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Abstract— In recent years, the static shortest path (SP)
problem has been well addressed using intelligent optimization
techniques, e.g., artificial neural networks (ANNs), genetic
algorithms (GAs), particle swarm optimization (PSO), etc.
However, with the advancement in wireless communications,
more and more mobile wireless networks appear, e.g., mobile
ad hoc network (MANET), wireless sensor network (WSN),
etc. One of the most important characteristics in mobile
wireless networks is the topology dynamics, that is, the network
topology changes over time due to energy conservation or node
mobility. Therefore, the SP problem turns out to be a dynamic
optimization problem (DOP) in MANETs. In this paper, we
propose to use elitism-based immigrants GA (EIGA) to solve
the dynamic SP problem in MANETs. We consider MANETs as
target systems because they represent new generation wireless
networks. The experimental results show that the EIGA can
quickly adapt to the environmental changes (i.e., the network
topology change) and produce good solutions after each change.

I. INTRODUCTION

Mobile ad hoc network [1], [2], [3] is a self-organizing
and self-configuring multi-hop wireless network, comprised
of a set of mobile hosts (MHs) that can move around
freely and cooperate in relaying packets on behalf of one
another. MANET supports robust and efficient operation by
incorporating routing functionality into MHs. In MANETs,
unicast routing establishes a multi-hop forwarding path
for two nodes beyond the direct wireless communication
range. Routing protocols also maintain connectivity when
links on these paths break due to effects such as node
movement, battery drainage, radio propagation, or wireless
interference. In multi-hop networks, routing is one of the
most important issues that has significant impact on the
network’s performance. So far, there are mainly two types of
routing protocols in MANETs, namely, topological routing
and geographic routing. In topological routing, mobile nodes
utilize topological information to construct routing tables
or search routes directly. In geographic routing, each node
knows its own position and makes routing decisions based on
the destinations position and its local neighbors’ positions.

In this paper, we investigate the shortest path routing,
which belongs to the topological routing. The shortest path
problem concerns with finding the shortest path from a
specific source to a specific destination in a given network
while minimizing the total cost associated with the path.
The SP routing problem involves a classical combinatorial
optimization problem arising in many design and planning
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contexts [4], [5]. There are several search algorithms for the
SP problem: the Dijkstra’s algorithm, the breadth-first search
algorithm and the Bellman-Ford algorithm, etc. All these
algorithms have polynomial time complexity. Therefore, they
will be effective in fixed infrastructure wireless or wired
networks. But, they exhibit unacceptably high computational
complexity for real-time communications involving rapidly
changing network topologies [5], [6]. Therefore, for the
dynamic SP problem in a changing network environment,
we need to employ new appropriate approaches.

Since the static SP problem is a combinatorial optimization
problem, the dynamic SP problem turns out to be one of the
dynamic optimization problems. In recent years, studying
EAs for DOPs has attracted a growing interest due to its
importance in EA’s real world applications [7]. The simplest
way of addressing DOPs is to restart EAs from scratch
whenever an environment change is detected. Though the
restart scheme really works for some cases [8], for many
DOPs it is more efficient to develop other approaches that
make use of knowledge gathered from old environments. One
of the possible approaches is to maintain and reintroduce
diversity during the run of EAs, i.e., the immigrants schemes
[9], [10], [11]. Elitism-based immigrants scheme [12] is
a representative one among immigrants schemes for EAs
in dynamic environments. In the scheme, the elite from
previous generation is used as the base to create immigrants
via mutation to replace the worst individuals in the current
population. This way, the introduced immigrants are more
adapted to the changing environment.

In this paper, we implement and apply the elitism-based
immigrants GA to solve the dynamic SP problem. First,
we design the specific genetic algorithm for the dynamic
SP problem. Then at each generation, a certain number of
elitism-based immigrants are generated and added into the
population to maintain the diversity. Once the topology is
changed, the new immigrants can help guide the search
of good solutions in the new environment. Since end-
to-end delay [13] is a pretty important quality-of-service
(QoS) metric to guarantee the real-time data delivery,
we also require the routing path to satisfy the delay
constraint. For comparison purposes, we also implement
the standard GA (SGA) and the Restart GA. By simulation
experiments, we evaluate their performance on the dynamic
SP problem. The results show that the EIGA significantly
outperforms other two GA methods. It is verified that the
EIGA works really well in the dynamic real-world networks.
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II. RELATED WORK

The SP problem has been investigated extensively. Since
the algorithms with polynomial time complexity are not
suitable for the real-time computation of shortest paths, quite
a few research work have been conducted to solve the SP
problems using artificial intelligence techniques, e.g., ANNs
[5], GAs [6], and PSO [14].

In [5], a near-optimal routing algorithm employing a
modified Hopfield neural network (HNN) is proposed. It uses
every piece of information that is available at the peripheral
neurons, in addition to the highly correlated information that
is available at the local neuron. Therefore, it can achieve
faster convergence and better route optimality than other
HNN based algorithms. In [6], a genetic algorithmic ap-
proach is presented to the SP routing problem. Computer
simulations show that the GA based SP algorithm exhibits a
much better quality of solution (route optimality) and a much
higher rate of convergence than other algorithms. It also de-
velops a population-sizing equation that facilitates a solution
with desired quality. In [14], a PSO-based search algorithm
is proposed. A priority-based indirect path-encoding scheme
is used to widen the scope of search space and a heuristic
operator is used to reduce the probability of invalid loop
creation during the path construction procedure. It claims
that the PSO-based SP algorithm is superior to those using
GAs including the one in [6].

However, all these algorithms still address the static SP
problem only. When the network topology changes, they
will regard it as a new network and restart the algorithms
over the new topology. As is well known that the topology
changes rapidly in MANETs due to the characteristics of
wireless networks, e.g., battery exhaustion, node mobility.
Therefore, for the dynamic SP problem in MANETs, these
algorithms are not good choices since they require frequent
restart and cannot meet the real-time requirement. In this
regard, EIGA has its inherent advantage, that is, it uses the
immigrants to help the population quickly adapt to the new
environment after the change occurs. Hence, the algorithm
can keep running over the continuously changing topologies
and avoid the expensive and inefficient restart. Regarding
EIGA, to our best knowledge, we are not aware of any
applications to the real-world problems.

III. MODEL

In this section, we first present our network model and
then formulate the problem of dynamic SP routing.

We consider a mobile ad hoc network operating within a
fixed geographical region. We model it by a undirected and
connected topology graph G0(V0, E0), where V0 represents
the set of wireless nodes (i.e., routers) and E0 represents
the set of communication links connecting two neighboring
routers falling into the radio transmission range. A commu-
nication link (i, j) can not be used for packet transmission
until both node i and node j have a radio interface each
with a common channel. However, the channel assignment

is beyond the scope of this paper. In addition, message
transmission on a wireless communication link will incur
remarkable delay and cost.

Here, we summarize some notations that we use through-
out this paper.

• G0(V0, E0), the initial MANET topology graph.
• Gi(Vi, Ei), the MANET topology graph after the ith

change.
• s, the source node.
• r, the destination node.
• Pi(s, r), a path from s to r on the graph Gi.
• dl, the transmission delay on the communication link l.
• cl, the cost on the communication link l.
• Δ(Pi), the total transmission delay on the path Pi.
• C(Pi), the total cost of the path Pi.

The problem of the dynamic SP routing can be informally
described as follows. Initially, given a network of wireless
routers, a delay upper bound, a source node and a destination
node, we wish to find a delay-bounded least cost loop-free
path on the topology graph. Then periodically or stochas-
tically, due to energy conservation or some other issues,
some nodes are scheduled to sleep or some sleeping nodes
are scheduled to wake up. Therefore, the network topology
changes from time to time. The objective of our problem is
to quickly find the new optimal delay-constrained least cost
acyclic path after each topology change.

More formally, consider a mobile ad hoc network G(V, E)
and a unicast communication request from the source node
s to the destination node r with the delay upper bound Δ.
The dynamic delay-constrained shortest path problem is to
find a series of paths {Pi|i ∈ {0, 1, ...}} over a series of
graphs {Gi|i ∈ {0, 1, ...}}, which satisfy the delay constraint
as shown in (1) and have the least path cost as shown in (2).

Δ(Pi) =
∑

l∈Pi(s,r)

dl ≤ Δ . (1)

C(Pi) = min
P∈Gi

⎧
⎨

⎩
∑

l∈P (s,r)

cl

⎫
⎬

⎭ . (2)

IV. DESIGN OF GA FOR SP PROBLEM

This section describes the design of the GA for the
SP problem. The GA operations consist of several key
components: genetic representation, population initialization,
fitness function, selection scheme, crossover and mutation.
A routing path consists of a sequence of adjacent nodes
in the network. Hence, it is a natural choice to adopt the
path-oriented encoding method. For the routing problems,
the path-oriented encoding and the path-based crossover and
mutation are also very popular [6], [15].
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A. Genetic Representation

A routing path is encoded by a string of positive integers
that represent the IDs of nodes through which the path
passes. Each locus of the string represents an order of a node
(indicated by the gene of the locus). The gene of the first
locus is for the source node and the one of the last locus is
for the destination node. The length of a routing path should
not exceed the maximum length |V0|, where V0 is the set of
nodes in the MANET. Chromosomes are encoded under the
delay constraint. In case it is violated, the encoding process
is usually repeated so as to satisfy the delay constraint.

B. Population Initialization

In GA, each chromosome corresponds to a potential
solution. The initial population Q is composed of a certain
number, denoted as q, of chromosomes. To explore the
genetic diversity, in our algorithm, for each chromosome,
the corresponding routing path is randomly generated. We
start to search a random path from s to r by randomly
selecting a node v1 from N(s), the neighborhood of s.
Then we randomly select a node v2 from N(v1). This
process is repeated until r is reached. Thus, we get a
random path P(s, r)={s, v1, v2, ..., r}. Since the path
should be loop-free, the nodes that are already included in
the current path are excluded, thereby avoiding reentry of
the same node. The initial population is generated as follows.

Step 1: Start(i=0).
Step 2: Generate chromosome Chi: search a random

loop-free path P(s, r);
Step 3: i=i+1. If i < q, go to Step 2, otherwise, stop.

Thus, the initial population Q = {Ch0, Ch1, ..., Chq−1} is
obtained.

C. Fitness Function

Given a solution, we should accurately evaluate its qual-
ity (i.e., fitness value), which is determined by the fitness
function. In our algorithm, we aim to find the least cost path
between the source and the destination. Our primary criterion
of solution quality is the path cost. Therefore, among a set of
candidate solutions (i.e., unicast paths), we choose the one
with the least path cost. The fitness value of chromosome
Chi (representing the path P), denoted as F(Chi), is given
by:

F (Chi) = [
∑

l∈P (s,r)

cl]−1 . (3)

The proposed fitness function only involves the total path
cost. As mentioned above, The delay constraint is checked
for each chromosome in the course of the run.

D. Selection Scheme

Selection plays an important role in improving the average
quality of the population by passing the high quality chromo-
somes to the next generation. The selection of chromosome

is based on the fitness value. We adopt the scheme of pair-
wise tournament selection without replacement [16] as it is
simple and effective. The tournament size is 2.

E. Crossover and Mutation

Genetic algorithm relies on two basic genetic operators
- crossover and mutation. Crossover processes the current
solutions so as to find better ones. Mutation helps GA
keep away from local optima [6]. Performance of GA very
depends on them. Type and implementation of operators
depends on encoding and also on a problem.

In our algorithm, since chromosomes are expressed by the
path structure, we adopt single point crossover to exchange
partial chromosomes (subpath) at positionally independent
crossing sites between two chromosomes [6]. With the
crossover probability, each time we select two chromosomes
Chi and Chj for crossover. Chi and Chj should possess at
least one common node. Among all the common nodes, one
node, denoted as v, is randomly selected. In Chi, there is a
path consisting of two parts: (s

Chi−→ v) and (v
Chi−→ r). In Chj ,

there is a path consisting of two parts: (s
Chj−→ v) and (v

Chj−→
r). The crossover operation exchanges the subpaths (v

Chi−→
r) and (v

Chj−→ r).
The population will undergo the mutation operation after

the crossover operation is performed. With the mutation
probability, each time we select one chromosome Chi on
which one gene is randomly selected as the mutation point
(i.e., mutation node), denoted as v. The mutation will replace
the subpath (v

Chi−→ r) by a new random subpath.
Both crossover and mutation may produce new

chromosomes which are infeasible solutions. Therefore, we
check if the paths represented by the new chromosomes
are acyclic. If not, repair functions [17] will be applied
to eliminate the loops. Here the detail is omitted due to
the space limit. All the new chromosomes produced by
crossover or mutation satisfy the delay constraint since it
has already been taken into consideration.

V. ELITISM-BASED IMMIGRANTS GA

In stationary environments, convergence at a proper pace
is really what we expect for GAs to locate the optimum
solutions for many optimization problems. However, for
DOPs, convergence usually becomes a big problem for
GAs because changing environments usually require GAs
to keep a certain population diversity level to maintain their
adaptability. To address this problem, the random immigrants
approach is a quite natural and simple way [18], [19]. It was
proposed by Grefenstette with the inspiration from the flux of
immigrants that wander in and out of a population between
two generations in nature. It maintains the diversity level
of the population through replacing some individuals of the
current population with random individuals, called random
immigrants, every generation. As to which individuals in
the population should be replaced, usually there are two
strategies: replacing random individuals or replacing the
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worst ones [20]. In order to avoid that random immigrants
disrupt the ongoing search progress too much, especially
during the period when the environment does not change, the
ratio of the number of random immigrants to the population
size is usually set to a small value, e.g., 0.2.

However, in a slowly changing environment, the intro-
duced random immigrants may divert the searching force
of the GA during each environment before a change occurs
and hence may degrade the performance. On the other
hand, if the environment only changes slightly in terms of
severity of changes, random immigrants may not have any
actual effect even when a change occurs because individuals
in the previous environment may still be quite fit in the
new environment. Based on the above consideration, an
immigrants approach, called elitism-based immigrants [12],
is proposed for GAs to address DOPs.

The pseudo-code for the EIGA is shown below. Within
EIGA, for each generation t, after the normal genetic
operations (i.e., selection and recombination), the elite
E(t-1) from previous generation is used as the base to create
immigrants. From E(t-1), a set of rei×n individuals are
iteratively generated by mutating E(t-1) with a probability
pi

m, where n is the population size and rei is the ratio of
the number of elitism-based immigrants to the population
size. The generated individuals then act as immigrants and
replace the worst individuals in the current population. It can
be seen that the elitism-based immigrants scheme combines
the idea of elitism with traditional random immigrants
scheme. It uses the elite from previous population to guide
the immigrants toward the current environment, which
is expected to improve GA’s performance in dynamic
environments.

begin
t:=0 and initialize population P(0) randomly
evaluate population P(0)
repeat

P(́t)=selectForReproduction(P(t))
crossover(P(́t), pc) // pc is the crossover probability
mutate(P(́t), pm) // pm is the mutation probability
evaluate the interim population P(́t)

// perform elitism-based immigration
denote the elite in P(t-1) by E(t-1)
generate rei×n immigrants by mutating E(t-1) with pi

m

evaluate these elitism-based immigrants

replace the worst individuals in P(́t) with the generated
immigrants
P(t+1):=P(́t)

until the termination condition is met // e.g., t > tmax

end

In our implementation of EIGA, if the mutation probability
pi

m is satisfied, the elite E(t-1) will be used to generate
the new immigrants by the mutation operation; otherwise,

E(t-1) itself will be directly used as the new immigrants.

VI. EXPERIMENTAL STUDY

We implement the EIGA, the SGA, and the Restart GA for
the dynamic SP problem. For EIGA and SGA, if the change
makes one individual in the current population become
infeasible (e.g., one link in the corresponding path is lost
after the change), we add penalty value to that individual.
By simulation experiments, we evaluate their performance
in a continuously changing mobile ad hoc network.

A. Experimental Design

The initial network topology is generated using the fol-
lowing method. We first specify a square region with the
area of 200×200 that has the width [0, 200] on the x axis
and the height [0, 200] on the y axis. Then we generate
100 nodes and the position (x, y) of each node is randomly
specified within the square area. If the distance between two
nodes falls into the radio transmission range D, a link will be
added to connect them and both the cost and the delay of this
link are randomly assigned within the corresponding ranges.
Finally, we check if the generated topology is connected. If
not, the above process is repeated until a connected topology
is generated. In the experiments, D is given a reasonable
value 50.

All the algorithms start from the initial network topology.
Then after a certain number (saying, R) of generations (i.e.,
the change interval), a certain number (saying, M) of nodes
are scheduled to sleep or wake up depending on their current
status. It means that the selected working nodes will be
turned off to sleep and the selected sleeping nodes will
be turned on to work. Therefore, the network topology is
changed accordingly since some links are lost and some
other links appear again. By this means, we create a series of
network topologies corresponding to the continuous network
changes. Furthermore, these adjacent topologies are highly
related since each time the changes affect only part of the
nodes. We can see that R and M determine the change
frequency and severity, respectively. The larger the value of
R, the slower the changes. The larger the value of M, the
more severe the changes. Currently, we set M to be 2.

As described in Section IV.D, the GA adopts pair-wise
tournament selection without replacement. In all the experi-
ments, the mutation probability is set to 0.1. For the elitism-
based immigrants scheme, rei is set to 0.2 and pi

m is set
to 0.8. In addition, we set the number of changes to 10
and therefore the algorithms will work over 11 different but
highly-related network topologies (the initial topology plus
the 10 changed topologies). Both the source and destination
nodes are randomly selected and they are not allowed to be
scheduled in any change. The delay upper bound Δ is set to
be 2 times of the minimum end-to-end delay.

B. Experimental Results and Analysis

At each generation, for each algorithm, we select the best
individual from the current population and output the cost of
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Fig. 1. Comparison of EIGA, SGA, and Restart GA when Z is 20 and R
is 5: (a) generation 0 to 24; (b) generation 25 to 54.

the shortest path represented by it. We repeat each experiment
10 times and get the average values of the best solutions at
each generation. We set R to 5 and 10, respectively to see
the impact of change frequence on the performance. When
R is 10, we also vary the population size Z from 20 to 50 to
see if an adequate population size can be determined in this
problem.

Fig. 1 is the comparison results when the population size
Z is 20 and the change interval R is 5. In Fig. 2, we
change R to 10. Therefore, Fig. 1 shows a rapidly changing
environment and Fig. 2 shows a relatively slowly changing
environment. In Fig. 3, the change interval R is 10 while
the population size Z is increased to 50. In all the three
settings, we can see that both EIGA and SGA experience
more significant changes in subfig (b) than in subfig (a).
The reason is that when more nodes are rescheduled, the
changes to the initial network topology become more drastic.
In subfig (a), it seems that the changes do not involve the
network nodes encoded in the best individual of the current
population. Therefore, both EIGA and SGA keeps evolving
while EIGA can find better solutions than SGA. The elitism-
based immigrants bring more diversity to the population in
EIGA and therefore enhance its search capability. However,
from all the figures, we can see that the Restart GA exhibits
the worst performance even when the changes have trivial
impacts on the current population. The reason is that the
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Fig. 2. Comparison of EIGA, SGA, and Restart GA when Z is 20 and R
is 10: (a) generation 0 to 49; (b) generation 50 to 109.

Restart GA does not exploit any useful information in the
old environment and that the frequent restart sacrifices its
evolving capability.

As shown in the three subfig (b), the changes start to
affect the best individual in the old environment. In a
relatively slowly changing environment, EIGA shows better
performance than in a rapidly changing environment since
it has more time to search good solutions before a change
occurs. So does SGA. When a change occurs, Fig. 2 shows
that EIGA can quickly adapt to the new topology and find
good solutions again before next change occurs. Although
SGA also shows the ability to adapt the population to the
new environment, the best solutions that it can find in the new
environment are not competitive. By comparing Fig. 2 with
Fig. 3, we can see that when the population size is increased
to 50, all the three algorithms show better performance
than before. It is because that larger populations produce
higher chances to find better solutions. Furthermore, EIGA
adapts to the new environment more quickly since more
immigrants are introduced. In summary, EIGA shows the
best performance for the dynamic SP problem and SGA is
better than Restart GA.

VII. CONCLUSIONS

The static SP problem considers the fixed network topol-
ogy only. Intuitively, it is much more challenging to deal
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Fig. 3. Comparison of EIGA, SGA, and Restart GA when Z is 50 and R
is 10: (a) generation 0 to 49; (b) generation 50 to 109.

with the dynamic SP problem in a continuously changing
network such like MANETs than to solve the static one
in a fixed infrastructure. In recent years, there has been a
growing interest in studying GAs for dynamic optimization
problems. Among approaches developed for GAs to deal
with DOPs, immigrants schemes for GAs on DOPs aim at
maintaining the diversity of the population throughout the run
via introducing new individuals into the current population.
In this paper, we propose the EIGA to solve the dynamic
SP problem in a large scale MANET. We well design the
GA components for the SP problem and the elitism-based
immigrants scheme. Simulation experiments show that EIGA
is a powerful technique for solving the dynamic SP problem.
We believe that this is the first work to well investigate the
effectiveness and efficiency of the dynamic EA schemes in
solving the dynamic problems in the real-world networks.
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