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Abstract

Although there has been a rapid development of technologyirmrease of computation
speeds, most of the real-world optimization problems s#tinot be solved in a reasonable
time. Some times it is impossible for them to be optimallyed| as there are many in-
stances of real problems which cannot be addressed by ceramittheir present speed. In
such cases, the heuristic approach can be used. Heurisg@roh has been used by many re-
searchers to supply this need. It gives fiisient solution in reasonable time. The clustering

problem is one example of this, formed in many applications.

In this thesis, | suggest a Variable Neighbourhood Sear®§Mo improve a recent cluster-
ing local search called K-Harmonic Means (KHM). Many experits are presented to show

the strength of my code compared with some algorithms framithrature.

Some counter-examples are introduced to show that KHM mggraeate entirely, in either
one or more runs. Furthermore, it degenerates and then stagmsme familiar datasets,
which significantly #ects the final solution. Hence, | present a removing degenerade

for KHM. | also apply VNS to improve the code of KHM after remig the evidence of

degeneracy.
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Chapter 1

Introduction

1.1 Literature and Definitions

To keep up with the enormous strides made by science anddiegyn communities should
deal accurately with the speedy transmission of infornmaéind data. Many countries have
started to apply e-government systems. This is where thertianpce lies of analysing data
and distributing and dealing with software applicationsustering technology has become
very important at present, especially with the increasimgvth and steady fields of data
analysis. It is applied in a variety of ways in the naturakaces, psychology, medicine,
engineering, economics, marketing and other field$. [Scientists and researchers have not
lost sight of the importance of clustering; tens of thousaofiscientific papers have been

published on various subjects related to clustering.

According to the web of knowledgé&'{], more than 6000 published papers titled by cluster
analysis in 140 subject areas. Figurd on page 2) displays the rapid growth of cluster
analysis research from the 1950s to our own day. We can ihgrrhost of the cluster
analysis literature has been written in the past three @sgadthough cluster methods have
been recognized only in this century. The main reasons forabidly increasing number

of publications on clustering are two: first, the actual reeefiproblems which have large
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Figure 1.1: The growth of publications on clustering

data sets, needing to be calculated by very high-speed demspwhich did not exist until
this century. This in fact tempts researchers to apply theipirical programs commonly
to real data, which expands the databases to get variedsieSécond, the wide range of
clustering applications and needs requires us to apply thethods to problems in various
areas. Consequently, the clustering subject itself, asudtref these two reasons, needs to be

improved. So, new methods have been devised.

Many researchers apply clustering algorithms, by meansiabws techniques. The reason
for such diferent clustering methods is that they have a variety of UR@sse objectives can
be summarizedd, 15, 81, 2] as: finding a true typology, model fitting, hypothesis gatieg
through data exploration, hypothesis testing and datactesiu All these purposes have
given rise to a wide selection of applications. To see how daduction can be applied, for
example, MORRISON€{1] showed as an assumption that if there is a sample of 10& citie

which could be used as test markets, but the available bwdagbnly to test in five cities,



then we could reduce this number by clustering the citiesfine clusters such that the cities
within each group were very similar to the rest of the grouipe one city from each cluster

could be selected and used as a test market.

Opinions difer on the definition of clustering. There are, for instancanynarguments over
the precise definition of the concept: clustering or clustealysis. These two terms refer
to almost the same conception. But an acceptable definitiinhwcan be concluded from
previous researches is th&lustering [48, 57, 5] is a scientific method which addresses the
following very general problem: given the data on a set oitiest find clusters, or groups
of these entities, which are both homogeneous and welkaeggh Homogeneity means that
the entities in the same cluster should resemble one and@egaration means that entities

in different clusters shouldftier from one another.

There are numerous ways to express homogeneitypaseparation by one or two criteria. In
addition, various structures may be imposed upon the chjdtee two most common being
the hierarchy and the partition. Choosing a criterion andstaints defines a clustering
problem. If this is done explicitly and rigorously, it takibe form of a mathematical program
[39]. Many methods exist for solving most clustering problemngare cases, there are exact

algorithms which provide proven optimal solutiorgs!] 6].

Because there may be confusion between the concepts, | avalarify the diferences be-

tween clustering method and classification. Many souradisate this, but for more details
see b7, 15, 81]. Classification is called supervised learning becauselatises are labeled
and then the goal is that each entity must be assigned to giedelass. So, the task is to
learn to assign entities to predefined classes by usingrigaget from these labeled objects
to design a classifier for future observations. This is thposfie of clustering, where no
predefined class is required. The task is to learn a cladsificantirely from the data. These

differences can be simplified as supervised learning and unssgekfearning.

One of the most popular clustering methods is K-means. Thae pranciples of K-means
clustering (see Figur#&.2 on page 4)) for K clusters can be given as: (1) initialization: by

suggesting centres (centroids) from the dataset as repagise for each cluster; (2) allo-



cation: by calculating the members of each cluster; (3)tilona by calculating the new

centroids for each cluster; (4) assigning the objectivection. These steps aim to find the
minimum objective function, which is know as the sum of ak ttfferences between the
centroids and the members of each cluster. Because we nasdigm the centroids in each
cluster, we have to measure the distances between theidsrdral the entities in each clus-

ter. For this, we use a measurement tool called the distammidn, which will be defined

assign
initial
clusters

later.

compute
distance
matrix

calculate
new
clusters

update
clusters

is it the
best
clustering?

Figure 1.2: The K-means clustering algorithm.

1.2 Clustering Methods

Clustering techniques are mainly classified into partdi@nd hierarchical. Inthe partitional,
the data points are directly divided into a desired humbggaafitions (or clusters): in the
hierarchical clustering, a sequence of non-predefined euoftpartitions takes place, which

run either from one cluster containing all the entitiektdusters each containing a single

4



object, or vice versa. The first option is called agglomeeatiierarchical clustering, and the

second is known as divisive hierarchical clustering.

Before delving into the details of the former species | stiaidfine some terms which will

be used later.

A sample setis a finite setX = {x;, X2, ..., Xy} Of N entities. which has to be divided into

clusters.

Featuresare measured or observed in a variable of type charactenuemcivalues. They are

also called attributes, variables, or dimensions. Eadkydrds one or more features.

An N x g data matrix is obtained by measuring or observigdeatures of the entities of

X.

An N x N dissimilarities matrix D = (d;j) fori,j = 1,2,...,N or distance function is a

measurement tool used to compute thedences between entities ¥f this matrix must

satisfy:
1. Symmetry,
d(xi, xj) = d(xj, %) ;
2. Positivity,
d(x,x;)) >0 forall x andxjin X ;
3. Reflexivity,

d(xi,xj)) =0 & X=X

In this case, the distance function is called semimetriction. But if the condition:

4. Triangle inequality,

d(xi, Xj) < d(x;, %) + d(x, xj) for all x;, Xj andx, in X



is satisfied, it is called a metric.

The most popular dissimilarity measures are shown below:

q
e The Euclidean Distance(x, Xj) = 4 Z(X‘k - Xj)?
kel

q
e Manhattan Distancd(x;, Xj) = [IX — Xjll1 = Z [Xi, = Xjl
k=1

1.2.1 Hierarchical Clustering

In hierarchical clustering the items (features) in the datdrix are not divided into a par-
ticular number of clusters. Thus, there is no predefined munalb clusters but series of
partitions have been applied. These partitions by eitheatiglomerative method or the di-
visive method produce a tree or dendrogram which may besepted by a two-dimensional

diagram illustrating the fusions or divisions made at eaaitsssive level.

Agglomerative Hierarchical Clustering

Although agglomerative hierarchical clustering methogsa@nsidered the oldest, they are
still used in many applications. Some claim that they arenost frequently used methods
of cluster analysis{1, 34]. If the similarity or distance matrix is known, the agglomatve
method starts by separating clusters which are each of siZ&olif we have a dataset of
N entities the technique begins witth clusters. Then the first two closest (most similar)
pair of clusters are merged together, which reduce the nucibsters toN — 1. There
are three main ways to calculate the distance between ussingle linkage, complete
linkage and average linkage clustering. There are many athgs that can be applied such
as: Equal-Variance Maximum Likelihood (EML) Methof][ and Ward’s methodd(Q]. In
single linkage clustering, the distance between two dlssgeequal to the minimum i.e., the
distance between any two members dfatient two clusters must be minimum. The flowchart

in Figure1.3 on page 1) illustrates the process of the single linkage clusterireghad. In



assign data matrix

|

compute dis-
tance matrix

|

put each en-
tity as cluster

@@ merge two clos-
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update dis-
tance matrix

Figure 1.3: Flowchart of agglomerative clustering aldont

contrast, complete linkage clustering can occur when thtawce between two clusters is
equal to the maximum distance from any member of one clustany member of dierent
cluster. In average linkage clustering, the distance isketguthe average distance from any
member of one cluster to any member of the other cluster.|Ustiate these concepts : Let
6(C1,Cy) be the distance function between two clust€sandC, . It can be computed

as:

e §(C1,Co)=min{d(i,)):ieCy , jeCy}. For single linkage.
e §(Cp,Co)=max{d(,j):ieCy , jeCy} For complete linkage.

1
e §(C,Cr) = —— dd, j). For average linkage.
(C1.Co) |C1|‘|C2|i€zcllj€zclz ) ge linkag



Example 1.2.1

Consider Tablel.1 on page 8 which shows the distances in miles between some United
States cities4]. The method of clustering is single linkage. So, in the faistge BOS
and NY are merged into a new cluster because 206 is the minidistance. After apply-
ing the agglomerative algorithm, the rest of the solution easily be concluded from the

dendrogram in Figuré.4on page ).

1 2 3 4 5 6 7 8 9

BOS| NY | DC | MIA | CHI | SEA| SF | LA | DEN
BOS| 0 | 206 | 429 | 1504| 963 | 2976| 3095| 2979| 1949
NY | 206 | O | 233 |1308| 802 | 2815| 2934| 2786| 1771
DC | 429 | 233 | 0 |1075| 671 | 2684|2799| 2631| 1616
MIA | 1504| 1308| 1075| 0O | 1329|3273| 3053| 2687| 2037
CHI | 963 | 802 | 671 | 1329| 0 |2013| 2142|2054 996
SEA | 2976| 2815| 2684| 3273|2013 O | 808 | 1131| 1307
SF | 3095| 2934| 2799| 3053|2142 808 | 0 | 379 | 1235
LA | 2979|2786| 2631| 2687| 2054| 1131} 379 | 0 | 1059
DEN | 1949| 1771| 1616| 2037| 996 | 1307| 1235/ 1059| O

Table 1.1:Distances in miles between U.S. cities
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Figure 1.4: Dendrogram of single linkage clustering



Divisive Hierarchical Clustering

In contrast to agglomerative, the divisive hierarchicailstéring starts with one cluster. So,
the dataset ol entities belongs to a cluster in the first step. Then the pha®esuccessively

splits it until each cluster contains one object. For mortaittesee p, 81].

1.2.2 Partitioning

Cluster analysis deals with various types of criteria, barnl concerned only with the parti-
tioning in Euclidean spadRY. To explain in brief, leiX = {x,, ..., Xy} be a set of objects or
entities to be clusteredi(e RY) , and letC be a subset oK. ThenPx = {C1,C>,...,Ck}
is a partition ofX into K clusters if it satisfies: (iCx # 0; k=1,2,...,K, (i) GGNnCj =
0; i,j=212,...,K; i=# j,and (ii) kblck = X. General principles for the partitioning

criteria are presented in Figuie5on page 10).

K-Means Algorithm

One of the most popular criteria for partitioning points indikdean space is called the min-
imum sum-of-squares clustering (MSSC), since it considethe same time the homoge-
neous and the separation criteria. Minimizing the sumepfases errors criterion amounts to
replacing each cluster by its centroid and minimizing the-si-squares from the entities to
the centroid of their cluster. A mathematical formulatidriree MSSC problem and its steps

are given in Algorithm3.10on page39 in Chapter (3).

Fuzzy Clustering Algorithm

While K-Means present hard clusters, the fuzzy clusteringggsoft clusters. In the fuzzy
clustering (also called fuzzy C-Means in some artické§])] each entity has a degree of
belonging to clusters depending of how far from the cengoifio, a particular entity may

belong to more than one cluster.
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Figure 1.5: The partitioning algorithm

Graph Theoretic Methods

In any weighted graph, the node represents the entity poihiei dimension space or feature
space. However the edge between any two pairs of nodes ponesto their proximity. The
constructed graph should be capable to detect the non-lemogs edges. Therefore, good

clustering can be assigned by those inconsistent eddgs [

10



1.3 Outline

This research is designed to improve the K-Harmonic Meatm#\{Kclustering by applying
the basic Variable Neighbourhood Search. KHM, first prodaeg83, 87, is less sensitive
to initialization than K-Means (KM). Some algorithms frohretliterature are compared with
KHM after applying VNS. Although KHM surpasses KM in many éscas it is explained
in the next chapters (See for example Tabl®), it is shown that KHM may degenerate in
some parts of its solution. In certain experiments, it catlob through this degeneracy.
The algorithm for removing degeneracy has been applied mmyniamiliar datasets and
compared with those results obtained by degeneracy. Thaimarg chapters of this thesis

are organised as follows.

In Chapter 2, a brief overview of metaheuristics is providEde main concepts of heuristics
are shown by some illustrations. Most metaheuristics haen Istructured to provide high
level frameworks for building heuristics for further clasf problem, since certain problems
cannot be solved by heuristics. The main and most used metsiies in this research are
then covered, including: Tabu-Search (TS), Simulatedeating (SA), Genetic-Algorithm
(GA), and Variable Neighbourhood Search (VNS).

In Chapter 3, an illustration of a definition of KHM is presedtbeside the KM algorithm.
The main parts of the KHM algorithm, including: membershimdtion, weight function,
centroids and objective function are covered in a code. Hn@able neighbourhood search
heuristic is suggested as a method for improving KHM. Thigriséic has been tested on
numerous datasets from the literature. To assess the @treh¢ghe code, some compar-
isons with recent ones from Tabu Search and Simulated Amgebkuristics have been

made.

In Chapter 4, counter examples show the degeneracy in a Kl &earch. An algorithm
is applied to avoid the degeneracy in KHM and used within megariable neighbourhood
search (VNS) based heuristic. Computational results agsepted to show the improve-

ment obtained with the degeneracy correcting method, wikipkrformed on the normal test

11



instances from the literature.
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Chapter 2

Metaheuristics

Combinatorial optimization problems have attracted mutérest, due to the advancements
made in operational research. Since most of these probleri¢éRahard, heuristics and other
approximate solution approaches with performance gueeandre required. This chapter
includes a detailed discussion on metaheuristics andicés$geuristics. Many branches of
the metaheuristic family are mentioned in this chapter. fftost commonly used methods
are Simulated Annealing (SA), Tabu Search (TS), Genetioddgm (GA), Particle Swarm
Optimization (PSO) and Variable Neighbourhood Search (AM3ch are discussed in more

detail.

2.1 Introduction

Despite the rapid growth and developments of computatiospeed and size in particular,
the exact solution of many decision and optimization pntdés obtained in an unreasonable
amount of time. This is due to the complexity of these prolslemparticular, those involving
large sizes. In certain problems, the exact algorithms taiéong (maybe days or more) to
get an optimal solution. As a result, many researchers ptefaese heuristic algorithms in

practical applications. Because it is impossible to cagisuch searches to the end, these

13



approaches maybe trapped in alocal optimum. The main simoing of heuristic algorithms

can be amended by applying metaheuristics.

Optimization problems can be classified into many categori€he classification may be
based on the types of variable. They may include integerratis, zero-one, or real variables.
However there are only two major categories: continuougbbes if the solution space is
real numbers; and discrete variables or combinatoridhgfset of the solution space is finite,

or infinite but enumerable.

Discrete optimization, which is also known as combinatoojatimization, is much more
common and is the kind used in the present research. The patobal optimization prob-
lem can be defined as that of finding the best solution amongte finmber of possible
solutions. Many real-world problems may be modelled as ¢oatbrial optimization prob-
lems. These problems can appear in various assignmentsasucscheduling problems,
location problems, set partitionifapvering, vehicle routing, travelling salesman problems
and many other more. Formally, the combinatorial optimdraproblemP can be defined as

[66]:

Definition 2.1.1 (optimization problem) An optimization problem P is given by a set of
instances |. An instanced | of an optimization problem is a paifS, f), where S is the
solution space; f denotes the objective function that mapsSf— R* The problem is to
find s € S such that fs*) < f(s),Ys € S. Such a point*sis called a globally optimal

solution of(S, f), s is called a feasible solution.

Most of these problems can be considered\&shard, that is they cannot be solved in a
polynomial time. That means it is not possible to guaraned an optimal solution to the
problem can be found within an acceptable timeframe. Foerdetails on the concepts Bf

andNP complexity, see6, 43].

This chapter outlines the main metaheuristics approachegiaes an illustration of tradi-

tional heuristics.

14



2.2 Classical heuristics

All combinatorial optimization solution methods can bessified as either exact or approxi-
mate. The first kind is the algorithm which gives an exacttswiufor a predefined problem.
There are many exact methods but the ones most commonly resdgireamic programming
and branch-and-bound. However, an approximate algoritbes ¢hot necessarily give an
optimal solution to an input problem. The approximate sofutan be classified mainly in
two ways: approximation algorithms or heuristics. The agpnation algorithm always pro-
vides a feasible solution (if it exists) of a certain quality, 78]. However, there are plenty of
NP-hard optimization problems which cannot be approximatBuerefore, one must apply
heuristic methods which do not guarantee either the solufi@lity, or the time limitations.
The definition of a heuristic is proposed iA(] as “a method which seeks good solutions
at a reasonable computational cost without being able toagtee optimality, and possibly
not feasibility. Unfortunately, it may not even be possitestate how close to optimality a

particular heuristic solution is”.

Because of these shortcomings, some heuristics may peloiaiy due to the initialisation of
a given problem. But this does not nullify the benefits of letios, since they perform well
in plenty of problems. The most common heuristic methodsdbas generating a problem

for a solution can be classified as followsd:

constructive methods

e local search methods

e inductive methods

e problem decompositigpartitioning

e methods which reduce the solution space

e evolutionary methods

¢ mathematical programming based methods
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Constructive methods. Constructive heuristics are designed to construct ondesfag-
sible solution. It is constructed step by step by using stinecinformation from the given
problem. The most commonly used approaches are the gré&&iwnid look-ahead I[1]

approaches.

Local search methods. Local search methods use an iterative process to graduaily i
prove a given feasible solutiame S until a local optimum is reached. The neighbourhood
for each solution is considered a set of all the feasibletsols in the vicinity ofs. At each
iteration, a neighbourhood of the current candidate smius explored and the current solu-
tion is replaced with a better solution from its neighbowthoif one exists. If there are no
better solutions in the observed neighbourhood, a locainyph is reached and the solution

process terminates.

Inductive methods. The main principle of inductive methods is to generalisenapte

problem solution to be used for harder problems of the sapm ty

Partitioning. The problem is decomposed or partitioned into a number ofispgmpler
subproblems, each of them being solved separately. Themojurocesses for the subprob-
lems can be either independent or intertwined, with a viewxchanging the information

about the solutions of fferent subproblems.

Methods which reduce the solution space. Some parts of the feasible solution region
are ignored from further consideration in such a way thajtnity of the final solution is
not significantly &ected. The most common ways of reducing the feasible regiclnde
the tightening of the existing constraints or introducirgwconstraints, such as fixing some

variables at reasonable values.

Evolutionary methods. As opposed to single-solution heuristics (sometimes a#ledt

trajectory heuristics), which consider only one solutiazragime, evolutionary heuristics
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operate on a population of solutions. At each iteratioffedént solutions from the current
population are combined, either implicitly or explicitly create new solutions which will
form the next population. The general goal is to make eadhtetepopulation better than the

previous one, according to some predefined criterion.

Mathematical programming based methods. In this approach, a solution of a prob-
lem is generated by manipulating the mathematical progriagnitMP) formulation of the
problem. Generally speaking, mathematical programmingleaised in two diferent ways:
(i) aggregation of variables; (ii) relaxation of variahlg3opular relaxation technique is so-

called Lagrangian relaxation.

2.3 Metaheuristics

Heuristic methods were first initiated in the late 194069][ These heuristics relay on the
structure of a certain problem and cannot be applied to sther the 1980s747], meta-
heuristics were structured to provide high level framewdid building heuristics for fur-
ther classes of problem. Many advances have been made iaghieWw years in both the
theory and application of metaheuristics. They are usedhtbdpproximate solutions for
hard optimization problems. According t@d], “A metaheuristic is an iterative master pro-
cess that guides and modifies the operations of subordieatestics to éiciently produce
high-quality solutions. It may manipulate a complete (aroimplete) single-solution or a
collection of solutions at each iteration. The subordirtageristics may be high (or low)
level procedures, or a simple local search, or just a coctgbru method ”. To understand
this definition of metaheuristics, some of the main conceptaetaheuristics are discussed

below [(3].

Diversification vs. intensification. The first term means the exploration of the search
space. In this, the algorithm shifts tdigirent parts (depending on the distance function used)

of the search space looking for the best local optimal. Tlkers# means the exploitation of
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the current solution. In this, the algorithm focuses on thent search area, by exploiting
all the available information from the search experientes éssential in search process to

keep an adequate balance between the diversification asifitation.

Randomisation. As an application of diversification process, randomisaatiows the

algorithm to select one or more candidates by a random merhdrom a solution space.

Memory usage. Some metaheuristics save certain information during theckeprocess
in storage, to be used in further steps of the search. Suctmation could be the feasible
solutions, number of iterations, or solution propertiesthdugh the Tabu Search method is
a very significant example, since memory is used mainly irstach process, as explained
later, some other metaheuristics, for instance, the Geidgorithm [72] and Ant Colony

Optimization 3, 22], use it less, since it is incorporated implicitly.

According to these principles, most metaheuristics tryilfigcent means to avoid the locality
(see Figure2.1on pagel9) in the solution process. Before describing the main metiase

tics, a neighbourhood structure and a local optimal salusivould be defined aS3:

Definition 2.3.1 (neighbourhood structure) Let P be a given optimization problem. A neigh-
bourhood structure for problem P is a functié¥i : S — P(S), which maps each solution
x € S from the solution space S of P into a neighbourhd@g) c S of x. A neighbour (or a
neighbouring solution) of a solution« S is any solution ¥ N(X) from the neighbourhood

of x.

Definition 2.3.2 (local optimal solution) Let N be a neighbourhood structure for a given
optimization problem P as defined By3.1 A feasible solution x S of P is a locally
optimal solution (or a local optimum) with respectXq if f(X) < f(y),Vy € N(X) N S (see

Figure 2.1).
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Figure 2.1: The local minimum trap in the local search

2.3.1 Simulated Annealing

The Simulated Annealing (SA) is a kind of a metaheuristicalihiises the principles of a
probabilistic approach by Monte Carl8d] and the basic local search. It is considered to
be one of the oldest techniques in metaheuristics. The gsazeannealing is also used in
metallurgy which inspired its use in metaheuristics. Kaljek [51] and Cerny 9] invented
this independently. Every iteration of Simulated Anneglia the neighbour of a current
solution, which is randomly generated. Next, it is movedhe $olution of the neighbour
which is based on the value of the objective function anegatof Metropolis Algorithms
[56]. The current neighbour is considered to be true if the raigin which we have selected
has an objective function of greater value than the pregaelected solution. If this case

does not hold true, then the Metropolis criterion is usedeteiinine a new solution.

The Simulated Annealing was also used in the annealing a@f smdterials. In this process
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material is subjected to increasing temperatures to thet pdiere it actually melts. The

previous solid state is retained by reducing the tempezalarorder to achieve a successful
annealing, the gradual lowering of the temperature is vapoirtant. An inappropriate shape
is obtained if the cooling is done too fast. Conversely, & tiooling is done properly a more
symmetric solid shape is obtained, with an energy sate wikistery low. With respect to

the combinational optimization value of objective funatizeing equivalent to its energy, the
solution of the problem that is generated is equivalentécstate of the material, and a move

to any solution of the neighbour is equivalent to a changbérenergy state.

The first solution is obtained randomly or by using some coiste heuristic. The end con-
dition of the algorithm is represented by a certain varia@enerally, the stopping condition
or end condition is based on the maximum time allowed to kaaping, the total number of
iterations allowed or the total number of iterations alloweithout making improvements.
There is a variable which is used to find the probabilpy ¢f success, which can be found
out by comparing the similarities of physically annealetidso The values of parameters
for temperature in a simulated annealing algorithm can bi@etd by positive numberdy)
such thatty > t; > ... and lim_. t, = 0. The cooling schedule is the hame given to this
sequence of positive numbettg)( Acceptance is obtained for the huge temperature values
that are used in the initial stage. However, small valued as¢he end give us very detailed
results which reject almost every solution that is non-iowprg. Geometric sequence is the
most commonly used cooling schedule. There is a great deriedemperature values be-
cause of the cooling schedule. If the temperature is charsggdafteiM iterations a stronger

algorithm is generated. Heid € IN is considered to be a predefined variable.

The process described above is memory-less, since a tngjesteing followed in the state
of the space which chooses the successor state. This isdieygesf the incumbent, with-
out keeping tracing of the history of search process. The SAgo-code is illustrated in

Algorithm (2.10n page2l).

20



Algorithm 2.1: Simulated Annealing
Function SA (S, f(X), t,, Maxit);
1 Choose initial solutiors from the solution spacs ;

2 Select a neighbourhood structi¥e S — P(S) ;
3 Seti=0;
4 while i < Maxitdo
5 | Chooses € N(s) at random;
6 | if f(s)< f(s) then
7 | s=s;
8 else
Choosep € [0, 1] at random ;
0 if p<exp{2)) then
10 sS=s§;
u | i=i+1;
12 return s;

2.3.2 Tabu Search

Tabu search (TS) is a metaheuristic method of learning, wisibased on the concepts of
discovery and problem-solving with the use of reasoningpast experience. It is a computer
program which uses methods based on its previous memorgyresperience in order to
solve a given problem, instead of using a mathematical piiree This method was basically
proposed in 1986 by Glover (se2g). Unlike the Simulated Annealing process, it is not
stochastic in nature but like the Simulated Annealing psec# avoids traps which bring the
search to a dead end. This is the basic form of the Tabu Seaettioth In this, a Tabu list
(TL) is formed which has short memory span. This is a list ebfdden solutions, which
saves and stores all the solutions that have been previasstyto prevent them from being
repeated. This method of eluding local optima is more of ard@histic approach. The most
important point to be noted in Tabu Search is its flexible artdraatically adjustable system
which stores all the search history. The present form of ti®iTSearch method has a much
broader memory span and storage system than its predexesHus program makes the
search for a solution easier. The program explores the &spethe most feasible solution
of a problem, also making sure that it does not coincide withgrevious solutions stored

in its memory i.e. the Tabu list. This list also has an autacngbdate system which works
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on the principle of adding the current solution to the Talsti ind deleting the oldest one
from its memory. It accepts even the worst solution, bec@udees not have an objective
method of analyzing them. This helps to escape from locahw@pt The most appropriate
and suitable solution is stored separately during thisgs®cThe complexity of the solution
list and its diversification is controlled by the crucial Inokary of the list, which deletes old
solutions within the length of the Tabu list. This paramesethe length of the Tabu List
which checks the increasing number of progressing solsitgma makes sure that unsuitable
solutions are removed and only the most appropriate onesaaesl and worked upon. The
length of the Tabu list is also known as the tabu tenure. Timgtheof Tabu list is permanent
or can be changed dynamically and automatically at evepy gteshort Tabu list focuses on
less complex solutions, according to the space providedhéwginall data structure without
any big moves to increase the broad array of solutions, vaseadengthy Tabu list provides
diverse solutions and focuses more on exploring wider asgécorrect solutions. It allows
for more complex and diverse solutions; thus, the lengtle konstant under a process of
upgrading. The length of this list can also be altered, wiighs the method more strength.
However, the Tabu list also takes up a great deal of time ircke® for the right solution
from the list and this can make this systemffeetual. This weakness of the method can be
remedied by storing only the particular parts of a solutioet tare important, instead of the
whole solution. The attributes to be looked for by the Tatarce program are fed into it.
These attributes look out for matching solutions to storkis helps by making the system
less ingficient and thus more useful. It filters the important attesudf the solutions into the
Tabu List. This can however, cause very important infororato be missed, because some
important parts of the Tabu List can be lost due to having fexbates. Very fine solutions
can sometimes be missed in the search. This problem canvezidm} setting up Aspiration
Criteria (AC) which store all solutions that meet the crdert allows any better solution to

take over from the best solution so far.

Tabu Search has the ability to steer solutions away from deddraps, which is modelled on
the memory programs of humans. The methodology starts witlesbasic solution which

is formulated randomly. At every step, it then improves tbkitson from a given number
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of solutions which are called the 'allowed set’ and that asepresent in the Tabu List. The
‘allowed set’ is a list of admissible solutions. This methosh then be altered to a first
improving or best improving procedure. In the first imprayiprocedure, it searches for a
solution and gives the first one that is stronger than thar@igne. In the best improving
procedure, the program searches all the ’allowed set’ sixtely to find the best solution.
When an improved solution is found, the Tabu List replacespttevious basic solution with
the better one by the FIFO method. The FIFO (first-in-fird)-owethod, as previously stated,
adds the newest possible solution to the Tabu List and delbéeoldest solution. Thus the
Tabu Search method can be termed explorative, having a baoge of programming with
low memory. This procedure is repeated and again the mastbdeiisolution replaces the

last one, and so on.

Other extended versions of this Tabu Search program havedsseloped since its origin in
1986. It has been enhanced by a long-term menttity [This long-term memory memorizes
every recent solution and its relevant up grading in a pmcaied Recency. It also provides
information on the number of visits made to each solutioledd&requency. The quality of
the solution and its parameters are also recorded withimi®ory; this is called Quality.
The memory also shows the influence during the search andiquutard the inclinations
which showed during the search for the solution termed Infltee These are the four dimen-
sions of this metaheuristiclf]. The long-term memory can be used within Tabu research
through the use of frequency measures, such as the residend 'transition’ processes.
The residence process is about the number of observaticars attribute, while the Transi-
tion process reveals how many times the value of the atérilmais changed during the search.
This provides more objectivity to solutions. It diversifeasd intensifies our search by select-
ing solutions which match the attributes we set and by pyftamward the solutions with the
best attributes which are known as thée subsets The quality of a Tabu Search tends to
be more objective in solutions. A great number of such smhsticauses a greater search into
the most relevant attributes and solutions present in tha Test. Influence, however, refers
to the amount of change that comes in every progressivei@oluthe Aspiration criterion

plays a very important role in this regard. It also helps teetigp the most suitable candidate
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list for a job. It tells us the decisions which we have for figlthe right solution and helps

in making moves according to these critical indicationsclitwe have made.

Many parts of this search are in use along with other metadt@uprocedures for more
efficient use and the discovery of mor@i@ent solutions to problems. A more recent devel-
opment in the Tabu Search method has been made by usinggtwitnother metaheuristic
programs to form a hybrid, such as Genetic Algorithrag] pnd Ant Colony Optimization
[7], among many others. Another modified use of the Tabu Sedgchitams is to combine
it with the path re-linking method. The path re-linking medhprovides newer solutions by
analysing between the elite subsets. By the combinationthieg form, the solutions are
formulated by choosing them randomly from a proper datacsira instead of deterministi-
cally, as is the norm for the original Tabu Search methods Tiakes the search of solutions
much faster and also increases the diversity of the sokiti@ertain improved algorithms
of the Tabu Search are called Reactive techniques, whiotv @alle automatic changing and
adjusting of attributes and boundaries during the Tabucheamethod. The most important
parameter is th&abu tenurei.e. the length of the Tabu List. Glover and Kochenbergék [
say that recency based Tabu Search with basic structuredf fos a restricted topic is a
strategy which can give very accurate and best solytiesislts. The basic algorithm for TS

is illustrated in Algorithm2.2 on page 25).

2.3.3 Genetic Algorithm

Genetic algorithms were derived from the research by Hdllam cellular automata in 1975
[44]. They were further used in combinatorial optimizatiomelar and non-linear, which
rendered them the most evolved algorithr8g, [45]. The concept of genetic algorithms is
a biological similarity, according to which the selectiohtiee most competent individuals
can be used for the evolution of genetically stronger sgecigis raises the related ques-
tion whether this procedure can be used for correcting dpdition dificulties. In the above
mentioned process of selective breeding, tfigpuing of the species retain the optimum char-

acteristics of their species, which are determined by thegyef the selected parents. Genetic
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Algorithm 2.2: Tabu Search
Function TS (S, f(x), Maxit);
1 Choose initial solutiors from the solution spacs ;
Let s* = sbe the best solution so far ;
Select a neighbourhood structixe S — P(S) ;
Initialise Tabu ListTL ;
Initialise Aspiration CriteriaAC ;
Seti=0;
while i < Maxit do
Choose the best solution within the allowed set:
S eN()N{seS|lsg TL};
9 | s=s;
10 if f(s) < f(s") then
11 L s'=Ss,;
12 Update TL and AC ;
13 i=i+1;

14 return s*;

o N o o b W N

Algorithms make use of chromosomes to find the combinatiayeaks in €spring. Genetic
algorithms also focus on problems within generations amdmbsomes are used in finding
answers to these problems. A single component of a chrom®sooalled a gene and these
genes can have various combinations or values, known dssall&hese combinations are
also named 'genotype’ and 'phenotype’ maps of a generatiepecies or individual, which
constitutes a fine Genetic Algorithm. In evolution, the @bitity that certain chromosomes
will be passed down toftspring depends on its fitness i.e., not only with respecistsub-
jective components, such as its nature, but also on obgectmponents, such as functions.
Then these selective chromosomes are bred into the genks dfgpring, who get all the
dominant genes and characteristics from their family lifibis selective breeding promul-
gates the 'survival of the fittest’ concept. The chromosoaresassigned values of 0 and 1
at different loci on them. The locus is the point on a chromosome entiner binary value is
present. It &ects the fitness of a chromosome. A fit chromosome is readdgguhdown to
the next generation to replace the weakfsmring. The term fithess has great importance
in the concept of the Genetic Algorithm which gets its nanmenfithe genetic nature of the

process.
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The mechanisms of crossover and mutation take place whee #re two or more than
two parents. Crossover involves putting certain genes ddramnt in place of the other’s,
resulting in dfspring. Mutation involves only one set of genes in which tiraly values
are changed and the procedure is repeated until the praeetssgiving weaker results than
before. The Genetic Algorithm entails stronger genes imyesacceeding generation. The
steps involve selecting the size and composition of the ladipn. The size should display
the characteristics officiency and durability over time and thdéfieacy of the solutions
being used. The size can be changed during the process oe éaptunchanged, according
to the needs of the process. The composition of the popaol&ionostly kept random but
nowadays certain heuristic procedures are in use for gmjeonly those which meet the
required criteria of solutions. In the next step, the preessf mutation and crossover are
selectively applied on those parents who are the fittestring of genes. The roulette-wheel
method is used in these processes, which implies that oglyittest of parents should be

used for the process of reproduction.

Other methods are also used for selecting individuals. Tboehastic universal selection
method lessens the increased number of variables whichmgegavolved in the roulette-
wheel method. The procedure of tournament selection iesluhoosing a set of parents
and selecting those which are most appropriate for the psodgnstructured and structured
populations also come into play in Genetic Algorithms. Taenfer involves a combination
of any two individuals and the latter involves the recomboraof any individual with one

selected from a set with higher fitness value.

After the process of selection, genetic operators comeqilaty i.e., mutation and crossover,
as stated before. Itis not always necessary to use bothphesedures on the selected popu-
lation. These procedures can be used one at a time, or bath&sgor a dierent procedure
can also be operated on the population which selects forutmopes of the particular study
that we are conducting; although crossover is more oftetiegpthan mutation to the se-
lected population. The reason for this choise is that naratveakens the already present

solutions and also reduces the strength of any new solutii@san be found.
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As regards the crossover method, it involves putting theegeaf one parent in place of
the other to produceftspring, as noted above. Crossover can take several forme- Tw
parent crossoversp] involves few persons as the source for the genes. Mulpplent
crossover 24] involves the dfspring produced by recombining the genes of more than two
parents. New developments in this area are constantly Inedrate and modified forms of the
crossover method have been introduced. Gene Pool Recdiohiri@3] makes use of the
whole current population to formulate the next line of p@an. Bit-Stimulated Crossover
[52] formulates the next line of a population from an alreadystsg probability within that

population.

Sometimes an early inclination in a new generation towdnds¢quired result is seen and
this can cause problems. This situation should if possiblavoided, by the right functioning
of the genetic operator of the mutation. The process of nautaas noted above, involves
changing the values of a gene and the respective chromospnties éfect of certain factors
such as noise. A general selected population is passedjtheocertain factor which changes
the allele value and further generations are reproducedhntmve the new allele value in
their gene pool. Immigration theory can also be used for ghigpose, this includes those
individuals who were not previously present in the selepigglilation and who might belong
to certain areas not previously included in the study. Tsls$or an updated and fresh review

of the research and previous research of the same kind inghet{® Algorithm.

Sometimes undesirable results are also produced, reséitim the genetic operators used.
These undesirable results can be manipulated in any ofwage. Such individuals, who are
part of the undesirable outcome of a Genetic Algorithm, aafitirned down”, "punished”,
i.e., given a weak fitness referral so that they are rejectedry further study in this regard
andor they can be "fixed”, but this may be impossible. The new atmn now reproduced
is called the current population. The procedure is defeurdd certain individuals have to
be eliminated to meet the criteria of the Genetic Algorithifhe final result or output is the
individual who remains at the end, due to the mechanism ofilgl of the fittest’ in the
Genetic Algorithm. Nowadays certain Genetic Algorithms ased which strengthen those

individuals. These are formulated by combining other metaistics with local methods of
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carrying out these procedures. These combinations, al®erkas hybrids, are essential for
correcting many of the diculties faced during the Genetic Algorithm process witharelg
to probability. A large population produces more diversityresults, while a simple, local
procedure with this population strengthens these verylteesiviemetic Algorithms were
introduced for this purpose, in which the process of the Gerdgorithm is combined
with the particular solution of the fiiculty in question. This method was developed by
Moscato in 1989¢2]. These algorithms devise better populations throughtyeaperations

of the already existing populations. This method is usednadtber metaheuristic methods
must be involved in the study. It is basically a form of Genétigorithm including a Tabu

Search.

2.3.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspiredtlym which was first established
by [49]. PSO is based on population of solutions as in GA. It is irexpfrom the individuals
(called particles) behavior inside the swarms such as birdgehool of fishes. Solutions of
the optimization problem can be modelled as the individoatee swarm which move in the
solution space. Improvements of the swarm are obtained &ach particle’s movement that
compile the swarm, based on thieet of inertia and the attraction of the members who lead

the swarm. Thus, PSO also belongs to the evolutionary #hgosi class.

2.3.5 Variable Neighbourhood Search

A new concept in metaheuristics is the Variable Neighboodhesearch, which is broadly
applied to data. It analyzes every aspect of a variable befoncluding the result and then
it moves on to better neighbourhoods if found around soma diavariable under study. It
gives a more intensified result by going through severalhimgrhoods of the data whereas
other metaheuristics which pre-date this method go thraughat a time. At every stage a

number of diferent neighbourhoods are explored, which adds to the ird#oom about the

28



results. In 1997, the Variable neighbourhood search metrasideveloped by Mladenovit
and Hansend(]. This led to the finding of the factual information upon whithis method
is based. The factual information stated that the locahoytn of a single neighbourhood of
data may not be the local optimum of another neighbourhobeéréfore, the global optimum
will be the local optimum of all neighbourhood structuregst, it states that the local optima
of several neighbourhood structures are very closely redicfihrough extensive empirical
study, it has been found that local optima always consistoaiesinformation similar to
the global optimum, which means that certain variables deatical in both optima, i.e.,
general and optimal. There are many well proposed and estatll VNS schemes. Variable
neighbourhood search involves a number of neighbourhadoal$irme at every level as noted
above. Sometimes a VNS scheme is undertaken in the framerobddy VNS scheme and
the neighbourhood structures involved in each scheme caearpalifferent. The inclination,
time management and quality proposed by the user play a kegincselecting the right
neighbourhood classification for a scheme. If the VNS schantdghly developed and
evolving, it can encompass a change of neighbourhood steuett all iterations. All the
factual information provided previously can be used togetb solve a specific problem with
changing neighbourhoods at each solution level (see Algor2.3 below). This minimizes
extreme diversity and intensification in solutions whick fmllowed through to the end. The
factual information gives 3 combinations of methods, ngnddterministic, stochastic and a

combination of these two. For more details, the neighbaeathie defined as bellow.

Let S be the solution space and let a3&gtdenote the finite set of pre-selected neighbourhood
structures K = 1, ..., kmay), andNi(X) the set of solutions in th&" neighbourhood ok.
Neighbourhood structureéNy may be induced from one or more metric (or quasi-metric)

functions in a formy : S2 —» R. Then

Ne(¥) ={yeS | d(xy) <k} (2.1)
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As a result of that, neighbourhoods wfare nested, i.eNk(X) € Ny,1(X) for all x in the
solution spac&. For more details about calculating the neighbourhoodtiras see Section

(3.3.

Algorithm 2.3: Neighbourhood change or Move or not function
Function NeighbourhoodChange (X, X, K);
1 if f(X) < f(X) then
2 | X X; ke 1//Make amove;
else
3 | ke k+1//Nextneighbourhood ;

FunctionNeighbourhoodChange () compares the new valugx’) with the incumbent value
f(X) obtained in the neighbourhoddline 1). If an improvement is obtainel|s returned to
its initial value and the new incumbent updated (line 2). édthise, the next neighbourhood

is considered (line 3).

Variable Neighbourhood DescentWhen every neighbourhood classification has been com-
pletely analyzed and studied, a Variable Neighbourhoodc®#s(VND) is formed. It has
certain attributes which limit its research value becaudg a certain number of neighbour-
hoods can be studied under VND at any time. The solution oéthat the end is the best of
all in the data available. The absence of a limiting critetiwings all the neighbourhoods at
every level of the method, which gives us a number of solstiaut of which only the best
and most valued solution is selected. This procedure igechout repeatedly until the num-
ber of improvements start coming up as zero. This extengigech is very time consuming
and extremely exhaustive; therefore, more parametersyacaliced for limiting it, includ-
ing the time limit and maximum but specified number of itemas. The ultimate result is
a small, specified amount of information which is local fdrthé neighbourhood structures
that have been studied. This makes the global optimum amata goal in the context of
VND, unlike other methods which make use of only one neighihood. Although the time
required for this makes the process of giving diversifiedittmhs very slow, it also continue
to increase the strength of the ongoing process. Thus Variéighbourhood Descent is
applied on more local operations along with any other metastic program. If a meta-

heuristic program is a modified form of the Variable Neightbmod Search, then this gives
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us the General VND scheme (see Algorit2m below).

Algorithm 2.4: Steps of the basic VND
Function VND (X, K/,4,);

1 repeat

2 ke 1;

3 repeat

4 X'« argminyen x f(X) // Find the best neighbour iN(X) ;

5 NeighbourhoodChange (X, X, k) / Change neighbourhood ;
until kK = K.

until no improvement is obtained

Reduced Variable Neighbourhood SearchReduced Variable Neighbourhood Search (RVNS)
is another modified form of VNS, in which a random number amktgf solutions are se-
lected from specified neighbourhoods and no steps are takefihe or improve those raw
solutions by any local means. The boundaries formulatedMN&for its procedure prove
to be an optimization diculty. These limitations include the startup process smiytthe
limited neighbourhood structure size and the uncheckeghbeurhood structure size. Any
solution which is found to be the most appropriate is ternmedfinal result, without further
intensive search in the limited knowledge and result. Thenbaries of this variant which
limit its optimum use are checked by certain stopping detef a maximum time allowed
and the number of iterations allowed between any two pregres of the result. Unlike
VND, RVNS provides diversity with solutions in a stochastiature. It is very useful for
large structures of data, unlike VND, which can be very go&tee Algorithm2.5 on page

31).

Algorithm 2.5: Steps of the Reduced VNS
Function RVNS(X, Kmax tmax) ;
repeat
ke 1;
repeat
X « Shake(x, K);
NeighbourhoodChange (X, X, K) ;
until K = Kmay
6 I « CpuTime()
until t > tyax:

a A W N
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With the functionShake represented in line 4, a point is generated at random from tk8
neighbourhood ok, i.e., X’ € Nk(X). Its steps are given in Algorithi.6 on page 82), where

it is assumed that points from tBé(x) are{xt, ..., x™NXl},

Algorithm 2.6: Steps of the Shaking function
Function Shake(x, X, k);
1 W« [1+Rand(0, 1) x [N(X)[];

2 X «xW

Basic Variable Neighbourhood SearchThe Basic Variable Neighbourhood Search (BVNS)
is another variant of the Variable Neighbourhood Searchis &n approach balanced be-
tween diversity and intensity in the solutions obtained. ws previously explained, Vari-
able Neighbourhood Search is laborious to carry out beciadisels a solution only in the
current data structure, and while Reduced Variable Neightmnd Search (RVNS) selects
the solution randomly from the best neighbourhood strectwhich can greatly reduce the
quality of the solution obtained. This Basic Variable Ndighrhood Search (BVNS), selects
the next optimal solution from the most suitable neighboothstructure through an inter-
esting process of choosing any component of the neighbodrand putting it through some
local method to refine and improve the chosen solution. Tdligien is then made the cur-
rent candidate solution from the neighbourhood which haehksbserved in this particular
iteration. This saves time by providing a good solution withexhausting one’s resources

by fully analyzing the neighbourhood structure (see Aldyon2.7 on page32).

Algorithm 2.7: Steps of the basic VNS
Function VNS(X, Kmax tma);

1 repeat

2 ke 1;

3 repeat

4 X « Shake(x, k) // Shaking ;

5 X’ « BestImprovement(X') // Local search ;

6 NeighbourhoodChange (X, X’,k) // Change neighbourhood ;
until K = Kpay;

7 t « CpuTime()

until t > tyax:

General Variable Neighbourhood Search. A General Variable Neighbourhood Search
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(GVNS) is formulated when a Variable Neighbourhood Desd®MD) is applied in the
parameters of a basic Variable Neighbourhood Search (VN83.scheme has been found
highly successful, although only examples of this searahtmfound. The steps of the

general VNS (GVNS) are given in Algorithx8 on page 83).

Algorithm 2.8: Steps of the general VNS
Function GVNS (X, K’ ..., Kmas tmax);

1 repeat

2 ke« 1;

3 repeat

4 X « Shake(x, K);

5 X" « VND(X', K\ 5

6 NeighbourhoodChange(X, X", K);
until K = Kmay

7 t « CpuTime()

until t > tyax:

Skewed Variable Neighbourhood Search.The Skewed Variable Neighbourhood Search
(SVNS) allows a broad array of data to be explored with a muchenilexible criterion
of acceptance than before. This is a very important methocifiy case that involves a
local optimum of a very broad search space. According tortléthod, we analyze broader
neighbourhoods of such a space to get away from a particptamom, using the criterion of
acceptance and moving towards the general optimum of treesfiut this exploration can
be extremely exhausting and time-consuming. Even if theqe®is speeded up, reaching
new neighbourhoods, no matter how small or large, alwaysireg|the process to be started
in each new neighbourhood from the beginning. The SVNS naelias the advantage of
letting solutions move on to even worse ones than the prsvidihis idea is the basis of
all diversification processes. The best result is formdldabeough empirical and learning

processes. Its steps are presented in Algorithrgs2.10 and2.110on page 84).

The KeepBest(X, X) function in Algorithm 2.10 simply keeps the better betweenand

X/

Variable Neighbourhood Decomposition SearchThe Variable Neighbourhood Decompo-

sition Search (VNDS) is a VNS scheme involving two levelsatitiesolves the optimization
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Algorithm 2.9: Steps of neighbourhood change for the skewed VNS
Function NeighbourhoodChangeS(x, X", K, @);
1 if T(X") —ap(x, X’) < f(X) then
2 ‘ Xe—X"ke1
else
3 L k—k+1

Algorithm 2.10: Steps of the Skewed VNS
Function SVNS (X, Kmax tmax @);
1 repeat

2 K 1; Xpest — X;

3 repeat

4 X « Shake(x,K) ;

5

6

7

X’ « FirstImprovement(X') ;
KeepBest (Xpess X);
NeighbourhoodChangeS(X, X, Kk, @);
until K = Kpay;
8 X ¢ Xpest
9 t « CpuTime();
until t > tmax:

Algorithm 2.11: Keep the better solution
Function KeepBest(X, X);
1 if f(X) < f(x) then
| XX ;

difficulties which depend on its decomposition. The basic assamn this form of VNS
lies in the dificulties faced in the optimization processes, for a simple&S\&not appropri-
ate for formulating good solutions in a short time. This &atipromotes the basic idea of
reducing the search process to a representative subsetwhtle of the space and thus it is
analyzed moref&ciently and in less time than a simple VNS. At every progsesstage, the
VNDS selects a sample subset for all the solutions at randaihadocal method is used to
analyze this subset. Only those variables and solutionsedeeted that display the attributes
attached to the main solution. VNS schemes other than thialao applied as local search
procedures using this method. The local optimum is redefaiesl/ery stage in which an
improvement is made to the solution and this involves allsitletions down to the last. The
search is considerably strengthened, because it is fildweah to the right solution. The

VND is the most reliable form of local search tool. The ciitarfor stopping the process
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does end this process at some point, but until then this psooentinues to repeat itself. As
stated about the other variants, the criterion for stopmngharacterized by a time limit, a
certain number of iterations that can be performed in asenén between improving solu-
tions which helps us to stop the process when it reacheseadiatit. The VNDS method
is greatly renowned, with increasing numbers of applicetibeing discovered. Its steps are

presented in Algorithn2.12below.

Algorithm 2.12: Steps of VNDS
Function VNDS (X, Kmax tmax td);

1 repeat
2 k « 2;
3 repeat
4 X « Shake (X, K); y « X'\ X;
5 Y < VNS(y, K tg); X" = (X \Y) VY,
6 X" « FirstImprovement(X”);
7 NeighbourhoodChange(X, X", K);
until kK = Kmay
until t > tmax;
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Chapter 3

Heuristics for Harmonic Means

Clustering

Harmonic means clustering is a variant of Minimum sum of sgsizlustering (sometimes
calledK-means clustering), designed to alleviate the dependdrtbe oesults on the initial
choices of solution. In the harmonic means clustering gmobkhe sum of harmonic averages
of the distances from the data points to all the cluster ogigris minimized. In this chapter,
a variable neighbourhood search heuristic is proposedripraving it. This heuristic has
been tested on numerous datasets from the literature. éaapphat the results obtained on
standard test instances compare favorably with recentfommsTabu Search and Simulated

Annealing heuristics.

3.1 Introduction

The method for forming natural groupings in data is callethadustering; it is a very im-
portant function of machine memory and the recognition afgoas. Clustering48, 57, 5]
is a scientific method which addresses the following veryegalnproblem: given the data

on a set of entities, find clusters, or groups of these estitihich are both homogeneous
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and well-separated. Homogeneity means that the entitibgisame cluster should resemble
one another. Separation means that the entitiesfiardnt clusters should féier from one

another.

There are numerous ways to express homogeneitpageparation by one or two criteria. In
addition, various structures may be imposed upon the chjdtee two most common being
hierarchy and partition. Choosing a criterion and constsadlefines a clustering problem. If
this is done explicitly and rigorously, it takes the form ghathematical progran8p]. Many
solution methods exist for most clustering problems. le KG@ses, they are exact algorithms

which provide proven optimal solutiong4, 6].

Cluster analysis deals with various types of data. Howepastijtioning in Euclidean space
RY is only concerned in this thesis. To explain the notatiom,Xe= {xi,...,Xn} be a
set of objects or entities to be clustered € RY) , and letC be a subset oK. Then
Pk = {C1,Cy,...,Ck} Is a partition ofX into K clusters if it satisfies: (iCx # 0; k =

K
1.2, K (i)CinCj=0; i,j=12....K; i#j and (iU Cyx=X.
k=1

One of the most popular partitioning problems for points utktlean space is the minimum
sum of squares clustering (MSSQ), b, 40]. It considers simultaneously the criteria for
homogeneity and separation. Minimizing these criteria@mmto replacing each cluster by
its centroid while finding the partition which minimizes teem-of-squares distances from
the entities to the centroid of their cluster. A mathemafimanulation of the MSSC problem
is as follows (see for examplé()]): consider a seX = {Xq, ..., X, ..., XN}, X = (X1i, ..., Xqi)

of N entities in Euclidean spadr®. The MSSC problem is to find a partition &finto K
disjoint subset€; such that the sum of squared distances from each eqtitythe centroid

cj of its clusterC; is the minimum.

Specifically, letPx denote the set of all partitions #finto K sets. Let partitiorP be defined

asP = {C1,Cy, ...,Ck}. Then MSSC can be expressed as:

. . 2
fussdP) = min > min, [ix - I, (3.1)

.....
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where the centroid of clustgris given ascj = |C_1,| Yiec; Xi-

The K-Harmonic Means (KHM) clustering problem is similar $everal respects to the
MSSC problem. Indeed, it considers partitions and minisiiagunction of distances to
cluster centroids, this last term being understood in &#liglifferent sense from the above.
KHM minimizes the sum of harmonic averages of the distanetwden each entity and all
centroids. It has been observed that the final solution d/A88C problem obtained by many
local search heuristics depends substantially on thalmitioice of centroids. However, this
does not appear to be the case for the KHM clustering prob&3h [To support this fact,

some comparisons between KM and KHM are made to show the iropatgtializations on

the final solution in the next Chapter.

KHM uses a weight function which allows the same entitiesdlohbg to diferent clusters. A
weight functionw, recalled below, determines the repartition of the belogdghat each entity
has in each cluster. The other function used in the KHM atlgoriis called the membership

functionmj, which assigns each entity or poixtto a cluster;.

It will be seen that the KHM clustering problem is adequaietproved by using the basic
Variable Neighbourhood Search (VNS) heuristic. For scaiire quality of VNS, it is com-
pared with those results obtained by multi start local $eétLS), Tabu Search (TSBp]

and Simulated Annealing (SABJ] heuristics. The improvements of the results when the
initial data are scaled or normalized are also shown. Binal/NS-based heuristic is tested
on greater instances than previously used in the literakoethese purposes, instances from

the Traveling Salesman Problem (TSP) librarg][are used.

This chapter is organized as follows. The next section ptesevery brief review of the K-
means algorithm. Then, details the KHM clustering problemd is local search algorithm.
Section3.3 on page43, show how the suggested VNS heuristic improves upon thd loca
search of KHM. Sectior8.4 on page46 contains computational results. Conclusions are

drawn in sectior8.50n pagebl.
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3.2 K-Harmonic Means clustering problem (KHMCP)

Among numerous heuristics for MSSC, the best known and nftest ased is th&K-means
(KM) [ 25, 55]. From an initial set of centroidds-means proceeds by reassigning the entities
to their closest centroids and updating the cluster cedgrantil stability is reached. Its

steps are given in Algorithr8.1 below. The basic local search for KHM, described below,

Algorithm 3.1: K-Means algorithmKM) for the MSSC problem
Function KM (X, K, Maxit,N, C, 2)
1 Choose initial centroids, (k= 1,...,K)

|l <0

repeat

[ —1+1

fori:=1,...,Ndo

o g b W N

Z= fMSSCaS in 61)
8 for j:=1,...,Kdo
9 | Calculate centroid;

~

until m does not change ordMaxit

is quite close to KM. Zhang and his colleagué&s,[82] have established the K-Harmonic
Means. KHM evolves from the optimization criteria which bayeen built on the concept of
Harmonic mean. K-Harmonic Means (KHMjters a more promising way of finding much
better and quickly clustering solutions. It also surpagbesk-means (KM) as it will be

shown later. The KHM objective function is calculated byngsihe harmonic average which
in many situations gives the truest average. The harmomi@age HA) is always the least of

three Pythagorean means (including Arithmetic average) @# Geometric average (GA))
for positive sets that contain non-equal values. Howeve®™A is always the greatest. The
HA tends (compared to the the AA) to reduce the impact of lamggiers and enlarge the

impact of small ones.

In some certain problems such as the speed average, the HA iauest mean. It is very

often that the AA is mistakenly used instead of the F28][ The harmonic averagedA) of
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Knumbersaj e R (j =1,...,K) is defined as:
K

K
1
25

=1

HA = (3.2)

The HA is used to measure the distances between entities andidentia addition, the
pth power of the Euclidean norm is used as a distance functitence, Equatior3.2 will
be:

HA(K,p)=—— V i=1.,N . (3.3)

Then the objective function for KHM is:

N
funm(K, p) = man HA(K, p) = man Kk (3.4)
i=1 =

The most popular iterative procedure for solving this peabis the K-Harmonic means local
search §2], recalled in Algorithm3.2. Letd;; = [Ix, — ¢;||P, then the recursive updating4]
rule for each centroid can be derived easily by the partiavatve of fxym as displayed in

3.4with respect taj equal to zero. i.e.,

dfkHm ,
=0,vj=1...,K 3.5
ac, ] (3.5)
_, 9fkhm ZN: 2K(X| - CJ _o (3.6)
acl i=1 (=5 =1 d.,

To get the new centroid, FormuBa6 needs to be reshaped to obtain:

N

__K
Z @ (S, E)2

C(_neV\) _ =

J (3.7)

;
(ZJ =1 dIJ )2

Mz

According to B7], the membership function and the weight function which KHisks are
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defined as follows:

-p-2
X — il P
K b

-p-2
D% -l P
j=1

mKHm(Cj/Xi) = Y i= 1,...,N, V j =1..,K , (38)

K

-p-2
g 1% — ¢l P
=1

WKH|\/|(X5) = K , Y i=1.,N , (39)
O lx = ¢lIPy?
=1

Thus, from Equation8.8and3.9, the centroids equatid® 7 can be rewritten in the following

formula [37]

N
Z MKHM(Cj/Xi) - WikHm (X)) * X

Cgﬂevv):‘ﬂN ., Y o j=1..K . (3.10)

Z MM (Cj/ %) - Wikim (%)
iz1

The local search algorithm starts by generatitgentroids chosen at random among the
given entitiesx, (i = 1,...,N). From Equations3.8 3.9, and3.10 new centroids are ob-
tained. This process is repeated until th&alence between centroids in two consecutive
iterations is less thaa (a small number) or a maximum number of iterations is rea¢ked

Algorithm 3.2below). The KHM FORTRAN code details is explained in Appenéli

Algorithm 3.2: The local search algorithm for KHM problem
Function KHM (X, K, Maxit, &,N,C,z)

1 C® = (¢, cp, ..., Ck} // K centroids are chosen from X
21«0 // i-iteration counter

3 repeat

4 f—i+1

5 C « Clew

6 Z — fKHM(C) asin3.4

7 Calculatemas in3.8andw as in3.9for all entities

g | Find new centroids™”, j = 1,...,K asin3.10

until (1™ - ¢jll < &, Vj = 1,...,K) or i =Maxit
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3.2.1 Multi-Start KHM

To keep the best value of the objective function obtaineer aféveral iterations, we design
a multistart (MLS) algorithm, in which the local search aitfun can easily be embedded.
Thus, the (KHM) are applied several times, keeping the bastien (best local minimum)
found so far. For some data sets MLS obtain very good resbDisails are shown in Algo-

rithm 3.3 below.

Algorithm 3.3: The multi-start local search for KHM clustering (MLS)
Function MLS (X, K, C, Maxit, &)

Zopt 10.e?°

i<0

repeat

i —i+1

Generate solutioX at random

Z < KHM (X, K, C, Maxit, €)

if z< Z,pithen

| Zop 2

until i =Maxit

[N

0w N o o b~ W N

3.2.2 Tabu Search

A Tabu Search based heuristic for solving KHM (TabuKHM fopothis proposed in36).
For this purpose two kinds of move are used: (i) a random svii@pcarrent centroid with
an existing facility and (ii) a so-called logical swap whicbnsists of merging two close
clusters and splitting them in two again. The clusters to beged are selected according to
their utility, as defined in§7]. A cluster whose utility is low £ 1) is merged with one with
high utility (> 1). In addition, both moves may be rejected if the generaaedam number

r < s, wherer € (0,1) andsis a parameter set by the analyst. The Tabu List is updatdgkin t
usual way. The results of such a probabilistic Tabu Searehegrorted and compared with a

VNS based heuristic in the computational results sectiahisfpaper.
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3.2.3 Simulated Annealing

A Simulated Annealing (SA) based heuristic for solving KH8/proposed by the same au-
thors in B5]. The same types of move as for TabuKHM are used. THemince is that the
decision to move or not is made according to the rule definealdiyoling schedule function
(as is usual in SA-based heuristics), and without use of a Tadi. The results obtained by
SA are also reported in section 4 , as they are giver8i [Both of these algorithms are

explained in the sectiorz3.1and2.3.2

3.3 VNS for solving KHM

Variable neighbourhood search (VNS) is a metaheuristiggded for solving combinatorial

and global optimization problems. The basic idea is to prdd® a systematic change of
neighbourhood within a local search algorith&9[41, 42, 16]. The set of neighbourhoods
is usually induced from a metric function introduced inte #olution space. The algorithm
centres the search around the same solution until anotherosobetter than the incumbent

is found and then recentres the search, or jumps there.

Let a setNy denote the set of neighbourhood structutes=(1, ..., kmax), andNk(x) the set
of solutions in thek™ neighbourhood ok. To calculate these neighbourhoods, according to

Definition 2.1in page29, it implies that:

K N
) - [
K! N!
KK—K! = K(N-K)!
K(K=1)(K-2)..(K-k=1)  N(N=1)(N-2)..(N-k-1)
ki ' ki

KK . Nk (3.11)

INk(X)]

X

For example ifx € S is a solution of the optimization problem amd:= {as, ay, ..., an} then if
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K is the number of clusters, the first neighbourhood if:

N‘J.(X) = {{l’ a2’ ey aN}’ {2’ a‘2’ ey aN}"" ’{K’ a‘2""’ aN}’
{al’ l’ a3""’ aN}’ {al’ 2’ a3""’ aN}"" ’{al’ K’ a‘3""’ aN}’
{ag,ap, ...,an-1, 1}, {a1, @, ...,an-1, 2}, ... {ag, &, ...,an-1, K},

It concludes thafN1(X)| ~ K.N. To produceN»(x), the shaking step in Algorithr.4 gives 2
sets of new centroids. This will be made easily for the restadhbourhoods as it is shown
in the previous example. Then the steps of the basic varr@ghbourhood search (BVNS)

are given at Algorithn8.6.

N,(C)
#(CH<2(C) /T N\ HO<AHCE)
C.r.r:cr L
C N, (C)

N (CY) .a

Figure 3.1: Basic scheme of variable neighbourhood search

VNS has already been applied for solving MSSC and Fuzzy M38CI[)]. Beside the alter-
nate neighbourhood structure, as used in the KM heuristig,nhore neighbourhood struc-
tures were used: H-means and J-means. H-means can be asplahbws. Let{C,, ..., Ck}

be an initial partition which is chosen randomly. An entitythat belongs to clustez; will

be reallocated to élierent clusteiCi(I # i). This process is called re-allocate or re-assign.
On the other hand, J-means works as re-locate by relocatitiiee that do not coincide

with a cluster centroid and making them the new centroidsu@ty, J-means comes from
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jumping neighbourhoods of the current solution. Both H-nse@nd J-means are used within
a nested variable neighbourhood descent (VND) strategyeMrecisely, at any point in a
J-means neighbourhood, K-means and H-means are used enthafother iteratively, until

no improvement is possible.

To apply the BVNS for solving KHM the shaking process is usedgiven in Algorithm3.4

on pageds. It simply selects the neW centroids randomly from the set of existing entities
wherek is given a VNS neighbourhood parameter. Note that in faelécts a random point
from the J-means neighbourhood structutg][ In Algorithm 3.4, r represents a number
with uniform distribution from (0,1). Thereforel denotes the index of a chosen centroid

andr2 denotes the index of random entity.

Algorithm 3.4: Shaking step
Function Shaking (X, k, C)

1j«<0 // initializing iteration counter
2 repeat

3 je—j+1

4 rl« [(K=j+21)xr] // a cluster is chosen at random
5 r2 « [(N—=j+1)«r] // an entity is chosen at random
6 fori:=1,...,q9do

7 | c(rLi) « x(r2,i)

until j =k

After shaking, random centroids are obtained to start thé&/Kétal search (KHMLS). The
previous centroids will be replaced by the new one if the temiuis improved. Otherwise,
another solution is generated at random fiNim1. In other wordsk + 1 new centroids will
be selected from among the existing entities. The searctincas this inner loop until a
certain predefined numbég,ax of neighbourhoods is reached (see Figar®. It has been
observed that makingyax larger thanK would not be productive. In fact, exchanging the
K centroids, as in J-means neighbourhood, will produce disalfarthest from the current
one, with respect to the J-means neighbourhood. Therdfigredt in Algorithm3.6 (on page
46) thatkmax < K. To know how the decision for choosing the centroids in etafaiion is

made, Algorithm3.5is designed and this is used in the main code.

The pseudo-code of the basic VNS is given in AlgoritBrf (on page46). The outer loop
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Algorithm 3.5: Neighbourhood change or move or not function
Function NeighbourhoodChange (C,C’, k)
1 if Z(C’) < z(C) then

2 ‘ C—C;ke1 // make a move
else
3 L Ke—k+1 // next centroid

of the VNS is performed until the running time reaclggx (a parameter) secondgyax is
equal to 100 independent calls of KHM local search given igofithm 3.2 Note that the
same stopping condition was used D[ 40]. For more details about the basic VNS and

other VNS methods sed], 42).

Algorithm 3.6: Steps of the basic VNS
Function VNS(X, K, Knax tmax C)

1 repeat
2 k1 // the neighbourhood index
3 repeat
4 C’ « Shake(X k,C) // Shaking
5 C” « KHM (X K,C’, Maxit, ) // Local search
6 NeighbourhoodsChange (C,C"”,k) // Change centroid
until K = Kmax

7 t « CpuTime()

until t > tyax

Since the basic VNS is easy to formulate in applicationseotiNS extensions have not
been used. The other reason is that the basic VNS is a povedgfalithm and has the best

solutions in most of the experiments although it is terngédaty MLS time.

3.4 Computational results

Computer. All experiments were performed on a personal computeld(ReCore(TM)2
with 3.24GB of RAM and a speed of 2.40GHz. All the methods voerded on Lahe¥rujitsu
FORTRAN 95.

Test instances the following test instances are chosen: I{i$ which has 150 entities in
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4-dimensions withK = 3; (ii) Glasswhich has 214 entities in 9-dimensional space with
K = 2; (iii) Winewhich has 178 entities in 13-dimensions wkh= 3, and (iv) Breast-
cancerwhich has 699 entities in 10-dimensions wi¢h= 2. For more details about them see
[12]. Also, two datasets are used, obtained froffi] fand [12]. They are called (v) dataset
1, which has 1060 entities in 2-dimensions and (vi) datasettzch has 2310 entities in

19-dimensions.

Parameters The values = 0.01 is used in all the algorithms. However, because of the
sensitivity ofe in some rare situations (lik&/inedataset if the powep = 3.5), it might be
changed to dferent values as it appears later. For that reason, otheexsion criteria are
used by solutions instead ef(i.e. the diference between 2 solutions is identical) to check
the results which may be concluded by coincidence. This nethod is applied fotris
dataset. See TabR2 In Algorithm 3.2and Algorithm3.3, the Maxit = 180. In Algorithm

3.6, thethaxis equal to the time that KHM spends on 100 independent catl&a.x = K. In

this way, a user-friendly VNS heuristic will be obtainedhicg the single parameter tigax.

For datasetl and dataset2, the power of the KHM objectivetiomis p = 2 for each number

of clustersK.

The following tables compare basic VNS algorithm with a jpvas work using the same data

sefts.

Comparison with Tabu Search. In the experiments the three data sets were useddh [
Iris, GlassandWine In Table3.1 Multistart local search (MLS) and VNS are created and
compared with TabuKHM from the literatur&q] on these data sets. The name of the in-
stance and the value &f are reported in the first column of Tal®el, the value ofp in the
second, and objective function values obtained by threéodstin the next three columns.
In columns 6, 7 and 8, the MSSC objective function value isudated with the partition ob-
tained by the corresponding KHM method. Columns 9 and 10rtdpe time when the
best solutions given in the table are reached by MLS and VNBedively. The CPU
time for TabuKHM is not reported in3f]. In the last column the computing time spent

on Maxit = 100 independent calls of LS is given. That time usetgis for the VNS heuris-
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tic.

KHM objective MSSC objective
D p |TabuKHM MLS VNS TabuKHM MLS VNS tvLs tyns  tmax
1.5 182.293 182.071 182.066 | 81.343 80.159 79.25410.078 0.016 0.203
2 | 181.728 181.519 181.518 | 79.454 79.254 79.026 |0.031 0.031 0.078
Iris  2.3| 182.252 182.064 182.064 | 79.061 78.856 78.856 0.125 0.016 0.125
K=3 2.5/ 183.037 182.866 182.865 | 79.062 78.856 78.851|0.109 0.016 0.140
3 | 186.827 186.699 182.699 | 79.549 78.851 78.85110.016 0.031 0.109
3.5| 193.637 193.481 193.476 | 80.400 78.851 78.851|1.078 0.203 1.234
15| 642.9 642.877 642.874 | 851.209  826.556 826.5560.109 0.250 0.281
2 1112.8 1112.771 1112.769| 828.540  820.782 820.7820.031 0.078 0.109
Glass 2.3 1616.3 1616.254 1616.252| 824.323  820.782 820.5260.094 0.078 0.156
K=2 2.5/ 2105.1 2105.144 2105.143| 825.382  820.028 819.6290.109 0.078 0.109
3 4247.9 4247.938 4247.938| 846.686  821.312 821.3120.031 0.016 0.094
3.5/ 8870.5 8870.487 8870.473| 918.330  831.553 831.5530.094 0.000 0.172
1.5| 4.0756e5 399360.781 399360.7812396.8e3 2371841.75 2371841|{05094 0.250 1.063
2 | 5.3926e6 5388246.00 5388245.502402.7e3 2379535.25 2379535(P5156 0.063 0.406
Wine 2.3 26.216e6 26216142.0 26216138.02438.2e3 2412870.25 2412870(P5156 0.313 0.500
K=3 2.5 75.84e6  75840168.0 75840152.02489.1e3 2416444.75 2416444|05109 0.563 0.672
3 | 1058.8e6 1.05884640e9 1.05884621e8687.4e3 2643674.00 2643674{00125 0.203 0.484
3.5| 14340e6 1.43466772e10 1.43464008e2033.7e3 2658181.75 2658181|15438 0.031 3.688

Table 3.1:Comparison of three heuristics

KHM objective MSSC objective
D p |TabuKHM MLS VNS |TabuKHM MLS VNS |[tuis tuns tmax
1.5| 182.293 182.093 182.06681.343 80.160 79.254.043 0.000 0.203
2 | 181.728 181.525 181.51879.454 79.254 79.026.053 0.003 0.090
Iris  2.3| 182.252 182.102 182.06479.061 78.859 78.856).098 0.012 0.146
K=3 2.5/ 183.037 182.866 182.86579.062 78.858 78.85D.165 0.012 0.218
3 | 186.827 186.701 182.69979.549 78.853 78.85D.243 0.016 0.289
3.5| 193.637 193.482 193.47680.400 78.851 78.851.056 0.089 1.170

Table 3.2:Comparison of three heuristics for Iris dataset using Sohs conversion
criteria

It appears that the previous TabuKHM results are improvedifovalues ofp in thelris data
set. For theGlassdataset, the results are almost the same for all three netiadeed, the
problem withK = 2 seems to be that easy and optimal solutions are probatdynebitby all
methods. Regarding th&inedata set, the results are improved by VNS, exceppfer3.5.

It is noticed that in this case, the KHM local search neveweoged in 100 restarts when
the usual value = 0.01 is used. It is found that this fact is explained by the Sitityi of
parametee when the powepis large, i.e., the denominators in formuag and3.9become
too small. The results reported in Taldd (for p = 3.5) are obtained by setting= 10. In

this way the instability caused by dividing by a number cltzs8 is avoided.

Some interesting observations can be deduced from coluffebée 3.1 which report the
values of the MSSC obijective (values of the best partitidotsioed by the heuristics and

KHM are calculated using the MSSC objective): (i) For the dataset, the quality of the
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MSSC solution increases wifh the optimal solution of 78.8514{] is reached with larger
values ofp (p = 25,3 andp = 3.5). (ii) For the Glassdataset, the quality of the MSSC
solution first increases and then declines wipeimcreases; (iii) For th&Vine dataset the

quality declines withp. This intriguing result appears to be worth further analysi

In [36], the TabuKHM has also been tested after the normalizatfaall the entities in the

data sets, i.e.,

, Vi=1,..N. (3.12)

MLS and VNS are also applied to these normalized data setslalie 3.3 comparative
results forp = 2.3 are given. It appears that the VNS provides solutions vhighdmallest
objective function values. An exception is the dataS&tss where the objective function
for the Tabu Search heuristic is twice as small as those raadaby MLS and VNS. Such
a difference exceeds by far what one would expect. In order to cteskesult, | asked
the corresponding author o8] to provide me with a full description of the solution. He

declined to do so.

Datasets TabuKHM MLS VNS | tuis  tuns  twax

Iris 7.012 7.004 6.982 0.047 0.016 0.094
Glass 16.629 34.158 34.1580.031 0.000 0.172
Wine 49,501 49.022 48.9900.156 0.016 0.194

Table 3.3:Comparison of results with Tabu Search when the datasetsaraalized
and p= 23

Comparison with Simulated Annealing. The same authors uséds, Wine and Breast-
cancertest instances for improving the KHM local search by usingnautated annealing
approach in35]. They called their heuristic SAKHM. In their computatidmasults section,
they give results fop = 3.5 only on the original and normalized data sets. In contrdit w
[3€], they also report on the CPU times used in the search. Tésults are only used in the

following tables.

In Tables3.4 and 3.5, comparisons between methods are given on original andailized

data sets in turn. In the first case, the final solution is cedaled using the MSSC objective.
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It appears that VNS and MLS provide solutions of better quaian SAKHM does, and do
so in significantly smaller CPU times. The reason appear tthéit the step in SA which
merges and splits current clusters according to theityw(itiased on the distortion and utility

approaches frong[/]) is probably not very ficient.

Datasetg SAKHMC MLS VNS tves  tuns  tvax tsakHmc
Iris 80.32 78.851 78.8511.078 0.203 1.234 15.25
Wine 2720.0e3 2658181.75 2658181/1438 0.031 3.688 20.38
B-cancer 20.92e3 20091.9473 20091.9403%41 0.250 0.671 77.78

Table 3.4: Comparison of results with Simulated Annealing search when 3.5
based on the MSSC objective function

Datasets| SAKHMC MLS VNS tvLs tvns tvax  tsAkHMC
Iris 7.11 6.990 6.990| 0.109 0.156 0.547 15.48
Wine 49.95 48.989 48.9890.031 0.078 0.172 20.52
B-cancerl 258.36  255.532 255.532.531 0.422 0.578 71.58

Table 3.5: Comparison of results with Simulated Annealing when thaskds are
normalized and p= 3.5

Comparison between MLS and VNS on large datasetsin previous tables VNS shows
slightly better performance than MLS. In the last set of expents, and to check how these
two heuristics compare in large test instances, two datasete used. Dataset 1, called
the Drilling Problem, has 1060 entities in 2-dimension&3]. Dataset 2 is called thenage
Segmentationvith 2310 entities in 19-dimensiondJ]. The results are given in Tabl&s6

and3.7.

K MLS VNS Improvements ty.s tyns tmax

10| 8.88987136e9 8.88986829e9 0.00% 8.906 14.250 22.344
20| 6.99046605e9 6.99042970e9 0.00% 31.000 34.578 61.219
30| 6.07008205e9 6.02638234e9 0.72% 75.047 3.734 89.188
40| 5.45612134e9 5.43608781e9 0.37% 111.172 84.578 120.438
50| 5.08445184e9 4.97067776e9 2.24% 136.781 14.016 148.203

Table 3.6:Comparison on Dataset h=106Q q=p=2

It appears that, for a small number of clusters, both mettasdssimilar. For largeK,
i.e., for more dfficult problems where there are many local minima, VNS obtaietser

results.
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K MLS VNS Improvements ty.s tvns tMmax

10| 36186608.0 36186488|0 0.00% 15.016 47.922 55.922
20| 32377326.0 323298840 0.15% 17.813 68.484 139.203
30(31412122.0 308672700 0.17% 71.672 177.656 213.969
40| 30768640.0 30127940/0 2.08% 101.797 253.953 319.938
50| 28922248.0 276878740 4.27% 264.203 320.625 390.219

Table 3.7:Comparison on Dataset 2y = 231Q q=19, p= 2.

3.5 Conclusion

This chapter proposes that a variable neighbourhood sbasgt heuristic is used for solving

the K-harmonic means clustering problem; it was initialifroduced in 3, 82]. The neigh-

bourhoods consist of centroid to entity moves, similar tisthused in the J-Means heuristic
[40] for solving the Minimum sum of squares clustering. In aesgmf test instances often

used in the literature, a considerably better performasaabtained using VNS than with

two recent metaheuristic based methods: Tabu Se&@rahd Simulated Annealing3p].

Moreover, the results for much larger test instances thaviqusly used in the literature are

presented. Therefore, this method may be considered as atatwof-the-art heuristic for

solving the K-harmonic means clustering problem.
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Chapter 4

Degeneracy of harmonic means

clustering

It is well known that some local search algorithms Korclustering problems could stop at
a solution with fewer clusters than the desit€d Such solutions are called degenerate. In
this chapter, | first show that th€é-Harmonic Means heuristic has this property, although
it does not have the same initialization sensitivity askheans heuristic (for solving the
Minimum sum-of-squares clustering problem). | then fouhdtttwo types of degenerate
solutions can be found in thi€-Harmonic Means heuristic and provide counter-examples
of both. | also propose a simple method to remove degenenaiygdthe execution of the
K-Harmonic Means algorithm (KHM) and use it within a recentialle neighbourhood
search (VNS) based heuristic. Extensive computationdlysisa performed on the usual
test instances from the literature, shows significant irmgmoent obtained with my simple

degeneracy correcting method, used within kit and VNS.
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4.1 Introduction

One of the most popular models for partitioning points in liglean space is the minimum
sum-of-squares clustering (MSSC) modél$, 40]. (see3.1on page36). Then the MSSC

can be expressed as follows:

fussdP) = min > min, Iix - ¢, (4.1)
i=1""

.....

where the centroid of clustgris given ascj = |C_1,| Ziec; Xi-

The most popular heuristics for solving minimum sum-ofags clustering (MSSC) alter-
nate two types of variable: for fixed centroids (locatiorf)e tbest assignment of entities
(clusters) are found, and for a givéhallocations (clusters), the best centroids are found.
Such heuristics are known as Alternate (ALT) heuristicsedUfor solving MSSC, the ALT

heuristic is calledK-Means (see Algorithn3.1on page39).

Most alternate heuristics have an undesirable propertwkras degeneracy¥, 17]: one or
more groups of entities (new facilities) become empty duita execution. In other words,
the better solution in the next iteration of ALT may be founat twvith a lower number of
clusters (new facilities). Clearly, such solutions mayilgdse improved by adding a new
centroid (facility) at the location of any unoccupied exigtfacility. Papers which investi-
gate the reason for the deterioration of solution qualitiaivied by ALT heuristics mostly
pay attention to the choice of initial points. There are ntben a dozen papers devoted to
initialization of K-Means alone and it is still a subject of debate (see &8§.50, 71, 76]).
Recent Harmonic means clusterir@fl] is designed to show that the solution quality of the
ALT heuristic for theK-Harmonic Means clustering problem (KHMCP) depends lesthen
choice of its initial solution. This fact is empirically cirmed in the next section. The nat-
ural question is then wheth&-Harmonic Means heuristi®{M), the most popular heuristic

for solvingKHM problem, poses the problem of degeneracy as well.

In this chapter | show that the€HM method could also contain two types of degenerate so-

lution: (i) Type-1, when the cluster centre has no entitiéscated to it; (ii) Type-2, when
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two cluster centres coincide, or they are at a distance fegsan arbitrary small number

| then suggest anfigcient and fast method for removing empty clusters immeljiatdien
they occur withinKHM heuristics. Such a procedure is induced into the VNS basexdstie
[3], which represents a current state-of-the art heuristictdMCP. In order to understand
degeneracy better, | performed an extensive computatioraysis on test instances from the
literature. It shows also th&#HM contains degeneracies of a smaller degree thaK {Neans

heuristic does.

This chapter is organised as follows. In the next sectionc@mpleteness, | give pseudo-
codes for the ALT procedures in solving tieHarmonic Means clustering problem (KHMCP).
In the same section | show empirically tHiM is indeed less sensitive on the initial solu-
tion. | also prove by constructing counter-examples &t could stop at the degenerate
solutions of both Type-1 and Type-2. At the end of this seGtlgpropose a method for re-
moving degeneracy. In sectign3 on page 65), | show the impact of removing degeneracy
on variable neighbourhood search (VNS) and Multi-Start&Hf (MLS). In section4.4 on
page 69), | perform extensive computational analysis. Sectddnon page 72) concludes

the chapter.

4.2 Degeneracy oK-Harmonic Means clustering

K-Harmonic Means clustering problem (KHMCP). To make it easier to the reader, | repeat
some notation mentioned in previous chapter. In the KHM@stim of harmonic averages

of the distances between each entity and all centroids isnizad:

N
ficum (P) = min )" HA(K, p) (4.2)
i=1

where;

HA(K, p):#, Vv i=1,..N. (4.3)
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The parametep is a power of the Euclidean norm which is used as a distanagifum

K-Harmonic Means KHM) algorithm. The most popular heuristic for solving KHMCP is
of the alternate type, which will be referred to as k¢larmonic MeansKHM) [83, 37]. For
the sake of completeness, | recall here the steps dHMéneuristic. The set of variables is
naturally divided into a set of locations of cluster centaesl a set of membership (alloca-
tion) variables of each entitfkHM uses a weight function which allows the same entities to
belong to diferent clusters. A weight functiow;, recalled below, determines the partition
of the belonging which each entity has in each cluster. Inrashto theK-Means algorithm
(KM) (see Algorithm3.1), which gives equal weight (i.ev;=1) to all data , th&HM algorithm
varies the weights at each step. The other function useceikHh algorithm is called the
membership functiomy; which assigns each entity or poirtto a clusterc;. This function
should satisfy the following:

K

MY m=1 v i=1.,N; (@0<m;<l vV i=1.,N V j=1..K
j=1

The membership function and the weight function which isume defined as follows:

-p-2
lIx — cjlI™P

K b

-p-2
DX gl
=1

MHm(Xi/Cj) = vV i=1.,N, V j=1..K , (4.4)

K

-p-2
D% -l P
j=1

WicHm(x) = — s, Vo i=1..N (4.5)
[Z % - c,-||‘p}
=1

where the centroids are given by the form&,[82, 37]:

N
ZmKHM(Cj/Xi)‘WKHM(Xi)‘(Xi)
ctnew _ =1 .,V j=1..K . (4.6)

j N
Z MicHm (Cj/ %) - Wicim (%)
i—1

The local search algorithrRHM starts by generatind<-centroids chosen at random from

among the given entitieg (i = 1,...,N). From Equations4.4), (4.5, and @.6) the new
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centroids are obtained. This process is repeated untilifferehce between the centroids in
two consecutive iterations is less thata small number) or a maximum number of iterations

is reached (see Algoritheéh.1).

Algorithm 4.1: The local search algorithi&HM for KHMCP
Function KHM (X, K, Maxit, &, N, C, 2)

1 C® = (¢, ¢y, ..., Ck) // K centroids are chosen from X
2{«0 // {-iteration counter
3 repeat

4 {— (+1;:C« Clew

5 Z— fKHM(C) asin @-2)

6 fori=1,..,Ndo

7 for j=1,...,Kdo

8 | Calculatem(c;/x) as in @.4)

9 Calculatew(x;) as in @.5)

10 fori=1,...,ndo

11 for j=1,...Kdo

12 | Find new centroids{"™”, as in @.6)

until (1" - ¢jll < &, Vj = 1,....K) or £ =Maxit

Sensitivity on the initial solution. As noted above, the KHMCP is introduced to avoid the
sensitivity of choosing the initial centroids of the MSSX3[82, 54]. In order to check this,
computational analysis is performed on several well-knt®gh instances from the literature
(more detailed description of these test instances is giveaction4.4). Table4.1shows the
differences between the worst and best objective function yab&ined with 100 restarts
of KM andKHM heuristics in turn. Since the objective functions of these problems are
different, crisp partitions obtained KyM are taken and found corresponding MSSC objective
function values. In this way, it is easier to compare the grilte of the initial solutions on

the final solution oKM andKHM.

The first and the second columns of TaBlé display the number of entities and the corre-
sponding dimension of the data set, respectively. The etksiumber of clusters is shown
in column 3. Columns 5 and 6 show the worst and best values @ie@n100 restarts re-
spectively. The last column gives theffdrence between the worst (largest) and the best

(smallest) values, such as were obtained and give thefBérelnce between 2 algorithms
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calculated as:

KM — KHM
100 4.7)
[ DATASET | DIM | M [ALG | WORST-SOL] BESTSOL| DIFF | DEV %]
Ruspini | , | 5 | KO 50298.04 1012672 4017132 .
(75) KHMN 12415121 10126.72| 228839 °*
Iris KM 14553 78.85 66.68
(150) 43 | 78.85 78.85 0.00| 100
Wine s | 5 | X | 2063355533 237068069 26286564 -
(178) KEM | 237184159 2371841.59 0.00
Glass RN 1240 11 §19.63 420.48
(214) 9 | 2 | kam 820.03 819.63 0.40| 9990
o | X 7700.88 611212  1588.76) o o0
B-Cancer | o KHMN 7298.29 5054.00| 134420 1>
(699) oo] ¥ 5853.25 434877 150448 o, oo
KHMN 5028.09 4348.92 679.17| °*
co | KU | 34954561768 27570329351 7384232411 ., -
TSP , KHN | 293226666.88 257897808.70 35328858.14 2
(1060) 1oo| X | 157827133.11 111301083.09 46526050.07 ¢ o
KHM | 122563406.2] 102361445 84 20201960.31 °°
oo | K | 4182208.7 2819337.2] 13628715] ., -
I-Segmentation |, KEM | 318250819 229442045 888177.69 o
(2310) rog| K | 200821319 183923127 106898197 .
KEM | 194778850 1340153.25 60763525 %
-o | KE | 113402496.6] 9991394485 1348855183 . ..
TSP , KHM | 105470392.38 100278655.58 5191736.80 °v
(3038) 1og| X | 5815931297 50568302.3§ 759101053 .,
KHM | 5061455074 48540001.30 2074549.44 2

Table 4.1: MSSC objective functions fa1 and KHM partitions obtained in 100

restarts

Table4.1 confirms that the final solution &HM is not as sensitive as ti#1 on the choice

of the initial solution, since the fierences between worst and best solutions obtained by

KHM are much smaller than thefflirences obtained by th@1 heuristics. Note also that in

some cases better objective function values are obtainbd&uN, despite the fact that MSSC

problems are considered (see, e.g., the TSP-1060 dataset).
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4.2.1 Degeneracy okHM

In this subsection | show, by counter-example that the molutbtained byKHM could also
be degenerate. | first notice that there are 2 types of deggnaiVe can say that the solution
of the clustering problem idegenerate Type;if there are one or more cluster centres which
have no entities allocated to them. We can say that the splofithe clustering problem is
degenerate Type;2f there exist at least two cluster centres which are idahtiFollowing
these definitions, it is clear that a degenerate solutiorypé32 is also a degenerate of Type-
1, but the converse does not hold. | also define the degreg@ehdeacy 17]: We can say that

a degenerate solution has a degree of degeneracy eqiidlttee number of empty clusters

in the solution is equal td.

Type-1 degeneracy oKHM. | first illustratedegenerate Type-dn the following well-known
Ruspini data set74] (entities are 75 points in the plane, as given in Figdr®. In this
experiment, | attempt to start with bad initialization ¢kring to check for degeneracy. |
show that a degenerate solution of Type-1 occurs even inrtatération of theKHM algo-
rithm if K = 4. In fact, if the initial cluster centres are located at onstr locations 75, 63,
65 and 61 (see Figuré.23, then after the allocation step, the objective functiorswéh a
proper solution is 669408.938. Entities are divided intdukters, as follows: 63 entities
{1,2,...,59,71,72 74,75} are closest to entity 75; 4 entiti¢60, 63,66, 73} are closest to
entity 63; 7 entitieg62, 64, 65,67, 68, 69, 70} are allocated to cluster centre 65. The last en-
tity is 61, which contains itself. The next step shows theethegacy in cluster 4 (see Figure
4.2h). It is interesting to note that Type-1 degeneracy coulceapn theKHM algorithm and
then be fixed by itself, i.e., without applying additionalast After only one step of location
and allocation, it appears that the degeneracy is removetsdlf. However, the objective

function is almost 3 times smaller: 252499.813.

Degeneracy of degree 2 also existKif= 5 . It is shown in Figure4.2d where | suggest
the same initial solution as in Figufe2abut entity 62 is added as the centroid for the fifth
cluster. Thus, the degenerate solution is already obtdimélde first iteration (see Figure

(4.29. However, it is removed from the solution as before, in teetistep oKHM. Therefore,
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type 1 degeneracy may be automatically corrected duringxbeution oKHM. But for many
other datasets, the degenerate solutions are significafetyjted at the end of the local search,

as explained in sectiod(2.2.
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Figure 4.1: Ruspini dataset.

Although theKHM heuristic improves Type-1 degeneracy automatically, istmosection4.4
that the quality of the final solution exceeds this if the degacy is removed immediately

as it appears. Moreover, the number of iterations of therai@ HM is greater (see Table

4.2).
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Type-2 degeneracy oKHM. The following example proves the degeneracy of Type-2 for a

KHM local search. The entitiegi, ¢) and the initial solutiorc(j, £) are as follows:

05 0

1 5
1 1

1 1

X=| 1 5 |[; C=

15 0
1 -5

05 0
15 0

The initial solution of this step is shown in Figude3a The next step is to calculate the
objective function, as in4(2), to get new centroids as id.) and to calculate the membership

and weight matrices as id @) and @.5). 1 choosep = 2 ande = 0.01. The objective function

is:
N N 4
funm(P) = ) HA(K,P) =
; 1% - Call72 + 1% — C2ll72 + 11X — Call™2 + 1% — Call 2
4 4 4 4 4
= + + + +
1000184 1000166 1000014 0.12 1000184
= 341938

By simple calculations, we get the membership matrix:

0.0000 Q0000 10000 00249 00000

0.0000 10000 00000 01925 00000
MM (Cj/%i) = :
0.0000 00000 00000 03913 10000

1.0000 00000 00000 03913 00000

The fact thatmzs = my4 = 0.3913 will cause future degeneracy. From this matrix, in, feet

can obtain crisp clustering matrix, as follows:
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M1 = max(mknm(cj/X)) =

0
0
0
1

By repeating the same steps in the next iteration we get:

0
1
0
0

0
0
0

o +» O O

o +» O O

or

-
WKHM(Xi)=( 0.9996 09997 10000 02929 09996) .

Now the new centroids, calculated frowh §), are

The results are shown in Figuré.8b). We see in Figuresi{3band4.39 that all five entities
are clustered in 4 groups, as desired. But in in Figdr8dj, two centroids are almost joined
in one cluster. In the rest of the figures3e 4.3f), we can see clearly how they become the

same. This step implies that the degeneracy in this exaramerisidered to be of type 2.

The final solution is:

C(final) =

1.0000 49953
1.0000 03291
1.0000 -4.9891
1.0000 -4.9891

1.0000 49275
1.0000 06797
14486 -0.5143
05514 -0.5143

= O O O

o o +» O

o o o ¥k

= O O O

Note that entity 4 belongs to clusters 3 and 4 equally in tit@lrsolution, as well as in all

5 iterations. At the end, cluster centroids 3 and 4 becomtiichd, producing a degeneracy

Type-2 solution.
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Figure 4.3:KHM clustering degeneracy for dataset-2.

4.2.2 Removing degeneracyK{M+)

There are manyficient ways to remove degeneracy from the solution. Suchepiges

are found for example, in Cooper’s ALT type algorithm fondny the Multi-Source Weber

problem in B9, 17]. In certain datasets (for example, in tBeCancer data set 699the

degeneracy remains in all iterationsKil, i.e., it does not automatically vanish as in the

example in Figuret.2 This guides me to design an algorithm for removing degeyera

immediately as it appears, in order to avoid it in the nexp.stdy pseudo-code is given in

Algorithm 4.2 If a degeneracy of degreeoccurs, my algorithm randomly seleadsnew

centroids among existing entities. Such new solution isasly not degenerate, since all K
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centroids have at least one entity which is allocated to them

In other words, the coordinates of any centrojdvithout an entity are replaced by entiy
taken at random. | also tested somffatent strategies for choosing the entity to be taken as
a new centroid. However, it appears that the mdstient is random selection although the
solution qualities are not significantlyftérent. | found that the computing time for any de-

terministic search is long and does not usually improve ttadity of the final solution.

Algorithm 4.2: KHM+ local search with removing degeneracy
Function KHM+ (X, K, Maxit, g, N, C, 2)

1 C® = (¢, Cp,...,ck} // K centroids are chosen from X at random
21«0 // i-iteration counter
3 repeat
4 i —i+1;C e« Chew
5 Z — fKHM(C) asin @2)
6 Calculatemas in @.4) andw as in @.5) for all entities
7 | Find new centroids™”, j = 1,...,K as in ¢.6)
8 Indicate indiced, of degenerate solution§ € 1,...,Q)
9 if (g > 0) then
10 for¢:=1,...,g9do
11 t— Db
12 h=1+n*RND // choose an entity h at random
13 for p:=1,...,q do
L G < Xig

until (Ic"” - ¢jll < &, Vj = 1,...,K or i =Maxit)

By applying Algorithm4.2, 1 can simply remove the degeneracy in the previous counter
example fork = 5 in section 4.3). Figure4.4 shows the solutions obtained by iyM+.
Although the solutions obtained M andKHM+ are both proper after the second iteration,
it appears that the objective function value of the formendse than twice as large (compare

fkpm = 212 390 with fxpms = 97, 519)

In other experiments, the degeneracy may appear again @ drations. So, the way
to insert a random solution instead of degenerate ones orgpeéars reduces the time of

justifying the initial solution.
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Figure 4.4:KHM clustering for theRuspinidataset after removing degeneracy.

To make a precise comparison betwé@i andKHM+, | use the same initial solutions for
both algorithms. Tabld.2 contains a comparison of the two local searches orRilr&pini
data and dterent values of cluster numbens)( In column 4 of Table4.2, | give the %

difference between 2 algorithms calculated as:

Tirm = ficams 49 (4.8)
fkHM+

In column 5, | report number of iterations used and in colunthetype of degeneracy that

occurred.

4.3 VNS for KHM

Variable neighbourhood search (VNS) is a metaheuristisdbring combinatorial and global
optimization problems whose basic idea is a systematicgghafineighbourhood both within
a descent phase to find a local optimum and in a perturbatiasepto get out of the corre-

sponding valley. Thef&ciency of VNS is based on three simple facts: (i) A local minim
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K | mth obj dev % | maxit | type | maxdeg | time

4 | KHM | 42980.7852 0.00 10 1 1 0.062
4 | KHM+ | 42980.7812 9 0.000
5 | KHM | 41442.8750 0.00 23 1 2 0.016
5 | KHM+ | 41442.8711 13 0.016
6 | KHM | 38989.2109 0.00 45 1 2 0.016
6 | KHM+ | 38989.2109] 28 0.016
7 | KHM | 40957.8125 258 59 1 2 0.016
7 | KAM+ | 39928.8477 60 0.031
8 | KHM | 35056.9453 143 42 1 3 0.016
8 | KHM+ | 34562.2109 40 0.016
9 | KHM | 32716.4531 0.00 34 1 4 0.031
9 | KHM+ | 32716.4512] 41 0.031
10 | KHM | 32406.1074 1013 42 2 6 0.047
10 | KHM+ | 29426.3652 ' 34 0.031
11 | KHM | 30778.1641 493 41 2 7 0.016
11 | KHM+ | 29527.8652 65 0.047
12 | KHM | 30869.2480 0.39 41 2 8 0.016
12 | KHM+ | 30748.0254] 80 0.047
13 | KHM | 31482.8633 797 41 2 7 0.047
13 | KHM+ | 29160.1875 - 107 0.062
14 | KHM | 36413.9570 386 59 2 8 0.078
14 | KHM+ | 35059.1758 30 0.031
15| KHM | 37569.1562 350 54 2 9 0.078
15 | KHM+ | 36298.4766] 41 0.031

Table 4.2:Comparison between methdci® andKHM+ on the Ruspini dataset

with respect to (w.r.t.) in one neighborhood structure isnexessarily the same for another;
(ii) A global minimum is a local minimum w.r.t. all possiblesighborhood structures; (iii)
For many problems, the local minima w.r.t. one or severgmsurhoods are relatively close
to each other. The VNS metaheuristic is well-establisheterliterature. For an overview of
the method and numerous applications, the reader is rdfearf(], [41], and for the most

recent survey, to42].

For solving KHMCP, the VNS based heuristdN§-KHM) has already been proposed 8}.[

For the sake of completeness, | repeat its steps in Algorétian

In my VNS-KHM+ the initial solution is obtained by selectir§ centroids among the exist-
ing entities at random. The method terminates when a givenimg timetny is reached.
The inner loop iterates until there is no better solutiorhim last neighborhoodka,) of the
incumbent solutiorC. The inner loop consists of 3 steps: Shaking; Local seardhN\sigh-

bourhood change. The onlyftirence between my new VNS based heuristic suggested here
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Algorithm 4.3: Steps of the basic VNS
Function VNS+(X, K, Knax tmax C)

1 repeat
2 k1 // the neighbourhood index
3 repeat
4 C’ « Shake(X, k,C) // Shaking
5 C"” « KHM+ (X K,C’, Maxit, &) // Local search
6 NeighbourhoodsChange(C,C"”,k) // Change centroid
until K = Kmax

7 t « CpuTime()

until t > tyax

(VNS-KHM+) and theVNS-KHM as in 3] is thatKHM+ local search, given in Algorithrd.2,
is used in the new method instead of #i&1 used in the old VNS. Details regarding the
functions ofShake andNeighbourhoodChange may be found in§]. For the sake of com-

pleteness, here | give only their pseudo-codes. The maimoparof the Shaking step is

Algorithm 4.4: Shaking step
Function Shaking (X, k, C)

1j«<0 // initializing iteration counter
2 repeat

3 je—j+1

4 rl« [(m—j+21)*r] // a cluster is chosen at random
5 r2 « [(n—j+1)=r] // an entity is chosen at random
6 fori:=1,...,q9do

7 | c(rLi) « x(r2,i)

until j =k

to diversify the incumbent solutio@. Neighbourhood (k = 1,...,knay consists of ran-
dom centroid-to-entity swaps. Such a random solution igrthial one for theKHM+ local

search.

Algorithm 4.5: Neighbourhood change or move or not function
Function NeighbourhoodChange (C,C’, k)
1 if zZ(C") < z(C) then

2 ‘ C—C;ke1 // make a move
else
3 L Ke—k+1 // next centroid
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FunctionNeighborhoodChange () compares the new valugC’) with the incumbent value
Z(C) obtained in the neighbourhoddline 1). If an improvement is obtainekjs returned to
its initial value and the new incumbent is updated (line Zhddwise, the next neighbourhood

is considered (line 3).

4.4 Computational Results

Computer. All experiments were performed on a personal computel(ReCore(TM)2
with 0.98GB of RAM and a speed of 2.40GHz. All my methods werder] on LahefFujitsu
FORTRAN 95. For plotting, | use MATLAB 7.6.

Test instances | choose the following test instances: Ruspiniwhich has 75 entities in
2-dimensions T4]; (i) Iris which has 150 entities in 4-dimensions; (iy¥ine which has
178 entities in 13-dimensions; (iGlasswhich has 214 entities in 9-dimensional space; (v)
Breast-cancemwhich has 699 entities in 10-dimensions, and (aiage Segmentatiowith

2310 entities in 19-dimensions. For more details about flsem [L2].

Parameters | chooses = 0.01 in all my algorithms. In Algorithnd.1, the Maxit = 180. For
all datasets, | put the power &HM objective function ap = 2 for each number of clusters

K.

Maximum degree of degeneracy As mentioned above, tH&HM algorithm has a smaller
degree of degeneracy th&t (for solving Minimum sum-of-squares clustering). In Figur
4.5, | show the maximum degrees of degeneracy obtained durengxécution of these two
heuristics. Comparative results on two well-known datfeimn the literature are presented:
(i) Breast-cancemnd (ii) Image SegmentatiorThe gap between the two algorithms is very
clear: the maximum degree of degeneracy is much largéMdinan forKHM. However, it is
interesting to note that the maximum degree of degeneraty ismpirically linear function
of the cluster numbeK. Tables of these results and more details about KHM degeyéoa

these datasets are explained in AppendigdsandB.2.
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Figure 4.5: Comparison between the degeneracy degrdedvidans an&HM local
searches after 100 starts.

Comparison between KHM and KHM +. In the following tables | present a comparison
between the objective function values obtained Wit andKHM+. The first column indicates
the number of desired clustefi€). The second column indicates the method useth) in
the originalkHM and myKHM+. Column 3(obj) gives the corresponding objective function
values. Column 4 shows the percentage improverftsyv %)obtained bykHM+. The number
of local search iterationgnaxit)is displayed in Columns 5. The Ty[fiype)and max degree
(maxdeg)of degeneracy are displayed in columns 6 and 7 respectivite last column

shows the computing tim@ime) (in seconds) for each method.
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K |method obj % dev|maxit |type|maxdegtime| | K |method obj [% dev|maxit|typel/maxdegtime
50| KHM 1010980.81 016 153 1 1 1.25 |180 KHM 136.40 26.54 4 2 1 0.09
50|KHM+ |1009370.12 ~"7| 138 0.84 |180|KHM+ |107.79 4 0.21
60|KHM 772767.7% 50.28 119 1 1 0.93 |190|KHM 89.61 55.90 4 2 1 0.12
60| KHM+ 514221.22 © 93 0.73 | 190/ KHM+ 57.48 ~ 5 0.37
70|KHM 1214848.75 57 34 93 | 1 1 0.86| |200|KHM 37.74 21.60 5 2 1 0.09
70| KHM+ 772127.44 7 73 0.78 | 200/ KHM+ 31.04 5 0.60
(a) DatasetWine-178 (b) DatasetGlass-214
K |method| obj |% dev|maxit|type|maxdegtime|| K|method| obj |% dev|maxit|type|maxdeg time
100|KHM 29219.3( 0.54 125 2 42 | 4.06 |100/KHM 32480866 0.20 104 | 2 1 [14.7§
100KHM+ [29063.82 68 2.57) |100/KHM+ |3241684¢ | 131 16.67]
150/KHM 31468.25% 924 48 | 2 39 |2.35 |200KHM 31760192 0.02 157 | 2 1 [38.18
150KHM+ [28806.04 7 0.57) |200KHM+ 31754658 """ 150 40.87
200/ KHM 30548.25% 28.76 3 2 50 |0.20 |300KHM 3029527 0.02 105 2 3 |37.68
200 KHM+ |23725.5% " 3 0.62 |300|KHM+ 3028825 ' 91 38.03
250/ KHM 26197.01 3750 3 2 62 |0.25 400 KHM 29596908 0.97 105 2 6 |49.70
250 KHM+ |19052.13 © - 2 0.85 |400/KHM+ |29313292 77| 102 48.68
300/ KHM 23265.06 57 89 2 2 78 |0.20 |500 KHM 28287296 0.42 50 | 2 10 |[29.28
300 KHM+ |14741.80 ~ - 2 1.09 |500KHM+ |28169312 43 26.18

(c) DatasetBreast Cancer-699 (d) Datasetimage Segmentation-2310
Table 4.3:Comparison betweekHM andKHM+ based on one run.

Based on the comparative results betw&HM andKHM+ given in Table4.3, the following

observations can be obtained:

(i) By using KHM+, the solution qualities are improved up to 58%, in a lower hamof

iterations and smaller computing times, on average.

(i) The degeneracy type is correlated with the instancather words, there is no instance
with both types of degeneracWine-178exhibits only type 1 and the other instances

only type 2 degeneracy.

(iii) The number of clusters without entity (the maximum degy of degeneracy) could be

more than 40% of the total number of clust&rgseethe Breast Cancer-69@stance).

Comparison between VNS-KHM and VNS-KHM+. The next table presents the influence
of KHM+ when applied within 2 metaheuristics: Multi-start locabssh (MLS) and VNS.

Heuristics which use KHM as a local search within MLS and VNS | denote as ML&hd
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VNS+ respectively. Tabld.4 presents the comparative results obtained by these 4 ngethod
are presented. For each dataset | first run KHM and KHM times to get the maximum

time allowed for VNS and VN$ (tmay). Those values are given in the last column of Table

4.4
dataset | K obj % dev obj % dev|tmls|tvns|tmax
<o |VILS [6193305630 , _|VNS [466665625) . 0.020.04 0.17
MLS+|569476.3750 o' 9lvNsS+|463067.2190 °'80.020.15 0.16
Wine [ MLS [571392.2500 , VNS [435012.0310 o ]0000.13 0.13
(178) MLS+|514221.219p 11| vNs+|398527.0000 290.0000.03 0.47
o |MLS [463024.7500 , _ |IVNS [353198.438)  [0.020.17 0.29
MLS+|448310.094p >-28|VNs+|340220.7810 38%0.020.21 031
MLS | 106.0072 VNS 28,8218 0.050.14 0.17
180\s+| 815228 3909 yNs+|  27.6500 *240.020.05 0.12
Glass [  IMLS 482871 JIVNS 199370 | ,10.090.14 0.14
(214) MLS+|  46.4445 >9uns+| 196822 1?%0.46/0.45 056
MLS 29,437 VNS 8.5587 0.080.71 0.75
200\ise| 285487 3Mhlvnss 82308 >%%0.121.16 1.16
Lo MLS | 289015645 _ JIVNS | 275193906 [0080.23 023
MLS+| 28708.224p VNS+| 274493926 0.190.21 0.21
(e MLS | 278488496 , _ VNS | 24057.1543 [0.090.4q 040
Breast MLS+| 27168.3398 2°HIVNS+| 24021.5278 °190.220.31 0.34
Cancer [, JMLS | 27974.0878 VNS | 20640.6978 ; ~_10.430.40 0.48
(699) MLS+| 22854.955) 2% %9 vNs+| 18707.5488 19-330.500.50 0.50
MLS | 26197011 VNS | 18345.203[ 0.060.55 0.65
250 Ls+| 18187.2550 ** 04 wNs+| 15142.733h 22190.620.62 0.62
MLS | 23265.0645 VNS | 16581.6528 0.080.67 0.70
300 Ls+| 13592.481h "1 18NS+ 11205.0742 4728 0.700.54 0.70
Lo MLS | 32480866 _ |IVNS | 24805398 . /0090.2§ 098
MLS+| 30205774 2Huns+| 24770124 %140.76/0.83 0.95
(eqMLS | 25970568 _ VNS | 21838422 | _|192159 214
Image MLS+| 25960054 0O4lUNs+| 21545372 1390.250.41 2.06
Segmentatioly  JMLS | 24675180 _ VNS | 18951112 _ _2.182.78 3.64
(2310) MLS+| 23750836 SO vNs+| 18836514 °-%Y1.251.01 4.25
CeqMLS | 24025238 | (I\UNS | 17222897 1217275 4.42
MLS+| 23776396 O vNs+| 17212400 209219254 4.43
MLS | 2168634 VNS | 1609410 2.1772.67 5.34
300 MLs+ 2088860$ 382\yNs+| 16002548 %°71.031.98 5.18

Table 4.4:Comparison betweefHM-VNS andKHM-VNS+.

It appears that:
(i) Clearly the best results for each instance tested amaraat byWNS+ heuristic. Moreover,
those results are obtained in less CPU time than resultinebtayVns.

(i) VNS is always better thaMLS+, exept for the twdBreast canceinstances (fok = 250

andK = 300).
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(iif) MLS + improves the solution quality of MLS significantly. Thusufomethods can

easily be ranked as follow¥NS+, VNS, MLS+, MLS.

(iv) l also observed that the better results obtained by V& reported even when the final
solution obtained byNS is not degenerate. This means that removing degeneracy
immediately when it appears during the KHM iteration is éeftdea than to wait

possible correction in future iterations.

(v) Regarding CPU timalLS+ andVNS+ are slightly faster on average th#hS andVNS

respectively.

4.5 Conclusion

In this chapter | consider the-Harmonic Means clustering problem (KHMCP) and alternate
type of heuristic (ALT) to solve it. | show that th€-Harmonic Means (KHM) clustering
heuristic for solving KHMCP poses the property of degengrae., the property that some
clusters could remain empty (without entities) during tRecaaition or at the code. 1 distin-
guish two types of degenerate solutions and providefacient procedure which removes
degeneracy immediately when it appears in iterations. Blae this new routine is used
as a local search within a recent variable neighbourhoortls€®NS-KHM) which repre-
sents the current state-of-the-art heuristics for solWRMCP. The extensive computational
analysis on the usual data sets from the literature confinmisdegeneracy could seriously

damage the solution qualities of ba&HM andVNS-KHM.
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Chapter 5

Conclusion

It has been seen that K-Harmonic Means (KHM) clusteringréttgm plays a very good role
in clustering and heuristic applications. KHM has a soft rhership function that measures
the probability of every entity in the dataset being allecato a cluster. Also, the weight
function increases the weight the entities which are fstthgvay from each cluster. In com-
parison with K-Means (KM), it was also shown in details how MHks not sensitive with
initialization.

KHM is applied by using Variable Neighbourhood Search (VNH)e code is tested with
known datasets and compared with some recent methods stliabaSearch and Simulated
Annealing. It is proved that VNS-KHM surpasses other metha8ome experiments give
some good observations, like the changing values of olg@iinctions based on the power

of KHM. Also, the speed of getting the solution in VNS-KHM isry significant.

Despite of these advantages, KHMi&us from degeneracy as it is proven by counter exam-
ples. But it has less degree of degeneracy than KM. It is shbatremoving the degeneracy
immediately aids the solution and reduces the abundantndegie iterations. The basic
VNS-KHM and Multi-start algorithms are produced after refimg the degeneracy and this

leads to very good improvements.

In the mean time, the KHM code which is displayed in Appendlixnight be adopted by a
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very big company in Hong Kong. They have a depot of contaiiretse port. They use the
Radio Frequency Identification (RFID) technique. Thesedaioers should be arranged in
levels up to 7. The problem is to arrange these containers tiustered correctly to reduce
the cost of the vehicle inside the depot which carry the regucontainers within unwanted

ones.

One of the competitive projects is that intrusion detecpingblem. The KDD cup 19991]

is the dataset used for this contest. These are a data setreftham 4 million entities with
41 dimensions collected from military network environmenhe task is to classify the bad
instances from the labeled data file. This dataset becarggoveular for testing the strength

of clustering methods.

Future research may include: (i) the development of a géseatement regarding degen-
eracy in alternate iterative procedures; (ii) the desigri@erent methods for correcting
degenerate solutions for ALT methods; (iii)an investigatof the relation between initial so-
lution methods oK-Means anKHM with degeneracy, i.e., whether the proper initialization

method could avoid degeneracy altogether?
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Chapter 6

Harmonic Mean vs. Arithmetic
Mean

Suppose we have the skt = {xg,..., Xy} then the arithmetic Mean (AA) foK
Is:

1
AA:Hin . (6.1)

The harmonic average (HA) is always the least of three Pyiteggn means (includ-
ing Arithmetic average (AA) and Geometric average (GA)) fpasitive sets that
contain non-equal values. However the AA is always the gstatThe HA tends
(compared to the the AA) to reduce the impact of large owtléard enlarge the im-
pact of small ones.

In some certain problems such as the speed average, the HAtisiest mean. It is
very often that the AA is mistakenly used instead of the 28][

For example, suppose that a person drove an automobile ghw#y. He passed five
exits. Between each two exits he has been driving at ave@egdof 70 milesr,

75 mileghr, 60 mileghr and 65 milegr. The exits are equally distanced of 10 miles.
What is the average speed between the first exit and the &3t ex

So, the HA for this problem is:

n

H T — = 67.03499079 miles/hr.

A: n =
Z} 707t E T s
|:1Xi

However by using the AA formula abowel,

n
AA = % Z X = %1(70+ 75+ 60+ 65)= 67.5 mileg/hr.
i=1
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But the total time for this journey is:

10 10 10 10
5" 78 55" g5 = 0-596703 hr.

If the HA is considered for this journey, then the total tirae i

40

which is compatible with the right time. However if the AA isrtsidered, then the
total time for this journey is:

40
675 = 0.592593 hr.

which is slightly diferent from the original time.

This example shows that the harmonic average is more aecuratany particular
applications than the arithmetic average. For more desditsut other matters of
means, the reader may refer &].
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Appendix A

Fortran Code for KHM Local
Search

program KHarmonicMeans

* HEH AR BB HHH AR R HH AR R AR HH AR H AR AR H AR AR
* # max number of entities = 3100 #
® # maximum dimension of data = 50 #
* # maximum number of clusters = 100 #
= # eps - input precision (eps) #
* # p - power parameter for Harmonic means #
® # maxit - maximum number of iterations #
* # mk - membership matrix #
* # wi - weight function #
® # n - number of entities #
* # nl - dimension of data #
® # m - number of clusters #
* bt ddda sl il it
o e Declarations

real x(3100,50),c(100,50) ,mk (3100, 100) ,wi(3100),ck(100,50)

logical®*l mm(3100, 100)

real*8 seed
L e EE e B e P e Read the input data
* HEHHAR BB HHH B HH AR R A AR H AR AR H AR AR H AR R R
* # iun is the data file should be saved as fort.150 #
= # the first line must contain 6 parameters: #
* # n,m,nl,eps,p,maxit as shown above. #
= # Here I present the IRIS data set as an example #
* HEH AR BB HHH AR HH AR R A AR R AR H AR AR H AR AR

seed=12

iun=150

read(iun, *)n,m,nl,eps,p,maxit

do i=1,n

read(iun, *) (x(i,j),j=1,nl)

enddo

call RndInit(m,n,nl,x,c)
L e EE e B e P e Local search KHM

zopt=10.e20;

call khm(x,c,eps,p,maxit,n,m,nl,mk,mm,wi,ck,zopt)
———————————————————————— Print results

* bt ddda sl

= # This gives the final result of KHM. #

* bt gddda sl il il
write(*,*)’ Objective function value is ’, zopt

write(*,*)’ Cluster centroid coordinates:’
write(*,*)’ —---mmmm e ’
do j=1,m
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write(*,*)j,’.’,(ck(j,i),i=1,n1)
enddo
stop
end
———————————————————————— Subroutine of KHM
subroutine khm(x,c,eps,p,maxit,n,m,nl,mk,mm,wi,ck,zopt)

real x(3100,50),c(100,50),u(3100,100),s3(3100),s4(3100)
real mk (3100, 100),ck(100,50),c1(3100,100),c2(3160,100)
real s5(3100),wi(3100)

logical*1l mm(3100,100)
integer h,nbe(100),o0pt(3100)
zopt=10.e21
do h=1,maxit
write(*,*)’ Iteration: ’,h
z=0.
———————————————————————— One iteration

do k=1,n1
dd=(x(i,k)-c(j,k))*x(1i,k)-c(G,k))
did=did+dd
enddo
did=sqrt(did)
if(did.eq.0.)did=eps
u(i, j)=1/(did**(2+p))
s3(i)=s3(i)+u(i,j)
s4(i)=s4(i)+1/(did**p)
enddo
do j=1,m
u(i,jd=u(d, j)/s3(1)
enddo
s5(i)=s4(i)*s4(i)
wi(i)=s3(i)/s5(1)
z=z+m/s4(i)
enddo

do j=1,m
mk(i,j)=uld,jd
enddo
enddo
———————————————————————— Crisp clustering

do j=1,m
mm(i,j)=.false.
if(mk(i,j).gt.dmax)then
dmax=mk (i, j)
jst=j
endif
enddo
mm(i,jst)=.true.
enddo
do k=1,n
enddo
———————————————————————— New centroids

cl(@d,k)= mk(i,jD*wi(i)*x(i,k)
enddo
c2(i,j)= mk(d,j)*wi(i)
enddo
sum2=0.
do i=1,n
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*

*

*

*

*

*

*

*

sum2=sum2+c2(i, j)
enddo
do k=1,n1
suml=0.
do i=1,n
suml=suml+c1(i, k)
enddo
ck(j,k)=sum(c1(:,k))/sum(c2(:,3j))
ck(j,k)=suml/sum2

enddo
HARAHRHHRAARHHRAA R RRH BB BB R R AR R
# To print the new centroids in each iteration. #
HARAHRAHRAA R RAA R R BB RH
write(*,*)j,’.’,(ck(j,1i),i=1,nl1)
enddo
dnorm=-1.e20
do i=1,m
dif=0.
do j=1,nl
dif=dif+(c(i,j)-ck(i,j))*(c(,]j)-ck(i,j))
enddo
if(dif.gt.dnorm)dnorm=dif
enddo

dnorm=sqrt (dnorm)
write(*,*) dnorm=",dnorm
if(dnorm.lt.eps.or.Abs(z-z1).1lt.eps/100.)then

zopt=z
return
endif
HERBHBHAHAAH R RH AR RA AR R AR AR R R
# To print the objective function in each iteration. #

HARAHRAHRAARHHRAA R R AR AR R R
write(*,*)’ Objective function value in iteration is ’,z
do i=1,m

do j=1,nl
c(i,jr=ck(i, i
enddo
enddo
zl=z

enddo

zopt=z

return

end

subroutine RndInit(m,n,nl,x,c)

HARAHRAH R RHHRAA R RRH BB RS

# Generation of initial centroids out of #
# existing entities. #
B e
real x(3100,50),c(100,50)

integer p(3100)

call Exch(i,i7,n,p)
do j=1,nl
c(i,j)=x@17,7)
enddo
enddo
return
end

subroutine Exch(i,i7,n,p)
real*8 seed

integer p(3100)
i2=n-i+1
il=1+i2*Ran(seed)
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*

*

il=1+i2*seed

i7=p(il)

p(AD=p(i2)

p(i2)=i7

return

end

B e
# Designed and created by: #
# Abdulrahman Alguwaizani #
#E#HH AR AR AR R R
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Appendix B

Detalls of KHM Degeneracy

The following tables may be interested for the reader, asghew the details of cal-
culations of the charts which are presented in Chapter 4Higgre4.5). In the next
sections | show all results for the degeneracyBaast-canceDataset andmage
Segmentation-231datasets after applyirgiM 100 times.

B.1 Multi-Start of KHM for I mage Segmentation-2310
Dataset

In the following table, the first column denotes the numbecloéters. The second
column indicates the max degree of degeneracy for 100 rsaltts. However, the
proper iterations are presented in column 3. The last colisndesigned to show
number of degenerate iterations (from these 100) of eactedefor instance, when
the dataset is clustered to 70, there are 87 proper itesafmrt of 100) and 13 de-
generate iterations, 12 of them are of degree 1, and 1 of d&gre
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K | max | proper degree
degree| iterations|| 1 | 2 | 3| 4 |5

50 1 89 11

60 2 88 1)1

70 2 87 12 1

80 3 74 171 8|1

90 3 70 25| 4|1

100 3 60 31| 7| 2

110| 4 54 31{12| 2 |1

120f 3 53 30|14]| 3

130 4 53 29(13| 4 | 1

140f 5 37 40|14(6 | 2|1

150 3 26 46|22 6

160| 4 30 39(24| 5|2

170 5 21 28(26|19( 5|1

180 5 18 30{25(13|10 4

190 6 15 4127|121 4|0

200 6 15 2735|147 |1

Table B.1:Degeneracy degrees of KHM after 100 starts
for dataset:Image Segmentation-2310

B.2 Multi-Start of KHM for Breast-cancer Dataset

In the following table, the first column denotes the numbecloéters. The second
and third columns indicate the max and min degree of degeyndaa 100 multi-

starts. The last column shows number of degenerate itagtd each degree in
details. For instance, when the dataset is clustered toth8fk is one iteration has

102 empty clusters.
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K | max | min # of degenerate iterations of each degree up to max degree
degreg degree
degree 1-14| 15(16-17/ 18| 19| 20| 21| 22| 23| 24| 25| 26| 27| 28| 29
#iter| O 1 0 11201312 |2|5|5|9|4]6
100l 47 15 degree 30 |31 32 | 33|34|35|36|37|38(3940|41|42|43]|44
#iter| 2 4 3 6|/ 5|8 |7|6|5|4]|]104]1]2
degree 45 | 46| 47
#iter| O 0 1
degree 1-34| 35| 36 [ 37(38|39(40(41|42|43|44|45|46| 47| 48
#iter| O 2 1 11112184106 |6]|4]6
2000 59 | 35 | qeoree 49 [50] 51 [ 52535415556 57|58 59
#iter| 7 9 5 681 |1|5|3|0)|2
degree 1-68( 69| 70 |71|72|73|74|75|76|77|78|79(80|81]|82
#iter| O 1 1 0,22 (4|4|7|5|9,7|8|]4]5
300 94 69 degree 83 (84| 85 [ 86|87|88(89(90|91|92|93|94
#iter| 7 5 5 51414023141
degreel1-101{102| 103 |104{105/106/107/108/109/110/111({112/113|114|115
#iter| O 1{ 0 |[0|1|0|3|2|0|2|0|21|4|6]|3
200 136 | 102 degree 116 |117| 118 |119(120|121|122(123[{124]125|126|127|128|129|130
#iter| 6 4 9 9141|1072 |54 |3[4]1]|2]|3
degree 131 (132 133 [134{135/136
#iter| O 2 0 0] 1(1
degreel-1441145| 146 |147|148|149|150]151152/153|154|155|{156| 157|158
#iter| 0O 1 0 21212|9|5|6,4|4|5]1|13|5
5000 172 | 145 | eored 159 [ 160 161|162 163 164 165166167 168 169/ 170171172
#iter| 6 6 4 5166301102111
degree1-182(183| 184 |185/186|187|188/189/190/191|192|193(194|195|196
#iter| 0O 1 0 o0(j0j1}1|]0|4,8|4|6|5|7]|38
6001 209 | 183 degree 197 [198] 199 [200[201]202|203|204|205|206|207|208|209
#iter| 9 |10 12 {4 | 5|5(3|3|2|0|1|0]1

Table B.2:Degeneracy degrees of KHM after 100 starts for dataBetast Cancer-

699.
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