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The experimental study presented in this paper is aimed at the development of an automatic image segmentation system for
classifying region of interest (ROI) in medical images which are obtained from different medical scanners such as PET, CT, or
MRI. Multiresolution analysis (MRA) using wavelet, ridgelet, and curvelet transforms has been used in the proposed segmentation
system. It is particularly a challenging task to classify cancers in human organs in scanners output using shape or gray-level
information; organs shape changes throw different slices in medical stack and the gray-level intensity overlap in soft tissues.
Curvelet transform is a new extension of wavelet and ridgelet transforms which aims to deal with interesting phenomena occurring
along curves. Curvelet transforms has been tested on medical data sets, and results are compared with those obtained from the
other transforms. Tests indicate that using curvelet significantly improves the classification of abnormal tissues in the scans and
reduce the surrounding noise.

1. Introduction

In the last decade, the use of 3D image processing has been
increased especially for medical applications; this leads to
increase the qualified radiologists’ number who navigate,
view, analyse, segment, and interpret medical images. The
analysis and visualization of the image stack received from
the acquisition devices are difficult to evaluate due to the
quantity of clinical data and the amount of noise existing
in medical images due to the scanners itself. Computerized
analysis and automated information systems can offer help
dealing with the large amounts of data, and new image
processing techniques may help to denoise those images.

Multiresolution analysis (MRA) [1–3] has been success-
fully used in image processing specially with image segmen-
tation, wavelet-based features has been used in various appli-
cations including image compression [4], denoising [5], and
classification [6]. Recently, the finite ridgelet and curvelet
transforms have been introduced as a higher dimensional
MRA tool [7, 8].

Image segmentation requires extracting specific features
from an image by distinguishing objects from the back-
ground. The process involves classifying each pixel of an

image into a set of distinct classes, where the number of
classes is much smaller. Medical image segmentation aims to
separate known anatomical structures from the background
such cancer diagnosis, quantification of tissue volumes, radi-
otherapy treatment planning, and study of anatomical struc-
tures.

Segmentation can be manually performed by a human
expert who simply examines an image, determines borders
between regions, and classifies each region. This is perhaps
the most reliable and accurate method of image segmenta-
tion, because the human visual system is immensely complex
and well suited to the task. But the limitation starts in
volumetric images due to the quantity of clinical data.

Curvelet transform is a new extension of wavelet trans-
form which aims to deal with interesting phenom-
ena occurring along curved edges in 2D images [9]. It is
a high-dimensional generalization of the wavelet transform
designed to represent images at different scales and dif-
ferent orientations (angles). It is viewed as a multiscale
pyramid with frame elements indexed by location, scale,
and orientation parameters with needle-shaped elements
at fine scales. Curvelets have time-frequency localization
properties of wavelets but also shows a very high degree of
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Figure 1: Proposed segmentation system for medical images.

directionality and anisotropy, and its singularities can be well
approximated with very few coefficients.

This paper is focusing on a robust implementation of
MRA techniques for segmenting medical volumes using
features derived from the wavelet, ridgelet, and curvelet
transforms of medical images obtained from a CT scanner.
The rest of this paper is organised as follow: Section 2
illustrates the proposed medical image segmentation system
using MRA techniques. The mathematical background and
the methodology for the proposed MRA techniques have
been explained in Section 3. The results and analysis of
the implemented wavelet, ridgelet, and curvelet transforms
for medical image segmentation are illustrated in Section 4.
Finally, Section 5 includes the conclusions and future work
of this research.

2. Proposed Medical Image
Segmentation System

The main aim of this research is to facilitate the process of
highlighting ROI in medical images, which may be encap-
sulated within other objects or surrounded by noise that
make the segmentation process not easy. Figure 1 illustrates
the proposed medical image segmentation system using
MRA. Wavelet, ridgelet, and curvelet transforms are applied
on medical images with other pre- and postprocessing
techniques to present segmented outputs and detected ROI
in an easier and more accurate way.

3. Methodology—Multiresolution Analysis

Image segmentation using MRA such as wavelets has been
widely used in recent years and provides better accuracy in
segmenting different types of images. Many recent develop-
ments in MRA have taken place, while wavelets are suitable
for dealing with objects with point singularities. Wavelets
can only capture limited directional information due to its
poor orientation selectivity. By decomposing the image into
a series of high-pass and low-pass filter bands, the wavelet
transform extracts directional details that capture horizontal,
vertical, and diagonal activity. However, these three linear
directions are limiting and might not capture enough
directional information in noisy images, such as medical
CT scans, which do not have strong horizontal, vertical,
or diagonal directional elements. Ridgelet improves MRA
segmentation; however, they capture structural information
of an image based on multiple radial directions in the
frequency domain. Line singularities in ridgelet transform
provides better edge detection than its wavelet counterpart.
One limitation to use ridgelet in image segmentation is
that ridgelet is most effective in detecting linear radial
structures, which are not dominant in medical images.
The curvelet transform is a recent extension of ridgelet
transform that overcome ridgelet weaknesses in medical
image segmentation. Curvelet is proven to be particularly
effective at detecting image activity along curves instead of
radial directions which are the most comprising objects of
medical images.
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Figure 2: 2D DWT filter structure.

3.1. Wavelet Transform. In the last decade, wavelet transform
has been recognized as a powerful tool in a wide range of
applications, including image/video processing, numerical
analysis, and telecommunication. The advantage of wavelet
is that wavelet performs an MRA of a signal with localization
in both time and frequency [10, 11]. In addition to this,
functions with discontinuities and functions with sharp
spikes require fewer wavelet basis vectors in the wavelet
domain than sine cosine basis vectors to achieve a compara-
ble approximation. Wavelet operates by convolving the target
function with wavelet kernels to obtain wavelet coefficients
representing the contributions in the function at different
scales and orientations. Wavelet or multiresolution theory
can be used alongside segmentation approaches, creating
new systems which can provide a segmentation of superior
quality to those segmentation approaches computed exclu-
sively within the spatial domain [12].

Discrete wavelet transform (DWT) can be implemented
as a set of high-pass and low-pass filter banks. In standard
wavelet decomposition, the output from the low-pass filter
can be then decomposed further, with the process continuing
recursively in this manner. According to [13], DWT can be
mathematically expressed by

aj(n) =
L−1∑

i=0

l(i) · aj−1(2n− i), 0 ≤ n < Nj ,

d j(n) =
L−1∑

i=0

h(i) · d j−1(2n− i), 0 ≤ n < Nj.

(1)

The coefficients aj(n) and d j(n) refer to approximation and
detailed components in the signal at decomposition level j,
respectively. The l(i) and h(i) represent the coefficients of
low-pass and high-pass filters, respectively.

DWT decomposes the signal into a set of resolution-
related views. The wavelet decomposition of an image creates
at each scale j a set of coefficient values wj with an overall
mean of zero. wj contains the same number of voxels as the

original image; therefore, this wavelet transform is redundant
[14, 15].

For images, 1D-DWT can be readily extended into 2D.
In standard 2D wavelet decomposition, the image rows are
fully decomposed, with the output being fully decomposed
columnwise. In nonstandard wavelet decomposition, all the
rows are decomposed by one decomposition level followed
by one decomposition level of the columns. Figure 2 illus-
trates the filter structure of 2D-DWT.

Wavelet uses a set of filters to decompose images depend-
ing on filter coefficients and the number of those coefficients.
The most popular wavelet filter is Haar wavelet filter (HWF)
which takes the averages and differences from the low- and
high-pass filters, respectively. Figure 3 illustrates an example
of applying 2D-DWT using HWF on an image for 2 levels of
decompositions.

3.2. Ridgelet Transform. In 1998, Donoho introduced the
ridgelet transform [16] continuous ridgelet transform (CRT)
can be defined from a 1D wavelet function oriented at
constant lines and radial directions. Ridgelet transform [17–
19] has been generating a lot of interest due to their superior
performance over wavelets. While wavelets have been very
successful in applications such as denoising and compact
approximations of images containing zero dimensional or
point singularities. Wavelets do not isolate the smoothness
along edges that occurs in images [20], and they are thus
more appropriate for the reconstruction of sharp point sin-
gularities than lines or edges. These shortcomings of wavelet
are well addressed by the ridgelet transform; the function-
ality of wavelet has been extended to higher dimensional
singularities and becomes an effective tool to perform sparse
directional analysis [3, 21]. Generally speaking, wavelets
detect objects with point singularities, while ridgelets are able
to represent objects with line singularities.

The finite ridgelet transform (FRIT) was computed in
two steps: a calculation of discrete radon transform and
an application of a wavelet transform. The finite radon
transform (FRAT) is computed in two steps: a calculation
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Figure 3: 2D-DWT. Original image (a), first decomposition level (b), and second decomposition level (c).

of 2D Fast Fourier Transform (FFT) for the image and an
application of a 1D inverse fast Fourier transform (iFFT)
on each of the 32 radial directions of the radon projection.
1D wavelet is applied restricted to radial directions going
through the origin for three levels of decompositions.

Applying FRAT on image can be presented as a set of
projections of the image taken at different angles to map
the image space to projection space. Its computation is
important in image processing and computer vision for
problems such as pattern recognition and the reconstruction
of medical images. For discrete images, a projection is
computed by summation of all data points that lie within
specified unit-width strips; those lines are defined in a finite
geometry [22].

Depending on [23], FRAT of a real function on the finite
grid Z2

p is defined in

rk[l] = FRAT f (k, l) = 1√
P

∑

(i, j)∈L(k,l)

f
(
i, j
)
. (2)

Here, L(k, l) denotes the set of points that make up a line on
the lattice Z2

p as in

L(k, l) =
{(
i, j
)

: j = ki + l
(

modp
)
, i ∈ Zp

}
, 0 ≤ k < p,

L
(
p, l
) =

{(
l, j
)

: j ∈ Zp

}
.

(3)

To compute the Kth radon projection (i.e., the Kth row in
the array), all pixels of the original image need to be passed
once and use P histogrammers: one for every pixel in the row
[12]. At the end, all P histogrammed values are divided by K
to get the average values.

According to Alzu’bi and Amira in [3], once the wavelet
and radon transforms have been implemented, the ridgelet
transform is straightforward. Each output of the radon
projection is simply passed through the wavelet transform
before it reaches the output multiplier. As shown in Figure 4,
ridgelets use FRAT as a basic building block, where FRAT
maps a line singularity into point singularity, and the wavelet
transform has used to effectively detect and segment the
point singularity in radon domain.

Input
image

FRITFRAT DWT

Figure 4: FRIT block diagram.

Figure 5 shows a clinical chest slice from a CT scanner
[24] in the last step of ridgelet transform before image
reconstruction at different block sizes.

Continuous ridgelet transform is similar to the continu-
ous wavelet transform except that point parameters (x, y) in
the cartesian grid (Figure 6(a)) which perform pixels in the
image or an entry in a 2D matrix are now replaced by line
parameters (β, θ), where β is the intercept and θ is the angle.
Figure 6(b) illustrates the radial grid in ridgelet transform;
however, straight lines evaluate the image in the frequency

domain [3].
The segmentation result achieved using ridgelet trans-

formation on medical images was not promising. Medical
images comprised from curves which are still not singularity
points after applying radon transform. Wavelet transform
cannot detect those singularities properly, since it still not
singularity points [3], resulting that ridgelet transformation
is not suitable for segmenting these images.

Ridgelet transform can be used in other applications,
where images contain edges and straight lines. Curvelet
transform has been introduced to solve this problem; it deals
with higher singularities compared to wavelet and ridgelet
transforms.

3.3. Curvelet Transform. The curvelet transform has gone
through two major revisions. It was first introduced in [25,
26] by Candés and Donoho in 2000, which used a complex
series of steps involving the ridgelet analysis of the radon
transform of an image. Their performance was very slow;
hence, researchers developed a new version which is easier
to use and understand. In this new method, the use of the
ridgelet transform as a preprocessing step of curvelet was
discarded, thus reducing the amount of redundancy in the
transform and increasing the speed considerably [3].
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Figure 5: Ridgelet transform for real CT images at block sizes (3, 7, and 13).

X

X

X

X

X

X

XXXXXXX

X

X

X

X

X

X X X

X X X X

X

X

XXX

X

X X

X

X

X

X

XX

X

X

X

X

X X X

X X X

(a) (b)

Figure 6: Wavelet and ridgelet parameters.
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Figure 7: An approximating comparison between wavelet (a) and curvelet (b).

Curvelet aims to deal with interesting phenomena occur-
ring along curved edges in a 2D image. As illustrated in
Figure 7, curvelet needs fewer coefficients for representation,
and the edge produced from curvelet is smoother than
wavelet edge [27].

The newly constructed and improved version of curvelet
transform is known as Fast Discrete Curvelet Transform

(FDCT). This new technique is simpler, faster and less
redundant than the original curvelet transform which based
on ridgelets. According to Candes et al. in [9], two imple-
mentations of FDCT are proposed:

(i) unequally spaced Fast Fourier transforms (USFFT),

(ii) wrapping function.
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Figure 8: Curvelet tiling of space and frequency. The induced tiling
of the frequency plane (a). The spatial Cartesian grid associated with
a given scale and orientation (b).

Both implementations of FDCT differ mainly by the
choice of spatial grid that used to translate curvelets at each
scale and angle. Both digital transformations return a table
of digital curvelet coefficients indexed by a scale parameter,
an orientation parameter, and a spatial location parameter.
Wrapping-based transform is based on wrapping a specially
selected Fourier samples, and it is easier to implement and
understand.

3.3.1. Continuous-Time Curvelet Transform. Curvelet trans-
form works in two dimensions with spatial variable x,
frequency domain variable ω, and the frequency-domain
polar coordinates r and θ. Curvelet transform can be defined
by a pair of windows, radial window {W(r)}, and angular
window {V(t)} [9]. As illustrated in (4), these windows will
always obey the admissibility conditions.

∞∑

j=−∞
W2
(

2 j r
)
= 1, r ∈

(
3
4

,
3
2

)
,

∞∑

j=−∞
V 2(t − l) = 1, t ∈

(
−1

2
,

1
2

)
.

(4)

A polar “wedge” represented by Uj is supported by the radial
window {W(r)} and angular window {V(r)}. Equation (5)
defines Uj in the Fourier domain

Uj(r, θ) = 2−3 j/4W
(

2− j r
)
V

(
2� j/2�θ

2π

)
. (5)

Equation (6) defines the curvelet transform as a function of
{x = (x1, x2)} at scale 2− j , orientation θl and position xk( j, l),
where Rθ is the rotation in radians. Figure 8 illustrates
the induced tiling of the frequency plane and the spatial
Cartesian grid associated with a given scale and orientation
[9], and shaded area represents the polar wedge by Uj

ϕj,l,k(x) = ϕj

(
Rθl

(
x − x

( j,l)
k

))
. (6)

3.3.2. Fast Discrete Curvelet Transform via Wrapping. The
new implementation of curvelet transform based on Wrap-
ping of Fourier samples takes a 2D image as an input in the

2 j

2 j/2

Wedge at scale 4, orientation 4.
Curvelet is smoothly localized
obeying the parabolic scaling

Nondirectional curvelet
at coarsest level

Figure 9: 5-level curvelet digital tiling of an image.

form of a Cartesian array f [m,n], where 0 ≤ m < M, 0 ≤
n < N where M and N are the dimensions of the array. As
illustrated in (7), the outputs will be a collection of curvelet
coefficients cD( j, l, k1k2) indexed by a scale j, an orientation
l and spatial location parameters k1 and k2.

cD
(
j, l, k1k2

) =
0≤m<M∑

0≤n<N
f [m,n]ϕD

j,l,k1k2
[m,n]. (7)

Each ϕD
j,l,k1k2

is a digital curvelet waveform, superscript D
stands for “digital.” These approach implementations are
the effective parabolic scaling law on the subbands in the
frequency domain to capture curved edges within an image
in more effective way. As mentioned earlier, wrapping based
curvelet transform is a multiscale pyramid which consists
of several subbands at different scales consisting of different
orientations and positions in the frequency domain. At a
high frequency level, curvelets are so fine and looks like a
needle shaped element and they are non-directional coarse
elements at low frequency level.

Figure 9 illustrates the whole image represented in spec-
tral domain in the form of rectangular frequency tiling by
combining all frequency responses of curvelets at different
scales and orientations. It can be seen that curvelets are
needle like elements at higher scale.

It can be seen from Figure 9 that curvelet becomes finer
and smaller in the spatial domain and shows more sensitivity
to curved edges as the resolution level is increased, thus
allowing to effectively capturing the curves in an image, and
curved singularities can be well-approximated with fewer
coefficients.

In order to achieve a higher level of efficiency, curvelet
transform is usually implemented in the frequency domain.
This means that a 2D FFT is applied to the image. For each
scale and orientation, a product of Ujl “wedge” is obtained;
the result is then wrapped around the origin, and 2D IFFT
is then applied resulting in discrete curvelet coefficients.
Candes et al. describe the discrete curvelet transform in [9]
as illustrated in

Curvelet transform = IFFT
[
FFT(Curvelet)× FFT

(
Image

)]
.

(8)

The difficulty behind this is that trapezoidal wedge does not
fit in a rectangle of size 2 j × 2 j/2 aligned with the axes in
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Figure 10: Wrapping wedge data.

the frequency plane in which the 2D IFFT could be applied
to collect curvelet coefficients. Wedge wrapping procedure
proposed in [9] uses a parallelogram with sides 2 j and
2 j/2 to support the wedge data. The wrapping is done by
periodic tiling of the spectrum inside the wedge and then
collecting the rectangular coefficient area in the centre. The
centre rectangle of size 2 j × 2 j/2 successfully collects all the
information in that parallelogram [28]. Figure 10 illustrates
the process of wrapping wedge where the angle θ is in the
range (π/4, 3π/4) and the rectangles have the same width and
length as the parallelogram is centred at the origin [9].

The following are the steps of applying wrapping based
FDCT algorithm [9].

Step 1. Apply the 2D FFT to an image to obtain Fourier
samples

f̂ [m,n], −n

2
≤ m, n <

n

2
. (9)

Step 2. For each scale j and angle l, form the product

Ũ j,l[m,n] f̂ [m,n]. (10)

Step 3. Wrap this product around the origin and obtain

f̃ j,l[m,n] =W
(
Ũ j,l f̂

)
[m,n], (11)

where the range for m, n, and θ is now 0 ≤ m < 2 j , 0 ≤ n <
2 j/2, and −π/4 ≤ θ < π/4.

Step 4. Apply IFFT to each f̃ j,l, hence collecting the discrete
coefficients cD( j, l, k1k2).

The curvelet transform is a multiscale transform such as
wavelet, with frame elements indexed by scale and location
parameters. Wavelets are only suitable for objects with point
singularities, Ridgelets are only suitable for objects with line
singularities, while curvelets have directional parameters and

its pyramid contains elements with a very high degree of
directional specificity. The elements obey a special scaling
law, where the length and the width of frame elements
support are linked using

width ≈ length2 (12)

Discrete curvelet transform in the spectral domain utilizes
the advantages of FFT. During FFT, both image and curvelet
at a given scale and orientation are transformed into the
Fourier domain. The convolution of the curvelet with the
image in the spatial domain then becomes their product in
the Fourier domain. At the end of this computation process,
a set of curvelet coefficients are obtained by applying IFFT to
the spectral product. This set contains curvelet coefficients in
ascending order of the scales and orientations.

Curvelets are superior to the other transforms as in the
following.

(a) Optimally Sparse Representation of Objects with Edges.
Curvelets provide optimally sparse representation of objects
which display curve-punctuated smoothness except for dis-
continuity along a general curve with a bounded curvature.
Such representations are nearly as sparse as if the object
were not singular and turn out to be far sparser than other
transforms decomposition of the object.

(b) Optimal Image Reconstruction in Severely Ill-Posed Prob-
lems. Curvelets also have special microlocal features which
make them especially adapted to certain reconstruction
problems with missing data. For example, in many important
medical applications, one wishes to reconstruct an object
f (x1, x2) from noisy and incomplete tomographic data [28].
Because of its relevance in biomedical imaging, this problem
has been extensively studied, yet curvelets offer surprisingly
new quantitative insights [18]. For example, an application
of the phase-space localization of the curvelet transform
allows a very precise description of those features of the
object of function ( f ) which can be reconstructed accurately
from such data and how well, and of those features which
cannot be recovered.

As illustrated in (8), the data acquisition geometry sepa-
rates the curvelet expansion of the object into two pieces as
illustrated in

f =
∑

n∈Good

〈
f ,ϕn

〉
ϕn +

∑

n /∈Good

〈
f ,ϕn

〉
ϕn. (13)

The first part of (13) can be recovered accurately, while the
second part cannot. What is interesting here is that one can
provably reconstruct the recoverable part with an accuracy
similar to that one would achieve even if one had complete
data. There is indeed a quantitative theory showing that for
some statistical models which allow for discontinuities in the
object to be recovered, there are simple algorithms based
on the shrinkage of curvelet biorthogonal decompositions,
which achieve optimal statistical rates of convergence [18].

Figure 11 illustrates the frequency response of curvelets
at different scales and orientations for some test images using
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Figure 11: Curvelets at increasingly fine scales from 1 to 5. Spatial domain (a, c, e, g, i). Frequency domain (b, d, f, h, j) [29].
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Table 1: Wavelet and ridgelet comparisons depending on SNR and processing time.

Domain
Wavelet Ridgelet

Spatial
Level 1 Level 2 Level 3 P = 5 P = 11 P = 31

SNR (dB) 10.63 11.14 10.95 10.37 11.43 11.88 7.17

Time (sec) 0.23 0.24 0.50 71.5 29.91 10.01 1.18

“Curvelab (version: 2.1.2)” [29] in both spatial and frequency
domain.

It can be seen from Figure 11 that curvelets are nondi-
rectional at coarsest level. Figures 11(a), 11(c), 11(e), 11(g),
and 11(i) are the spatial representation of curvelet at scales
1 to 5. And Figures 11(b), 11(d), 11(f), 11(h), and 11(j)
are the frequency domain representation of curvelet that
is modulus of FFT. Figure 12 illustrates a clinical data for
human chest from CT scanner in spatial domain and its
curvelet coefficients.

In Figure 12, the low frequency coefficients (coarse scale)
are stored at the centre of the display. The concentric coronae
(formed by black strips) show coefficients at different scales
and the outer coronae correspond to higher frequencies.
Each corona has four strips further subdivided in angular
panels; each panel represents coefficients at a specified scale
and orientation suggested by the position of the panel.

Wedge wrapping is done for all the wedges at each scale in
the frequency domain to obtain a set of subbands or wedges
at each curvelet decomposition level, and these subbands are
the collection of discrete curvelet coefficients.

The aim is to identify the most effective texture descriptor
for medical images to capture edge information more
accurately. The discrete curvelet transform can be calculated
to various resolutions or scales and angles; the maximum
number of resolution depends on the original image size
and the angles. Number of angles at the second coarsest
level must be at least eight and a multiple of four; that is,
512×512 image has five maximum possible resolution levels
containing structural information of the image. Figure 13
illustrates how curvelet-based edge reconstruction in medical
imaging differs from other transforms methods.

4. Results and Analysis

The end users of the proposed system are the radiologists and
specialists who analyse medical images for cancer diagnosis.
After several meetings with those people in the radiology
departments in some hospitals, the main goal that they are
working is to detect the accurate cancer size in medical
images with the least error. This process may be affected
by the noise surrounding ROI, which make the process of
measuring the exact dimensions of the lesion so hard.

Different datasets have been carried out with the pro-
posed system to validate it for clinical applications. The
first one is NEMA IEC body phantom which consists of
an elliptical water filled cavity with six spherical inserts
suspended by plastic rods of inner diameters: 10, 13, 17, 22,
28, and 37 mm [25, 26]. Real clinical human images acquired
by a CT scanner [24] have also been used to experiment the

proposed approaches, this data has been previously analysed
by the radiologists and the provided reports explains that the
patients are diagnosed by cancer. Table 1 illustrates the SNR
values of extracted features from NEMA IEC DATA SET in
spatial domain, different levels of decomposition of wavelet
domain and at different block sizes in ridgelet domain.

It can be seen from Table 1 that small values of SNR have
been obtained for all techniques; this is due to the noise from
the acquisition systems itself. This noise will be a part of the
medical image after the reconstruction of all slices. Relatively,
better SNR values can be achieved with the second level of
wavelet decomposition and as the block size (p) is getting
bigger with the ridgelet transform, where the transformed
image is getting more similar to the original image. This
can be assigned to the major limitation of using ridgelet
transformation in medical image segmentation, where ridges
rarely exist in such data.

MRA transforms have been used with thresholding
technique to segment the experimental data. Thresholding
technique has been applied as a preprocessing step on the
original images at threshold value (t = 35) to remove as
much artificial spam sequel produced from the scanners. The
transform then applied to effectively represent objects with
edges which are the contours of the medical images followed
by another thresholding at (t = 7) to remove most of the
remaining noise and facilitate the measurement process.

Figure 14 illustrates the segmentation using curvelet
transform. Figures 14(a) and 14(c) illustrate the original
images from a CT scanner, and Figures 14(b) and 14(d)
illustrate the segmented phantom image and real chest
image, respectively, using curvelet transform. As illustrated
in Figure 15, results of the proposed segmentation technique
are vary in terms of smooth reconstruction of the spheres.
Curvelet transform segments the input image and removes
artifacts from the image to exhibit smooth and optimal
segmentation of NEMA phantom. Ridgelet transform detect
ROI but does not give promising segmentation results due
to the lack of ridges or straight lines in the tested data set.
Wavelet quadrants are varying also in their quality; relatively,
the best results have been achieved with the LL-filter output.

Table 2 illustrates NEMA spheres diameters error per-
centages measured using different multiresolution analysis
techniques and compared to previously implemented tech-
niques. ED has been used to measure the spheres diameters
and calculate the error percentages for each technique, and
sphere diameter error percentages have been calculated as
follows:

error % = Measured Diameter− Actual Diameter
Actual Diameter

× 100%.

(14)
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Figure 12: Clinical slice for the human chest from a CT scanner in spatial (a) and curvelet coefficients (b).

(a) (b)

Figure 13: Reconstruction of tomographic data. Wavelet domain (a), and curvelet domain (b).

From Table 2, in the case of K-means clustering, tumor
volumes are underestimated by approximately 5%-6% in
most cases; however, for the two smaller spherical inserts,
with diameter of 10 mm and 13 mm, respectively, these
underestimations are significantly greater. For the smallest
sphere, more than a 13% volume discrepancy is recorded,
with the K-means algorithm finding it difficult to quantify
the tumor accurately. Sphere 2 similarly is massively under-
estimated (11.5%). Unlike K-means clustering, MRFM tends
to overestimate the volumes of the spherical inserts, with the
exception of Spheres 1 and 2.

Spheres diameters are reduced to the half with each
decomposition level of wavelet transform. Three decompo-
sition levels of DWT have been applied on NEMA phantom
[25, 26] using two different filters (Haar, Daubechies),

and the measured diameters were doubled at each level
to produce a fair comparison with the other available
techniques. It can be seen that most of the error percentages
were decreasing while the spheres diameter increasing; it
is worth mentioning that there is no upper bound of the
spheres diameters to keep the errors decreasing, because the
ROI becomes clearer and easier to be detected and measured
properly. But tumours in real life are usually very small in
the early stage cancer, and the problem is to detect those
turnouts’ tumours as soon as possible.

The two smallest spherical inserts are still underestimated
in most of the techniques and got the largest error per-
centages. The large volumetric errors encountered using this
acquisition exist as a consequence of the poor slice thickness
setting selected for the scan. The 4.25 mm slice thickness
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(a) (b)

(c) (d)

Figure 14: Curvelet transform for segmentation. (a) NEMA IEC body phantom, (b) segmented phantom slice, (c) original real chest slice,
and (d) segmented real chest slice.

(a) (b) (c) (d)

Figure 15: Segmentation using conventional hard thresholding and curvelet-based segmentation. (a) Denoised spatial domain. (b) First
level in wavelet domain. (c) Ridgelet domain. (d) Curvelet domain.

causes large fluctuations in transaxial tumour areas to occur
between image slices. This problematic characteristic occurs
most notably with the smallest spherical inserts, where single
voxel reallocation causes a large deviation in percentage
error. In Figure 16, the percentage error computed between
the actual sphere volume and the volumes obtained using all

methodologies for each of the six tumours inserts is plotted.
It can be seen that all techniques are settled down according
to the error percentages as the sphere diameters increased.

It can be also seen from Table 2 that acceptable error
percentages have been achieved using ridgelet transform for
the big spheres (22 mm, 28 mm, and 37 mm), where the
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Table 2: The error percentages of spheres diameters measurements for NEMA IEC body phantom.

Spheres (mm)
Error % for measured diameters

10 13 17 22 28 37

K-means [3] −13.6 −11.5 −5.77 −5.51 −5.1 −5.01

MRFM [3] −7.41 −8.69 4.28 4.06 3.9 3.89

Clustering [3] 18.6 16.0 9.0 7.5 5.5 1.1

Iterative Thresholding [3] 3.0 3.1 0.6 0.9 1.1 1.8

Wavelet

Haar

Level 1 −2.9 −2.46 1.35 0.82 0.29 0.05

Level 2 −10.9 −6.67 3.88 −1.3 −0.76 −1.95

Level 3 — — 5.65 −18.2 2.57 −3.24

Daubechies

Level 1 −7.43 −2.69 0.12 2.0 2.17 1.81

Level 2 −5.2 0.15 −4.24 0.73 0.62 −0.11

Ridgelet −10.93 −6.67 3.88 −1.30 −0.76 −1.95

Curvelet 2.65 1.62 1.07 −0.82 −0.33 −0.09

Table 3: Comparison of curvelet, ridgelet, and wavelet denoising in terms of PSNR and MSE.

Image name
Curvelet denoising Ridgelet denoising Wavelet denoising

MSE PSNR (dB) MSE PSNR (dB) MSE PSNR (dB)

NEMA 41.67 31.93 108.78 26.14 101.12 28.08

Chest 58.8 30.44 152.45 23.55 147.63 26.44
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Figure 16: Visual comparison for error percentages in Table 2.

curves are not sharp and ridgelet detect it accurately as it
close to be ridges. But for the small spheres, ridgelet weakness
for medical image segmentation start appears clearly.

Curvelet transform overcomes the weakness of wavelet
for segmenting sharp curves and detect the small spheres
accurately with error percentages (0.82%–2.65%). For the
big spheres, errors achieved using wavelet transform are still
better than those achieved using curvelet transform due to
the sharpness of that spheres. But still very good results using
curvelet transform and acceptable for clinical applications.

PSNR and MSE have been also used to evaluate the
quality of the proposed techniques. The original image has
been contaminated with Gaussian white noise at σ = 20%
of the maximum intensity. Table 3 illustrates a comparison
study of curvelet transform with the other traditional
transforms, and comparison terms PSNR and MSE have
been used to test the quality of the transformed image.

From Table 3, it can be seen that the best results accord-
ing to both PSNR and MSE have been achieved using curvelet
transform. Wavelet transform performs better results com-
pared to ridgelet transform in both validation metrics.
Figure 17 illustrates two noisy images and the denoised
outputs using both wavelet and curvelet.

According to a study done by Dettori and Semler [23], the
ridgelet-based descriptors had significantly higher perfor-
mance measures in comparison to wavelet-based descriptors,
with accuracy rates higher than any other wavelet-based
feature set for all individual organs. This is not surprising
given the fact that the ridgelet transform is able to cap-
ture multidirectional features, as opposed to the wavelet
transform which focus mainly on horizontal, vertical, and
diagonal features. This can be generalized to most of the
images except for medical scanners, where the weakness of
wavelet is not dominant in such images.

Curvelet-based descriptors had an even higher perfor-
mance in comparison to both the wavelet and ridgelet,
with accuracy rates higher, respectively. The accuracy rate
using curvelet transform is better; this is expected, since
the curvelet transform is able to capture multidirectional
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(a) (b) (c)

(d) (e) (f)

Figure 17: MRA for image denoising. (a, d) Noisy images. (b, e) Wavelet. (c, f) Curvelet.
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Figure 18: Scanner variables effects on the segmented image.

features in wedges, as opposed to lines or points as in the
ridgelet or wavelet transform. The multidirectional features
in curvelets are very effective in extracting the important
features from medical images and then segmented accurately.

As illustrated in the previous tables and figures, it can be
seen that more efficient and smooth image reconstruction
is achieved using curvelet transform. In terms of optimal
reconstruction of the objects with edges and curves, curvelet-
based techniques outperform the traditional wavelet and
ridgelet transforms.

The algorithm presented in this chapter is able to classify
normal tissues in CT scans with high accuracy rates. These
hypotheses will be further tested and validated on different
predefined clinical data sets in chapter 8 of this thesis.

Segmentation using curvelet transform has been chosen
for experimenting the PET scanner sensitivity variables,
curvelet was applied in parallel with multithresholding and
classification techniques to classify the spheres in a separate
class from the other comprising objects at least noise
included. The experiment was evaluated based on the ratio
between the spheres area to the other area of the scanned
slice. The actual spheres area can be calculated according to
(15), given that the spheres diameters are 10, 13, 17, 22, 28,
37 mm

SOriginal = 1
2
π
∑

r∈{a}
r2, {a} = {10, 13, 17, 22, 28, 37}, (15)

where SOriginal is the actual area of all six spheres together. The
scan resolution can be acquired from Amide software where
each pixel size is 4.6875 × 4.6875 mm and each slice size is
128× 128 pixels. The overall slice area and the ratio between
both areas can be calculated according to (16), respectively,
where SBR is the spheres to background ratio

AOriginal = 128× 128× 4.6875× 4.6875 = 360000 mm2,

SBR = SOriginal

AOriginal − SOriginal
× 100% = 0.702%.

(16)
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(a) IT = 10, time = 2 min, collimator: 2D (left),
segmented (right)

(b) IT = 10, time = 3 min, collimator: 2D (left),
segmented (right)

(c) IT = 10, time = 4 min, collimator: 2D (left),
segmented (right)

(d) IT = 10, time = 2 min, collimator: 3D (left),
segmented (right)

(e) IT = 10, time = 3 min, collimator: 3D (left),
segmented (right)

Figure 19: Continued.
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(f) IT = 10, time = 4 min, collimator: 3D (left), seg-
mented (right)

Figure 19: Segmented results achieved at IT value (10), where the best results detected.
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Figure 20: AMIDE snapshot locating the kidney cancer.

Figure 21: ROI highlighted in the original image (kidney cancer).

Table 4 illustrates the results for a sample data provided from
the collaborator for different scanner variables. It can be
seen that the SBR percentages varies based on the scanner
variables used. To explain the effects of those variables on the
output image, Figure 18 illustrates the changes in the quality
of the segmented image based on the scanners variables.

It can be seen from Figure 18 that 3D scans produce
closer SBR percentages than 2D for all iterations except at
IT = 1. It can be noticed that the area evaluating the spheres
decreases as the IT value increases for both 2D and 3D and
for all bed section scanning times. These results match the
expectation of the radiologists at Paul Strickland Scanner

Table 4: Spheres to background ratio (SBR) for different variable
samples.

2D/3D Time/bed section Iteration SUB SBR (%)

2D 2 min 1 30 0.46

2D 2 min 5 30 0.31

2D 2 min 10 30 0.24

2D 2 min 30 30 0.22

2D 3 min 1 30 0.56

2D 3 min 5 30 0.59

2D 3 min 10 30 0.55

2D 3 min 20 30 0.53

2D 4 min 3 30 0.55

2D 4 min 15 30 0.42

2D 4 min 20 30 0.36

2D 4 min 30 30 0.31

3D 2 min 1 32 1.1

3D 2 min 3 32 0.76

3D 2 min 7 32 0.71

3D 2 min 10 32 0.69

3D 3 min 1 32 1.02

3D 3 min 3 32 0.77

3D 3 min 10 32 0.71

3D 3 min 15 32 0.68

3D 4 min 3 32 0.74

3D 4 min 10 32 0.68

3D 4 min 30 32 0.64



16 International Journal of Biomedical Imaging

Wavelet transform

(a)

Ridgelet transform

(b)

Curvelet transform

(c)

Figure 22: MRA for real clinical data segmentation.

Centre. The segmented results achieved at IT = 10 are
illustrated in Figure 19.

A predefined clinical dataset comprised of 217 slices, with
slice thickness of 3.0 mm has been tested on the proposed
system. Based on the provided report, the patient is affected
by multiple bilateral renal cortical cysts; the largest one is
seen in the lower pole of the right kidney, measuring about
47× 45 mm. A snapshot taken for a DICOM viewer window
and the ROI has been located by the red lines in three
different orientations of the patient’s body scan (Figure 20).
It can be seen that ROI appears more clearly in its biggest
illustration in slice 198; this slice is illustrated in Figure 21,
and the ROI (kidney cancer) has been highlighted by red
colour.

MRA have been applied on the medical image to segment
it and detect ROI. Figure 22 illustrates the outputs of apply-
ing those techniques.

Table 5: Segmentation techniques’ performance based on patient
data (kidney cancer data).

Segmentation
technique

Cancer area
accuracy (%)

MSE
PSNR
(dB)

Data loss

DWT

Haar 91.0 102.7 35.2 Normal

Daubechies 89.5 104.5 34.3 Normal

Wavelet Packet 83.2 111.2 30.9 Normal

Ridgelet — 109.9 30.3 High

Curvelet 96.2 88.2 29.5 Normal
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Figure 23: Segmenting patient volume data affected by the kidney
cancer.

The performance of the proposed techniques for seg-
menting the illustrated slice in Figure 21 is explained in
Table 5. The area of the cancer has been measured and
compared to the provided report and then used to qualify
the performance of each technique as well as MSE, data loss,
and PSNR.

The clinical datasets have been segmented also using
3D segmentation techniques, and the lesions were detected
accurately. Curvelet transform has been used before 3D
segmentation to achieve a denoised CT output and ensure
smoother edges. Patient data which includes lesions in liver,
kidney and lung has been segmented and visualized in
Figures 23, 24, and 25, where the OOIs are located.

5. Conclusion

Due to the changing shapes of organs in medical images,
segmentation process using multiresolution analysis com-
bined with thresholding as pre- and postprocessing step
allows accurate detection of ROIs. Multiresolution analysis
such as wavelet transform is extensively used in medical
image segmentation and provides better accuracy in results.
Curvelet and ridgelet transforms are new extension of the
wavelet transform that aims to deal with interesting phe-
nomena occurring along higher dimensional singularities.
Though wavelets are well suited to point singularities, they
have limitations with orientation selectivity hence do not
represent changing geometric features along edges effectively.
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Figure 24: Segmenting patient volume data affected by the lung
cancer.
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Figure 25: Segmenting patient volume data affected by the liver
cancer (located by red arrows).

Curvelet transform exhibits good reconstruction of the edge
data by incorporating a directional component to the tradi-
tional wavelet transform. Experimental study in this report
has shown that curvelet-based segmentation of the medical
images not only provide good-quality reconstruction of
detected ROI, promising results are also achieved in terms
of accurately detecting ROI and denoising process. Curvelet
transform is a new tool and utilization of this technique; it is
far from sufficient in the medical image processing area. The
future work related to this is the implementation of 3D MRA
transform which can be applied directly on medical volumes
to detect obstacle and objects of interest.
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