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Abstract

Segregated direct boundary-domain integral equation (BDIE) systems associated with mixed,
Dirichlet and Neumann boundary value problems (BVPs) for a scalar ”Laplace” PDE with
variable coefficient are formulated and analysed for domains with interior cuts (cracks). The
main results established in the paper are the BDIE equivalence to the original BVPs and
invertibility of the BDIE operators in the corresponding Sobolev spaces.

Keywords: Partial Differential Equation, Variable coefficients, Boundary-Domain Integral Equa-
tions.

1 Introduction

Partial Differential Equations (PDEs) with variable coefficients arise naturally in mathemati-
cal modelling of non-homogeneous media (e.g. functionally graded materials or materials with
damage induced inhomogeneity) in solid mechanics, electro-magnetics, thermo-conductivity,
fluid flows trough porous media, and other areas of physics and engineering.

The Boundary Integral Equation Method (Boundary Element Method) is a well estab-
lished tool for solution Boundary Value Problems (BVPs) with constant coefficients. The
main ingredient for reducing a BVP for a PDE to a BIE is a fundamental solution to the
original PDE, see e.g. [6, 10, 8]. However, it is generally not available in an analytical and/or
cheaply calculated form for PDEs with variable coefficients. Following Levi and Hilbert,
one can use in this case a parametrix (Levi function) as a substitute for the fundamental
solution. Parametrix is usually much wider available than a fundamental solution and cor-
rectly describes the main part of the fundamental solution although does not have to satisfy
the original PDE. This reduces the problem not to a boundary integral equation but to a
Boundary-Domain Integral Equation (BDIE) system, see e.g. [15, 16].

In this paper, extending approach of [2, 3], we develop analysis of direct segregated BDIEs
for the Dirichlet, Neumann and mixed variable-coefficient BVPs in domains with interior cuts
(cracks), whose faces are subject to the Neumann conditions. Our main goal is to prove
(i) equivalence of the BDIE to the original crack type BVPs and
(ii) invertibility of the corresponding boundary-domain integral operators in appropriate
Sobolev (Bessel potential) spaces.

∗Corresponding author: e-mail: sergey.mikhailov@brunel.ac.uk, Phone: +44 189 267361,
Fax: +44 189 5269732
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2 Formulation of the boundary value problems

Let Ω = Ω+ be a bounded open three–dimensional region of R3 and Ω− := R3 \ Ω. For
simplicity, we assume that the boundary ∂Ω is a simply connected, closed, infinitely smooth
surface. Moreover, ∂Ω = SD ∪ SN where SD and SN are nonintersecting (SD ∩ SN = ∅),
simply connected sub-manifolds of ∂Ω with infinitely smooth boundary curve ℓ := ∂SD =
∂SN ∈ C∞. If either SD = ∅ or SN = ∅, then ℓ = ∅. Further, we assume that the region Ω
contains an interior crack. We define the crack as a two-dimensional, two-sided open manifold
Σ with the crack edge ∂Σ. We assume that Σ is a sub-manifold of a simply connected closed
infinitely smooth surface ∂Ω0 ⊂ Ω which is the boundary of a domain Ω0 ⊂ Ω. Denote by
ΩΣ := Ω \ Σ the domain with crack. Throughout the paper n = (n1, n2, n3) stands for the
unit normal vector to ∂Ω exterior to Ω and for the unit normal vector to ∂Ω0 exterior to Ω0.
This agreement defines the positive direction of the normal vector on the crack surface Σ.

Further, let a ∈ C∞(Ω), a(x) > 0 for x ∈ Ω. Let also ∂j = ∂xj := ∂/∂xj (j = 1, 2, 3),
∂x = (∂x1 , ∂x2 , ∂x3). We consider boundary-domain integral equations associated with the
following scalar elliptic differential equation

Lu(x) := L(x, ∂x)u(x) :=
3∑

i=1

∂xi

(
a(x) ∂xiu(x)

)
= f(x), x ∈ ΩΣ , (2.1)

where u is an unknown function and f is a given function in ΩΣ .
In what follows Hs(Ω) = Hs

2(Ω), H
s(∂Ω) = Hs

2(∂Ω), H
s(∂Ω0) = Hs

2(∂Ω0), s ∈ R,
denote the Sobolev–Slobodetski (the Bessel potential) spaces, while H1(ΩΣ) = W 1

2 (ΩΣ) is

the Sobolev space for the domain with crack. For S ⊂ ∂Ω, we will use the space H̃s(S) =
{g : g ∈ Hs(∂Ω), supp g ⊂ S}, and the space Hs(S) = {rSg : g ∈ Hs(∂Ω)} of restriction on
S of functions from Hs(∂Ω), where rS denotes the restriction operator on S. Similar spaces
are defined also on Σ ⊂ ∂Ω0.

From the trace theorem (see, e.g., [9]) it follows that γ+ u ∈ H
1
2 (∂Ω), γ± u ∈ H

1
2 (Σ) for

u ∈ H1(ΩΣ), where γ
± is the trace operator.

For u ∈ H2(ΩΣ), we denote by T± the corresponding co-normal derivative operator on
∂Ω and Σ in the trace sense,

T±u(x) := a(x) ∂±n u(x) :=
3∑

i=1

a(x)ni(x) γ
±[∂iu(x)], (2.2)

where ∂n denotes the corresponding normal derivative operator. If T+u = T−u, we will write
Tu.

For the linear operator L, we introduce the following subspace of H1(ΩΣ), c.f. [7, 5, 13],

H1,0(ΩΣ ;L) := {g : g ∈ H1(ΩΣ), Lg ∈ L2(ΩΣ)}

endowed with the norm

∥g∥2H1,0(Ω
Σ
;L) := ∥g∥2H1(Ω

Σ
) + ∥Lg∥2L2(ΩΣ

).

For a couple of functions (g+, g−) defined on the surface Σ, we denote their difference (jump)
as [g]Σ := g+ − g−, their average as g0

Σ
:= (g+ + g−)/2, and introduce the space

Hs(Σ) := {(g+, g−) : g0
Σ
∈ Hs(Σ), [g]Σ ∈ H̃s(Σ)}.

For u ∈ H1(ΩΣ) the co–normal derivatives on ∂Ω and Σ do not generally exist in the
trace sense. However if u ∈ H1,0(ΩΣ ;L), one can correctly define the generalized (canonical)
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co–normal derivatives (T+u, T−u) ∈ H− 1
2 (Σ), (T+u ∈ H− 1

2 (∂Ω), similar to [7, Theorem
1.5.3.10], [5, Lemma 3.2], [14, Definition 3], as

T±u := T 0
Σ
u± 1

2
[T ]Σu on Σ, (2.3)

⟨
T+u , w

∂Ω

⟩
∂Ω

+
⟨
[T ]Σu , w

0
Σ

⟩
Σ
+

⟨
T 0

Σ
u , [wΣ ]Σ

⟩
Σ
:=

∫
Ω

Σ

[
γ−1wLu+ E(u, γ−1w)

]
dx

∀ w = {w
∂Ω
, (w+

Σ
, w−

Σ
)} ∈ H

1
2 (∂Ω)×H

1
2 (Σ). (2.4)

If µu ∈ H1,0(Ω−;L) for any µ ∈ C∞
comp(Ω

−), then

⟨
T−u , w

∂Ω

⟩
∂Ω

:= −
∫
Ω−

[
γ−−1wLu+ E(u, γ−−1w)

]
dx ∀ w = w

∂Ω
∈ H

1
2 (∂Ω). (2.5)

Here γ−1 : H
1
2 (∂Ω)×H

1
2 (Σ) → H1(ΩΣ) and γ

−
−1 : H

1
2 (∂Ω) → H1

com(Ω−) are continuous right
inverse operators to the trace operators,

E(u, v) :=

3∑
i=1

a(x) ∂iu(x) ∂iv(x),

⟨ · , · ⟩∂Ω denotes the duality brackets between the spaces H−s(∂Ω) and Hs(∂Ω), ⟨ · , · ⟩Σ
the duality brackets between the spaces H−s(Σ) and H̃s(Σ), s ∈ R, which extend the usual
L2(∂Ω) and L2(Σ) inner products. We also used the notation⟨

T+u , w+
Σ

⟩
Σ
−

⟨
T−u , w−

Σ

⟩
Σ
:=

⟨
[T ]Σu , w

0
Σ

⟩
Σ
+

⟨
T 0

Σ
u , [wΣ ]Σ

⟩
Σ
,

which is well defined for T±u ∈ H−s(Σ), w±
Σ
∈ Hs(Σ), s ∈ R.

Similar to [7, Theorem 1.5.3.11], [5, Lemma 3.4], [14, Definition 3], one can prove that the
co-normal derivatives do not depend on the choice of the operator γ−1, and the first Green
identity ∫

Ω
Σ

[
v Lu+ E(u, v)

]
dx =

⟨
T+u , γ+v

⟩
S
+

⟨
T+u , γ+v

⟩
Σ
−

⟨
T−u , γ−v

⟩
Σ
, (2.6)

holds for any functions u ∈ H1,0(ΩΣ ;L), v ∈ H1(ΩΣ), while the second Green identity∫
Ω

Σ

[
v Lu− Lv u

]
dx =

⟨
T+u , γ+v

⟩
∂Ω

−
⟨
T+v , γ+u

⟩
∂Ω

+
⟨
T+u , γ+v

⟩
Σ
−

⟨
T−u , γ−v

⟩
Σ
+

⟨
T+v , γ+u

⟩
Σ
−

⟨
T−v , γ−u

⟩
Σ

(2.7)

holds for any functions u, v ∈ H1,0(ΩΣ ;L).
We will consider the BDIE approach for the following three crack type boundary value

problems.
Mixed BVP with crack, or Problem (MC): Find a function u ∈ H1(ΩΣ) satisfying the

conditions

Lu = f in ΩΣ , (2.8)

rSD
γ+u = φ0 on SD, (2.9)
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rSN
T+u = ψ0 on SN , (2.10)

T+u = ψ+
Σ
, T−u = ψ−

Σ
on Σ, (2.11)

where
φ0 ∈ H

1
2 (SD), ψ0 ∈ H− 1

2 (SN ), (ψ+
Σ
, ψ−

Σ
) ∈ H− 1

2 (Σ), f ∈ H0(ΩΣ). (2.12)

Note that we can replace the crack conditions (2.11) by the equivalent ones,

[T ]Σu = [ψΣ ]Σ , T 0
Σ
u = ψ0

Σ
on Σ. (2.13)

Equation (2.8) is understood in the distributional sense, condition (2.9) in the trace sense,
while equality (2.10) and (2.11) in the functional sense (2.3)-(2.4).

Clearly, if SN = ∅ in (2.8)-(2.11), we arrive at the Dirichlet problem with crack, or
Problem (DC): Find u ∈ H1(ΩΣ) such that

Lu = f in ΩΣ , (2.14)

γ+u = φ0 on ∂Ω, (2.15)

T+u = ψ+
Σ
, T−u = ψ−

Σ
on Σ. (2.16)

where
φ0 ∈ H

1
2 (∂Ω), (ψ+

Σ
, ψ−

Σ
) ∈ H− 1

2 (Σ), f ∈ H0(ΩΣ). (2.17)

If SD = ∅ in (2.8)-(2.11), we have the Neumann problem with crack, or Problem (NC):
Find u ∈ H1(ΩΣ) such that

Lu = f in ΩΣ , (2.18)

T+u = ψ0 on ∂Ω, (2.19)

T+u = ψ+
Σ
, T−u = ψ−

Σ
on Σ. (2.20)

where
ψ0 ∈ H− 1

2 (∂Ω), (ψ+
Σ
, ψ−

Σ
) ∈ H− 1

2 (Σ), f ∈ H0(ΩΣ). (2.21)

We have (similar e.g. to [9, Chapter 2, Section 9]) the following well-known uniqueness
and existence result.

THEOREM 2.1 (i) The homogeneous Dirichlet and mixed BVPs with crack have only the
trivial solution, while the homogeneous Neumann crack problem admits a constant as a general
solution.

(ii) The nonhomogeneous problem (DC) under condition (2.17), and the nonhomogeneous
problem (MC) under condition (2.12) are uniquely solvable.

(iii) Let the inclusions (2.21) be satisfied. Then the problem (NC) is solvable if and only
if ∫

Ω
Σ

f(x) dx =

∫
∂Ω

ψ0(x) dS +

∫
Σ

[ψ+
Σ
(x)− ψ−

Σ
(x)] dS, (2.22)

and the solution u is defined modulo constant summand.

Proof. The uniqueness results immediately follow from the first Green identity (2.6)
with v = u as a solution of the corresponding homogeneous boundary value problem. The
existence results directly follow from the Lax-Milgram theorem applied to the weak variational
formulation of the above problems. �

In the subsequent sections our main goal is to reduce the above BVPs to the equiva-
lent boundary-domain integral (pseudodifferential) equations and to prove invertibility of the
corresponding nonstandard integral operators in appropriate function spaces.
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3 Surface and volume potentials and the third Green identity

The function

P (x, y) = − 1

4π a(y) |x− y|
, x, y ∈ R3, x ̸= y, (3.1)

is a parametrix (Levi function) of the operator L(x, ∂x) with the property

L(x, ∂x)P (x, y) = δ(x− y) +R(x, y), (3.2)

where δ(·) is the Dirac distribution and the remainder

R(x, y) =

3∑
i=1

xi − yi
4π a(y) |x− y|3

∂a(x)

∂xi
, x, y ∈ R3, x ̸= y, (3.3)

possesses a weak singularity of type O(|x− y|−2) for small |x− y|, see [11, 2].
Further we introduce parametrix-based surface potential operators

V
∂Ω
g(y) := −

∫
∂Ω

P (x, y) g(x) dSx, y ∈ R3\∂Ω, (3.4)

W
∂Ω
g(y) := −

∫
∂Ω

[
Tx P (x, y)

]
g(x) dSx, y ∈ R3\∂Ω, (3.5)

VΣ g(y) := −
∫
Σ

P (x, y) g(x) dSx, y ∈ R3\Σ, (3.6)

WΣ g(y) := −
∫
Σ

[
Tx P (x, y)

]
g(x) dSx, y ∈ R3\Σ, (3.7)

and volume potential operators

P g(y) :=

∫
Ω

Σ

P (x, y) g(x) dx, R g(y) :=

∫
Ω

Σ

R(x, y) g(x) dx, y ∈ R3. (3.8)

The corresponding direct values of the surface potentials are denoted as

V
∂Ω
g(y) := −

∫
∂Ω

P (x, y) g(x) dSx, y ∈ ∂Ω,

W
∂Ω
g(y) := −

∫
∂Ω

[
Tx P (x, y)

]
g(x) dSx, y ∈ ∂Ω,

VΣ g(y) := −
∫
Σ

P (x, y) g(x) dSx, y ∈ Σ,

WΣ g(y) := −
∫
Σ

[
Tx P (x, y)

]
g(x) dSx, y ∈ Σ,

and the co-normal derivatives of the surface potentials as

W ′
∂Ω
g(y) := −

∫
∂Ω

[
Ty P (x, y)

]
g(x) dSx, L±

∂Ω
g(y) := T±W

∂Ω
g(y), y ∈ ∂Ω,

W ′
Σ g(y) := −

∫
Σ

[
Ty P (x, y)

]
g(x) dSx, L±

Σ g(y) := T±WΣg(y), y ∈ Σ,

[L]Σ g(y) := L+
Σ
g(y)− L−

Σ
g(y), L0

Σ
g(y) :=

1

2
{L+

Σ
g(y) + L−

Σ
g(y)}, y ∈ Σ.

(3.9)
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Mapping and jump properties of operators (3.4)-(3.9) in Sobolev spaces are given in [2]
(see also the Appendix below). Particularly, by Theorems A.3 and B.1 of the Appendix, for

any f ∈ H0(ΩΣ), u ∈ H1(ΩΣ), φ
∗ ∈ H̃

1
2 (Σ) we have,

[Pf ]Σ = 0, [T ]ΣPf = 0, [Ru]Σ = 0,

[T ]ΣRu = −(∂na) [u]Σ , [L]Σφ
∗ = (∂na)φ

∗ on Σ, (3.10)

where [u]Σ := γ+u− γ−u on Σ.
Taking, as in [11, 2], v(x) := P (x, y) and u ∈ H1,0(ΩΣ ;L) in (2.7), we obtain by the

standard limiting procedures (see e.g. [15]) the third Green identity,

u+Ru− V
∂Ω
(T+u) +W

∂Ω
(γ+u)− VΣ([T ]Σu) +WΣ([u]Σ) = PLu in ΩΣ . (3.11)

Taking trace of (3.11) and its co-normal derivative on ∂Ω and the average of its co-normal
derivatives, T 0

Σ
= 1

2(T
+ + T−), on Σ, we obtain,

1

2
γ+u+ γ+Ru− V

∂Ω
T+u+W

∂Ω
γ+u− γ+VΣ [T ]Σu+ γ+WΣ [u]Σ

= γ+PLu on ∂Ω, (3.12)

1

2
T+u+ T+Ru−W ′

∂Ω
T+u+ L+

∂Ω
γ+u− T+VΣ [T ]Σu+ T+WΣ [u]Σ

= T+PLu on ∂Ω, (3.13)

T 0
Σ
u+ T 0

Σ
Ru− T 0

Σ
V

∂Ω
T+u+ T 0

Σ
W

∂Ω
γ+u−W ′

Σ [T ]Σu+ L0
Σ
[u]Σ

= T 0
Σ
PLu on Σ. (3.14)

The co-normal derivatives in the last two equations are well defined due to the inclusion of
each term of (3.11) in H1,0(ΩΣ ;L) by Theorems A.1 and B.1.

4 Segregated BDIEs for the problem (MC)

To get a segregated boundary domain integral formulation for the problem (MC), we replace
the unknown traces, co-normal derivatives and jumps of u on SN , SD and Σ with new
unknown functions that will be treated as independent of u. First of all, we denote φ∗ :=
[u]Σ ∈ H̃

1
2 (Σ). Let now Φ0 ∈ H

1
2 (∂Ω) be a fixed extension of the given right hand side of

the Dirichlet condition (2.9), φ0 ∈ H
1
2 (SD), onto the whole of ∂Ω. Then γ+u = Φ0 + φ

on ∂Ω, where the unknown function φ belongs to H̃
1
2 (SN ) due to (2.9). Analogously, let

Ψ0 ∈ H− 1
2 (∂Ω) be a fixed extension of the given right hand side of the Neumann condition

(2.10), ψ0 ∈ H− 1
2 (SD), onto the whole of ∂Ω. Then T+u = Ψ0 + ψ, where the unknown

function ψ belongs to H̃− 1
2 (SD) due to (2.10). (If φ0 = 0 or ψ0 = 0 then we can take the

canonical extensions Φ0 = 0 or Ψ0 = 0, respectively, on ∂Ω.) By this way we have introduced
the following unknown functions,

ψ = T+u−Ψ0 ∈ H̃− 1
2 (SD), φ = γ+u− Φ0 ∈ H̃

1
2 (SN ), φ∗ = [u]Σ ∈ H̃

1
2 (Σ). (4.1)

Let
X := H1(ΩΣ)× H̃− 1

2 (SD)× H̃
1
2 (SN )× H̃

1
2 (Σ), (4.2)

We show below, similar to [2], that if u ∈ H1,0(ΩΣ ;L) is a solution of the problem (MC)
then the four-vector U = (u, ψ, φ, φ∗)⊤ ∈ X satisfies four different systems of BDIEs.
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BDIE system (MC11). Taking (3.11) in the domain, (3.12) on SD, (3.13) on SN , (3.14)
on Σ, substituting boundary/crack conditions (2.9)-(2.11) and employing relations (4.1), we
derive the segregated boundary-domain integral equation system (MC11) of four equations
for (u, ψ, φ, φ∗) ∈ X,

u+Ru− V
∂Ω
ψ +W

∂Ω
φ+WΣφ

∗ = F0 in ΩΣ , (4.3)

rSD

{
γ+Ru− V

∂Ω
ψ +W

∂Ω
φ+ γ+WΣφ

∗
}

= rSD
γ+F0 − φ0 on SD, (4.4)

rSN

{
T+Ru−W ′

∂Ω
ψ + L+

∂Ω
φ+ T+WΣφ

∗
}

= rSN
T+F0 − ψ0 on SN , (4.5)

T 0
Σ
Ru− T 0

Σ
V

∂Ω
ψ + T 0

Σ
W

∂Ω
φ+ L0

Σ
φ∗ = T 0

Σ
F0 − ψ0

Σ
on Σ, (4.6)

where
F0 := Pf + VΣ [ψΣ ]Σ + V

∂Ω
Ψ0 −W

∂Ω
Φ0 in ΩΣ . (4.7)

The notation (MC11) indicates that the BDIE system includes integral operators (4.4) and
(4.5) of the first kind on the Dirichlet and Neumann parts of the boundary, respectively.
Denote the 4×4 matrix operator generated by the left hand side of the BDIE system (MC11)
as

A11 :=



I +R −V
∂Ω

W
∂Ω

WΣ

rSD
γ+R −rSD

V
∂Ω

rSD
W

∂Ω
rSD

γ+WΣ

rSN
T+R −rSN

W ′
∂Ω

rSN
L+

∂Ω
rSN

T+WΣ

T 0
Σ
R −T 0

Σ
V

∂Ω
T 0

Σ
W

∂Ω
L0

Σ

 , (4.8)

where I is the identity operator in corresponding spaces. The system can be rewritten as

A11U = F11,

where

F11 ∈ F11 := H1(ΩΣ)×H
1
2 (SD)×H− 1

2 (SN )×H− 1
2 (Σ).

BDIE system (MC12). Taking again (3.11) in the domain, but (3.12) on the whole of
∂Ω, (3.14) on Σ, substituting boundary/crack conditions (2.9)-(2.11) and employing relations
(4.1), we derive the segregated boundary-domain integral equation system (MC12) of three
equations for (u, ψ, φ, φ∗) ∈ X,

u+Ru− V
∂Ω
ψ +W

∂Ω
φ+WΣφ

∗ = F0 in ΩΣ , (4.9)

1

2
φ+ γ+Ru− V

∂Ω
ψ +W

∂Ω
φ+ γ+WΣφ

∗ = γ+F0 − Φ0 on ∂Ω, (4.10)

T 0
Σ
Ru− T 0

Σ
V

∂Ω
ψ + T 0

Σ
W

∂Ω
φ+ L0

Σ
φ∗ = T 0

Σ
F0 − ψ0

Σ
on Σ. (4.11)

The notation (MC12) indicates that the BDIE system includes integral operator of the third
kind (4.10) on ∂Ω, which is of the first kind on SD (since φ = 0 on SD due to the inclusion

φ ∈ H̃
1
2 (SN )) and of the second kind on SN . Denoting the 3× 4 matrix operator generated

by the left hand side of the BDIE system (MC12) as

A12 :=


I +R −V

∂Ω
W

∂Ω
WΣ

γ+R −V
∂Ω

1
2I +W

∂Ω
γ+WΣ

T 0
Σ
R −T 0

Σ
V

∂Ω
T 0

Σ
W

∂Ω
L0

Σ

 , (4.12)

7



O.Chkadua, S.E.Mikhailov, D.Natroshvili, Preprint, published in: Numer. Meth. for PDE, 27, 2011, 121-140

the system can be rewritten as
A12U = F12,

where

F12 ∈ F12 := H1(ΩΣ)×H
1
2 (∂Ω)×H− 1

2 (Σ).

BDIE system (MC21). To obtain the third BDIE system, we take, as before, (3.11) in
the domain, but (3.13) on ∂Ω, (3.14) on Σ, substituting boundary/crack conditions (2.9)-
(2.11) and employing relations (4.1), we derive the boundary-domain integral equation system
(MC21) of three equations for (u, ψ, φ, φ∗) ∈ X,

u+Ru− V
∂Ω
ψ +W

∂Ω
φ+WΣφ

∗ = F0 in ΩΣ , (4.13)

1

2
ψ + T+Ru−W ′

∂Ω
ψ + L+

∂Ω
φ+ T+WΣφ

∗ = T+F0 −Ψ0 on ∂Ω, (4.14)

T 0
Σ
Ru− T 0

Σ
V

∂Ω
ψ + T 0

Σ
W

∂Ω
φ+ L0

Σ
φ∗ = T 0

Σ
F0 − ψ0

Σ
on Σ. (4.15)

The integral operator (4.14) is of the third kind, i.e., it is of the second kind on SD and of

the first kind on SN (since ψ = 0 on SN due to the inclusion ψ ∈ H̃
1
2 (SD)). Denoting the

3× 4 matrix operator generated by the left hand side of the BDIE system (MC21) as

A21 :=


I +R −V

∂Ω
W

∂Ω
WΣ

T+R 1
2I −W ′

∂Ω
L+

∂Ω
T+WΣ

T 0
Σ
R −T 0

Σ
V

∂Ω
T 0

Σ
W

∂Ω
L0

Σ

 , (4.16)

the system can be rewritten as
A21U = F21,

where

F21 ∈ F21 := H1(ΩΣ)×H− 1
2 (∂Ω)×H− 1

2 (Σ).

BDIE system (MC22). At last, we take (3.11) in the domain, (3.13) on SD, (3.12) on
SN , (3.14) on Σ, substitute boundary/crack conditions (2.9)-(2.11) and employ relations
(4.1), to derive the boundary-domain integral equation system (MC22) of four equations for
(u, ψ, φ, φ∗) ∈ X,

u+Ru− V
∂Ω
ψ +W

∂Ω
φ+WΣφ

∗ = F0 in ΩΣ , (4.17)

1

2
ψ + rSD

{
T+Ru−W ′

∂Ω
ψ + L+

∂Ω
φ+ T+WΣφ

∗
}

= rSD
T+F0 − rSD

Ψ0 on SD, (4.18)

1

2
φ+ rSN

{
γ+Ru− V

∂Ω
ψ +W

∂Ω
φ+ γ+WΣφ

∗
}

= rSN
γ+F0 − rSN

Φ0 on SN , (4.19)

T 0
Σ
Ru− T 0

Σ
V

∂Ω
ψ + T 0

Σ
W

∂Ω
φ+ L0

Σ
φ∗ = T 0

Σ
F0 − ψ0

Σ
on Σ. (4.20)

The notation (MC22) indicates that the BDIE system includes integral operators (4.18) and
(4.19) of the second kind on the Dirichlet and Neumann parts of the boundary, respectively.
Denoting the 4 × 4 matrix operator generated by the left hand side of the BDIE system

8
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(MC22) as

A22 :=



I +R −V
∂Ω

W
∂Ω

WΣ

rSD
T+R rSD

(
1
2I −W ′

∂Ω

)
rSD

L+
∂Ω

rSD
T+WΣ

rSN
γ+R −rSN

V
∂Ω

rSN

(
1
2I +W

∂Ω

)
rSN

γ+WΣ

T 0
Σ
R −T 0

Σ
V

∂Ω
T 0

Σ
W

∂Ω
L0

Σ

 , (4.21)

the system can be rewritten as
A22U = F22,

where

F22 ∈ F22 := H1(ΩΣ)×H− 1
2 (SD)×H

1
2 (SN )×H− 1

2 (Σ).

Now we prove the basic equivalence theorem for the problem (MC) and BDIE systems
(MC11), (MC12), (MC21), (MC22).

THEOREM 4.1 Let conditions (2.12) hold and let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be
some extensions of φ0 and ψ0, respectively.

(i) If a function u ∈ H1(ΩΣ) solves the problem (MC), then the four-vector (u, ψ, φ, φ∗),
where ψ, φ, and φ∗ are defined by (4.1), solves the BDIE systems (MC11), (MC12), (MC21)
and (MC22).

(ii) If a four-vector (u, ψ, φ, φ∗) ∈ H1(ΩΣ)× H̃− 1
2 (SD)× H̃

1
2 (SN )× H̃

1
2 (Σ) solves one of

the BDIE systems (MC11), (MC12), (MC21) or (MC22), then this solution is unique and
solves all the systems, while u solves the problem (MC) and relations (4.1) hold.

Proof. For a function u ∈ H1(ΩΣ) being a solution to (2.8) under conditions (2.12) we have
u ∈ H1,0(ΩΣ ;L) since f ∈ H0(Ω+). Under hypothesis of item (i) this implies (3.11) and thus
the claims of item (i) for all the BDIE systems.

Now, let a four-vector (u, ψ, φ, φ∗) ∈ H1(ΩΣ) × H̃− 1
2 (SD) × H̃

1
2 (SN ) × H̃

1
2 (Σ) solve the

BDIE system (MC11). Theorems A.1 and B.1 and the first equation of the system, (4.3),
imply that all its terms belong to H1,0(ΩΣ;L) and thus their co-normal derivatives are well
defined. Similar to the proof of Theorem 5.2 in [2] for the corresponding BDIE system without
crack, we show that u solves the problem (MC).

From (4.4) and the trace of (4.3) on ∂Ω we conclude that rSD
u+ = φ0 on SD, while from

(4.5) and the co-normal derivative of (4.3) on ∂Ω we have rSN
T+u = ψ0 on SN . Taking the

jump of traces of (4.3) on Σ we get

[u]Σ = φ∗ on Σ. (4.22)

Further, take the co-normal derivatives T+, T− of the equation (4.3) on Σ, construct their
difference, and compare their sum with (4.6) to obtain

rΣ

{
T+u− T−u− [u]Σ∂na− ([ψΣ ]Σ) + φ∗∂na

}
= 0, rΣ

{
T+u+ T−u

}
= 2ψ0

Σ
,

i.e.,
[T ]Σu = [ψΣ ]Σ , T 0

Σ
u = ψ0

Σ
on Σ. (4.23)

These relations coincide with (2.13) thus implying (2.11).
As already mentioned, u ∈ H1,0(ΩΣ ;L), and we can write Green’s third identity (3.11)

for u. Comparing it with equation (4.3) and taking into account (4.22), (4.23) gives

−V
∂Ω
(T+u− ψ −Ψ0) +W

∂Ω
(u+ − φ− Φ0) = P(Lu− f) in ΩΣ . (4.24)

9
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Since all the potentials in (4.24) are continuous on Ω (including Σ), equation (4.24) can
be extended on the whole Ω. Then taking into account that u+ − φ − Φ0 = 0 on SD and
T+u − ψ − Ψ0 = 0 on SN , we obtain by [2, Lemmas 4.1, 4.2] that Lu − f = 0 in Ω, while
u+ − φ−Φ0 = 0 and T+u− ψ−Ψ0 = 0 on ∂Ω. By item (i) of the theorem this implies that
the four-vector (u, ψ, φ, φ∗) solves also all the BDIE systems.

We now have to prove uniqueness of solution of the BDIE system (MC11). Let (u, ψ, φ, φ∗) ∈
H1(ΩΣ)× H̃

1
2 (SN )× H̃− 1

2 (SD)× H̃
1
2 (Σ) solve homogeneous BDIE system (4.3)-(4.6), which

zero right hand side can be considered as generated by the zero right hand side of prob-
lem (MC), (φ0, ψ0, ψ

±
Σ
, f) = 0. Then already proved statements of item (ii) imply that u

is a solution of the homogeneous problem (MC), which is zero by Theorem 2.1, and thus
(ψ,φ, φ∗) = 0 by item (i).

The proof of item (ii) for the BDIE systems (MC12), (MC21) and (MC22) follows the
same pattern and uses the similarity with the proofs of the equivalence Theorems 5.6, 5.9,
5.12 in [2] for the corresponding BDIE systems without crack.

�
Further we study invertibility in appropriate function spaces of the matrix operators A11,

A12, A21 and A22.
In view of the mapping properties of the potential type operators (3.4)-(3.8), see Ap-

pendix, the operators
Aαβ : X → Fαβ (4.25)

are continuous for any α, β = 1, 2. By Theorem 4.1(ii) all the operators (4.25) are injective.
Moreover, we are now in the position to prove the following assertion.

THEOREM 4.2 The operators Aαβ : X → Fαβ are continuous and continuously invertible
for any α, β = 1, 2.

Proof. The proof will follow the pattern of the proofs for the corresponding operators without
crack in [2].

Note that we have the identity (see [2, Theorem 3.6])

L±
S g = L̂S g + (∂na)

(
± 1

2
g −WS g

)
= L0

S
g ± 1

2
g∂na,

with either S = ∂Ω or S = Σ. Here

L̂S g := LS,∆ (ag) = [TWS,∆ (ag)]+ = [TWS,∆ (ag)]− on S, (4.26)

where WS,∆ (ag) is the usual harmonic double layer potential over S with density ag,

WS,∆ (ag) (y) =
1

4π

∫
S

∂

∂n(x)

1

|x− y|
a(x) g(x) dSx.

Equality (4.26) then represents the well-known Liapunov-Tauber theorem for a harmonic
double layer potential.

First, let us consider the operator

A11
0 :=


I −V

∂Ω
W

∂Ω
WΣ

0 −rSD
V

∂Ω
0 0

0 0 rSN
L̂

∂Ω
0

0 0 0 L̂Σ

 . (4.27)

As follows from Appendix, the operator A11
0 : X → F11 is continuous and is a compact

perturbation to the operator A11 : X → F11.

10
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Since the diagonal operators

rSD
V

∂Ω
: H̃− 1

2 (SD) → H
1
2 (SD), (4.28)

rSN
L̂

∂Ω
: H̃

1
2 (SN ) → H− 1

2 (SN ), (4.29)

L̂Σ : H̃
1
2 (Σ) → H− 1

2 (Σ), (4.30)

are invertible (see Theorems A.4, A.5), we conclude that the triangular operator A11
0 : X →

F11 is invertible, implying that (4.25) is a Fredholm operator with index zero. Therefore from
injectivity of A11 : X → F11 follows its invertibility.

To analyse operator A21 let us consider the auxiliary operator

A21
0 :=


I −V

∂Ω
W

∂Ω
WΣ

0 1
2I L̂

∂Ω
0

0 0 0 L̂Σ

 , (4.31)

which is continuous and is a compact perturbation to the operator A21 : X → F21, see
Appendix. Any solution U ∈ X of the equation A21

0 U = F21, where F21 = (F21
1 ,F21

2 ,F21
3 )⊤ ∈

H1(ΩΣ)×H− 1
2 (∂Ω)×H− 1

2 (Σ) will solve also the equation A21
∗ U = F21

∗ , where

A21
∗ :=



I −V
∂Ω

W
∂Ω

WΣ

0 1
2I L̂

∂Ω
0

0 0 rSN
L̂

∂Ω
0

0 0 0 L̂Σ


, (4.32)

F21
∗ = (F21

1 ,F21
2 , rSN

F21
2 ,F21

3 )⊤ ∈ F21
∗ := H1(ΩΣ) × H− 1

2 (∂Ω) × H− 1
2 (SN ) × H− 1

2 (Σ), and
vice-versa. Since the diagonal operators (4.29), (4.30) are invertible, we conclude that the

triangular operator A21
∗ : X21

∗ → F21
∗ is invertible, where X21

∗ = H1(ΩΣ) × H− 1
2 (∂Ω) ×

H̃
1
2 (SN )× H̃

1
2 (Σ). Moreover, if U is a solution of the system A21

∗ U = F21
∗ , then subtracting

the third equation of the system from restriction to SN of the second equation implies that
ψ = U2 = 0 on SN . That is, in fact U = (A21

∗ )−1F21
∗ ∈ X, implying also invertibility of the

operator A21
0 : X → F21 and thus the Fredholm property with zero index for the operator

A21 : X → F21. Therefore from injectivity of A21 follows its invertibility.
Invertibility of the operator A12 : X → F12 is proved similarly.
To analyse operator A22 let us consider the auxiliary operator

A22
0 :=



I −V
∂Ω

W
∂Ω

WΣ

0 rSD

(
1
2I −W ′

∆,∂Ω

)
rSD

L̂
∂Ω

0

0 −rSN
V

∂Ω
rSN

(
1
2I +W

∂Ω

)
0

0 0 0 L̂Σ


, (4.33)

which is continuous and is a compact perturbation to the operator A22 : X → F22, see
Appendix. The operator A22

0 can be considered as block-triangle operator with the middle
diagonal block

Â22
0 :=

 rSD

(
1
2I −W ′

∆,∂Ω

)
rSD

L̂
∂Ω

−rSN
V

∂Ω
rSN

(
1
2I +W

∂Ω

)
 , (4.34)

11
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that can be presented as

Â22
0 Û = diag(1,

1

a
) Â22

∆
[diag(1, a)Û ],

Â22
∆

:=

 rSD

(
1
2I −W ′

∆,∂Ω

)
rSD

L̂
∆,∂Ω

−rSN
V

∆,∂Ω
rSN

(
1
2I +W

∆,∂Ω

)
 . (4.35)

The operator Â22
∆

: H̃− 1
2 (SD)× H̃

1
2 (SN ) → H− 1

2 (SD)×H
1
2 (SN ) is invertible by [2, Theorem

5.18], which implies invertibility of the operator Â22
0 : H̃− 1

2 (SD) × H̃
1
2 (SN ) → H− 1

2 (SD) ×
H

1
2 (SN ) since 0 < C1 < a < C2 <∞. Taking into account the invertibility of operator (4.30),

we obtain invertibility of the operator A22
0 : X → F22 and thus the Fredholm property with

zero index for the operator A22 : X → F22, whose injectivity then implies its invertibility.
�

5 Segregated BDIEs for the problem (DC)

Segregated BDIE systems for problem (DC) is formulated by the same way as for the problem
(MC) but with apparent simplifications. Let u ∈ H1,0(ΩΣ ;L) be a solution of the problem
(DC) and let us introduce the notations

ψ = T+u ∈ H− 1
2 (∂Ω), φ∗ = [u]Σ ∈ H̃

1
2 (Σ), (5.1)

for unknown boundary/crack values. Let XD := H1(ΩΣ)×H− 1
2 (∂Ω)× H̃

1
2 (Σ).

BDIE system (DC1). Taking (3.11) in the domain, (3.12) on ∂Ω, (3.14) on Σ, substi-
tuting boundary/crack conditions (2.15)-(2.16) and employing (5.1), we derive the following
boundary-domain integral equation system (DC1) for (u, ψ, φ∗) ∈ XD,

u+Ru− V
∂Ω
ψ +WΣφ

∗ = FD
0 in ΩΣ , (5.2)

γ+Ru− V
∂Ω
ψ + γ+WΣφ

∗ = γ+FD
0 − φ0 on ∂Ω, (5.3)

T 0
Σ
Ru− T 0

Σ
V

∂Ω
ψ + L0

Σ
φ∗ = T 0

Σ
FD
0 − ψ0

Σ
on Σ, (5.4)

where
FD
0 := Pf + VΣ([ψΣ ]Σ)−W

∂Ω
φ0 in ΩΣ . (5.5)

Let us denote the left hand side operator of the BDIE system (DC1) as

AD1 :=


I +R −V

∂Ω
WΣ

γ+
∂Ω
R −V

∂Ω
γ+
∂Ω
WΣ

T 0
Σ
R −T 0

Σ
V

∂Ω
L0

Σ

 , (5.6)

where γ+
∂Ω

:= r
∂Ω
γ+.

BDIE system (DC2). Taking (3.11) in the domain, but now (3.13) on ∂Ω and again
(3.14) on Σ, substituting boundary/crack conditions (2.15)-(2.16) and employing (5.1), we
derive the following boundary-domain integral equation system (DC2) for (u, ψ, φ∗) ∈ XD,

u+Ru− V
∂Ω
ψ +WΣφ

∗ = FD
0 in ΩΣ , (5.7)

1

2
ψ + T+Ru−W ′

∂Ω
ψ + T+WΣφ

∗ = T+FD
0 on ∂Ω, (5.8)
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T 0
Σ
Ru− T 0

Σ
V

∂Ω
ψ + L0

Σ
φ∗ = T 0

Σ
FD
0 − ψ0

Σ
on Σ. (5.9)

Let us denote the left hand side operator of the BDIE system (DC2) as

AD2 :=


I +R −V

∂Ω
WΣ

T+
∂Ω
R 1

2I −W ′
∂Ω

T+
∂Ω
WΣ

T 0
Σ
R −T 0

Σ
V

∂Ω
L0

Σ

 , (5.10)

where T+
∂Ω

:= r
∂Ω
T+.

Simplifying corresponding proofs of Theorems 4.1 and 4.2, we arrive at the following
equivalence theorem for the problem (DC) and BDIE systems (DC1) and (DC2), and the
invertibility theorem for the operator AD1 and AD2.

THEOREM 5.1 Let conditions (2.17) hold.
(i) If a function u ∈ H1(ΩΣ) solves the problem (DC), then the triple (u, ψ, φ∗), where ψ

and φ∗ are defined by (5.1), solves BDIE systems (DC1) and (DC2).
(ii) If a triple (u, ψ, φ∗) ∈ XD solves one of the BDIE systems (DC1) or (DC2), then this

solution is unique and solves the both systems, while u solves the problem (DC) and relations
(5.1) hold.

Let F+ := H1(ΩΣ)×H
1
2 (∂Ω)×H− 1

2 (Σ), F− := H1(ΩΣ)×H− 1
2 (∂Ω)×H− 1

2 (Σ).

THEOREM 5.2 The operators AD1 : XD → F+ and AD2 : XD → F− are continuous and
continuously invertible.

6 Segregated BDIEs for the problem (NC)

Again, BDIE systems for problem (NC) are formulated by the same way as for the problem
(MC) but with apparent simplifications. Let u ∈ H1,0(ΩΣ ;L) be a solution of the problem
(NC) and let us introduce the notations

φ = γ+u ∈ H
1
2 (∂Ω), φ∗ = [u]Σ ∈ H̃

1
2 (Σ) (6.1)

for unknown boundary/crack values. Let XN := H1(ΩΣ)×H
1
2 (∂Ω)× H̃

1
2 (Σ).

BDIE system (NC1). Taking (3.11) in the domain, (3.13) on ∂Ω and (3.14) on Σ, substi-
tuting boundary/crack conditions (2.19)-(2.20) and employing (6.1), we derive the following
boundary-domain integral equation system (NC1) for (u, φ, φ∗) ∈ XN ,

u+Ru+W
∂Ω
φ+WΣφ

∗ = FN
0 in ΩΣ , (6.2)

T+Ru+ L+
∂Ω
φ+ T+WΣφ

∗ = T+FN
0 − ψ0 on ∂Ω, (6.3)

T 0
Σ
Ru+ T 0

Σ
W

∂Ω
φ+ L0

Σ
φ∗ = T 0

Σ
FN
0 − ψ0

Σ
on Σ. (6.4)

where
FN
0 := Pf + VΣ([ψΣ ]Σ) + V

∂Ω
ψ0 on ∂Ω.

Let us denote the left hand side operator of the BDIE system (NC1) as

AN1 :=


I +R W

∂Ω
WΣ

T+
∂Ω
R L+

∂Ω
T+

∂Ω
WΣ

T 0
Σ
R T 0

Σ
W

∂Ω
L0

Σ

 . (6.5)
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BDIE system (NC2). Taking (3.11) in the domain, but (3.12) on ∂Ω and again (3.14) on
Σ, substituting boundary/crack conditions (2.19)-(2.20) and employing (6.1), we derive the
following boundary-domain integral equation system (NC2) for (u, φ, φ∗) ∈ XN ,

u+Ru+W
∂Ω
φ+WΣφ

∗ = FN
0 in ΩΣ , (6.6)

1

2
φ+ γ+Ru+W

∂Ω
φ+ γ+WΣφ

∗ = γ+FN
0 on ∂Ω, (6.7)

T 0
Σ
Ru+ T 0

Σ
W

∂Ω
φ+ L0

Σ
φ∗ = T 0

Σ
FN
0 − ψ0

Σ
on Σ. (6.8)

Let us denote the left hand side operator of the BDIE system (NC1) as

AN2 :=


I +R W

∂Ω
WΣ

γ+
∂Ω
R 1

2I +W
∂Ω

γ+
∂Ω
WΣ

T 0
Σ
R T 0

Σ
W

∂Ω
L0

Σ

 . (6.9)

THEOREM 6.1 Let conditions (2.21) hold.
(i) If a function u ∈ H1(ΩΣ) solves the problem (NC), then the triple (u, φ, φ∗), where φ

and φ∗ are defined by (6.1), solves BDIE systems (NC1) and (NC2).

(ii) If a triple (u, φ, φ∗) ∈ H1(ΩΣ) × H
1
2 (∂Ω) × H̃

1
2 (Σ) solves one of the BDIE system

(NC1) or (NC2), then it solves the both systems, while u solves the problem (NC) and relations
(6.1) hold.

(iii) Homogeneous BDIE systems (NC1) and (NC2) admit only one linearly independent
solution (u, φ, φ∗) = (1, 1, 0) in XN .

(iv) Condition (2.22) is necessary and sufficient for solvability of nonhomogeneous BDIE
systems (NC1) and (NC2) in XN .

Proof. Items (i) and (ii) are obtained by simplifying the corresponding proof of Theorem 4.1.
Then items (iii) and (iv) follow from items (i) and (ii) and from Theorem 2.1(iii), similar to
the penultimate paragraph of the proof of Theorem 4.1. �

THEOREM 6.2 The operators AN1 : XN → F− and AN2 : XN → F+ are continuous Fred-
holm operators with zero index. They have one–dimensional null–space, kerAN1 = kerAN2,
spanned over the element (u, φ, φ∗) = (1, 1, 0).

Proof. Let us consider the operators

AN1
0 :=


I W

∂Ω
WΣ

0 L̂
∂Ω

0

0 0 L̂Σ

 , AN2
0 :=


I W

∂Ω
WΣ

0 1
2I 0

0 0 L̂Σ

 . (6.10)

It is evident from the Appendix that the operators AN1
0 : XN → F− and AN2

0 : XN → F+

are continuous, while the operators AN1 −AN1
0 : XN → F− and AN2 −AN2

0 : XN → F+ are

compact. By Theorem A.5 the operator L̂Σ : H̃
1
2 (Σ) → H− 1

2 (Σ) is continuously invertible

and the operator L̂
∂Ω

: H̃
1
2 (∂Ω) → H− 1

2 (∂Ω) is a Fredholm operator with index zero. Then
we conclude that the triangular operator AN1

0 : XN → F− is a Fredholm operator with index
zero, and the operator AN2

0 : XN → F+ is invertible. This implies that the operators AN1 :
XN → F− and AN2 : XN → F+ are Fredholm operators with index zero. By Theorem 6.1(iii),
kerAN1 = kerAN2 is one-dimensional and is spanned over the element (u, φ, φ∗) = (1, 1, 0).

�

14



O.Chkadua, S.E.Mikhailov, D.Natroshvili, Preprint, published in: Numer. Meth. for PDE, 27, 2011, 121-140

7 Concluding remarks

For a scalar ”Laplace” PDE with variable coefficient on a three-dimensional bounded domain
with a crack, segregated direct boundary-domain integral equation systems associated with the
Dirichlet, Neumann and mixed boundary conditions on the external boundary and Neumann
conditions on the crack faces, have been formulated and analysed in the paper. Among
these, four different BDIE systems were given for the mixed problem, two for the Dirichlet
and two for the Neumann problems. Equivalence of the BDIE systems to the original BVPs
was proved in the case when right-hand side of the PDE is from L2(Ω), and the Dirichlet

and the Neumann data from the spaces H
1
2 (SD) and H− 1

2 (SN ), H− 1
2 (Σ), respectively. The

invertibility of the BDIE operators was proved in the corresponding Sobolev spaces.
Using approach of [13] united direct boundary-domain integro-differential systems can be

also formulated and analysed for the BVPs with crack. The BDIEs for unbounded domains
with cracks can be analysed as well. The approach can be extended also to more general
PDEs and to systems of PDEs, while smoothness of the variable coefficients and the boundary
can be essentially relaxed, and the PDE right hand side can be considered in more general
spaces, c.f. [12, 13].

Employing methods of [1] and [4], one can consider also the localised counterparts of the
BDIEs for BVPs with cracks.
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APPENDIX

A Properties of surface potentials

The auxiliary facts collected in Theorems A.1-A.5 follow e.g. from [5, Theorem 2], [6, Ch.
XI, Part B, §3,], [17, Theorem 2.7(ii)], [2, Section 3], [13, Appendix].

THEOREM A.1 The following operators are continuous,

V
∂Ω

: H− 1
2 (∂Ω) → H1,0(Ω;L), W

∂Ω
: H

1
2 (∂Ω) → H1,0(Ω;L),

VΣ : H̃− 1
2 (Σ) → H1,0(ΩΣ ;L), WΣ : H̃

1
2 (Σ) → H1,0(ΩΣ ;L).

THEOREM A.2 The following operators are continuous.

V
∂Ω

: H− 1
2 (∂Ω) → H

1
2 (∂Ω), VΣ : H̃− 1

2 (Σ) → H
1
2 (Σ), (A.1)

W
∂Ω

: H
1
2 (∂Ω) → H

1
2 (∂Ω), WΣ : H̃

1
2 (Σ) → H

1
2 (Σ), (A.2)

W ′
∂Ω

: H− 1
2 (∂Ω) → H− 1

2 (∂Ω), W ′
Σ : H̃− 1

2 (Σ) → H− 1
2 (Σ), (A.3)

L±
∂Ω

: H
1
2 (∂Ω) → H− 1

2 (∂Ω), L±
Σ
: H̃

1
2 (Σ) → H− 1

2 (Σ) (A.4)

Moreover the operators (A.2)-(A.3) are compact.
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THEOREM A.3 Let φ ∈ H
1
2 (∂Ω), ψ ∈ H− 1

2 (∂Ω), ψ∗ ∈ H̃− 1
2 (Σ) and φ∗ ∈ H̃

1
2 (Σ). Then

there hold the following jump relations on ∂Ω,

γ±V
∂Ω
ψ = V

∂Ω
ψ, (A.5)

γ±W
∂Ω
φ = ∓ 1

2
φ+W

∂Ω
φ, (A.6)

T±V
∂Ω
ψ = ± 1

2
ψ+W ′

∂Ω
ψ, (A.7)

T+W
∂Ω
φ− T−W

∂Ω
φ = L+

∂Ω
φ−L−

∂Ω
φ =

∂a

∂n
φ, (A.8)

and similar jump relations on Σ,

γ±VΣψ
∗ = VΣψ

∗, (A.9)

γ±WΣφ
∗ = ∓ 1

2
φ∗ +WΣφ

∗, (A.10)

T±VΣψ
∗ = ± 1

2
ψ∗+W ′

Σψ
∗, (A.11)

T+WΣφ
∗ − T−WΣφ

∗ = L+
Σ
φ∗−L−

Σ
φ∗ =

∂a

∂n
φ∗. (A.12)

THEOREM A.4 Let S be a nonempty, simply connected sub–manifold of ∂Ω with infinitely
smooth boundary curve. Then the operators

V
∂Ω

: H− 1
2 (∂Ω) → H

1
2 (∂Ω), rSV∂Ω

: H̃− 1
2 (S) → H

1
2 (S)

are continuously invertible.

THEOREM A.5 Let the operator L̂S be given by (4.26).

(i) The operator L̂
∂Ω

: H
1
2 (∂Ω) → H− 1

2 (∂Ω) is Fredholm operator with zero index and the

operator L±
∂Ω

− L̂
∂Ω

: H
1
2 (∂Ω) → H− 1

2 (∂Ω) is compact.

(ii) Let S = Σ or S along with ∂Ω\S be nonempty, open simply connected sub–manifolds

of ∂Ω with an infinitely smooth boundary curve. Then the operator L̂S : H̃
1
2 (S) → H− 1

2 (S)

is continuously invertible and the operator L±
S
− L̂S : H̃

1
2 (S) → H− 1

2 (S) is compact.

THEOREM A.6 The following operators are compact,

γ±
Σ
V

∂Ω
: H− 1

2 (∂Ω) → H
1
2 (Σ), γ±

Σ
W

∂Ω
: H

1
2 (∂Ω) → H

1
2 (Σ),

T±
Σ
V

∂Ω
: H− 1

2 (∂Ω) → H− 1
2 (Σ), T±

Σ
W

∂Ω
: H

1
2 (∂Ω) → H− 1

2 (Σ),

γ+
∂Ω
VΣ : H̃− 1

2 (Σ) → H
1
2 (∂Ω), γ+

∂Ω
WΣ : H̃

1
2 (Σ) → H

1
2 (∂Ω),

T+
∂Ω
VΣ : H̃− 1

2 (Σ) → H
1
2 (∂Ω), T+

∂Ω
WΣ : H̃

1
2 (Σ) → H

1
2 (∂Ω).

Proof. Let S be either ∂Ω or Σ. As shown in [2],

VSg =
1

a
V∆,Sg, WSg =

1

a
W∆,S (ag), (A.13)

where V∆,S , W∆,S are the single and double layer potentials for the Laplace operator, with
the densities having support on S. Since ∆V∆,Sg = 0, ∆W∆,Sg = 0 on R3\S, we have
V∆,Sg,W∆,Sg ∈ C∞(R3\S) by the solution regularity theorem for strongly elliptic equations,
see e.g. [9], which by (A.13) implies also VSg,WSg ∈ C∞(R3\S). Since ∂Ω and Σ do not
intersect, employing the Rellich compact imbedding theorem completes the proof. �
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B Properties of volume potentials

THEOREM B.1 The following operators are continuous

P : H0(Ω) → H2(Ω) ⊂ H1,0(Ω;L), (B.1)

R : H0(Ω) → H1(Ω), (B.2)

: H1(ΩΣ) → H1,0(ΩΣ ;L). (B.3)

Moreover, for f ∈ H0(ΩΣ) and u ∈ H1(ΩΣ) we have,

[Pf ]Σ = 0, [T ]ΣPf = 0, [Ru]Σ = 0, [T ]ΣRu = −(∂na) [u]Σ . (B.4)

Proof. The continuity of operators (B.1) and (B.2) is proved in [2, Theorem 3.8]. Similar
to the proof of [2, Theorem 3.8], integrating by parts we have the following relation for
g ∈ H1(ΩΣ),

∂j P∆ g = P∆

(
∂jg

)
+ V

∆,∂Ω
(njγ

+g) + V∆,Σ (nj [g]Σ) in ΩΣ . (B.5)

Taking into account that expressions (3.1) and (3.3) give

Ru = − 1

a

3∑
j=1

∂j

[
P∆

(
u ∂ja)

]
,

we have from (B.5),

Ru = − 1

a

3∑
j=1

P∆ ∂j
(
u ∂ja) − V

∆,∂Ω
(γ+u ∂na) − V∆,Σ ([u]Σ∂na) in ΩΣ (B.6)

which along with (B.1) and Theorem A.1 implies (B.3). The first two relations in (B.4) follow
from (B.1) and imply the last two by (B.6) and Theorem A.3. �

The following statement is implied by [2, Corollary 3.9].

THEOREM B.2 Let S = ∂Ω, or S be a nonempty, open sub–manifold ∂Ω with an infinitely
smooth boundary curve, or S = Σ. The operators

R : H1(ΩΣ) → H1(ΩΣ), (B.7)

rS γ
±R : H1(ΩΣ) → H

1
2 (S), (B.8)

rS T
±R : H1(ΩΣ) → H− 1

2 (S) (B.9)

are compact.
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