
Variable Neighbourhood Search
Based Heuristic for

K-Harmonic Means Clustering

A thesis submitted for the degree of

Doctor of Philosophy

by

Abdulrahman Al-Guwaizani

Department of Mathematical Sciences

School of Information Systems, Computing and Mathematics

Brunel University, London

c©May 2011

A

Abstract

Although there has been a rapid development of technology and increase of computation

speeds, most of the real-world optimization problems stillcannot be solved in a reasonable

time. Some times it is impossible for them to be optimally solved, as there are many in-

stances of real problems which cannot be addressed by computers at their present speed. In

such cases, the heuristic approach can be used. Heuristic research has been used by many re-

searchers to supply this need. It gives a sufficient solution in reasonable time. The clustering

problem is one example of this, formed in many applications.

In this thesis, I suggest a Variable Neighbourhood Search (VNS) to improve a recent cluster-

ing local search called K-Harmonic Means (KHM). Many experiments are presented to show

the strength of my code compared with some algorithms from the literature.

Some counter-examples are introduced to show that KHM may degenerate entirely, in either

one or more runs. Furthermore, it degenerates and then stopsin some familiar datasets,

which significantly affects the final solution. Hence, I present a removing degeneracy code

for KHM. I also apply VNS to improve the code of KHM after removing the evidence of

degeneracy.

Certificate of Originality

I hereby certify that the work presented in this thesis is my original research and has not been

presented for a higher degree at any other university or institute.

Signed: Dated:

Abdulrahman Al-Guwaizani

iii

iv

Acknowledgements

I present my best thanks to my God, whose response always helped me and given me the

power to complete my work.

I would like to express my heartfelt gratitude to all those who made it possible for me to

complete this thesis. I want to thank the Department of Mathematics for providing me with

the most recent programs in my research, for giving me the permissions to access the relevant

articles in my work and to use the departmental facilities.

I am deeply indebted to my supervisor, Dr. Nenad Mladenović, whose help, stimulating

suggestions and encouragement have helped me throughout myresearch and the writing of

this thesis. I am also grateful that he provided me with the FORTRAN code for Variable

Neighbourhood Search (VNS) for the K-Means algorithm and the VNS extensions. Also,

special thanks to Jasmina Lazić for providing me the classic heuristics and metaheuristics

clustering codes with more details.

In particular, I would like to give my special thanks to my wife Areej, whose patient love

enabled me to complete this work.

v

Author’s Publications

1. A. Alguwaizani, P. Hansen, N. Mladenović, and E. Ngai,Variable neighborhood

search for harmonic means clustering, Applied Mathematical Modelling, 35 (2011),

2688-2694.

2. E. Carizosa, A. Alguwaizani, P. Hansen, N. Mladenović,Degeneracy of harmonic

means clustering. (submitted to Pattern Recognition on 31-5-2011).

vi

Contents

Abstract ii

Declaration iii

Acknowledgements v

Author’s Publication vi

1 Introduction 1

1.1 Literature and Definitions. 1

1.2 Clustering Methods. 4

1.2.1 Hierarchical Clustering. 6

1.2.2 Partitioning. 9

1.3 Outline . 11

2 Metaheuristics 13

2.1 Introduction . 13

2.2 Classical heuristics. 15

2.3 Metaheuristics. 17

2.3.1 Simulated Annealing. 19

2.3.2 Tabu Search. 21

2.3.3 Genetic Algorithm. 24

2.3.4 Particle Swarm Optimization. 28

2.3.5 Variable Neighbourhood Search. 28

vii

3 Heuristics for Harmonic Means Clustering 36

3.1 Introduction . 36

3.2 K-Harmonic Means clustering problem (KHMCP). 39

3.2.1 Multi-Start KHM . 42

3.2.2 Tabu Search. 42

3.2.3 Simulated Annealing. 43

3.3 VNS for solving KHM . 43

3.4 Computational results. 46

3.5 Conclusion . 51

4 Degeneracy of harmonic means clustering 52

4.1 Introduction. 53

4.2 Degeneracy ofK-Harmonic Means clustering. 54

4.2.1 Degeneracy ofKHM . 58

4.2.2 Removing degeneracy (KHM+) . 63

4.3 VNS for KHM . 65

4.4 Computational Results. 68

4.5 Conclusion . 72

5 Conclusion 73

Bibliography 75

6 Harmonic Mean vs. Arithmetic Mean 81

A Fortran Code for KHM Local Search 83

B Details of KHM Degeneracy 87

B.1 Multi-Start of KHM for Image Segmentation-2310Dataset 87

B.2 Multi-Start of KHM for Breast-cancerDataset. 88

viii

List of Figures

1.1 The growth of publications on clustering. 2

1.2 The K-means clustering algorithm.. 4

1.3 Flowchart of agglomerative clustering algorithm.. 7

1.4 Dendrogram of single linkage clustering. 8

1.5 The partitioning algorithm. 10

2.1 The local minimum trap in the local search. 19

3.1 Basic scheme of variable neighbourhood search. 44

4.1 Ruspini dataset.. 59

4.2 KHM clustering degeneracy for theRuspinidataset.. 60

4.3 KHM clustering degeneracy for dataset-2.. 63

4.4 KHM clustering for theRuspinidataset after removing degeneracy.. 65

4.5 Comparison between the degeneracy degrees ofK-Means andKHM local searches

after 100 starts.. 69

ix

List of Tables

1.1 Distances in miles between U.S. cities. 8

3.1 Comparison of three heuristics. 48

3.2 Comparison of three heuristics for Iris dataset using solutions conversion

criteria . 48

3.3 Comparison of results with Tabu Search when the datasets arenormalized

and p= 2.3 . 49

3.4 Comparison of results with Simulated Annealing search whenp = 3.5 based

on the MSSC objective function. 50

3.5 Comparison of results with Simulated Annealing when the datasets are nor-

malized and p= 3.5 . 50

3.6 Comparison on Dataset 1: n = 1060, q = p = 2 50

3.7 Comparison on Dataset 2: n = 2310, q = 19, p = 2. 51

4.1 MSSC objective functions forKM andKHM partitions obtained in 100 restarts. 57

4.2 Comparison between methodsKHM andKHM+ on the Ruspini dataset. 66

4.3 Comparison betweenKHM andKHM+ based on one run. 70

4.4 Comparison betweenKHM-VNS andKHM-VNS+. 71

B.1 Degeneracy degrees of KHM after 100 starts for dataset:Image Segmentation-

2310. 88

B.2 Degeneracy degrees of KHM after 100 starts for dataset:Breast Cancer-699. 89

x

List of Algorithms

2.1 Simulated Annealing. 21

2.2 Tabu Search. 25

2.3 Neighbourhood change or Move or not function. 30

2.4 Steps of the basic VND. 31

2.5 Steps of the Reduced VNS. 31

2.6 Steps of the Shaking function. 32

2.7 Steps of the basic VNS. 32

2.8 Steps of the general VNS. 33

2.9 Steps of neighbourhood change for the skewed VNS. 34

2.10 Steps of the Skewed VNS. 34

2.11 Keep the better solution. 34

2.12 Steps of VNDS. 35

3.1 K-Means algorithm (KM) for the MSSC problem 39

3.2 The local search algorithm for KHM problem. 41

3.3 The multi-start local search for KHM clustering (MLS). 42

3.4 Shaking step. 45

3.5 Neighbourhood change or move or not function. 46

3.6 Steps of the basic VNS. 46

4.1 The local search algorithmKHM for KHMCP 56

4.2 KHM+ local search with removing degeneracy. 64

4.3 Steps of the basic VNS+ . 67

4.4 Shaking step. 67

xi

4.5 Neighbourhood change or move or not function. 67

xii

Chapter 1

Introduction

1.1 Literature and Definitions

To keep up with the enormous strides made by science and technology, communities should

deal accurately with the speedy transmission of information and data. Many countries have

started to apply e-government systems. This is where the importance lies of analysing data

and distributing and dealing with software applications. Clustering technology has become

very important at present, especially with the increasing growth and steady fields of data

analysis. It is applied in a variety of ways in the natural sciences, psychology, medicine,

engineering, economics, marketing and other fields [75]. Scientists and researchers have not

lost sight of the importance of clustering; tens of thousands of scientific papers have been

published on various subjects related to clustering.

According to the web of knowledge [77], more than 6000 published papers titled by cluster

analysis in 140 subject areas. Figure1.1 on page (2) displays the rapid growth of cluster

analysis research from the 1950s to our own day. We can infer that most of the cluster

analysis literature has been written in the past three decades, although cluster methods have

been recognized only in this century. The main reasons for the rapidly increasing number

of publications on clustering are two: first, the actual needs of problems which have large

1

1950 1960 1970 1980 1990 2000 2010
0

50

100

150

200

250

300

350

400

450

Publication Year

R
ec

or
d

A
cc

ou
nt

Figure 1.1: The growth of publications on clustering

data sets, needing to be calculated by very high-speed computers, which did not exist until

this century. This in fact tempts researchers to apply theirempirical programs commonly

to real data, which expands the databases to get varied results. Second, the wide range of

clustering applications and needs requires us to apply these methods to problems in various

areas. Consequently, the clustering subject itself, as a result of these two reasons, needs to be

improved. So, new methods have been devised.

Many researchers apply clustering algorithms, by means of various techniques. The reason

for such different clustering methods is that they have a variety of uses.These objectives can

be summarized [8, 15, 81, 2] as: finding a true typology, model fitting, hypothesis generating

through data exploration, hypothesis testing and data reduction. All these purposes have

given rise to a wide selection of applications. To see how data reduction can be applied, for

example, MORRISON [61] showed as an assumption that if there is a sample of 100 cities

which could be used as test markets, but the available budgetwas only to test in five cities,

2

then we could reduce this number by clustering the cities into five clusters such that the cities

within each group were very similar to the rest of the group. Then one city from each cluster

could be selected and used as a test market.

Opinions differ on the definition of clustering. There are, for instance, many arguments over

the precise definition of the concept: clustering or clusteranalysis. These two terms refer

to almost the same conception. But an acceptable definition which can be concluded from

previous researches is that:Clustering [48, 57, 5] is a scientific method which addresses the

following very general problem: given the data on a set of entities, find clusters, or groups

of these entities, which are both homogeneous and well-separated. Homogeneity means that

the entities in the same cluster should resemble one another. Separation means that entities

in different clusters should differ from one another.

There are numerous ways to express homogeneity and/or separation by one or two criteria. In

addition, various structures may be imposed upon the clusters, the two most common being

the hierarchy and the partition. Choosing a criterion and constraints defines a clustering

problem. If this is done explicitly and rigorously, it takesthe form of a mathematical program

[39]. Many methods exist for solving most clustering problems.In rare cases, there are exact

algorithms which provide proven optimal solutions [64, 6].

Because there may be confusion between the concepts, I want to clarify the differences be-

tween clustering method and classification. Many sources indicate this, but for more details

see [57, 15, 81]. Classification is called supervised learning because allclasses are labeled

and then the goal is that each entity must be assigned to the desired class. So, the task is to

learn to assign entities to predefined classes by using training set from these labeled objects

to design a classifier for future observations. This is the opposite of clustering, where no

predefined class is required. The task is to learn a classification entirely from the data. These

differences can be simplified as supervised learning and unsupervised learning.

One of the most popular clustering methods is K-means. The main principles of K-means

clustering (see Figure1.2 on page (4)) for K clusters can be given as: (1) initialization: by

suggesting centres (centroids) from the dataset as representative for each cluster; (2) allo-

3

cation: by calculating the members of each cluster; (3) location: by calculating the new

centroids for each cluster; (4) assigning the objective function. These steps aim to find the

minimum objective function, which is know as the sum of all the differences between the

centroids and the members of each cluster. Because we need toassign the centroids in each

cluster, we have to measure the distances between the centroids and the entities in each clus-

ter. For this, we use a measurement tool called the distance function, which will be defined

later.

START

assign
initial

clusters

compute
distance
matrix

calculate
new

clusters

update
clusters

is it the
best

clustering?

STOP

no

yes

Figure 1.2: The K-means clustering algorithm.

1.2 Clustering Methods

Clustering techniques are mainly classified into partitional and hierarchical. In the partitional,

the data points are directly divided into a desired number ofpartitions (or clusters): in the

hierarchical clustering, a sequence of non-predefined number of partitions takes place, which

run either from one cluster containing all the entities tok clusters each containing a single

4

object, or vice versa. The first option is called agglomerative hierarchical clustering, and the

second is known as divisive hierarchical clustering.

Before delving into the details of the former species I should define some terms which will

be used later.

A sample setis a finite setX = {x1, x2, . . . , xN} of N entities. which has to be divided into

clusters.

Featuresare measured or observed in a variable of type character or numeric values. They are

also called attributes, variables, or dimensions. Each entity has one or more features.

An N × q data matrix is obtained by measuring or observingq features of the entities of

X.

An N × N dissimilarities matrix D = (di j) for i, j = 1, 2, . . . ,N or distance function is a

measurement tool used to compute the differences between entities ofX; this matrix must

satisfy:

1. Symmetry,

d(xi , x j) = d(x j , xi) ;

2. Positivity,

d(xi , x j) ≥ 0 for all xi andx j in X ;

3. Reflexivity,

d(xi , x j) = 0 ⇔ xi = x j .

In this case, the distance function is called semimetric function. But if the condition:

4. Triangle inequality,

d(xi , x j) ≤ d(xi , xk) + d(xk, x j) for all xi, x j andxk in X

5

is satisfied, it is called a metric.

The most popular dissimilarity measures are shown below:

• The Euclidean Distanced(xi , x j) =

√

√ q
∑

k=1

(xik − x jk)
2

• Manhattan Distanced(xi , x j) = ‖xi − x j‖1 =

q
∑

k=1

|xik − x jk |

1.2.1 Hierarchical Clustering

In hierarchical clustering the items (features) in the datamatrix are not divided into a par-

ticular number of clusters. Thus, there is no predefined number of clusters but series of

partitions have been applied. These partitions by either the agglomerative method or the di-

visive method produce a tree or dendrogram which may be represented by a two-dimensional

diagram illustrating the fusions or divisions made at each successive level.

Agglomerative Hierarchical Clustering

Although agglomerative hierarchical clustering methods are considered the oldest, they are

still used in many applications. Some claim that they are themost frequently used methods

of cluster analysis [21, 34]. If the similarity or distance matrix is known, the agglomerative

method starts by separating clusters which are each of size 1. So, if we have a dataset of

N entities the technique begins withN clusters. Then the first two closest (most similar)

pair of clusters are merged together, which reduce the number clusters toN − 1. There

are three main ways to calculate the distance between clusters. single linkage, complete

linkage and average linkage clustering. There are many other ways that can be applied such

as: Equal-Variance Maximum Likelihood (EML) Method [9], and Ward’s method [80]. In

single linkage clustering, the distance between two clusters is equal to the minimum i.e., the

distance between any two members of different two clusters must be minimum. The flowchart

in Figure1.3 on page (7) illustrates the process of the single linkage clustering method. In

6

START

assign data matrix

compute dis-
tance matrix

put each en-
tity as cluster

number of
clus-

ters=1?
STOP

merge two clos-
est clusters

the next level

update dis-
tance matrix

no

yes

Figure 1.3: Flowchart of agglomerative clustering algorithm.

contrast, complete linkage clustering can occur when the distance between two clusters is

equal to the maximum distance from any member of one cluster to any member of different

cluster. In average linkage clustering, the distance is equal to the average distance from any

member of one cluster to any member of the other cluster. To illustrate these concepts : Let

δ(C1,C2) be the distance function between two clustersC1 andC2 . It can be computed

as:

• δ(C1,C2)= min { d(i, j) : i ∈ C1 , j ∈ C2 }. For single linkage.

• δ(C1,C2)= max{ d(i, j) : i ∈ C1 , j ∈ C2 }. For complete linkage.

• δ(C1,C2) =
1

|C1| · |C2|

∑

i∈C1

∑

j∈C2

d(i, j). For average linkage.

7

Example 1.2.1

Consider Table1.1 on page (8) which shows the distances in miles between some United

States cities [14]. The method of clustering is single linkage. So, in the firststage BOS

and NY are merged into a new cluster because 206 is the minimumdistance. After apply-

ing the agglomerative algorithm, the rest of the solution can easily be concluded from the

dendrogram in Figure1.4on page (8).

1 2 3 4 5 6 7 8 9
BOS NY DC MIA CHI SEA SF LA DEN

BOS 0 206 429 1504 963 2976 3095 2979 1949
NY 206 0 233 1308 802 2815 2934 2786 1771
DC 429 233 0 1075 671 2684 2799 2631 1616

MIA 1504 1308 1075 0 1329 3273 3053 2687 2037
CHI 963 802 671 1329 0 2013 2142 2054 996
SEA 2976 2815 2684 3273 2013 0 808 1131 1307
SF 3095 2934 2799 3053 2142 808 0 379 1235
LA 2979 2786 2631 2687 2054 1131 379 0 1059

DEN 1949 1771 1616 2037 996 1307 1235 1059 0

Table 1.1:Distances in miles between U.S. cities

1 2 3 5 9 6 7 8 4

200

300

400

500

600

700

800

900

1000

1100

Figure 1.4: Dendrogram of single linkage clustering

8

Divisive Hierarchical Clustering

In contrast to agglomerative, the divisive hierarchical clustering starts with one cluster. So,

the dataset ofN entities belongs to a cluster in the first step. Then the procedure successively

splits it until each cluster contains one object. For more details see [5, 81].

1.2.2 Partitioning

Cluster analysis deals with various types of criteria, but Iam concerned only with the parti-

tioning in Euclidean space�q. To explain in brief, letX = {x1, . . . , xN} be a set of objects or

entities to be clustered (xi ∈ �
q) , and letC be a subset ofX. ThenPK = {C1,C2, . . . ,CK}

is a partition ofX into K clusters if it satisfies: (i)Ck , ∅; k = 1, 2, . . . ,K, (ii) Ci ∩ C j =

∅; i, j = 1, 2, . . . ,K; i , j, and (iii)
K
⋃

k=1
Ck = X. General principles for the partitioning

criteria are presented in Figure1.5on page (10).

K-Means Algorithm

One of the most popular criteria for partitioning points in Euclidean space is called the min-

imum sum-of-squares clustering (MSSC), since it considersat the same time the homoge-

neous and the separation criteria. Minimizing the sum-of-squares errors criterion amounts to

replacing each cluster by its centroid and minimizing the sum-of-squares from the entities to

the centroid of their cluster. A mathematical formulation of the MSSC problem and its steps

are given in Algorithm3.1on page39 in Chapter (3).

Fuzzy Clustering Algorithm

While K-Means present hard clusters, the fuzzy clustering gives soft clusters. In the fuzzy

clustering (also called fuzzy C-Means in some articles [46]), each entity has a degree of

belonging to clusters depending of how far from the centroids. So, a particular entity may

belong to more than one cluster.

9

START

initialize
centroids

from
datasets

allocate
entities to

each cluster

calculate
new

centroids

LOCAL
SEARCH

update
model

update
centroids

is new
centroid
better?

calculate
objective
function

is objective
function

minimum?

STOP

yes

no

no

yes

Figure 1.5: The partitioning algorithm

Graph Theoretic Methods

In any weighted graph, the node represents the entity point in the dimension space or feature

space. However the edge between any two pairs of nodes corresponds to their proximity. The

constructed graph should be capable to detect the non-homogeneous edges. Therefore, good

clustering can be assigned by those inconsistent edges [47].

10

1.3 Outline

This research is designed to improve the K-Harmonic Means (KHM) clustering by applying

the basic Variable Neighbourhood Search. KHM, first proposed in [83, 82], is less sensitive

to initialization than K-Means (KM). Some algorithms from the literature are compared with

KHM after applying VNS. Although KHM surpasses KM in many faces as it is explained

in the next chapters (See for example Table4.1), it is shown that KHM may degenerate in

some parts of its solution. In certain experiments, it couldstop through this degeneracy.

The algorithm for removing degeneracy has been applied for many familiar datasets and

compared with those results obtained by degeneracy. The remaining chapters of this thesis

are organised as follows.

In Chapter 2, a brief overview of metaheuristics is provided. The main concepts of heuristics

are shown by some illustrations. Most metaheuristics have been structured to provide high

level frameworks for building heuristics for further classes of problem, since certain problems

cannot be solved by heuristics. The main and most used metaheuristics in this research are

then covered, including: Tabu-Search (TS), Simulated-Annealing (SA), Genetic-Algorithm

(GA), and Variable Neighbourhood Search (VNS).

In Chapter 3, an illustration of a definition of KHM is presented beside the KM algorithm.

The main parts of the KHM algorithm, including: membership function, weight function,

centroids and objective function are covered in a code. The variable neighbourhood search

heuristic is suggested as a method for improving KHM. This heuristic has been tested on

numerous datasets from the literature. To assess the strength of the code, some compar-

isons with recent ones from Tabu Search and Simulated Annealing heuristics have been

made.

In Chapter 4, counter examples show the degeneracy in a KHM local search. An algorithm

is applied to avoid the degeneracy in KHM and used within recent variable neighbourhood

search (VNS) based heuristic. Computational results are presented to show the improve-

ment obtained with the degeneracy correcting method, whichis performed on the normal test

11

instances from the literature.

12

Chapter 2

Metaheuristics

Combinatorial optimization problems have attracted much interest, due to the advancements

made in operational research. Since most of these problems are NP hard, heuristics and other

approximate solution approaches with performance guarantees are required. This chapter

includes a detailed discussion on metaheuristics and classical heuristics. Many branches of

the metaheuristic family are mentioned in this chapter. Themost commonly used methods

are Simulated Annealing (SA), Tabu Search (TS), Genetic Algorithm (GA), Particle Swarm

Optimization (PSO) and Variable Neighbourhood Search (VNS) which are discussed in more

detail.

2.1 Introduction

Despite the rapid growth and developments of computation, in speed and size in particular,

the exact solution of many decision and optimization problems is obtained in an unreasonable

amount of time. This is due to the complexity of these problems, in particular, those involving

large sizes. In certain problems, the exact algorithms taketoo long (maybe days or more) to

get an optimal solution. As a result, many researchers prefer to use heuristic algorithms in

practical applications. Because it is impossible to continue such searches to the end, these

13

approaches maybe trapped in a local optimum. The main shortcoming of heuristic algorithms

can be amended by applying metaheuristics.

Optimization problems can be classified into many categories. The classification may be

based on the types of variable. They may include integer, discrete, zero-one, or real variables.

However there are only two major categories: continuous variables if the solution space is

real numbers; and discrete variables or combinatorial, if the set of the solution space is finite,

or infinite but enumerable.

Discrete optimization, which is also known as combinatorial optimization, is much more

common and is the kind used in the present research. The combinatorial optimization prob-

lem can be defined as that of finding the best solution among a finite number of possible

solutions. Many real-world problems may be modelled as combinatorial optimization prob-

lems. These problems can appear in various assignments suchas: scheduling problems,

location problems, set partitioning/covering, vehicle routing, travelling salesman problems

and many other more. Formally, the combinatorial optimization problemP can be defined as

[66]:

Definition 2.1.1 (optimization problem) An optimization problem P is given by a set of

instances I. An instance i∈ I of an optimization problem is a pair(S, f), where S is the

solution space; f denotes the objective function that maps f: S → �+ The problem is to

find s∗ ∈ S such that f(s∗) ≤ f (s),∀s ∈ S . Such a point s∗ is called a globally optimal

solution of(S, f), s is called a feasible solution.

Most of these problems can be considered asNP-hard, that is they cannot be solved in a

polynomial time. That means it is not possible to guarantee that an optimal solution to the

problem can be found within an acceptable timeframe. For more details on the concepts ofP

andNP complexity, see [26, 43].

This chapter outlines the main metaheuristics approaches and gives an illustration of tradi-

tional heuristics.

14

2.2 Classical heuristics

All combinatorial optimization solution methods can be classified as either exact or approxi-

mate. The first kind is the algorithm which gives an exact solution for a predefined problem.

There are many exact methods but the ones most commonly used are dynamic programming

and branch-and-bound. However, an approximate algorithm does not necessarily give an

optimal solution to an input problem. The approximate solution can be classified mainly in

two ways: approximation algorithms or heuristics. The approximation algorithm always pro-

vides a feasible solution (if it exists) of a certain quality[18, 78]. However, there are plenty of

NP-hard optimization problems which cannot be approximated.Therefore, one must apply

heuristic methods which do not guarantee either the solution quality, or the time limitations.

The definition of a heuristic is proposed in [70] as “a method which seeks good solutions

at a reasonable computational cost without being able to guarantee optimality, and possibly

not feasibility. Unfortunately, it may not even be possibleto state how close to optimality a

particular heuristic solution is”.

Because of these shortcomings, some heuristics may performbadly due to the initialisation of

a given problem. But this does not nullify the benefits of heuristics, since they perform well

in plenty of problems. The most common heuristic methods based on generating a problem

for a solution can be classified as follows [53]:

• constructive methods

• local search methods

• inductive methods

• problem decomposition/partitioning

• methods which reduce the solution space

• evolutionary methods

• mathematical programming based methods

15

Constructive methods. Constructive heuristics are designed to construct one single fea-

sible solution. It is constructed step by step by using structure information from the given

problem. The most commonly used approaches are the greedy [33] and look-ahead [11]

approaches.

Local search methods. Local search methods use an iterative process to gradually im-

prove a given feasible solutions ∈ S until a local optimum is reached. The neighbourhood

for each solution is considered a set of all the feasible solutions in the vicinity ofs. At each

iteration, a neighbourhood of the current candidate solution is explored and the current solu-

tion is replaced with a better solution from its neighbourhood, if one exists. If there are no

better solutions in the observed neighbourhood, a local optimum is reached and the solution

process terminates.

Inductive methods. The main principle of inductive methods is to generalise a simple

problem solution to be used for harder problems of the same type.

Partitioning. The problem is decomposed or partitioned into a number of smaller/simpler

subproblems, each of them being solved separately. The solution processes for the subprob-

lems can be either independent or intertwined, with a view toexchanging the information

about the solutions of different subproblems.

Methods which reduce the solution space. Some parts of the feasible solution region

are ignored from further consideration in such a way that thequality of the final solution is

not significantly affected. The most common ways of reducing the feasible region include

the tightening of the existing constraints or introducing new constraints, such as fixing some

variables at reasonable values.

Evolutionary methods. As opposed to single-solution heuristics (sometimes also called

trajectory heuristics), which consider only one solution at a time, evolutionary heuristics

16

operate on a population of solutions. At each iteration, different solutions from the current

population are combined, either implicitly or explicitly,to create new solutions which will

form the next population. The general goal is to make each created population better than the

previous one, according to some predefined criterion.

Mathematical programming based methods. In this approach, a solution of a prob-

lem is generated by manipulating the mathematical programming (MP) formulation of the

problem. Generally speaking, mathematical programming may be used in two different ways:

(i) aggregation of variables; (ii) relaxation of variables. Popular relaxation technique is so-

called Lagrangian relaxation.

2.3 Metaheuristics

Heuristic methods were first initiated in the late 1940s [69]. These heuristics relay on the

structure of a certain problem and cannot be applied to others. In the 1980s [27], meta-

heuristics were structured to provide high level frameworks for building heuristics for fur-

ther classes of problem. Many advances have been made in the last few years in both the

theory and application of metaheuristics. They are used to find approximate solutions for

hard optimization problems. According to [79], “A metaheuristic is an iterative master pro-

cess that guides and modifies the operations of subordinate heuristics to efficiently produce

high-quality solutions. It may manipulate a complete (or incomplete) single-solution or a

collection of solutions at each iteration. The subordinateheuristics may be high (or low)

level procedures, or a simple local search, or just a construction method ”. To understand

this definition of metaheuristics, some of the main conceptsof metaheuristics are discussed

below [53].

Diversification vs. intensification. The first term means the exploration of the search

space. In this, the algorithm shifts to different parts (depending on the distance function used)

of the search space looking for the best local optimal. The second means the exploitation of

17

the current solution. In this, the algorithm focuses on the current search area, by exploiting

all the available information from the search experience. It is essential in search process to

keep an adequate balance between the diversification and intensification.

Randomisation. As an application of diversification process, randomisation allows the

algorithm to select one or more candidates by a random mechanism from a solution space.

Memory usage. Some metaheuristics save certain information during the search process

in storage, to be used in further steps of the search. Such information could be the feasible

solutions, number of iterations, or solution properties. Although the Tabu Search method is

a very significant example, since memory is used mainly in thesearch process, as explained

later, some other metaheuristics, for instance, the Genetic Algorithm [72] and Ant Colony

Optimization [23, 22], use it less, since it is incorporated implicitly.

According to these principles, most metaheuristics try by different means to avoid the locality

(see Figure2.1on page19) in the solution process. Before describing the main metaheuris-

tics, a neighbourhood structure and a local optimal solution should be defined as [53]:

Definition 2.3.1 (neighbourhood structure) Let P be a given optimization problem. A neigh-

bourhood structure for problem P is a functionN : S → P(S), which maps each solution

x ∈ S from the solution space S of P into a neighbourhoodN(x) ⊆ S of x. A neighbour (or a

neighbouring solution) of a solution x∈ S is any solution y∈ N(x) from the neighbourhood

of x.

Definition 2.3.2 (local optimal solution) Let N be a neighbourhood structure for a given

optimization problem P as defined by2.3.1. A feasible solution x∈ S of P is a locally

optimal solution (or a local optimum) with respect toN, if f (x) ≤ f (y),∀y ∈ N(x) ∩ S (see

Figure 2.1).

18

x0 x1 x2 x
∗ xopt

 GLOBAL OPTIMUM

 LOCAL OPTIMUM

 x

f(x)

Figure 2.1: The local minimum trap in the local search

2.3.1 Simulated Annealing

The Simulated Annealing (SA) is a kind of a metaheuristic which uses the principles of a

probabilistic approach by Monte Carlo [38] and the basic local search. It is considered to

be one of the oldest techniques in metaheuristics. The process of annealing is also used in

metallurgy which inspired its use in metaheuristics. Kirkpatrick [51] and Cerny [19] invented

this independently. Every iteration of Simulated Annealing is the neighbour of a current

solution, which is randomly generated. Next, it is moved to the solution of the neighbour

which is based on the value of the objective function and criteria of Metropolis Algorithms

[56]. The current neighbour is considered to be true if the neighbour which we have selected

has an objective function of greater value than the presently selected solution. If this case

does not hold true, then the Metropolis criterion is used to determine a new solution.

The Simulated Annealing was also used in the annealing of solid materials. In this process

19

material is subjected to increasing temperatures to the point where it actually melts. The

previous solid state is retained by reducing the temperature. In order to achieve a successful

annealing, the gradual lowering of the temperature is very important. An inappropriate shape

is obtained if the cooling is done too fast. Conversely, if the cooling is done properly a more

symmetric solid shape is obtained, with an energy sate whichis very low. With respect to

the combinational optimization value of objective function being equivalent to its energy, the

solution of the problem that is generated is equivalent to the state of the material, and a move

to any solution of the neighbour is equivalent to a change in the energy state.

The first solution is obtained randomly or by using some constructive heuristic. The end con-

dition of the algorithm is represented by a certain variable. Generally, the stopping condition

or end condition is based on the maximum time allowed to keep running, the total number of

iterations allowed or the total number of iterations allowed without making improvements.

There is a variable which is used to find the probability (p) of success, which can be found

out by comparing the similarities of physically annealed solids. The values of parameters

for temperature in a simulated annealing algorithm can be defined by positive numbers (tn)

such thatt0 ≥ t1 ≥ . . . and limn→∞ tn = 0. The cooling schedule is the name given to this

sequence of positive numbers (tn). Acceptance is obtained for the huge temperature values

that are used in the initial stage. However, small values used at the end give us very detailed

results which reject almost every solution that is non-improving. Geometric sequence is the

most commonly used cooling schedule. There is a great decrease in temperature values be-

cause of the cooling schedule. If the temperature is changed, say, afterM iterations a stronger

algorithm is generated. HereM ∈ N is considered to be a predefined variable.

The process described above is memory-less, since a trajectory is being followed in the state

of the space which chooses the successor state. This is dependent of the incumbent, with-

out keeping tracing of the history of search process. The SA pseudo-code is illustrated in

Algorithm (2.1on page21).

20

Algorithm 2.1: Simulated Annealing
Function SA (S, f (x), tn,Maxit);

Choose initial solutions from the solution spaceS ;1

Select a neighbourhood structureN : S→ P(S) ;2

Seti = 0 ;3

while i ≤ Maxit do4

Chooses
′

∈ N(s) at random;5

if f (s
′

) ≤ f (s) then6

s= s
′

;7

else8

Choosep ∈ [0, 1] at random ;

if p < exp(f (s)− f (s
′
)

tn
) then9

s= s
′

;10

i = i + 1 ;11

return s ;12

2.3.2 Tabu Search

Tabu search (TS) is a metaheuristic method of learning, which is based on the concepts of

discovery and problem-solving with the use of reasoning andpast experience. It is a computer

program which uses methods based on its previous memory or, say, experience in order to

solve a given problem, instead of using a mathematical procedure. This method was basically

proposed in 1986 by Glover (see [28]). Unlike the Simulated Annealing process, it is not

stochastic in nature but like the Simulated Annealing process, it avoids traps which bring the

search to a dead end. This is the basic form of the Tabu Search method. In this, a Tabu list

(TL) is formed which has short memory span. This is a list of forbidden solutions, which

saves and stores all the solutions that have been previouslyused to prevent them from being

repeated. This method of eluding local optima is more of a deterministic approach. The most

important point to be noted in Tabu Search is its flexible and automatically adjustable system

which stores all the search history. The present form of the Tabu Search method has a much

broader memory span and storage system than its predecessors. This program makes the

search for a solution easier. The program explores the aspects of the most feasible solution

of a problem, also making sure that it does not coincide with the previous solutions stored

in its memory i.e. the Tabu list. This list also has an automatic update system which works

21

on the principle of adding the current solution to the Tabu list and deleting the oldest one

from its memory. It accepts even the worst solution, becauseit does not have an objective

method of analyzing them. This helps to escape from local optima. The most appropriate

and suitable solution is stored separately during this process. The complexity of the solution

list and its diversification is controlled by the crucial boundary of the list, which deletes old

solutions within the length of the Tabu list. This parameteris the length of the Tabu List

which checks the increasing number of progressing solutions and makes sure that unsuitable

solutions are removed and only the most appropriate ones aresaved and worked upon. The

length of the Tabu list is also known as the tabu tenure. The length of Tabu list is permanent

or can be changed dynamically and automatically at every step. A short Tabu list focuses on

less complex solutions, according to the space provided by the small data structure without

any big moves to increase the broad array of solutions, whereas a lengthy Tabu list provides

diverse solutions and focuses more on exploring wider aspects of correct solutions. It allows

for more complex and diverse solutions; thus, the length is kept constant under a process of

upgrading. The length of this list can also be altered, whichgives the method more strength.

However, the Tabu list also takes up a great deal of time in searching for the right solution

from the list and this can make this system ineffectual. This weakness of the method can be

remedied by storing only the particular parts of a solution that are important, instead of the

whole solution. The attributes to be looked for by the Tabu search program are fed into it.

These attributes look out for matching solutions to store. This helps by making the system

less inefficient and thus more useful. It filters the important attributes of the solutions into the

Tabu List. This can however, cause very important information to be missed, because some

important parts of the Tabu List can be lost due to having few attributes. Very fine solutions

can sometimes be missed in the search. This problem can be solved by setting up Aspiration

Criteria (AC) which store all solutions that meet the criteria. It allows any better solution to

take over from the best solution so far.

Tabu Search has the ability to steer solutions away from deadend traps, which is modelled on

the memory programs of humans. The methodology starts with some basic solution which

is formulated randomly. At every step, it then improves the solution from a given number

22

of solutions which are called the ’allowed set’ and that are not present in the Tabu List. The

’allowed set’ is a list of admissible solutions. This methodcan then be altered to a first

improving or best improving procedure. In the first improving procedure, it searches for a

solution and gives the first one that is stronger than the original one. In the best improving

procedure, the program searches all the ’allowed set’ extensively to find the best solution.

When an improved solution is found, the Tabu List replaces the previous basic solution with

the better one by the FIFO method. The FIFO (first-in-first-out) method, as previously stated,

adds the newest possible solution to the Tabu List and deletes the oldest solution. Thus the

Tabu Search method can be termed explorative, having a broadrange of programming with

low memory. This procedure is repeated and again the most suitable solution replaces the

last one, and so on.

Other extended versions of this Tabu Search program have been developed since its origin in

1986. It has been enhanced by a long-term memory [31]. This long-term memory memorizes

every recent solution and its relevant up grading in a process called Recency. It also provides

information on the number of visits made to each solution, called Frequency. The quality of

the solution and its parameters are also recorded within thememory; this is called Quality.

The memory also shows the influence during the search and putsforward the inclinations

which showed during the search for the solution termed Influence. These are the four dimen-

sions of this metaheuristic [13]. The long-term memory can be used within Tabu research

through the use of frequency measures, such as the ’residence’ and ’transition’ processes.

The residence process is about the number of observations ofan attribute, while the Transi-

tion process reveals how many times the value of the attribute was changed during the search.

This provides more objectivity to solutions. It diversifiesand intensifies our search by select-

ing solutions which match the attributes we set and by putting forward the solutions with the

best attributes which are known as theelite subsets. The quality of a Tabu Search tends to

be more objective in solutions. A great number of such solutions causes a greater search into

the most relevant attributes and solutions present in the Tabu List. Influence, however, refers

to the amount of change that comes in every progressive solution. The Aspiration criterion

plays a very important role in this regard. It also helps to develop the most suitable candidate

23

list for a job. It tells us the decisions which we have for finding the right solution and helps

in making moves according to these critical indications which we have made.

Many parts of this search are in use along with other metaheuristic procedures for more

efficient use and the discovery of more efficient solutions to problems. A more recent devel-

opment in the Tabu Search method has been made by using it along with other metaheuristic

programs to form a hybrid, such as Genetic Algorithms [29] and Ant Colony Optimization

[7], among many others. Another modified use of the Tabu Search algorithms is to combine

it with the path re-linking method. The path re-linking method provides newer solutions by

analysing between the elite subsets. By the combination that they form, the solutions are

formulated by choosing them randomly from a proper data structure instead of deterministi-

cally, as is the norm for the original Tabu Search method. This makes the search of solutions

much faster and also increases the diversity of the solutions. Certain improved algorithms

of the Tabu Search are called Reactive techniques, which allow the automatic changing and

adjusting of attributes and boundaries during the Tabu Search method. The most important

parameter is thetabu tenure, i.e. the length of the Tabu List. Glover and Kochenberger [30]

say that recency based Tabu Search with basic structure if used for a restricted topic is a

strategy which can give very accurate and best solutions/results. The basic algorithm for TS

is illustrated in Algorithm2.2on page (25).

2.3.3 Genetic Algorithm

Genetic algorithms were derived from the research by Holland on cellular automata in 1975

[44]. They were further used in combinatorial optimization, linear and non-linear, which

rendered them the most evolved algorithms [32, 45]. The concept of genetic algorithms is

a biological similarity, according to which the selection of the most competent individuals

can be used for the evolution of genetically stronger species. This raises the related ques-

tion whether this procedure can be used for correcting optimization difficulties. In the above

mentioned process of selective breeding, the offspring of the species retain the optimum char-

acteristics of their species, which are determined by the genes of the selected parents. Genetic

24

Algorithm 2.2: Tabu Search
Function TS (S, f (x),Maxit);

Choose initial solutions from the solution spaceS ;1

Let s∗ = sbe the best solution so far ;2

Select a neighbourhood structureN : S→ P(S) ;3

Initialise Tabu ListTL ;4

Initialise Aspiration CriteriaAC ;5

Seti = 0 ;6

while i ≤ Maxit do7

Choose the best solution within the allowed set:8

s
′

∈ N(s) ∩ {s ∈ S|s < TL} ;
s= s

′

;9

if f (s) ≤ f (s∗) then10

s∗ = s ;11

Update TL and AC ;12

i = i + 1 ;13

return s∗ ;14

Algorithms make use of chromosomes to find the combination ofgenes in offspring. Genetic

algorithms also focus on problems within generations and chromosomes are used in finding

answers to these problems. A single component of a chromosome is called a gene and these

genes can have various combinations or values, known as alleles. These combinations are

also named ’genotype’ and ’phenotype’ maps of a generation or species or individual, which

constitutes a fine Genetic Algorithm. In evolution, the probability that certain chromosomes

will be passed down to offspring depends on its fitness i.e., not only with respect to its sub-

jective components, such as its nature, but also on objective components, such as functions.

Then these selective chromosomes are bred into the genes of the offspring, who get all the

dominant genes and characteristics from their family line.This selective breeding promul-

gates the ’survival of the fittest’ concept. The chromosomesare assigned values of 0 and 1

at different loci on them. The locus is the point on a chromosome where the binary value is

present. It affects the fitness of a chromosome. A fit chromosome is readily passed down to

the next generation to replace the weaker offspring. The term fitness has great importance

in the concept of the Genetic Algorithm which gets its name from the genetic nature of the

process.

25

The mechanisms of crossover and mutation take place when there are two or more than

two parents. Crossover involves putting certain genes of a parent in place of the other’s,

resulting in offspring. Mutation involves only one set of genes in which the binary values

are changed and the procedure is repeated until the process starts giving weaker results than

before. The Genetic Algorithm entails stronger genes in every succeeding generation. The

steps involve selecting the size and composition of the population. The size should display

the characteristics of efficiency and durability over time and the efficacy of the solutions

being used. The size can be changed during the process or can be kept unchanged, according

to the needs of the process. The composition of the population is mostly kept random but

nowadays certain heuristic procedures are in use for selecting only those which meet the

required criteria of solutions. In the next step, the processes of mutation and crossover are

selectively applied on those parents who are the fittest, in terms of genes. The roulette-wheel

method is used in these processes, which implies that only the fittest of parents should be

used for the process of reproduction.

Other methods are also used for selecting individuals. The stochastic universal selection

method lessens the increased number of variables which became involved in the roulette-

wheel method. The procedure of tournament selection includes choosing a set of parents

and selecting those which are most appropriate for the process. Unstructured and structured

populations also come into play in Genetic Algorithms. The former involves a combination

of any two individuals and the latter involves the recombination of any individual with one

selected from a set with higher fitness value.

After the process of selection, genetic operators come intoplay, i.e., mutation and crossover,

as stated before. It is not always necessary to use both theseprocedures on the selected popu-

lation. These procedures can be used one at a time, or both together, or a different procedure

can also be operated on the population which selects for the purposes of the particular study

that we are conducting; although crossover is more often applied than mutation to the se-

lected population. The reason for this choise is that mutation weakens the already present

solutions and also reduces the strength of any new solutionsthat can be found.

26

As regards the crossover method, it involves putting the genes of one parent in place of

the other to produce offspring, as noted above. Crossover can take several forms. Two-

parent crossover [65] involves few persons as the source for the genes. Multiple-parent

crossover [24] involves the offspring produced by recombining the genes of more than two

parents. New developments in this area are constantly beingmade and modified forms of the

crossover method have been introduced. Gene Pool Recombination [63] makes use of the

whole current population to formulate the next line of population. Bit-Stimulated Crossover

[52] formulates the next line of a population from an already existing probability within that

population.

Sometimes an early inclination in a new generation towards the required result is seen and

this can cause problems. This situation should if possible be avoided, by the right functioning

of the genetic operator of the mutation. The process of mutation, as noted above, involves

changing the values of a gene and the respective chromosomesby the effect of certain factors

such as noise. A general selected population is passed through a certain factor which changes

the allele value and further generations are reproduced which have the new allele value in

their gene pool. Immigration theory can also be used for thispurpose, this includes those

individuals who were not previously present in the selectedpopulation and who might belong

to certain areas not previously included in the study. This asks for an updated and fresh review

of the research and previous research of the same kind in the Genetic Algorithm.

Sometimes undesirable results are also produced, resulting from the genetic operators used.

These undesirable results can be manipulated in any of threeways. Such individuals, who are

part of the undesirable outcome of a Genetic Algorithm, can be ”turned down”, ”punished”,

i.e., given a weak fitness referral so that they are rejected for any further study in this regard

and/or they can be ”fixed”, but this may be impossible. The new population now reproduced

is called the current population. The procedure is deferreduntil certain individuals have to

be eliminated to meet the criteria of the Genetic Algorithm.The final result or output is the

individual who remains at the end, due to the mechanism of ’survival of the fittest’ in the

Genetic Algorithm. Nowadays certain Genetic Algorithms are used which strengthen those

individuals. These are formulated by combining other metaheuristics with local methods of

27

carrying out these procedures. These combinations, also known as hybrids, are essential for

correcting many of the difficulties faced during the Genetic Algorithm process with regard

to probability. A large population produces more diversityin results, while a simple, local

procedure with this population strengthens these very results. Memetic Algorithms were

introduced for this purpose, in which the process of the Genetic Algorithm is combined

with the particular solution of the difficulty in question. This method was developed by

Moscato in 1989 [62]. These algorithms devise better populations through genetic operations

of the already existing populations. This method is used when other metaheuristic methods

must be involved in the study. It is basically a form of Genetic Algorithm including a Tabu

Search.

2.3.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired algorithm which was first established

by [49]. PSO is based on population of solutions as in GA. It is inspired from the individuals

(called particles) behavior inside the swarms such as birdsor school of fishes. Solutions of

the optimization problem can be modelled as the individualsof the swarm which move in the

solution space. Improvements of the swarm are obtained fromeach particle’s movement that

compile the swarm, based on the effect of inertia and the attraction of the members who lead

the swarm. Thus, PSO also belongs to the evolutionary algorithms class.

2.3.5 Variable Neighbourhood Search

A new concept in metaheuristics is the Variable Neighbourhood research, which is broadly

applied to data. It analyzes every aspect of a variable before concluding the result and then

it moves on to better neighbourhoods if found around some data or variable under study. It

gives a more intensified result by going through several neighbourhoods of the data whereas

other metaheuristics which pre-date this method go throughone at a time. At every stage a

number of different neighbourhoods are explored, which adds to the information about the

28

results. In 1997, the Variable neighbourhood search methodwas developed by Mladenović

and Hansen [60]. This led to the finding of the factual information upon which this method

is based. The factual information stated that the local optimum of a single neighbourhood of

data may not be the local optimum of another neighbourhood. Therefore, the global optimum

will be the local optimum of all neighbourhood structures. Last, it states that the local optima

of several neighbourhood structures are very closely matched. Through extensive empirical

study, it has been found that local optima always consist of some information similar to

the global optimum, which means that certain variables are identical in both optima, i.e.,

general and optimal. There are many well proposed and established VNS schemes. Variable

neighbourhood search involves a number of neighbourhoods at a time at every level as noted

above. Sometimes a VNS scheme is undertaken in the frame of a broader VNS scheme and

the neighbourhood structures involved in each scheme can bevery different. The inclination,

time management and quality proposed by the user play a big role in selecting the right

neighbourhood classification for a scheme. If the VNS schemeis highly developed and

evolving, it can encompass a change of neighbourhood structure at all iterations. All the

factual information provided previously can be used together to solve a specific problem with

changing neighbourhoods at each solution level (see Algorithm 2.3 below). This minimizes

extreme diversity and intensification in solutions which are followed through to the end. The

factual information gives 3 combinations of methods, namely, deterministic, stochastic and a

combination of these two. For more details, the neighbourhood is defined as bellow.

LetS be the solution space and let a setNk denote the finite set of pre-selected neighbourhood

structures (k = 1, ..., kmax), andNk(x) the set of solutions in thekth neighbourhood ofx.

Neighbourhood structuresNk may be induced from one or more metric (or quasi-metric)

functions in a formδ : S2→ R. Then

Nk(x) = {y ∈ S | δ(x, y) ≤ k} (2.1)

29

As a result of that, neighbourhoods ofx are nested, i.e.Nk(x) ⊂ Nk+1(x) for all x in the

solution spaceS. For more details about calculating the neighbourhood structures see Section

(3.3).

Algorithm 2.3: Neighbourhood change or Move or not function
Function NeighbourhoodChange (x, x′, k);

if f (x′) < f (x) then1

x← x′; k← 1 //Make a move ;2

else
k← k+ 1 // Next neighbourhood ;3

FunctionNeighbourhoodChange()compares the new valuef (x′) with the incumbent value

f (x) obtained in the neighbourhoodk (line 1). If an improvement is obtained,k is returned to

its initial value and the new incumbent updated (line 2). Otherwise, the next neighbourhood

is considered (line 3).

Variable Neighbourhood Descent.When every neighbourhood classification has been com-

pletely analyzed and studied, a Variable Neighbourhood Descent (VND) is formed. It has

certain attributes which limit its research value because only a certain number of neighbour-

hoods can be studied under VND at any time. The solution obtained at the end is the best of

all in the data available. The absence of a limiting criterion brings all the neighbourhoods at

every level of the method, which gives us a number of solutions, out of which only the best

and most valued solution is selected. This procedure is carried out repeatedly until the num-

ber of improvements start coming up as zero. This extensive search is very time consuming

and extremely exhaustive; therefore, more parameters are introduced for limiting it, includ-

ing the time limit and maximum but specified number of iterations. The ultimate result is

a small, specified amount of information which is local for all the neighbourhood structures

that have been studied. This makes the global optimum an attainable goal in the context of

VND, unlike other methods which make use of only one neighbourhood. Although the time

required for this makes the process of giving diversified solutions very slow, it also continue

to increase the strength of the ongoing process. Thus Variable Neighbourhood Descent is

applied on more local operations along with any other metaheuristic program. If a meta-

heuristic program is a modified form of the Variable Neighbourhood Search, then this gives

30

us the General VND scheme (see Algorithm2.4below).

Algorithm 2.4: Steps of the basic VND
Function VND (x, k′max);

repeat1

k← 1;2

repeat3

x′ ← argminy∈N′k(x) f (x) // Find the best neighbour inNk(x) ;4

NeighbourhoodChange (x, x′, k) // Change neighbourhood ;5

until k = k′max ;
until no improvement is obtained;

Reduced Variable Neighbourhood Search.Reduced Variable Neighbourhood Search (RVNS)

is another modified form of VNS, in which a random number and type of solutions are se-

lected from specified neighbourhoods and no steps are taken to refine or improve those raw

solutions by any local means. The boundaries formulated in RVNS for its procedure prove

to be an optimization difficulty. These limitations include the startup process solution, the

limited neighbourhood structure size and the unchecked neighbourhood structure size. Any

solution which is found to be the most appropriate is termed the final result, without further

intensive search in the limited knowledge and result. The boundaries of this variant which

limit its optimum use are checked by certain stopping criteria of a maximum time allowed

and the number of iterations allowed between any two progressions of the result. Unlike

VND, RVNS provides diversity with solutions in a stochasticnature. It is very useful for

large structures of data, unlike VND, which can be very costly (see Algorithm2.5 on page

31).

Algorithm 2.5: Steps of the Reduced VNS
Function RVNS(x, kmax, tmax) ;

repeat1

k← 1;2

repeat3

x′ ← Shake(x, k);4

NeighbourhoodChange (x, x′, k) ;5

until k = kmax ;
t ← CpuTime()6

until t > tmax ;

31

With the functionShake represented in line 4, a pointx′ is generated at random from thekth

neighbourhood ofx, i.e.,x′ ∈ Nk(x). Its steps are given in Algorithm2.6on page (32), where

it is assumed that points from theNk(x) are{x1, . . . , x|Nk(x)|}.

Algorithm 2.6: Steps of the Shaking function
Function Shake(x, x′, k);

w← [1+Rand(0, 1)× |Nk(x)|];1

x′ ← xw2

Basic Variable Neighbourhood Search.The Basic Variable Neighbourhood Search (BVNS)

is another variant of the Variable Neighbourhood Search. Itis an approach balanced be-

tween diversity and intensity in the solutions obtained. Aswas previously explained, Vari-

able Neighbourhood Search is laborious to carry out becauseit finds a solution only in the

current data structure, and while Reduced Variable Neighbourhood Search (RVNS) selects

the solution randomly from the best neighbourhood structure, which can greatly reduce the

quality of the solution obtained. This Basic Variable Neighbourhood Search (BVNS), selects

the next optimal solution from the most suitable neighbourhood structure through an inter-

esting process of choosing any component of the neighbourhood and putting it through some

local method to refine and improve the chosen solution. This solution is then made the cur-

rent candidate solution from the neighbourhood which had been observed in this particular

iteration. This saves time by providing a good solution without exhausting one’s resources

by fully analyzing the neighbourhood structure (see Algorithm 2.7on page32).

Algorithm 2.7: Steps of the basic VNS
Function VNS(x, kmax, tmax);

repeat1

k← 1;2

repeat3

x′ ← Shake(x, k) // Shaking ;4

x′′ ← BestImprovement(x′) // Local search ;5

NeighbourhoodChange(x, x′′ , k) // Change neighbourhood ;6

until k = kmax ;
t ← CpuTime()7

until t > tmax ;

General Variable Neighbourhood Search. A General Variable Neighbourhood Search

32

(GVNS) is formulated when a Variable Neighbourhood Descent(VND) is applied in the

parameters of a basic Variable Neighbourhood Search (VNS).This scheme has been found

highly successful, although only examples of this search can be found. The steps of the

general VNS (GVNS) are given in Algorithm2.8on page (33).

Algorithm 2.8: Steps of the general VNS
Function GVNS (x, k′max, kmax, tmax);

repeat1

k← 1;2

repeat3

x′ ← Shake(x, k);4

x′′ ← VND(x′, k′max) ;5

NeighbourhoodChange(x, x′′ , k);6

until k = kmax ;
t ← CpuTime()7

until t > tmax ;

Skewed Variable Neighbourhood Search.The Skewed Variable Neighbourhood Search

(SVNS) allows a broad array of data to be explored with a much more flexible criterion

of acceptance than before. This is a very important method for any case that involves a

local optimum of a very broad search space. According to thismethod, we analyze broader

neighbourhoods of such a space to get away from a particular optimum, using the criterion of

acceptance and moving towards the general optimum of the space. But this exploration can

be extremely exhausting and time-consuming. Even if the process is speeded up, reaching

new neighbourhoods, no matter how small or large, always requires the process to be started

in each new neighbourhood from the beginning. The SVNS method has the advantage of

letting solutions move on to even worse ones than the previous. This idea is the basis of

all diversification processes. The best result is formulated through empirical and learning

processes. Its steps are presented in Algorithms2.9, 2.10, and2.11on page (34).

The KeepBest(x, x′) function in Algorithm 2.10 simply keeps the better betweenx and

x′.

Variable Neighbourhood Decomposition Search.The Variable Neighbourhood Decompo-

sition Search (VNDS) is a VNS scheme involving two levels which resolves the optimization

33

Algorithm 2.9: Steps of neighbourhood change for the skewed VNS
Function NeighbourhoodChangeS(x, x′′ , k, α);

if f (x′′) − αρ(x, x′′) < f (x) then1

x← x′′; k← 12

else
k← k+ 13

Algorithm 2.10: Steps of the Skewed VNS
Function SVNS (x, kmax, tmax, α);

repeat1

k← 1; xbest← x;2

repeat3

x′ ← Shake(x, k) ;4

x′′ ← FirstImprovement(x′) ;5

KeepBest (xbest, x);6

NeighbourhoodChangeS(x, x′′ , k, α);7

until k = kmax ;
x← xbest;8

t ← CpuTime();9

until t > tmax ;

Algorithm 2.11: Keep the better solution
Function KeepBest(x, x′);

if f (x′) < f (x) then1

x← x′ ;

difficulties which depend on its decomposition. The basic assumption in this form of VNS

lies in the difficulties faced in the optimization processes, for a simple VNS is not appropri-

ate for formulating good solutions in a short time. This variant promotes the basic idea of

reducing the search process to a representative subset of the whole of the space and thus it is

analyzed more efficiently and in less time than a simple VNS. At every progressive stage, the

VNDS selects a sample subset for all the solutions at random and a local method is used to

analyze this subset. Only those variables and solutions areselected that display the attributes

attached to the main solution. VNS schemes other than this are also applied as local search

procedures using this method. The local optimum is redefinedat every stage in which an

improvement is made to the solution and this involves all thesolutions down to the last. The

search is considerably strengthened, because it is filtereddown to the right solution. The

VND is the most reliable form of local search tool. The criterion for stopping the process

34

does end this process at some point, but until then this process continues to repeat itself. As

stated about the other variants, the criterion for stoppingis characterized by a time limit, a

certain number of iterations that can be performed in a series or in between improving solu-

tions which helps us to stop the process when it reaches a stated limit. The VNDS method

is greatly renowned, with increasing numbers of applications being discovered. Its steps are

presented in Algorithm2.12below.

Algorithm 2.12: Steps of VNDS
Function VNDS (x, kmax, tmax, td);

repeat1

k← 2;2

repeat3

x′ ← Shake (x, k); y← x′ \ x;4

y′ ← VNS(y, k, td); x′′ = (x′ \ y) ∪ y′;5

x′′′ ← FirstImprovement(x′′);6

NeighbourhoodChange(x, x′′′ , k);7

until k = kmax ;
until t > tmax ;

35

Chapter 3

Heuristics for Harmonic Means

Clustering

Harmonic means clustering is a variant of Minimum sum of squares clustering (sometimes

calledK-means clustering), designed to alleviate the dependance of the results on the initial

choices of solution. In the harmonic means clustering problem, the sum of harmonic averages

of the distances from the data points to all the cluster centroids is minimized. In this chapter,

a variable neighbourhood search heuristic is proposed for improving it. This heuristic has

been tested on numerous datasets from the literature. It appears that the results obtained on

standard test instances compare favorably with recent onesfrom Tabu Search and Simulated

Annealing heuristics.

3.1 Introduction

The method for forming natural groupings in data is called data clustering; it is a very im-

portant function of machine memory and the recognition of patterns. Clustering [48, 57, 5]

is a scientific method which addresses the following very general problem: given the data

on a set of entities, find clusters, or groups of these entities, which are both homogeneous

36

and well-separated. Homogeneity means that the entities inthe same cluster should resemble

one another. Separation means that the entities in different clusters should differ from one

another.

There are numerous ways to express homogeneity and/or separation by one or two criteria. In

addition, various structures may be imposed upon the clusters, the two most common being

hierarchy and partition. Choosing a criterion and constraints defines a clustering problem. If

this is done explicitly and rigorously, it takes the form of amathematical program [39]. Many

solution methods exist for most clustering problems. In rare cases, they are exact algorithms

which provide proven optimal solutions [64, 6].

Cluster analysis deals with various types of data. However,partitioning in Euclidean space

�
q is only concerned in this thesis. To explain the notation, let X = {x1, . . . , xN} be a

set of objects or entities to be clustered (xi ∈ �
q) , and letC be a subset ofX. Then

PK = {C1,C2, . . . ,CK} is a partition ofX into K clusters if it satisfies: (i)Ck , ∅; k =

1, 2, . . . ,K, (ii) Ci ∩C j = ∅; i, j = 1, 2, . . . ,K; i , j, and (iii)
K
⋃

k=1
Ck = X.

One of the most popular partitioning problems for points in Euclidean space is the minimum

sum of squares clustering (MSSC) [4, 5, 40]. It considers simultaneously the criteria for

homogeneity and separation. Minimizing these criteria amounts to replacing each cluster by

its centroid while finding the partition which minimizes thesum-of-squares distances from

the entities to the centroid of their cluster. A mathematical formulation of the MSSC problem

is as follows (see for example [40]): consider a setX = {x1, ..., xi , ..., xN}, xi = (x1i , ..., xqi)

of N entities in Euclidean spaceRq. The MSSC problem is to find a partition ofX into K

disjoint subsetsC j such that the sum of squared distances from each entityxi to the centroid

c j of its clusterC j is the minimum.

Specifically, letPK denote the set of all partitions ofX into K sets. Let partitionP be defined

asP = {C1,C2, ...,CK}. Then MSSC can be expressed as:

fMS SC(P) = min
P∈PK

N
∑

i=1

min
j=1,...,K

‖xi − c j‖
2, (3.1)

37

where the centroid of clusterj is given asc j =
1
|C j |

∑

i∈C j
xi .

The K-Harmonic Means (KHM) clustering problem is similar inseveral respects to the

MSSC problem. Indeed, it considers partitions and minimizes a function of distances to

cluster centroids, this last term being understood in a slightly different sense from the above.

KHM minimizes the sum of harmonic averages of the distances between each entity and all

centroids. It has been observed that the final solution of theMSSC problem obtained by many

local search heuristics depends substantially on the initial choice of centroids. However, this

does not appear to be the case for the KHM clustering problem [83]. To support this fact,

some comparisons between KM and KHM are made to show the impact of initializations on

the final solution in the next Chapter.

KHM uses a weight function which allows the same entities to belong to different clusters. A

weight functionw, recalled below, determines the repartition of the belonging that each entity

has in each cluster. The other function used in the KHM algorithm is called the membership

functionmi j , which assigns each entity or pointxi to a clusterc j .

It will be seen that the KHM clustering problem is adequatelyimproved by using the basic

Variable Neighbourhood Search (VNS) heuristic. For scaling the quality of VNS, it is com-

pared with those results obtained by multi start local search (MLS), Tabu Search (TS) [36]

and Simulated Annealing (SA) [35] heuristics. The improvements of the results when the

initial data are scaled or normalized are also shown. Finally, a VNS-based heuristic is tested

on greater instances than previously used in the literature. For these purposes, instances from

the Traveling Salesman Problem (TSP) library [73] are used.

This chapter is organized as follows. The next section presents a very brief review of the K-

means algorithm. Then, details the KHM clustering problem and its local search algorithm.

Section3.3 on page43, show how the suggested VNS heuristic improves upon the local

search of KHM. Section3.4 on page46 contains computational results. Conclusions are

drawn in section3.5on page51.

38

3.2 K-Harmonic Means clustering problem (KHMCP)

Among numerous heuristics for MSSC, the best known and most often used is theK-means

(KM) [25, 55]. From an initial set of centroids,K-means proceeds by reassigning the entities

to their closest centroids and updating the cluster centroids until stability is reached. Its

steps are given in Algorithm3.1 below. The basic local search for KHM, described below,

Algorithm 3.1: K-Means algorithm (KM) for the MSSC problem
Function KM (X,K,Maxit,N,C, z)

Choose initial centroidsck (k = 1, . . . ,K)1

l ← 02

repeat3

l ← l + 14

for i := 1, . . . ,N do5

m(xi)← argminj∈{1,...,K}(‖xi − cj‖2)2
6

z= fMS SCas in (3.1)7

for j := 1, . . . ,K do8

Calculate centroidcj9

until m does not change or l=Maxit

is quite close to KM. Zhang and his colleagues [83, 82] have established the K-Harmonic

Means. KHM evolves from the optimization criteria which have been built on the concept of

Harmonic mean. K-Harmonic Means (KHM) offers a more promising way of finding much

better and quickly clustering solutions. It also surpassesthe k-means (KM) as it will be

shown later. The KHM objective function is calculated by using the harmonic average which

in many situations gives the truest average. The harmonic average (HA) is always the least of

three Pythagorean means (including Arithmetic average (AA) and Geometric average (GA))

for positive sets that contain non-equal values. However the AA is always the greatest. The

HA tends (compared to the the AA) to reduce the impact of largeoutliers and enlarge the

impact of small ones.

In some certain problems such as the speed average, the HA is the truest mean. It is very

often that the AA is mistakenly used instead of the HA [20]. The harmonic average (HA) of

39

K numbersa j ∈ � (j = 1, ...,K) is defined as:

HA =
K

K
∑

j=1

1
a j

. (3.2)

The HA is used to measure the distances between entities and centroids. In addition, the

pth power of the Euclidean norm is used as a distance function.Hence, Equation3.2 will

be:

HAi(K, p) =
K

K
∑

j=1

1
‖xi − c j‖

p

, ∀ i = 1, ...,N . (3.3)

Then the objective function for KHM is:

fKHM(K, p) = min
N

∑

i=1

HAi(K, p) = min
N

∑

i=1

K
K

∑

j=1

1
‖xi − c j‖

p

. (3.4)

The most popular iterative procedure for solving this problem is the K-Harmonic means local

search [82], recalled in Algorithm3.2. Let di j = ‖xi − c j‖
p, then the recursive updating [54]

rule for each centroid can be derived easily by the partial derivative of fKHM as displayed in

3.4with respect toc j equal to zero. i.e.,

∂ fKHM

∂c j
= 0,∀ j = 1, . . . ,K (3.5)

⇒
∂ fKHM

∂c j
=

N
∑

i=1

−2K(xi − c j)

(
∑K

j=1
1

di j
)2d2

i j

= 0 (3.6)

To get the new centroid, Formula3.6needs to be reshaped to obtain:

c(new)
j =

N
∑

i=1

xi

d2
i j (

∑K
j=1

1
di j

)2

N
∑

i=1

1

d2
i j (

∑K
j=1

1
di j

)2

(3.7)

According to [37], the membership function and the weight function which KHMuses are

40

defined as follows:

mKHM(c j/xi) =
‖xi − c j‖

−p−2

K
∑

j=1

‖xi − c j‖
−p−2

, ∀ i = 1, ...,N, ∀ j = 1, ...,K , (3.8)

wKHM(xi) =

K
∑

j=1

‖xi − c j‖
−p−2

(
K

∑

j=1

‖xi − c j‖
−p)2

, ∀ i = 1, ...,N , (3.9)

Thus, from Equations3.8and3.9, the centroids equation3.7can be rewritten in the following

formula [37]

c(new)
j =

N
∑

i=1

mKHM(c j/xi) ·wKHM(xi) · xi

N
∑

i=1

mKHM(c j/xi) · wKHM(xi)

, ∀ j = 1, ...,K . (3.10)

The local search algorithm starts by generatingK-centroids chosen at random among the

given entitiesxi (i = 1, ...,N). From Equations3.8, 3.9, and3.10 new centroids are ob-

tained. This process is repeated until the difference between centroids in two consecutive

iterations is less thanε (a small number) or a maximum number of iterations is reached(see

Algorithm 3.2below). The KHM FORTRAN code details is explained in Appendix A.

Algorithm 3.2: The local search algorithm for KHM problem
Function KHM (X,K,Maxit, ε,N,C,z)

C(new) = {c1, c2, . . . , cK} // K centroids are chosen from X1

i ← 0 // i-iteration counter2

repeat3

i ← i + 14

C← C(new)5

z← fKHM(C) as in3.46

Calculatem as in3.8andw as in3.9for all entities7

Find new centroidsc(new)
j , j = 1, . . . ,K as in3.108

until (‖c(new)
j − cj‖ ≤ ε, ∀ j = 1, ...,K) or i =Maxit

41

3.2.1 Multi-Start KHM

To keep the best value of the objective function obtained after several iterations, we design

a multistart (MLS) algorithm, in which the local search algorithm can easily be embedded.

Thus, the (KHM) are applied several times, keeping the best solution (best local minimum)

found so far. For some data sets MLS obtain very good results.Details are shown in Algo-

rithm 3.3below.

Algorithm 3.3: The multi-start local search for KHM clustering (MLS)
Function MLS (X,K,C,Maxit, ε)

zopt← 10.e201

i ← 02

repeat3

i ← i + 14

Generate solutionX at random5

z← KHM (X,K,C,Maxit, ε)6

if z≤ zopt then7

zopt← z8

until i =Maxit

3.2.2 Tabu Search

A Tabu Search based heuristic for solving KHM (TabuKHM for short) is proposed in [36].

For this purpose two kinds of move are used: (i) a random swap of a current centroid with

an existing facility and (ii) a so-called logical swap whichconsists of merging two close

clusters and splitting them in two again. The clusters to be merged are selected according to

their utility, as defined in [67]. A cluster whose utility is low (< 1) is merged with one with

high utility (> 1). In addition, both moves may be rejected if the generated random number

r < s, wherer ∈ (0, 1) ands is a parameter set by the analyst. The Tabu List is updated in the

usual way. The results of such a probabilistic Tabu Search are reported and compared with a

VNS based heuristic in the computational results section ofthis paper.

42

3.2.3 Simulated Annealing

A Simulated Annealing (SA) based heuristic for solving KHM is proposed by the same au-

thors in [35]. The same types of move as for TabuKHM are used. The difference is that the

decision to move or not is made according to the rule defined bya cooling schedule function

(as is usual in SA-based heuristics), and without use of a Tabu List. The results obtained by

SA are also reported in section 4 , as they are given in [35]. Both of these algorithms are

explained in the sections2.3.1and2.3.2.

3.3 VNS for solving KHM

Variable neighbourhood search (VNS) is a metaheuristic designed for solving combinatorial

and global optimization problems. The basic idea is to proceed to a systematic change of

neighbourhood within a local search algorithm [60, 41, 42, 16]. The set of neighbourhoods

is usually induced from a metric function introduced into the solution space. The algorithm

centres the search around the same solution until another solution better than the incumbent

is found and then recentres the search, or jumps there.

Let a setNk denote the set of neighbourhood structures (k = 1, ..., kmax), andNk(x) the set

of solutions in thekth neighbourhood ofx. To calculate these neighbourhoods, according to

Definition 2.1 in page29, it implies that:

|Nk(x)| =

(

K
k

)

.

(

N
k

)

=
K!

k!(K − k)!
.

N!
k!(N − k)!

=
K(K − 1)(K − 2)...(K − k− 1)

k!
.

N(N − 1)(N − 2)...(N − k − 1)
k!

≈ Kk . Nk (3.11)

For example ifx ∈ S is a solution of the optimization problem andx = {a1, a2, ..., aN} then if

43

K is the number of clusters, the first neighbourhood ofx is:

N1(x) = {{1, a2, ..., aN}, {2, a2, ..., aN}, ... , {K, a2, ..., aN},

{a1, 1, a3, ..., aN}, {a1, 2, a3, ..., aN}, ... , {a1,K, a3, ..., aN},

...

{a1, a2, ..., aN−1, 1}, {a1, a2, ..., aN−1, 2}, ... , {a1, a2, ..., aN−1,K},

It concludes that|N1(x)| ≈ K.N. To produceN2(x), the shaking step in Algorithm3.4gives 2

sets of new centroids. This will be made easily for the rest ofneighbourhoods as it is shown

in the previous example. Then the steps of the basic variableneighbourhood search (BVNS)

are given at Algorithm3.6.

Figure 3.1: Basic scheme of variable neighbourhood search

VNS has already been applied for solving MSSC and Fuzzy MSSC [10, 40]. Beside the alter-

nate neighbourhood structure, as used in the KM heuristic, two more neighbourhood struc-

tures were used: H-means and J-means. H-means can be appliedas follows. Let{C1, ...,CK}

be an initial partition which is chosen randomly. An entityx j that belongs to clusterCl will

be reallocated to different clusterCi(l , i). This process is called re-allocate or re-assign.

On the other hand, J-means works as re-locate by relocating entities that do not coincide

with a cluster centroid and making them the new centroids. Actually, J-means comes from

44

jumping neighbourhoods of the current solution. Both H-means and J-means are used within

a nested variable neighbourhood descent (VND) strategy. More precisely, at any point in a

J-means neighbourhood, K-means and H-means are used one after the other iteratively, until

no improvement is possible.

To apply the BVNS for solving KHM the shaking process is used,as given in Algorithm3.4

on page45. It simply selects the newK centroids randomly from the set of existing entitiesX

wherek is given a VNS neighbourhood parameter. Note that in fact it selects a random point

from the J-means neighbourhood structure [40]. In Algorithm 3.4, r represents a number

with uniform distribution from (0,1). Therefore,r1 denotes the index of a chosen centroid

andr2 denotes the index of random entity.

Algorithm 3.4: Shaking step
Function Shaking (X, k,C)

j ← 0 // initializing iteration counter1

repeat2

j ← j + 13

r1← ⌊(K− j+1)∗r⌋ // a cluster is chosen at random4

r2← ⌊(N− j+1)∗r⌋ // an entity is chosen at random5

for i := 1, . . . , q do6

c(r1, i)← x(r2, i)7

until j = k

After shaking, random centroids are obtained to start the KHM local search (KHMLS). The

previous centroids will be replaced by the new one if the solution is improved. Otherwise,

another solution is generated at random fromNk+1. In other words,k+ 1 new centroids will

be selected from among the existing entities. The search continues this inner loop until a

certain predefined numberkmax of neighbourhoods is reached (see Figure3.1). It has been

observed that makingkmax larger thanK would not be productive. In fact, exchanging the

K centroids, as in J-means neighbourhood, will produce a solution farthest from the current

one, with respect to the J-means neighbourhood. Therefore it is set in Algorithm3.6(on page

46) thatkmax← K. To know how the decision for choosing the centroids in each iteration is

made, Algorithm3.5 is designed and this is used in the main code.

The pseudo-code of the basic VNS is given in Algorithm3.6 (on page46). The outer loop

45

Algorithm 3.5: Neighbourhood change or move or not function
Function NeighbourhoodChange (C,C′, k)

if z(C′) < z(C) then1

C← C′; k← 1 // make a move2

else
k← k+ 1 // next centroid3

of the VNS is performed until the running time reachestmax (a parameter) seconds.tmax is

equal to 100 independent calls of KHM local search given in Algorithm 3.2. Note that the

same stopping condition was used in [10, 40]. For more details about the basic VNS and

other VNS methods see [41, 42].

Algorithm 3.6: Steps of the basic VNS
Function VNS(X,K, kmax, tmax,C)

repeat1

k← 1 // the neighbourhood index2

repeat3

C′ ← Shake(X, k,C) // Shaking4

C′′ ← KHM (X,K,C′,Maxit, ε) // Local search5

NeighbourhoodsChange(C,C′′ , k) // Change centroid6

until k = kmax

t ← CpuTime()7

until t > tmax

Since the basic VNS is easy to formulate in applications, other VNS extensions have not

been used. The other reason is that the basic VNS is a powerfulalgorithm and has the best

solutions in most of the experiments although it is terminated by MLS time.

3.4 Computational results

Computer. All experiments were performed on a personal computer Intel(R) Core(TM)2

with 3.24GB of RAM and a speed of 2.40GHz. All the methods werecoded on Lahey/Fujitsu

FORTRAN 95.

Test instances. the following test instances are chosen: (i)Iris which has 150 entities in

46

4-dimensions withK = 3; (ii) Glasswhich has 214 entities in 9-dimensional space with

K = 2; (iii) Winewhich has 178 entities in 13-dimensions withK = 3, and (iv)Breast-

cancerwhich has 699 entities in 10-dimensions withK = 2. For more details about them see

[12]. Also, two datasets are used, obtained from [73] and [12]. They are called (v) dataset

1, which has 1060 entities in 2-dimensions and (vi) dataset 2, which has 2310 entities in

19-dimensions.

Parameters. The valueε = 0.01 is used in all the algorithms. However, because of the

sensitivity ofε in some rare situations (likeWinedataset if the powerp = 3.5), it might be

changed to different values as it appears later. For that reason, other conversion criteria are

used by solutions instead ofε (i.e. the difference between 2 solutions is identical) to check

the results which may be concluded by coincidence. This new method is applied forIris

dataset. See Table3.2. In Algorithm 3.2and Algorithm3.3, theMaxit = 180. In Algorithm

3.6, thetmax is equal to the time that KHM spends on 100 independent calls andkmax= K. In

this way, a user-friendly VNS heuristic will be obtained, since the single parameter istmax.

For dataset1 and dataset2, the power of the KHM objective function isp = 2 for each number

of clustersK.

The following tables compare basic VNS algorithm with a previous work using the same data

sets.

Comparison with Tabu Search. In the experiments the three data sets were used in [36]:

Iris, GlassandWine. In Table3.1 Multistart local search (MLS) and VNS are created and

compared with TabuKHM from the literature [36] on these data sets. The name of the in-

stance and the value ofK are reported in the first column of Table3.1, the value ofp in the

second, and objective function values obtained by three methods in the next three columns.

In columns 6, 7 and 8, the MSSC objective function value is calculated with the partition ob-

tained by the corresponding KHM method. Columns 9 and 10 report the time when the

best solutions given in the table are reached by MLS and VNS respectively. The CPU

time for TabuKHM is not reported in [36]. In the last column the computing time spent

on Maxit = 100 independent calls of LS is given. That time used istmax for the VNS heuris-

47

tic.

KHM objective MSSC objective
D p TabuKHM MLS VNS TabuKHM MLS VNS tMLS tVNS tMax

1.5 182.293 182.071 182.066 81.343 80.159 79.254 0.078 0.016 0.203
2 181.728 181.519 181.518 79.454 79.254 79.026 0.031 0.031 0.078

Iris 2.3 182.252 182.064 182.064 79.061 78.856 78.856 0.125 0.016 0.125
K=3 2.5 183.037 182.866 182.865 79.062 78.856 78.851 0.109 0.016 0.140

3 186.827 186.699 182.699 79.549 78.851 78.851 0.016 0.031 0.109
3.5 193.637 193.481 193.476 80.400 78.851 78.851 1.078 0.203 1.234
1.5 642.9 642.877 642.874 851.209 826.556 826.556 0.109 0.250 0.281
2 1112.8 1112.771 1112.769 828.540 820.782 820.782 0.031 0.078 0.109

Glass 2.3 1616.3 1616.254 1616.252 824.323 820.782 820.526 0.094 0.078 0.156
K=2 2.5 2105.1 2105.144 2105.143 825.382 820.028 819.629 0.109 0.078 0.109

3 4247.9 4247.938 4247.938 846.686 821.312 821.312 0.031 0.016 0.094
3.5 8870.5 8870.487 8870.473 918.330 831.553 831.553 0.094 0.000 0.172
1.5 4.0756e5 399360.781 399360.7812396.8e3 2371841.75 2371841.750.094 0.250 1.063
2 5.3926e6 5388246.00 5388245.502402.7e3 2379535.25 2379535.250.156 0.063 0.406

Wine 2.3 26.216e6 26216142.0 26216138.02438.2e3 2412870.25 2412870.250.156 0.313 0.500
K=3 2.5 75.84e6 75840168.0 75840152.02489.1e3 2416444.75 2416444.750.109 0.563 0.672

3 1058.8e6 1.05884640e9 1.05884621e92687.4e3 2643674.00 2643674.000.125 0.203 0.484
3.5 14340e6 1.43466772e10 1.43464008e102733.7e3 2658181.75 2658181.751.438 0.031 3.688

Table 3.1:Comparison of three heuristics

KHM objective MSSC objective
D p TabuKHM MLS VNS TabuKHM MLS VNS tMLS tVNS tMax

1.5 182.293 182.093 182.066 81.343 80.160 79.2540.043 0.000 0.203
2 181.728 181.525 181.518 79.454 79.254 79.0260.053 0.003 0.090

Iris 2.3 182.252 182.102 182.064 79.061 78.859 78.8560.098 0.012 0.146
K=3 2.5 183.037 182.866 182.865 79.062 78.858 78.8510.165 0.012 0.218

3 186.827 186.701 182.699 79.549 78.853 78.8510.243 0.016 0.289
3.5 193.637 193.482 193.476 80.400 78.851 78.8511.056 0.089 1.170

Table 3.2:Comparison of three heuristics for Iris dataset using solutions conversion
criteria

It appears that the previous TabuKHM results are improved for all values ofp in theIris data

set. For theGlassdataset, the results are almost the same for all three methods. Indeed, the

problem withK = 2 seems to be that easy and optimal solutions are probably obtained by all

methods. Regarding theWinedata set, the results are improved by VNS, except forp = 3.5.

It is noticed that in this case, the KHM local search never converged in 100 restarts when

the usual valueε = 0.01 is used. It is found that this fact is explained by the sensitivity of

parameterε when the powerp is large, i.e., the denominators in formulas3.8and3.9become

too small. The results reported in Table3.1 (for p = 3.5) are obtained by settingε = 10. In

this way the instability caused by dividing by a number closeto 0 is avoided.

Some interesting observations can be deduced from columns of Table 3.1 which report the

values of the MSSC objective (values of the best partitions obtained by the heuristics and

KHM are calculated using the MSSC objective): (i) For theIris dataset, the quality of the

48

MSSC solution increases withp; the optimal solution of 78.8514 [64] is reached with larger

values ofp (p = 2.5, 3 and p = 3.5). (ii) For theGlassdataset, the quality of the MSSC

solution first increases and then declines whenp increases; (iii) For theWine dataset the

quality declines withp. This intriguing result appears to be worth further analysis.

In [36], the TabuKHM has also been tested after the normalization of all the entities in the

data sets, i.e.,

x∗i =
xi − min

i=1,...,N
{xi}

max
i=1,...,N

{xi} − min
i=1,...,N

{xi}
, ∀i = 1, ...,N. (3.12)

MLS and VNS are also applied to these normalized data sets. InTable 3.3 comparative

results forp = 2.3 are given. It appears that the VNS provides solutions with the smallest

objective function values. An exception is the datasetGlass, where the objective function

for the Tabu Search heuristic is twice as small as those obtained by MLS and VNS. Such

a difference exceeds by far what one would expect. In order to checkthis result, I asked

the corresponding author of [36] to provide me with a full description of the solution. He

declined to do so.

Datasets TabuKHM MLS VNS tMLS tVNS tMax

Iris 7.012 7.004 6.982 0.047 0.016 0.094
Glass 16.629 34.158 34.1580.031 0.000 0.172
Wine 49.501 49.022 48.9900.156 0.016 0.194

Table 3.3:Comparison of results with Tabu Search when the datasets arenormalized
and p= 2.3

Comparison with Simulated Annealing. The same authors usedIris, Wine and Breast-

cancer test instances for improving the KHM local search by using a simulated annealing

approach in [35]. They called their heuristic SAKHM. In their computational results section,

they give results forp = 3.5 only on the original and normalized data sets. In contrast with

[36], they also report on the CPU times used in the search. Their results are only used in the

following tables.

In Tables3.4 and3.5, comparisons between methods are given on original and normalized

data sets in turn. In the first case, the final solution is recalculated using the MSSC objective.

49

It appears that VNS and MLS provide solutions of better quality than SAKHM does, and do

so in significantly smaller CPU times. The reason appears to be that the step in SA which

merges and splits current clusters according to their utility (based on the distortion and utility

approaches from [67]) is probably not very efficient.

Datasets SAKHMC MLS VNS tMLS tVNS tMax tS AKHMC

Iris 80.32 78.851 78.851 1.078 0.203 1.234 15.25
Wine 2720.0e3 2658181.75 2658181.751.438 0.031 3.688 20.38
B-cancer 20.92e3 20091.9473 20091.94730.641 0.250 0.671 77.78

Table 3.4:Comparison of results with Simulated Annealing search whenp = 3.5
based on the MSSC objective function

Datasets SAKHMC MLS VNS tMLS tVNS tMax tS AKHMC

Iris 7.11 6.990 6.990 0.109 0.156 0.547 15.48
Wine 49.95 48.989 48.989 0.031 0.078 0.172 20.52
B-cancer 258.36 255.532 255.5320.531 0.422 0.578 71.58

Table 3.5:Comparison of results with Simulated Annealing when the datasets are
normalized and p= 3.5

Comparison between MLS and VNS on large datasets.In previous tables VNS shows

slightly better performance than MLS. In the last set of experiments, and to check how these

two heuristics compare in large test instances, two datasets were used. Dataset 1, called

theDrilling Problem, has 1060 entities in 2-dimensions [73]. Dataset 2 is called theImage

Segmentationwith 2310 entities in 19-dimensions [12]. The results are given in Tables3.6

and3.7.

K MLS VNS Improvements tMLS tVNS tMax

10 8.88987136e9 8.88986829e9 0.00% 8.906 14.250 22.344
20 6.99046605e9 6.99042970e9 0.00% 31.000 34.578 61.219
30 6.07008205e9 6.02638234e9 0.72% 75.047 3.734 89.188
40 5.45612134e9 5.43608781e9 0.37% 111.172 84.578 120.438
50 5.08445184e9 4.97067776e9 2.24% 136.781 14.016 148.203

Table 3.6:Comparison on Dataset 1: n = 1060, q = p = 2

It appears that, for a small number of clusters, both methodsare similar. For largerK,

i.e., for more difficult problems where there are many local minima, VNS obtainsbetter

results.

50

K MLS VNS Improvements tMLS tVNS tMax

10 36186608.0 36186488.0 0.00% 15.016 47.922 55.922
20 32377326.0 32329884.0 0.15% 17.813 68.484 139.203
30 31412122.0 30867270.0 0.17% 71.672 177.656 213.969
40 30768640.0 30127940.0 2.08% 101.797 253.953 319.938
50 28922248.0 27687874.0 4.27% 264.203 320.625 390.219

Table 3.7:Comparison on Dataset 2: n = 2310, q = 19, p = 2.

3.5 Conclusion

This chapter proposes that a variable neighbourhood searchbased heuristic is used for solving

the K-harmonic means clustering problem; it was initially introduced in [83, 82]. The neigh-

bourhoods consist of centroid to entity moves, similar to those used in the J-Means heuristic

[40] for solving the Minimum sum of squares clustering. In a series of test instances often

used in the literature, a considerably better performance is obtained using VNS than with

two recent metaheuristic based methods: Tabu Search [36] and Simulated Annealing [35].

Moreover, the results for much larger test instances than previously used in the literature are

presented. Therefore, this method may be considered as a newstate-of-the-art heuristic for

solving the K-harmonic means clustering problem.

51

Chapter 4

Degeneracy of harmonic means

clustering

It is well known that some local search algorithms forK-clustering problems could stop at

a solution with fewer clusters than the desiredK. Such solutions are called degenerate. In

this chapter, I first show that theK-Harmonic Means heuristic has this property, although

it does not have the same initialization sensitivity as theK-Means heuristic (for solving the

Minimum sum-of-squares clustering problem). I then found that two types of degenerate

solutions can be found in theK-Harmonic Means heuristic and provide counter-examples

of both. I also propose a simple method to remove degeneracy during the execution of the

K-Harmonic Means algorithm (KHM) and use it within a recent variable neighbourhood

search (VNS) based heuristic. Extensive computational analysis, performed on the usual

test instances from the literature, shows significant improvement obtained with my simple

degeneracy correcting method, used within bothKHM and VNS.

52

4.1 Introduction

One of the most popular models for partitioning points in Euclidean space is the minimum

sum-of-squares clustering (MSSC) model [4, 5, 40]. (see3.1 on page36). Then the MSSC

can be expressed as follows:

fMS SC(P) = min
P∈PK

N
∑

i=1

min
j=1,...,K

‖xi − c j‖
2, (4.1)

where the centroid of clusterj is given asc j =
1
|C j |

∑

i∈C j
xi .

The most popular heuristics for solving minimum sum-of-squares clustering (MSSC) alter-

nate two types of variable: for fixed centroids (location), the best assignment of entities

(clusters) are found, and for a givenK allocations (clusters), the best centroids are found.

Such heuristics are known as Alternate (ALT) heuristics. Used for solving MSSC, the ALT

heuristic is calledK-Means (see Algorithm3.1on page39).

Most alternate heuristics have an undesirable property known as degeneracy [59, 17]: one or

more groups of entities (new facilities) become empty during its execution. In other words,

the better solution in the next iteration of ALT may be found but with a lower number of

clusters (new facilities). Clearly, such solutions may easily be improved by adding a new

centroid (facility) at the location of any unoccupied existing facility. Papers which investi-

gate the reason for the deterioration of solution quality obtained by ALT heuristics mostly

pay attention to the choice of initial points. There are morethan a dozen papers devoted to

initialization of K-Means alone and it is still a subject of debate (see e.g. [68, 50, 71, 76]).

Recent Harmonic means clustering [83] is designed to show that the solution quality of the

ALT heuristic for theK-Harmonic Means clustering problem (KHMCP) depends less onthe

choice of its initial solution. This fact is empirically confirmed in the next section. The nat-

ural question is then whetherK-Harmonic Means heuristic (KHM), the most popular heuristic

for solvingKHM problem, poses the problem of degeneracy as well.

In this chapter I show that theKHM method could also contain two types of degenerate so-

lution: (i) Type-1, when the cluster centre has no entities allocated to it; (ii) Type-2, when

53

two cluster centres coincide, or they are at a distance less than an arbitrary small numberε.

I then suggest an efficient and fast method for removing empty clusters immediately when

they occur withinKHM heuristics. Such a procedure is induced into the VNS based heuristic

[3], which represents a current state-of-the art heuristic for KHMCP. In order to understand

degeneracy better, I performed an extensive computationalanalysis on test instances from the

literature. It shows also thatKHM contains degeneracies of a smaller degree than theK-Means

heuristic does.

This chapter is organised as follows. In the next section, for completeness, I give pseudo-

codes for the ALT procedures in solving theK-Harmonic Means clustering problem (KHMCP).

In the same section I show empirically thatKHM is indeed less sensitive on the initial solu-

tion. I also prove by constructing counter-examples thatKHM could stop at the degenerate

solutions of both Type-1 and Type-2. At the end of this section, I propose a method for re-

moving degeneracy. In section4.3on page (65), I show the impact of removing degeneracy

on variable neighbourhood search (VNS) and Multi-Starts ofKHM (MLS). In section4.4 on

page (68), I perform extensive computational analysis. Section4.5 on page (72) concludes

the chapter.

4.2 Degeneracy ofK-Harmonic Means clustering

K-Harmonic Means clustering problem (KHMCP). To make it easier to the reader, I repeat

some notation mentioned in previous chapter. In the KHMCP the sum of harmonic averages

of the distances between each entity and all centroids is minimized:

fKHM(p) = min
N

∑

i=1

HAi(K, p) (4.2)

where:

HAi(K, p) =
K

K
∑

j=1

1
‖xi − c j‖

p

, ∀ i = 1, ...,N. (4.3)

54

The parameterp is a power of the Euclidean norm which is used as a distance function.

K-Harmonic Means (KHM) algorithm. The most popular heuristic for solving KHMCP is

of the alternate type, which will be referred to as theK-Harmonic Means (KHM) [83, 37]. For

the sake of completeness, I recall here the steps of theKHM heuristic. The set of variables is

naturally divided into a set of locations of cluster centresand a set of membership (alloca-

tion) variables of each entity.KHM uses a weight function which allows the same entities to

belong to different clusters. A weight functionwi , recalled below, determines the partition

of the belonging which each entity has in each cluster. In contrast to theK-Means algorithm

(KM) (see Algorithm3.1), which gives equal weight (i.e.wi=1) to all data , theKHM algorithm

varies the weights at each step. The other function used in the KHM algorithm is called the

membership functionmi j which assigns each entity or pointxi to a clusterc j . This function

should satisfy the following:

(i)
K

∑

j=1

mi j=1 ∀ i = 1, ...,N; (ii) 0 ≤ mi j ≤ 1 ∀ i = 1, ...,N, ∀ j = 1, ...,K.

The membership function and the weight function which it uses are defined as follows:

mKHM(xi/c j) =
‖xi − c j‖

−p−2

K
∑

l=1

‖xi − cl‖
−p−2

, ∀ i = 1, ...,N, ∀ j = 1, ...,K , (4.4)

wKHM(xi) =

K
∑

j=1

‖xi − c j‖
−p−2

K
∑

j=1

‖xi − c j‖
−p

2
, ∀ i = 1, ...,N , (4.5)

where the centroids are given by the formula [83, 82, 37]:

c(new)
j =

N
∑

i=1

mKHM(c j/xi) · wKHM(xi) · (xi)

N
∑

i=1

mKHM(c j/xi) · wKHM(xi)

, ∀ j = 1, ...,K . (4.6)

The local search algorithmKHM starts by generatingK-centroids chosen at random from

among the given entitiesxi (i = 1, ...,N). From Equations (4.4), (4.5), and (4.6) the new

55

centroids are obtained. This process is repeated until the difference between the centroids in

two consecutive iterations is less thanε (a small number) or a maximum number of iterations

is reached (see Algorithm4.1).

Algorithm 4.1: The local search algorithmKHM for KHMCP
Function KHM (X,K,Maxit, ε,N,C, z)

C(new) = {c1, c2, . . . , cK} // K centroids are chosen from X1

ℓ ← 0 // ℓ-iteration counter2

repeat3

ℓ← ℓ + 1; C← C(new)4

z← fKHM(C) as in (4.2)5

for i = 1, ...,N do6

for j = 1, ...,K do7

Calculatem(cj/xi) as in (4.4)8

Calculatew(xi) as in (4.5)9

for i = 1, ..., n do10

for j = 1, ...,K do11

Find new centroidsc(new)
j , as in (4.6)12

until (‖c(new)
j − cj‖ ≤ ε, ∀ j = 1, ...,K) or ℓ =Maxit

Sensitivity on the initial solution. As noted above, the KHMCP is introduced to avoid the

sensitivity of choosing the initial centroids of the MSSC [83, 82, 54]. In order to check this,

computational analysis is performed on several well-knowntest instances from the literature

(more detailed description of these test instances is givenin section4.4). Table4.1shows the

differences between the worst and best objective function values obtained with 100 restarts

of KM andKHM heuristics in turn. Since the objective functions of these two problems are

different, crisp partitions obtained byKHM are taken and found corresponding MSSC objective

function values. In this way, it is easier to compare the influence of the initial solutions on

the final solution ofKM andKHM.

The first and the second columns of Table4.1 display the number of entities and the corre-

sponding dimension of the data set, respectively. The desired number of clusters is shown

in column 3. Columns 5 and 6 show the worst and best values among the 100 restarts re-

spectively. The last column gives the difference between the worst (largest) and the best

(smallest) values, such as were obtained and give the % difference between 2 algorithms

56

calculated as:
KM − KHM

KM
.100 (4.7)

DATASET DIM M ALG WORST-SOL BEST-SOL DIFF DEV %

Ruspini
2 3

KM 50298.04 10126.72 40171.32
94.30

(75) KHM 12415.12 10126.72 2288.39
Iris

4 3
KM 145.53 78.85 66.68

100
(150) KHM 78.85 78.85 0.00
Wine

13 3
KM 2633555.33 2370689.69 262865.64

100
(178) KHM 2371841.59 2371841.59 0.00
Glass

9 2
KM 1240.11 819.63 420.48

99.90
(214) KHM 820.03 819.63 0.40

10
50

KM 7700.88 6112.12 1588.76
15.39

B-Cancer KHM 7298.29 5954.09 1344.20
(699)

100
KM 5853.25 4348.77 1504.48

54.86
KHM 5028.09 4348.92 679.17

2
50

KM 349545617.68 275703293.57 73842324.11
52.16

TSP KHM 293226666.88 257897808.70 35328858.18
(1060)

100
KM 157827133.11 111301083.09 46526050.02

56.58
KHM 122563406.21 102361445.84 20201960.37

19
50

KM 4182208.78 2819337.21 1362871.57
34.83

I-Segmentation KHM 3182598.13 2294420.45 888177.68
(2310)

100
KM 2908213.19 1839231.27 1068981.92

43.16
KHM 1947788.50 1340153.25 607635.25

2
50

KM 113402496.67 99913944.85 13488551.83
61.51

TSP KHM 105470392.38 100278655.58 5191736.80
(3038)

100
KM 58159312.92 50568302.39 7591010.53

72.67
KHM 50614550.76 48540001.30 2074549.46

Table 4.1: MSSC objective functions forKM and KHM partitions obtained in 100
restarts

Table4.1 confirms that the final solution ofKHM is not as sensitive as theKM on the choice

of the initial solution, since the differences between worst and best solutions obtained by

KHM are much smaller than the differences obtained by theKM heuristics. Note also that in

some cases better objective function values are obtained withKHM, despite the fact that MSSC

problems are considered (see, e.g., the TSP-1060 dataset).

57

4.2.1 Degeneracy ofKHM

In this subsection I show, by counter-example that the solution obtained byKHM could also

be degenerate. I first notice that there are 2 types of degeneracy. We can say that the solution

of the clustering problem isdegenerate Type-1, if there are one or more cluster centres which

have no entities allocated to them. We can say that the solution of the clustering problem is

degenerate Type-2, if there exist at least two cluster centres which are identical. Following

these definitions, it is clear that a degenerate solution of Type-2 is also a degenerate of Type-

1, but the converse does not hold. I also define the degree of degeneracy [17]: We can say that

a degenerate solution has a degree of degeneracy equal tod if the number of empty clusters

in the solution is equal tod.

Type-1 degeneracy ofKHM. I first illustratedegenerate Type-1on the following well-known

Ruspini data set [74] (entities are 75 points in the plane, as given in Figure4.1). In this

experiment, I attempt to start with bad initialization clustering to check for degeneracy. I

show that a degenerate solution of Type-1 occurs even in the first iteration of theKHM algo-

rithm if K = 4. In fact, if the initial cluster centres are located at customer locations 75, 63,

65 and 61 (see Figure4.2a), then after the allocation step, the objective function ofsuch a

proper solution is 669408.938. Entities are divided into 4 clusters, as follows: 63 entities

{1, 2, . . . , 59, 71, 72, 74, 75} are closest to entity 75; 4 entities{60, 63, 66, 73} are closest to

entity 63; 7 entities{62, 64, 65, 67, 68, 69, 70} are allocated to cluster centre 65. The last en-

tity is 61, which contains itself. The next step shows the degeneracy in cluster 4 (see Figure

4.2b). It is interesting to note that Type-1 degeneracy could appear in theKHM algorithm and

then be fixed by itself, i.e., without applying additional rules. After only one step of location

and allocation, it appears that the degeneracy is removed byitself. However, the objective

function is almost 3 times smaller: 252499.813.

Degeneracy of degree 2 also exists ifK = 5 . It is shown in Figure (4.2d) where I suggest

the same initial solution as in Figure4.2abut entity 62 is added as the centroid for the fifth

cluster. Thus, the degenerate solution is already obtainedin the first iteration (see Figure

(4.2e). However, it is removed from the solution as before, in the next step ofKHM. Therefore,

58

type 1 degeneracy may be automatically corrected during theexecution ofKHM. But for many

other datasets, the degenerate solutions are significantlyaffected at the end of the local search,

as explained in section (4.2.2).

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32
 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49
 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63
 64 65 66 67

 68

 69 70 71 72 73
 74 75

Figure 4.1: Ruspini dataset.

Although theKHM heuristic improves Type-1 degeneracy automatically, I show in section4.4

that the quality of the final solution exceeds this if the degeneracy is removed immediately

as it appears. Moreover, the number of iterations of the original KHM is greater (see Table

4.2).

59

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

 C1
 C2

 C3

 C4

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32
 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49
 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63
 64 65 66 67

 68

 69 70 71 72 73
 74 75

kh−means centroids
data entities

(a) Initial solution andK = 4.
0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

160

 C1 C2

 C3

 C4

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32
 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49
 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63
 64 65 66 67

 68

 69 70 71 72 73
 74 75

kh−means centroids
data entities

(b) 1st iteration ;K = 4; degeneracy degree=1.
0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

160

 C1

 C2

 C3

 C4

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32

 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49

 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63

 64 65 66 67
 68

 69 70 71 72 73
 74 75

kh−means centroids
data entities

(c) 2nd iteration ;K = 4.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

 C1
 C2

 C3

 C4
 C5

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32
 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49
 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63
 64 65 66 67

 68

 69 70 71 72 73
 74 75

kh−means centroids
data entities

(d) Initial solution andK = 5.
0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

160

 C1
 C2

 C3
 C4 C5

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32
 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49
 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63
 64 65 66 67

 68

 69 70 71 72 73
 74 75

kh−means centroids
data entities

(e) 1st iteration ;K = 5; degeneracy degree=2.
0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

160

 C1

 C2

 C3

 C4
 C5

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32

 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49

 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63

 64 65 66 67
 68

 69 70 71 72 73
 74 75

kh−means centroids
data entities

(f) 2nd iteration ;K = 5.

Figure 4.2:KHM clustering degeneracy for theRuspinidataset.

6
0

Type-2 degeneracy ofKHM. The following example proves the degeneracy of Type-2 for a

KHM local search. The entitiesx(i, ℓ) and the initial solutionc(j, ℓ) are as follows:

X =

0.5 0

1 1

1 5

1 −5

1.5 0

; C =

1 5

1 1

1.5 0

0.5 0

.

The initial solution of this step is shown in Figure4.3a. The next step is to calculate the

objective function, as in (4.2), to get new centroids as in (4.6) and to calculate the membership

and weight matrices as in (4.4) and (4.5). I choosep = 2 andε = 0.01. The objective function

is:

fKHM(P) =
N

∑

i=1

HAi(K,P) =
N

∑

i=1

4

‖xi − c1‖
−2 + ‖xi − c2‖

−2 + ‖xi − c3‖
−2 + ‖xi − c4‖

−2

=
4

10001.84
+

4
10001.66

+
4

10000.14
+

4
0.12

+
4

10001.84

= 34.1938

By simple calculations, we get the membership matrix:

mKHM(c j/xi) =

0.0000 0.0000 1.0000 0.0249 0.0000

0.0000 1.0000 0.0000 0.1925 0.0000

0.0000 0.0000 0.0000 0.3913 1.0000

1.0000 0.0000 0.0000 0.3913 0.0000

.

The fact thatm34 = m44 = 0.3913 will cause future degeneracy. From this matrix, in fact, we

can obtain crisp clustering matrix, as follows:

61

M1 = maxj(mKHM(c j/xi)) =

0 0 1 0 0

0 1 0 0 0

0 0 0 1 1

1 0 0 0 0

; or M2 =

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 1 0

.

By repeating the same steps in the next iteration we get:

wKHM(xi) =
(

0.9996 0.9997 1.0000 0.2929 0.9996
)T
.

Now the new centroids, calculated from (4.6), are

C =

1.0000 4.9275

1.0000 0.6797

1.4486 −0.5143

0.5514 −0.5143

.

The results are shown in Figure (4.3b). We see in Figures (4.3band4.3c) that all five entities

are clustered in 4 groups, as desired. But in in Figure (4.3d), two centroids are almost joined

in one cluster. In the rest of the figures (4.3e, 4.3f), we can see clearly how they become the

same. This step implies that the degeneracy in this example is considered to be of type 2.

The final solution is:

C(f inal) =

1.0000 4.9953

1.0000 0.3291

1.0000 −4.9891

1.0000 −4.9891

.

Note that entity 4 belongs to clusters 3 and 4 equally in the initial solution, as well as in all

5 iterations. At the end, cluster centroids 3 and 4 become identical, producing a degeneracy

Type-2 solution.

62

0.4 0.6 0.8 1 1.2 1.4 1.6
−6

−4

−2

0

2

4

6

 C1

 C2

 C3 C4

 1

 2

 3

 4

 5

KHM centroids
data entities

(a) Initial solution; objective
function f = 34.1938.

0.4 0.6 0.8 1 1.2 1.4 1.6
−6

−4

−2

0

2

4

6

 C1

 C2

 C3 C4

 1

 2

 3

 4

 5

KHM centroids
data entities

(b) 1st iteration; f = 30.3828.
0.4 0.6 0.8 1 1.2 1.4 1.6

−6

−4

−2

0

2

4

6

 C1

 C2

 C3 C4

 1

 2

 3

 4

 5

KHM centroids
data entities

(c) 2nd iteration; f = 25.9296.

0.4 0.6 0.8 1 1.2 1.4 1.6
−6

−4

−2

0

2

4

6

 C1

 C2

 C3 C4

 1

 2

 3

 4

 5

KHM centroids
data entities

(d) 3rd iteration; f = 11.2037.
0.4 0.6 0.8 1 1.2 1.4 1.6

−6

−4

−2

0

2

4

6

 C1

 C2

 C3 C4

 1

 2

 3

 4

 5

KHM centroids
data entities

(e) 4th iteration; f = 4.4748.
0.4 0.6 0.8 1 1.2 1.4 1.6

−6

−4

−2

0

2

4

6

 C1

 C2

 C3 C4

 1

 2

 3

 4

 5

KHM centroids
data entities

(f) 5th iteration; f = 4.4587.

Figure 4.3:KHM clustering degeneracy for dataset-2.

4.2.2 Removing degeneracy (KHM+)

There are many efficient ways to remove degeneracy from the solution. Such procedures

are found for example, in Cooper’s ALT type algorithm for solving the Multi-Source Weber

problem in [59, 17]. In certain datasets (for example, in theB-Cancer data set 699), the

degeneracy remains in all iterations ofKHM, i.e., it does not automatically vanish as in the

example in Figure4.2. This guides me to design an algorithm for removing degeneracy

immediately as it appears, in order to avoid it in the next step. My pseudo-code is given in

Algorithm 4.2. If a degeneracy of degreed occurs, my algorithm randomly selectsd new

centroids among existing entities. Such new solution is obviously not degenerate, since all K

63

centroids have at least one entity which is allocated to them.

In other words, the coordinates of any centroidc j without an entity are replaced by entityxi

taken at random. I also tested some different strategies for choosing the entity to be taken as

a new centroid. However, it appears that the most efficient is random selection although the

solution qualities are not significantly different. I found that the computing time for any de-

terministic search is long and does not usually improve the quality of the final solution.

Algorithm 4.2: KHM+ local search with removing degeneracy
Function KHM+ (X,K,Maxit, ε,N,C, z)

C(new) = {c1, c2, . . . , cK} // K centroids are chosen from X at random1

i ← 0 // i-iteration counter2

repeat3

i ← i + 1; C← C(new)4

z← fKHM(C) as in (4.2)5

Calculatem as in (4.4) andw as in (4.5) for all entities6

Find new centroidsc(new)
j , j = 1, . . . ,K as in (4.6)7

Indicate indicesbℓ of degenerate solutions (ℓ = 1, . . . , g)8

if (g > 0) then9

for ℓ := 1, . . . , g do10

t ← bℓ11

h = 1+ n ∗ RND // choose an entity h at random12

for β := 1, . . . , q do13
ctβ ← xhβ

until (‖c(new)
j − cj‖ ≤ ε, ∀ j = 1, ...,K or i =Maxit)

By applying Algorithm4.2, I can simply remove the degeneracy in the previous counter

example fork = 5 in section (4.3). Figure4.4 shows the solutions obtained by myKHM+.

Although the solutions obtained byKHM andKHM+ are both proper after the second iteration,

it appears that the objective function value of the former ismore than twice as large (compare

fKHM = 212, 390 with fKHM+ = 97, 519).

In other experiments, the degeneracy may appear again in other iterations. So, the way

to insert a random solution instead of degenerate ones once it appears reduces the time of

justifying the initial solution.

64

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

 C1
 C2

 C3

 C4
 C5

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32
 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49
 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63
 64 65 66 67

 68

 69 70 71 72 73
 74 75

kh−means centroids
data entities

(a) Initial solution; f = 685329.3.
0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

160

 C1
 C2

 C3

 C4

 C5

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32

 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49

 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63

 64 65 66 67
 68

 69 70 71 72 73
 74 75

kh−means centroids
data entities

(b) 1st iteration; f = 440700.4.
0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

160

 C1

 C2

 C3

 C4

 C5

 1

 2
 3

 4

 5

 6

 7

 8

 9
 10

 11 12
 13

 14
 15
 16

 17

 18 19

 20

 21 22
 23 24

 25 26
 27 28 29 30

 31

 32

 33 34

 35
 36

 37 38

 39
 40

 41

 42
 43

 44

 45

 46 47 48

 49

 50

 51
 52

 53

 54
 55 56
 57

 58

 59 60

 61

 62

 63

 64 65 66 67
 68

 69 70 71 72 73
 74 75

kh−means centroids
data entities

(c) 2nd iteration; f = 97519.8.

Figure 4.4:KHM clustering for theRuspinidataset after removing degeneracy.

To make a precise comparison betweenKHM andKHM+, I use the same initial solutions for

both algorithms. Table4.2 contains a comparison of the two local searches on theRuspini

data and different values of cluster numbers (m). In column 4 of Table4.2, I give the %

difference between 2 algorithms calculated as:

fKHM − fKHM+

fKHM+
.100 (4.8)

In column 5, I report number of iterations used and in column 6the type of degeneracy that

occurred.

4.3 VNS for KHM

Variable neighbourhood search (VNS) is a metaheuristic forsolving combinatorial and global

optimization problems whose basic idea is a systematic change of neighbourhood both within

a descent phase to find a local optimum and in a perturbation phase to get out of the corre-

sponding valley. The efficiency of VNS is based on three simple facts: (i) A local minimum

65

K mth obj dev % maxit type maxdeg time
4 KHM 42980.7852

0.00
10 1 1 0.062

4 KHM+ 42980.7812 9 0.000
5 KHM 41442.8750

0.00
23 1 2 0.016

5 KHM+ 41442.8711 13 0.016
6 KHM 38989.2109

0.00
45 1 2 0.016

6 KHM+ 38989.2109 28 0.016
7 KHM 40957.8125

2.58
59 1 2 0.016

7 KHM+ 39928.8477 60 0.031
8 KHM 35056.9453

1.43
42 1 3 0.016

8 KHM+ 34562.2109 40 0.016
9 KHM 32716.4531

0.00
34 1 4 0.031

9 KHM+ 32716.4512 41 0.031
10 KHM 32406.1074

10.13
42 2 6 0.047

10 KHM+ 29426.3652 34 0.031
11 KHM 30778.1641

4.23
41 2 7 0.016

11 KHM+ 29527.8652 65 0.047
12 KHM 30869.2480

0.39
41 2 8 0.016

12 KHM+ 30748.0254 80 0.047
13 KHM 31482.8633

7.97
41 2 7 0.047

13 KHM+ 29160.1875 107 0.062
14 KHM 36413.9570

3.86
59 2 8 0.078

14 KHM+ 35059.1758 30 0.031
15 KHM 37569.1562

3.50
54 2 9 0.078

15 KHM+ 36298.4766 41 0.031

Table 4.2:Comparison between methodsKHM andKHM+ on the Ruspini dataset

with respect to (w.r.t.) in one neighborhood structure is not necessarily the same for another;

(ii) A global minimum is a local minimum w.r.t. all possible neighborhood structures; (iii)

For many problems, the local minima w.r.t. one or several neighbourhoods are relatively close

to each other. The VNS metaheuristic is well-established inthe literature. For an overview of

the method and numerous applications, the reader is referred to [60], [41], and for the most

recent survey, to [42].

For solving KHMCP, the VNS based heuristic (VNS-KHM) has already been proposed in [3].

For the sake of completeness, I repeat its steps in Algorithm4.3.

In my VNS-KHM+ the initial solution is obtained by selectingK centroids among the exist-

ing entities at random. The method terminates when a given running timetmax is reached.

The inner loop iterates until there is no better solution in the last neighborhood (kmax) of the

incumbent solutionC. The inner loop consists of 3 steps: Shaking; Local search and Neigh-

bourhood change. The only difference between my new VNS based heuristic suggested here

66

Algorithm 4.3: Steps of the basic VNS+
Function VNS+(X,K, kmax, tmax,C)

repeat1

k← 1 // the neighbourhood index2

repeat3

C′ ← Shake(X, k,C) // Shaking4

C′′ ← KHM+ (X,K,C′,Maxit, ε) // Local search5

NeighbourhoodsChange(C,C′′ , k) // Change centroid6

until k = kmax

t ← CpuTime()7

until t > tmax

(VNS-KHM+) and theVNS-KHM as in [3] is that KHM+ local search, given in Algorithm4.2,

is used in the new method instead of theKHM used in the old VNS. Details regarding the

functions ofShake andNeighbourhoodChangemay be found in [3]. For the sake of com-

pleteness, here I give only their pseudo-codes. The main purpose of the Shaking step is

Algorithm 4.4: Shaking step
Function Shaking (X, k,C)

j ← 0 // initializing iteration counter1

repeat2

j ← j + 13

r1← ⌊(m− j+1)∗r⌋ // a cluster is chosen at random4

r2← ⌊(n− j+1)∗r⌋ // an entity is chosen at random5

for i := 1, . . . , q do6

c(r1, i)← x(r2, i)7

until j = k

to diversify the incumbent solutionC. Neighbourhoodk (k = 1, . . . , kmax) consists of ran-

dom centroid-to-entity swaps. Such a random solution is theinitial one for theKHM+ local

search.

Algorithm 4.5: Neighbourhood change or move or not function
Function NeighbourhoodChange (C,C′, k)

if z(C′) < z(C) then1

C← C′; k← 1 // make a move2

else
k← k+ 1 // next centroid3

67

FunctionNeighborhoodChange() compares the new valuez(C′) with the incumbent value

z(C) obtained in the neighbourhoodk (line 1). If an improvement is obtained,k is returned to

its initial value and the new incumbent is updated (line 2). Otherwise, the next neighbourhood

is considered (line 3).

4.4 Computational Results

Computer. All experiments were performed on a personal computer Intel(R) Core(TM)2

with 0.98GB of RAM and a speed of 2.40GHz. All my methods were coded on Lahey/Fujitsu

FORTRAN 95. For plotting, I use MATLAB 7.6.

Test instances. I choose the following test instances: (i)Ruspiniwhich has 75 entities in

2-dimensions [74]; (ii) Iris which has 150 entities in 4-dimensions; (iii)Wine which has

178 entities in 13-dimensions; (iv)Glasswhich has 214 entities in 9-dimensional space; (v)

Breast-cancerwhich has 699 entities in 10-dimensions, and (vi)Image Segmentationwith

2310 entities in 19-dimensions. For more details about them, see [12].

Parameters. I chooseε = 0.01 in all my algorithms. In Algorithm4.1, theMaxit = 180. For

all datasets, I put the power ofKHM objective function asp = 2 for each number of clusters

K.

Maximum degree of degeneracy. As mentioned above, theKHM algorithm has a smaller

degree of degeneracy thanKM (for solving Minimum sum-of-squares clustering). In Figure

4.5, I show the maximum degrees of degeneracy obtained during the execution of these two

heuristics. Comparative results on two well-known datasets from the literature are presented:

(i) Breast-cancerand (ii) Image Segmentation. The gap between the two algorithms is very

clear: the maximum degree of degeneracy is much larger forKM than forKHM. However, it is

interesting to note that the maximum degree of degeneracy isthe empirically linear function

of the cluster numberK. Tables of these results and more details about KHM degeneracy for

these datasets are explained in AppendicesB.1 andB.2.

68

100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

500

number of clusters

m
ax

im
um

 d
eg

re
e

of
 d

eg
en

er
ac

y

K−means
KH−means

(a) Dataset:Breast Cancer-699

50 100 150 200
0

20

40

60

80

100

120

number of clusters

m
ax

im
um

 d
eg

re
e

of
 d

eg
en

er
ac

y

K−means
KH−means

(b) Dataset:Image Segmentation-2310

Figure 4.5: Comparison between the degeneracy degrees ofK-Means andKHM local
searches after 100 starts.

Comparison between KHM and KHM+. In the following tables I present a comparison

between the objective function values obtained withKHM andKHM+. The first column indicates

the number of desired clusters(K). The second column indicates the method used(mth): in

the originalKHM and myKHM+. Column 3(obj) gives the corresponding objective function

values. Column 4 shows the percentage improvement(dev %)obtained byKHM+. The number

of local search iterations(maxit) is displayed in Columns 5. The Type(type)and max degree

(maxdeg)of degeneracy are displayed in columns 6 and 7 respectively.The last column

shows the computing time(time)(in seconds) for each method.

69

K method obj % dev maxit type maxdeg time
50 KHM 1010980.81

0.16
153 1 1 1.25

50 KHM+ 1009370.12 138 0.84
60 KHM 772767.75

50.28
119 1 1 0.93

60 KHM+ 514221.22 93 0.73
70 KHM 1214848.75

57.34
93 1 1 0.86

70 KHM+ 772127.44 73 0.78

(a) Dataset:Wine-178

K method obj % dev maxit type maxdeg time
180 KHM 136.40

26.54
4 2 1 0.09

180 KHM+ 107.79 4 0.21
190 KHM 89.61

55.90
4 2 1 0.12

190 KHM+ 57.48 5 0.37
200 KHM 37.74

21.60
5 2 1 0.09

200 KHM+ 31.04 5 0.60

(b) Dataset:Glass-214

K method obj % dev maxit type maxdeg time
100 KHM 29219.30

0.54
125 2 42 4.06

100 KHM+ 29063.82 68 2.57
150 KHM 31468.25

9.24
48 2 39 2.35

150 KHM+ 28806.04 7 0.57
200 KHM 30548.25

28.76
3 2 50 0.20

200 KHM+ 23725.55 3 0.62
250 KHM 26197.01

37.50
3 2 62 0.25

250 KHM+ 19052.13 2 0.85
300 KHM 23265.06

57.82
2 2 78 0.20

300 KHM+ 14741.80 2 1.09

(c) Dataset:Breast Cancer-699

K method obj % dev maxit type maxdeg time
100 KHM 32480866

0.20
104 2 1 14.75

100 KHM+ 32416846 131 16.67
200 KHM 31760192

0.02
157 2 1 38.18

200 KHM+ 31754658 150 40.87
300 KHM 30295272

0.02
105 2 3 37.68

300 KHM+ 30288258 91 38.03
400 KHM 29596908

0.97
105 2 6 49.70

400 KHM+ 29313292 102 48.68
500 KHM 28287296

0.42
50 2 10 29.28

500 KHM+ 28169312 43 26.18

(d) Dataset:Image Segmentation-2310

Table 4.3:Comparison betweenKHM andKHM+ based on one run.

Based on the comparative results betweenKHM andKHM+ given in Table4.3, the following

observations can be obtained:

(i) By using KHM+, the solution qualities are improved up to 58%, in a lower number of

iterations and smaller computing times, on average.

(ii) The degeneracy type is correlated with the instance. Inother words, there is no instance

with both types of degeneracy:Wine-178exhibits only type 1 and the other instances

only type 2 degeneracy.

(iii) The number of clusters without entity (the maximum degree of degeneracy) could be

more than 40% of the total number of clustersK (seethe Breast Cancer-699instance).

Comparison between VNS-KHM and VNS-KHM+. The next table presents the influence

of KHM+ when applied within 2 metaheuristics: Multi-start local search (MLS) and VNS.

Heuristics which use KHM+ as a local search within MLS and VNS I denote as MLS+ and

70

VNS+ respectively. Table4.4presents the comparative results obtained by these 4 methods

are presented. For each dataset I first run KHM and KHM+ 10 times to get the maximum

time allowed for VNS and VNS+ (tmax). Those values are given in the last column of Table

4.4.

dataset K obj % dev obj % dev tmls tvns tmax

50
MLS 619330.5630

8.75
VNS 466665.6250

0.78
0.02 0.04 0.17

MLS+ 569476.3750 VNS+ 463067.2190 0.02 0.15 0.16
Wine

60
MLS 571392.2500

11.12
VNS 435012.0310

9.16
0.00 0.13 0.13

(178) MLS+ 514221.2190 VNS+ 398527.0000 0.00 0.03 0.47

70
MLS 463024.7500

3.28
VNS 353198.4380

3.81
0.02 0.17 0.29

MLS+ 448310.0940 VNS+ 340229.7810 0.02 0.21 0.31

180
MLS 106.0072

30.03
VNS 28.8215

4.24
0.05 0.14 0.17

MLS+ 81.5225 VNS+ 27.6500 0.02 0.05 0.12
Glass

190
MLS 48.2871

3.97
VNS 19.9370

1.29
0.09 0.14 0.14

(214) MLS+ 46.4445 VNS+ 19.6822 0.46 0.45 0.56

200
MLS 29.4370

3.11
VNS 8.5587

3.98
0.08 0.71 0.75

MLS+ 28.5487 VNS+ 8.2308 0.12 1.16 1.16

100
MLS 28901.5645

0.67
VNS 27519.3906

0.26
0.08 0.23 0.23

MLS+ 28708.2246 VNS+ 27449.3926 0.19 0.21 0.21

150
MLS 27848.8496

2.51
VNS 24057.1543

0.15
0.09 0.40 0.40

Breast MLS+ 27168.3398 VNS+ 24021.5273 0.22 0.31 0.34
Cancer

200
MLS 27974.0879

22.40
VNS 20640.6973

10.33
0.43 0.40 0.48

(699) MLS+ 22854.9551 VNS+ 18707.5488 0.50 0.50 0.50

250
MLS 26197.0117

44.04
VNS 18345.2031

21.15
0.06 0.55 0.65

MLS+ 18187.2559 VNS+ 15142.7334 0.62 0.62 0.62

300
MLS 23265.0645

71.16
VNS 16581.6523

47.98
0.08 0.67 0.70

MLS+ 13592.4814 VNS+ 11205.0742 0.70 0.54 0.70

100
MLS 32480866

7.21
VNS 24805398

0.14
0.09 0.26 0.98

MLS+ 30295774 VNS+ 24770124 0.76 0.83 0.95

150
MLS 25970568

0.04
VNS 21838422

1.36
1.92 1.55 2.14

Image MLS+ 25960054 VNS+ 21545372 0.25 0.41 2.06
Segmentation

200
MLS 24675180

3.89
VNS 18951112

0.61
2.18 2.78 3.64

(2310) MLS+ 23750836 VNS+ 18836514 1.25 1.01 4.25

250
MLS 24025238

1.05
VNS 17222892

0.06
2.17 2.75 4.42

MLS+ 23776396 VNS+ 17212400 2.12 2.54 4.43

300
MLS 21686348

3.82
VNS 16094108

0.57
2.17 2.67 5.34

MLS+ 20888608 VNS+ 16002548 1.03 1.98 5.18

Table 4.4:Comparison betweenKHM-VNS andKHM-VNS+.

It appears that:

(i) Clearly the best results for each instance tested are obtained byVNS+ heuristic. Moreover,

those results are obtained in less CPU time than results obtained byVNS.

(ii) VNS is always better thanMLS+, exept for the twoBreast cancerinstances (fork = 250

andK = 300).

71

(iii) MLS+ improves the solution quality of MLS significantly. Thus, four methods can

easily be ranked as follows:VNS+, VNS, MLS+, MLS.

(iv) I also observed that the better results obtained by VNS+ are reported even when the final

solution obtained byVNS is not degenerate. This means that removing degeneracy

immediately when it appears during the KHM iteration is better idea than to wait

possible correction in future iterations.

(v) Regarding CPU time,MLS+ andVNS+ are slightly faster on average thanMLS andVNS

respectively.

4.5 Conclusion

In this chapter I consider theK-Harmonic Means clustering problem (KHMCP) and alternate

type of heuristic (ALT) to solve it. I show that theK-Harmonic Means (KHM) clustering

heuristic for solving KHMCP poses the property of degeneracy, i.e., the property that some

clusters could remain empty (without entities) during the execution or at the code. I distin-

guish two types of degenerate solutions and provide an efficient procedure which removes

degeneracy immediately when it appears in iterations. Moreover, this new routine is used

as a local search within a recent variable neighbourhood search (VNS-KHM) which repre-

sents the current state-of-the-art heuristics for solvingKHMCP. The extensive computational

analysis on the usual data sets from the literature confirms that degeneracy could seriously

damage the solution qualities of bothKHM andVNS-KHM.

72

Chapter 5

Conclusion

It has been seen that K-Harmonic Means (KHM) clustering algorithm plays a very good role

in clustering and heuristic applications. KHM has a soft membership function that measures

the probability of every entity in the dataset being allocated to a cluster. Also, the weight

function increases the weight the entities which are furthest away from each cluster. In com-

parison with K-Means (KM), it was also shown in details how KHM is not sensitive with

initialization.

KHM is applied by using Variable Neighbourhood Search (VNS). The code is tested with

known datasets and compared with some recent methods such asTabu Search and Simulated

Annealing. It is proved that VNS-KHM surpasses other methods. Some experiments give

some good observations, like the changing values of objective functions based on the power

of KHM. Also, the speed of getting the solution in VNS-KHM is very significant.

Despite of these advantages, KHM suffers from degeneracy as it is proven by counter exam-

ples. But it has less degree of degeneracy than KM. It is shownthat removing the degeneracy

immediately aids the solution and reduces the abundant degenerate iterations. The basic

VNS-KHM and Multi-start algorithms are produced after removing the degeneracy and this

leads to very good improvements.

In the mean time, the KHM code which is displayed in AppendixA might be adopted by a

73

very big company in Hong Kong. They have a depot of containersin the port. They use the

Radio Frequency Identification (RFID) technique. These containers should be arranged in

levels up to 7. The problem is to arrange these containers to be clustered correctly to reduce

the cost of the vehicle inside the depot which carry the required containers within unwanted

ones.

One of the competitive projects is that intrusion detectingproblem. The KDD cup 1999 [1]

is the dataset used for this contest. These are a data set of more than 4 million entities with

41 dimensions collected from military network environment. The task is to classify the bad

instances from the labeled data file. This dataset became very popular for testing the strength

of clustering methods.

Future research may include: (i) the development of a general statement regarding degen-

eracy in alternate iterative procedures; (ii) the design ofdifferent methods for correcting

degenerate solutions for ALT methods; (iii)an investigation of the relation between initial so-

lution methods ofK-Means andKHM with degeneracy, i.e., whether the proper initialization

method could avoid degeneracy altogether?

74

Bibliography

[1] Kdd cup 1999, http://kdd.ics.uci.edu/databases/kddcup99.html,
[Online; accessed March 3, 2009].74

[2] M.S. Aldenderfer and R.K. Blashfield,Cluster Analysis, vol. 7, Quantitative
Applications in the Social Sciences, no. 44, CA: Sage Publications, California,
1984.2

[3] A. Alguwaizani, P. Hansen, N. Mladenović, and E. Ngai,Variable neighbor-
hood search for harmonic means clustering, Applied Mathematical Modelling
(2010).54, 66, 67

[4] D. Aloise, A. Deshpande, P. Hansen, and P. Popat,NP-hardness of Euclidean
sum-of-squares clustering, Machine Learning75 (2009), no. 2, 245–248.37,
53

[5] D. Aloise and P. Hansen,Clustering, in: D.r sheir (ed.), Handbook of Discrete
and Combinatorial Mathemaics, CRC Press, 2009.3, 9, 36, 37, 53

[6] D. Aloise, P. Hansen, and L. Liberti,An improved column generation algo-
rithm for minimum sum-of-squares clustering, Mathematical Programming123
(2010), no. 2.3, 37

[7] F. Arito and G. Leguizamón,Incorporating tabu search principles into aco al-
gorithms, Hybrid Metaheuristics5818(2009), 130–140.24

[8] G. H. Ball, Classification Analysis, Technical report, Stanford Research Insti-
tute, California, November 1971.2

[9] R.J. Barlow,Statistics: a guide to the use of statistical methods in the physical
sciences, John Wiley & Sons Inc, 1989.6

[10] N. Belacel, P. Hansen, and N. Mladenović,Fuzzy J-means: a new heuristic for
fuzzy clustering, Pattern Recognition35 (2002), no. 10, 2193–2200.44, 46

[11] J. Ben Atkinson,A greedy look-ahead heuristic for combinatorial optimiza-
tion: an application to vehicle scheduling with time windows, Journal of the
Operational Research Society45 (1994), no. 6, 673–684.16

[12] C.L. Blake and C.J. Merz,UCI repository of machine learning databases,

75

http://archive.ics.uci.edu/ml/datasets.html, 1998, [Online; ac-
cessed July 19, 2008].47, 50, 68

[13] C. Blum and A. Roli,Metaheuristics in combinatorial optimization: Overview
and conceptual comparison, ACM Computing Surveys (CSUR)35 (2003),
no. 3, 268–308.23

[14] S.P. Borgatti,How to explain hierarchical clustering, Connections17 (1994),
no. 2, 78–80.8

[15] Everitt Brian,Cluster Analysis, 1 ed., Heinemann Educational Books, London,
1974.2, 3

[16] J. Brimberg, P. Hansen, and N. Mladenović,Attraction probabilities in vari-
able neighborhood search, 4OR: A Quarterly Journal of Operations Research
8 (2010), no. 2, 181–194.43

[17] J. Brimberg and N. Mladenović,Degeneracy in the multi-source Weber prob-
lem, Mathematical Programming85 (1999), no. 1, 213–220.53, 58, 63

[18] E.K. Burke and G. Kendall,Search methodologies: introductory tutorials in
optimization and decision support techniques, Springer Verlag, 2005.15

[19] V. Černỳ,Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm, Journal of optimization theory and applications
45 (1985), no. 1, 41–51.19

[20] Y. Chou,Statistical analysis, Holt, Rinehart and Winston, 1970.39, 81

[21] R.M. Cormack,A review of classification, Journal of the Royal Statistical Soci-
ety. Series A (General)134(1971), no. 3, 321–367.6

[22] M. Dorigo, V. Maniezzo, and A. Colorni,Ant system: optimization by a colony
of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics26 (1996), no. 1, 29–41.18

[23] M. Dorigo and T. Stützle,Ant colony optimization, MIT Press, Cambridge,
2004.18

[24] A. Eiben, P. Raué, and Z. Ruttkay,Genetic algorithms with multi-parent re-
combination, Parallel Problem Solving from NaturePPSN III (1994), 78–87.
27

[25] E.W. Forgy, Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications, Biometrics21 (1965), 768–769.39

[26] M.R. Garey, D.S. Johnson, and R. Sethi,The complexity of flowshop and job-
shop scheduling, Mathematics of Operations Research (1976), 117–129.14

[27] F. Glover,Future paths for integer programming and links to artificialintelli-
gence, Computers & Operations Research13 (1986), no. 5, 533–549.17

76

[28] , Tabu search and adaptive memory programming: Advances, applica-
tions and challenges, Interfaces in Computer Science and Operations Research
1 (1996).21

[29] F. Glover, J.P. Kelly, and M. Laguna,Genetic algorithms and tabu search: hy-
brids for optimization, Computers & Operations Research22 (1995), no. 1,
111–134.24

[30] F. Glover and G. Kochenberger,Handbook of Metaheuristics, volume 57 of
International Series in Operations Research& Management Science, 2003.24

[31] F. Glover and M. Laguna,Tabu search., 1997.23

[32] D.E. Goldberg, K. Deb, and B. Korb,Don’t worry, be messy, Proceedings of
the Fourth International Conference on Genetic Algorithms, vol. 51, Morgan
Kaufmann Publishers, 1991, p. 24.24

[33] B. Golden, L. Bodin, T. Doyle, and W. Stewart Jr,Approximate traveling sales-
man algorithms, Operations Research28 (1980), no. 3, 694–711.16

[34] AD Gordon,A review of hierarchical classification, Journal of the Royal Sta-
tistical Society. Series A (General) (1987), 119–137.6

[35] Z. Güngör and A.Ünler, K-harmonic means data clustering with simulated
annealing heuristic, Applied mathematics and computation184 (2007), no. 2,
199–209.38, 43, 49, 51

[36] Z. Güngör and A.Ünler, K-Harmonic means data clustering with tabu-search
method, Applied Mathematical Modelling32 (2008), no. 6, 1115–1125.38, 42,
47, 49, 51

[37] G. Hamerly and C. Elkan,Alternatives to the k-means algorithm that find better
clusterings, Proceedings of the eleventh international conference on Informa-
tion and knowledge management, ACM, 2002, pp. 600–607.40, 41, 55

[38] J.M. Hammersley and D.C. Handscomb,Monte carlo methods, Taylor & Fran-
cis, 1975.19

[39] P. Hansen and B. Jaumard,Cluster analysis and mathematical programming,
Mathematical programming79 (1997), 191–215.3, 37

[40] P. Hansen and N. Mladenović,J-means: a new local search heuristic for mini-
mum sum of squares clustering, Pattern Recognition34 (2001), no. 2, 405–413.
37, 44, 45, 46, 51, 53

[41] , Variable neighborhood search: Principles and applications, European
journal of operational research130(2001), no. 3, 449–467.43, 46, 66

[42] P. Hansen, N. Mladenović, and J. A. Moreno Pérez,Variable neighbourhood
search: methods and applications, 4OR: A Quarterly Journal of Operations
Research6 (2008), no. 4, 319–360.43, 46, 66

77

[43] D.S. Hochba,Approximation algorithms for np-hard problems, ACM SIGACT
News28 (1997), no. 2, 40–52.14

[44] J.H. Holland,Adaptation in natural and artificial systems, Ann Arbor MI: Uni-
versity of Michigan Press (1975).24

[45] , Adaptation in natural and artificial systems, MIT Press Cambridge,
MA, USA, 1992.24

[46] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler,Fuzzy cluster analysis:
methods for classification, data analysis, and image recognition, Wiley, 1999.
9

[47] A.K. Jain and R.C. Dubes,Algorithms for clustering data, Prentice-Hall, Inc.,
1988.10

[48] L. Kaufmann and P. Rousseeuw,Finding groups in data: An introduction to
cluster analysis, John Wiley & Sons, New York, 1990.3, 36

[49] J. Kennedy and R. Eberhart,Particle swarm optimization, Neural Networks,
1995. Proceedings., IEEE International Conference on, vol. 4, IEEE, 1995,
pp. 1942–1948.28

[50] S.S. Khan and A. Ahmad,Cluster center initialization algorithm for K-means
clustering, Pattern Recognition Letters25 (2004), no. 11, 1293–1302.53

[51] S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies,
Journal of Statistical Physics34 (1984), no. 5, 975–986.19

[52] J.R. Koza,Genetic programming, (1992).27

[53] J. Lazić,New variable neighbourhood search based heuristics for 0-1mixed
integer programming and clustering, Ph.D. thesis, Brunel University, 2010.15,
17, 18

[54] Q. Li, N. Mitianoudis, and T. Stathaki,Spatial kernel K-harmonic means clus-
tering for multi-spectral image segmentation, Image Processing, IET1 (2007),
no. 2, 156–167.40, 56

[55] J. MacQueen,Some methods for classification and analysis of multivariate ob-
servations, Berkeley, CA: University of California Press1 (1967), 281–297.
39

[56] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.Teller, E. Teller, et al.,
Equation of state calculations by fast computing machines, The journal of
chemical physics21 (1953), no. 6, 1087.19

[57] B. Mirkin, Clustering for data mining: a data recovery approach, CRC Press,
FL, 2005.3, 36

[58] D.W. Mitchell, More on spreads and non-arithmetic means, The Mathematical

78

Gazette 88 (2004), 142–144.82

[59] N. Mladenović and J. Brimberg,A degeneracy property in continuous location-
allocation problems, Les Cahiers du GERADG-96-37(1996).53, 63

[60] N. Mladenović and P. Hansen,Variable neighborhood search, Computers and
Operations Research24 (1997), no. 11, 1097–1100.29, 43, 66

[61] D.G. Morrison,Measurement problems in cluster analysis, Management Sci-
ence13 (1967), no. 12, 775–780.2

[62] P. Moscato,On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms, Caltech Concurrent Computation Program,
C3P Report826(1989).28

[63] H. Mühlenbein and H.M. Voigt,Gene pool recombination in genetic algo-
rithms, Metaheuristics: Theory and applications (1996), 53–62.27

[64] B. Jaumard O. du Merle, P. Hansen and N. Mladenović,An interior point al-
gorithm for minimum sum of squares clustering, SIAM Journal on Scientific
Computing21 (1999), 1485 – 1505.3, 37, 49

[65] I. Ono and S. Kobayashi,A real-coded genetic algorithm for function optimiza-
tion using unimodal normal distribution crossover, Journal of Japanese Society
for Artificial Intelligence14 (1997), no. 6, 246–253.27

[66] C.H. Papadimitriou and K. Steiglitz,Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Inc. (1982).14

[67] G. Patané and M. Russo,The enhanced LBG algorithm, Neural Networks14
(2001), no. 9, 1219–1237.42, 50

[68] J.M. Pena, J.A. Lozano, and P. Larranaga,An empirical comparison of four
initialization methods for the K-Means algorithm, Pattern recognition letters20
(1999), no. 10, 1027–1040.53

[69] G. Pólya,How to solve it: A new aspect of mathematical method, Princeton
University Press Princeton, NJ, 1945.17

[70] V. Rayward, I. Osman, C. Reeves, and G. Smith,Modern heuristic search meth-
ods, John Wiley & Sons, Chichester, England, 1996.15

[71] S.J. Redmond and C. Heneghan,A method for initialising the K-means clus-
tering algorithm using kd-trees, Pattern Recognition Letters28 (2007), no. 8,
965–973.53

[72] C.R. Reeves and J.E. Rowe,Genetic algorithms: principles and perspectives:
a guide to GA theory, Kluwer Academic Publishers, 2003.18

[73] G. Reinelt,Tsp-lib - a traveling salesman library, ORSA Journal Computing3
(1991), 376–384.38, 47, 50

79

[74] E.H. Ruspini,Numerical methods for fuzzy clustering, Information Sciences2
(1970), 319–350.58, 68

[75] J. Scoltock,A survey of the literature of cluster analysis, The Computer Journal
25 (1982), no. 1, 130.1

[76] T. Su and J. Dy,A deterministic method for initializing K-means clustering,
International Conference on Tools with Artificial Intelligence, IEEE, 2005,
pp. 784–786.53

[77] Thomson, ISI Web of Knowledge, http://pcs.isiknowledge.com/
analyze/ra.cgi, 2004, [Online; accessed January 12, 2011].1

[78] V.V. Vazirani,Approximation Algorithms, Springer, 2004.15

[79] S. Vo, I.H. Osman, and C. Roucairol,Meta-heuristics: Advances and trends
in local search paradigms for optimization, Kluwer Academic Publishers Nor-
well, MA, USA, 1999.17

[80] J.H. Ward,Hierarchical grouping to optimize an objective function, Journal of
the American statistical association58 (1963), no. 301, 236–244.6

[81] R. Xu and D. Wunsch,Clustering, IEEE Press, 2009.2, 3, 9

[82] B. Zhang,Generalized k-harmonic means - boosting in unsupervised learning,
Technical report, HPL-2000-137, Hewlett-Packard Laboratories, 2000.11, 39,
40, 51, 55, 56

[83] B. Zhang, M. Hsu, and U. Dayal,K-harmonic means - a data clustering algo-
rithm, Technical report, HPL-1999-124, Hewlett-Packard Laboratories, 1999.
11, 38, 39, 51, 53, 55, 56

80

Chapter 6

Harmonic Mean vs. Arithmetic
Mean

Suppose we have the setX = {x1, . . . , xn} then the arithmetic Mean (AA) forX
is:

AA=
1
n

n
∑

i=1

xi . (6.1)

The harmonic average (HA) is always the least of three Pythagorean means (includ-
ing Arithmetic average (AA) and Geometric average (GA)) forpositive sets that
contain non-equal values. However the AA is always the greatest. The HA tends
(compared to the the AA) to reduce the impact of large outliers and enlarge the im-
pact of small ones.

In some certain problems such as the speed average, the HA is the truest mean. It is
very often that the AA is mistakenly used instead of the HA [20].

For example, suppose that a person drove an automobile on a highway. He passed five
exits. Between each two exits he has been driving at average speed of 70 miles/hr,
75 miles/hr, 60 miles/hr and 65 miles/hr. The exits are equally distanced of 10 miles.
What is the average speed between the first exit and the last exit?

So, the HA for this problem is:

HA =
n

n
∑

i=1

1
xi

=
4

1
70 +

1
75 +

1
60 +

1
65

= 67.03499079 miles/hr.

However by using the AA formula above6.1,

AA=
1
n

n
∑

i=1

xi =
1
4

(70+ 75+ 60+ 65)= 67.5 miles/hr.

81

But the total time for this journey is:

10
70
+

10
75
+

10
60
+

10
65
= 0.596703 hr.

If the HA is considered for this journey, then the total time is

40
67.03499079

= 0.596703 hr.

which is compatible with the right time. However if the AA is considered, then the
total time for this journey is:

40
67.5

= 0.592593 hr.

which is slightly different from the original time.

This example shows that the harmonic average is more accurate in many particular
applications than the arithmetic average. For more detailsabout other matters of
means, the reader may refer to [58].

82

Appendix A

Fortran Code for KHM Local
Search

program KHarmonicMeans

* ###

* # max number of entities = 3100 #

* # maximum dimension of data = 50 #

* # maximum number of clusters = 100 #

* # eps - input precision (eps) #

* # p - power parameter for Harmonic means #

* # maxit - maximum number of iterations #

* # mk - membership matrix #

* # wi - weight function #

* # n - number of entities #

* # n1 - dimension of data #

* # m - number of clusters #

* ###

* ------------------------ Declarations

real x(3100,50),c(100,50),mk(3100,100),wi(3100),ck(100,50)

logical*1 mm(3100,100)

real*8 seed

* ------------------------ Read the input data

* ###

* # iun is the data file should be saved as fort.150 #

* # the first line must contain 6 parameters: #

* # n,m,n1,eps,p,maxit as shown above. #

* # Here I present the IRIS data set as an example #

* ###

seed=12

iun=150

read(iun,*)n,m,n1,eps,p,maxit

do i=1,n

read(iun,*)(x(i,j),j=1,n1)

enddo

call RndInit(m,n,n1,x,c)

* ------------------------ Local search KHM

zopt=10.e20;

call khm(x,c,eps,p,maxit,n,m,n1,mk,mm,wi,ck,zopt)

* ------------------------ Print results

* ###

* # This gives the final result of KHM. #

* ###

write(*,*)’ Objective function value is ’, zopt

write(*,*)’ Cluster centroid coordinates:’

write(*,*)’ ------------------------------’

do j=1,m

83

write(*,*)j,’.’,(ck(j,i),i=1,n1)

enddo

stop

end

* ------------------------ Subroutine of KHM

subroutine khm(x,c,eps,p,maxit,n,m,n1,mk,mm,wi,ck,zopt)

real x(3100,50),c(100,50),u(3100,100),s3(3100),s4(3100)

real mk(3100,100),ck(100,50),c1(3100,100),c2(3100,100)

real s5(3100),wi(3100)

logical*1 mm(3100,100)

integer h,nbe(100),opt(3100)

* ------------------------

zopt=10.e21

do h=1,maxit

write(*,*)’ Iteration: ’,h

z=0.

* ------------------------ One iteration

do i=1,n

s3(i)=0.

s4(i)=0.

do j=1,m

did=0.

do k=1,n1

dd=(x(i,k)-c(j,k))*(x(i,k)-c(j,k))

did=did+dd

enddo

did=sqrt(did)

if(did.eq.0.)did=eps

u(i,j)=1/(did**(2+p))

s3(i)=s3(i)+u(i,j)

s4(i)=s4(i)+1/(did**p)

enddo

do j=1,m

u(i,j)=u(i,j)/s3(i)

enddo

s5(i)=s4(i)*s4(i)

wi(i)=s3(i)/s5(i)

z=z+m/s4(i)

enddo

* ------------------------ Copy

do i=1,n

do j=1,m

mk(i,j)=u(i,j)

enddo

enddo

* ------------------------ Crisp clustering

do i=1,n

dmax=-1.e20

do j=1,m

mm(i,j)=.false.

if(mk(i,j).gt.dmax)then

dmax=mk(i,j)

jst=j

endif

enddo

mm(i,jst)=.true.

enddo

do k=1,n

enddo

* ------------------------ New centroids

do j=1,m

do i=1,n

do k=1,n1

c1(i,k)= mk(i,j)*wi(i)*x(i,k)

enddo

c2(i,j)= mk(i,j)*wi(i)

enddo

sum2=0.

do i=1,n

84

sum2=sum2+c2(i,j)

enddo

do k=1,n1

sum1=0.

do i=1,n

sum1=sum1+c1(i,k)

enddo

* ck(j,k)=sum(c1(:,k))/sum(c2(:,j))

ck(j,k)=sum1/sum2

enddo

* ###

* # To print the new centroids in each iteration. #

* ###

write(*,*)j,’.’,(ck(j,i),i=1,n1)

enddo

dnorm=-1.e20

do i=1,m

dif=0.

do j=1,n1

dif=dif+(c(i,j)-ck(i,j))*(c(i,j)-ck(i,j))

enddo

if(dif.gt.dnorm)dnorm=dif

enddo

dnorm=sqrt(dnorm)

* write(*,*)’dnorm=’,dnorm

if(dnorm.lt.eps.or.Abs(z-z1).lt.eps/100.)then

zopt=z

return

endif

* ###

* # To print the objective function in each iteration. #

* ###

write(*,*)’ Objective function value in iteration is ’,z

do i=1,m

do j=1,n1

c(i,j)=ck(i,j)

enddo

enddo

z1=z

enddo

zopt=z

return

end

subroutine RndInit(m,n,n1,x,c)

* ###

* # Generation of initial centroids out of #

* # existing entities. #

* ###

real x(3100,50),c(100,50)

integer p(3100)

* ------------------------

do j=1,n

p(j)=j

enddo

do i=1,m

call Exch(i,i7,n,p)

do j=1,n1

c(i,j)=x(i7,j)

enddo

enddo

return

end

*--

subroutine Exch(i,i7,n,p)

real*8 seed

integer p(3100)

* -------------------------------------

i2=n-i+1

i1=1+i2*Ran(seed)

85

i1=1+i2*seed

i7=p(i1)

p(i1)=p(i2)

p(i2)=i7

return

end

* ###

* # Designed and created by: #

* # Abdulrahman Alguwaizani #

* ###

86

Appendix B

Details of KHM Degeneracy

The following tables may be interested for the reader, as they show the details of cal-
culations of the charts which are presented in Chapter 4 (seeFigure4.5). In the next
sections I show all results for the degeneracy ofBreast-cancerDataset andImage
Segmentation-2310datasets after applyingKHM 100 times.

B.1 Multi-Start of KHM for Image Segmentation-2310
Dataset

In the following table, the first column denotes the number ofclusters. The second
column indicates the max degree of degeneracy for 100 multi-starts. However, the
proper iterations are presented in column 3. The last columnis designed to show
number of degenerate iterations (from these 100) of each degree. For instance, when
the dataset is clustered to 70, there are 87 proper iterations (out of 100) and 13 de-
generate iterations, 12 of them are of degree 1, and 1 of degree 2.

87

K
max proper degree

degree iterations 1 2 3 4 5 6
50 1 89 11
60 2 88 11 1
70 2 87 12 1
80 3 74 17 8 1
90 3 70 25 4 1
100 3 60 31 7 2
110 4 54 31 12 2 1
120 3 53 30 14 3
130 4 53 29 13 4 1
140 5 37 40 14 6 2 1
150 3 26 46 22 6
160 4 30 39 24 5 2
170 5 21 28 26 19 5 1
180 5 18 30 25 13 10 4
190 6 15 41 27 12 4 0 1
200 6 15 27 35 14 7 1 1

Table B.1:Degeneracy degrees of KHM after 100 starts
for dataset:Image Segmentation-2310.

B.2 Multi-Start of KHM for Breast-cancer Dataset

In the following table, the first column denotes the number ofclusters. The second
and third columns indicate the max and min degree of degeneracy for 100 multi-
starts. The last column shows number of degenerate iterations of each degree in
details. For instance, when the dataset is clustered to 400,there is one iteration has
102 empty clusters.

88

K
max min

of degenerate iterations of each degree up to max degree
degree degree

100 47 15

degree 1-14 15 16-17 18 19 20 21 22 23 24 25 26 27 28 29
iter 0 1 0 1 2 0 3 1 2 2 5 5 9 4 6
degree 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
iter 2 4 3 6 5 8 7 6 5 4 1 0 4 1 2
degree 45 46 47
iter 0 0 1

200 59 35

degree 1-34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
iter 0 2 1 1 1 1 2 1 8 4 10 6 6 4 6
degree 49 50 51 52 53 54 55 56 57 58 59
iter 7 9 5 6 8 1 1 5 3 0 2

300 94 69

degree 1-68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
iter 0 1 1 0 2 2 4 4 7 5 9 7 8 4 5
degree 83 84 85 86 87 88 89 90 91 92 93 94
iter 7 5 5 5 4 4 0 2 3 1 4 1

400 136 102

degree1-101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
iter 0 1 0 0 1 0 3 2 0 2 0 1 4 6 3
degree 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
iter 6 4 9 9 4 10 7 2 5 4 3 4 1 2 3
degree 131 132 133 134 135 136
iter 0 2 0 0 1 1

500 172 145

degree1-144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
iter 0 1 0 2 2 2 9 5 6 4 4 5 1 13 5
degree 159 160 161 162 163 164 165 166 167 168 169 170 171 172
iter 6 6 4 5 6 6 3 0 1 1 0 1 1 1

600 209 183

degree1-182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
iter 0 1 0 0 0 1 1 0 4 8 4 6 5 7 8
degree 197 198 199 200 201 202 203 204 205 206 207 208 209
iter 9 10 12 4 5 5 3 3 2 0 1 0 1

Table B.2:Degeneracy degrees of KHM after 100 starts for dataset:Breast Cancer-
699.

89

