
Hyper-Selection in Dynamic Environments

Shengxiang Yang and Renato Tinós

Abstract— In recent years, several approaches have been
developed for genetic algorithms to enhance their performance
in dynamic environments. Among these approaches, one kind of
methods is to adapt genetic operators in order for genetic algo-
rithms to adapt to a new environment. This paper investigates
the effect of the selection pressure on the performance of genetic
algorithms in dynamic environments. A hyper-selection scheme
is proposed for genetic algorithms, where the selection pressure
is temporarily raised whenever the environment changes. The
hyper-selection scheme can be combined with other approaches
for genetic algorithms in dynamic environments. Experiments
are carried out to investigate the effect of different selection
pressures on the performance of genetic algorithms in dynamic
environments and to investigate the effect of the hyper-selection
scheme on the performance of genetic algorithms in combi-
nation with several other schemes in dynamic environments.
The experimental results indicate that the effect of the hyper-
selection scheme depends on the problem under consideration
and other schemes combined in genetic algorithms.

I. INTRODUCTION

Dynamic optimization problems (DOPs) are pervasive in
the real world since many optimization problems involve
dynamic environments. For example, in manufacturing, new
jobs may arrive stochastically and machines may break down.
The nature of DOPs challenges traditional optimization al-
gorithms because DOPs require them to track the chang-
ing environment with time. For DOPs, genetic algorithms
(GAs) are a good choice because they are inspired from
the principles of biological evolution, which takes place in
a dynamic environment in nature. However, when solving
DOPs, traditional GAs face a big problem: once converged,
GAs are unable to adapt to the new environment when
a change occurs. In order to enhance the performance of
GAs in dynamic environments, several approaches have been
developed in the literature in recent years [2], [7].

Generally speaking, there are four types of approaches
for GAs to address DOPs. The first type, called diversity
schemes, addresses the convergence problem directly by
inserting random immigrants [6] or guided immigrants [18],
[19] into the population during the run of GAs. The second
type of approaches uses memory, either implicit [5], [8], [12]
or explicit [1], [10], [15], [16], [21], to store and reuse useful
information in order to efficiently adapt GAs to returned
environments. The third type uses multi-population [3], [13]
or speciation [14] schemes to distribute the search forces into

Shengxiang Yang is with the Department of Computer Science, University
of Leicester, University Road, Leicester LE1 7RH, United Kingdom (email:
s.yang@mcs.le.ac.uk).

Renato Tinós is with the Department of Physics and Mathematics,
FFCLRP, University of São Paulo (USP), 14040-901, Ribeirão Preto, SP,
Brazil (email: rtinos@ffclrp.usp.br).

This work was supported by UK EPSRC under Grant No. EP/E060722/1
and Brazil FAPESP under Grant Proc. 04/04289-6.

the search space. The fourth type is the adaptive scheme that
adjusts genetic operators and/or relevant parameters to adapt
GAs to the new environment whenever a change occurs, e.g,
the hypermutation scheme [4], [11].

Of the four types of approaches devised for GAs for
DOPs, the fourth type of adaptive schemes has received
relatively less attention so far. This paper investigates the
effect of the selection pressure on the performance of GAs
in dynamic environments. A hyper-selection scheme is pro-
posed for GAs to address DOPs, where the selection pressure
is temporarily raised when the environment changes. The
hyper-selection scheme can be combined with other schemes
in the literature for GAs in dynamic environments. Using the
dynamic problem generator proposed in [17], [20], a series of
DOPs are constructed as the dynamic test environments and
experiments are carried out to investigate the performance of
GAs with different selection pressures and the performance
of GAs with the hyper-selection scheme in combination with
several other schemes for DOPs. Based on the experimental
results, the effect of the selection pressure and the hyper-
selection scheme on the performance of GAs in dynamic
environments is analysed.

The rest of this paper is organized as follows. The next
section describes the hyper-selection scheme and several GAs
that integrate this scheme and several other schemes, which
are studied in this paper. Section III presents the experimental
design, including the dynamic test environments, parameter
settings, and performance measure. Section IV presents the
experimental results and analysis. Finally, Section V con-
cludes this paper with discussions on relevant future work.

II. DESCRIPTION OF ALGORITHMS INVESTIGATED

A. The Hyper-Selection Scheme

The standard GA maintains and evolves a population of
candidate solutions through selection and variation. New
populations are generated by first probabilistically selecting
relatively fitter individuals from the current population and
then performing variation operations, e.g., crossover and
mutation, on them to create new offspring. This process
repeats until some termination condition is met, e.g., the
maximum allowable number of generations tmax is reached.

The pseudo-code for the standard GA studied in this paper,
which is denoted SGA, is shown in Fig. 1, where pc and
pm are the probability of applying crossover and mutation
respectively. In SGA and other GAs studied in this paper, the
tournament selection scheme is used for selecting individuals
for reproduction. For the tournament selection scheme, when
selecting an individual into the mating pool P ′(t), we first
randomly pick ts individuals from P (t) and then select the
best one as the winner to fill P ′(t). Here, the parameter ts,

3185

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:29 from IEEE Xplore. Restrictions apply.

t := 0 and initialize population P (0) randomly
repeat

evaluate population P (t)
P ′(t) := tournamentSelect(P (t), ts)
crossover(P ′(t), pc) // pc is the crossover prob.
mutate(P ′(t), pm) // pm is the mutation prob.
replace elites from P (t) into P ′(t) randomly
P (t + 1) := P ′(t)
t := t + 1

until a termination condition is met // e.g., t > tmax

Fig. 1. Pseudo-code for the standard GA (SGA) with the tournament
selection, where ts is the tournament size.

called the tournament size, controls the selection pressure.
The bigger the value of ts, the higher the selection pressure.
In SGA and other GAs studied in this paper, the elitism
is applied with size 2. That is, the best two individuals
in generation t − 1 are inherited and replace two random
individuals in the current population P ′(t) after variation
operations. The elites are updated every generation. That is,
the best two individuals generated at generation t are taken
as the elites at generation t, no matter whether they are better
than the elites at generation t − 1 or not.

Usually, with the running of SGA, individuals in the
population will eventually converge to the optimal solution(s)
in stationary environments due to the selection pressure.
However, in dynamic environments, convergence becomes
a big problem for GAs since it deprives the population
of genetic diversity and hence make it hard for GAs to
adapt to the new environment when a change occurs. To
address the convergence problem, several approaches have
been developed to maintain the level of population diversity
or re-introduce diversity after a change occurs.

However, using only these diversity schemes may not
adapt GAs to a new environment to its best. For example,
for re-introduced diversity, we may need to apply a high
selection pressure to out-stand those really useful new blood
and hence adapt GAs more quickly toward a new environ-
ment. This thinking naturally leads to the introduction of the
hyper-selection scheme: whenever an environmental change
occurs, the selection pressure is temporarily raised for several
generations from the basic pressure.

Obviously, to realize its best advantage, the hyper-selection
scheme should be combined with other diversity approaches
for GAs to address DOPs. In this paper, the hyper-selection
scheme is combined with restart, hypermutation [4], and
elitism-based immigrants [19] schemes for GAs, which are
described in the following sub-sections respectively.

B. Hyper-Selection with Restart

Restart is a simple and natural way for GAs to address
DOPs. For GAs with the restart scheme, whenever the
environment changes, the population is re-initialized. The
pseudo-code of the GA with restart, denoted RSGA in this

t := 0 and initialize population P (0) randomly
repeat

evaluate population P (t)
P ′(t) := tournamentSelect(P (t), ts)
crossover(P ′(t), pc) // pc is the crossover prob.
mutate(P ′(t), pm) // pm is the mutation prob.
replace elites from P (t) into P ′(t) randomly

if the environment changes then
re-initialize P ′(t)
if hyper-selection used then // for RHSGA

raise ts from tsl to tsu for nhs generations

P (t + 1) := P ′(t)
t := t + 1

until a termination condition is met // e.g., t > tmax

Fig. 2. Pseudo-code for the GA with re-start (RSGA) and the GA with
restart and hyper-selection (RHSGA).

t := 0 and initialize population P (0) randomly
repeat

evaluate population P (t)
P ′(t) := tournamentSelect(P (t), ts)
crossover(P ′(t), pc) // pc is the crossover prob.
mutate(P ′(t), pm) // pm is the mutation prob.
replace elites from P (t) into P ′(t) randomly

if the environment changes then
raise pm from pl

m to pu
m for nhm generations

if hyper-selection used then // for HMSGA
raise ts from tsl to tsu for nhs generations

P (t + 1) := P ′(t)
t := t + 1

until a termination condition is met // e.g., t > tmax

Fig. 3. Pseudo-code for the GA with hypermutation (HMGA) and the GA
with hypermutation and hyper-selection (HMSGA).

paper, is shown in Fig. 2. The corresponding GA with restart
and hyper-selection schemes, denoted RHSGA in this paper,
is also shown in Fig. 2. Within RHSGA, whenever the
environment changes, the tournament size ts is raised from
the basic low value tsl to a high value tsu for the following
nts generations.

C. Hyper-Selection with Hypermutation

Hypermutation is another scheme to re-introduce the pop-
ulation diversity for GAs to address DOPs. The pseudo-
code of the GA with hypermutation, denoted HMGA, is
shown in Fig. 3. Within HMGA, whenever the environment
changes, the mutation probability pm is raised from the basic
low value pl

m to a high value pu
m for the following nhm

generations. The corresponding GA with hypermutation and
hyper-selection schemes, denoted HMSGA in this paper, is
also shown in Fig. 3.

3186 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:29 from IEEE Xplore. Restrictions apply.

t := 0 and initialize population P (0) randomly
repeat

evaluate population P (t)
// perform elitism-based immigration
denote the elite in P (t) by E(t)
generate rei×n immigrants by mutating E(t)
evaluate these elitism-based immigrants
replace worst individuals in P ′(t) by these immigrants

P ′(t) := tournamentSelect(P (t), ts)
crossover(P ′(t), pc) // pc is the crossover prob.
mutate(P ′(t), pm) // pm is the mutation prob.

if the environment changes then // for EIHSGA
raise ts from tsl to tsu for nhs generations

P (t + 1) := P ′(t)
t := t + 1

until a termination condition is met // e.g., t > tmax

Fig. 4. Pseudo-code for the GA with the elitism-based immigrants scheme
(EIGA) and the GA with the elitism-based immigrants and hyper-selection
schemes (EIHSGA).

D. Hyper-Selection with Elitism-based Immigrants

Another approach that addresses the convergence problem
of GAs for DOPs is to use immigrants to maintain the
diversity level of the population. For example, Grefenstette
proposed the random immigrants [6], which works by re-
placing random individuals into the population. This benefits
the performance of GAs in dynamic environments, especially
when a change occurs.

Recently, a guided immigrants scheme, called elitism-
based immigrants, has been proposed for GAs to address
DOPs in [19]. The elitism-based immigrants scheme com-
bines the idea of elitism with random immigrants scheme.
The pseudo-code for the GA with the elitism-based im-
migrants scheme, denoted EIGA in this paper, is shown
in Fig. 4. Within EIGA, for each generation t, the elite
E(t) from the previous generation is used as the base to
create immigrants. From E(t), a set of rei × n individuals
are iteratively generated by mutating E(t) bitwise with a
probability pi

m, where n is the population size and rei is
the ratio of the number of elitism-based immigrants to the
population size. The generated individuals then replace the
worst individuals in the current population.

The elitism-based immigrants scheme has been experimen-
tally validated to be efficient to improve the performance
of GAs in dynamic environments [19]. In this paper, in
order to investigate the effect of the hyper-selection scheme
on the performance of GAs with the elitism-based immi-
grants scheme, we integrate the hyper-selection scheme into
EIGA. The pseudo-code for the GA with hyper-selection and
elitism-based immigrants schemes, denoted EIHSGA in this
paper, is also shown in Fig. 4.

III. EXPERIMENTAL DESIGN

A. Dynamic Test Environments

The DOP generator proposed in [17], [20] is used to
construct dynamic test environments for this study. This
generator can construct DOPs from any binary-encoded
stationary function f(�x) as follows. Suppose the environment
changes every τ generations. For each environment k, an
XORing mask �M(k) is incrementally generated as follows:

�M(k) = �M(k − 1) ⊕ �T (k), (1)

where “⊕” is a bitwise exclusive-or (XOR) operator and
�T (k) is an intermediate binary template for environment k.
�T (k) is created with ρ × l (ρ ∈ (0.0, 1.0]) random loci set
to 1 while the remaining loci set to 0. For the first initial
environment k = 1, �M(1) is set to a zero vector.

An individual at generation t is evaluated as follows:

f(�x, t) = f(�x ⊕ �M(k)), (2)

where k = �t/τ� is the environmental index at time t. With
this XOR DOP generator, τ and ρ control the speed and
severity of environmental changes respectively. Smaller τ
means faster changes while bigger ρ means severer changes.

In this paper, three 100-bit binary functions are selected
as the base stationary functions to construct dynamic test
environments. The first one is the well-known OneMax
function that aims to maximize the number of ones in a
binary string. The second one is a variant of Forrest and
Mitchell’s Royal Road function [9], which consists of 25
contiguous 4-bit building blocks (BBs). Each BB of Royal
Road contributes 4 to the total fitness if all bits inside the
BB have the allele of one; otherwise, it contributes 0. The
third problem is a 100-item 0-1 knapsack problem with the
weight and profit of each item randomly created in the range
of [1, 30] and the capacity of the knapsack set to be half of the
total weight of all items. The fitness of a feasible solution is
the sum of the profits of the selected items. If a solution
overfills the knapsack, its fitness is set to the difference
between the total weight of all items and the weight of
selected items, multiplied by a small factor 10−5 in order
to make it in-competitive with those solutions that do not
overfill the knapsack.

Dynamic environments are constructed from each of the
three base functions using the aforementioned XOR DOP
generator. For each dynamic environment, the landscape is
periodically changed every τ generations during the run of a
GA. In order to compare the performance of GAs in different
dynamic environments, the speed of change parameter τ is
set to 20, 50, and 100 respectively. The severity of change
parameter ρ is set to 0.1, 0.2, 0.5, 0.9, 1.0, and random values
in the range of [0.0, 1.0] (i.e., ρ = rand(0.0, 1.0) for each
environmental change) respectively.

B. Parameter Settings and Performance Measure

Two sets of experiments were carried out in this paper
on the above constructed dynamic test environments. The
first set of experiments investigates the effect of the selection

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3187

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:29 from IEEE Xplore. Restrictions apply.

pressure on the performance of SGA for DOPs. The second
set investigates the effect of the hyper-selection scheme on
the performance of several GAs with certain enhancements
from the literature, as described in Section II.

For all GAs, some common parameters are set as follows:
generational, 2-point crossover with pc = 0.6, bit flip
mutation, tournament selection, and elitism of size 2. For the
first set of experiments, the parameters for SGA are set as
follows: the population size n = 120, mutation probability
pm = 0.01, and tournament size ts is set to 2, 6, and 10
respectively (and the SGA is denoted as ts-SGA accordingly).
For the second set of experiments, the parameters are set as
follows. The tournament size for the tournament selection is
fixed to ts = 2 for RSGA, HMGA, and EIGA and is set
to the base value ts = tsl = 2 for normal generations or
the hyper value ts = tsu = 10 for the interim generations
when the hyper-selection scheme is triggered for RHSGA,
HMSGA, and EIHSGA. The population size is set to n =
120 for RSGA, RHSGA, HMGA, and HMSGA, and is
set to n = 100 for EIGA and EIHSGA. The immigrants
ratio for EIGA and EIHSGA is set to rei = 0.2. Hence,
each GA has 120 evaluations per generation. For EIGA and
EIHSGA, pi

m = 0.01. For HMGA and HMSGA, pl
m = 0.01

and pu
m = 0.3. Whenever the environment changes, the

hyper-mutation and/or hyper-selection schemes for GAs are
triggered for 5 generations, i.e., nhs = 5 and nhm = 5.

For each experiment of a GA on a DOP, 30 independent
runs were executed with the same set of random seeds.
For each run, 50 environmental changes were allowed. For
each run the best-of-generation fitness was recorded every
generation. The overall performance of an algorithm on a
DOP is defined as:

FBOG =
1

G

G∑

i=1

(
1

30

30∑

j=1

FBOGij
), (3)

where G = 50∗τ is the total number of generations for a run
and FBOGij

is the best-of-generation fitness of generation i
of run j. The off-line performance FBOG is the best-of-
generation fitness averaged over 30 runs and then averaged
over the data gathering period.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Results on Selection Pressure

The experimental results of the first set of experiments
are plotted in Fig. 5. The corresponding statistical results
of comparing GAs by one-tailed t-test with 58 degrees of
freedom at a 0.05 level of significance are given in Table I.
The t-test result with respect to Alg. 1−Alg. 2 is shown as
“+”, “−”, “s+”, or “s−” when Alg. 1 is better than, worse
than, significantly better than, or significantly worse than
Alg. 2 respectively. From Fig. 5 and Table I, the following
two results can be observed.

First, it can be seen that the selection pressure does have
a significant effect on the performance of SGA on most
dynamic test problems. This result can be clearly seen from

Table I, where most t-test results are shown as either “s+”
or “s−”.

Second, the exact effect of increasing the selection pres-
sure on the performance of SGA depends on the base
function used for DOPs. The effect is quite different across
dynamic OneMax, Royal Road and Knapsack problems.
For dynamic OneMax problems, it seems that a higher
selection pressure degrades the performance of SGA except
for severely changing environments with ρ = 0.9 or 1.0.
For dynamic Royal Road problems, it seems that a higher
selection pressure is always beneficial for the performance
of SGA, see the t-test results regarding 6-SGA − 2-SGA
and 10-SGA − 6-SGA. On the dynamic Knapsack problems,
when the selection pressure is increased from ts = 2 to
ts = 6, the performance of SGA improves on many DOPs.
But, when the selection pressure is further increased from
ts = 6 to ts = 10, the performance of SGA is degraded on
most DOPs.

B. Experimental Results on Hyper-Selection

The experimental results of the second set of experiments
regarding the effect of the hyper-selection scheme are plotted
in Fig. 6. The corresponding statistical results of comparing
GAs by one-tailed t-test with 58 degrees of freedom at a 0.05
level of significance are given in Table II. In order to better
understand the performance of GAs, the dynamic behaviour
of GAs with respect to the best-of-generation fitness against
generations on DOPs with τ = 50 and ρ = 0.1 and ρ = 0.9
is plotted in Fig. 7. In Fig. 7, the first 10 environmental
changes, i.e., 500 generations, are shown and the data were
averaged over 30 runs. From Figs. 6 and 7 and Table II,
several results can be observed.

First, regarding the restart scheme, it can be seen that
the performance of RSGA and RHSGA is not sensitive to
the value of ρ. For example, on the dynamic Royal Road
functions with τ = 50 and ρ = 0.1, 0.2, 0.5, 0.9, 1.0, and
rand, the performance of RSGA is FBOG(RSGA) = 40.8,
40.9, 40.9, 40.9, 41.0, and 40.9 respectively. This result is
easy to understand since each time the environment changes,
RSGA and RHSGA are in fact put in the same starting point
for the same base function given that the population is re-
initialized. This result can be further seen from the dynamic
behaviour of RSGA and RHSGA in Fig. 7, where their
behaviour for each environment is almost the same.

It can also be seen that RHSGA significantly outperforms
RSGA on all DOPs, see the t-test results regarding RHSGA
− RSGA in Table II. For example, on the dynamic Royal
Road functions with τ = 50 and ρ = 0.1, 0.2, 0.5, 0.9, 1.0,
and rand, the performance of RHSGA is FBOG(RHSGA) =
43.8, 43.7, 43.7, 43.7, 43.8, and 43.7 respectively. This result
shows the benefit of the hyper-selection scheme: temporarily
raising the selection pressure always helps improve the
performance of SGA with restart in dynamic environments.

Second, regarding the hypermutation scheme, it can be
seen that the performance of HMGA and HMSGA is now
sensitive to the value of ρ. Their performance drops when the
value of ρ increases from 0.1 to 0.2 to 0.5. When the value

3188 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:29 from IEEE Xplore. Restrictions apply.

 50

 60

 70

 80

 90

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 20

 20

 30

 40

 50

 60

 70

 80

 90

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Royal Road, τ = 20

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 20

2-SGA
6-SGA

10-SGA

 60

 65

 70

 75

 80

 85

 90

 95

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 50

 30

 40

 50

 60

 70

 80

 90

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Royal Road, τ = 50

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 50

2-SGA
6-SGA

10-SGA

 60

 65

 70

 75

 80

 85

 90

 95

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 100

 40

 50

 60

 70

 80

 90

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Royal Road, τ = 100

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 100

2-SGA
6-SGA

10-SGA

Fig. 5. Experimental results of comparing SGAs with different tournament size ts on dynamic test problems.

TABLE I

THE t-TEST RESULTS OF COMPARING SGAS WITH DIFFERENT TOURNAMENT SIZE ts ON DOPS.

t-test Result OneMax Royal Road Knapsack

τ = 20, ρ ⇒ 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand
6-SGA − 2-SGA s− s− s− + s+ s− s+ s+ s+ s+ s+ s+ − s− s− s+ s+ s−

10-SGA − 2-SGA s− s− s− s+ s+ s− s+ s+ s+ s+ s+ s+ s− s− s− s− s+ s−
10-SGA − 6-SGA s− s− s− s+ s+ + s+ s+ s+ s+ s+ s+ s− s− s− s− s− s−

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand
6-SGA − 2-SGA s− s− s− − s+ s− s+ s+ s+ s+ s+ s+ s+ + s− s+ s+ +

10-SGA − 2-SGA s− s− s− s+ s+ s− s+ s+ s+ s+ s+ s+ s− s− s− s− s+ s−
10-SGA − 6-SGA s− s− s− s+ s+ + s+ s+ s+ s+ s+ s+ s− s− s− s− s− s−

τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand
6-SGA − 2-SGA s− s− s− s− s+ s− s+ s+ s+ s+ s+ s+ s+ s+ − s+ s+ s+

10-SGA − 2-SGA s− s− s− + s+ s− s+ s+ s+ s+ s+ s+ s− s− s− s− s+ s−
10-SGA − 6-SGA s− s− s− s+ s+ − + s+ s+ s+ s+ s+ s− s− s− s− s− s−

of ρ is further increased to 0.9 and 1.0, their performance
rises instead of drops.

It can also be seen that the effect of adding the hyper-
selection scheme to HMGA is positive on dynamic Royal
Road functions but negative on dynamic OneMax and Knap-

sack problems, see the t-test results regarding HMSGA −
HMGA in Table II.

Third, when considering the elitism-based immigrants
scheme, it can be seen that both EIGA and EIHSGA clearly
outperforms GAs with restart and hypermutation schemes,

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3189

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:29 from IEEE Xplore. Restrictions apply.

 60

 65

 70

 75

 80

 85

 90

 95

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 20

 20

 30

 40

 50

 60

 70

 80

 90

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Royal Road, τ = 20

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 20

RSGA
RHSGA
HMGA

HMSGA
EIGA

EIHSGA

 60

 65

 70

 75

 80

 85

 90

 95

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 50

 30

 40

 50

 60

 70

 80

 90

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Royal Road, τ = 50

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 50

RSGA
RHSGA
HMGA

HMSGA
EIGA

EIHSGA

 60

 65

 70

 75

 80

 85

 90

 95

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

OneMax, τ = 100

 40

 50

 60

 70

 80

 90

 100

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Royal Road, τ = 100

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

rand1.00.90.50.20.1

O
ff

lin
e

Pe
rf

or
m

an
ce

ρ

Knapsack, τ = 100

RSGA
RHSGA
HMGA

HMSGA
EIGA

EIHSGA

Fig. 6. Experimental results of comparing GAs with and without hyper-selection on dynamic test problems.

TABLE II

THE t-TEST RESULTS OF COMPARING GAS WITH AND WITHOUT HYPER-SELECTION ON DOPS.

t-test Result OneMax Royal Road Knapsack

τ = 20, ρ ⇒ 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand
RHSGA − RSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HMSGA − HMGA s− s− s− s− s− s− s+ s+ + + − s+ s− s− s− s− − s−
EIHSGA − EIGA s− s− s− − − s− s+ s+ s+ s+ − s+ s− s− s− s− s− s−

EIHSGA − RHSGA s+ s+ s− s+ s+ s+ s+ s+ s− s+ s+ s+ s+ s+ + s+ s+ s+
EIHSGA − HMSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand
RHSGA − RSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HMSGA − HMGA s− s− s− s− s− s− + s+ s+ s− − + − s− s− − − s−
EIHSGA − EIGA s− s− s− − − − s+ s+ s+ s+ − s+ s− s− s− s− + s−

EIHSGA − RHSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
EIHSGA − HMSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand 0.1 0.2 0.5 0.9 1.0 rand
RHSGA − RSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

HMSGA − HMGA s− s− s− s− − s− − − s+ − + + − − s− − s+ −

EIHSGA − EIGA s− s− s− − − − s+ s+ s+ s+ − s+ s− s− s− s− + s−
EIHSGA − RHSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
EIHSGA − HMSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

3190 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:29 from IEEE Xplore. Restrictions apply.

 60

 65

 70

 75

 80

 85

5004003002001000

B
es

t-
O

f-
G

en
er

at
io

n
 F

it
n

es
s

Generation

OneMax, ρ = 0.1

 60

 65

 70

 75

 80

 85

5004003002001000

B
es

t-
O

f-
G

en
er

at
io

n
 F

it
n

es
s

Generation

OneMax, ρ = 0.9

RSGA
RHSGA
HMGA

HMSGA
EIGA

EIHSGA

 20

 30

 40

 50

 60

 70

5004003002001000

B
es

t-
O

f-
G

en
er

at
io

n
 F

it
n

es
s

Generation

Royal Road, ρ = 0.1

 20

 30

 40

 50

 60

 70

5004003002001000
B

es
t-

O
f-

G
en

er
at

io
n

 F
it

n
es

s
Generation

Royal Road, ρ = 0.9

RSGA
RHSGA
HMGA

HMSGA
EIGA

EIHSGA

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

5004003002001000

B
es

t-
O

f-
G

en
er

at
io

n
 F

it
n

es
s

Generation

Knapsack, ρ = 0.1

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

5004003002001000

B
es

t-
O

f-
G

en
er

at
io

n
 F

it
n

es
s

Generation

Knapsack, ρ = 0.9

RSGA
RHSGA
HMGA

HMSGA
EIGA

EIHSGA

Fig. 7. Dynamic behaviour of GAs on DOPs with τ = 50 and ρ = 0.1 (Left) and ρ = 0.9 (Right).

see the t-test results regarding EIHSGA − RHSGA and
EIHSGA − HMSGA in Table II. This result can also be
observed from the dynamic behaviour of GAs in Fig. 7. Both
EIGA and EIHSGA maintain a much higher fitness level than
other GAs do. The reason to this result lies in that the elitism-
based immigrants scheme is more efficient for GAs than the
restart and hypermutation schemes.

Another observation is that there is no clear winner
between EIGA and EIHSGA on the test DOPs. The
hyper-selection scheme is beneficial for the performance of
EIHSGA on dynamic Royal Road problems but degrades the
performance of EIHSGA on dynamic OneMax and Knapsack
problems.

Finally, comparing the performance of GAs in Fig. 6
with the performance of 2-SGA in Fig. 6, it can be seen
that the restart, hypermutation, and elitism-based immigrants
schemes do improve the performance of SGAs on many

DOPs. But, there are also quite some cases where 2-SGA
outperforms GAs with restart or hypermutation, especially
when the value of ρ is small. For example, on the dynamic
Royal Road function with τ = 50 and ρ = 0.1, the perfor-
mance of 2-SGA, RSGA, and HMGA is FBOG(2-SGA) =
49.2, FBOG(RSGA) = 40.8, and FBOG(HMGA) = 44.9
respectively. This result warns us that when the environment
changes slightly, a high diversity introduced may divert the
searching force too much and hence degrades the perfor-
mance of GAs.

V. CONCLUSIONS

Adapting genetic operators is one type of approaches
for GAs to address dynamic environments. This paper in-
vestigates the effect of the selection pressure on the per-
formance of GAs in dynamic environments and proposes
a hyper-selection scheme for GAs to solve DOPs. When

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3191

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:29 from IEEE Xplore. Restrictions apply.

an environmental change occurs, the selection pressure can
be temporarily raised. The hyper-selection scheme can be
combined with other schemes in the literature for GAs in
dynamic environments.

The effect of selection pressure and the hyper-selection
scheme for GAs in dynamic environments were experi-
mentally studied based on a series of constructed dynamic
test problems. From the experimental results and relevant
analysis, three major conclusions can be drawn on the
dynamic test environments. First, the selection pressure does
have an important effect on the performance of GAs in
dynamic environments. Second, the effect of increasing the
selection pressure on the performance of SGAs in dynamic
environments is problem dependent. Third, the effect of
the hyper-selection scheme on the performance of GAs in
dynamic environments depends on the problem being solved
and other approaches used in GAs.

Generally speaking, this paper for the first time investi-
gates the effect of selection pressure for GAs in dynamic
environments with some preliminary experiments. The re-
sults observed can be used to guide the design of new GAs
for DOPs. For example, developing more efficient selection
schemes that can adjust the selection pressure adaptively
during the running of GAs may be an interesting future
work. Combining the hyper-selection scheme with other
mechanisms for GAs in dynamic environments is another
interesting future work.

REFERENCES

[1] J. Branke. Memory enhanced evolutionary algorithms for chang-
ing optimization problems. Proc. of the 1999 IEEE Congress on
Evol. Comput., vol. 3, pp. 1875–1882, 1999.

[2] J. Branke. Evolutionary Optimization in Dynamic Environments.
Kluwer Academic Publishers, 2002.

[3] J. Branke, T. Kaußler, C. Schmidth, and H. Schmeck. A multi-
population approach to dynamic optimization problems. Proc. of the
4th Int. Conf. on Adaptive Computing in Design and Manufacturing,
pp. 299–308, 2000.

[4] H. G. Cobb and J. J. Grefenstette. Genetic algorithms for tracking
changing environments. Proc. of the 5th Int. Conf. on Genetic Algo-
rithms, pp. 523–530, 1993.

[5] D. E. Goldberg and R. E. Smith. Nonstationary function optimization
using genetic algorithms with dominance and diploidy. Proc. of the
2nd Int. Conf. on Genetic Algorithms, pp. 59–68, 1987.

[6] J. J. Grefenstette. Genetic algorithms for changing environments.
Parallel Problem Solving from Nature II, pp. 137–144, 1992.

[7] Y. Jin and J. Branke. Evolutionary optimization in uncertain environ-
ments: a survey. IEEE Trans. on Evol. Comput., vol. 9, no. 3, pp. 303–
317, June 2005.

[8] J. Lewis, E. Hart, and G. Ritchie. A comparison of dominance
mechanisms and simple mutation on non-stationary problems. Proc. of
the 4th Int. Conf. on Parallel Problem Solving from Nature, pp. 139–
148, 1998.

[9] M. Mitchell, S. Forrest and J. H. Holland. The royal road for genetic
algorithms: fitness landscapes and GA performance. Proc. of the 1st
European Conf. on Artificial Life, pp. 245–254, 1992.

[10] N. Mori, H. Kita, and Y. Nishikawa. Adaptation to changing envi-
ronments by means of the memory based thermodynamical genetic
algorithm. Proc. of the 7th Int. Conf. on Genetic Algorithms, pp. 299-
306, 1997.

[11] R. W. Morrison and K. A. De Jong. Triggered hypermutation revisited.
Proc. of the 2000 IEEE Congress on Evolutionary Computation,
pp. 1025-1032, 2000.

[12] K. P. Ng and K. C. Wong. A new diploid scheme and dominance
change mechanism for non-stationary function optimisation. Proc. of
the 6th Int. Conf. on Genetic Algorithms, 1995.

[13] F. Oppacher and M. Wineberg. The shifting balance genetic algorithm:
Improving the GA in a dynamic environment. Proc. of the 1999
Genetic and Evolutionary Computation Conference, vol. 1, pp. 504-
510, 1999.

[14] D. Parrott and X. Li. Locating and tracking multiple dynamic op-
tima by a particle swarm model using speciation. IEEE Trans. on
Evol. Comput., vol. 10, no. 4, pp. 444-458, 2006.

[15] A. Simões and E. Costa. An immune system-based genetic algorithm
to deal with dynamic environments: diversity and memory. Proc. of the
6th Int. Conf. on Neural Networks and Genetic Algorithms, pp. 168-
174, 2003.

[16] K. Trojanowski and Z. Michalewicz. Searching for optima in non-
stationary environments. Proc. of the 1999 Congress on Evol. Comput.,
pp. 1843–1850, 1999.

[17] S. Yang. Non-stationary problem optimization using the primal-dual
genetic algorithm. Proc. of the 2003 Congress on Evol. Comput., vol. 3,
pp. 2246-2253, 2003.

[18] S. Yang. Memory-based immigrants for genetic algorithms in dynamic
environments. Proc. of the 2005 Genetic and Evol. Comput. Confer-
ence, vol. 2, pp. 1115-1122, 2005.

[19] S. Yang. Genetic algorithms with elitism-based immigrants for chang-
ing optimization problems. Applications of Evolutionary Computing,
LNCS 4448, pp. 627-636, 2007.

[20] S. Yang and X. Yao. Experimental study on population-based incre-
mental learning algorithms for dynamic optimization problems. Soft
Computing, vol. 9, no. 11, pp. 815-834, 2005.

[21] S. Yang and X. Yao. Population-based incremental learning with asso-
ciative memory for dynamic environments. IEEE Trans. on Evol. Com-
put., to appear, 2008.

3192 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: University of Leicester. Downloaded on November 4, 2008 at 06:29 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

