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Abstract—Recently, there has been an increasing interest in
applying genetic algorithms (GAs) in dynamic environments. In-
spired by the complementary and dominance mechanisms in na-
ture, a primal–dual GA (PDGA) has been proposed for dynamic
optimization problems (DOPs). In this paper, an important oper-
ator in PDGA, i.e., the primal–dual mapping (PDM) scheme, is
further investigated to improve the robustness and adaptability
of PDGA in dynamic environments. In the improved scheme, two
different probability-based PDM operators, where the mapping
probability of each allele in the chromosome string is calculated
through the statistical information of the distribution of alleles in
the corresponding gene locus over the population, are effectively
combined according to an adaptive Lamarckian learning mech-
anism. In addition, an adaptive dominant replacement scheme,
which can probabilistically accept inferior chromosomes, is also
introduced into the proposed algorithm to enhance the diversity
level of the population. Experimental results on a series of dynamic
problems generated from several stationary benchmark problems
show that the proposed algorithm is a good optimizer for DOPs.

Index Terms—Adaptive dominant replacement scheme, dy-
namic optimization problem (DOP), genetic algorithm (GA),
Lamarckian learning, primal–dual mapping (PDM).

I. INTRODUCTION

A S a class of widely used optimization techniques, genetic
algorithms (GAs) have extended their application areas

from simple functions into more complicated optimization
problems, such as multiobjective optimization problems [6],
multimodal optimization problems [23], and so on [7], [10].
Recently, studying GAs for dynamic optimization problems
(DOPs) has attracted a growing interest from the GA com-
munity considering that many real-world optimization prob-
lems are often subject to dynamic environments [8], [24]. In
dynamic environments, the fitness landscape may change over
time as a result of the changes of optimization goal, problem
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instance, and/or some restrictions. For example, manufacturing
businesses in today’s markets are facing immense pressures
to rapidly react to dynamic variations in demand distributions
across products and changing product mixes [37]. For these
DOPs, the goal of GAs is no longer to find a satisfactory
solution to a fixed problem, but to track the trajectory of moving
optima in the search space [2], [36]. This poses great challenges
to traditional GAs because they cannot track the changing
optimal solutions well once converged.

Although traditional GAs cannot address DOPs well, GAs,
with proper enhancements, are good choices to solve DOPs.
This is because GAs are inspired by natural and biological
evolution, which is always subject to dynamic environments,
and hence possess potential properties to adapt in dynamic
environments. In recent years, several approaches have been
developed into GAs to address DOPs [13]. These approaches
can roughly be grouped into four categories: diversity schemes
(increasing the population diversity after a change is detected
[4], [26], or maintaining the population diversity during the
run [11], [31], [32]), memory schemes [1], [28], [30], [36],
multipopulation and speciation schemes [3], [19], [20], and
adaptive schemes [4], [16], [33], [34].

Inspired by the complementary mechanism in nature, a vari-
ant of GA, called primal–dual GA (PDGA), was proposed by
Yang [29] and shown to be suitable for addressing binary-
encoded DOPs. In PDGA, each primal chromosome, which
is explicitly recorded in the population, has its dual chromo-
some, which is calculated using a primal–dual mapping (PDM)
operator. At each generation, a set of chromosomes in the
population is selected to evaluate their duals before the next
generation starts, and a dominant replacement scheme is used
to decide whether the duals can replace the selected primal
chromosomes. Recently, the original PDGA has been improved
with some preliminary experimental results in [27].

In this paper, the PDM operator in PDGA is further inves-
tigated to improve its robustness and adaptability in dynamic
environments. The PDM operator was originally designed as
the maximum Hamming distance between a pair of primal–dual
chromosomes. That is, each allele in the gene locus of the
primal chromosome is translated to its complement during
the mapping course (e.g., from 0 to 1 or from 1 to 0 if a
binary-encoded optimization problem is assumed here). Instead
of the original PDM operator, an adaptive PDM operator is
proposed in this paper. It is a probability-based function where
the translation on every bit in a chromosome string to its com-
plement is executed according to a mapping probability that
is adjusted using the statistical information of the distribution
of alleles in a gene locus over the population. In addition to
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this adaptive PDM operator, an adaptive dominant replacement
approach, where a chromosome can be replaced by its dual
with a probability, is also proposed in this paper to increase the
population diversity.

In this paper, extensive experiments are carried out to com-
pare the performance of the proposed adaptive PDGA with sev-
eral peer GAs based on a series of dynamic test environments,
which are systematically constructed from several stationary
functions using the DOP generator proposed in [29] and [35].
Based on the experimental results, an algorithm performance
analysis with respect to the weakness and strength of the studied
algorithms in dynamic environments is carried out. This paper
also carries out experiments on the sensitivity analysis with
respect to several important factors, such as the PDM operators
and the replacement scheme, on the performance of the adaptive
PDGA in dynamic environments.

The rest of this paper is organized as follows. Section II
briefly reviews existing complementary approaches for GAs
in dynamic environments. Section III details the proposed
PDGA with the adaptive PDM scheme. Sections IV and V de-
scribe the dynamic test environments for this paper and present
the experimental results and relevant analysis, respectively.
The conclusions and discussions on future work are given in
Section VI.

II. RELEVANT WORK

For traditional GAs in dynamic environments, the main
problem lies in that all chromosomes may eventually converge
to an optimum point and hence loose their diversity. Therefore,
traditional GAs cannot adapt well to a changing environment.
To address the convergence problem, researchers have intro-
duced the complementary mechanism in nature into GAs to
improve their performance for DOPs. The relevant works are
briefly reviewed below.

The most prominent complementary mechanism-based ap-
proaches are to use multiploidy chromosomes for the represen-
tation of individuals. Goldberg and Smith [9] first proposed a
diploidy-based GA with a tri-allelic dominance scheme for the
time-varying knapsack problem. Thereafter, Ng and Wong [17]
investigated a dominance scheme with four possible alleles for
a diploid GA and reported a better performance than the tri-
allelic scheme. Hadad and Eick [12] used multiploidy and a
dominance vector as an additional part of an individual that
breaks the ties whenever there are an equal amount of 0’s and
1’s at a specific gene location. Ryan [21] used an additive mul-
tiploidy, where the genes determining one trait are added to de-
termine the phenotypic trait. The phenotypic trait becomes 1 if a
certain threshold is exceeded, or 0, otherwise. Lewis et al. [14]
compared several multiploid approaches and observed some
interesting results. For example, a simple dominance scheme
is not sufficient to track the changing optimum well, but much
better results can be obtained if the method is extended with a
dominance change mechanism. Recently, Uyar and Harmanci
[25] proposed an adaptive dominance change mechanism for
diploid GAs, where the dominance characteristics for each lo-
cus are dynamically adjusted via the feedback from the current
population.

Fig. 1. Pseudocode of the framework of PDGA.

Similar to multiploid approaches, the dualism mechanism
was also introduced into GAs to improve their performance
in dynamic environments. Collard et al. [5] proposed the dual
GA (DGA), which was inspired by the principle of the dualism
mechanism in nature. DGA operates on a search space by
introducing a meta-gene in front of the regular bits. When the
meta-gene is set to “0,” it has no effect on the regular bits, but
when the meta-gene is set to “1,” all regular bits are translated
to their compliment for fitness evaluation. Thus, each point in
the search space has two complementary representations. For
example, the two individuals [0011] and [1100] have the same
phenotypic meaning. The added meta-gene bit undergoes the
same genetic operations within DGA as other regular bits do.

III. DESCRIPTION OF ALGORITHMS INVESTIGATED

A. PDGA and the PDM Operator

Inspired by the dualism mechanism, Yang has proposed a
PDGA for DOPs in the binary-encoded space [29]. Here, the
framework of PDGA is first introduced, as simply shown in
Fig. 1. Within PDGA, a population of pop_size chromosomes
is randomly generated and evaluated at the initialization step.
At each subsequent generation, the chromosomes are pro-
portionally selected from the current population and undergo
the one-point crossover operation with a probability pc. After
crossover, the bit-wise mutation operation is performed for
each newly generated offspring chromosome, which changes
the allele value in each locus of an offspring bit wise (0 to 1
and vice versa) with a probability pm. Then, the pop_size best
chromosomes among all parents and offspring are selected to
proceed into the next generation, and a set D(t) of lowest fitness
chromosomes in the newly generated population is selected to
perform PDM operations before the next generation starts.

It is obvious that a new genetic operator, i.e., the PDM
operator, plays an important role during the running of PDGA.
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Fig. 2. Pseudocode of a general PDM operator.

Fig. 3. Example operation of the original PDM operator.

The PDM operation can be expressed by the pseudocode in
Fig. 2. From Fig. 2, it can be observed that a PDM operation can
include two steps: first, to create a chromosome’s dual, which
requires the definition of the PDM function between a pair of
primal–dual chromosomes, and then to decide whether a primal
chromosome should be replaced by its dual, which requires the
design of a replacement scheme.

Within the original PDGA, the PDM function is defined
as the maximum Hamming distance (the number of locations
where the corresponding bits of two chromosomes differ) in
the binary-encoded distance space. Given a primal chromosome
x = (x1, x2, . . . , xL) ∈ I = {0, 1}L of fixed length L, its dual
x′ = dual(x) = (x′

1, x
′
2, . . . , x

′
L) ∈ I , where dual(·) is a PDM

function, and x′
i = 1 − xi. Fig. 3 shows an example of applying

the original PDM operator to a 6-bit string chromosome. For
each individual x ∈ D(t), if the fitness of its dual x′ is cal-
culated to be better, then the corresponding PDM operation is
called valid, and x is replaced with x′; otherwise, x remains in
the next generation if the PDM operation is invalid. Therefore,
only a valid PDM operation gives the dual chromosome a
chance to transfer into the next population, which is similar to
the dominance mechanism in nature.

B. Probability-Based PDM Operator

The PDM operation can make a low-fitness chromosome
quickly jump into the high-fitness area in the solution space.
Thus, this operator can not only help accelerate the searching
process to achieve satisfactory solutions but also enhance the
PDGA’s capability of adapting to a changing environment. The
PDM function is originally designed as the maximum distance
in the Hamming distance space. That is, each allele in the gene
locus of a primal chromosome is translated to its complement
during the PDM operation. It is obvious that the original PDM
scheme can take effect particularly in the early searching stage
of the algorithm or when the fitness landscape fluctuates with
a sharp degree. However, this hypermapping scheme may be-
come useless in several cases. For example, when most individ-

Fig. 4. Example operation for the first probability-based PDM operator where
pmin = 0.1 and pmax = 0.9.

uals have converged into the high-performance area in the late
searching stage and hence their duals become inferior, or when
the environment very slightly changes, the PDM operations
become invalid.

Invalid PDM operations are unable to improve the perfor-
mance of PDGA. In this section, a new probability-based PDM
operator is proposed for improving the validity of the original
PDM operator. In this PDM operator, the dual chromosome will
be created by deciding for each bit of the primal chromosome
string whether to translate to its complement according to a
mapping probability of that bit.

Now, the question to be answered is how to set the mapping
probability of each gene locus in a chromosome string. Here,
we use some statistical information over the population to
calculate the mapping probability of a gene locus. Let fki

denote the frequency of k’s in the alleles in gene locus i(i =
1, 2, . . . , L) over the population, where k is the allele value
for the gene locus, and L is the chromosome length. In the
binary-encoded space, f1i + f0i = 1, 0 ≤ f0i, f1i ≤ 1, and f1i

can be regarded as the tendency to approach “1” for gene locus
i over the population. If each f1i tends to equal to 1 or 0,
then the whole population is converging to one solution. Thus,
a statistical vector {f11, f12, . . . , f1L} can express the conver-
gence degree of the population from the gene level. Let p(i)
denote the mapping probability of gene locus i in a chromo-
some, and, thus, a probability vector {p(1), p(2), . . . , p(L)}
can be shared by the chromosomes, which are selected from
the current population to execute the PDM operation. Based on
the statistical vector {f11, f12, . . . , f1L}, two different meth-
ods can be considered to calculate the probability vector
{p(1), p(2), . . . , p(L)} in this paper.

The first one is a mapping scheme to avoid the population
convergence, which is calculated as

p(i) = pmin + (pmax − pmin) × |1 − 2 · f1i| (1)

where i = 1, 2, . . . , L, |y| denotes the absolute value of y, and
pmin and pmax denote the minimum and maximum mapping
probabilities for a gene locus, respectively. Obviously, we can
see that p(i) can achieve the minimum value pmin when f1i is
equal to 0.5, and achieve the maximum value pmax when f1i

is equal to 1 or 0. That is, the more the allele value in a gene
locus converges, the larger its mapping probability is. Fig. 4
shows an example of applying this PDM operator to the same
chromosome as in Fig. 3.

The second mapping scheme is to promote the population
convergence, which is calculated as

p(i) = pmax − (pmax − pmin) × |1 − 2 · f1i| (2)
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Fig. 5. Example operation for the second probability-based PDM operator
where pmin = 0.1 and pmax = 0.9.

where the parameter settings are the same as in (1). It can easily
be seen that the more the allele value in a gene locus converges,
the smaller its mapping probability is, because p(i) can achieve
the maximum value pmax when f1i is equal to 0.5 and the
minimum value pmin when f1i is equal to 1 or 0. An example is
also shown in Fig. 5, which is similar to the example in Fig. 4.

Based on the above description, each PDM operator can
cause its respective influence upon the performance of the
algorithm. The first probability-based PDM operator can make
the primal chromosome have a chance of making a long jump to
its complement in the search space, which can help improve the
exploration capacity of PDGA. The second probability-based
PDM operator can cause quick convergence of the population
and hence can help PDGA exploit for a small area of the search
space sufficiently. Obviously, the above two PDM operators are
suitable for addressing different problems as a result of their
different influence upon the algorithm’s capacity.

C. Adaptive Probability-Based PDM Operator

Considering that the aforementioned two probability-based
PDM schemes are always problem dependent, we propose an
adaptive probability-based PDM operator. It employs both of
the mapping schemes in the algorithm framework and uses a
meta-Lamarckian learning strategy to decide which operator is
chosen for executing one PDM operation with a probability.

Let psel,1 and psel,2 denote the probabilities of applying
the first and second probability-based PDM operator to the
chromosome that is selected for executing one PDM operation,
respectively, where psel,1 + psel,2 = 1. Initially, both psel,1 and
psel,2 are set to 0.5, which means giving a fair competition
chance to each PDM operator. As each PDM operator always
makes a biased mapping, the PDM operator that produces more
improvements should be given greater selection probability.
Inspired by the idea of Ong and Keane’s work [18], a meta-
Lamarckian learning strategy is integrated into PDGA and is
elaborated as follows. Let η denote the improvement degree of
a selected chromosome when one PDM operator is used on it,
which can be calculated as

η = (fimp − fini)/fini (3)

where fimp and fini are the fitness of the chromosome after
and before executing one PDM operation, respectively. At each
generation, the degree of improvement of each PDM operator is
calculated when a predefined number of iterations are achieved,
and then psel,1 and psel,2 are recalculated to proceed with the
PDM operation in the next generation.

Assume that η1(t) and η2(t), respectively, denote the total
improvement of the first and second probability-based PDM op-

Fig. 6. Pseudocode for the adaptive probability-based PDM operator.

erators at generation t. The selection probabilities psel,1(t + 1)
and psel,2(t + 1) at generation (t + 1) can be calculated by the
following formulas:

psel,1(t+1)=
psel,1(t)+Δ · η1(t)

psel,1(t)+Δ · η1(t)+psel,2(t)+Δ · η2(t)
(4)

psel,2(t+1)=
psel,2(t)+Δ · η2(t)

psel,1(t)+Δ · η1(t)+psel,2(t)+Δ · η2(t)
(5)

where Δ signifies the relative degree of improvement influenc-
ing the selection probability. With the above discussion, the pro-
posed adaptive probability-based PDM operator is summarized
by the pseudocode in Fig. 6.

From the above discussion, the two different mapping op-
erators may not only cooperate to promote each individual’s
effort but also compete with each other to achieve a greater
selection probability in the running process of the adaptive
probability-based PDM operator. To promote competition, their
selection probabilities can be recalculated according to a meta-
Lamarckian learning mechanism, where the PDM operator with
a higher fitness improvement is rewarded with a higher chance
of being chosen for the subsequent operations.

D. Adaptive Dominant Replacement Scheme

In addition to the above adaptive probability-based PDM
scheme, instead of using a strict dominant replacement strategy
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in the original PDGA algorithm, where only a dual chromo-
some that has a better fitness can replace the primal chro-
mosome, an adaptive dominant replacement method is also
proposed in this paper. In this adaptive scheme, a primal chro-
mosome in the current population can be replaced with its dual
with a probability given by the following formula:

pacc =
{

1, if Δf ≥ 0
ekΔf/(fbest+δ), else

(6)

where Δf = f(x′) − f(x) is the difference between the fitness
of the primal chromosome x and its dual x′, fbest is the
best fitness among the fitness values of the population, k is a
normalization factor, and δ is a very small positive number. It
can be observed from (6) that this adaptive dominance scheme
can accept an inferior dual chromosome, which enables the
algorithm to be highly explorative.

In the original PDGA, only the primal chromosomes need to
be recorded in the population, and the dual representation of a
primal chromosome is always unique. Thus, the original PDGA
can be taken as working on a pseudo-diploid of primal–dual
chromosomes considering that the encoding is based on a
single-stranded chromosome instead of double stranded, as
in a deoxyribonucleic acid (DNA) molecule. In contrast, in
PDGA with probability-based PDM operators, there are many
different representations for a chromosome’s complement. This
mechanism is similar to polyploidy in nature, but a pseudo-
polyploid encoding scheme is actually used, because the dual
of a primal chromosome need not be recorded physically in the
population. Thus, it can be seen that the proposed probability-
based PDM operators in this paper can be expected to help the
algorithm explore the search space more efficiently and adapt
to more diverse environmental dynamics than the original PDM
operator.

IV. ALGORITHM TEST ENVIRONMENTS

To examine the performance of the proposed adaptive
PDGA, a series of DOPs are constructed by the DOP generator
proposed in [29] and [35] based on three stationary benchmark
test problems, which are described below.

A. Stationary Test Problems

1) Knapsack Problem: The knapsack problem is a well-
known NP-complete combinatorial optimization problem and
has been well studied in the GA community. Here, a 100-item
0–1 knapsack problem is constructed with the weight and profit
of each item randomly generated in the range of [1, 30] and the
capacity of the knapsack set to half of the total weight of all
items. The fitness of a feasible solution is the sum of the profits
of the selected items. If a solution overfills the knapsack, then
its fitness is set to the difference between the total weight of
all items and the total weight of selected items, multiplied by a
small factor 10−5 to make it in-competitive with those solutions
that do not overfill the knapsack.

2) Royal Road Problem: The Royal Road problem is de-
fined on a 100-bit binary string that consists of 25 contiguous

building blocks of 4 bits. Each building block contributes four
to the total fitness if its unitation (i.e., the number of ones
inside the building block) is four; otherwise, it contributes zero.
The overall fitness of an individual is calculated by the sum of
contributions from all building blocks. The optimal fitness for
this problem is 100.

3) Deceptive Problem: The deceptive functions are a family
of functions in which there exists low-order building blocks that
do not combine to form the higher-order building blocks. Here,
a deceptive function that consists of 25 copies of the order-4
fully deceptive function DF2 is constructed for this paper. DF2
can be described as follows:

f(0000)= 28 f(0001)=26 f(0010)=24 f(0011)=18

f(0100)= 22 f(0101)=6 f(0110)=14 f(0111)=0

f(1000)= 20 f(1001)=12 f(1010)=10 f(1011)=2

f(1100)= 8 f(1101)=4 f(1110)=6 f(1111)=30.

This function has an optimum fitness of 750.

B. Constructing Dynamic Test Environments

The DOP generator proposed in [29] and [35] can gener-
ate dynamic environments from any binary-encoded stationary
function f(x)(x ∈ {0, 1}L) by a bit-wise exclusive-OR (XOR)
operator. The environment is changed every τ generations. For
each environmental period k, an XOR mask �M(k) is incremen-
tally generated as

�M(k) = �M(k − 1) ⊕ �T (k) (7)

where ⊕ is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕
0 = 0), and �T (k) is an intermediate binary template randomly
created with ρ × L ones for the kth environmental period.
For the first period k = 1, �M(1) = �0. Then, the population at
generation t is evaluated as

f(�x, t) = f
(
�x ⊕ �M(k)

)
(8)

where k = �t/τ� is the environmental index.
The advantage of this XOR generator is that it can easily

control the speed and severity of environmental changes. With
this generator, the parameter τ controls the speed of changes,
whereas ρ ∈ (0.0, 1.0) controls the severity of changes. A big-
ger ρ means more severe changes, whereas a smaller τ means
more frequent changes.

In this paper, the dynamic test environments are constructed
using the above XOR DOP generator from the aforementioned
three stationary functions. The dynamics parameter ρ is set
to 0.1, 0.3, 0.5, 0.7, and 0.9, respectively, to examine the
performance of algorithms in dynamic environments with dif-
ferent severities of changes: from slight changes (ρ = 0.1) to
moderate variations (ρ = 0.3, 0.5 or 0.7) to intense changes
(ρ = 0.9). The change speed parameter τ is set to 10, 100, and
200, respectively, to test each algorithm’s capability of adapting
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TABLE I
INDEX TABLE FOR THE ENVIRONMENTAL DYNAMIC SETTINGS

to dynamic environments under different searching stages.1 In
total, a series of 15 different dynamic problems are constructed
from each stationary test problem. The dynamics parameter
settings are summarized in Table I.

V. EXPERIMENTAL STUDY

A. Experimental Design

In this section, experiments are carried out to study the
main characters of our proposed adaptive PDGAs and compare
their performance with four existing peer algorithms: three
complementary and dominance-based GAs and one recently
developed GA with an elitism-based immigrant scheme. The
following abbreviations represent these GAs considered in this
paper.

1) DGA: The DGA proposed by Collard et al. in [5] (see
Section II for more description).

2) oriPDGA: The original PDGA proposed in [29].
3) domGA: A diploid GA with adaptive domination change

mechanism proposed by Uyar and Harmanci in [25].
In domGA, each individual has two chromosomes as a
result of the diploid representation and a special scheme
to determine the genotype-to-phenotype mapping. If the
two alleles for a gene locus on two chromosomes are
the same, then the phenotype is equal to that allele;
otherwise, the phenotypic value is determined by the
dominant factor of allele 1 over allele 0 for the corre-
sponding locus on the chromosomes. For example, if the
alleles on two genotype chromosomes are different for
the gene at one location and the corresponding dominant
factor is 0.8, then the phenotypic value for that location
is 1 with a probability of 0.8 and 0 with a probability
of 0.2. All dominant factors are set to 0.5 initially and
are recalculated at the end of each generation based on
the fitness values of the current population. In addition,
a special two-stage crossover operator is also used in
domGA, where one chromosome from each parent is
first randomly selected to be copied into each of the two
offspring, and then each offspring undergoes a uniform
crossover that occurs between its own chromosomes.

4) EIGA: The GA with the elitism-based immigrants
scheme studied in [31] and [32]. In EIGA, a set of im-
migrant chromosomes are generated by bit-wise mutating
the elitist (the best chromosome) from the previous gener-

1According to our preliminary experiments on stationary problems, all the
algorithms are roughly at a quite early searching stage at generation 10, at a
medium searching stage at generation 100, and at a late searching or converged
stage at generation 200.

ation to replace the worst chromosomes in the population
at each generation.

5) adaPDGA: The proposed PDGA with the probability-
based PDM operator.

The following parameters are used in all the algorithms: The
population size (pop_size) is set to 120 for DGA and domGA,
but is set to 100 for EIGA, oriPDGA, and adaPDGA, because
the immigrant ratio is set to 0.2 in EIGA per generation, and the
number of chromosomes selected for executing the PDM opera-
tion per generation is set to 20 in PDGAs. The simple one-point
crossover operation is used with the probability pc = 0.6 for
DGA, oriPDGA, EIGA, and adaPDGA, whereas domGA uses
its original two-stage crossover operation where the uniform
crossover probability pc is also set to 0.6. For all the algorithms,
the bit-wise mutation probability pm is set to 0.01. The specific
parameters in adaPDGA are set as follows: Δ = 1, k = 1, and
δ = 0.001. Other parameters in the peer algorithms are always
the same as their original settings.

For each experiment of an algorithm on a test problem,
20 independent runs were executed with the same set of random
seeds. For each run of an algorithm on a DOP, ten environmen-
tal changes were allowed, and the best-of-generation fitness was
recorded per generation.

The overall performance of an algorithm is defined as the
best-of-generation fitness averaged across the number of total
runs and then averaged over the data gathering period, as
formulated in the following:

FBG =
1
G

G∑
i=1

⎛
⎝ 1

N

N∑
j=1

FBGij

⎞
⎠ (9)

where G is the number of generations (i.e., G = 10 ∗ τ ), N =
20 is the total number of runs, and FBGij

is the best-of-
generation fitness of generation i of run j.

B. Experimental Study on the Effect of the PDM Operator

In our first set of experiments, we investigate the effect of
the PDM operator on the performance of PDGAs on DOPs
constructed in Section IV-B. To make a convenient description
on the experiments, adaPDA1, adaPDA2, and adaPDA3 are
used to denote adaPDGA with the first, second, and adaptive
probability-based PDM operators, respectively. In addition,
all the PDGAs use the dominant replacement scheme, which
means that only the dual chromosome with a better fitness can
replace the primal in the population. The experimental results
with respect to the overall performance are presented in Table II
and plotted in Fig. 7. The corresponding statistical results of
comparing algorithms by the one-tailed t-test with 38 degrees
of freedom at a 0.05 level of significance are given in Table III.
In Table III, the t-test result regarding Alg. 1–Alg. 2 is shown
as “s+,” “s−,” “+,” or “−” when Alg. 1 is significantly better
than, significantly worse than, insignificantly better than, or
insignificantly worse than Alg. 2, respectively. From Tables II
and III and Fig. 7, several results can be observed and are
analyzed below.
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TABLE II
EXPERIMENTAL RESULTS OF PDGAs WITH DIFFERENT PDM OPERATORS ON THE DYNAMIC TEST PROBLEMS

Fig. 7. Experimental results of PDGAs with different PDM operators on the dynamic test problems. (a) Knapsack. (b) Royal Road. (c) Deceptive.

TABLE III
STATISTICAL COMPARISON OF PDGAs WITH DIFFERENT PDM OPERATORS ON THE DYNAMIC TEST PROBLEMS

First, adaPDGA3 always outperforms the other algorithms
on most of the dynamic problems when τ = 100 and 200, as
indicated in the relevant t-test results in Table III. The reason
lies in that the two different PDM operators can help the al-
gorithm adapt well to different environmental dynamics, which

will be explained in detail in the latter experimental analysis,
and the Lamarckian learning strategy help adaPDGA3 choose
the suitable PDM operation to deal with the environmental
changes. This result shows the efficiency of our proposed PDM
operator in dynamic environments. When τ = 10, adaPDGA3
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underperforms some of the other algorithms on a few dynamic
problems. This happens because when the environment changes
very quickly, adaPDGA3 does not have enough time to adjust
its PDM scheme efficiently.

Second, adaPDGA2 outperforms adaPDGA1 and oriPDGA
when the change severity parameter ρ is small, but is beaten
by them when the value of ρ is large on most dynamic Knap-
sack and Royal Road problems. This is because the second
probability-based PDM operator in adaPDGA2 can make the
population converge into a small area quickly and exploit this
area sufficiently. When the environment changes slightly in
terms of severity, the new optimum is very close to the previous
one before a change. The sufficient exploitation can ensure
that adaPDGA2 quickly achieves such changed optimum. In
contrast, when the environment changes very significantly, the
new optimum becomes far apart from the previous one. In these
cases, it is obvious that adaPDGA2 cannot adapt well, since
the converging population also makes adaPDGA2 lose enough
exploration capacity. However, the situation seems a little dif-
ferent on some dynamic Deceptive problems where adaPDGA2
performs worse than adaPDGA1 and oriPDGA when ρ is small
but performs better than them when ρ is large. The reason is that
the deceptive attractor in the Deceptive problem can mislead the
evolution process of adaPDGA2, and the XOR operator enables
adaPDGA2 to escape from the deceptive attractor when the
environment is subject to significant changes.

Third, adaPDGA1 performs better than adaPDGA2 on most
dynamic Knapsack and Royal Road problems when ρ = 0.7
and ρ = 0.9. The reason lies in that the first probability-based
PDM operator in adaPDGA1 enables the chromosomes to
make a long jump in the search space. When a significant
environmental change occurs, the XOR generator can strongly
draw the chromosomes into the low-fitness area. Obviously, the
PDM operation in adaPDGA1 is helpful to make the population
quickly return to the high-fitness area. Moreover, it can be
seen that adaPDGA1 outperforms oriPDGA on the dynamic
knapsack problems, while underperforms the latter on most
dynamic Royal Road problems when τ = 100 or 200, although
both of them adopt a similar PDM mechanism of avoiding
the population convergence. This happens since the original
PDM operator in oriPDGA could become noneffective once the
population moves into a high-fitness area in the solution space
in the Knapsack function, whereas the probability-based PDM
operator in adaPDGA1 can cause destroying all the useful BBs,
where each bit is equal to one, as achieved so far in the Royal
Road function.

Fourth, oriPDGA beats adaPDGA1 and adaPDGA2 on some
dynamic test problems only when ρ = 0.9, but underperforms
adaPDGA3 on most dynamic test problems. This is because the
original PDM function is designed as the maximum Hamming
distance between a pair of primal–dual chromosomes, which
makes oriPDGA adapt well to a very significant changing en-
vironment. In addition, the result of oriPDGA being beaten by
adaPDGA3 with a high degree on most dynamic test problems
confirms our expectation of the probability-based mechanism
for PDGA in dynamic environments.

Finally, we also recorded the diversity of the population every
generation to understand the effect of different PDM operators

on the population diversity during the running of an algorithm.
The diversity of the population at generation t in the kth run of
an algorithm on a DOP is defined as

Div(k, t) =

∑pop_size
i=0

∑pop_size
j 
=i d(�xi, �xj)

L · pop_size(pop_size − 1)
(10)

where L is the length of encoding, and d(�xi, �xj) is the normal-
ized Hamming distance between the ith and jth individuals in
the population. The mean population diversity of an algorithm
on a DOP at time t over 20 runs is calculated as

Div(t) =
1
20

20∑
k=1

Div(k, t). (11)

The dynamic population diversity of algorithms against gen-
erations on DOPs with τ = 100 and ρ = 0.1 or 0.9 is plotted
in Fig. 8 for the ten environmental changes, where the data
were averaged over 20 runs. From Fig. 8, it can be seen that
oriPDGA always maintains the highest population diversity
level on most dynamic problems since the PDM operation in
oriPDGA always allows the chromosomes to make the longest
jumps in the search space, whereas the appearance of the three
adaPDGAs regarding the population diversity are different on
different DOPs.

Compared with adaPDGA1, adaPDGA2 always maintains a
lower population diversity level on all dynamic problems when
ρ = 0.1. It is natural because the PDM operation in adaPDGA2
has an effect of encouraging convergence of the population.
However, the situation becomes a little different when ρ = 0.9.
The population diversity level of adaPDGA1 is much lower
than that of adaPDGA2 on dynamic Knapsack and Royal Road
problems. The reason lies in that the first probability-based
PDM operator in adaPDGA1 can quickly map the population
into a high-fitness area when the environmental change is very
significant. Similar results can also be obtained from the fact
that adaPDGA2 even has a higher population diversity than
oriPDGA during the early search stage of each dynamic period
when the value of ρ is 0.9. It is worthy to notice that adaPDGA1
maintains a higher population diversity than adaPDGA2 on
dynamic Deceptive problems when ρ = 0.9. This happens
because the population is always mapped into the area near
the deceptive attractors in the deceptive function by the XOR

generator when a significant environmental change occurs. It
is impossible for adaPDGA2 to escape from the misleading of
the deceptive attractor via its PDM operation, which causes its
population always being in a very converged state.

Obviously, the above results show that PDM operators can
affect the population diversity of PDGAs. Whether this effect
is helpful or not depends on PDGAs and DOPs. For example,
adaPDGA3 outperforms the other PDGAs on most dynamic
problems although it just maintains a middle diversity level,
whereas oriPDGA can maintain a higher diversity but a lower
fitness at the same time on most dynamic problems when the
value of ρ is small. In fact, similar results were also obtained
in [31] and [32], where the random immigrant scheme cannot
effectively improve the performance of GAs in some dynamic
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Fig. 8. Dynamic population diversity of PDGAs with different PDM operators on the dynamic test problems with τ = 100 and ρ set to (a) ρ = 0.1 and
(b) ρ = 0.9.

TABLE IV
EXPERIMENTAL RESULTS OF adaPDGAs WITH DIFFERENT REPLACEMENT SCHEMES ON THE DYNAMIC TEST PROBLEMS

environments, although it can always help maintain a higher
population diversity level.

C. Experimental Study on the Effect of the
Replacement Scheme

In the above experiments, all the PDGAs use a dominant
replacement scheme in the PDM operations. That is, the primal
chromosome can be replaced by its dual only when the latter has
a better fitness. To investigate the effect of different replacement
methods on the PDM operator, we further carry out experiments
on adaPDGA on the DOPs with τ = 100 and ρ set to 0.1, 0.3,
0.5, 0.7, and 0.9, respectively. For the convenience of descrip-
tion, adaPDGA_1 and adaPDGA_2 denote adaPDGA with the
dominant replacement scheme and the adaptive dominant re-
placement scheme, respectively, in the following experiments.
The experimental results are presented in Table IV, where the
t-test column denotes the one-tailed t-test results regarding
adaPDGA_2 - adaPDGA_1 with 38 degrees of freedom at a
0.05 level of significance.

From Table IV, the following results can be observed.
First, the replacement scheme does affect the performance

of adaPDGA on DOPs, and the effect is problem dependent.
In general, adaPDGA_2 always outperforms adaPDGA_1 on
Knapsack and Royal Road problems, whereas adaPDGA_1
always outperforms adaPDGA2 on Deceptive problems. The
reason lies in the intrinsic characteristics of these problems.
AdaPDGA_2 can always maintain a higher population diversity
level and has a stronger exploration capacity than adaPDGA_1.
This is because AdaPDGA_2 can accept inferior dual chromo-
somes in the PDM operations, which helps adaPDGA_2 adapt
better to the changing environment. This is the reason why
adaPDGA_2 performs better than adaPDGA_1 on Knapsack
and Royal Road problems. However, the Deceptive problem
can mislead the evolution of algorithms due to the existence
of deceptive attractors. The adaptive dominant replacement
scheme can cause a lot of useless redundant searches, which
greatly degrade the performance of adaPDGA_2. Although the
dominant scheme can cause the population to be attracted by
the deceptive attractor, the PDM operator can help adaPDGA_1
deal with this misleading to a certain extent.

Second, the degree of the effect of the replacement scheme
on the performance of adaPDGA on DOPs depends on the
value of ρ. For example, adaPDGA_2 significantly outperforms
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TABLE V
EXPERIMENTAL RESULTS OF adaPDGA AND PEER GAs ON THE DYNAMIC TEST PROBLEMS

Fig. 9. Experimental results of adaPDGA and peer GAs on the dynamic test problems. (a) Knapsack. (b) Royal Road. (c) Deceptive.

adaPDGA_1 when ρ = 0.3, 0.5, and 0.7 while performing
only a little better than adaPDGA_1 when ρ = 0.1 and 0.9 on
the Knapsack problems. The reason is that the effects of the two
replacement schemes upon the performance of the algorithm
are very small when the environment changes very significantly
or very slightly since the PDM operator in adaPDGAs can
quickly map the chromosomes into the area near the new
optimum in these cases. Similar results can be obtained on the
Royal Road and Deceptive problems.

D. Experimental Study on Comparing adaPDGA With Peer
GAs on DOPs

In the final set of experiments, we compare the performance
of adaPDGA that combines the adaptive probability-based
PDM operator and the adaptive dominant replacement scheme
with several other peer GAs proposed in the literature on the
DOPs constructed in Section IV-B. The peer GAs are EIGA,
DGA, and domGA. The experimental results are presented in
Table V and plotted in Fig. 9. The corresponding statistical
results are given in Table VI. From Fig. 9 and Tables V and VI,
several results can be observed and are analyzed as follows.

First, adaPDGA always significantly outperforms other
peer GAs on most dynamic test problems, particularly
when τ = 200. This is because the first probability-based
PDM scheme can enhance the exploration capability of

adaPDGA and make it adapt well to significant environmental
changes, whereas the second probability-based PDM scheme
can improve adaPDGA’s performance in slightly changing
environments since it can enable adaPDGA to execute sufficient
exploitation in the higher fitness area of the search space. The
good performance of adaPDGA over other peer GAs confirms
our expectation that the adaptive learning strategy can balance
the exploration and exploitation capacity well for adaPDGA
in dynamic environments. However, adaPDGA underperforms
EIGA on dynamic Royal Road and Deceptive problems when
τ = 10, which shows that the adaptive probability-based PDM
operator requires more “energy” to choose more effective PDM
operations.

Similar results can be observed in the dynamic behavior of
GAs, as plotted in Figs. 10–12, where τ is set to 100, and ρ is set
to 0.1, 0.5, and 0.9, respectively. From these figures, it is easily
observed that adaPDGA can always maintain a higher fitness
level than domGA and DGA can do for all environmental
periods on all dynamic problems. The experimental results
that adaPDGA is beaten by EIGA with respect to the best-of-
generation fitness will be explained in the experimental analysis
later on. When ρ = 0.1 and ρ = 0.9, adaPDGA performs better
for the dynamic periods than it does for the stationary period
(the first 100 generations), whereas the dynamic behavior of
adaPDGA for each dynamic period is almost the same as that
for the stationary period when ρ = 0.5.
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TABLE VI
STATISTICAL COMPARISON OF adaPDGA AND PEER GAs ON THE DYNAMIC TEST PROBLEMS

Fig. 10. Dynamic performance of adaPDGA and peer GAs on dynamic Knapsack problems with τ = 100 and ρ set to (a) ρ = 0.1, (b) ρ = 0.5, and (c) ρ = 0.9.

Fig. 11. Dynamic performance of adaPDGA and peer GAs on dynamic Royal Road problems with τ = 100 and ρ set to (a) ρ = 0.1, (b) ρ = 0.5, and
(c) ρ = 0.9.

Second, on dynamic Knapsack and Royal Road problems,
EIGA performs better when the change severity ρ is not
very large. This happens because the elitism-based immigrants
scheme in EIGA can introduce higher fitness chromosomes
into the population on dynamic Knapsack and Royal Road
problems when the environment changes slightly. However, on
dynamic Deceptive problems, the situation becomes a little
different. On dynamic Deceptive problems, EIGA performs

better than the other algorithms, including adaPDGA, when the
value of ρ is very large, but performs worse than adaPDGA
when ρ = 0.1. The reason lies in the fact that the deceptive
attractor can mislead EIGA’s evolution, because the immigrants
are only generated close to the elitist chromosome in the current
population. When the environment is subject to significant
changes (ρ = 0.9), the XOR operation may enable EIGA to
jump out from the deceptive attractor.
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Fig. 12. Dynamic performance of adaPDGA and peer GAs on dynamic Deceptive problems with τ = 100 and ρ set to (a) ρ = 0.1, (b) ρ = 0.5, and (c) ρ = 0.9.

The dynamic behavior of GAs in Figs. 10–12 can further
indicate the aforementioned experimental results. For example,
on dynamic Deceptive problems, EIGA performs better than
other GAs for the stationary period, but is greatly beaten by
adaPDGA and DGA for the dynamic periods after several
generations when ρ = 0.1. When ρ = 0.9, EIGA’s performance
landscape is sort of switching between odd and even envi-
ronmental periods. This is because after the stationary pe-
riod, for the following odd period, the environment is in fact
greatly returned or repeated from the previous odd period given
ρ = 0.9.

Third, the performance of domGA is not exciting on most
dynamic test problems, which can further be observed in the
dynamic behavior of domGA in Figs. 10–12. The domGA
performs worse for the dynamic periods than it does for the
stationary period except on dynamic Knapsack and Royal Road
problems when ρ = 0.1 and on dynamic Deceptive problems
when ρ = 0.1 and ρ = 0.9. This happens because although
the diploidy individual in domGA can store much redundant
information, the implicit use of information cannot directly
improve the performance of domGA in dynamic environments.

Fourth, DGA performs better than domGA and EIGA on
dynamic test problems only when ρ = 0.9. The reason lies in
the fact that a chromosome can jump to its dual that has a
maximum distance away to it via mutating the meta-bit in DGA.
However, the blindness in mutating the meta-bit results in that
DGA is significantly beaten by adaPDGA. In addition, DGA’s
performance in slightly changing environments indicates that
the effect of the dualism mechanism in DGA is limited. This
can further be confirmed by the dynamic behavior of DGA
in Figs. 10–12. DGA’s performance landscapes are almost the
same as adaPDGA’s for each dynamic period on dynamic
Knapsack and Deceptive problems when ρ = 0.9, whereas
adaPDGA significantly beats DGA on most dynamic problems
when ρ is not very large.

Finally, the environmental parameters affect the performance
of algorithms. The performance of all algorithms increases
when the value of τ increases from 10 to 100 to 200. It is easy
to understand since algorithms have more time to find better
solutions before the next change with the increment of the value
of τ . The effect of the changing severity parameter ρ is dif-
ferent. For example, when τ is fixed, adaPDGA’s performance
curve is always lower when the environment changes with a
middle severity degree than that when ρ = 0.1 and ρ = 0.9.

VI. CONCLUSION AND FUTURE WORK

In this paper, a variant of GA, i.e., PDGA, has been dis-
cussed, and its key operator, i.e., the PDM operator, has further
been investigated to improve its robustness and adaptability in
dynamic environments. In the improved scheme, two different
probability-based PDM methods, where the probability of each
allele in the chromosome string that takes part in the PDM
operation is calculated using the statistical information of the
distribution of alleles in the corresponding gene locus over the
population, are probabilistically selected to execute one PDM
operation. A learning mechanism is introduced to give the more
effective PDM operator a greater chance to be selected for
later operations. In addition, an adaptive dominant replacement
scheme is also introduced into the proposed PDGAs to enhance
their exploration capability to adapt well to environmental
changes.

From the experimental results based on a series of dynamic
test problems constructed from three stationary benchmark
problems, the following conclusions can be drawn on the
dynamic test problems.

First, the probability-based mechanism can significantly im-
prove the performance of the PDM operator in PDGAs in
dynamic environments. On most tested DOPs, adaPDGA out-
performs oriPDGA.

Second, the two probability-based PDM operators have dif-
ferent effects in different dynamic environments. The first
probability-based PDM operator often performs better when
the environment is subject to significant changes, whereas the
second operator performs better when the environment changes
slightly. The adaptive learning strategy can help adaPDGA
execute a robust PDM operation since it employs both of
the PDM operators under the mechanism of cooperation and
competition.

Third, the effect of different replacement schemes is problem
dependent. The adaptive dominant replacement scheme takes
effect on the dynamic Knapsack and Royal Road problems, but
the dominant replacement scheme is suitable for the dynamic
Deceptive problems.

Fourth, the environmental dynamics can affect the perfor-
mance of algorithms. In our experiments, algorithms perform
better with the increase of the frequency of changes, and the
effect of the severity of changes is problem dependent, which
has also been observed before by some studies in the literature.
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In summary, our experimental results show that the pro-
posed adaPDGA with the adaptive PDM operator and the
adaptive dominant replacement scheme seems a good optimizer
for DOPs.

There are several future works relevant to this paper. It is a
straightforward work to extend the idea of the PDM mechanism
to GAs with other encodings and examine their performance in
dynamic environments. For example, some promising results
have been shown in the preliminary experiments of extending
the idea to GAs for dynamic problems with order encoding in
[15]. We believe that the well-designed PDM scheme should
also improve the performance of GAs for continuous DOPs.
To hybridize the proposed adaptive PDGAs with other ap-
proaches developed into GAs for DOPs, such as the memory
and multipopulation schemes, will be another interesting future
work. Moreover, the number of chromosomes selected for PDM
operations per generation can vary according to the change
of valid PDM operations in the original algorithm, but was
set to a fixed constant in this paper. Then, it is valuable to
further investigate how much the number of PDM operations
per generation affects the performance of adaPDGA. Finally,
we have only chosen a reasonable set of relevant parameters in
the proposed algorithms and have not made any effort in finding
the best setting for the proposed algorithms, which is left as a
future research.
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