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Abstract 

 
The Al-Sn and Al-Pb based immiscible alloys have significant potential for bearing applications. 
However, the mixing and understanding of solidification process for immiscible alloys have been 
long standing challenges for their development. This paper presents solidification and 
microstructural evolution of the Al-Sn-Cu alloys and also describes the mechanism of effective 
mixing by the intensive shearing. The experimental work was also focused on analyzing the 
effects of shear rate, temperature and time on Sn droplets size and their distribution. Results have 
been compared with earlier study on Al-Si-Pb alloys. Experimental results suggest that the 
intensive shearing process produces homogeneous and finely dispersed Sn and Pb droplets. 
 

Introduction 
 
The solidification studies of immiscible alloy systems such as Al-Bi, Al-Sn, Al-Pb, Al-Si-Pb, Al-
Pb-Si etc. is important from scientific and technical point of view [1-3]. The Al-Sn and Al-Pb 
based alloys have been commonly accepted for having excellent tribological and mechanical 
properties. These kinds of alloy system are suitable for engineering applications, particularly self 
lubrication bearing materials [1, 2]. Owing to the lower solubility, the parent liquid is 
decomposed into two distinct immiscible liquid phases when it passes through the immiscibility 
gap [1-3], and then followed by severe segregation due to the large density difference between 
two different density liquid phases [1,2]. In Al-Sn and Al-Pb alloy systems, phase separation 
occur when the Sn and Pb content are higher than 0.09 wt.% and 0.2 wt.%, respectively. To 
overcome segregation problem in immiscible alloy many methods have been proposed, such as 
stir casting, ultrasonic, rheocasting and rapid solidification. Recently, Fan et. al [4] developed a 
melt conditioning advanced shearing technology (MCAST) device to create a fine and 
homogeneous liquid dispersion within the miscibility gap and then the viscous force offered by 
semi-solid slurry to counterbalance the gravity force and the Marangoni effect [4,6]. 
 
In the present study, the immiscible Al-Sn-Cu alloys were successfully synthesized within the 
semi-solid region using the well developed MCAST device and results are compared with earlier 
study on Al-Si-Pb alloys system. It is observed that the final microstructures of alloys are 
strongly influenced by the viscosity of the system, shear forces, turbulence and cooling rate. 
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Experimental procedure 
 
The (90-x)Al-xSn-10Cu immiscible alloys for x = 20, 30 and 45 were prepared from commercial 
pure aluminium with appropriate addition of 99.99 wt.% pure Sn and Cu and Al-Si-xPb alloys 
for x = 3.8, 7.2 and 17.2, were prepared from A357 alloy with appropriate addition of 99.97 wt% 
pure Pb [6]. All compositions in this paper are given in wt%. The melt was prepared in a graphite 
clay crucible in electric resistance furnace. The furnace temperature was gradually increased and 
held 200 °C above critical temperature (Tc) for 2 hours to homogenize the melt. 
 
The MCAST device used in this work for intensive shearing is combined with high pressure die 
casting (HPDC) machine (DCC280, LK® Machinery, Hong Kong). The combination of MCAST 
and HPDC is called MC-HPDC. The detailed explanation about MCAST has been described 
elsewhere [7, 8]. The Al-Sn-Cu and Al-Si-Pb alloys melt were poured into the MCAST device at 
650 °C and 620 °C, respectively. The pouring temperature was well above the Tc to avoid phase 
separation of  and  ( is Al-rich liquid and LL′ L ′′ L′ ′′ is Sn-rich or Pb-rich liquid) before the 
shearing commenced and then multi-phase mixture was sheared at desired speed, time and 
processing temperature (Tp). For microstructural comparison purpose melt was directly 
transferred to the HPDC machine without shearing, which is referred to as conventional HPDC 
process. 
 
To investigate microstructural features with optical microscope (OM) the samples were mounted 
and ground using standard metallographic polishing techniques. In the process of microstructural 
characterization, the equivalent diameter (d) and shape factor (F) were calculated by π/4Ad =  
and ; where, A is the total area and P is the peripheral length of the particles. When 
F is equal to 1, it represents a perfect spherical particle.  

2/4 PAF π=

 
Results 

 
HPDC 
 
Figure 2 shows the OM image of Al-45Sn-10Cu alloy produced by conventional HPDC process. 
Segregation of the Sn droplets (dark grey in contrast) can be seen at the centre of the tensile 
specimen. Due to presence of temperature gradient during solidification Sn droplets migrate 
from low temperature region to the high temperature region [9].  
 

 

α-Al 

Sn 

Figure 2. The cross section view of Al-45Sn-10Cu alloy 
                                  tensile specimen produced with conventional HPDC. 
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MC-HPDC 
 
Al-Sn-10Cu alloys. Figure 3 shows the microstructures of Al-Sn-Cu samples produced with MC-
HPDC. The Sn droplets (dark grey in contrast) in all samples are dispersed uniformly in Al 
matrix. A good distribution and fine size of Sn droplets achieved at optimum processing 
parameters. As the wt.% of Sn increases the average Sn droplets size increases from 4 µm to 22 
µm with almost constant shape factor (Figure 4(a)). No significant segregation has been 
observed throughout cross section of the tensile specimen as shown in Figure 3. Figure 4(b) 
reveals that α-Al particles are also spherical in shape. The size of the α-Al particles vary between 
40 µm to 50 µm with different Sn concentrations. The microstructures produced after shearing 
with varied shearing time and intensity have been also characterised for their respective volume 
fraction of α-Al particles and Sn droplets [9]. 
 

   

a b c 

Figure 3. Optical micrographs of various (90-x)Al–xSn–10Cu alloys produced 
by the MC-HPDC process under optimal processing parameters (a) x = 20; 

Tp = 580 °C; shearing speed 800 rpm for 60 s (b) x = 30; Tp = 580 °C; shearing 
speed 800 rpm for 60 s(c) x = 45; Tp = 535 °C; shearing speed 800 rpm for 180 s. 
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Figure 4. Effect of intensive shearing on (a) Sn droplets size and shape 

(b) α-Al particles size and shape as a function of Sn concentration. 
 
Al-Si-Pb alloys. The resultant microstructures of Al-Si-Pb alloys are shown in Figure 5. The 
average size of the Pb droplets (black color in contrast) in Al-Si-3.8Pb alloy is 2.6 µm and the 
shape factor of the Pb droplets is 0.89. In Figure 6(a) by increasing Pb concentration from 3.8 
wt.% to 17.2 wt.% the droplet size increases from 2.6 µm to 14 µm, while shape factor has 
decreased from 0.89 to 0.82. Similar to the Al-Sn-Cu alloys system, there has been no significant 
segregation found. In addition, primary α-Al particle are observed to distribute homogeneously 
and finely throughout the sample along with the uniform and well distributed Pb droplets. The 
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size and shape of the α-Al particles have not changed much with increasing the wt.% of Pb in 
these alloys (Figure 6(b)). 
 

   
 

Figure 5. Optical micrographs of various Al–Si–xPb alloys produced by the 
MC-HPDC process under optimal processing parameters (a) x = 3.8; Tp = 605 °C; 

shearing speed 500 rpm for 120 s (b) x = 7.2; Tp = 605 °C; shearing speed 500 rpm for 
120 s (c) x = 17.2; Tp = 595 °C; shearing speed 500 rpm for 120 s [6]. 
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Figure 6. Effect of intensive shearing on (a) Pb droplets size and shape  
         (b) α-Al particles size and shape as function of Pb concentration. 

 
Discussion 

 
In HPDC produced alloys, the higher density Sn droplets were accumulated at the central area of 
tensile specimen. The volume fraction of droplets and their size was increased from the mould 
wall to centre position of mould. This occurs because nucleation starts at the surface of mould 
and proceeds inward, but due to the migrating nature of the droplets from a low temperature 
region to high temperature region, the segregation occurs at the centre of the specimen at place 
where liquid solidifies last [1,2,10,11], which is described by the well known Marangoni motion. 
The coalescence mechanism mainly depends on the size and volume fraction of the L ′′  droplets 
[1, 11]. The coalescence takes place by the transfer of matter in which larger droplets grow by 
absorbing smaller ones and some droplets collide with each other to from a single one by mutual 
loss of surface energy due to joining [11]. 
 
In the MC-HPDC process, when the liquid alloy is fed into the MCAST (above the Tc ) and the 
melt cools quickly to the barrel temperature set by the control system, which is usually just 
below the monotectic temperature (Tm), where primary α-Al already start to precipitate. At the 
same time, the melt separates rapidly into two immiscible liquids through nucleation and growth 
of liquid droplets in miscibility gap. Under the intensive shear mixing action created by the twin 
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screws, the liquid droplets attain fine particle size, as a result of the dynamic equilibrium 
between two opposite processes, coagulation and breakup of liquid droplets. The stages of the 
process from the homogeneous liquid to fine and uniformly distributed Sn and Pb droplets in Al 
matrix is shown schematically in Figure 7.  

 
Figure 7. Schematic illustration of the rheomixing process for achiving a uniform 

distribution of soft phase in Al alloy matrix (a) homogenious liquid (above the Tc ); 
(b) creation of the  droplets in  L ′′ L′ ; (c) rheomixing: formation of a primary α-Al 

solid phase (S) in L′  through a monotectic reaction. 
 
The final size of liquid droplets will be dictated by the intensity of shear mixing action and the 
thermo-physical properties of the system, such as viscosity, interfacial tension, etc. When the 
melt reaches a temperature below the Tm, a solid phase will form from one of the liquid phases 
through the monotectic reaction [5]. It is well known that the viscosity of the semi-solid slurry 
increase exponentially with the volume fraction of the solid phase and decrease dramatically 
with increasing shearing rate and shearing time. By careful selection of the processing 
temperature, the viscous force was kept high enough to counterbalance the gravity force. 
Consequently, the alloy system is stabilized for the final solidification of the remaining liquid, 
normally by a eutectic reaction at a lower temperature. Therefore, viscosity helps to inhibit 
agglomeration or to slow down diffusion of the Sn and Pb droplets. The effect of viscosity of the 
semi-solid slurry on Stokes motion (Us) and Marangoni motion (Um) is given by: 
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Where, ρ∆  is the density difference between the two liquids, g is gravitational acceleration, r is 
the size of the liquid droplet, κ  and 'κ are conductivity of liquid matrix and droplets 
respectively; η  and  are viscosities of the liquid matrix and droplets respectively. 'η dxdT  is 
the temperature gradient and dTdσ  is the variation of the interfacial energy between the two 
liquid phases with change in temperature. During intensive shearing, the melt temperature is 
extremely uniform throughout the entire volume of the liquid mixture. According to equation (2), 
Um = 0, therefore segregation of L ′′  droplets are negligible during solidification of intensively 
sheared melt. 
 
The initial size distribution of droplets is inhomogeneous in the melt conditioner. Refinement 
and dispersion of droplets occur at later stages when increased the time of shearing in Al-Sn-Cu 
alloy [9]. The observed decrease in droplet size with shear rate is related not only to the breakup 
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process but also to the shear-induced coalescence. The coalescence can be accelerated by the 
same factors that favor the drop breakup, i.e. high shear rate and reduced viscosity ratio. 
Therefore, the minimum droplet size under given shear mixing conditions is a dynamic balance 
between two opposite processes, droplet breakup and coalescence. 
 

Summary 
 
1. The MC-HPDC process produces a uniform dispersion of Sn and Pb droplets in Al alloy 
matrix. The size of the α-Al primary phase is approximately 50 µm and the average size of the 
Sn and Pb droplets increases with Sn and Pb concentration.  
 
2. The Sn and Pb metallic droplets can be broken up more easily in the viscous fluid under high 
shear rate conditions and can achieve more spherical shape in thick viscous turbulent flow. 
Increasing shear rate speed up the droplets breakup process and will also lead to the spherical 
and fine droplet formation.  
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