u) are prescribed instead,
then f̌ and f̌m can be expressed through them by relations (3.12), (3.17). Thus the co-normal derivative
does not enter, in fact, the weak settings of the Dirichlet, Neumann or mixed problem, implying that the
non-uniqueness of T+(f̃ , u) for a given function u ∈ Hs(Ω), 1

2 < s < 3
2 , does not influence the BVP weak

settings, (cf. [2, Section 2.2, item 4] for s = 1). On the other hand, for a given u ∈ Hs(Ω) the aggregate
right hand sides f̌ and f̌m are uniquely determined by (3.16), (3.18), as are, of course, f and φ0 by (3.14),
(3.15)/(3.19).

Note that one can take v = w̄ to make the settings (3.14)-(3.15), (3.16) and (3.18)-(3.19) look closer to
the usual variational formulations, cf. e.g. [12].

3.3 Canonical co-normal derivative

As we have seen above, for an arbitrary u ∈ Hs(Ω), 1
2 < s < 3

2 , the co-normal derivative T+(f̃ , u) is
generally non-uniquely determined by u. An exception is T+(Ǎu, u) ≡ 0 but such co-normal derivative
evidently differs from the strong co-normal derivative T+

c u, given by (3.8) for sufficiently smooth u. Another
one way of making generalized co-normal derivative unique in u ∈ H1(Ω) was presented in [7, Lemma 5.1.1]
and is in fact associated with an extension of Au ∈ H−1(Ω) to f̃ ∈ H̃−1(Ω), such that f̃ is orthogonal
in H−1(Rn) to H−1

∂Ω ⊂ H−1(Rn). However it appears (see Lemma A.1), that even for infinitely smooth
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functions f such extension f̃ does not generally belong to L2(R
n), which implies that the so-defined co-

normal derivative operator τ from [7, Lemma 5.1.1] is not a bounded extension of the strong co-normal
derivative operator.

Nevertheless, it is still possible to point out some subspaces of Hs(Ω), 1
2 < s < 3

2 , where a unique
definition of the co-normal derivative by u is possible and leads to the strong co-normal derivative for
sufficiently smooth u. We define below one such sufficiently wide subspace.

DEFINITION 3.3. Let s ∈ R and A∗ : Hs(Ω) → D∗(Ω) be a linear operator. For t ≥ −1
2 , we introduce

a space Hs,t(Ω;A∗) := {g : g ∈ Hs(Ω), A∗g|Ω = f̃g|Ω, f̃g ∈ H̃t(Ω)} equipped with the graphic norm,
∥g∥2Hs,t(Ω;A∗)

:= ∥g∥2Hs(Ω) + ∥f̃g∥2H̃t(Ω)
.

The distribution f̃g ∈ H̃t(Ω), t ≥ −1
2 , in the above definition is an extension of the distribution

A∗g|Ω ∈ Ht(Ω), and the extension is unique (if it does exist), since otherwise the difference between any
two extensions belongs to Ht

∂Ω but Ht
∂Ω = {0} for t ≥ −1

2 due to the Theorem 2.10. The uniqueness implies
that the norm ∥g∥Hs,t(Ω;A∗) is well defined. Note that another subspace of such kind, where A∗g|Ω belongs
to Lp(Ω) instead of Ht(Ω), was presented in [6, p. 59]. A particular case, Hs,0(Ω;A∗), was extensively
employed in [4].

If s1 ≤ s2 and t1 ≤ t2, then we have the embedding, Hs2,t2(Ω;A∗) ⊂ Hs1,t1(Ω;A∗).

REMARK 3.4. If s ∈ R, −1
2 < t < 1

2 , and A∗ : Hs(Ω) → Ht(Ω) is a linear continuous operator, then
Hs,t(Ω;A∗) = Hs(Ω) by Theorem 2.16.

LEMMA 3.5. Let s ∈ R. If a linear operator A∗ : Hs(Ω) → D∗(Ω) is continuous, then the space
Hs,t(Ω;A∗) is complete for any t ≥ −1

2 .

Proof. Let {gk} be a Cauchy sequence in Hs,t(Ω;A∗). Then there exists a Cauchy sequence {f̃k} in H̃t(Ω)
such that f̃k|Ω = A∗gk|Ω. Since Hs(Ω) and H̃t(Ω) are complete, there exist elements g0 ∈ Hs(Ω) and
f̃0 ∈ H̃t(Ω) such that ∥gk − g0∥Hs(Ω) → 0, ∥f̃k − f̃0∥H̃t(Ω)

→ 0 as k → ∞. On the other hand, continuity

of A∗ implies that |⟨A∗(gk − g0), ϕ⟩| → 0 for any ϕ ∈ D(Ω). Taking into account that A∗gk|Ω = f̃k|Ω, we
obtain

|⟨f̃0 −A∗g0, ϕ⟩| ≤ |⟨f̃0 − f̃k, ϕ⟩|+ |⟨f̃k −A∗g0, ϕ⟩|
≤ ∥f̃0 − f̃k∥H̃t(Ω)

∥ϕ∥H−t(Ω) + |⟨A∗(gk − g0), ϕ⟩| → 0, k → ∞ ∀ϕ ∈ D(Ω),

i.e., A∗g0|Ω = f̃0|Ω ∈ Ht(Ω), which implies A∗g0 is extendable to f̃0 ∈ H̃t(Ω) and thus g0 ∈ Hs,t(Ω;A∗).

We will further use the space Hs,t(Ω;A∗) for the case when the operator A∗ is the operator A from
(3.2) or the operator A∗ formally adjoined to it (see Section 4).

DEFINITION 3.6. Let s ∈ R, t ≥ −1
2 . The operator Ã mapping functions u ∈ Hs,t(Ω;A) to the

extension of the distribution Au ∈ Ht(Ω) to H̃t(Ω) will be called the canonical extension of the operator A.

REMARK 3.7. If s ∈ R, t ≥ −1
2 , then ∥Ãu∥

H̃t(Ω)
≤ ∥u∥Hs,t(Ω;A) by definition of the space Hs,t(Ω;A),

i.e., the linear operator Ã : Hs,t(Ω;A) → H̃t(Ω) is continuous. Moreover, if −1
2 < t < 1

2 , then by

Theorem 2.16 and uniqueness of the extension of Ht(Ω) to H̃t(Ω), we have the representation Ã := ẼtA.

As in [17, Definition 3] for scalar PDE, let us define the canonical co-normal derivative operator. This
extends [6, Theorem 1.5.3.10] and [4, Lemma 3.2] where co-normal derivative operators acting on functions
from H1,0

p (Ω;∆) and H1,0(Ω;A), respectively, were defined.
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DEFINITION 3.8. For u ∈ Hs,− 1
2 (Ω;A), 1

2 < s < 3
2 , we define the canonical co-normal derivative as

T+u := T+(Ãu, u) ∈ Hs− 3
2 (∂Ω), i.e.,⟨

T+u , w
⟩
∂Ω

:= Ě(u, γ−1w)− ⟨Ãu, γ−1w⟩Ω = ⟨Ǎu− Ãu, γ−1w⟩Ω ∀ w ∈ H
3
2
−s(∂Ω),

where γ−1 : H
s− 1

2 (∂Ω) → Hs(Ω) is a bounded right inverse to the trace operator.

Theorem 3.2 for the generalized co-normal derivative and Definition 3.3 imply the following statement.

THEOREM 3.9. Under hypotheses of Definition 3.8, the canonical co-normal derivative T+u is indepen-
dent of the operator γ−1, the operator T+ : Hs,− 1

2 (Ω;A) → Hs− 3
2 (∂Ω) is continuous, and the first Green

identity holds in the following form,⟨
T+u , γ+v

⟩
∂Ω

=
⟨
T+(Ãu, u) , γ+v

⟩
∂Ω

= Ě(u, v)− ⟨Ãu, v⟩Ω

= ⟨Ǎu− Ãu, v⟩Ω ∀ v ∈ H2−s(Ω).

Thus unlike the generalized co-normal derivative, the canonical co-normal derivative is uniquely defined
by the function u and the operator A only, uniquely fixing an extension of the latter on the boundary.

Definitions 3.1 and 3.8 imply that the generalized co-normal derivative of u ∈ Hs,− 1
2 (Ω;A), 1

2 < s < 3
2 ,

for any other extension f̃ ∈ H̃s−2(Ω) of the distribution Au|Ω ∈ H− 1
2 (Ω) can be expressed as⟨

T+(f̃ , u) , w
⟩

∂Ω

=
⟨
T+u , w

⟩
∂Ω

+ ⟨Ãu− f̃ , γ−1w⟩Ω ∀ w ∈ H
3
2
−s(∂Ω).

Note that the distributions Ǎu − f̃ , Ǎu − Ãu and Ã − f̃ belong to H2−s
∂Ω since Ãu, Ǎu, f̃ belong to

H̃2−s(Ω), while Ãu|Ω = Ǎu|Ω = f̃ |Ω = Au|Ω ∈ Hs−2(Ω).
Since by Theorem 3.9 the canonical co-normal derivative does not depend on the extension operator

γ−1, the latter can be always chosen such that γ−1w has a support only near the boundary, which means
that the co-normal derivative T+u is determined by the behavior of u near the boundary. We can formalize
this in the following statement.

THEOREM 3.10. Let Ω and Ω′ ⊂ Ω be bounded or unbounded open Lipschitz domains, ∂Ω ⊂ ∂Ω′,
u ∈ Hs,− 1

2 (Ω;A), u ∈ Hs,− 1
2 (Ω′;A), 1

2 < s < 3
2 , while T+u and T ′+u be the canonical co-normal derivatives

on ∂Ω and ∂Ω′ respectively. Then T+u = r
∂Ω
T ′+u.

Proof. By the definition of the restriction operator r
∂Ω

and Definition 3.8 we have,⟨
T ′+u , w

⟩
∂Ω′ := ĚΩ′(u, γ′−1w)− ⟨ÃΩ′u, γ′−1w⟩Ω′ ∀ w ∈ H

3
2
−s(∂Ω′) : r

∂Ω′\∂Ωw = 0,

where γ′−1 : Hs− 1
2 (∂Ω′) → Hs(Ω′) is a bounded right inverse to the trace operator. Since γγ′−1w = 0

on ∂Ω′\∂Ω, we can extend γ′−1w by zero on Ω\Ω′ to γ−1w. The operator γ−1 : Hs− 1
2 (∂Ω) → Hs(Ω) is

continuous, and we arrive at⟨
T ′+u , w

⟩
∂Ω

= ĚΩ(u, γ−1w)− ⟨ÃΩ′u, γ−1w⟩Ω = ĚΩ(u, γ−1w)− ⟨ÃΩu, γ−1w⟩Ω =
⟨
T+u , w

⟩
∂Ω

∀ w ∈ H
3
2
−s(∂Ω),

Theorem 3.10 can be considered as an alternative definition of the canonical co-normal derivative, where
the domain Ω′ can be chosen arbitrarily small, and particularly can be take bounded when Ω is unbounded
(with compact boundary). Note that similar reasoning holds also for the generalized co-normal derivative.

To give conditions when the canonical co-normal derivative T+u coincides with the strong co-normal
derivative T+

c u, if the latter does exist in the trace sense, we prove in Lemma 3.12 below that D(Ω) is
dense in Hs,t(Ω;A). The proof is based on the following local regularity theorem well known for the case
of infinitely smooth coefficients, see e.g. [20, 1, 12].
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THEOREM 3.11. Let Ω be an open set in Rn, s1 ∈ R, function u ∈ Hs1
loc(Ω)

m, m ≥ 1, satisfy strongly
elliptic system (3.1) in Ω with f ∈ Hs2

loc(Ω)
m, s2 > s1 − 2, and infinitely smooth coefficients. Then

u ∈ Hs2+2
loc (Ω)m.

Now we are in the position to prove the density theorem

THEOREM 3.12. If Ω is a bounded Lipschitz domain, s ∈ R, −1
2 ≤ t < 1

2 and the operator A is strongly
elliptic on Ω, then D(Ω) is dense in Hs,t(Ω;A).

Proof. We modify appropriately the proof from [6, Lemma 1.5.3.9] given for another space of such kind
associated with the Laplace operator.

For every continuous linear functional l on Hs,t(Ω;A) there exist distributions h̃ ∈ H̃−s(Ω) and g ∈
H−t(Ω) such that

l(u) = ⟨h̃, u⟩Ω + ⟨g, Ãu⟩Ω.

To prove the lemma claim, it suffice to show that any l, which vanishes on D(Ω), will vanish on any
u ∈ Hs,t(Ω;A). Indeed, if l(ϕ) = 0 for any ϕ ∈ D(Ω), then

⟨h̃, ϕ⟩Ω + ⟨g, Ãϕ⟩Ω = 0. (3.20)

Let us consider the case −1
2 < t < 1

2 first and extend g outside Ω to g̃ = Ẽ−tg ∈ H̃−t(Ω). Equation (3.20)
gives by Theorem 2.16,

⟨h̃, ϕ⟩Ω′ + ⟨g̃, Aϕ⟩Ω′ = ⟨h̃, ϕ⟩Ω + ⟨g̃, Aϕ⟩Ω = ⟨h̃, ϕ⟩Ω + ⟨Ẽ−tg,Aϕ⟩Ω =

⟨h̃, ϕ⟩Ω + ⟨g, ẼtAϕ⟩Ω = ⟨h̃, ϕ⟩Ω + ⟨g, Ãϕ⟩Ω = 0

for any ϕ ∈ D(Ω′) on some domain Ω′ ⊃ Ω, where the operator A is still strongly elliptic. This means

A∗g̃ = −h̃ in Ω′ (3.21)

in the sense of distributions, where A∗ is the operator formally adjoint to A. If t ≤ s − 2, then evidently
g̃ ∈ H̃2−s(Ω). If t > s−2, then (3.21) and Theorem 3.11 imply g̃ ∈ H2−s

loc (Ω′) and consequently g̃ ∈ H̃2−s(Ω).

In the case t = −1
2 , one can extend g ∈ H

1
2 (Ω) outside Ω by zero to g̃ ∈ H̃

1
2
−ϵ(Ω), 0 < ϵ, and prove as

in the previous paragraph that g̃ ∈ H̃2−s(Ω).
If −1

2 < t < 1
2 or [t = −1

2 , s ≤
3
2 ] then for any u ∈ Hs,t(Ω;A), we have,

l(u) = ⟨−A∗g̃, u⟩Ω + ⟨g, Ãu⟩Ω = −⟨g̃, Au⟩Ω + ⟨g̃, Au⟩Ω = 0.

Thus l is identically zero.
On the other hand, if t = −1

2 , s > 3
2 , let {g̃k} ∈ D(Ω) be a sequence converging, as k → ∞, to g in

H
1
2
0 (Ω) = H

1
2 (Ω), cf. Theorem 2.12, and thus to g̃ in H̃2−s(Ω). Then for any u ∈ Hs, 1

2 (Ω;A), we have,

l(u) = ⟨−A∗g̃, u⟩Ω + ⟨g, Ãu⟩Ω = lim
k→∞

{
⟨−A∗g̃k, u⟩Ω + ⟨g̃k, Ãu⟩Ω

}
= lim

k→∞
{−⟨g̃k, Au⟩Ω + ⟨g̃k, Au⟩Ω} = 0,

which completes the proof.

LEMMA 3.13. Let u ∈ Hs,− 1
2 (Ω;A), 1

2 < s < 3
2 , and {uk} ∈ D(Ω) be a sequence such that

∥uk − u∥
Hs,− 1

2 (Ω;A)
→ 0 as k → ∞. (3.22)

Then ∥T+
c uk − T+u∥

Hs− 3
2 (∂Ω)

→ 0 as k → ∞.
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Proof. Using the definition of T+u and the classical first Green identity for uk, we have for any w ∈
H

3
2
−s(∂Ω),∣∣∣⟨T+u− T+

c uk, w
⟩
∂Ω

∣∣∣ = ∣∣∣Ě(u− uk, γ−1w)− ⟨Ã(u− uk), γ−1w⟩Ω
∣∣∣ ≤

C∥u− uk∥
Hs,− 1

2 (Ω;A)
∥w∥

H
3
2−s(∂Ω)

.

This implies
∥T+

c uk − T+u∥
Hs− 3

2 (∂Ω)
≤ ∥u− uk∥

Hs,− 1
2 (Ω;A)

→ 0 as k → ∞.

Note that a sequence satisfying (3.22) does always exist for bounded Lipschitz domains by Theorem 3.12.
The following statement gives the equivalence of the classical co-normal derivative (in the trace sense)

and the canonical co-normal derivative, for functions from Hs(Ω), s > 3
2 .

COROLLARY 3.14. If u ∈ Hs(Ω), s > 3
2 , then T+u = T+

c u ∈ L2(∂Ω).

Proof. If u ∈ Hs(Ω), 3
2 < s < 5

2 , then γ+[∂ju] ∈ Hs− 3
2 (∂Ω), T+

c u ∈ L2(∂Ω) and u ∈ Hs,s−2(Ω;A) ⊂
Hs,− 1

2 (Ω;A) ⊂ H1,− 1
2 (Ω;A) by Remark 3.4. Let {uk} ∈ D(Ω) be a sequence such that ∥uk − u∥Hs(Ω) → 0

and thus
∥uk − u∥

H1,− 1
2 (Ω;A)

≤ ∥uk − u∥
Hs,− 1

2 (Ω;A)
≤ C∥uk − u∥Hs(Ω) → 0, k → ∞.

Then
∥T+u− T+

c u∥
H− 1

2 (∂Ω)
≤ ∥T+u− T+

c uk∥
H− 1

2 (∂Ω)
+ ∥T+

c (uk − u)∥
H− 1

2 (∂Ω)
,

where the first norm in the right hand side vanishes as k → ∞ by Lemma 3.13, while for the second norm
we have,

∥T+
c (uk − u)∥

H− 1
2 (∂Ω)

≤ ∥
n∑

i,j=1

aijγ
+[∂j(uk − u)]nj∥L2(∂Ω) ≤

C1∥a∥L∞(∂Ω) ∥γ+∇(uk − u)∥L2(∂Ω) ≤ C2∥a∥L∞(∂Ω) ∥uk − u∥Hs(Ω) → 0, k → ∞.

For s ≥ 5
2 the corollary follows by imbedding.

For a Lipschitz domain Ω, the membership u ∈ Hs,t
loc(Ω;A) with 1

2 < s < 3
2 , −

1
2 < t < 1

2 implies by
Theorem 3.11 that u ∈ Ht+2

loc (Ω). Thus u ∈ Ht+2
loc (Ω1) for any Lipschitz subdomain Ω1 of Ω such that

Ω1 ⊂ Ω. On ∂Ω1 then T+u = T+
c u ∈ L2(∂Ω1) by Corollary 3.14.

LEMMA 3.15. Let Ω and {Ωk} be Lipschitz domains such that Ωk ⊂ Ω and Ωk → Ω as k → ∞ (cf. Defini-
tion 2.1). If u ∈ Hs,t

loc(Ω;A) for some s ∈ (12 ,
3
2) and t ∈ (−1

2 ,
1
2), then ⟨T+u, v+⟩∂Ω = limk→∞⟨T+

c u, v+⟩∂Ωk

for any v ∈ H2−s(Ω+).

Proof. By Theorem 3.10 it suffice to consider only a bounded domain Ω. Let Ω′
k := Ω \ Ωk be the layer

between ∂Ω and ∂Ωk. By Theorem 3.11, u ∈ Ht+2
loc (Ω), which by Corollary 3.14 implies T+u = T+

c u ∈
L2(∂Ωk) on ∂Ωk. Then

⟨T+u, v+⟩∂Ω − ⟨T+
c u, v+⟩∂Ωk

= ⟨T+u, v+⟩∂Ω′
k
=

ĚΩ′
k
(u, v)− ⟨ÃΩ′

k
u, v⟩Ω′

k
= ĚΩ′

k
(u, v)− ⟨Au, ṽΩ′

k
⟩Ω′

k
, (3.23)

where ÃΩ′
k
u = Ẽt

Ω′
k
rΩ′

k
Au ∈ H̃t(Ω′

k) and ṽΩ′
k
= Ẽ−t

Ω′
k
rΩ′

k
v ∈ H̃−t(Ω′

k) are the unique extensions of rΩ′
k
Au ∈

Ht(Ω′
k) and rΩ′

k
v ∈ H2−s(Ω′

k) ⊂ H−t(Ω′
k), respectively.
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By (3.6) and Theorem 2.16 we have for the first term in the right hand side of (3.23),

|ĚΩ′
k
(u, v)| ≤ C

n∑
i,j=1

∥aij∥L∞(Ω′
k)
∥∂ju∥Hs−1(Ω′

k)
∥∂iv∥H1−s(Ω′

k)
+

C

n∑
j=1

∥bj∥L∞(Ω′
k)
∥∂ju∥Hs−1(Ω′

k)
∥v∥H1−s(Ω′

k)
+ C∥c∥L∞(Ω′

k)
∥u∥Hs−1(Ω′

k)
∥v∥H1−s(Ω′

k)
,

where C does not depend on k for sufficiently large k. Then for 1
2 < s ≤ 1,

|ĚΩ′
k
(u, v)| ≤ C

n∑
i,j=1

∥aij∥L∞(Ω)∥∂ju∥Hs−1(Ω′
k)
∥∂iv∥H1−s(Ω)+

C
n∑

j=1

∥bj∥L∞(Ω)∥∂ju∥Hs−1(Ω′
k)
∥v∥H1−s(Ω) + C∥c∥L∞(Ω)∥u∥Hs−1(Ω′

k)
∥v∥H1−s(Ω) ≤

{C1∥∇u∥Hs−1(Ω′
k)
+ C2∥u∥Hs−1(Ω′

k)
}∥v∥H2−s(Ω) → 0, k → ∞

by Lemma 2.17 since the Lebesgue measure of Ω′
k tends to zero. For 1 < s < 3

2 similarly,

|ĚΩ′
k
(u, v)| ≤ C

n∑
i,j=1

∥aij∥L∞(Ω)∥∂ju∥Hs−1(Ω)∥∂iv∥H1−s(Ω′
k)
+

C

n∑
j=1

∥bj∥L∞(Ω)∥∂ju∥Hs−1(Ω)∥v∥H1−s(Ω′
k)
+ C∥c∥L∞(Ω)∥u∥Hs−1(Ω)∥v∥H1−s(Ω′

k)
≤

{C3∥∇v∥H1−s(Ω′
k)
+ C4∥v∥H1−s(Ω′

k)
}∥u∥Hs(Ω) → 0, k → ∞.

For the last term in (3.23) we have by Lemmas 2.18 and 2.17,

|⟨Au, ṽΩ′
k
⟩Ω′

k
| ≤ ∥Au∥Ht(Ω′

k)
∥ṽΩ′

k
∥
H̃−t(Ω′

k)
≤ C∥Au∥Ht(Ω′

k)
∥v∥H−t(Ω) ≤

C∥Au∥Ht(Ω′
k)
∥v∥H2−s(Ω) → 0, k → ∞,

if −1
2 < t ≤ 0. On the other hand, if 0 < t < 1

2 , then again by Lemmas 2.18 and 2.17,

|⟨Au, ṽΩ′
k
⟩Ω′

k
| = |⟨ÃΩ′

k
u, v⟩Ω′

k
| ≤ ∥ÃΩ′

k
u∥

H̃t(Ω′
k)
∥v∥H−t(Ω′

k)
≤

C∥Au∥Ht(Ω)∥v∥H−t(Ω′
k)

→ 0, k → ∞.

Lemma 3.15 allows to show that the classical and canonical co-normal derivatives coincide also in
another case (apart from the one from Corollary 3.14). First note, that C1(Ω) ⊂ H1(Ω) for bounded
domain Ω and C1(Ω′) ⊂ H1(Ω′) for any bounded subdomain Ω′ of unbounded domain Ω, but C1(Ω)
is not a subset of H1,t

loc(Ω;A). For u ∈ C1(Ω), evidently, limk→∞⟨T+
c u, v+⟩∂Ωk

= ⟨T+
c u, v+⟩∂Ω for any

v ∈ H2−s(Ω+) if Ωk → Ω as k → ∞, Ωk ⊂ Ω. This immediately implies the following statement.

THEOREM 3.16. If Ω is a Lipschitz domain and u ∈ C1(Ω)
∩

H1,t
loc(Ω;A) for some t ∈ (−1

2 ,
1
2), then

T+u = T+
c u ∈ L∞(∂Ω).
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4 Formally adjoined PDE system and the second Green identity

The PDE system formally adjoined to (3.1) is given in the strong form as

A∗v(x) := −
n∑

i,j=1

∂i[ā
⊤
ji(x) ∂jv(x)]−

n∑
j=1

∂j [ b̄
⊤
j (x)v(x)] + c̄⊤(x)v(x) = f(x), x ∈ Ω.

Similar to the operator A, for any v ∈ H2−s(Ω), s ∈ R, the weak form of the operator A∗ is

⟨A∗v, u⟩Ω := E∗(v, u) ∀u ∈ H̃s(Ω),

where
E∗(v, u) = E(ū, v̄)

is the bilinear form and so defined operator A∗ : H2−s(Ω) → H−s(Ω) = [H̃s(Ω)]∗ is bounded for any s ∈ R.
For 1

2 < s < 3
2 let us consider also the aggregate operator Ǎ∗ : H2−s(Ω) → H̃−s(Ω) = [Hs(Ω)]∗, defined

as,
⟨Ǎ∗v, u⟩Ω := Ě∗(v, u) ∀u ∈ Hs(Ω), (4.1)

where by (3.6),

Ě∗(v, u) = Ě(ū, v̄) = Φ(ū, v) =
n∑

i,j=1

⟨
āij∂ju, Ẽ

1−s∂iv
⟩
Ω
+

n∑
j=1

⟨
b̄j∂ju, Ẽ

1−sv
⟩
Ω
+

⟨
c̄u, Ẽ1−sv

⟩
Ω

(4.2)

which implies that Ǎ∗ : H2−s(Ω) → H̃−s(Ω) is bounded. For any v ∈ H2−s(Ω), the distribution Ǎ∗v
belongs to H̃−s(Ω) and is an extension of the functional A∗v ∈ H−s(Ω) from the domain of definition
H̃s(Ω) to the domain of definition Hs(Ω).

Relations (4.1), (4.2) and (3.5) lead to the aggregate second Green identity,

⟨Ǎu, v̄⟩Ω = ⟨u, Ǎ∗v⟩Ω, u ∈ Hs(Ω), v ∈ H2−s(Ω),
1

2
< s <

3

2
. (4.3)

For a sufficiently smooth function v, let

T+
∗cv(x) :=

n∑
i,j=1

ā⊤ji(x) γ
+[∂jv(x)]νi(x) +

n∑
i=1

b̄⊤i (x)γ
+v(x)νi

be the strong (classical) modified co-normal derivative (it corresponds to B̃νv in [13]), associated with the
operator A∗.

If v ∈ H2−s(Ω), 1
2 < s < 3

2 , and A∗v = f̃∗|Ω in Ω for some f̃∗ ∈ H̃−s(Ω), we define the generalized mod-

ified co–normal derivative T+
∗ (f̃∗, v) ∈ H

1
2
−s(∂Ω), associated with the operator A∗, similar to Definition

3.1, as ⟨
T+
∗ (f̃∗, v) , w

⟩
∂Ω

:= Ě∗(v, γ−1w)− ⟨f̃∗, γ−1w⟩Ω ∀ w ∈ Hs− 1
2 (∂Ω).

As in Theorem 3.2, this leads to the following first Green identity for the function v,⟨
T+
∗ (f̃∗, v) , u

+
⟩
∂Ω

= Ě∗(v, u)− ⟨f̃∗, u⟩Ω ∀ u ∈ Hs(Ω), (4.4)

which by (4.2) implies ⟨
u+, T+

∗ (f̃∗, v)
⟩
∂Ω

= Ě(u, v̄)− ⟨u, f̃∗⟩Ω ∀ u ∈ Hs(Ω). (4.5)
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If, in addition, Au = f̃ |Ω in Ω with some f̃ ∈ H̃s−2(Ω), then combining (4.5) and the first Green identity
(3.11) for u, we arrive at the following generalized second Green identity,

⟨f̃ , v̄⟩Ω − ⟨u, f̃∗⟩Ω =
⟨
u+, T+

∗ (f̃∗, v)
⟩

∂Ω

−
⟨
T+(f̃ , u) , v+

⟩
∂Ω

. (4.6)

Taking in mind (4.4), (4.1) and (3.11), (3.5), this, of course, leads to the aggregate second Green identity
(4.3).

If 1
2 < s < 3

2 and v ∈ H2−s,− 1
2 (Ω;A∗), then similar to Definitions 3.6 and 3.8 we can introduce

the canonical extension Ã∗ of the operator A∗, and the canonical modified co-normal derivative T+
∗ v :=

T+
∗ (Ã∗v, v) ∈ H

1
2
−s(∂Ω), i.e.,⟨

T+
∗ v , w

⟩
∂Ω

:= Ě∗(v, γ−1w)− ⟨Ã∗v, γ−1w⟩Ω ∀ w ∈ Hs− 1
2 (∂Ω).

Then the first Green identity (4.5) becomes,⟨
u+, T+

∗ v
⟩
∂Ω

= Ě(u, v̄)− ⟨u, Ã∗v⟩Ω ∀ u ∈ Hs(Ω).

For u ∈ Hs(Ω), Au = f̃ |Ω in Ω, where f̃ ∈ H̃s−2(Ω), the second Green identity (4.6) takes form,

⟨f̃ , v̄⟩Ω −
⟨
u, Ã∗v

⟩
Ω

=
⟨
u+, T+

∗ v
⟩

∂Ω

−
⟨
T+(f̃ , u), v+

⟩
∂Ω

. (4.7)

This form was a starting point in formulation and analysis of the extended boundary-domain integral
equations in [15].

If, moreover, u ∈ Hs,− 1
2 (Ω;A), we obtain from (4.7) the second Green identity for the canonical

extensions and canonical co-normal derivatives,⟨
Ãu, v̄

⟩
Ω

−
⟨
u, Ã∗v

⟩
Ω

=
⟨
u+, T+

∗ v
⟩

∂Ω

−
⟨
T+u , v+

⟩
∂Ω

. (4.8)

Particularly, if u, v ∈ H1,0(Ω;A), then (4.8) takes the familiar form, cf. [4, Lemma 3.4],∫
Ω
[ v(x)Au(x)− u(x)A∗v(x) ]dx =

⟨
u+, T+

∗ v
⟩

∂Ω

−
⟨
T+u , v+

⟩
∂Ω

.

A APPENDIX

LEMMA A.1. There exist a distribution w ∈ H−1
∂Ω and a function f ∈ L2(R

n), f = 0 on Ω−, such that
(w, f)H−1(Rn) ̸= 0.

Proof. Under the definition (2.3) of the inner product in Hs(Rn),

(w, f)H−1(Rn) = ⟨w,J −2f⟩Rn . (A.1)

By Theorem 2.10, for any distribution w ∈ H−1
∂Ω there exists a distribution v ∈ H−1/2(∂Ω) such that

⟨w,J −2f⟩Rn = ⟨v, γJ −2f⟩∂Ω, (A.2)

where γ is the trace operator.
Denoting Φ = J −2f ∈ H2(Rn), we have, J 2Φ = f in Rn, and taking in mind the explicit representation

for the operator J 2, the latter equation can be rewritten as

J 2Φ ≡ − 1

4π2
∆Φ+Φ = f in Rn (A.3)
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and its solution as

J −2f(y) = Φ(y) = Pf :=

∫
Ω
F (x, y)f(x)dx, y ∈ Rn.

Here P is the Newton volume potential and F (x, y) is the well known fundamental solution of equation
(A.3). For example, for n = 3,

F (x, y) = C
e−2π|x−y|

|x− y|
. (A.4)

Then (A.1), (A.2) give,
(w, f)H−1(Rn) = ⟨v, γJ −2f⟩∂Ω = ⟨v, γPf⟩∂Ω. (A.5)

If we assume (w, f)H−1(Rn) = 0 for any w ∈ H−1
∂Ω , then (A.5) implies γPf = 0, which is not the case for

arbitrary f ∈ L2(Ω) and particularly for f = 1 in Ω due to (A.4).
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