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ABSTRACT
In recent years there has been a growing interest in study-
ing evolutionary algorithms for dynamic optimization prob-
lems due to its importance in real world applications. Sev-
eral approaches have been developed, such as the mem-
ory scheme. This paper investigates the application of the
memory scheme for population-based incremental learning
(PBIL) algorithms, a class of evolutionary algorithms, for
dynamic optimization problems. A PBIL-specific memory
scheme is proposed to improve its adaptability in dynamic
environments. In this memory scheme the working probabil-
ity vector is stored together with the best sample it creates
in the memory and is used to reactivate old environments
when change occurs. Experimental study based on a series
of dynamic environments shows the efficiency of the memory
scheme for PBILs in dynamic environments. In this paper,
the relationship between the memory scheme and the multi-
population scheme for PBILs in dynamic environments is
also investigated. The experimental results indicate a nega-
tive interaction of the multi-population scheme on the mem-
ory scheme for PBILs in the dynamic test environments.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Probabilistic algorithms (including Monte Carlo)

General Terms
Algorithms, Experimentation, Performance

Keywords
Population-based incremental learning, dynamic optimiza-
tion problem, memory scheme, multi-population scheme

1. INTRODUCTION
Evolutionary algorithms (EAs), as a class of meta-heuristic

algorithms inspired from principles of natural selection and
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population genetics, have been widely applied for solving
stationary optimization problems. However, the environ-
ments of real world optimization problems are often dy-
namic, where the fitness function, design variables, and/or
environmental conditions may change over time. This se-
riously challenges traditional EAs since they cannot adapt
well to the changing environment once converged. In recent
years, there is a growing interest in studying EAs for dy-
namic problems due to its importance in EA’s real world
applications since many real world problems are known to
be dynamic [1]. Several approaches have been developed
into EAs to address dynamic problems. They are cate-
gorized in [6] into four types: increasing diversity after a
change, maintaining diversity throughout the run, memory-
based schemes, and multi-population approaches.
In this paper, the memory scheme is investigated for the

Population-Based Incremental Learning (PBIL) algorithm,
which was first proposed by Baluja [2] as a class of EAs, for
dynamic optimization problems. A PBIL-specific explicit
memory scheme is proposed to improve its adaptability in
dynamic environments. Within this memory scheme, the
best sample created by the working probability vector to-
gether with the probability vector are stored in the memory
in certain time and space pattern. When the environmental
change is detected, the probability vector corresponding to
the memory point that is re-evaluated as the best accord-
ing to the new environment is retrieved to compete with the
current working probability vector in PBIL for further itera-
tions. Using the dynamic problem generator proposed in [17,
18], a series of dynamic test environments are constructed
from two stationary functions and experimental study is car-
ried out to compare the performance of investigated PBILs.
The experimental study validates the efficiency of the mem-
ory scheme for PBILs for dynamic optimization problems.
This paper also investigates the relationship between mem-
ory and multi-population schemes for PBILs in dynamic en-
vironments. The experimental results indicate interestingly
that the multi-population scheme has a negative interaction
on the memory scheme for PBILs in the dynamic test envi-
ronments. The reason to this result is analysed.
The rest of this paper is organized as follows. The next

section briefly reviews memory scheme for EAs in dynamic
environments. Section 3 details the memory scheme pro-
posed for PBIL and several PBIL algorithms investigated in
this paper. Section 4 describes the dynamic test environ-
ment for this study. The experimental results and relevant
analysis are presented in Section 5. Section 6 concludes this
paper with discussions on relevant future work.
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2. MEMORY SCHEMES FOR EAS IN DY-
NAMIC ENVIRONMENTS

The application of memory schemes has proved to be able
to enhance EA’s performance in dynamic environments, es-
pecially when the environment changes periodically. The
basic principle of memory schemes is to store information,
such as good solutions, from the current environment and
reuse it later in new environments. As reviewed in [5], the
information may be stored in two mechanisms: by implicit
memory or by explicit memory.
For implicit memory schemes, EAs use genotype repre-

sentations that contain redundant information to store good
(partial) solutions to be reused later. Here, redundant rep-
resentation acts as memory, which is implicit for the EA
to use appropriately. Typical examples of implicit mem-
ory schemes are genetic algorithms based on diploidy or
multiploidy representations. Goldberg and Smith [8] first
extended the simple haploid GA to diploid GA with a tri-
allelic dominance scheme. Thereafter, Ng and Wong [14]
proposed a dominance scheme with four alleles for diploidy
based GA. Lewis et. al. [10] further investigated an additive
diploidy scheme where a gene becomes 1 if the addition of
all alleles exceeds certain threshold and 0 otherwise. Similar
to diploid GAs, Yang and Yao [18] proposed a dual PBIL for
dynamic problems inspired by dualism in nature. In the dual
PBIL, a dual probability vector is associated and compete
with the main probability vector to generate samples. The
dual PBIL has proved successful in dynamic environments
with significant changes in genotypic space. In addition to
multiploidy and dualism, a quite different implicit memory
scheme was proposed in [7], which is haploid based but has
a multi-levelled structure. In this representation, high level
genes can regulate the activation of a set of low level genes.
The set of low level genes can memorize good (partial) solu-
tions in old environments that can be re-activated by high
level genes in new environments.
While implicit memory schemes depend on redundant rep-

resentations to store useful information for EAs to exploit
in dynamic environments during the run, explicit memory
schemes use precise representations but split an extra stor-
age space where useful information from current generation
can be explicitly stored and reused in later generations or en-
vironments. Explicit memory schemes mainly involve three
concerns: what to store in the memory, how to organize and
update the memory, and how to retrieve the memory.
For the first concern, a natural choice is to store good

solutions and reuse them when the environment change is
detected. We call this direct memory scheme. For example,
Louis and Xu [11] studied the open shop re-scheduling prob-
lem. Whenever a change (in a known pattern) occurs, the
GA is restarted from a population with partial (5-10%) in-
dividuals inherited from the old run while the rest randomly
initialized. The authors reported significant improvements
of their GA over the GA with totally random restart scheme.
Instead of storing good solutions only, information that as-
sociates good solutions with their environments can also be
stored with good solutions. This information can be used for
similarity measure to associate a new environment with cer-
tain stored good solutions and then reuse these associated
solutions more efficiently. We call this associating memory
scheme. For example, Ramsey and Greffenstette [15] stud-
ied a GA for robot control problem, where good candidate

solutions are stored in a permanent memory together with
information about the robot current environment. When the
robot incurs a new environment that is similar to a stored
environment instance, the associated stored controller so-
lution is re-activated. This scheme was reported to yield
significant improvements.
The memory space or size is usually limited (and fixed)

for computational and searching efficiency. This leads to
the concern of memory organization and updating mech-
anisms. As to the memory organization, there exist two
mechanisms: local mechanism where the memory is indi-
vidual oriented and global mechanism where the memory
is population oriented. Trojanowski and Michalewicz [16]
introduced a local memory approach, where for each indi-
vidual the memory stores a number of its ancestors. When
the environment changes, the current individual and its an-
cestors are re-evaluated and compete together with the best
becoming the active individual while the others stored in
the memory. The global memory mechanism seems more
natural and popular, see [5, 12]. In these global memory
mechanisms best individual of the population is stored in
the memory every certain generations while deleting one in-
dividual from the memory according to certain measure. As
to the memory updating mechanism, a general principle is
to select one memory individual to be removed for or up-
dated by the best individual from the population in order
to make the stored individuals to be of above average fitness,
not too old, and distributed across several promissing areas
of the search space [5]. Branke has discussed several mem-
ory replacement strategies, of which the most practical one
is to replace the most similar memory individual if the new
individual is better [5]. Bendtsen and Krink [4] proposed a
dynamic memory updating scheme where the memory indi-
vidual closest to the best population individual is, instead
of being removed from the memory, moved toward the best
population individual.
As to how to retrieve the memory, a natural idea is to re-

trieve the best memory individual(s) to replace the least fit
individual(s) in the population. This can be done every gen-
eration or only when the environment changes. The memory
retrieval is sort of coupled with the above two concerns. For
example, for direct memory scheme the whole memory indi-
viduals may enter the new population as in [11] or compete
with the population individuals for the new population as
in [5], while for associated memory scheme only associated
memory individual(s) may enter the new population [15].
In the following section, we will introduce an explicit mem-

ory scheme into PBIL for dynamic problems, which can be
classified as an associating scheme.

3. MEMORY AND MULTI-POPULATION
BASED PBILS

3.1 The Standard PBIL
The PBIL algorithm is a combination of evolutionary op-

timization and competitive learning. In fact, PBIL is an
abstraction of the GA that explicitly maintains the statis-
tics contained in GA’s population [2, 3]. PBIL has proved to
be very successful on numerous benchmark and real-world
problems [9]. PBIL aims to generate a real-valued proba-

bility vector �P = {P [1], . . . , P [l]} (l is the encoding length),
which creates high quality solutions with high probability
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begin

initialize probability vector �P 0 := �0.5
repeat

generate a set St of n samples by probability vector �P t

evaluate samples in St and denote the best sample �Bt

learn �P t toward �Bt by Eq. (1)
until terminated = true

end

Figure 1: Pseudocode for the standard PBIL with
one probability vector (PBIL1).

when sampled1. The pseudocode for standard PBIL, de-
noted PBIL1, is shown in Figure 1.
The standard PBIL starts from the central probability vec-

tor with each element set to 0.5. Sampling this initial prob-
ability vector creates random solutions since the probability
of generating a 1 or 0 on each locus is equal. At iteration t, a
set St of n solutions are sampled from the probability vector
�P t. The samples are evaluated using the problem-specific
fitness function. Then the probability vector is learnt to-
wards the best solution �Bt of the set St as follows.

P t+1[i] := (1− α) ∗ P t[i] + α ∗ Bt[i], i = {1, . . . , l} (1)

where α is the learning rate, which determines the distance
the probability vector is pushed for each iteration. After
the probability vector is updated, a new set of samples is
generated by the new probability vector and this cycle is re-
peated. As the search progresses, the elements in the prob-
ability vector move away from their initial settings of 0.5
towards either 0.0 or 1.0, representing high evaluation so-
lutions. The search progress stops when some termination
condition is satisfied, e.g., the maximum allowable number
of iterations is reached or the probability vector is converged
to either 0.0 or 1.0 for each bit position.

3.2 Memory-based PBIL
In this paper we propose a memory-based PBIL for dy-

namic optimization. The pseudocode for the memory-based
PBIL with one probability vector, denotedMPBIL1, is shown
in Figure 2, where n is the number of evaluations per iter-
ation including the memory points and f(X) denotes the
fitness of individual X.
Within MPBIL1, a memory of size m = 0.1 ∗ n is used to

store samples and probability vectors. Each memory point
consists of a pair: a smaple and an associated probability
vector. The most similar measure, as discussed in [5], is
used as the memory replacement strategy but in a varying
time interval2. That is, when the memory is due to update,
we first find the memory point with its sample closest to
the best population sample. If the best population sample
has higher fitness than this memory sample, it is replaced

1When sampling the probability vector for a solution, for
each locus i if a randomly created number r = rand(0.0, 1.0)
< P [i], it is set to 1; otherwise, it is set to 0.
2After each memory updating, a randomly created integer
R ∈ [5, 10] decides the next memory updating time. For
example, suppose a memory updating happens at generation
t, then the next memory updating time is at generation t+R.

begin

initialize prob. vector �P 0 := �0.5 and empty memory
repeat

generate a set St of n−m samples by �P t

evaluate samples in St and denote the best one �Bt

evaluate memory and denote the best memory sample
�Bt

M and its associated prob. vector �P t
M

if environmental change detected then

if f( �Bt
M ) > f( �Bt) then replace �P t with �P t

M

else learn �P t toward �Bt by Eq. (1)

if time to update memory then
if memory not full then

store �Bt and �P t into memory
else

find the memory sample �M t
C closest to �Bt and

its associated prob. vector �P t
C

if f( �Bt) > f( �M t
C) then

replace �M t
C and �P t

C with �Bt and �P t resp.

until terminated = true
end

Figure 2: Pseudocode for the memory-based PBIL
with one probability vector (MPBIL1).

by the best population sample; otherwise, the memory stays
unchanged. When a best population sample is stored in the
memory, the working probability vector that generates the
sample is also stored in the memory and is associated with
the sample. Similarly, when replacing a memory point, both
the sample and the associated probability vector within the
memory point are replaced by the best population sample
and the working probability vector respectively.
The memory is re-evaluated every iteration. If any mem-

ory sample has its fitness changed, the environment is de-
tected to be changed. Then the memory probability vector
associated with the best re-evaluated memory sample will
replace the current working probability vector if its associ-
ated memory sample outperforms the best sample created by
the working probability vector. If no environmental change
is detected, MPBIL1 progresses as the standard PBIL.
The key idea behind MPBIL1 is to store good solutions

as well as the associated environmental information in the
memory. Here, the stored probability vector is taken as the
representation of the environment when it is stored. MP-
BIL1 differs from Rasmey and Greffenstette’s memory-based
GA [15] in that for MPBIL1 the stored environment infor-
mation, the probability vector, is used to directly re-activate
an old environment it represents for MPBIL1, which may be
similar to the newly changed problem environment. And the
stored solutions, besides their role as environmental change
detectors and memory replacement locators, are used to in-
dicate which associated environment should be re-activated.

3.3 Multi-Population Based PBILs
In order to study the effect of multi-population on the

memory scheme for PBIL in dynamic environments, PBILs
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begin

initialize prob. vectors: �P 0
1 := �0.5, �P 0

2 := �rand(0.0, 1.0)
if memory used then initialize memory to be empty
repeat

generate a set St
1 of n

t
1 samples by �P t

1

generate a set St
2 of n

t
2 samples by �P t

2

evaluate samples in St
1 and denote the best one �Bt

1

evaluate samples in St
2 and denote the best one �Bt

2

adjust sample sizes nt
1 and nt

2 for �P t
1 and �P t

2

if no memory used then // for PBIL2

learn �P t
1 and �P t

2 toward �Bt
1 and �Bt

2 resp. by Eq. (1)

else // for MPBIL2
evaluate memory and denote the best memory sample

�Bt
M and its associated prob. vector �P t

M

if environmental change detected then

denote �Bt
w to be the worse of �Bt

1 and �Bt
2 and its

associated prob. vector �P t
w

if f( �Bt
M ) > f( �Bt

w) then replace �P t
w with �P t

M

else

learn �P t
1 and �P t

2 toward �Bt
1 and �Bt

2 resp. by Eq. (1)

if time to update memory then

denote �Bt
b to be the better of �Bt

1 and �Bt
2 and its

associated prob. vector �P t
b

if memory not full then

store �Bt
b and �P t

b into memory
else

find the memory sample �M t
C closest to �Bt

b and

its associated prob. vector �P t
C

if f( �Bt
b) > f( �M t

C) then

replace �M t
C and �P t

C with �Bt
b and �P t

b resp.

until terminated = true
end

Figure 3: Pseudocode for PBIL with two probability
vectors and no memory (PBIL2) and memory-based
PBIL with two probability vectors (MPBIL2).

with two probability vectors are also investigated in this pa-
per. The pseudocode for PBIL with two parallel probabil-
ity vectors and no memory (denoted PBIL2) and memory-
based PBIL with two parallel probability vectors (denoted
MPBIL2) is shown in Figure 3.
In PBIL2 and MPBIL2, the two probability vectors work

in parallel. Each one is sampled independently and is learnt
toward the best solution generated by itself. The probabil-
ity vector �P1 is initialized to the central probability vector
while �P2 is randomly initialized. The sample sizes for �P1 and
�P2 are equally initialized to 0.5 ∗ n for PBIL2 and 0.45 ∗ n
for MPBIL2 and are slightly adjusted within the range of
[nmin, nmax] = [0.2∗n, 0.8∗n] for PBIL2 and [nmin, nmax] =
[0.2 ∗n, 0.7 ∗n] for MPBIL2 according to their performance.
The winner probability vector gets ∆ = 0.05 ∗n for its sam-
ple size from the loser; if the two probability vectors tie,
their sample sizes do not change. For MPBIL2, the memory
size is fixed to 0.1 ∗ n. When an environmental change is

detected, the best memory probability vector will compete
with the loser working probability vector. The memory up-
dating mechanism for MPBIL2 is similar as for MPBIL1
except that the winner working probability vector and its
best sample will be stored if suitable.

4. DYNAMIC TEST ENVIRONMENTS
The dynamic problem generator proposed in [17, 18] can

construct dynamic environments from any binary-encoded
stationary function f(�x) (�x ∈ {0, 1}l) by a bitwise exclusive-
or (XOR) operator. Suppose the environment is changed
every τ generations. For each environmental period k, an
XORing mask �M(k) is incrementally generated as follows:

�M(k) = �M(k − 1)⊕ �T (k) (2)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1,

0 ⊕ 0 = 0) and �T (k) is an intermediate binary template
randomly created with ρ × l ones for environmental period
k. For the first period k = 1, �M(1) is set to a zero vector.
Then, the population at generation t is evaluated as below:

f(�x, t) = f(�x⊕ �M(k)) (3)

where k = �t/τ	 is the environmental period index.
With this generator, the environmental dynamics can be

easily tuned by two parameters. The parameter τ controls
the change speed while ρ ∈ (0.0, 1.0) controls the severity
each time the environment changes. Bigger value of ρ means
severer environmental change and greater challenge to EAs.
In this paper, in order to compare PBILs in dynamic en-

vironments, two stationary functions are selected. The first
function is a 120-bit OneMax function, which aims to max-
imize the number of ones in a binary chromosome. The
second function consists of 30 contiguous order-4 building
blocks, called NK(30, 4). Each building block contributes a
value of 4 to the total fitness if all its four bits equal to one,
otherwise it contributes 0. The fitness of a bit string is the
sum of contributions from all building blocks. The optimum
fitness of NK(30, 4) is 120.
Dynamic test environments are constructed from the two

stationary functions using above dynamic problem genera-
tor. The landscape is periodically changed every τ genera-
tions during the run of PBILs and τ is set to 10, 50 and 100
respectively. The environmental change severity parameter
ρ is set to 0.1, 0.2, 0.4, 0.6, and 0.9 respectively. And in or-
der to study the behaviour of PBILs in randomly changing
environment, ρ is also set to a random number uniformly
distributed in [0.01, 0.99] (i.e., ρ = rand(0.01, 0.99)) each
time the environment changes during the run.
Totally, a series of 18 dynamic problems, 3 values of τ

combined with 6 values of ρ, are constructed from each sta-
tionary function.

5. EXPERIMENTAL STUDY

5.1 Experimental Design
Experiments were carried out to compare different PBILs

on the test environments constructed above. For all PBILs,
the total sample size n (including memory samples if used)
is set to 120, the memory size m = 0.1 ∗ n = 10 if used, and
the learning rate for all probability vectors is set to 0.05.
For each experiment of an algorithm on a dynamic test

problem, 20 independent runs were executed with the same
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Table 1: Experimental results with respect to overall performance of PBILs.

Performance OneMax NK(30, 4)
τ ρ PBIL1 PBIL2 MPBIL1 MPBIL2 PBIL1 PBIL2 MPBIL1 MPBIL2

10 0.1 72.8 74.2 83.1 82.2 22.5 23.9 33.0 32.1
10 0.2 71.8 72.8 78.7 78.1 21.0 22.2 28.3 27.9
10 0.4 71.2 71.7 75.7 75.5 20.4 21.4 25.3 25.0
10 0.6 70.6 71.4 74.5 74.3 20.3 21.1 24.4 24.3
10 0.9 70.1 70.8 77.2 75.7 20.2 21.4 25.8 25.6
10 rand 70.8 71.7 76.1 75.9 20.3 21.3 25.7 25.3
50 0.1 66.2 66.8 85.3 84.5 14.9 17.7 44.7 40.7
50 0.2 65.2 65.5 84.6 83.6 12.9 15.4 38.3 36.3
50 0.4 64.5 65.7 81.6 80.1 12.2 14.4 34.1 30.4
50 0.6 64.9 66.5 82.2 79.8 11.7 14.2 31.9 29.1
50 0.9 65.7 68.5 86.0 85.2 12.9 15.8 36.5 30.7
50 rand 64.2 66.5 84.6 82.7 12.0 14.4 35.5 32.0
100 0.1 64.4 64.9 85.7 85.5 12.9 14.9 44.6 40.1
100 0.2 63.0 62.9 84.9 84.4 11.4 13.0 41.2 36.9
100 0.4 61.6 62.4 83.5 80.9 9.7 12.5 37.3 33.6
100 0.6 61.6 62.7 85.3 81.1 9.6 11.9 36.1 32.2
100 0.9 62.7 65.0 86.6 85.3 10.6 13.6 42.7 35.2
100 rand 61.9 62.9 86.2 84.1 10.2 12.7 40.4 34.8

Table 2: Statistical results of comparing PBIL algorithms on dynamic problems.

t-test Result OneMax NK(30, 4)

τ = 10, ρ ⇒ 0.1 0.2 0.4 0.6 0.9 rand 0.1 0.2 0.4 0.6 0.9 rand
PBIL2− PBIL1 + + + + + + + + + + + +

MPBIL1− PBIL1 + + + + + + + + + + + +
MPBIL1− PBIL2 + + + + + + + + + + + +
MPBIL2− PBIL2 + + + + + + + + + + + +

MPBIL2−MPBIL1 − − ∼ − − ∼ − − − ∼ ∼ −
τ = 50, ρ ⇒ 0.1 0.2 0.4 0.6 0.9 rand 0.1 0.2 0.4 0.6 0.9 rand

PBIL2− PBIL1 ∼ ∼ + + + + + + + + + +
MPBIL1− PBIL1 + + + + + + + + + + + +
MPBIL1− PBIL2 + + + + + + + + + + + +
MPBIL2− PBIL2 + + + + + + + + + + + +

MPBIL2−MPBIL1 ∼ − − − − − − − − − − −
τ = 100, ρ ⇒ 0.1 0.2 0.4 0.6 0.9 rand 0.1 0.2 0.4 0.6 0.9 rand

PBIL2− PBIL1 ∼ ∼ + + + + + + + + + +
MPBIL1− PBIL1 + + + + + + + + + + + +
MPBIL1− PBIL2 + + + + + + + + + + + +
MPBIL2− PBIL2 + + + + + + + + + + + +

MPBIL2−MPBIL1 ∼ ∼ − − − − − − − − − −

set of random seeds. And for each run 100 environmental
changes were allowed and the best-of-generation fitness was
recorded every generation. The overall performance of an
algorithm on a problem is formulated as below:

FBOG =
1

G

GX

i=1

(
1

N

NX

j=1

FBOGij ) (4)

where G is the total number of generations for a run (i.e.,
G = 100 ∗ τ ), N = 20 is the total number of runs, FBOGij

is the best-of-generation fitness of generation i of run j, and
FBOG is the offline performance, i.e., the best-of-generation
fitness averaged across the 20 runs and then averaged over
the data gathering period.

5.2 Experimental Results and Analysis
The experimental results of algorithms on dynamic prob-

lems are presented in Table 1. The statistical results of
comparing algorithms by one-tailed t-test with 38 degrees
of freedom at a 0.05 level of significance are given in Table
2. In Table 2, the t-test result regarding Alg. 1 − Alg. 2
is shown as “+”, “−”, or “∼” when Alg. 1 is significantly
better than, significantly worse than, or statistically equiv-
alent to Alg. 2 respectively. The results are also plotted in
Figure 4 and Figure 5 for dynamic OneMax and NK(30, 4)
functions respectively. From the tables and figures several
results can be observed.
First, a prominent result is that the memory-based PBILs

are significantly better than PBILs without memory on all
dynamic test problems. This result validated the efficiency
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Figure 4: Experimental results of PBILs on dynamic
OneMax functions with different ρ and (a) τ = 10, (b)
τ = 50, and (c) τ = 100.

of introducing the memory scheme into PBILs. In order
to better understand the effect of the memory scheme on
PBIL’s performance in dynamic environments, the dynamic
behaviour of algorithms with respect to best-of-generation
fitness against generations on the dynamic problems with
τ = 50 and ρ = 0.1 is plotted in Figure 6, where the data
were averaged over 20 runs. From Figure 6, it can be seen
that the performance of PBIL1 and PBIL2, after rising for a
few first environmental changes, drops with the generation
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Figure 5: Experimental results of PBILs on dynamic
NK(30, 4) functions with different ρ and (a) τ = 10,
(b) τ = 50, and (c) τ = 100.

consistently till a stable low fit state. On the contrast, for
MPBIL1 and MPBIL2, their performance rises for a few
first environmental changes and then drops for subsequent
several environmental changes. However, when the memory
is sort of stable, it starts to take effect and adapt the PBILs
to the environmental changes. And hence, their performance
stays at certain level instead of dropping consistently.
Second, an interesting observation is that for each fixed

value of ρ, when the value of τ increases, the performance of
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Figure 6: Dynamic behaviour of PBILs on dynamic problems: (a) OneMax and (b) NK(30, 4) with τ = 50 and
ρ = 0.1. The data were averaged over 20 runs.

Table 3: Experimental results relevant to MPBIL2a on dynamic problems.

Performance OneMax NK(30, 4)

ρ ⇒ 0.1 0.2 0.4 0.6 0.9 rand 0.1 0.2 0.4 0.6 0.9 rand
τ = 10 82.3 78.1 75.7 74.3 76.3 75.9 32.3 27.9 25.1 24.3 25.8 25.4
τ = 50 84.9 84.1 81.2 81.0 90.3 85.1 41.2 36.2 31.4 30.1 32.0 32.6
τ = 100 85.4 84.2 83.5 83.1 94.7 86.2 40.8 38.4 34.0 32.2 38.9 36.4

t-test Result OneMax NK(30, 4)

τ = 10, ρ ⇒ 0.1 0.2 0.4 0.6 0.9 rand 0.1 0.2 0.4 0.6 0.9 rand
MPBIL2a −MPBIL1 − − ∼ − − ∼ − − ∼ ∼ ∼ ∼
MPBIL2a −MPBIL2 ∼ ∼ ∼ ∼ + ∼ ∼ ∼ ∼ ∼ ∼ ∼

τ = 50, ρ ⇒ 0.1 0.2 0.4 0.6 0.9 rand 0.1 0.2 0.4 0.6 0.9 rand
MPBIL2a −MPBIL1 ∼ ∼ ∼ − + ∼ − − − − − −
MPBIL2a −MPBIL2 ∼ ∼ + + + + ∼ ∼ + + + ∼

τ = 100, ρ ⇒ 0.1 0.2 0.4 0.6 0.9 rand 0.1 0.2 0.4 0.6 0.9 rand
MPBIL2a −MPBIL1 ∼ ∼ ∼ − + ∼ − − − − − −
MPBIL2a −MPBIL2 ∼ ∼ + + + + ∼ ∼ ∼ ∼ + ∼

PBILs without memory (PBIL1 and PBIL2) decreases while
the performance of PBILs with memory (MPBIL1 and MP-
BIL2) increases. This is because when τ is bigger, the envi-
ronment changes slower and PBILs get more time to search
and hence to converge before next change. And this leads to
less adaptability for PBILs without memory when the envi-
ronment changes and hence their worse performance. How-
ever, for PBILs with memory, long search time, i.e., bigger
τ , makes the stored memory probability vectors more pre-
cisely represent the old environments when they are stored.
This leads to better efficiency of the memory scheme and
hence better performance of PBILs with memory.
Third, for a fixed τ , when the value of ρ increases (i.e., the

severity of environment change increases) the performance of
PBILs decreases. But when ρ = 0.9 PBILs perform better
than when ρ = 0.4 or ρ = 0.6. The reason is similar as
explained in [18]. When the environment randomly changes
with respect to the severity, i.e., ρ = rand(0.01, 0.99), the
performance of PBILs is similar as when ρ is set to medium
values, e.g., 0.4 or 0.6. This fits well with the fact that the
expected value of rand(0.01, 0.99) is about 0.5.

Finally, another interesting result is that PBIL2 outper-
forms PBIL1 while MPBIL2 is beaten by MPBIL1 on most
dynamic problems. In other words, multi-population is ben-
eficial for PBIL without memory while negative for PBIL
with memory. For PBIL without memory introducing an
extra probability vector increases the diversity and hence
helps the adaptability in dynamic environments. However,
for PBIL with memory, when the environment changes, the
existence of an extra probability vector, which is the better
working probability vector when change occurs, affects the
performance of the newly re-activated memory probability
vector. This negative effect outweighs the possible positive
effect due to the diversity introduced by the extra probabil-
ity vector.
In order to further validate the negative effect of multi-

population on memory scheme for PBIL in dynamic environ-
ments, we modify MPBIL2 in the memory retrieval strategy,
denoted MPBIL2a, where the best two memory probability
vectors compete with both the two working probability vec-
tors. The experimental results of MPBIL2a and relevant
statistical test results are presented in Table 3.
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From Table 3, it can be seen that though the performance
of MPBIL2a is significantly improved over MPBIL2 on sev-
eral dynamic problems, it is still beaten by MPBIL1 on most
dynamic problems.

6. CONCLUSIONS AND FUTURE WORK
In this paper, the memory scheme is introduced into the

PBIL algorithm to enhance its performance in dynamic en-
vironments. Within this memory scheme, the best sample
and the working probability vector that creates it are stored
in the memory by replacing the most similar memory point.
When the environmental change is detected, the probabil-
ity vector corresponding to the memory point, which is re-
evaluated as the best according to the new environment, is
retrieved to compete with the current working probability
vector for further iterations. The experimental results based
on a series of dynamic environments validate the efficiency
of the memory scheme for PBILs in dynamic environments.
This paper also investigates the relationship between mem-

ory and multi-population schemes for PBILs in dynamic en-
vironments. An interesting result indicated by the experi-
mental results is that the multi-population scheme improves
the performance of PBIL when no memory is used. How-
ever, when memory is used for PBIL, multi-population has a
negative effect on PBIL’s performance in the tested dynamic
environments. This happens because through occupying the
resource of the sample size, the existence of an extra prob-
ability vector slows down the seaching progress (and hence
affects the efficiency) of the memory probability vector that
is just re-activated when the environment changes.
The work studied in this paper can be extended in several

ways. In this paper, the dynamic environments tested are
not cyclical. It would be interesting to investigate the effect
of the memory scheme for PBILs under cyclically changing
environments, where an old environment will return exactly
after certain fixed number of changes. Under such dynamic
environments the memory scheme should be expected to be
more beneficial. Developing other memory management and
retrieval mechanisms would be another interesting future
work for memory-based PBILs and other estimation of dis-
tribution algorithms [9, 13] in dynamic environments. And
it is also an interesting work to further investigate the inter-
actions between the memory scheme and other apporaches,
such as random immigrants and mutation, for PBILs in dy-
namic environments.
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