Statistics-based Adaptive Non-Uniform Crossover for
Genetic Algorithms

Shengxiang Yang
Department of Mathematics and Computer Science
University of Leicester
University Road, Leicester LE1 TRH
s.yang@mcs.le.ac.uk

Abstract

Through the population, genetic algo-
rithm (GA) implicitly maintains the
statistics about the search space. This
implicit statistics can be used explicitly to
enhance GA’s performance. Inspired by
this idea, a statistics-based adaptive non-
uniform crossover, called SANUX, has
been proposed. SANUX uses the statis-
tics information of the alleles in each lo-
cus to adaptively calculate the swapping
probability of that locus for crossover. A
simple triangular function has been used
to calculate the swapping probability. In
this paper two different functions, the
trapezoid and exponential functions, are
investigated for SANUX instead of the tri-
angular function. The experiment results
show that both functions further improve
the performance of SANUX across a typ-
ical set of GA’s test problems.

1 Introduction

Based on natural evolution mechanisms re-
searchers have developed several evolution-based
stochastic optimum-seeking algorithms, sum-
marily termed Ewvolutionary Algorithms (EAs).
Of different classes of evolutionary algorithms,
Genetic Algorithms (GAs) are the best known
and have been widely studied [9]. GA emu-
lates the natural evolution process and main-
tains a population of potential solutions to a
given problem, which are evaluated according
to a problem-specific fitness function that de-
fines the evolution environment for the popula-
tion. A new population is created by randomly
selecting relatively fit individuals of the present
population and evolving them through crossover
and mutation operations. Through the popula-
tion GA implicitly maintains the statistics about
the search space. That is, useful materials per-
meate in the population. GA uses the selec-

tion, crossover and mutation operators to explic-
itly extract the statistics from the population to
reach the next set of points in the search space.
In fact, this implicit statistics in the popu-
lation can be used explicitly to enhance GA’s
performance. Inspired by this idea, a statistics-
based adaptive non-uniform crossover, called
SANUX, has been proposed by Yang [18].
SANUX explicitly uses the statistics information
of the alleles in each locus to adaptively calcu-
late the swapping probability of that locus for
crossover operation. A simple triangular func-
tion has been used to calculate the swapping
probability from the statistics of allele distribu-
tion. In this paper, two different functions, the
trapezoid and exponential functions, are pro-
posed for SANUX instead of the simple trian-
gular function. These two functions make use of
the statistics information more efficiently with
respect to construction and protection of useful
building blocks with the progress of the GA.

2 Related Work on Crossover

2.1 Traditional Crossover Operators

Traditionally, GAs have used the one-point
crossover and the two-point crossover. This de-
cision was supported theoretically and empiri-
cally by early work of GA’s researchers [3, 10].
However, researchers have also carried out ex-
periments with multi-point crossover: the n-
point crossover [6] and the uniform crossover
[16]. With the n-point crossover, n cut points
are randomly chosen within the strings and the
n — 1 segments between the n points of the par-
ents are exchanged. Uniform crossover is the
generalization of n-point crossover. It creates
offsprings by deciding, for each bit of the par-
ent, whether to swap the allele of that bit with
the other parent. The decision is made using an
unbiased coin flip, i.e., the probability of swap-
ping p; is 0.5. Spears and De Jong [14] proposed
the parameterized uniform crossover which dif-

fers from the traditional uniform crossover in
that the decision for each locus is made by a bi-
ased coin flipping, i.e., the swapping probability
ps could be other than 0.5.

For traditional crossover operators, there ex-
ist two recombination biases: positional bias and
distributional bias [1, 6]. Positional bias exists
when the creation of a new schema, is dependent
upon the location of its defined bits. Distribu-
tional bias exists if the expected amount of ma-
terial being exchanged is concentrated around
a mean value. The two biases exist because
traditional crossover operators are inherently all
based on uniformly randomization mechanism,
i.e., generating cut points (n-point crossover) or
swapping points (uniform crossover) uniformly
randomly over the loci of the chromosome. This
situation is not very true with natural evolution.
In nature, “hot spots” exist in the chromosome
for crossover.

2.2 Adapting Crossover Operators

Natural evolution is intrinsically dynamic and
adaptive. To emulate this, recently researchers
have applied adaptation techniques to enhance
GA’s capabilities [5]. Based on the mechanism
of change, adaptation in GAs can be classified
into three categories: deterministic adaptation
where the value of a strategy parameter is al-
tered according to some deterministic rule, adap-
tive adaptation where feedback information from
the search process is used to adjust a strategy
parameter, and self-adaptive adaptation where
the strategy parameter is encoded into and co-
evolves with the chromosomes.

According to Yang [18], adaptation in
crossover happens in three levels from top to
bottom. In the top level, crossover operators are
themself adapted during a run of the GA. Davis
[2] proposed that the GA selects operators from
a set of operators, each with a fixed probabil-
ity. Spears [13] appended to each individual one
tag bit that co-evolves with the individual and is
used to switch between two-point and uniform
crossover. In the medium level, the rate or prob-
ability of crossover is altered during a run of the
GA. Julstrom [11] proposed an adaptive mecha-
nism that regulates the ratio between crossover
and mutation based on their performance. Tu-
son and Ross [17] encoded into each individual
the crossover and mutation probabilities as one-
normalized real numbers that are used by and
co-evolve with the individual. In the bottom
level, the position of crossing or swapping proba-
bility in each locus is adapted during a run of the

GA. Fraser [8] associated for each locus of an in-
dividual a swapping probability that co-evolves
with the individual. Levenick [12] inserted a
metabit before each bit of the individual. If the
metabit was “1” in both parents swapping oc-
curred with base probability P, otherwise with
reduced probability P,.

3 Statistics-based Adaptive
Non-Uniform Crossover

3.1 Motivation of SANUX

Holland’s building block hypothesis states that
GA works by juxtaposition of short, low-order
schemas into fitter schemas [9, 10]. How-
ever, it doesn’t state how crossover, the ma-
jor source of the search power of GA, works to
recombine highly fit schemas from short, low-
order schemas. Through theoretical analysis
and experimental study researchers found that
crossover operators are disruptive as well as con-
structive with respect to schemas [15]. Hence, it
may be beneficial to take a single gene instead
of schema as the fundamental functionality unit
and study the behavior of a single gene. Any-
way, schemas consist of genes.

For the convenience of description and analy-
sis, Yang [18] has introduced the concepts of in-
trinsic attribute and extrinsic tendency of allele
valuing for a gene locus. In the optimal binary-
encoded solution(s) of a given problem, for a
gene locus if its allele is 1 it is called I-intrinsic,
if its allele is 0 it is called 0-intrinsic, otherwise
if its allele can be either 0 or 1 it is called neu-
tral. Whether a locus is l-intrinsic, 0-intrinsic,
or neutral depends on the problem being solved
and the encoding scheme, e.g., whether introns
are inserted [12]. During the running of a GA,
for a gene locus, if the frequency of 1’s in its alle-
les over the population tends to increase (to the
limit of 1.0) with time (generation), it is called
1-inclined; if the frequency of 1’s tends to de-
crease (to the limit of 0.0), it is called 0-inclined;
otherwise, if there is no tendency of increasing
or decreasing, it is called non-inclined. Whether
a locus is 1-inclined, 0-inclined, or non-inclined
depends on the problem being solved, encoding
scheme, genetic operators and initial conditions.

Usually and hopefully as the GA progresses,
those gene loci that are l-intrinsic (or 0-
intrinsic) will appear to be l-inclined (or 0-
inclined), i.e., the frequency of 1’s in the alle-
les of these loci will eventually converge to 1 (or
0). This convergent information is implicit in

the population. Traditional crossover operators
make no use of this implicit convergent infor-
mation and consistently generate cut points or
swapping points randomly but uniformly across
the chromosome. Obviously it will be beneficial
to link these partially or fully converged genes
into groups or building blocks and co-evolve
them during crossover operations. Gene link-
age is the property of grouping interactive genes
to evolve them together. Of course, we need
some mechanism that makes use of this implicit
convergent information to link genes. In fact, in-
teraction between genes could be addressed by
varying their swapping probabilities and forming
linkage groups based on their swapping proba-
bilities. Those genes with small-valued proba-
bilities (i.e., close to zero) form a linked group
because it is unlikely for crossover to disrupt
that group. This is realized in SANUX. SANUX
explicitly uses the implicit convergence infor-
mation as feedback information to guide the
crossover by adaptively adjusting the swapping
probability for each locus based on the statistics
of alleles in that locus.

3.2 Description of SANUX

We use the frequency of 1’s in the alleles in a
locus over the population (equivalently we can
also use the frequency of 0’s as the argument)
to calculate corresponding swapping probability
of that locus. The frequency of 1’s in the al-
leles of a locus can be looked as the degree of
convergence to “1” for that locus. Let L be the
length of binary strings, f1(i,t) (i = 1,...,L)
denote the frequency of 1’s in the alleles in lo-
cus i over the population at time (generation) ¢
and ps(i,t) (i = 1,...,L) denote the swapping
probability of locus 4 at time ¢. In [18], a simple
triangular function, as shown in Figure 1, is used
to calculate py(i,t) from f;(4,t), defined as:

ps(it) = Pmaz_2*|f1(iat)_0-5|*(Pmaz_szn;
1

where |.| is an absolute function, Pp,q, and Pyip,
are the maximum and minimum allowable swap-
ping probabilities for a locus respectively. The
triangular function is symmetric with respect to
the line f1(4,t) = 0.5 due to the symmetric prop-
erty of allele valuing in a locus.

Now during the evolution of the GA, after
a new population has been generated, we first
calculate the distribution of 1’s fi(i,t) for each
locus 7 over the population ¢ and from this ob-
tain the swapping probability ps(i,t) of locus
i. Then we can perform SANUX operations

Pmax

Swapping Probability

Pmin

00 =—— O-Inclined 0.5 1-Inclined —— 1.0
Frequency of 1'sin the Allelesin aLocus

Figure 1: Triangular function for calculating the
swapping probability of a locus.

similarly as traditional parameterized uniform
crossover. Figure 2 shows an example operation
of applying SANUX. When performing SANUX
on two parents individuals P; and P, we first
generate a mask bit by bit by flipping a coin bi-
asedly, i.e., generating a “1” with the swapping
probability ps(i,t) for each locus ¢. The gener-
ated mask is then used to guide the crossover by
exchanging those bits of P; and P, that corre-
spond to the positions where there are a “1” in
the mask while leaving other loci unchanged.

1’s Freq. inloci: 0.9 04 02 09 0.6
Calculating: | U U U U
Swapping Prob.: 0.1 04 0.2 0.1 04
Biased Flipping: | U U Y U
Created Mask: 0 1 0 0 1
Applying Mask: U (2
Parent P;: 1 1 0 1 0
Parent Ps: 1 0 0 1 1
Swapping;: U U
Child Cy: 1 0 0 1 1
Child Cy: 1 1 0 1 0

Figure 2: An example operation of SANUX
with the triangular calculating function where
Pz = 0.5 and P = 0.

From above descriptions, it can be seen that
SANUX is much simpler than those adapta-
tion mechanisms that add extra tag bit [12]
or value [8] per genetic bit and co-evolve these
tag bits or values with each individual. With
SANUX, what we add to traditional uniform
crossover are spatially only one real vector of
the chromosome length dimension that records
the swapping probability for each locus, and
computationally only one statistics per genera-

tion that calculates the frequency of ones (hence
the swapping probability) for each locus. This
simple extra statistics is well rewarded in the
sense of computational efficiency. First, for each
crossover operation at generation ¢, the number
of swappings on strings of length L is on average
L/2 with uniform crossover and Y '=" p,(i,t)
with SANUX. This number is the same for both
uniform crossover and SANUX when the popu-
lation is randomly initialized, assuming P, =
0.5. However, with the progress of the GA, 1-
and 0-intrinsic genes tend to converge to 1 and 0
respectively and their swapping probabilities de-
crease according to Equation (1). This results in
reduced number of swappings with SANUX, i.e.,
Z:if ps(i,t) < L/2. Second, more importantly,
SANUX can reduce invalid crossover operations
and hence fitness evaluations. As the popula-
tion converges, with uniform crossover, many
crossover operations are wasted on those con-
verged loci since generated offsprings with found
building blocks destroyed during crossover are
easily kicked off by selection operators because
they are usually less fit. Most of these invalid
crossover operations can be saved by SANUX
through decreasing swapping probabilities for
those converged loci.

Another more important point of SANUX is
its property of implicit gene linkage. For exam-
ple, in Figure 2 loci 1 and 4 are more convergent,
and implicitly linked though they are not ad-
jacent because the probability for them to co-
evolve via crossover is 0.1 x 0.1 + 0.9 x 0.9 =
0.82. SANUX differs from Fraser’s crossover
in that SANUX adapts one probability vector
for all individuals based on one simple statistics
per generation while Fraser’s crossover modifies
one probability vector for each individual per
crossover based on a random learning rule [8].

3.3 New Calculating Functions

From above discussions, we can see that there
is a close-loop control in SANUX in the sense
of constructing and preserving building blocks.
The GA is first used to construct useful build-
ing blocks. Then after some time when some
useful building blocks are built up the statis-
tics information is used to protect these found
useful building blocks from being destroyed by
the crossover and hence divert the crossover to
search unconverged loci for potential more un-
known useful building blocks because uncon-
verged loci have relatively higher swapping prob-
abilities. With this understanding, we can fur-
ther enhance this close-loop control by introduc-

Pmax

a
[

Swapping Probability

b

- LN

00 =—— O-Inclined 0.5 1-Inclined —— 1.0
Frequency of 1'sin the Allelesin aLocus

Figure 3: Trapezoid function for calculating the
swapping probability of a locus.

ing new functions instead of the above triangular
function to calculate the swapping probability of
each locus from its allele distribution statistics
information. As mentioned previously, in this
paper we propose two such functions.

The first function is a trapezoid function, as
shown in Figure 3, defined by the following linear
segmented equation.

Proz, if|f1(i,t) —05|<a

W * (Pmaz - Pmin)+
P, ifa< |f1(’1:,t) - 05| <b

Prin, if|fi(5,t)—0.5]>0b

ps(i,t) =

(2)
where a and b are parameters that satisfy the
relation of 0 < a < b < 0.5. The trapezoid
function is symmetric with respect to the line
f1(i,t) = 0.5. From Figure 3 it can be seen that
the triangular function in Figure 1 is an extreme
example of the trapezoid function when a = 0
and b = 0.5 in Equation (2).

As shown in Figure 3, the parameters a and b
split the whole range of fi(,t) into three zones:
D) |fi(5,t) — 0.5 < a; II) a < |f1(i,t) — 0.5] < b;
ITI) |f1(é,t) —0.5] > b. Zone 1 is called construc-
tive zone where useful building blocks are mainly
constructed by SANUX. Zone II is called tran-
stent zone where building blocks are constructed
as well as destroyed. And Zone III is called pro-
tective zone where building blocks found so far
are protected from being destroyed by SANUX
while exploring unknown useful building blocks
is still carried out by SANUX on unconverged
loci. From Figure 3 it can be seen that the
larger the value of a, the wider the region that
allows the GA to construct building blocks, and
that the smaller the value of b, the stronger the
protection to converged genes or found building
blocks from being destroyed by SANUX.

The second function we introduce here is an

Pmax -
! (05,004) ——
) ; (05, 0.02)
g |
8 I
I I
E I
g :
g |
g |
@ |
Pmin L

00 =—— O-Inclined 0.5 1-Inclined —— 1.0
Frequency of 1'sin the Allelesin aLocus

Figure 4: Exponential function for calculating
the swapping probability of a locus.

exponential function, as shown in Figure 4, de-
fined as follows:

ps(i;t) = axexp(—(f1(i,t) = 0.5)*/B) 3)

where « is the parameter with the same func-
tionality as Py, in Equation (1) and Equa-
tion (2), and f is the parameter that combines
the functionalities of parameters Pp,;n, a and b
in Equation (2) and controls the falling speed
of ps(i,t) when fi(i,t) diverts away from 0.5.
The smaller the value of 3, the faster the falling
speed of ps(i,t), and the stronger the protection
to converged genes or building blocks found so
far. As shown in Figure 4, the solid curve shows
the function with (a, 8) = (0.5, 0.04) while the
dashed curve is when (a, 8) = (0.5, 0.02).
From above discussions, we can see that
both the trapezoid and exponential functions
loose the region for the GA to construct build-
ing blocks and enhance the protection to found
building blocks at the same time. Both sides are
expected to be beneficial for GA’s performance.

4 The Test Problems
4.1 The Max Ones Problem

The Max Ones problem is simply to maximize
ones in a binary string. The fitness of a string is
the number of ones it contains. A string length
of 100 bits will be used for this study.

4.2 Royal Road Functions

The Royal Road functions R; and Ry contain
tailor-made building blocks and are devised to
investigate GA’s performance with respect to
schema processing and recombination by Forrest
and Mitchell [7]. They are defined using a list
of schemas. Each schema is given a coefficient

which is equal to its defining order. The fitness
of a bit string z for both R; and R» is com-
puted by summing the coefficients correspond-
ing to each of the given schema of which z is an
instance. The optimal solutions for R; and R,
have a fitness of 64 and 192 respectively.

4.3 The L-SAT Problem Generator

The random L-SAT problem generator [4] is
a boolean satisfiability problem generator de-
vised to investigate the effects of epistasis on
the performance of GAs. It generates random
boolean expressions in conjunctive normal form
of clauses subject to three parameters V (num-
ber of boolean variables), C' (number of disjunc-
tive or conjunctive clauses) and L (the length of
the clauses). Each clause is created by selecting
L of V variables uniformly randomly and negat-
ing each variable with probability 0.5. For each
generated boolean expression, the aim is to find
an assignment of truth values to the V' variables
that makes the entire expression true. Since the
boolean expression is randomly generated, there
is no guarantee that such an assignment exists.
The fitness function for the L-SAT problem is as
follows:

c

f(chrom) = éZf(clausei)

i=1

Where chrom consists of C' clauses and the fit-
ness contribution of clause i, f(clause;), is 1 if
the clause is satisfied or 0 otherwise.

As in [4], in our experiments we will fix V
to 100 and L to 3 and vary the value of C from
200 (low epistasis) to 1200 (medium epistasis)
to 2400 (high epistasis).

5 Experimental Study

5.1 Design of Basic Experiment

In our basic experiment study we compare the
SANUX with the trapezoid and exponential
functions over SANUX with triangular function
and traditional 2-point, 0.5 uniform and 0.2 uni-
form crossover on the chosen test problems. The
parameters for different calculating functions of
SANUX are set as follows: P, = 0.5 and
P,in = 0.0 for triangular and trapezoid func-
tions, (a,b) = (0.1,0.4) for trapezoid function,
and (a, 8) = (0.5, 0.04) for exponential function.

For each experiment of combining different
crossover operators and test problems, 100 in-
dependent runs were executed under the same

100 different random seeds. In all the exper-
iments, the GA uses the fitness proportionate
selection with stochastic universal sampling and
elitist model, and bit flip mutation. And typ-
ically the probabilities of crossover and muta-
tion were fixed to 0.6 and 0.001 respectively and
the population size was set to 100 for each run.
For each run, we recorded the best-so-far fitness
every 100 evaluations. Here, only those chromo-
somes changed by crossover and mutation opera-
tions are evaluated and counted into the number
of evaluations. Each experiment result is aver-
aged over the 100 independent runs.

5.2 Basic Experiment Results

The results of the basic experiment on differ-
ent test problems are shown in Figure 5 to Fig-
ure 7 respectively. From these figures it can
be seen that SANUX with different calculating
functions has outperformed traditional crossover
operators on all test problems except the L-SAT
problems with low epistasis. On most test prob-
lems lowering the swapping probability p from
0.5 to 0.2 improves the performance of uniform
crossover (0.2 uniform crossover outperforms 2-
point crossover and 0.5 uniform crossover), how-
ever 0.2 uniform crossover is beaten by SANUX.
The relative performance of different crossover
seems quite consistent on all of the test prob-
lems. The approximate performance order from
best to worst is from SANUX-Exponent =
SANUX-Trapezoid = SANUX-Triangle = 0.2
uniform crossover = 0.5 uniform crossover = 2-
point crossover. Within SANUX both the trape-
zoid function and exponential function have out-
performed the triangular function. This con-
firmed our prediction.

From Figure 5 to Figure 7 we can also see
that the performance of different crossover op-
erators differs most heavily on royal road func-
tions, especially on Rs. This happens because,
as mentioned before, royal road functions con-
tain tailor-made building blocks and thus are
good test problems to investigate GA’s perfor-
mance with respect to schema processing and
recombination. In other words, they provide
the chance to test GA’s performance with re-
spect to crossover operators instead of other
genetic operators. Hence, crossover operators
that win on royal road functions much more
strongly prove themselves to be more powerful
than other crossover operators than on other
problems. SANUX-Exponent is obvious such
a winner. This means as a crossover operator
SANUX-Exponent is efficient.

100
95 -
ﬁ 0 +
S
T 85¢
g 80
g i 2-Point
g By 0.5 Uniform -
> 0.2 Uniform -
< 70y SANUX-Triangle
SANUX-Trapezoid --------
65 | SANUX-Exponent --------
60 : ‘ :
0 50 100 150 200

Evaluations (x 100)

Figure 5: Comparison of GAs with different
crossover on Max Ones problem.

60
50 -
g ol
Z
g 30
% 2-Point
g 20 0.5 Uniform -
< 4 0.2 Uniform
E SANUX-Triangle
10 SANUX-Trapezoid -
SANUX-Exponent -------+
0 : ' - s L
0 100 200 300 400 500 600
Evaluations (x 100)
120
100
5 807
LL
¥ ow
% 2-Point
T 4 0.5 Uniform - |
<>: 0.2 Uniform -
SANUX-Triangle
20 SANUX-Trapezoid -~]
SANUX-Exponent --------
0

0 100 200 300 400 500 600
Evaluations (x 100)

Figure 6: Comparison of GAs with different
crossover on (Top) R; and (Bottom) Rs.

5.3 Experiment on Effect of Parameters

As mentioned previously in this paper, the
trapezoid and exponential functions have some
parameters that may affect the performance of
SANUX. Hence, suitably adjusting these param-
eters may further improve the performance of
GAs with SANUX. To test this thought, we fur-

0.99
8 oos|
S
Z
.97 +
T 0.9
o0
2 096 2-Point
g 0.5 Uniform ————
z 095 4 0.2 Uniform -
< SANUX-Triangle
094 + SANUX-Trapezoid --------
' SANUX-Exponent -
0.93 : . .
0 50 100 150 200
Evaluations (x 100)
0.95
0.945 + e
0.94 -
é 0.935 -
I 093}
go; 0.925 -
$ o9l 2-Point]
g 0.5 Uniform -
5: 0915 ¢ ; 0.2 Uniform ———— |
091+ # SANUX-Triangle
j SANUX-Trapezoid --------
0.905 | AN et ——
0.9 . . .
0 50 100 150 200
Evaluations (x 100)
0.93
0.925 -
§§ 0.92 -
S
ic 0915
i
091
%3’ 2-Point
g 0905 f 0.5 Uniform ————]
§ 0.2 Uniform -
< 097 SANUX-Triangle
SANUX-Trapezoid --------
0.895 |, SANUX-Exponent -------

0.89

0 50 100 150 200
Evaluations (x 100)

Figure 7: Comparison of GAs with different
crossover on L-SAT problems with (Top) low,
(Middle) medium, and (Bottom) high epistasis.

ther carried out experiments with different pa-
rameter settings for the two calculating func-
tions of SANUX on R; and R because our
basic experiments show that the performance
disparity of using different crossover happens
most heavily on them. We decreased the value
of parameter b from 0.4 to 0.3 for the trape-
zoid function and the value of parameter g from
0.04 to 0.02 for the exponential function (see
Figure 4 for the two exponential curves). The
other parameters and conditions are kept the
same as above basic experiments. Both changes

60

50
8.
Z
g 30
(0] y
g 20y (0.1, 0.4)-Trapezoid —— 1
= (0.1, 0.3)-Trapezoid -~

(0.5, 0.04)-Exponent -
10 (0.5, 0.02)-Exponent
0 ' * . L L
0 100 200 300 400 500 600
Evaluations (x 100)

140

120 t) e
8 100! §
5
Z
T 80 r
@ 60
(0] L
&
§ a0 | (0.1, 0.4)-Trapezoid —— |
< (0.1, 0.3)-Trapezoid ———

(0.5, 0.04)-Exponent -~
20 (05, 0.02)-Exponent

0 100 200 300 400 500 600
Evaluations (x 100)

Figure 8: Comparison of GAs with SANUX with
different parameters in calculating functions on
(Top) R; and (Bottom) R,.

are aimed to enhance the protection to build-
ing blocks found so far from being destroyed by
crossover. Hence the performance might be im-
proved if the changes are appreciate.

The experiment results are shown in Figure
8 where the labels inside the figure show rele-
vant parameters in the form of (a,b)-Trapezoid
and (a, 3)-Exponent. From Figure 8, it can be
seen that, as expected, for both changes GA’s
performance is really improved.

6 Conclusions and Future Work

In this paper, we investigate two different func-
tions, the trapezoid and exponential functions,
which are used with SANUX instead of the tri-
angular function to calculate the swapping prob-
ability for a locus from its allele distribution
statistics. The motivation of introducing these
two functions is to make more efficient use of
the statistics information implicit in the popula-
tion to explicitly guide the crossover operation.
Both these two functions widen the region for
the GA to construct building blocks and enhance

the protection to searched building blocks at the
same time, hence are expected to be beneficial
for the performance of GAs.

The experiment results of this study show
that SANUX with the trapezoid and exponen-
tial functions performs better than SANUX with
the triangular function and traditional two-point
and uniform crossover (parameterized or not) on
a set of typical GA’s test problems. Our experi-
ment results indicate that the exponential func-
tion is a good choice to be used in SANUX for its
performance and simplicity, and that SANUX
with (0.5, 0.02)-exponential function is a good
candidate as a crossover operator.

Since SANUX works at the bottom-level of
crossover, it can be easily combined into other
adaptation techniques for crossover and can act
as the basis for designing and analyzing new al-
gorithms, which is one future work on SANUX.
Comparing obtained SANUX with other adap-
tation techniques for crossover is a second future
work on SANUX. Formally analyzing SANUX
with different calculating functions is a third im-
portant future work on SANUX.

References

[1] L. B. Booker. Recombination distributions
for genetic algorithms. In D. Whitley, ed-
itor, Foundations of Genetic Algorithms 2,
pages 29—44. Morgan Kaufmann, 1992.

[2] L. Davis. Adapting operator probabilities in
genetic algorithms. In D. Schaffer, editor,
Proc. of the 3rd Int. Conf. on Genetic Al-
gorithms, pages 60—69. Morgan Kaufmann,
1989.

[3] K. A. De Jong. An Analysis of the Behav-
ior of a Class of Genetic Adaptive Systems.
PhD Thesis, University of Michigan, Ann
Abor, MI, 1975.

[4] K. A. De Jong, M. A. Potter, and W. M.
Spears. Using problem generators to ex-
plore the effects of epistasis. In T. Béack, ed-
itor, Proc. of the 7th Int. Conf. on Genetic
Algorithms, pages 338-345. Morgan Kauf-
mann, 1997.

[5] A. E. Eiben, R. Hinterding, and
Z. Michalewicz. = Parameter control in
evolutionary algorithms. IEEE Trans.
on Evolutionary Computation, 3:124-141,

1999.

[6] L. J. Eshelman, R. A. Caruana, and J. D.
Schaffer. Biases in the crossover landscape.
In J. D. Schaffer, editor, Proc. of the 3rd

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Int. Conf. on Genetic Algorithms, pages
10-19. Morgan Kaufmann, 1989.
S. Forrest and M. Mitchell. Biases in the
crossover landscape. In D. SWhitley, editor,
Foundations of Genetic Algorithms 2, pages
10-19. Morgan Kaufmann, 1993.

A. S. Fraser. Simulation of genetic systems
by automatic digital computers. II. effects
of linkage or rates of advance under selec-
tion. Australian Journal of Biological Sci-
ences, 10:492-499, 1957.

D. E. Goldberg. Genetic Algorithms in
Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading, MA, 1989.

J. H. Holland. Adaptation in Natural and
Artificial Systems. University of Michigan
Press, Ann Arbor, MI, 1975.

B. Julstrom. What have you done for me
lately? adapting operator probabilities in a
steady-state genetic algorithm. In L. J. Es-
helman, editor, Proc. of the 6th Int. Conf.
on Genetic Algorithms, pages 81-87. Mor-
gan Kaufmann, 1995.

J. Levenick. Metabits: genetic endogenous
crossover control. In L. J. Eshelman, editor,
Proc. of the 6th Int. Conf. on Genetic Al-
gorithms, pages 88—95. Morgan Kaufmann,
1995.

W. M. Spears. Adapting crossover in evo-
lutionary algorithms. In Proc. of the 4th
Annual Evolutionary Programming Confer-
ence, pages 367-384, 1995.

W. M. Spears and K. A. De Jong. On the
virtues of parameterized uniform crossover.
In R. K. Belew and L. B. Booker, editors,
Proc. 4th Int. Conf. on Genetic Algorithms,
pages 230-236. Morgan Kaufmann, 1991.

W. M. Spears and K. A. De Jong. Din-
ing with gas: operator lunch theorems. In
Foundations of Genetic Algorithms 5, pages
85-101. Morgan Kaufmann, 1998.

G. Syswerda. Uniform crossover in genetic
algorithms. In J. D. Schaffer, editor, Proc.
of the 3rd Int. Conf. on Genetic Algorithms,
pages 2-9. Morgan Kaufmann, 1989.

A. Tuson and P. Ross. Adapting operator
settings in genetic algorithms. Evolutionary
Computation, 6: 161-184, 1998.

S. Yang. Adaptive non-uniform crossover
based on statistics for genetic algorithms.
In W. B. Langdon, et al, editors, Proc. of
the Genetic and Evolutionary Computation
Conference, GECCO 2002, pages 650—657.
Morgan Kaufmann, 2002.

