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Abstract 

The influence of the horizontal magnetic field has not been sufficiently studied in 

contrast to study activity on the influence of the vertical magnetic field by researchers. 

The reason was that the influence of horizontal magnetic field to change the wear mass 

loss of ferromagnetic materials is smaller compared to the vertical magnetic field. 

However, the influence of horizontal magnetic field on rolling contact changes 

the subsurface crack initiation point toward surface is postulated by a 

researcher. Therefore, it is significance finding out how the horizontal magnetic field 

influences the tribological characteristics. This thesis presents a study on the influence 

of the horizontal magnetic field on wear in sliding contacts contributes for 

ascertainment the effect and mechanism of horizontal magnetic field on tribological 

characteristics of sliding contacts, through the experimental approach.The static 

magnetic field with densities of 0 and 1.1 Tesla and different orientations was applied to 

different contact conditions, different surface modifications and two sliding frequencies, 

using a ball-on-plate contact configuration. In conclusion, the presence of magnetic 

field enhances the chemical adsorption between iron or oxide iron and oxygen, and 

causes the transition of adhesive wear to oxidative wear. Besides, the presence of 

magnetic field combined with low sliding frequency forms the bulging on the wear 

surface and weakens the prevailing wear mechanism due to the low frictional 

temperature. On the other hand, the presence of magnetic field combined with high 

sliding frequency induces the transition to the oxidative wear mechanism and reduces 

the wear. Also, distinctly different appearances of wear surface are created by different 

magnetic field orientations. In the lubricated sliding contact, the magnetic field causes 
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the reduction of wear and induction of oxide. It is postulated that the presence of 

magnetic field enhances the oxygen adsorption on the wear track by iron wear particles 

and hence varies the tribological behaviour. The influence of magnetic field on carbon 

steel coating consists in changes of oxide iron layer and steel layer, alterations of 

mechanical properties of the coating, and decrease in the mass loss and the surface 

roughness on the dry sliding contact. All these could be suggested the influence of 

adhesive strength of the interface between the base material and coating. 
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Chapter 1 Introduction 

1.1 General introduction 

Wear occurs when one surface moves over another. Wear is a common phenomenon 

which occurs due to rubbing of two surfaces and is causing decrease in the volume of 

the materials. The phenomena of wear are studied by Tribology which is one of the new 

sciences established in 1967 by a committee of the Organization for Economic 

Cooperation and Development (OECD). The studies of tribology include the technology 

and science which relate to a surface phenomenon or process of interaction by bodies in 

relative motion. It is well recognized that the results of tribological research have 

contributed to the improvement of performance of rotary and reciprocating motion 

machines and are important for the reduction of natural resources and energy savings.  

In the studies which took place half a century ago, a number of researchers noticed the 

influence of the magnetic field existing around a magnet and a coil on tribological 

behaviour. It has been confirmed that the mass loss by wear is affected by the existence 

of the magnetic field. (Muju and Radhakrishna 1986; Zaidi et al., 2001; Iida, 2007) 

These results also mean that the control of the tribological behaviour with magnetic 

fields is possible. In other words, it will be possible to reduce the wear loss and 

prolongs the service life of machines. Therefore, this study has potential application to 

improve wear residence of railway rails and railway wheels and to improve performance 

of bearings. However, the influence of horizontal magnetic field on tribological 

behaviour is not fully understood at present.  

This thesis presents results of a study on the influence of the horizontal magnetic field 

on the performance of sliding contacts. Few researchers have studied the influence of 
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this type of magnetic field on tribological behaviour. Three types of wear tests were 

carried out under the presence of horizontal magnetic field, for dry sliding contacts, 

lubricated sliding contacts and high frequency sliding contacts.  

1.2 Background 

The influence of the magnetic field on friction has been studied by a number of 

researchers using various experimental methods in order to clarify its effect on material 

properties and material behaviour. This section reports on the effect of the magnetic 

field described in published experimental research. 

 

1.2.1 Influence of magnetic field on material characteristics 

According to Chikazumi (1964), the magnetization is insensitive to the applied low 

stress in the demagnetised state where the ferromagnetic material is not magnetizing. 

Besides, the magnetic field influences the plasticity of a ferromagnetic material 

according to Muju and Ghosh (1977), refer to Figure 1.1. 
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Fig 1.1 Stress relaxations in mild steel by application of magnetism (Muju and Ghosh, 

1977) 
 

 

Fig 1.2 Micro hardness of sliding surface of XC48 disc in a copper pin on XC48 disc; P = 8 N; 
sliding time t = 60 min. (Mansori et al., 1996) 
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Also, it is confirmed by several researchers that the magnetic field changes the micro 

hardness and mechanical properties of a material. The micro hardness of the wear 

surface is an important factor for the tribological behaviour. Mansori et al. (1996) 

performed Vickers micro hardness measurements for the sliding surface of the 

ferromagnetic materials under the conditions of the magnetic field of H=4.5x104 A・m-1 

and no magnetic field. The results are shown in Figure 1.2, where it is seen that the 

presence of vertical magnetic field to sliding surface increased micro hardness. Not only 

Mansori but also Zaidi et al. (2001) reported that the vertical magnetic field to sliding 

surface increased micro hardness of sliding surface. 

. ()
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1.2.2 Comparison of Effects Created by Vertical Magnetic Field and 

Horizontal Magnetic Field  

A number of researchers have reported that vertical type of magnetic field reduces wear 

amount of ferromagnetic materials. For instance, Kanji and Pal et al. (1969) observed 

reduction of the mass loss of a tool. They studied the effect of external superimposed 

current while making a hole by a drill. Hiratsuka et al.（1986） presented the difference 

of the effects caused by two kinds of external magnetic field. The experiment was 

performed with a ferromagnetic pin sliding against a ferromagnetic disc at atmospheric 

environment. As shown in Figure 1.3 and 1.4, the wear mass loss increased when a 

horizontal magnetic field was applied. This is in contrast to the total wear for no 

magnetic field H0 and that for vertical magnetic field Hver. Besides, the reason for 

reduced mass loss when a vertical magnetic field Hver was applied is that in an early 

period of sliding wear behaviour changed from a severe wear to a mild wear. When a 

horizontal magnetic field Hhor was applied the severe wear continued. The same was 

found to be true for no magnetic field. The wear surfaces of the pin and the disc to 

which the horizontal magnetic field Hhor was applied, are shown it Figure 1.5 and it 

could be seen that the severe wear took place.  
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Fig 1.3 Comparison of specific wear with the effect of horizontal magnetic field and no 
magnetic field to sliding surface, Ferromagnetic materials of nickel in air was used in the wear 

test in air, P = 9.8N; D = 200 m 
 

 

Fig 1.4 Comparison of specific wear and friction coefficient, when vertical magnetic field Hver 
to sliding surface was applied and no magnetic field H0  
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Fig 1.5 Comparison of wear surface of the pin, disk and wear particles, with (a) no magnetic 
field H0, v=55.0 mm・s-1; P= 11.0 N, (b) horizontal magnetic field Hhor v=39.0 mm・s-1; P= 9.8 N, 
(c) vertical magnetic field Hver v=6.59 mm・s-1; P= 11.0 N and (d) vertical magnetic field Hver 

v=290 mm・s-1; P= 11.0 N in air. Materials are nickel. (Hiratsuka et al., 1986) 
 

 

1.2.3 Oxidization Activity by Magnetic Field   

Yamamoto and Gondo (1987) concluded that the surface activation energy was 

increased by magnetization. Contrary to their report, Muju and Radhakrishna (1980) 

stated the decrease of the wear activation energy with a magnetic field. Kumagai et al. 

(1993) reached the conclusion that a magnetic field reduced the wear activation energy. 
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In addition, they expressed the view that magnetization promoted generation of the 

minute particles and oxidization of the wear particles because the wear debris were 

attracted by magnetic force and were held in the contact area.   

 

1.2.4 Effect of Magnetic Field on Wear Mass Loss  

Iida (2007) investigated the effect of horizontal magnetic field on rolling contact of steel 

discs operating under several contact conditions using a two discs type machine. He 

clarified the mechanism of crack initiation and suggested a crack initiation model in a 

Hertzian contact with magnetic field. He also investigated magnetization of 

ferromagnetic material and its relation to energy status. He examined the relation 

between the debris thickness and the location of crack initiation due to rolling and 

arrived at the conclusion that there were certain relations between them.   

 

 

 

 
Fig 1.6 Differences in crack initiation location at undersurface with and without magnetic field 

(Iida 2007) 
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1.3 Aim and Objectives of the Thesis 

The aim of this thesis was to examine the effect of horizontal magnetic field on sliding 

contact wear and to clarify the mechanism of magnetic field action.  

Specific objectives of this research were to experimentally investigate the effect of 

horizontal magnetic field on sliding contact performance. In particular, the effect of the 

direction of magnetic field, its influence on lubricated contact, its consequences for two 

different magnetic coating materials and two sliding frequencies were examined. The 

experiments are carried out using a ball-on-plate sliding contact machine.  
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1.4 The Outline of the Thesis 

Chapter 1 Introduction  

Chapter 1 presents a brief introduction to the concepts of tribology, and the importance 

of the influence of magnetic field on tribological behaviour. It also discusses the 

relevant background of recent research pertinent to the influence of magnetic field. 

Additionally, this chapter summarizes the objectives and presents a brief overview of 

the thesis.  

Chapter 2 Mechanisms 

This chapter presents the mechanism of dry and lubricated sliding contact. Also, it 

explains fundamentals of the magnetism, the physics of magnetism and the origins of 

wear. 

Chapter 3 Methodology 

This chapter describes two apparatuses, materials, loading conditions, experimental 

procedure and test techniques. Firstly, it describes the main parts of friction machines A 

and B and samples used in experiments. Next, it describes the loading conditions under 

the influence of magnetic field, and results are shown. Then it describes initial influence 

of the static magnetic field estimated through FE analysis. Finally it gives details on 

experiment procedures and experiment techniques. 

Chapter 4 Experimental Results 

This chapter presents the experimental results obtained during sliding contact 

experiments in the presence and absence of the magnetic field. It is divided into the 

introduction and three main sections. Firstly, it presents the influences of magnetic field 

on dry sliding contact experiment. Also, it presents the influences of the orientation of 
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magnetic field. Moreover, it compares the influence of the magnetic field on two types 

of thermal spray coating. Secondly, it presents the effect of different magnetic field 

strengths on lubricated sliding contact. Finally, it presents the influences of magnetic 

field on high frequency sliding contacts formed by various materials.  

Chapter 5 Discussions 

This chapter discusses the complex questions of magnetic field effects on sliding 

contacts raised by experimental results, and it suggests the wear mechanism of sliding 

contacts in the presence of magnetic field. Firstly, it presents introduction of chapter 5 

and describes the whole effect of magnetic field on sliding contacts. Secondly, it 

compares the effect of magnetic field on sliding contact with that on rolling contact. 

Thirdly, it presents the effect of magnetic field on the carbon steel coating. Then, results 

of lubricated sliding contact experiments are outlined. Finally, it discusses the 

relationship between oxidative wear and the effect of magnetic field. 

Chapter 6 Conclusions and Future work 

Chapter 6 presents the conclusions of the thesis and recommendations for future work.  
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Chapter 2 Mechanisms 

2.1 Introduction 

Sliding contact usually results in damages of surface and subsurface regions of contact 

area and produces wear particles. Also, high frequency reciprocating motion induces 

chemical phenomena such as rusting of wear debris and surface interactions of 

ferro-material. Finally, lubrication of a sliding contact induces decrease of wear due to 

separation of interacting surfaces by a lubricating film.  

It is known that vertical magnetic field affects mechanical, physical and chemical 

properties of ferro-materials. Therefore, it is important to understand the fundamental 

knowledge relating to sliding contact and magnetic field action. This chapter presents 

the fundamental knowledge concerning the influence of magnetic field on sliding 

contact.  

 

2.2 Mechanism of dry sliding contact 

2.2.1 Contact stresses 

Interaction of surfaces is in the finite area and results in plastic or elastic deformations 

and a high contact pressure is produced because the contact region is small. Hence, it 

causes damage within the contact region in the form of crack initiation and propagation. 

The stress analysis of the concentrated contact can be carried out using Hertz theory 

(1881). The geometry used during testing consists of a contact between a sphere and a 

flat plate, as shown in Figure 2.1 (Stachowiak 2005). The contact area between two 

bodies is enveloped by a circle or an ellipse, and the formulae for the main contact 
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parameters of the sphere and the flat surface in contact, as shown in the figure, are 

summarized as follows: 
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where 

a ; the contact area dimensions as circle 
W ; the total load 
Pmax ; the maximum contact pressure 
Paverage ; the average contact pressure 
δ ; the maximum deflection at the centre of the contact 
τmax ; the maximum shear stress 
z ; the depth at which maximum Shear Stress Occurs 

E ′ ; the reduced Young’s modulus 
'R ; the reduced radius of curvature 
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 Fig 2.1 Hertzian pressure contact between a sphere and a plate surface 
 

Reduced Young’s modulus for contact between the sphere and the flat surface is 

expressed as: 
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where 

EA, EB; young’s moduli of the contacting body A and B  
BA νν , ; Poisson’s ratios of the contacting bodies A and B  

Since the radii of body A and body B applies so that Rax=Ray=RA and Rbx=Rby = ∞ , 

respectively, the reduced radii of curvature in x- and y- axis are given by: 
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where 

Ayx RRR ==  
Rx, Ry; reduced radii of curvature in x- and y-axis direction 
Rax, Ray; radius of the sphere and the flat surface 
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(a) Contact between a sphere and a flat plate surface (b) Hertzian pressure contact 
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According to Lawn (1998), subsurface stress contours can be depicted as in Figure 2.2 

for a contact of ceramic ball on a ceramic flat plate. It is assumed to be similar to 

subsurface stress contours at frictionless initial sliding contact.  

 

 
Fig 2.2 Subsurface stress contours for a ceramic ball on the ceramic plate is principal normal 

stress σ and principal shear stress τ (after Lawn 1998) 
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2.2.2 Sliding contact 

Basically the friction of material surface is 

produced by rubbing a loaded spherical slider 

over a flat of the material being tested in 

absence of magnetic field, and it generates a 

quasi-static stress field (see Figure 2.3). Hence, 

the tangential traction q(r), which is due to 

sliding parallel to the x-axis everywhere in the 

contact area, is expressed by Amontans’ law of friction as below;  

( ) arra
a
Prq <−= ,

2
3)( 2

122
3π

µ

                                         (2.9)
 

Where 

a; the size of the circular contact area  
P; the total normal load 
μ; the friction coefficient (μ≠0) 

 

 

Besides, the Hertz pressure that is exerted between two frictionless elastic bodies of 

revolution in contact, is given by Hertz theory as follows, 

( )
a
raPrP o

2
122

)( −
=

                                          (2.10)                                    
 

where 

P0; the maximum pressure is given by the Hertz theory 
 

Fig 2.3 Illustration of a circular sliding 
contact 

 

Sliding direction 
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Crack formation 

The tangential traction causes a shear stress exerted along the interface of body B, as 

shown in Figure 2.4. The action on subsurface stress field is related to crack formation 

and the subsequent surface failure. It is important that the effect of sliding on the 

subsurface stress distribution and crack initiation is considered. The frictional force 

causes a shear stress to be exerted along the plane of interface but it is rotated by an 

angle φ . The magnitude of the angle φ is given by the follows equation; 

 

( )kq /cos
2
1 1 µφ −=                                             (2.11) 

where 

μ; the friction coefficient 
q; the stress normal to the interface 
k; the shear yield stress of the material, (the maximum shear stress) 
 
 

 

Fig 2.4 Angle φ  of stress in a contact with sliding (Stachowiak 2005 p.291) σ1 and σ3: the 
principal stresses p: the hydrostatic pressure 
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2.3 Mechanism of lubricated sliding contact 

In lubricated sliding contact, it is interposed lubricating oil between two contacting 

bodies. Additionally, lubricating oil separates the opposing surface of a concentrated 

contact and prevents direct contact. However, under concentrated contact condition, 

high load is applied over an extremely small contacting area hence the elastic 

deformation cannot be ignored. (Dowson and Higginson 1977: Hamrock and Dowson 

1981: Gohar 1988) Therefore, it is necessary to calculate the film thickness, in order to 

find out the ratio of minimum film thickness to composite surface roughness. The end 

constriction to the EHL film is for a ‘point’ contact. The minimum film thickness in a 

point contact is found at both ends of the ‘horseshoe’ and at these locations the film 

thickness is only about 60% of its central value (see Figure 2.5). Figure 2.5 shows a 

case of two steel balls in contact to get an overview of the minimum film thickness, the 

central film thickness and the pressure distribution. Equations (2.11) and (2.12) are 

Elastohydrodynamic Film Thickness Formulae, provide the information about EHL 

(Stachowiak 2005 p.318). The formulae are substituted and the reduced Young’s 

modulus E’ is given by Equation (2.7). 
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where 

hc; the central film thickness 
h0; the minimum film thickness 
U; the entraining surface velocity, i.e., U= (UA+UB)/2, where the UA and UB refer to the 
velocities of bodies A, B 

0η ; the viscosity at atmospheric pressure of the lubricant 
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R’; the reduced radius of curvature 
α ; the pressure-viscosity coefficient 
W; the contact load 
K; the ellipticity parameter defined as k=a/b, where ‘a’ is the semi axis of the contact 
ellipse in the transverse direction and ‘b’ is the semi axis in the direction of motion 
 

 
Fig 2.5 Elastohydrodynamic pressure distribution and illustration of film thickness hc and h0 

(Stachowiak 2005 p.317) 
 

To evaluate effectiveness of EHL film thickens, parameter λ is used as shown in Figure 

2.6 (Tillian, 1967). The condition of two RMS surface roughnesses of bodies in contact 

affects the ratio of the minimum film thickness to the roughness of contacting surface, 

and is given by the following equation:  

( ) 5.022

0

BA

h

σσ
λ

+
=

                                            
(2.13) 

where  

σA, B; the root mean square roughness values of body A and B 

h0  ; the minimum film thickness 

λ  ; the parameter characterizing the ratio of minimum film thickness to the composite 

surface roughness 
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Fig 2.6 Relationship of Ratio of minimum film thickness and contact fatigue life (Tallian 1967) 
 
 
 

Ratio of minimm film thickness to composite surface roughness 
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2.4 Magnetism  

2.4.1 Magnetization 

When ferromagnetic material is in a magnetic field of strength H magnetic flux density 

B is given in the following expressions: 

B=I+μ0H 

where 

μ0; the permeability,  

I ; the intensity of magnetization, magnetic moment per the unit volume 

The magnetic moment is expressed as: 

 I＝κH 

κ is a substance-specific constant called the magnetic susceptibility. It classifies 

materials roughly into diamagnetic materials (κ: 10-6), paramagnetic substance (κ: 10-3

～ 10-5), and ferromagnetic materials (κ: 102 ～ 104). Paramagnetic material and 

ferromagnetic material are attracted in the magnetic field. The ferromagnetic materials 

which are α-Fe, Co and Ni, are characteristic of magnetic maintenance of the magnetism 

known as permanent magnet. The ferromagnetic materials placed in the influence of a 

magnetic field are magnetized, and the intensity of magnetized ferromagnetic materials 

I reach the saturation state by increasing applied magnetic field. In addition, when the 

ferromagnetic materials are heated above the Curie point temperature Tc, they lose 

properties of ferromagnetic substance and exhibit properties of paramagnetic 

substance.For example, the Tc of α-Fe is supposed 768 degrees (A2 transformation). 

The internal structure which is not magnetised, is composed of small magnets which 
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have differently-oriented spins to provide totally zero magnetic moment. The internal 

structure of the magnet is called a magnetic domain. And by the magnetic field, the 

spins are aligned parallel to a single directional vector along axis of magnetic poles. In 

addition, it is postulated that the magnetic moment approaches a saturation value. The 

magnetization is saturated in the domains and is determined saturation state by the 

temperature. The size of the magnetic domain is10-1～10-3 mm is nothing like the 

crystalline grain size, and the single crystal consists of many magnetic domains (see 

Figure 2.7). A domain wall which is the border of magnetic domains differs from a 

crystal grain boundary and has thickness of around 100 nm which a magnetization 

direction changes into continually. 

 

Fig 2.7 Spin rotation interaction in 180 degrees domain wall (Cullity 1972) 
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Fig 2.8 Domain wall displacement of Ferromagnetic material, Fe-Si crystal 

(a) <001>surface (b) <110> surface (Chikazumi, 1964) 
 

In the magnetic domain magnetised, the electron behaves as Bohr magneton by the 

magnetic moment to be caused by an electronic spin even if it is without magnetic field 

as shown in Figure 2.8. The magnetization direction of magnetic domains turns and 

rotates to the magnetic field direction so that the spontaneous magnetization direction is 

rotated to the direction of the external magnetic field. In the magnetic domain, domain 

wall displacement is generated with increase at a volume particularly, as shown in the 

middle illustrations. 

The spontaneous magnetization finally is closer to the direction of the external magnetic 

field and reaches the saturation as shown in the above illustrations. Then, the magnetic 

anisotropic exists at the ferromagnetic single crystal which has magnetic domain 

structure. In fact, the directions that are easily magnetised of by the crystal orientation 

are different. For instance, the axis of easy magnetization of Fe is in the order 

corresponding to <100>, <110> and <111>. However, the magnetization is inhibited by 
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the internal strain of materials and the existence of impurities.   

2.4.2 Hysteresis curve 

Ferromagnetic materials can magnetise and demagnetise, as distinguished from a 

permanent magnet as shown in Figure 2.9. Even if induced magnetic flux density B by 

magnetic field H removes magnetic field, residual magnetism Br is left. Coercive force 

Hc is removed if I adds it to the opposite direction and produce high magnetic flux 

density with the low value of the magnetic field as shown in Figure 2.9(a). Additionally, 

it can be demagnetised by low coercive force. B-H curve is indicated to illustrate 

decrease or increase in magnetic field, and energy equivalent to the loop area lose 

energy in the form of heat. Additionally, when the ferromagnetic materials magnetise, 

the external of the magnetic bodies slightly is deformed so that the lattice parameter 

spontaneously varies along the direction of internal magnetization. This is called 

magnetostriction. (Chikazumi, 1964) 
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Fig 2.9 Magnetic hysteresis loop 

(Electronics-tutorials.ws 2001, Groom 2000) 
 

 

(a) Ferromagnetic material 

(b) Permanent magnet 
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The cause is because a crystal in the internal structure of the magnetic domain is 

distorted to the magnetization direction. Thus, it is hard to be made magnetised and 

material’s hardness increases. By magnetostriction, it extends in the axial direction and 

contract at right angles to the axial direction when it is axially magnetised, or it expands 

and contracts in the opposite direction. The ferromagnetic materials are sensitive to 

stress, and permeability is different due to strength of the stress. The kinetic energy of 

domain wall moves the kinetic energy of dislocation, and dislocation motion produces 

the promoted phenomenon (Takahashi and Seiki 2007). The phenomenon is a dynamic 

interaction. The shear stress from the outside is added to dislocations which are pinned 

by obstacles. However, the phenomenon in Fe has negligible small effect because the 

magnetostriction constant is small. Furthermore, Craik and Wood (1970) state the 

characteristic of magnetization changes induced by stress in a constant applied field 

from the results caused by the stress. It is identified that discontinuous changes of 

domain structure occur by stress to the oriented materials and the isotropic 

polycrystalline materials. Therefore, it is important that the influence of magnetization 

under stress is considered.  

 

2.5 Fundamentals of Wear 

2.5.1 Fatigue wear and Surface Crack Initiation by Fatigue Wear 

The fatigue wear during high frequency sliding in a reciprocating sliding wear tests is 

characterized by occurrence of the minute defects (cracks and fissures) on a worn 

surface. An initiation and the propagation of a crack is illustrated diagrammatically in 

Figure 2.10. The initiation of a crack occurs toward downward at weak points of the 
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contact area. In addition, the primary crack propagates along a slip plane or dislocation 

cell boundaries. Then, the primary crack develops and connects with a subsurface crack; 

it is the secondary crack. Some of the developing cracks reach the surface and a wear 

particle is released (Buckley 1981). 

 

 
Fig 2.10 Crack initiation and propagation (Stachowiak 2005 p.597) 

 

2.5.2 Other fundamental types of wear 

Definition of wear can be as “the ultimate consequence of interaction between surfaces 

which is manifested in gradual removal of material”. Generally, four types of wear 

process can be distinguished (Mair, et al., 1996). However, this section deals with two 

types of wear only that is abrasive and adhesive wear processes as shown in Figure 

2.11. 
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A. Adhesive wear  

Adhesive wear is due to asperities contact which does not produce wear debris 

instantaneously. It undergoes the process of the mutual asperity deformation and the 

formation of adhesive bond. Finally, it moves to the brittle fracture stage or the ductile 

fracture stage during asperity separation. 

B. Abrasive wear 

Abrasive wear is caused by shear stress at the contact interface by harder asperities 

ploughing the surface of softer material. It is continued as the formation and 

delamination of the bulge and ends by the creation of wear debris.  

C. Oxidative wear  

The oxidative wear occurs for the metals which are in contact under a dry condition and 

the presence of the air. It has clear features that produce the smooth wear surface and 

small oxidized wear debris, afterwards it undergoes a process of change from a severe 

wear to a mild wear process. The occurrence of the oxidative wear is connected with a 

level of sliding speed and the perpendicular load. During oxidative wear of sliding 

contact at high frequency, a thin oxide film on the natively-oxidized steel plate is worn 

away or removed due to a fatigue process, before it can form thick oxide plateaus on the 

worn surface (see Figure 2.12 (a)). On the other hand, sliding contact at low frequency 

does not expose contact asperities on the worn surface to high flash temperature (Figure 

2.12 (b)). However, an oxide film is rapidly worn away during a severe wear process, 

and then on adhesive wear process occurs. Produced oxide debris migrates along 

surface and pile up at asperities. As a result, oxide plateaus are formed on the contact 

surface. The developed oxide plateaus are accompanied by a progressive reduction in 
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the friction coefficient. The top of oxide plateaus is smooth and consists of large and 

fine oxide particles. 

       

 
Fig 2.11 Fundamental mechanisms of wear related to the effect of magnetic field (A) 

adhesion: Adhesive wear (the brittle fracture during asperity separation), (B) Abrasion: 

Abrasive wear (Mair, et al., 1996) 
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Fig 2.12 Fatigue process of oxidative wear on sliding contact 
(Stachowiak 2005 p.584, 586) 
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2.6 Calcium carbonate characteristic in lubricant  

The calcium carbonate is added to lubricant oil as antioxidant, and is classified as the 

over-based dispersants. It is shown schematically in the accompanying Figure 2.13. The 

calcium carbonate consists of metal, sulphonate and carbonate complexes. The calcium 

sulphonate is formed on the outer surface of the calcium carbonate core. When it is in 

contact with dirt particles in acidic oxidation products, dirt particles are wrapped by the 

colloidal particles. The wrapped dirt particles have a negative charge and to repel other 

dirt particles. Furthermore, as for colloidal particle of the calcium carbonate, the acidic 

oil oxidation products are neutralized by Ca2+ and CaCO3 on the outer surface of the 

carbon carbonate core. In results, the fluidity of the oil is continued because of the 

wrapped dirt particles repel other dirt particles. Calcium carbonate is expressed as ion 

product: 

CaCO3 ⇌ Ca+2 +CO3
-2 

It ionizes in a positive ion and a negative ion, and it reaches the equilibrium. The 

positive ion binds together solvent to proton. And the negative ion is pulled up from the 

solvent. 
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Fig 2.13 Synthesis and function of sulphonate detergents (Stachowiak 2005 p. 95) 
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2.7 The feature of thermal spray coating 

Atmosphere plasma spraying is classified as a kind of thermal spraying techniques. It is 

a coating process in which melted powder material is sprayed onto a surface. The 

thermal spray coating has a lamellar microstructure consisting of splats. The molten 

metals may be oxidized on the top surface in flight and on the surface. Thus, the thermal 

spray coating has a sandwich structure of a thin oxidation layer and the splat. When the 

thermal spray coating is precipitated out of the molten materials, the process makes 

micro pores and may confine a gas to the pores. According to Edrisy et al. (2001), 

quoting the report by Hartfield-Wunsch et al., the thermal spray coating is prone to 

delamination from oxidation layer, which is thought to be a "weak point", in the sliding 

wear. They conclude that the low carbon steel coating main wear mechanism is the 

formation of Fe2O3. The magnetic effect on calcium carbonate precipitation is identified 

that it increases the precipitate formation and the total precipitate amount of resources 

(Madsen 2004: Fathi et al 2007). 
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Chapter 3 Methodology of Experiments 

3.1 Introduction 

The dry sliding contact experiment and the lubricated sliding contact experiment were 

carried out with ball-on-plate contact configuration. The ball-on-plate test apparatus is 

shown in Figure 3.1. Two permanent magnets were installed in the direction same as the 

ball sliding over the plate specimen. Besides, each part of the apparatus is shown 

schematically in the illustrations of Figure 3.2. The testing machine was used for the 

comparison of the effects created by the magnetic field for the different kinds of 

materials and coatings. In the high frequency sliding contact wear experiment, a smaller 

testing machine was used and is shown in Figure 3.3.  

In this section, the mechanical properties of the plates, balls and other vital 

characteristics for experiments are described. The flow of the magnetic field inside the 

test plate was analysed using Finite Element Analysis (FEA).  

Test procedure and test conditions are described in each section. The tests performed 

and presented in this thesis include hardness measurements, optical microscope 

observations, mass loss measurements, surface profile and roughness measurements, 

scanning electron microscope (SEM) observations, and X-ray diffraction (XRD) 

analyses.  
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Fig 3.1 Illustration of the dry sliding wear experiment apparatus 
 

 
Fig 3.2 Explanation of a friction machine A 

(a) Balance weight, (b) Fulcrum point, (c) Arm, (d)Point of application of force, ball, (e) Hook 
to hang dead weight, (f) Drive shaft,(g) Movable stage and frame of test piece,(h) Test piece of 

the plate type,(i) Rail,(j) Dead weight,(k) Motor 

Dead weight 

Arm 
Total weight 

Movable stage 

Rail 

Balance weight 

Permanent magnet Sliding direction 



Chapter 3 Methodology 
 

39 
 

Operation of the Wear Testing Machine 

With reference of Figure 3.2 the following is applicable: (a) balance weight is used to 

keep the arm horizontal, (b) fulcrum point of the loading arm (c), (f) drive shaft and (g) 

movable stage makes reciprocating motion. Amplitude can be adjusted by changing the 

position of the crank pin. The details of test samples and holder for permanent magnets 

are described in the next section. In Figure 3.3 timer (d) was connected to (c) operation 

control box, which was used to control start and stop of the wear test machine B. Test 

specimens and the permanent magnets were set up on (f) ball-on-plate sliding contact 

stage.  

 
Fig 3.3 Illustration of high frequency sliding contact testing apparatus 

(a) Recorder, (b) Oscilloscope, (c) Operation control box, Adjustment of frequency and the 
amplitude, (d) Timer, (f) Ball-on-plate sliding contact test apparatus which fixes permanent 

magnets and the plate specimen. Red arrow is dead weight. Blue arrows show sliding direction. 
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3.2 Test apparatus 

3.2.1 Ball-on-plate sliding contact wear test machine A 

Photograph of the ball-on-plate sliding contact test apparatus is show in the centre of 

Figure 3.1. As shown in Figure 3.4 (b), the ball holder consists of three parts and the 

bracket to which the permanent magnets are attached is shown in yellow. The three parts 

of the ball holder are a connector component, a fixation screw and a holder. The 

brackets and the connector component are fixed by two metal blocks that can be moved 

together by turning bolts as shown in Figure 3.4 (a). Two plates are fastened by screws 

to the movable stage in order to fix the test sample. The connector component consists 

of the shape of circular cylinder and the octagonal prism. The circular cylinder side 

fixes the welded fixed holder. On the other hand, the octagonal prism side has a hollow 

structure to insert the holder. The octagonal prism side has three screw holes to hold the 

holder by turning three hexagon socket set screws on three sides. A scale is marked to 

the side of the fixed holder, the connector component and the holder to be able to 

possess the fixed position.  

The installation angles of the magnets can be changed to 0, 45 and 90 degree relative to 

the sliding direction as shown in Figure 3.5. For instance, brackets are arranged on the 

both sides where red shown in Figure 3.5(a) was painted in to fix the installation angle 

of the magnets to 90 degrees. 0 degree conespaonds to a direction perpendicular to the 

sliding direction, 90 degree means the same direction as the sliding direction. And 45 

degree means 45 degree to the sliding direction. 
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Fig 3.4 Dimensions of ball-on-plate sliding contact test apparatus, the permanent magnets were 

set at 90 degrees to sliding direction 
 
 
 
 

(b) Outline view of ball-on-plate sliding contact test apparatus 
 

(a) Top view indicated by red arrows 
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Fig 3.5 Illustration of setting of magnets, the magnets can be set at three angles 
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3.2.2 Ball-on-plate wear test machine B 

A photograph of the apparatus is shown in Figure 3.6, Figure 3.7 presents schematic 

diagram of it. As illustrated in Figure 3.6, the permanent magnets and the plate 

specimen are installed on the stage and fixed to it. The specimen is installed with screws 

at the centre of the stage, and permanent magnets are fixed at both sides of the specimen 

on the stage. The permanent magnets are attached to the board of the paramagnetic 

material of 2 mm in thickness with four screws and a piece of wood on both sides. The 

reciprocating motion of the motor is transmitted to the ball through the arm. The ball 

and a weight are attached to the arm. To evaluate the direction of a magnetic field 

during the high frequency sliding contact experiment, the magnetic field direction was 

set by changing the installation angle of the stage to the sliding direction. The 

adjustment method of the angle of the magnetic field direction, it was rotated the 

ball-on-plate sliding contact stage 35 degrees to the sliding direction around on the 

centre of the contact area, and the ball-on-plate sliding contact stage was attached to the 

ball-on-plate sliding contact test apparatus with adhesive tape. 
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Fig 3.6 Overview of main part of the ball-on-plate sliding wear test machine 
 

 
Fig 3.7 Side view of the machine
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Test materials 
To study the influence of magnetic field on the wear process, a plate specimen and a 

ball specimen were used. The test specimen was an uncoated rectangular plate made of 

mild steel (BS4360 43B). Its cross-section hardness was about 277 HV. The plate had 

dimensions of 65 mm in length, 20mm in width and 4mm in thickness and there were 

two holes at both ends of the plate. The rectangular plate was used for dry and 

lubricated sliding wear experiment. In addition, the plate was coated by carbon steel and 

an austenite stainless steel (316S31) under atmosphere plasma spray (APS) conditions 

and was used for the comparison of the magnetic field effect on ferromagnetic material 

and paramagnetic material. Thickness of both coatings was 250 µm. The hardness of the 

carbon steel coating was about 221 HV. The austenite stainless steel coating hardness 

was about 403 HV.  

Test plate used for high frequency experiments had the dimension of 40 mm in length, 

25 mm in width and 2mm in thickness.  

The surface of all plate specimens were ground and polished with the abrasive paper of 

#300, #500, #1,200 and #2,400, respectively. The resulting roughness, Ra, of the surface 

was approximately 0.015 µm. Before the test, the specimen was cleaned with acetone. 

Mechanical properties of the rectangular plate are shown in Table 3.2.  

On the other hand, balls which were used for a counter material were made of silicon 

nitride (Si3N4) and ball bearing steel 100Cr6 (AISI53100) and they had diameter of 6.35 

mm. One type of Si3N4 balls was used for dry sliding wear experiment and high 

frequency sliding wear experiment and had gray colour. Its hardness was about 2019 HV. 

Another type of Si3N4 balls had black colour and its hardness was about 1404 HV. The 

black Si3N4 balls were used for lubricated sliding wear experiments and performance 

comparison of ferromagnetic coating with paramagnetic coating. The hardness of a 
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100Cr6 ball was about 700 HV. It was employed for the high frequency sliding 

experiments with a couple of ferromagnetic materials. Vickers hardness of the test 

materials is shown in Table 3.1.  

Test materials mechanical properties and their chemical composition are shown in 

Tables 3.2 and 3.3. Chemical composition and characteristics of materials used for 

thermal spray coatings are shown in Table 3.4. Plate specimen had two countersunk 

holes at both ends as shown in Figure 3.8. The plate specimen was fixed to the stage by 

two flat head screws.  

Lubricated sliding wear test it has less wear amount of the specimens than dry sliding 

wear test. In other word, it was expected that it is hard to evaluate the magnetic field 

influence due to the wear reduction. Thus, black colour Si3N4 balls were softer than gray 

colour Si3N4 ball were used in the lubricated sliding wear test to facilitate evaluating of 

the magnetic field influence. In addition, the black colour Si3N4 ball specimens were 

used in dry sliding wear test for coated plate specimen. 
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Table 3.1 Materials, sizes and micro hardness 

(1) d: diameter, l: length, w: width, t: thickness 
(2) Austenite stainless steel: This is 316S31 in British Standards Institution.  
(3) Si3N4 ball: Two types of balls were used for this study. A gray colour ball was used for 

dry sliding wear test, matched with uncoated plate black colour ball was used for other 
experiments. 

(4) Dry: dry sliding contact experiment 
(5) Lubrication: lubricated sliding wear experiment 
(6) High frequency: high frequency sliding wear experiment 

Test 
specimen Materials Sizes 

mm(1) 

Vickers 
Hardness 

Hv0.2 

Notes: 
name of 

experiment 

Plate 

Mild steel (0.2C) 
Ferro 

magnetic 

l = 65, 
w = 20, t = 4 277 Dry(4), 

lubrication(5) 
l = 40, 

w = 25, t = 2 277 High 
frequency(6) 

Iron coating t = 0.25 221 Dry 
Austenite stainless 

steel coating(2) t = 0.25 403 Dry 

Ball 

Ball bearing Steel 
100Cr6 

Ferro 
magnetic d = 6.35 700Hv0.5 High frequency 

Si3N4
(3) Para magnetic d = 6.35 2019(gray), 

1404(black) 

Dry, 
Lubrication, 

High frequency 
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Table 3.2 Properties of materials at ambient temperature 

Materials Young’s 
modulus (GPa) Poisson’s ratio Yield strength 

(MPa) 
Tensile strength 

(MPa) 

Mild steel(1) 206 0.3 265 
min 430-580 

low alloy carbon 
steel 210 0.3 - - 

Austenite 
stainless steel 211 0.29 - - 

Si3N4(2) 315 0.26 - 700 
Ball bearing 

Steel 100Cr6(2) 210 0.3 - 2500 

1) ( Iraj et al. 1996: Luxemotor “KEI” 2005) 

2) (VIKRAM: ASM International 1997) 

 
Table 3.3 Chemical Composition of test materials (VIKRAM ) 

Materials Chemical composition, % Type of 
Magnetism - C Si Mn P S Cr Mo 

Mild 
steel 

(0.2C) 
- 0.21 max 0.050 

max 1.50 max 0.050 
max 

0.050 
max - - Ferromagnetic 

Steel 
100Cr 

From 
– to 0.93-1.05 0.15-0.35 0.25-0.45 - 

0.025 
- 

0.015 1.35-1.60 - 
0.10 Ferromagnetic 

 

Table 3.4 Thermal spray materials 

Materials Manufacturer Product name Chemical 
composition Characteristic 

Carbon steel 
powder Sulzer Metco 

SULZER 4052 
Low Alloy Steel 

Powder 

Fe 96%  Cr 1.4%  
Mn 1.4%  C 1.2% 

Strongly 
magnetic 

Austenite 
stainless 

steel powder 
PRAXAIR FE-101 Fe Cal. Cr 17% Ni 

12% Mo 2.5% 
Weakly 

magnetic 
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t = 5 mm 
Fig 3.8 Shape and dimensions of plate specimen, Material is mild steel (0.2%C) 
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3.3 Lubricant 

In the lubricated sliding wear test, engine oil Castrol GTD Magnatec 10W-40, was used.  

The oil prevents rubbing by soot particles of the exhaust gas in a diesel engine. The 

typical characteristics of the oil are shown in Table 3.5. 

To obtain the central film thickness and the minimum film thickness of 

elastohydrodynamic pressure distribution, the viscosity measurement was carried out to 

determine the viscosity of the oil at room temperature (20 degree C).  

The procedure was as follows; firstly, the measuring cylinder is filled with the oil. 

Secondly, one steel ball is dropped in the measuring cylinder and the time taken for the 

ball to travel from the surface of the oil to the bottom of the cylinder is measured with a 

stopwatch. Finally, the average of 10 measurements is calculated.  

When the steel ball is falling in the oil, the ball reaches the bottom of a container the 

when the total of the buoyancy and the viscosity are equal to the gravity. In other words, 

viscosity was derived from the equations which are shown blow.  (SEED Foundation 

2008)  

gravityityvisbuoyancy FFF =+ cos                                  (3.1) 

gmFVrFgrF gtvb === ηπρπ 6
3
4 3

 

Substituting expressions of Fb, Fv and Fg to Formula (3.1) gives,
 

gmVrgr t =+ ηπρπ 6
3
4 3                                   (3.2) 

Therefore, 

tVr
grmg

π
ρπη

18
49 3−

=
                                        (3.3)
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where 

velocityThermaltV ;

 

;η Viscosity 

ballofWeightm
balltheofradiusr

fluidofDensity

;
;
;ρ

 

2/7.980; scmg  
 
It was found that, the steel ball dropped at thermal velocity 0.097 m/s over the 

measurement distance 150 mm. The viscosity of the oil was derived by Formula (3.3) 

and the value was 0.019 Pas. The typical characteristics of the lubricant are shown in 

Table 3.5 and the viscosity measurement result of the oil in Table 3.6. 

Table 3.5 Typical Characteristics of Castrol 10W-40 (OPIEoil.co.uk. 2006) 
Test Method(s) Unit Typical 

Density @ 15C, Relative ASTM D4052  0.875 

Appearance Visual  Clear & bright 
amber liquid 

Viscosity, Kinematic100C ASTM D445 mm²/s 14.5 
Viscosity, Kinematic40C ASTM D445 mm²/s 100 

Viscosity, CCS -25C 
(10W) ASTM D5293 cP 7000 max 

Flash Point, PMCC ASTM D93 °C 194 
Ash, Sulphated ASTM D874 % wt 1 

 

Table 3.6 Characteristic of lubricant at room temperature 

η , 
Viscosity 

(Pas)  

y , 
Distance of tall large 
measuring cylinder  

(m)  

taverage, 
Measured 
velocity 
average 

(s)  

tV  
Thermal 
velocity, 

(m/s) 

ρ , 
Fluid of 
density 
(kg/l)  

r , 
Sphere 

of radius 
(m)  

m , 
Weight of 

ball 
(kg)  

0.019 0.15 1.55 0.097 0.875 0.001 0.55×10-4 

 
 



Chapter 3 Methodology 
 

52 
 

3.5 Magnetic field 

The horizontal magnetic field was produced by two types of permanent magnets, shown 

in Figure 3.5 and 3.6. Magnets were located near both ends of the contact area and were 

kept in the constant position from the contact area. The permanent magnets were fixed 

to the ball holder in the sliding wear test machine A as shown in Figure 3.4. Therefore, 

the formula for the total contact load P is as follows: 

ml PPP +=
 

The contact load P is the total of the attractive force Pm due to the magnets and the 

normal load Pl produced by dead weight. The attractive force Pm acts at the interface 

between the frame and permanent magnet in the normal direction. 

The primary effect of the magnetic field analyzed by FEA will be described below. This 

preliminary investigation becomes the important element, in discussion of the effect of 

the magnetic field on the sliding wear. In the FEA, data used are shown in Figure 2.9, 

Table 3.7 and 3.8. Two dimensional models of the fixed form were designed. Analysis 

of test specimens and two permanent magnets was carried out by the FEA. The FEA 

results are shown in Figure 3.10. Figure 3.10(a), depicts contact configuration to be 

solved and Figure 3.10(b) shows the analysis of the magnetic force, Figure 3.10 (c) 

shows magnetic flux density, and the analysis of the coercive force is shown in Figure 

3.10 (d). 

Additional effect of magnetic field on the contact point is given in this section because 

it is useful in discussion of the influence of horizontal magnetic field on wear. The 

properties of permanent magnets and mild steel are shown in Table 3.7, Table 3.8 and 

Figure 2.9. 
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Table 3.7 Properties of permanent magnets  

Type of magnets Size(1) (mm) Br(2) (T) BHc(3) (kA/m) 

Rare earth magnet l = 40, w =20, t = 10 1.1 877.5 

Ferrite magnet l = 20, w = 20,t = 4 0.4 319.1 

(1)* d: diameter, l: length, w: width, t: thickness (2) Br: remanent flux density, T (3) BHc: 
Coercive force, A/m-1 
 

Table 3.8 Relative permeability parameter of materials and magnetism  
(Kraus, 1984) 

Substance 
μr, Relative 
Permeability 

 (kg·m·s-2·A-2) 
Magnetism 

Air 1.0000004 Paramagnetism 
Aluminum 1.00002 Paramagnetism 
Mild steel 2,000 Ferromagnetism 
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3.6 Finite Element analysis of ferromagnetic material 

Figure 3.10 shows two dimensional FEA results before wear test of uncoated plate 

specimen using the test machine A configuration. The two dimensional model is plane 

of section perpendicular to the sliding direction at contact area of the plate and the ball 

specimens. In particular, it focused on magnetic field potential at contact area of the ball 

and the plate specimens. The element models are air, an uncoated plate specimen, a ball 

specimen and two permanent magnets. Figure 3.10(a) shows zones of element models 

by using different colours. The arrows on Figure 3.10(b), (c) and (d) denote the 

direction of Magnetic force, Magnetic flux density or Coercive force. In addition, the 

colour of arrows The ball holder was made from aluminum which is the approximate 

value that was a relative permeability of air as shown in Table 3.8. Hence the ball holder 

is not incorporated in composition elements. In Figure 3.10(a), the coercive force from 

two permanent magnets is 877 and -877 kA/m. Magnetic force F did not reach the 

interface between the ball and the plate. The magnetic flux density B within the contact 

area was 0.92 T. In addition, the coercive force H was not found at the other side of the 

contact area. Analysis results are shown in Table 3.9.  

FEA results for a plate worn out 50 µm due to the sliding wear test in machine B are 

presented in Figure 3.10. They show that the magnetic force F between two specimens 

was 0.86 N. Figure 3.11 shows the result of FE analysis for Si3N4 ball and the mild steel 

plate. The flow of the magnetic flux was found to take place between the steel ball and 

the mild steel plates as shown in Figure 3.11(b). Both Figure 3.11(a) and 3.11(b), 

confirm that magnetic flux density is flowing from the plate to the steel ball. 

Furthermore, the magnetic flux density on the side of the contact area was higher than at 

the bottom of contact area before the ball and the plate. In comparison to the contact 
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between Si3N4 ball and mild steel plate, the magnetic flux density B for the contact of 

the steel ball and mild steel plate was a bit higher and equal to 0.24 T. 
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Fig 3.9 Finite element analyses (FEA) results of predefined at contact point in contour maps of 

magnetic field potential 

  
Fig 3.10 FE analysis result of magnetic force F (N) 
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Fig 3.11 Magnetic flux density B of two kinds of combination, they are a couple of Si3N4 ball 

and mild steel plate and a couple of steel ball and mild steel plate. 
 

Table 3.9 Magnetic field analysis results in the inferior region of the contact area under sliding 
wear test conditions which uses rare earth magnets 

Sliding wear test 
machine Combination of test specimen B (T) H (A/m) 

A Si3N4 ball vs. Mild steel plate 0.92 733.9 

B Si3N4 ball vs. Mild steel plate 0.20 159.5 
Steel ball vs. Mild steel plate 0.24 191.4 
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3.7 Loading under magnetic field 

3.7.1 Attractive force measurement 

A total load on the contact needs to be considered when the horizontal magnetic field 

and the dead load act simultaneously during sliding wear test in machine A. The 

magnetic field created by permanent magnets attracts the counter ferro-plates as 

described in the previous section. In order to calculate the Hertz contact stresses from 

the total load P, the attractive force between the permanent magnets and the counter 

ferro-plate has to be measured first. This section describes, therefore, the measurement 

of the attractive force. 

3.7.2 Procedure to measure attractive force 

To measure the attractive force, the sliding wear test machine A was used. The 

permanent magnets and additional dead weight were fixed to the ball holder. Then, the 

arm was kept horizontal with a balance weight. As shown in Figure 3.12, the attractive 

force is measured when the ball specimen is separated from the ferro plate by a load 

force F2. Hence,  

2
1

2
1 F

l
lF =

   
                                               (3.5.1) 

where  

F1; effect force, (attractive) 
F2; load, (force)  
l1; distance from load force F2 to fulcrum 
l2; distance from effect force F1 to fulcrum 
 

In case of rare earth magnets, the ball specimen was detached from ferro plate when the 
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load force F2, was equal to 40.9 N at the end of the arm at distance 215 mm from the 

fulcrum. The effect force F1 was located at 170 mm from the fulcrum and was found to 

be 51.7 N. The value is 51.7 N. By the same procedure, the ferrite magnets produced 

attractive force of 29.7 N.  Results are shown in Table 3.10.  

 

 

Fig 3.12 Measurement for attractive force 
 
 

F2: Load Fulcrum point 

l2=215 

F1: Effect force 
 

l1=170 

The hook which 
hangs weights 

Permanent magnet 

Ball specimen 

Ferro plate 

Balance weight 
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3.7.3 Total load on contact calculation 

The state of static equilibrium can be expressed as shown in Figure 3.13.  

13
1

3
4 FF

l
lF +=

                                     
(3.5.2) 

where  

 
F1; effect force and is the attractive force which calculated from Equation (3.5.1) 
F3; load force 
F4; total load on contact 
l1; distance from load force F3 to fulcrum 
l3; distance from total load F1 to fulcrum 
 
When the magnetic field of the rare earth magnets is applied, a dead weight load F3 of 

1.2 N is applied at the point of 340 mm from the fulcrum. The effect force at 170 mm 

from the fulcrum is calculated by Formula (3.5.1) and the value is 55.2 N. On the other 

hand, the total load on the contact with the ferrite magnets is calculated so that the total 

load is to be 55.2 N the same as for the rare earth magnets. The dead weight load is 

given to be 8.5 N by Formula (3.5.2). Then, for the case of no magnetic field the dead 

weight load is 18.3 N in order to obtain total load of 55.2 N. 
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Fig 3.13 Force moment during sliding wear test 

 
 
 

Table 3.10 Calculated total load and measurement results of magnetic field effect 

 
F1, 

Attractive force 
(N) 

F2, 
load 
(N) 

F3, 
Dead load 

(N) 

F4, 
Total load 

(N) 

Rare earth magnets 51.7 40.9 1.2 55.2 

Ferrite magnets 29.7 22.3 8.5 55.2 
No magnet - - 18.3 55.2 

 

3.7.4 Lubrication regime 

To estimate the thickness of the lubricating film, the film thickness between the contact 

surfaces and the lubrication regime were estimated using the classical 

elastohydrodynamic (EHD) formulae derived by Hamrock and Dowson (1981). The 

elastohydrodynamic film thickness was estimated by the substituting data parameters to 

EHD Formulae (2.11)-(2.12) (see Table 3.11). The central film thickness hc and the 

minimum film thickness h0 were 9.08x10–4 and 5.87x10–4 µm, respectively. The 

minimum film thickness hc of the two real RMS surface roughnesses was substituted by 

F3: Load 

F4: Total load  
l1=170 

l3=340 
Fulcrum point 

The hook which 
hangs weights 
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Formula (2.13), and the ratio of a minimum film thickness was 0.03. Hence, λ was less 

than 1 indicating plastic contact of the asperities. The calculation results and the RMS 

surface roughness of the two contacting bodies are shown in Table 3.12. 

Table 3.11 Elastohydrodynamic film thickness and the operating conditions
 

α 
(mm2/N) k ŋ0 

(Pas) 
U 

(mm/s) 
E’ 

(N/mm2) 
W 

(N) 
R 

(mm) 
hc  

(µm) 
h0  

(µm) 
0.18x10-3 1 0.0189 8.59 271.06x109 55.24 6.35 9.08x10–4 5.87x10–4 

 

Table 3.12 The calculated minimum film thickness and the ratio of minimum film 

Sample 
σA 

(mm) 
Si3N4 ball 

σ B 
(mm) 

mild steel plate 

h0 
(mm) λ 

Before test 0.30x10–5 1.90 x10–5 5.87x10–7 0.03 
 

3.7.5 Contact stresses 

The dry sliding wear experiment was conducted under the total load of 55.2 N created 

by the attractive force and the dead load. In the case of uncoated plate, the width of the 

contact area a and the maximum contact stress Pmax were calculated from Equations 

(2.1) - (2.2), and the values are 169 µm and 925.4 MPa, respectively. Besides, the 

calculation result for coated plate is different from the uncoated plate of calculation 

result. Therefore, two calculation results are shown in Table 3.13.  

 

Table 3.13 Calculated Hertz contact stresses and depth of shear stress 

 ａ 
(µm) 

Pmax 
(MPa) 

Paverage 
(MPa) 

δ 
(µm) 

τmax  
(MPa) 

z  
(µm) 

Uncoated 169 925.4 617 1.8 308.5 10.8 
Coated 167 925.4 617 1.8 308.5 10.6 
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3.7.6 High frequency sliding contact stresses 

The high frequency sliding wear experiment was conducted under a normal load 

produced by using dead weights, and was 3.5 N. In addition, the width of the contact 

area a and the maximum contact stress Pmax are calculated by Formula (2.1) - (2.2), and 

the values are 0.67 µm and 370 MPa, respectively. Furthermore, the depth z at which 

maximum shear stress τmax of 123.3 MPa occurs is 0.43 µm. Hertz contact stresses of 

sliding wear machine B, are not affected by the horizontal magnetic field. 

Maximum contact pressure for 100Cr6 ball and mild steel plate combination is 370 MPa 

as well as for Si3N4 ball and mild steel plate combination. Then, contact area dimension 

a maximum shear stress τmax, and the depth z were obtained from Formula 

(2.2)-(2.4)-(2.6). Finally, the dead weight is also obtained from Formula (2.2) and it is 5 

N. The results are shown in Table 3.14.  

Table 3.14 Calculated Hertz contact stresses and depth of shear stress 

Combination ａ 
(µm) 

Pmax, 
(MPa) 

Paverage 
(MPa) 

δ 
(µm) 

τmax, 
(MPa) 

Z 
(µm) 

W 
(N) 

Si3N4/ mild steel plate 0.67 370 246.7 0.29 x10–2 123.3 0.43 3.5 
100Cr6 ball/ mild steel plate 0.80 370 246.7 0.41 x10–2 123.3 0.51 5.0 
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3.8 Test procedure and test parameters 

In this study two types of testing machines A and B were used. This section outlines 

experimental procedure and conditions used.  

 

3.8.1 Friction machine A used in dry sliding wear testing and 

lubricated wear testing  

3.8.1.1 Test procedure 

I. The plate specimen and ball specimen were dried naturally after they were 

cleaned by acetone using an ultrasonic washing machine.  

II. Before starting wear testing, weight measurements, surface roughness 

measurements and optical micro scope observations of the surface were carried 

out. 

III. A plate specimen was fixed to the movable stage of ball-on-plate sliding wear 

test apparatus. The ball specimen was inserted to a ball holder. 

IV. Permanent magnets were attached to a bracket with adhesive tape and 

cellophane tape. The bracket was fastened to the ball holder with bolts. The 

bracket had a gap of 1 mm at the interface between the frame and permanent 

magnet.  

V. The arm of a wear testing machine was made horizontal with a spirit level. 

VI. In the case of lubricated wear test, an enclosure was made in order to prevent the 

leakage of lubricant from the contact area. The enclosure was made by 0.5 mm 
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thick plate and was 30 mm in length and 10 mm in width. It is shown in Figure 

3.14. The enclosure was filled with 0.2 ml of lubricant. 

 
Fig 3.14 View of the enclosure 

 
VII. Dead weight was applied as shown in Figure 3.2 and the preparation for testing 

was completed.   

At the beginning of sliding wear experiment, the ball specimen was contacted with the 

plate specimen. The wear machine A was running when the ball was contacting the plate 

specimen. The plate specimen on the movable stage executed reciprocating motion. 

 

3.8.1.2 Test parameters 

The total load applied to the specimens is the sum of the magnetic force and dead load 

because permanent magnets attract the plate specimen. Resulting contact stresses were 

925 MPa as shown in Table 3.14. The average sliding speed was 8.6 mm/s, and 

amplitude was 15mm; hence, corresponding frequency was 0.29 Hz. The total number 

of sliding stroke was approximately 213x103 strokes requiring 23 hours of testing. To 

examine the magnetic field effect on wear, the tests were stopped every 24x103 strokes 

and weight measurements, the surface roughness measurements and the optical 

microscope observations were carried out.    

 

Enclosure 
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3.8.2 Friction machine B used in frequency sliding wear tests 

3.8.2.1 Test procedure 

I. The procedure for high frequency sliding wear test was same similar to that for 
wear test in low frequency sliding wear test. 

II. A plate specimen was screwed on to the stage.  

III. The permanent magnets were fixed to the stage. The permanent magnets were 
on both sides of the plate specimen and at a right angle to sliding direction.  

IV. A ball specimen was inserted into the ball holder, and it was attached to the arm 
of wear test machine B.  

V. The dead weight was applied to the ball holder. 

VI. The preparations for the test were completed when the experimental parameters 
of time, frequency and amplitude were set up. 

The adjustment of magnetic field direction could be performed by changing the position 

of the stage. 

 

3.8.2.2 Test parameters 

The experiments were carried out at 5.0 N normal load using dead weights. According 

to Hertz’s theory, width of the contact area a  and the maximum contact pressure 0p  

were 8.0x10-5 m and 370x106 N/mm2 respectively. The load on contact was kept contact 

during the duration of the test. Three frequencies, namely 1.75 Hz (low), 14 Hz 

(intermediate) and 21 Hz (high) were used. The amplitude was set up to 1 mm. 

Inspection intervals were after 145 x103 strokes and the test finished after about 1,304 

x103 strokes. Two types of permanent magnet were used, namely a rare earth magnet 

and a ferrite magnet. 
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3.9 Experimental techniques 

Some additional post-test investigations experiments were carried out to evaluate the 

effect of magnetic field. They incloded hardness measurements, observations of the 

appearance on surface of test specimen, scanning electron microscope (SEM) 

observations and X-ray Diffraction (XRD) analyses. The distribution of wear debris on 

the plate specimen was investigated in order to find out the influence of magnetic field 

direction. SEM observations and SEM analyses were performed on wear particles. 

Moreover, the XRD analysis was attempted. The plate specimen was removed from the 

apparatus and washed using an ultrasonic cleaning device. Then weight measurement, 

optical micro scope observation, surface roughness measurement and surface profile 

measurement were carried out. The observation and measurements were carried out at 

the locations shown in Figure 3.15. Then, the specimen was cut and embedded in a resin 

and the cross section of the specimen was polished. The cross-section of the wear track 

was provided for an optic microscope observation and SEM observation. The wear track 

on the plate specimen which was tested in the high frequency sliding wear testing 

machine, was observed by an SEM.  
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Fig 3.15 Illustration of measurement points 

 

3.9.1 Hardness measurements 

The hardness of the test specimens were measured with Vickers micro hardness tester, 

because hardness is an important characteristic of tribological behaviour. Thereupon, the 

hardness was employed to confirm the influence of the horizontal magnetic field to the 

mechanical property of materials. The plate specimen 5 mm in length and 20 mm in 

width and thickness of 5 mm was cut and embedded in a resin. The cross section was 

polished to make it ready for micro hardness measurements. In case of a plate specimen 

under magnetic field, the plate specimen was positioned halfway of the gap between 

two permanent magnets. Two permanent magnets were apart 34.2 mm. The results of 

micro hardness measurements were averaged and the maximum and minimum values 

were ignored. The arrangements are shows in Figure 3.16.  

 
 
 
 
 

Wear track 

Observation and measuring positions 
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Attractive force is working on between permanent magnets. 
Fig 3.16 Illustration of Vickers micro hardness measurement 

 

3.9.2 Appearance of test specimen after testing 

The optical microscope observations were carried out using OLYMPUS microscope, 

which magnification range is between 20 and 1000 times.  

The surface profile and the surface roughness measurements were performed using 

Talysurf 2D surface profiler. The liner surface profiles can be measured by the Talysurf 

in which the stylus profilometer with a 2 mm/60 degree diamond tip is contacting the 

surface.  

3.9.3 Scanning Electron Microscope (SEM) Observations 

The distribution of wear debris around wear track was observed and some of them were 

collected for further analyses. Wear particles were examined by Back Scatter Electrons 

and Secondary Electrons techniques to examine their size and shape. 

The search for subsurface cracks within the wear track was carried out using SEM on 

cross section of the contact area. Plates were cut through perpendicular to the sliding 

direction, polished and embedded in the resin for measurement and observations. ZEISS 

SUPRA 35VP type SEM and Joel 840 SEM were used. 

 



Chapter 3 Methodology 
 

70 
 

3.9.4 X-ray Diffraction (XRD) Analysis 

The wear debris and the wear surface were analysed by an X-ray diffraction machine 

(Bruker D8 Advance X-ray Diffractometer with Bragg-Brentano geometry). The 

instrument is used to study the crystalline structure of a wide range of materials.  
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Chapter 4 Experimental Results 

4.1 Introduction 

This chapter presents experimental results obtained from three types of sliding contact test. 

The results include: 

 

 Mass loss of a plate specimen and a ball specimen 

The mass loss of specimens is expressed by a total of the accumulation. 

 Surface roughness Ra of the wore surface on plate specimen 

 Appearance of wear surface and debris observation 

 

Furthermore, SEM, XRD, FEA analyses and Vickers micro hardness measurements provides 

supplementary information for interpretation of experimental results. Table 4.1 summarizes 

parameters for magnets arrangements which based on magnetic flux density of magnets and 

the magnetic field orientation. For instance, when magnets of magnetic flux density 1.1 T 

were arranged to magnetic field orientation 90 degrees, the experimental arrangement for 

magnets is designated as 1.1T90. 

 
Table 4.1 Experimental arrangements for magnets  

Magnetic flux 
density 

(T) 

Magnetic field orientation 

θ=0º θ =35 º θ =45 º θ =90 º 

0 0T0 - - - 

0.4 0.4T0 0.4T35 0.4T45 0.4T90 
1.1 1.1T0 1.1T35 1.1T45 1.1T90 
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First, the influence of the magnetic field during dry sliding wear testing with low frequency is 

described. Then, the next section presents the effect of magnetic field observed during 

lubricated wear experiment. The final section deals with the magnetic field effect on the high 

frequency sliding wear test.  
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4.2 Dry sliding wear experiment 

4.2.1 Different Magnetic Field Orientation  

Figure 4.2.1 illustrates accumulated mass loss of uncoated plate specimen versus the number 

of sliding strokes under different magnetic fields. The accumulated mass loss was in 

proportion to the number of sliding strokes, and the tendency was a gradual rise. 

Unexpectedly, the mass loss at 0T0 was 1.19 mg after the first interval of sliding strokes and, 

raised about 0.1 mg in comparison with the mass loss under the influence of the magnetic 

field. In addition, the mass loss at 0T0 tended a plateau from 48x103 to 72x103 strokes. From 

96x103 strokes, it tended a steady increase to 192x103 strokes for the accumulated mass loss. 

However, the mass loss at 0T0 after 48x103 strokes was less than after 72x103 strokes as 

indicated by a red arrow in the figure. Hence it is estimated that the accumulated mass loss is 

an error in the measurement. On the other hand, the mass loss at 1.1T90 obviously increased 

more than other at directions of the magnetic field from 120x103 strokes. When the mass loss 

of the plate specimen was over 2.0 mg from 120x103 to 144x103 strokes, the highest mass loss 

of other magnetic field direction, 1.1T0 and 1.1T45 was about 1.6 mg. Thus, it is concluded 

that the magnetic field direction of 1.1T90 increases the wear amount of the plate. 

Figure 4.2.2 presents the accumulated mass loss of the ball specimen. For all test conditions 

there was a steady increase until 216x103 strokes. The mass loss shown in Figure 4.2.1 

indicates that the accumulated mass loss at 1.1T90 was higher than for the other test 

conditions from 72x103 strokes. Also the tendency at 1.1T45 was second highest for every test 

conditions used.  

Surface roughness Ra of the wear track on uncoated plate specimen for different angles of 

magnetic field direction is presented in Figure 4.2.3. As indicated in the figure, the Ra at the 
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absence of magnetic field fluctuated within a range from approximately 0.5 to 0.8 μm. 

Whereas, the presence of magnetic field resulted in wider fluctuations of Ra values compared 

with the absence of magnetic field, and the fluctuation range was approximately 0.5 to 1.8 μm. 

In particular, the fluctuation range of Ra values at 90 degree orientation of magnetic field was 

largest (see Fig 4.2.1). 
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Fig 4.2.1 Accumulated mass loss of uncoated mild steel plate at three types of angle  

(Dry sliding contact wear test) 

 
Fig 4.2.2 Accumulated mass loss of Si3N4 ball at three types of angle  

(Dry sliding contact wear test)  

  
Fig 4.2.3 Surface roughness of uncoated plate in different angle of magnetic field direction 
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Topography on the surface of a plate and a ball specimen 

Figure 4.2.4 shows the two-dimensional surface profiling for the outline of wear track on the 

plate specimen which was produced by the surface profile measurement. Optical microscope 

images depict wear tracks on the ball and plate specimens for created after 48x103 and 

192x103. Table 4.2.1 shows the supplementary information concerning the width and the 

depth of the wear tracks. 

• Surface profile of plate specimen 

The wear surface created under the influence of the horizontal magnetic field has a jagged 

profile. In addition, deep grooves or pits were observed. Similar to results by Hirazuka et al. 

(1986), the wear surface presented an aspect of the severe wear. The grooves or the pits 

became clearly deep after 192x103 strokes. The multiple grooves observed in Figure 4.2.4 

(a-2) and (d-2) were deeper than 52 µm. In the wear surface shown in Figure 4.2.4 (b-2), such 

deep grooves were not observed. 

• Wear surface on a ball specimen 

Comparing wear surface of the ball after 192x103 strokes with that after 48x103 strokes using 

the width measured by a surface profile, it can be seen that significant increase of the width 

took plate. 

• Wear surface on a plate specimen 

In the wear track on the plate, fine scratches were observed and they were similar to the wear 

surface on the ball aligned in the sliding direction. After 192x103 strokes, there was a 

delamination area which produced flakes in all images except Figure 4.2.4 (c -2). 

 Summary 

The tendency of the accumulated mass loss of the plate rose step-by-step. It was slightly 
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decreased after 48x103 strokes because of the presence of magnetic field. In addition, the 

accumulated mass loss became stable between 96x103 and 144x103 strokes. Magnetic field 

direction resulting in the highest mass loss was 1.1T90 (θ =90°). Magnetic field direction 0T0 

(θ =0°) produced the lowest mass loss. The mass loss was comparable to that of no magnetic 

field conditions. 

The accumulated mass loss of the ball was stable unlike the accumulated mass loss of the 

plate which was gradually rising. In addition, the relationship between the surface roughness 

Ra and the mass loss probably affected the increase and decrease of the quantity of wear. The 

2-D surface profiles of the wear surface produced without magnetic field and 1.1T90 show 

deep grooves. It was not observed in 1.1T0 and 1.1T45. 
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Fig 4.2.4 Surface profiling and surface observation of plate and ball specimen (50 x magnifications) 
note: The w is the width. The d1 is the depth of wear track. And the d2 is the depth of wear track 

however it is including the depth of pits. 
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Table 4.2.1 Size of wear track is indicated in Figure 4.2.3 

 Size, μm   Size, μm 

(a-1) w=2360,  d1=8.0,   d2=13.5  (a-2) w=3900, d1=15.0, d2=52.0 

(b-1) w=2220,  d1=7.0,   d2=9.5  (b-2) w=4100, d1=15.0, d2=33.0 

(c-1) w=2500,  d1=7.0,   d2=11.5  (c-2) w=3770, d1=13.0, d2=25.5 

(d-1) w=2950,  d1=10.0,  d2=12.5  (d-2) w=4200, d1=24.0, d2=81.0 
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Observation of wear track appearance 

The wear track on the plate was examined by an optical microscope (200 and 500 

magnifications), 2-D surface profiling, and the SEM image of the track cross section. 

Additionally, the influence of no magnetic field and the presence of magnetic field with 

different directions were compared. Figure 4.2.5 shows the optical micrographs of the wear 

surface which were taken after 48x103 and 216x103 strokes. There are mainly fine scratches 

on all wear surfaces.  

A coarse surface appeared in the wear area produced after 48x103 strokes without the 

magnetic field, as indicated in Figure 4.2.5 (a-1). On the other hand, initial cracks, occasional 

pits, flaking and spalling were observed on wear surfaces produced after 48x103 strokes with 

the magnetic field. An initial crack can be seen in Figure 4.2.5 (b-1) and (c-1), and the 

delamination area in the form of spalling and flaking is visible in Figure 4.2.5 (d-1). After 

216x103 strokes, delamination area was spread, and became very clear. 
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Fig 4.2.5 Surface observation of uncoated plate at 48x103 and 216x103 strokes  (Optical Micrographs 

were taken at 200 times magnification, →: flaking, →: pitting, →: spalling, →: coarsing surface, 
→:spalling, →:crack) 
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Fig 4.2.6 Comparison of 2-D surface profiling of uncoated plate specimen after 24x103 strokes 
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(a) 0T0 

 
(b) 1.1T90 

Fig 4.2.7 Relationship of number of sliding strokes and surface profiling 
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Figure 4.2.6 compares 2-D surface profiles of the wear track for 0T0, 1.1T0, 1.1T45 and 

1.1T90 generated after 24x103 strokes. The differences can be summarized as follows; 

 

• Only as for wear track which was produced under the presence of magnetic field, the 

bulging was observed on both sides of wear track. For 1.1T0 it was about 3 µm in 

height, and for 1.1T45 it was larger than for any other magnetic field direction and 

equal to about 6 µm. 

• Surface profile for 0T0 was deeper than that for 1.1T0 and 1.1T45. Furthermore, in the 

surface profile for 1.1T45, the bulging area was large in comparison to the area of the 

wear grove. 

 

Figure 4.2.7 (a) and (b) show changes of the surface profile of the plate specimen with the 

number of sliding strokes. The surface profile of 1.1T90 after 96x103 strokes shows that the 

bulging was rubbed off the surface. 

Characteristic features of a delamination area beneath the interface are revealed by SEM 

observations of the cross section of the wear track. Figure 4.2.8 shows SEM-images of the 

cross section of wear track after 216x103 strokes. The left figure is a bottom area of wear 

track and the light figure is a side area of wear track. The characteristic features are as 

follows: 

 

• Multiple cracks of curved shape in the bottom of the delamination area are observed in 

Figure 4.2.8 (a-2) and (c-2).  

• Small cracks originating at the bottom of the delamination area are observed in Figure 

4.2.8 (b-1), (c-1) and (d-1). 
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• Surface asperities can be seen the surface of the bottom in Figure 4.2.8 (a-1), (b-1), 

(b-2) and (d-1). 

• Smooth surface can be seen in Figure 4.2.8 (d-2).  

• Visible fine crack is of horizontal direction. It is about 6 µm below the outer layer in 

Figure 4.2.8 (b-2) and in Figure 4.2.8 (c-2) it is about 2 µm below. 
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Fig 4.2.8 SEM images of cross section of wear track supplied after 216x103 strokes with and without 
the magnetic field, left side of SEM images are the bottom of the wear track, and right side of SEM 

images are the side of the wear track. 
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4.2.1.1 Wear debris behaviour 

Assessment of the magnetic field effect is based on arrangement of debris and observations of 

debris location just after a sliding wear test. Arranged wear debris around wear track are 

shown in Figure 4.2.9. Moreover, the right side drawings of Figure 4.2.9 illustrate the sliding 

direction and a magnetic field direction in a schematic way for each test conditions. In 

addition, Table 4.2.2 summarizes the arrangements of the wear debris.  

Aligned wear debris at 1.1T0 differ from that for 0T0. In addition, a few wear debris at 

1.1T90 accumulated on the surface of the plate specimen. Therefore it appears that the wear 

debris was removed from the wear track by the external of magnetic field.  
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Fig 4.2.9 Location of wear debris around wear track after 24x103 strokes 

 

Table 4.2.2 Properties of debris location 

 Both end of a wear track Alongside a wear track 
0T Wear debris spread like a fan. It accumulated alongside the wear track. 

1.1T0 It accumulated beside of end of wear track. It was spread out to vertical direction. 
1.1T45 One side Debris was scattered at random. 
1.1T90 The white wear debris dotted The white wear debris was dotted 
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Elemental composition of a small area on the wear debris is shown in Figure 4.2.10. The 

presence of the Ferro system debris revealed by backscatter electron image and secondary 

electron image ought to be noticed.  

White particles and gray particles were observed in the backscatter image as shown in Figure 

4.2.10 (a-1). The white particle contains mainly iron. Other particles contain silicon and 

oxygen. Figure 4.2.10 (a) shows ferro particle about 6 µm in diameter. The shape is close to a 

sphere. Besides same of Si-system particles were also observed around the ferro particles. On 

the other hand, the wear particle at 1.1T0 is an agglomerated particle including iron, oxygen 

and silicon as shown Figure 4.2.10 (b-1) and (b-3). Wear particle at 1.1T90 consists of long 

particles which as shown in Figure 4.2.10 (c-1). The magnetism of the large ferro particle was 

attracting the long wear ferro particle. The wear debris was not of a flat shape.  
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(a) 0T0 was collected after 48x103 strokes, 10,000 x magnifications 

 

 
(b) 1.1T0 wa collected after 24x103 strokes, 800 x magnifications 
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 (c) 1.1T90 was collected after 48x103 strokes, 680x magnifications 

Fig 4.2.10 SEM analysis results for wear debris were supplied at 0T0, 1.1T0 and 1.1T90. 
 

XRD analysis results of wear debris 

Figure 4.2.11 shows XRD analysis results of the surface of the plate specimen. The XRD 

analysis revealed that the surface of the uncoated plate specimen contains iron (α -Fe).  

XRD analysis also showed that the wear debris at 0T0 consist of iron (α -Fe), Wüstite (FeO) 

and silicon dioxide (SiO2). In contrast, the wear debris at 1.1T90 consisted of Hematite 

(Fe2O3), including iron (α -Fe), Wüstite (FeO) and silicon dioxide (SiO2). It is shown in 

Figure 4.2.12.  
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Fig 4.2.11 XRD analysis on the surface of the mild steel plate 

 

 
Fig 4.2.12 XRD analysis results of applied the wear debris at 0T0 and 1.1T90 after 24x103 strokes 
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4.2.1.2 Influence of magnetic field on mild steel structure 

Figure 4.2.14 shows micro Vickers hardness values of a mild steel plate at three conditions. 

The conditions are as follows: 

 

 The mild steel plate before it was magnetised.  

 The mild steel plate which was exposed to the horizontal magnetic field or the vertical 

magnetic field. 

 The mild steel plate that was removed from a magnetic field. 

 

Magnetic field condition for hardness measurements were similar to that for the sliding wear 

testing in horizontal magnetic field (see Figure 4.2.13). 

At interval from 0 to 1 hour, the micro hardness in the horizontal magnetic field was a slightly 

increasing; reaching 308 Hv. After that, the micro hardness decreased to 302 Hv that is its 

value was same as the mild steel plate before it was magnetized. Furthermore, after the 

magnetic field was removed, the micro hardness value decreased to 290 Hv temporarily in 

one hour. Hence, horizontal magnetic field does not change mechanical properties 

significantly.  

The micro hardness of the mild steel plate in vertical magnetic field decreased to about 260 

Hv in two hours, and fluctuated in the range of 260 to 270 Hv under the influence of a vertical 

magnetic field. Thus, it decreased 14% in comparison with the mild steel which was not 

magnetised.  
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Fig 4.2.13 The flow of magnetic field act to a mild steel plate in the resin, the magnetic pole of 

permanent magnet is an S pole in the white side and an N pole in a red side. 
 

 
Fig 4.2.14 Change of the mechanical characteristic of the mild steel under a magnetic field, it was 

performed to evaluate the change of the mechanical characteristic with micro Vickers hardness 
measurement 
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4.2.2 Influence of the magnetic field on thermal spray coatings  

The influence of horizontal magnetic field on the carbon steel coating and the austenite 

stainless steel coating was assessed by the mass loss of the test specimens, its surface 

roughness, and the surface observations. The influence of the magnetic field was set to 0 

degree relative to the sliding direction during dry sliding wear testing with low frequency is 

described. This section is divided into four parts. Firstly, it presents the influence of magnetic 

field on the carbon steel coating which is ferromagnetic material. Next, it presents the 

influence of magnetic field on the austenite stainless steel coating which is paramagnetic 

material. Then, it compares influence of the magnetic field on two thermal spray coatings. It 

was found that the influence of horizontal magnetic field for ferromagnetic coating results in a 

remarkable change of mechanical properties.  The final part highlights the properties of the 

wear debris of the carbon steel coating by using the SEM observation and the XRD analysis.   
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4.2.2.1 Carbon steel coating vs. Si3N4 ball 

Accumulated mass loss of a carbon steel coating plate during dry sliding wear testing with 

and without magnetic field is shown in Figure 4.2.15.The accumulated mass loss at 1.1T0 was 

2.2 mg at 24x103 strokes and was about 6.6 mg lower compared to the mass loss at 0T0. 

Furthermore, the difference of accumulated mass loss between the amount 0T0 in 216x103 

strokes and the amount at 1.1T0 increased more and more and reached 16.1 mg. The amount 

of mass loss at 1.1T0 was slightly up but was 50% lower than that for 0T0.  

Accumulated mass loss of ball specimens was steady increased for both 0T0 and 1.1T0 as 

indicated in Figure 4.2.16. In addition, the mass loss for both 0T0 and 1.1T0 was changed an 

approximate value to the number of sliding strokes. 

Hence, the influence of magnetic field to mass loss of specimens features as follow: magnetic 

field has no influence of mass loss for Si3N4 ball specimen however it reduces the mass loss 

of the carbon steel coating plate.  

Figure 4.2.17 shows surface roughness Ra of the wear track produced on the plate during 

sliding wear testing. Surface roughness Ra at 0T0 increased from about 0.7 to about 1.3 µm. 

However, surface roughness Ra at 1.1T0 slightly decreased from 1.2 to about 0.8 µm. Hence, 

it can be say that the influence of magnetic field increases slowly Ra value of wear track on 

carbon steel coating plate to the number of sliding strokes. However, in the first inter 
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Fig 4.2.15 Accumulated mass loss of carbon steel coating  

 
Fig 4.2.16 Accumulated mass loss of Si3N4 ball  

 
Fig 4.2.17 Surface roughness on the wear surface of the carbon steel coating  
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Mass loss and surface roughness respectively showed stable tendency. The surface 

observations are shown in Figure 4.2.18.  

The width on the wear track in 1.1T0 was 2.60 mm and was more than 0.25 mm narrower for 

0T0 after 24x103 strokes decreasing further to 0.05 mm after 168x103 strokes. Hence, it can be 

said that the horizontal magnetic field prevents growth of the width of the wear track. 

Furthermore, in Figure 4.2.18(B-1), the depth from the surface at 1.1T0 was 16.5 mm after 

24x103 strokes and was lower than 50% in comparison to 0T0.  

Surface observations on the ball, revealed that there were mainly fine scratches. However, 

1.1T0 was observed to produce two delamination areas as spalling after the sliding direction 

in 168x103 strokes. 

Surface observations of the carbon steel coating showed that the wear surface had mainly fine 

scratches and delamination areas. Figure 4.2.19(b) shows some blurred scratches. 
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Fig 4.2.18 Appearance of the carbon steel coating optical microscope images of wear surface of a plate 

and a ball, a raw profile on the wore plate, 50 x magnifications 
→: delamination area, the yellow frame of a and b are displayed in Figure 4.2.19. 
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Fig. 4.2.19 Surface observation on the coated plate in 168x103 strokes, 200x magnifications  

(a) 0T0 
 

(b) 1.1T0 
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Wear debris behaviour and the influence on mechanical property 

Figure 4.2.20 illustrates the location and arrangement of wear debris after the sliding wear 

testing. At 24x103 strokes, wear debris were spread widely around wear track. Besides, the 

amount of brown wear debris was few, compared to 0T0 in Figure 4.2.20 (a-1). 

At 168x103 strokes, the difference between the 0T0 and 1.1T0 became clear. As at the end of 

sliding path, brown wear debris is not seen. Thus, it is suspected that the attractive force of the 

permanent magnets has an influence on the brown wear debris.  

Fig 4.2.21 illustrates micro hardness of the carbon steel coating with and without magnetic 

field. As for the micro-hardness of the carbon steel coating in the magnetic field, it decreased 

12% from 300 to 2 64 Hv in 30 minutes. Besides, after 4 hours, it has returned to original 

value which was about 300 Hv. Hence, under the influence of the magnetic field mechanical 

properties are affected only for a short time after magnetization. 
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Fig 4.2.20 Location of debris on steel coating, 6.4x magnifications 
 

 
Fig 4.2.21 Micro-Vickers hardness of the carbon steel coating of no magnetization and the carbon 

steel coating under the horizontal magnetic field 
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4.2.2.2 Austenite stainless steel coating vs. a Si3N4 ball 

Firstly, mass loss, surface roughness and surface observation of specimens are presented. 

Then, the wear debris behaviour and the influence on mechanical properties of austenite 

stainless steel coating are outlined. 

Figure 4.2.22 illustrates accumulated mass loss of austenite stainless steel coating plate 

specimen versus the number of sliding strokes under different magnetic fields. 

The accumulated mass loss at 0T0 was a gradual upward trend, while, for 1.1T0 it was in 

proportion to the number of sliding strokes and the tendency was a gradual rise. The mass loss 

at 1.1T0 was 1.0 mg from 96x103 to 144x103 strokes, and a difference between 0T0 and 

1.1T0 peaked at 144x103 strokes and it was 3.2 mg. 

Figure 4.2.23 illustrates accumulated mass loss of Si3N4 Ball specimen versus the number of 

sliding strokes under different fields. The Figure 4.2.23 shows a slight increase in the 

accumulated mass loss for both 0T0 and 1.1T0 in proportion to the number of sliding strokes.  

The mass loss for 1.1T0 was similar to the mass loss for 0T0 that was approximately 0.5 mg 

from 24x103 to 216x103 strokes. Therefore, it can be assumed that magnetic field does not 

influence the amount of the mass loss of specimens of austenite stainless steel coating and 

Si3N4 ball. 

The surface roughness of the austenite stainless steel coating at 0T0 ranged from about 6 to 

4.26 µm at 96x103 strokes as indicated in Figure 4.2.24. In other words, the influence of 

magnetic field seems that it produced multitudes of delaminated area of the shallow, small 

size on the wear surface of austenite stainless coated plate specimen. On the other hand, the 

surface roughness for 1.1T0 was slightly increased from about 0.2 to about 0.5 µm and 

equalled that for 0T0 after 144x103 strokes. Hence, it seems that magnetic field influences the 

value of the surface roughness of the wear track on the austenite stainless coating.  



Chapter 4 Experimental results 
 

109 

 

Fig 4.2.22 Accumulated mass loss of the austenite stainless steel coated plate  

 
Fig 4.2.23 Accumulated mass loss of Si3N4 ball  

 

 
Fig 4.2.24 Surface roughness of the austenite stainless steel coated plate specimen  
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As can be seen from raw profiles shown in Figure 4.2.25, size of the wear track at 1.1T0 was 

estimated about 20% larger in comparison with 0T0. The wear track surface at 1.1T0 has deep 

grooves and was about 5 mm in depth. In addition, some delamination areas were observed on 

the wear track. The surface of ball specimen at 1.1T0 consisted mainly of fine asperities and 

scratches.  

Figure 4.2.26 (a) shows some delamination areas on the wear track. In addition to these 

delamination areas, there are places looking similar to the unmelted particles observed in 

Figure 4.2.26 (b). It is assumed that these features resulted from coating process. Besides, 

additional delamination area was found around unmelted particles as shown in Figure 4.2.26 

(b).  

It is assumed that the unmelted particle is strongly magnetic material and the surrounding 

material may be sort of a permanent magnet.  
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Fig 4.2.25 Appearance of the austenite stainless steel coating, optical microscope images of wear 
surface of a plate and a ball, a raw profile on the wore plate, 50x magnifications 

→: delamination area, the yellow frame of a and b are displayed in Figure 4.2.26. 
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Fig 4.2.26 Surface observation on the coated plate in 168x103 strokes, 200x magnifications 
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Wear debris behaviour and the influence on mechanical properties 

Figure 4.2.28 illustrates the micro hardness of the austenite stainless steel coating without 

magnetic field and under the horizontal magnetic field. Hardness of the coating under 

magnetic field was very changeable. However, the average of micro hardness decreased about 

5% after two hours and started to increase a little bit from three hours onwards and became 

similar to that of the coating without magnetic field. 

Figure 4.2.29 shows results of XRD analysis. The spectrum consists of Fe3O4 and NiFe2O4 

and NiCrO3 other than Taenite (Fe, Ni). According to the Mineralogical Society of America 

(2001-2005): 

Taenite is γ-(Fe,Ni) with a cubic structure and has strongly magnetic properties.  

Fe3O4 is of orthorhombic structure and weak magnetic properties.  

NiFe2O4 has a cubic structure.  

NiCrO3 has a rhombohedra structure. 

In addition, it can be seen from Figure 4.2.27 (b-1), that wear debris were not attracted by the 

magnetic force. Hence, the austenite stainless steel thermal spray powder, which is the 

paramagnetic material, retained its magnetic properties even after it was coated by a thermal 

spray process. 
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Fig 4.2.27 Location of wear debris around wear track, the austenite stainless steel coating, 6.4 x 

magnifications 
 

 

Fig 4.2.28 Micro-Vickers hardness of the austenite stainless steel coating of no magnetization and the 
coating under the horizontal magnetic field 
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Fig 4.2.29 XRD pattern on the surface of the austenite stainless steel coating 
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4.2.2.3 Wear particle observations and analysis of carbon steel coating  

In the case of the austenite stainless steel coating in the magnetic field, it was found that the 

influence of the magnetic field was weak. On the other hand, the magnetic field influenced the 

carbon steel coating by significant decrease of the mass loss and a fall of the surface 

roughness.  

As shown in Figure 4.2.30 (a) and (b), which shows SEM images by backscatter electrons and 

secondary electron for wear particles, wear particles at 0T0 were flat and flake shaped. 

Besides the size of particles at the centre of SEM images were estimated to be as follows: 

Width 166.4 µm; length 158.7 µm in Figure 4.2.30 (a) 

Width 63.11 µm; length 69.21 µm in Figure 4.2.30 (b) 

On the other hands, as shown in Figure 4.2.30 (c) and (d), the particles were elongated 

spheroids or flats with gently rounded shape. The elongated wear particle is presumably an 

aggregate of fine particles. Besides the size of particles at the centre of SEM images were 

estimated to be as follows: 

Width 40.71 µm; length 26.9 µm in Figure 4.2.30 (c) 

Width 83.57 µm; length 39.45 µm in Figure 4.2.30 (d) 

When compared to the particle size generated at 0T0, the particles produced at 1.1T0 were 

relatively small. The particle size for each that condition used was calculated and shown in 

Figure 4.2.31. The numbers represents an average area of a typical wear particle. Particle size 

reached a peak value of about 25,000 μm2 for both 0T0 and 1.1T0 after 168x103 strokes. It 

can be said that the magnetic field retains wear particles within the contact area because the 

particles at 1.1T0 were of fine gentle round shape.  

Figure 4.2.32 shows the XRD pattern on the surface of the carbon steel coating. Besides, the 

XRD pattern of wear debris can be seen in Figure 4.2.32. (Mineralogical Society of America 
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2001-2005): 

The result clearly shows that Fe3O4 was not on the XRD spectrum for both 0T0 and 1.1T0 

(see Figure 4.2.33). However, in the magnetic field, XRD spectrum does not contain oxidized 

iron, hence; the dry sliding wear testing did not produce high temperatures required to short 

oxidization process. 
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Fig 4.2.30 SEM observation by secondary and backscattered electrons for wear particles 

 

 
Fig 4.2.31 Area size of wear particles 
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Fig 4.2.32 XRD pattern  on the surface of the carbon steel coating 

 

Fig 4.2.33 XRD pattern  of wear debris at 0T0 and 1.1T0 
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4.3 Lubricated sliding contact experiments 

4.3.1 The accumulated mass loss of the plate 

Figure 4.3.1 illustrates accumulated mass loss of the plate specimen versus the number of 

sliding strokes under different magnet flux densities. The accumulated mass loss is 

proportional to the number of sliding strokes. In addition, the accumulated mass loss at 0T0 

increases sharply from 8 to 184 mg approximately, while, the accumulated mass losses at both 

0.4T0 and 1.1T0 increase steadily approximately from 5 to 118 mg. In detailed comparison 

between 0.4T0 and 1.1T0, the mass loss of 1.1T0 weighs more than 0.4 mg. Thus, it is 

concluded that the presence of the magnetic fields decrease the wear amount of the plate. In 

addition, the difference of the range from 0.4T to 1.1T has insignificant influence on the 

amount wear of the plate. 

 

 

Fig.4.3.1 Accumulated mass loss of the plate in difference magnet flux densities 
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4.3.2 Surface roughness on the wear track of the plate 

Figure 4.3.2 illustrates the surface roughness of the wear track for different magnetic flux 

densities. The surface roughness at 0T0 changes sharply from 0.17 to 0.32 µm during 72x103 

strokes. In the case of 1.1T0, the surface roughness increases gradually and it is fluctuating 

between 0.25 to 0.41 µm during 192x103 strokes, while the surface roughness of 0.4T0 

fluctuates approximately between 0.25 to 0.32 µm during 72x103 strokes. After 96x103 

strokes, all Ra values range from 0.25 to 0.42 µm, and increase slightly until 168x103 strokes. 

Unexpectedly, surface roughness of 0T0 and 0.4T0 decreases after 216x103 strokes. On the 

other hand, the surface roughness at 1.1T0 considerably changed approximately from 0.19 to 

0.36 µm. Thus, it can be said that the range of the surface roughness change is narrowed in 

the presence of the magnetic field.  

 

 

Fig.4.3.2 The surface roughness on the plate in different magnet flux densities 
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4.3.3 Appearance of the wear track on the plate and ball 

Figure 4.3.3 shows the two-dimensional surface profiles and optical microscope images of 

wear tracks generated after 24x103 and 184x103 strokes. 

 Surface profile of plate specimens 

The wear surface generated under the influence of the horizontal magnetic field is a smooth 

arc like shape which is similar to the wear track produced in the absence of the magnetic field. 

However, the magnetic field produced the small jagged shape on the bottom area of the wear 

track after 24x103 strokes. It is shown in Figure 4.3.3 (b-1) and (c-1).  

The wear track of 0T0 was 1.81 mm in width and 62.0 µm in depth after 24x103 strokes and 

grew to 5.1 mm in width and 510 µm in depth after 184x103 strokes. While, in comparison 

both the depth and width of the wear track at 0.4T0 are almost same sizes as at 1.1T0 after 

24x103 and 184x103 strokes. The comparison of the width and the depth of the wear track at 

0.4T0 with 0T0 is as follows;  

o After 24x103 strokes; 92% in width and 85% in depth  

o After 184x103 strokes; 85% in width and 73% in depth 

Therefore, it is concluded that the influence of a weak magnetic field (0.4T0) is significant 

and the magnetic field slightly decreases the wear of the plate. 

 Wear surface of plate specimens 

Fine scratches can be observed on the wear surface of 1.1T0 sample after 184x103 strokes. 

The observation of the surface was carried out at 50 times magnification. Significant 

delamination is observed at the wear track of 1.1T0 sample and in some places spalling is also 

observed as shown in Figure 4.3.3(c-2). Figure 4.3.4 shows appearance of the wear track for 

0.4T0 sample. Long and narrow unidirectional delamination areas can be observed. In 

addition, the delamination region of 1.1T0 sample covers a wide area. Furthermore, from 
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Figure 4.3.4 that shows the surface observation of test specimens under high magnification, 

delamination area can be observed on the wear track in the presence of magnetic field. 

 Wear surface on the ball specimen 

An elliptically shaped wear track is observed on the surface of the ball. In Figure 4.3.3 (a-2), 

(b-2) and (c-2), the elliptically shaped wear track can be seen as convex because it is out of 

focus including the centre area.  

The appearance of the wear track of 0.4T0, which was created under the same conditions as 

0T0, fine scratches are seen. However, 1.1T0 produced blurred scratches at the centre area. 

Figure 4.3.4, shows that fine scratches are generated on 0.4T0 and 1.1T0 samples. However, 

for 0T0 case a small pit in the coarse region is generated. 
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Fig 4.3.3 Appearance of the wear track on plates and balls, optical microscope images of wear 

surface of a plate and a ball, a raw profile on the wore plate, 50 times magnification 
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Fig.4.3.4 Appearances of the wear surface on plates and balls after 72x103 strokes 
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4.3.4 Wear debris behaviour 

Figure 4.3.5 shows lubricant under an optical microscope after lubricated sliding wear testing. 

The appearance of a normal lubricant is clear and bright amber liquid. However, lubricant 

containing wear debris at 0T0 is opaque black liquid after lubricated sliding wear test. The 

appearance of lubricant for both 0.4T0 and 1.1T0 is opaque brown liquid after lubricated 

sliding wear testing. Hence, it is concluded that the magnetic field influences the wear debris 

contained in the lubricant. 

 

 
Fig 4.3.5 Lubricants observations after lubricated sliding wear testing in different magnetic 

fields 
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4.3.5 Wear debris observations 

The obtained secondary electron images shown in Figure 4.3.6 show a varied different shapes 

and sizes of wear debris at a magnification of 500 times. After 24x103 strokes, three common 

features for them generated at different magnetic flux densities include fine particles less than 

10 µm in diameter. Besides, flaky particles with irregular shapes, exist as shown in Figure 

4.3.6 (a-1), (b-1) and (c-1). However, the wear particles of both 0.4T0 and 1.1T0 feature split 

flaky marks which are indicated in Figure 4.3.6 (b-1) and (c-1). Additionally, there are 

aggregate particles, absent at 0T0, scattered and aligned with wear track. Hence, it can be said 

that the magnetic field produces split flaky particles together with fine particles. Finally, wear 

debris after 120x103 strokes include differently shaped particles in comparison with wear 

debris after 24x103 strokes. They are flat particles and at 1.1T0 they are of a size less than 40 

µm in diameter.  
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Fig.4.3.6 General secondary images of wear debris, 500x magnifications 
→: fine particles, →: flaky particle, →: flaky particle which has slits, →: flat particle (large), →: flat 

particle (small) 
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4.3.6 Analysis of wear debris 

SEM analysis was carried out for ferro-particles with white colour in the backscatter electron 

images of Figure 4.3.7, 4.3.8 and 4.3.9. The element spectrum shows that the wear debris 

consists of C, Ca, Fe, O, S and Si. The Ca and S were additives for lubricant. Oxygen peaks of 

both 0.4T0 and 1.1T were obviously high in comparison with the peak at 0T0. 

The XRD analysis in Figure 4.3.10 and 4.3.11 shows that wear debris under different 

magnetic flux density consist of α-iron and CaCO3 (Calcium carbonate). The peaks of α-iron 

are at nearly 46º, 65.5º and 82.5º. Besides, other weak peaks, which are CaCO3, are present at 

several points. Wear debris of both 0.4T0 and 1.1T0 increased the peak of CaCO3 in 

comparison with wear debris at 0T0 (see Figure 4.3.10). Additionally, the analysis results at 

1.1T0 indicate the high peaks of CaCO3 comparing to that at 0.4T0. Figure 4.3.11, indicates 

that peaks of CaCO3 were increased in the high magnetic field. It resembles results shown in 

Figure 4.3.10. 

Therefore, SEM analysis suggests that the magnetic field enhances the oxidation of ferro-wear 

debris. Furthermore, the peaks of CaCO3 are increased due to the influence of the magnetic 

field. 



Chapter 4 Experimental results 
 

134 

 
Fig. 4.3.7 Backscatter image and SEM analysis of particle at 0T0 
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Fig 4.3.8 Backscatter image and SEM analysis of particle at 0.4T0 (→: Ca system particle) 
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Fig 4.3.9 Backscatter image and SEM analysis of particle at 1.1T0  
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Fig 4.3.10 XRD analysis of wear debris after 24x103 strokes 
 

 
 

Fig 4.3.11 XRD analysis of wear debris after 120x103 strokes 

●03-065-4899 (D) - Fe - Cubic  
●00-005-0586 (º) - CaCO3 - Rbombo. H. axes 
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4.4 High frequency sliding contact  

4.4.1 Paramagnetic material vs. ferromagnetic material 

4.4.1.1 Magnetic field density 

The weight measurements of both the plate and the ball were inconclusive due to extremely 

small mass loss (less than 1 mg). Thus, the influence of magnetic field was evaluated by other 

measurements.  

Figure 4.4.1 illustrates surface roughness, Ra, of the wear track on the plate specimen for 

different magnetic field density angles. It shows that Ra range was less than 0.8 μm and had 

stable tendency. In addition, the Ra average, the maximum Ra, the minimum Ra and the Ra 

are more than 6 µm shown in Table 4.4.1. In Figure 4.4.1 (a), the Ra value at 1.1T0 is 

extremely high after 580x103 strokes. From Figure 4.4.2, it can be seen that the cause of the 

high Ra value was a bulge from the surface of the wear track; therefore, the extreme Ra value 

was excluded from Table 4.4.1. 

 

• Low frequency: Ra ranges were less than approximately 0.3 µm. Thus, the influence of 

the magnetic field has a negligible influence on the surface roughness of the wear track. 

• Middle frequency: 1.1T0 caused less variability than 0T0 and 0.4T0. The maximum Ra at 

1.1T0 was 0.913 µm which is approximately 0.2 or 0.4 µm less than for other test 

conditions. 

• High frequency: When the maximum Ra values at 0.4T0 and 1.1T0 are compared with the 

maximum Ra value at 0T0, the difference is less than approximately 0.2 µm. 

 

The bulge in the wear track area is clearly visible in surface profile in Figure 4.4.2. It was 

created in the presence of the magnetic field. It is most certainly created by wear debris piled 
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up by plastic deformations. 
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(a) Low frequency 
 

 
(b) Middle frequency 

 

 
(c) High frequency 

 
Fig 4.4.1 Surface roughness of plate in different magnet flux densities 
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Table 4.4.1 Ra values on the wear surface of plates  
 1.75Hz 14Hz 21Hz 
 0T0 0.4T0 1.1T0 0T0 0.4T0 1.1T0 0T0 0.4T0 1.1T0 

Max (µm) 0.37 0.35 0.46 1.15 1.33 0.91 1.72 1.53 1.47 
Min (µm) 0.18 0.19 0.16 0.52 0.68 0.60 1.16 0.77 0.90 

Ra range (µm) 0.19 0.16 0.30 0.62 0.65 0.32 0.56 0.76 0.57 
Average (µm) 0.24 0.25 0.25 0.76 0.88 0.74 1.43 1.23 1.15 

 

 

 
  

Fig 4.4.2 View of the wear track and the profile of the plate at 1.1T0 in 1.75 Hz after 580x103 strokes 
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Figure 4.4.3 shows the two-dimensional surface profiling and optical microscope images of 

wear tracks created after 1,304x103 strokes. 

Figure 4.4.3, in addition, shows that the depth of wear track increased due to the influence of 

the magnetic field at low frequency sliding condition. While, middle frequency sliding wear 

condition increased amount of wear in the presence of the magnetic field. Finally, a 

combination of high frequency and magnetic field produced shallow wear track with depth of 

19 µm.  
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Fig 4.4.3 (a-1) 1.74Hz, 0T0 
 

Fig 4.4.3 (a-2) 1.74Hz, 0.4T0 
 

Fig 4.4.3 (a-3) 1.74Hz, 1.1T0 
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Fig 4.4.3 (b-1) 14Hz, 0T0 
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Fig 4.4.3 (b-2) 14Hz, 0.4T0 
 

Fig 4.4.3 (b-3) 14Hz, 1.1T0 
 



Chapter 4 Experimental results 
 

145 

 

 
Fig 4.4.3 Surface profiling and surface observation of plate and ball specimen after 1,304 x103 strokes, 

50x magnifications, →: Measurement line 

Fig 4.4.3 (c-1) 21Hz, 0T0 
 

Fig 4.4.3 (c-2) 21Hz, 0.4T0 
 

Fig 4.4.3 (c-3) 21Hz, 1.1T0 
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Observation of wear track appearance 

Figures 4.4.4, 4.4.5 and 4.4.6 show SEM images of the wear track on the plate after 1,304 

x103 strokes. The chemical composition at locations indicated by different colour arrows in 

these figures is shown in Figure 4.4.7. Additionally, Table 4.4.1 contains Ra values for SEM 

images of the wear track. 

 

 Low frequency: The scratches or traces in (a) and (c) of Figure 4.4.4 were oriented in 

the same direction as the sliding direction. Besides, pits were observed on the wear 

track shown in Figure 4.4.4. The pits at 1.1T0 were in the form of a shallow hole and 

the bottom area of the hole is flat. 

 Middle frequency: The appearance of the wear track in Figure 4.4.5 is mainly uneven 

flat surface. However, the wear track at 0T0 has very bumpy surface. The high 

magnification image shows that silver area was dotted with iron and silicon. 

Additionally, by the rise of the magnetic flux density, the spread of the silver area was 

observed to increase. From the low magnification image of Figure 4.4.5(a), it is seen 

that the gray small particles adhered to the surface of wear track. In the case of 1.1T0, 

Figure 4.4.5 (c) shows two or three small particles attached to the side of wear track. 

 High frequency: The appearance of wear track in Figure 4.4.6 points to a bumpiest 

surface in comparison with other frequencies.  

 

Finally, the SEM analysis is shown in Figure 4.4.7. The composition elements are indicated 

by arrows in SEM images.  



Chapter 4 Experimental results 
 

147 

 

 
 

Fig 4.4.4 SEM images of the plate, low frequency, after 1,304x103 strokes 
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Fig 4.4.5 SEM images of the plate, middle frequency, after 1,304x103 strokes 
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Fig 4.4.6 SEM images of the plate, high frequency, after 1,304x103 strokes 
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Figure 4.4.7 SEM analysis was indicated by arrows in Figure 4.4.4, 4.4.5 and 4.4.6, White area (d) is 
the outside of Figure 4.4.4(a). 

 

Table 4.4.2 the explanation of the wear track shown in Figure 4.4.4, 4.4.5 and 4.4.6 
 Appearance Pit Crack etc. 

Low 

0T0 Scratches  
(12 µm in width) 

Pits,  
6 µm in diameter A way of sliding direction 

0.4T0 Uneven Pits,  
3 µm in diameter 

Difference in rank, it is a vertical 
direction in the sliding direction. 

1.1T0 Flat Hollow, 6 µm in 
diameter 

A short trace, it is a vertical 
direction in the sliding direction. 

Middle 
0T0 Uneven - 

Difference in rank 
( a vertical direction) 

0.4T0 Uneven and flat - 
1.1T0 Flat - 

High 

0T0 Uneven - 
0.4T0 - 

1.1T0 Uneven (centre),  
flat (outer area) 

Hollow, 18 µm in 
diameter 
 

(a) Black area (→) 
 

(c) Silver area (→) 
 

(b) Gray area (→) 
 

(d) White area (→) 
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4.4.1.2 Wear debris behaviour 

Figure 4.4.8 shows aligned wear debris after 1,014x103 strokes. Two types of wear debris 

namely aggregated wear debris and particulate wear debris, can be seen in the figure. The 

aggregated wear debris were produced during low frequency sliding wear, and their colour is 

light silver. On the other hand, the particulate wear debris were produced in high frequency 

sliding wear, and their colour is light brown or dark brown.  

 

 
 
 
 
 
 
 
 
 

 
 

Fig 4.4.8 Aligned wear debris observation after 1,014x103 strokes 
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4.4.1.3 Different magnetic field orientation  

Figure 4.4.9 illustrates the difference between surface roughness for magnetic field directions 

of 0 and 35 degree. Points in the figure represent the results of subtraction of Ra for 0.4T35 

from that of 0.4T0. Magnetic field with direction of 35 degree increased the surface roughness 

of the plate excluding 1.1T35. The case of 1.1T35 with middle and high frequency reduces 

the surface roughness of the plate.  

 
 

 
 

Fig 4.4.9 Difference of between surface roughness in magnetic field directions of 0 and 35º 
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4.4.1.3.1 Topography on the surface of the plate and a ball test specimens 

Figure 4.4.10 shows the two-dimensional surface profiles and optical microscope images for 

wear tracks are produced after 1,304x103 strokes. 

The depth and the width of wear track at 1.1T35 are compared with that for 1.1T0. The 

difference between magnetic field directions at low frequency is negligibly small, which, the 

test conditions at middle and high frequencies produced a visible change in contact area 

dimensions. For 1.1T35 sample wore out 32 µm increasing depth by 10 µm. In addition, the 

bottom area of the wear track is a rough and has a deep groove or bulge.  

The wear spot on the ball specimen of 1.1T35 has even surface.  

Therefore, it can be said that wear debris produced at 1.1T35 are fine particles aligned in the 

same direction. 
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Fig 4.4.10 2-D surface profiling and optical microscope images of wear tracks supplied in 1,304x103 

strokes 
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4.4.1.3.2 Observation of wear track appearance 

SEM images of the wear track on plate specimens for different angles of magnetic field 

direction are shown in Figure 4.4.11, 4.4.12 and 4.4.13. 

 

 Low frequency: Figure 4.4.11 shows SEM images of the wear track on plates for 

1.1T0 and 1.1T35 at low frequency. 1.1T35 sample appears to have a rough surface 

which has dots in black region and is uneven. The dots in black region are wear debris 

of iron and silicon, as shown in Figure 4.4.7. In addition, the diameter of the dot is of 

the same size as that of the dot in a silver region, indicated in Figure 4.4.11 (c-1).  

 Middle frequency: An outline of the wear track at 1.1T35 is of an ellipse shape, and 

the contact area appears as bumpy surface which has innumerable bulges. In addition, 

the black dots are scattered all over the surface, with prevailing diameter of 12 µm. 

 High frequency: Features are aligned with the sliding direction with clear lines of the 

bulge, as shown in Figure 4.4.13 (a-2). The bulges mainly consist of iron. The main 

feature of the contact area at 1.1T35 is the scattered wear debris region, which consists 

of the iron and the silicon. It is a significant feature demonstrating the influence of the 

magnetic field on the contact area. 
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35º 

 

Fig 4.4.11 SEM images of plates for different angles of magnetic field direction with low frequency 
 

(a-1) 1.75Hz1.1T0, 40x modifications 
 

(a-2) 1.75Hz1.1T35, 30 x modifications 
 

(b-1) 1.75Hz1.1T0, 200x modifications 
 

(b-2) 1.75Hz1.1T35, 200x modifications 
 

(c-1) 1.75Hz1.1T0, 1,000x modifications 
 

(c-2) 1.75Hz1.1T35, 1,000x modifications 
 

35º 
 

↔: Sliding direction, ●–●: Direction with the permanent magnets  
→: Black region (iron and silicon), →: Silver area (silicon and iron) 
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Fig 4.4.12 SEM images of a plate for different angles of magnetic field direction with middle 
frequency 

 

(a-1) 14Hz1.1T0, 30x magnifications 
 

(a-2) 14Hz1.1T35, 30x magnifications 
 

(b-1) 14Hz1.1T0, 200x magnifications 
 

(c-2) 14Hz1.1T35, 1,000x magnifications 
 

(b-2) 14Hz1.1T35, 200x magnifications 
 

(c-1) 14Hz1.1T0, 1,000x magnifications 
 

35º 
 

↔: Sliding direction, ●–●: Direction with the permanent magnets  
→: Black region (iron and silicon), →: Silver area (silicon and iron)  
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Fig 4.4.13 SEM images of a plate for different angles of magnetic field direction with high frequency 

(a-1) 21Hz1.1T0, 30x magnifications 
 

(a-2) 21Hz1.1T35, 25x magnifications 
 

(b-1) 21Hz1.1T0, 200x magnifications 
 

(b-2) 21Hz1.1T35, 200x magnifications 
 

(c-2) 21Hz1.1T35, 1,000x magnifications 
 

(c-1) 21Hz1.1T0, 1,000x magnifications 
 

35º 
 

↔: Sliding direction, ●–●: Direction with the permanent magnets  
→: Silver area (silicon and iron)  
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4.4.1.3.3 Wear debris behaviour 

Figure 4.4.14 shows wear debris arranged around wear track for different magnet flux 

densities. At low frequency, the common feature for 1.1T0 and 1.1T35, is the aggregation of 

wear debris. The feature for 1.1T35 is the brownish wear debris   indicated by yellow circle 

in the figure. High frequency, however, produces wear debris spattered in all directions. The 

feature for 1.1T35 is dark brown wear debris in the wear track. Therefore, it could be said that 

the presence of the magnetic field is enhancing oxidation. 

 

 
Fig 4.4.14 Aligned wear debris observation after 1,014x103 strokes  
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4.4.2 Ferromagnetic material vs. ferromagnetic material 

4.4.2.1 Magnetic field density 

The accumulated mass loss of test specimens 

The accumulated mass loss of the plate for test conditions used follows a logarithmic curve 

(see Figures 4.4.15 and 4.4.16.).  

 

 Low frequency: The accumulated mass loss for plates is a gradual increase until 

801x103 strokes. After that, the amount of loss weight in the presence of magnetic 

field maintains the gradual tendency. In addition, the amount of loss weight in the 

presence of magnetic field is about two-thirds of the accumulated mass loss for 0T0. 

Furthermore, accumulated mass loss at low magnet flux density changes very slightly 

approximately 1mg until 1,090x103 strokes.  

 High frequency: Accumulated mass loss at 0T0 is a steady increase and proportional 

to the number of sliding strokes. On the other hand, the tendencies in the presence of 

magnetic field are a slow upward curve and are approximately half the loss weight 

found in the absence of magnetic field. 
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Fig 4.4.15 Accumulated mass loss of the plate in different magnet flux densities, low frequency 
 

 
 

 
 

Fig 4.4.16 Accumulated mass loss of the plate in different magnet flux densities, high frequency 
 
 

 

 

 

 

 

 

0 
0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 
1.6 

136 272 406 537 668 801 938 1,090 1,221 
Number of sliding strokes(x1000) 

M
as

s l
os

s, 
m

g 

21Hz, 0T0 21Hz, 0.4T0 21Hz, 1.1T0 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

136 272 406 537 668 801 938 1,090 1,221 

M
as

s l
os

s, 
m

g 

1.75Hz, 0T0 1.75Hz, 1.1T0 1.75Hz, 0.4T0 

Number of sliding strokes (x1000) 



Chapter 4 Experimental results 
 

164 

The accumulated mass loss of the ball for test conditions used also follows a logarithmic 

curve (see Figures 4.4.17 and 4.4.18.).  

 

 Low frequency: The accumulated mass loss in the presence of magnetic field is less 

than half of that recorded for 0T0 and shows a slight increase.  

 High frequency: The tendency of accumulated mass loss in the absence of magnetic 

field is a slight increase. However, the tendency in the presence of magnetic field is 

similar to that for low frequency. 

 

Therefore, the presence of the magnetic field reduces the wear for the combination of 

ferromagnetic materials in sliding contact. 
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Fig 4.4.17 Accumulated mass loss of the ball in different magnet flux densities, low frequency 
 

 
 

Fig 4.4.18Accumulated mass loss of the ball in different magnet flux densities, high frequency 
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4.4.2.2 Surface roughness in the wear track of the plate  

Figure 4.4.19 illustrates surface roughness in the wear track of the plate for different magnet 

flux densities. Besides, Table 4.4.3 contains the principal numerical data for that figure. The 

fluctuation range of some Ra values is above 0.5 µm until 406x103 strokes. However, 

fluctuation ranges are reduced to approximately 0.2 µm. Ra after that and show an overall 

trend toward stabilization. The influence of magnet flux densities on wear track roughness at 

low and high frequencies can be summarised as follows: 

 

• Low frequency: Average Ra at 0.4T0 is 0.5 µm (low magnet flux densities) and 

approximately 0.3 µm in the absence of magnetic field. In addition, average Ra at 1.1T0 

(high magnet flux density) is lower than that at low magnet flux density and is 

approximately 0.4 µm. 

• High frequency: In the presence of magnetic field, the Ra values undergo wide 

fluctuations in contrast with the absence of magnetic field. However, the average Ra does 

not change. 
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Fig 4.4.19 Surface roughness on the plate in different magnet flux densities 
 
 

Table 4.4.3 Ra values on the wear surface of plates 
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Average Ra, µm 0.76 0.50 0.43 0.70 0.74 0.70 
Max, µm 1.01 0.82 0.64 0.98 1.34 1.26 
Min, µm 0.63 0.36 0.27 0.31 0.36 0.43 
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4.4.2.3 Topography on the surface of test specimens  

2-D surface profile of the plate specimen and optical micro photos of wear surface on test 

specimens are shown in Figure 4.4.20. 

 

 Low frequency: The common features are the jagged surfaces in wear track of the 

plate. In the presence of the magnetic field, the wear track is shallow and narrow. In 

addition, it has slender bulges and narrow grooves. Besides, the contour of the contact 

area for the ball is an ellipse elongated in the sliding direction.  

 High frequency: The wear track in the presence of the magnetic field is shallow and 

narrow. In addition, it is rather smooth as shown in the surface profile, compared with 

the wear track at the absence of magnetic field. 

 

Therefore, it could be said that the magnetic field reduces the depth and width of the wear 

track. 
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Fig 4.4.20 (a-1) 1.75Hz, 0T0 
 

Fig 4.4.20 (a-2) 1.75Hz, 0.4T0 
 

Fig 4.4.20 (a-3) 1.75Hz, 1.1T0 
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Fig 4.4.20 2-D surface profile on the surface of a plate, surface observation of the wear track on the plate 

and a ball after 136x103 strokes 

Fig 4.4.20 (b-2) 21Hz, 0.4T0 
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4.4.2.4 Wear debris behaviour and the observation 

The expanse of the wear debris around the outline of the contact area is shown in Figure 

4.4.21.  

Low frequency: Wear debris are light brown and form the aggregate surround the outline of 

contact area. 

High frequency: In contrast with that at low frequency, wear debris are dark brown and in the 

form of single particles. 

Common points of low and high frequencies are as follow: wear debris are arranged over a 

wide area. However, in the presence of magnetic field, they are gathered and bundled around 

the contour of contact area. In addition, brown wear debris on the contact area can be seen.  

Figure 4.4.22 shows the backscatter electron images for wear debris at 0T0 and 0.4T0. White 

region represents mainly iron, and gray region contains iron and oxygen; it is oxidised iron.  

 

 Low frequency: Large particles are approximately 4 µm in diameter and were 

observed for both with and without magnetic field. The particles which the figure (b) 

shows are mainly particles of the iron.  

 High frequency: In the absence of the magnetic field, wear debris consist of large 

particles of approximately 20 µm in diameter and small particles of approximately 1 

µm in diameter. On the other hand, main wear debris in the presence of the magnetic 

field are uniformly approximately 2 mm in diameter. 

 

Therefore, it could be said that magnetic field affects the size of wear particles. 
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Fig 4.4.21 Aligned wear debris around wear track on the plate 

 

  
Fig 4.4.22 Back scatter electron images of wear debris 

(a) 1.75Hz, 0T0, 5,000x magnifications 
 

(b) 1.75Hz, 0.4T0, 5,000x magnifications 
 

(c) 21Hz, 0T0, 5,000x magnifications 
 

(d) 21Hz, 0.4T0, 5,000x magnifications 
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4.4.2.5 SEM observation and analysis of the wear track 

Figures 4.4.23 and 4.4.24 show backscatter images of the surface of plate samples.  

SEM images for a wear track are shown in a pattern made by black and white regions for 

horizontal with the sliding direction. 

 

 Low frequency: The wear track at 0T0 is in a stripe pattern. Comparing 0.4T0 with the 

wear track at 0T0 it is seen that it is occupied main by black regions, and the white 

regions are rather thin. Furthermore, the wear track at 1.1T0 is occupied by the large 

black region. 

 High frequency: The wear track at 0.4T0 is occupied by a black area with white 

patchy patterns.  

 

Figure 4.4.25 illustrates the backscatter electron image and SEM analysis at locations where is 

indicated crosses by marks in figure (a). The gray region consists of iron and the black region 

contains iron and oxygen. 

Therefore, the magnetic field covers the contact area of the plate with oxidised iron.   
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Fig.4.4.23 Backscatter images on the surface of plate samples, low frequency 

  

(b-1) 102x magnifications 
 

(b-2) 500x magnifications 
 

(c-1) 102x magnifications 
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Fig.4.4.24 Backscatter images on the surface of plate samples, high frequency 

(a-1) 102x magnifications 
 

(b-1) 102x magnifications 
 

(c-1) 102x magnifications  
 

(a-2) 500x magnifications 
 

(b-2) 500x magnifications 
 

(c-2) 500x magnifications 

(a) 21Hz 0T0 
 

(b) 21Hz 0.4T0 
 

(c) 21Hz 1.1T0 
 

Sliding direction 
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Fig 4.4.25 Backscatter electron image and SEM analysis where is indicated by marks into the figure 
(a) 

 
 

(a) 1.75Hz 0.4T0 5,000x magnifications 
 

(c) Black region (+) 
 

(b) Gray region (+) 
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Chapter 5 Discussions 

5.1 Introduction 

This chapter consists of five sections.  

At the beginning, comparison with previous research is made to find out why the wear 

increased in the presence of the magnetic field. Model for a crack initiation under the 

surface in the magnetic field proposed by Iida (2007) is outlined. Also, wear mechanism 

for a combination of mild steel plate and Si3N4 ball is assessed. Next, an attempt is 

made to clarify the wear mechanism of the thermal spray coating in the presence of the 

magnetic field. Then, the mechanism for a wear decrease of plate specimen in the 

presence of the magnetic field and a lubricant is discussed. After that, the wear 

mechanism in the presence of the magnetic field and high frequency is presented using 

contact area images and analyses. 

 

Before focusing on the main subjects of discussion, comparison of the experimental 

results obtained for each experimental condition used in the form of wear amount and 

Ra values is made, with the aim to identify related tendencies in experimental results.  

Compared with the wear of the plate specimen in the absence of magnetic field, the 

presence of horizontal magnetic field does not affect the wear of a mild steel plate and 

the austenite stainless steel coating under the dry sliding contact at low frequency (see 

Figure 4.2.1 and Figure 4.2.22). However, it decreases the amount of wear of the carbon 

steel coating (see Figure 4.2.15). In addition, lubricated sliding wear also decreases the 

wear of the plate (see Figure 4.3.1). 

The Ra value of the contact area is rather high or displays an increasing trend for Ferro 



Chapter 5 Discussions 

179 

material under dry sliding contact at low frequency (see Figure 4.2.17). On the other 

hand, the Ra value of the contact area on a paramagnetic material of austenite stainless 

steel coating shows a slight increase (see Figure 4.2.24). Furthermore, the high 

frequency combined with the presence of magnetic field decreases Ra values for the 

combination of Si3N4 ball and mild steel plate (see Figure 4.4.1(c)).  

For the 90 degree orientation of the magnetic field wear amount of the plate specimen 

increases (see Figure 4.2.1). Similarly, 35 degree orientation of the magnetic field 

combined with high frequency shows an increase in wear (see Figure 4.4.10(c)). 

However, the former orientation of magnetic field increases Ra value, in contrast, to that 

caused by the latter (see Figure 4.2.23 and Figure 4.4.9). 

Therefore, it can be said that the influence of magnetic field changes in the mass loss 

and the surface roughness of a plate specimen on sliding contact. In addition, it is 

inferred from the conclusion that the control of the tribological properties is possible by 

magnetic flux density of magnets, the magnetic field orientation and a level of sliding 

speed. 

Table 5.1.1 shows tendencies, in wear amount and surface roughness Ra. The presence 

of horizontal magnetic field is compared to the conditions without magnetic field. In 

addition, Table 5.1.2 also shows tendencies, caused by the effect of magnetic field 

orientation to the sliding direction. 
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Table 5.1.1 Tendencies of wear amount and surface roughness Ra, the presence of horizontal 
magnetic field is compared to the absence of the magnetic field 

 Combination Magnet flux density, 1.1T 
Wear amount Ra 

Dry sliding contact, 
low frequency 

Si3N4 ball and mild steel plate 
(Uncoating) No change High 

Si3N4 ball and carbon steel coating Decrease Increasing trend 

Si3N4 ball and austenite stainless 
steel coating No change Increase 

Lubricated sliding 
contact, 

low frequency 
Si3N4 ball and mild steel plate Decrease No change 

Dry sliding wear, 
high frequency 

Si3N4 ball and mild steel plate --- Decrease 

Ball bearing Steel 100Cr6 and mild 
steel plate Decrease No change 

 

Table 5.1.2 Tendencies of wear amount and surface roughness Ra, the effect of magnetic field 
direction as against zero degree orientation of magnetic field 

Dry sliding contact Combination Magnetic field 
direction Wear amount Ra 

Low frequency Si3N4 ball and mild steel plate 
45 º No change Increase 

90 º Increase Increase 

High frequency Si3N4 ball and mild steel plate 35 º Increase Decrease 
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5.2 Comparison of Magnetic field effects on sliding and rolling 

contacts 

5.2.1 Effects of horizontal magnetic field on rolling contacts  

The model of the crack initiation under the surface in the magnetic field suggested by 

Iida (2007) was verified by using two-disc rolling contact wear tests, as shown in Figure 

5.2.1. Pure rolling is the contact between two parallel discs. Rolling with sliding contact 

was carried out at 0 degree and a twist angle of 57.1 degrees as shown in Figure 

5.2.1(a). 

The experimental results showed that the rolling contact under experimental conditions 

used creates initial cracks emanating from the subsurface. Moreover, the presence of 

horizontal magnetic field produces finer and thinner particles, as showed in Figure 5.2.2 

(b), and reduces the surface roughness of the wear surface. In addition, the association 

between the crack initiation points and the thickness of wear particles is found and the 

number of cycles required to detach one layer can be calculated by evaluating the 

number of cycles required to detach one layer (Iida 2007). He provides the specific 

example that the influence of magnetic field created the crack initiation points to a 

quarter depths in case of no magnetic field. Finally, it is concluded that the influence of 

magnetic field on rolling contacts consists of initiation of cracks at the shallow point 

and to detachment of wear particles after a small number of load cycles. 
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5.2.2 Comparison of magnetic field effects for sliding and rolling 

contacts  

Reciprocating sliding contacts under the dry condition are characterised by different 

wear mechanism comparing to that for rolling contacts. It creates the flat wear debris or 

the hemispherical wear debris. The sliding contacts are with different initiation crack 

points to that of rolling contacts. Therefore, the influence of magnetic field cannot be 

evaluated using the thickness of wear debris and the same equation used for the rolling 

Driven disc 
(Pure rolling) 

 

Driving disc 

f = tan-1(1/10) = 5.71o 
 

v1 

v21 
 

v22 
 

(a) Top view 
 

v21⊥ v22 
 

 

f 

(b) Front view 
 

Fig 5.2.1 Illustration of pure rolling and rolling 
with sliding 

 

(a) Wear particles, 0 T    

(b) Wear particles, 0.4T 
 

Fig 5.2.2 Wear particle observation of 
mild steel discs  

(Pure rolling)(Iida 2007) 
 

 

Driving disc 

Drive disc 
(Rolling with sliding) 

 
Magnets  
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contact. In addition, Hertzian contact pressure reduces rapidly in inverse proportion to 

the number of sliding strokes because the area of contact grows due to wear (see Figure 

5.2.3).  

The sliding contacts in the presence of magnetic field also have different wear 

mechanism comparing to the rolling contact, and the influences of the magnetic field on 

the sliding contact can be summarised as follows: 

 

 

Fig 5.2.3 Predicted tangential traction, calculation from the contact area of a ball 
 

 Magnetic field arranged at 90º, increases the mass loss of the plate after 48x103 

strokes and that is the contrary to the results obtained for pure rolling contacts. 

 Delamination area is created on the wear track from the beginning of sliding 

strokes, and the surface roughness is increased substantially.   

 Wear debris are produced and consist of the flat iron particles and the 

agglomerated particles including iron, oxygen and silicon. Moreover, magnetic 

field affects the enhanced oxidation of iron wear fine particles.  
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It is concluded that the magnetic field influences on the sliding contact are different to 

that observed for the rolling contacts. 

Additional, influences of magnetic field on sliding contact characteristic are;    

  

 An initial bulging is produced on the wear surface of the plate and it is on both 

sides of wear track. Its width corresponds to the contact area dimensions.  

 

Horizontal magnetic field does not significantly affect mechanical properties of the mild 

steel test plate.  
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5.2.3 Effect of magnetic field on uncoated plate wear  

The sliding contact test was carried out at the low frequency that does not cause an 

excessive oxidation of the wear surface of mild steel. Thus, the sliding contact test in 

the presence of magnetic field was assumed not to cause the oxygen adsorption. The 

presence of magnetic field promotes oxidation of the surface of the magnetised material 

because it attracts the oxygen and raises oxygen density around the material (Kumagai 

1993; Sasada et al 1993). However, the experimental conditions caused brown spots 

distribution on the surface of wear track, even in the absence of magnetic field. As 

indicated in Figure 5.2.4, the brown spots distribution reduces and disappears before 

96x103 strokes, however in the presence of magnetic field brown spots exist after 

96x103 strokes. Furthermore, it reduces the surface area of the brown spots distribution 

and diffuses the whole surface area. Thus, it could be concluded that these experimental 

conditions induce the oxidation in the absence of magnetic field. 

Turning now to the magnetic field effect on uncoated plate wear, first, the factors 

controlling mass loss of the plate specimen in presence of magnetic field are discussed. 

In surface observations just after sliding contact tests, the effect of the external magnetic 

field is discovered because the magnetic attractive force of the permanent magnets 

removes the iron wear particles from the wear surface of the plate specimen. In 

particular, 90º condition moves almost an iron wear particles from the area because the 

bottom plane of the permanent magnets faces the wear surface and the distance is close 

compared with other magnetic field directions. The wear mechanism is severe wear; 

without severe-mild wear transition (Hirazuka and Sasada 1986). Therefore, the real 

contact area is enlarged, and, the mass loss and the surface roughness are both increased. 

On the other hand, the other magnetic field directions did not remove iron wear particles 
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from the wear track in common with the absence of the magnetic field. The influence of 

magnetic field is estimated to produce the hemisphere iron particles and the 

agglomerated particles. Also it causes the transfer of wear particles to the surface of 

magnetised plate. Thus, it is estimated that the surface roughness of the test plate is 

increased more than in the absence of magnetic field. However, the mass loss continues 

to be almost as for the absence of magnetic field. The reason for that is the magnetic 

field enhances the adsorption of oxygen to the iron wear particle, and they temporarily 

protect the surface of the plate from wear.  

Therefore, it can be assumed that the main factors of the influence of magnetic field are 

the removal effect of iron wear particles and enhancement of adsorption of oxygen to 

the sliding contact.  

Next, the discussion is focused on the following main factors. 

 

 In the enhancement of the adsorption of oxygen to the iron wear particles, they 

may be piled up on the wear track as described in next section 5.2.4.   

 In the removal effect of the wear debris from the wear track, the different 

magnetic field directions affect discharge quantity of wear debris because the 

distance of the permanents and the wear surface is different as described in 

Section 5.2.5.   

 

In conclusion, it can be said that the effect of magnetic field weakens the prevailing 

wear mechanism. 
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Fig 5.2.4 Brown spots distribution on the wear track 
 

  24 strokes           48 strokes          72 strokes        96 strokes 
                    (a) 0T0, the absence of magnetic field 

24 strokes         48 strokes          72 strokes          96 strokes 
                  (b) 1.1T0, the presence of magnetic field 
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5.2.4 Bulge formation on wear surface in the presence of magnetic field  

It is suggested that the bulging on wear surface is formed in the presence of magnetic 

field. Furthermore, the height of the bulging is approximately 4 µm, and that height is 

kept and is moved gradually to both sides of wear track. However, there is still room for 

explanation about the important mechanism responsible for the formation of the bulging. 

There are brown regions and gray regions in the wear track by surface as shown in 

Figure 5.2.5. The existence of the two regions in the wear track could be used to 

formulate a hypothesis, as follows; if the brown region consists of oxidized iron 

particles, then it can be assumed that the transfer of them on the wear surface took 

place.  

Hypothesis concerning accumulated oxidised iron particles  

The height of bulging is approximately 4μm and it has a brown colour, so it is attributed 

that accumulation of fine oxidised iron particles occurred. Furthermore, the 

accumulation of debris on the wear track reported stated by Mansori and Paulmier 

(1999). They point out that perpendicular magnetic field induces the transfer of wear 

particles, which are produced by abrasive action, to a location of wear track. Besides, 

Sato et al. also (2000) found that the effect of the magnetic field enhances adsorption of 

oxygen onto the surface of the ferromagnetic wear particles and increases the trapping 

of oxidised fine particles on the wear surface. 
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Fig 5.2.5 Surface observation of uncoated plate specimen in cross sliding direction after 24x103 

strokes 

(a) 0T0 
 

(b) 1.1T0 
 

(c) 1.1T45 
 

(d) 1.1T90 
 →: gray area, →: brown area, →: measured line 

 

 

Optical micrograph Wear track, 16x magnifications 
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These tests are different from the experimental conditions used in that the sliding wear 

test is not carried out in perpendicular magnetic field. Therefore, it is assumed that 

magnetic material is not trapped on the mild steel plate due to the effect of the magnetic 

field. Comparing, wear surfaces produced in the presence and absence magnetic field, it 

is seen that individual brown regions on wear surface under the presence of magnetic 

field are larger than those produced in the absence of magnetic field. Thus, it is possible 

to make a hypothesis as follows. 

Firstly, fine iron particles are produced by abrasive action and, oxygen adsorption by 

these particles is accelerated due to the effect of magnetic field. The oxidized fine iron 

particles are estimated to be anti-ferromagnetic materials because the flash temperature 

is too low to form the ferromagnetic structure as the sliding contact test is carried out at 

low frequency. Secondly, the wear particles flow and pile up at the weak tangential 

traction regions. The regions are usually worn down by produced iron and silicon wear 

particles. Then the production of the oxidized iron particles decreases with a fall of the 

Hertzian contact pressure, while, the regions are worn down continuously. Finally, the 

brown region and the bulging disappear from the wear track. In summary, the bulging is 

formed by accumulation of anti-ferromagnetic material produced by oxidation at low 

temperature and the oxygen adsorption effect of the magnetic field. 
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5.2.5 Different magnetic field directions 

In the rolling contact test, the demagnetization effect of magnetic field direction which 

is the opposite angle to the rolling direction it is proposed that it considerably weakens 

the magnetisation of the discs and influences the wear mechanism (Chikazumi 1964; 

Iida 2007 pp.119). 

However, because the bottom plane of the permanent magnets is arranged toward the 

surface of the plate specimen, the sliding contact test is not subject to that proposition.  

Basically, the different magnetic field directions influence the mild steel plate as follows. 

The domain wall displacement and the volume increase must slightly increase so that 

mild steel has single crystal face and is not easily magnetised (see section 2.4). 

Moreover, the effect of magnetic field is confirmed not to change the micro hardness of 

mild steel. Furthermore, a relationship between the magnetic field direction and the 

form of the delamination area is not established (see Figure 5.2.6). Therefore, it is 

postulated that the influence of the internal magnetic field can be negligible compared 

with the external magnetic field.  

The external magnetic field removes the iron wear particles from the wear track, and the 

amount of iron wear particles removed is different for different magnetic field directions. 

Therefore, the different magnetic field directions influence the size of the real contact 

area, the mass loss and the surface roughness. However, for 1.1T0 and 1.1T45 fields a 

crack is found which becomes vertically elongated. The crack points to a large single 

iron wear particle being transfered to the wear surface. It is estimated that the 

delamination of transfer particle causes a raise of the surface roughness. 

Besides, cracks in 1.1T90 field are not found in the delamination area, and mainly thick 

scratches are on the wear surface. Therefore, it is concluded that the magnetic field 
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direction increases mass loss and the surface roughness (see Figure 5.2.6). 

 
Fig 5.2.6 Surface observations of uncoated plate after 48x103 strokes, 200x magnification blue 

single circle indicates delamination area, blue twice circle indicates cracks. 

 
 
 
 

(a) 0T0, 48x103 strokes  
 

(b) 1.1T0, 48x103 strokes  
 

(c) 1.1T45, 48x103 strokes   
 

(d) 1.1T90, 48x103 strokes  
 

Sliding direction  
 

Magnetic field direction 
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5.2.6 Questions 

Micro hardness of mild steel in the presence of horizontal magnetic field is not changed. 

However, it is not considered to be applicable to magnetised iron wear particles. For 

example, if the mild steel plate is in presence of a horizontal magnetic field, the 

magnetisation field is flowing from the plate to the steel ball. Thus, when an iron wear 

particle transfers to the wear surface of the plate, it is expected to be caused by that. 

It seems that the flow of intensity of magnetic field is similar with vertical magnetic 

field. Thus, the effect of vertical magnetic field may affect the internal structure of the 

plate and the iron particle at the minute region where it is nearby the contacting section. 

In other words, the internal structure change at the minute region reduces the micro 

hardness. Therefore, it may be the factor increasing the transfer of particles to the wear 

surface and thus enhancing the delamination area on wear surface. 
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5.3 Influence of magnetic field on sliding contact for carbon 

steel coating 

5.3.1 Influence of mechanical characteristic by the magnetic field 

 

 The magnetic field reduces the micro-Vickers hardness of the carbon steel 

coating by approximately 12%. 

 

As mentioned earlier, the hardness of uncoated mild steel plate at the wear region is not 

affected by the presence of the magnetic field.  In contrast, the carbon steel coating 

with lamellar micro structure consists of carbon steel layer and oxide steel layer. These 

layers have different crystallographic structures and are estimated to be different in the 

increment of the magnetic anisotropic energy and the magnetostrictive elongation. 

Magnetostrictive elongation means the deformation of magnetic material body as shown 

in Figure 5.3.1. Thus, the fall of hardness of the carbon steel coating suggests that the 

adhesive strength of the two layers is decreased by influence of magnetic field. In 

addition, it is attributed that the decline of temporary hardness is caused by deformation 

of domain structure immediately after it was put under the influence of magnetic field. 

Kumagai et al.(1989) report that a similar phenomenon occurs by using alternating 

current magnetic field. It is the decrease of the hardness of magnetised ferromagnetic 

material, of uncoated specimen. Additionally, oscillations of domain walls increase 

mobile dislocation density by alternating current magnetic field. When magnetization is 

caused by direct current magnetic field it does not affect the change of hardness because 

domain wall does not displace. The idea, that the alternating current magnetic field 
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oscillates the domain walls and increases mobility of dislocation density and seems 

reasonable. However, the magnetic field in this study is similar with direct magnetic 

field. Thus, the lamellar structures of the thermal spay coating, which has sandwich 

structure consists of oxide layer and steel layer, is believed to be subjected to the 

phenomena.  

 

 

 

I 
 

 

(a) Expansion 
 

(b) Contraction 
  

Carbon steel coating 
 

Surface of the carbon steel coating 
 

Mild steel plate 
 

 : Magnetic field direction 
 

Fig 5.3.1 Cross section of carbon steel coating 
Thickness of a carbon steel layer is about 4 - 5μm. 

 

 

Fig 5.3.2 Deformation of magnetic 
material body, carbon steel layer 

and oxide steel layer 
I: Intensity of magnetization 
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5.3.2 Magnetic field effect on carbon steel coating wear 

The effect of the magnetic field on the sliding contact of carbon steel coating, and 

austenite stainless steel coating can be summarized as follows:  

 

 Magnetic field influences the carbon steel coating by a significant decrease of 

the mass loss and a fall of the surface roughness. Furthermore, it produces a 

minute wear particle.  

 Wear debris produced in the presence and absence of magnetic field consists of 

oxide iron particles, thus, it is not certain that the effect of oxygen adsorption 

take place. 

 

The existence of the oxide iron particles suggests that they underwent from severe wear 

to mild wear process and acceleration of the adsorption oxygen to the oxide film 

(Hirazuka 1986). Thus, it was suspected that effect of external magnetic field induces 

the oxidative wear. However, this has not been confirmed by analysis results that the 

effect of the magnetic field under experimental conditions used induces oxidative wear. 

In addition, the surface observation of the wear track provides evidence that the 

oxidative wear did not occur (see Figure 5.3.3). Compared with the wear surface on the 

ball under absence of magnetic field, there are thinner scratches and delamination areas 

on the wear surface, as shown in Figure 5.3.3. In addition, the wear surface on the plate 

specimen under magnetic field appears to have a black region, which is assumed an 

oxide layer. Thus, it can be said that a progress of wear takes place in the space between 

steel layer and oxide steel layer. The carbon steel layer wears slowly because an initial 

crack occurs in oxides surrounding it.  
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Fig. 5.3.3 Surface observation of the wear surface after 168x103 strokes 

 
 
 

(A-2) 0T0 (B-2) 1.1T0 
Plate Ball Ball Plate 

200x magnifications 

(A1) 0T0 (B-1) 1.1T0 
Plate Ball Plate Ball 

a 
b 

50x magnifications 
 

→: delamination area 
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5.3.3 Suggested wear mechanism for carbon steel coating in magnetic 
field 
 

 
1. The carbon steel coating suffers a decline in hardness immediately after it is 

placed in the magnetic field. 

2.  Sliding contact creates a weak point in maximum shear stress distribution 

within the carbon steel coating under magnetic field; thus, adhesion strength in a 

space between layers reduces because of the increment of the magnetic 

anisotropic energy and the magnetostrictive elongation. 

3. Sliding contact creates a downward initial crack from a contact surface to the top 

oxide layer as indicated the location in Figure 5.3.4 (a).  

4. The primary crack propagates along a space between layers. 

5. The primary crack develops and connects with a subsurface crack where a 

second layer may be located. 

6. Some developing cracks reach the surface and a wear particle is released.  

7. The wear undergoes a gradual decrease in the contact area of carbon steel 

coating. As a result, the contact area appears as a gentle uneven surface and 

mainly oxide layer (see Figure 5.3.4(b)).  

Fig 5.3.4 Mechanism of wear in magnetic field for carbon steel coating 
 

Oxidation layer 
Wear debris 

Carbon steel coating 

Si3N4 ball 

Total Load 
Sliding direction 

Crack initiation point 

(a). Crack initiation point 
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5.4 Effect of magnetic field on lubricated sliding contact 

The presence of magnetic field contributes to the wear reduction of lubricated sliding 

contacts however it does not improve the surface roughness on the wear surface of plate 

specimen. The question now arises: what was the reason that the redaction of mass loss 

and the fall of the surface roughness did not happen in the presence of magnetic field? 

Two factors are offered by experimental results to clarify the cause. One is the iron wear 

particles removal by the magnetic field from the contact area while the magnetic field 

influences the wear debris contained in the lubricant. The other factor is lubricated wear 

mechanism in the presence of magnetic field as it generates delamination area on the 

wear track of plate specimen only in presence of magnetic field. Additionally, the 

strength of magnetic flux density is also related to that. 

 

5.4.1 Influence of lubricant by the magnetic field 

Generally speaking, generally, adsorption of surface-active substance changes the 

deformation behaviour of nonferrous metals. In addition, if surface electrical charge on 

the wear surface of Si3N4 ball is nonexistence, Macmillan et al (1974) showed that the 

fluidity of lubricant is improved due to higher surface tension. Also, there is a reduction 

of the friction coefficient with the greatest hardness. Therefore, it is postulated that the 

reduction of mass loss of counter plate specimen is caused by the influence of magnetic 

field on the electrical charge of the wear surface of Si3N4 ball. 

The calcium sulphonate surfactants covering the surface of the plate specimen form 

protective film can be reinserted and reformed to region where the protective film is 

loose, after the protected surface was worn down by abrasive wear. However, the jagged 

wear surface region is not protected from oxidation because the calcium sulphonate 



Chapter 5 Discussions 

200 

surfactants are not inserted at the region (Scherge et al 2006). Therefore, the jagged 

delamination region is the oxygen state that is easily adsorbed. 

 

5.4.2 Magnetic field effect on wear of lubricated and uncoated surface 

It is postulated that the shallow delamination area generation is caused by lack of the 

calcium sulphonate surfactant at the contact interface. The calcium sulphonate 

surfactants prevent adsorption of oxygen to the wear surface and wear particles. If the 

calcium sulphonate surfactants do not cover the wear particles and the surface of 

specimen, it is estimated that iron wear particles are attracted to the wear surface of the 

plate specimen. Then, the tangential load creates the shallow delamination area and 

scratches on the wear track of plate specimen. In particular, the delamination region 

may be easily oxidised to be increase the surface reactivity of the plate by magnetising 

it as shown in Figure 5.4.1(Yamamoto and Gondo 1987). The oxidation layer of the 

delamination area has not been identified by SEM analysis however it can be estimated 

by the existence of oxidised iron wear particles as shown in Figure 4.3.11 and 4.3.12. 

Furthermore, transfer particles on the wear track produced in the presence of magnetic 

field were found as shown in Figure 5.4.2. In addition, it is attributed that the lubricated 

sliding wear caused the delamination area of elongate shape by the inclusion of the wear 

debris.  

While the influence of magnetic field reduces the mass loss of plate under lubricated 

sliding, however, high magnetic flux density reduced the effectiveness of wear 

reduction compared with low magnetic flux density and produced the delamination area 

on the wear track  as a whole. These evidences suggest that the strength of magnetic 

flux density relates to the trapping iron wear particles. Therefore, the magnetic field 
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influences the mass loss and the surface roughness. 

In the wear particle formation, lubricated sliding wear under the influence at the 

magnetic field produces the split flaky particles because the iron wear particles of the 

interface between specimens are compressed to a low angle by the tangential load. 

 

 
Fig 5.4.1 Delamination area on the wear track of plate after 72x103 strokes 

 

 
Fig 5.4.2 Transfer particle on wear track produced in low magnetic flux density 

 

(a) 0T0 (b) 0.4T0 (c) 1.1T0 

The black region is at delamination area or grooves. 
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5.4.3 Suggested lubricated wear mechanism in the presence of 

magnetic field 

In lubricated sliding contact without magnetic field, wear debris produced are not 

attracted by the surface of specimens in order to be covered individually by the calcium 

sulphonate surfactant. In addition, the production of wear debris is continuously 

accumulating at the interface, and thus accelerates the abrasive action. In the case 

without the magnetic field, oxygen is not adsorbed to the iron wear particles and the 

wear surface of the plate specimen. 

On the other hand, magnetic field removes the iron wear particles from the interface 

region between specimens and increases the fluidity of lubricant. Lubricated sliding 

wear polishes the interface and produces fine wear particles. Also, iron wear particles 

produced are moved to the outside of wear track by the influence of magnetic field (see 

Figure 5.4.3a). Scratches on the plate specimen are mainly created by silicon wear 

particles. Iron wear particle creates a scratch and a delamination region. In addition, the 

wear surface created by magnetisation attracts the iron wear particles and induces the 

transfer of the wear particles (see Figure 5.4.3b). However, the calcium sulphonate 

surfactant (Ca++ and CaCO3) does not reinsert itself to the delamination region, hence, it 

is estimated that the region is oxidised. The wear with magnetic field is decreased 

comparing to that without magnetic field because wear debris are removed from 

interface region by magnetic field. High magnetic flux density increases the transfer 

particles on the wear surface of plate specimen. The surface of plate specimen mainly 

consists of jagged delamination regions and as a result, wear increases.  
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Fig 5.4.3 Recommendation of lubricated wear mechanism in the presence of magnetic field 

 

After detached debris, a 
delaminated area is oxidised 

Oxygen 

Ca++ and CaCO3 adsorb plate and debris and are lost along with body debris.   
  

The oxidised delamination region causes wear reduction. 

Ball specimen 

Plate specimen 

Lubricant which contains wear 
debris 

Magnetic attractive force pulls up 
iron wear particles to outside. 

Plate and debris are covered by Ca++ and 
CaCO3, these repel oxygen. 

Wear particles abrasive and 
adhesive the surface of plate 

Delamination 

Iron wear particle 

Large iron wear particles sink. 

(b) Detail description of the lubricated wear mechanism in presence 
of magnetic field 

(a) Under presence of magnetic field 

Scratches are not oxidised. 
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5.5 Effect of magnetic field on high frequency sliding contacts 

5.5.1 Comparison between low frequency and high frequency dry 

sliding experiment 

First of all, it is necessary to outline common points between low frequency dry sliding 

wear experiment and high frequency sliding contact experiment in order to understand 

the influence of the magnetic field with the high frequency sliding. In sliding test using 

machine A and B, low frequency without magnetic field alters the surface roughness on 

the wear track of the plate specimens. The cause can be demonstrated at different 

frequencies which are 0.3 and 1.75 Hz. However, the surface roughness of the wear 

track shows a stable tendency (see Figure 5.5.1). And results in adhesive wear transition 

evidenced by observations of the wear track. Thus, it is assumed that it does not 

influence sliding wear in the presence of magnetic field. Experimental measurements of 

surface roughness show a significant different tendency revealed by further tests (see 

Figure 5.5.1b). It is estimated that the intensity of magnetic field is weak in contact 

regions shown in Table 5.5.1. Therefore, it is quite likely that the influence of magnetic 

field on tribological characteristics is small compared with the wear test in presence of 

magnetic field carried out using test machine A. 
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Fig 5.5.1 Surface roughness of plate at low frequency  

 
Table 5.5.1 Magnetic flux density B (T) of contact surface or nearby contact surface which uses 

rare earth magnets, are indicated in Figure 5.5.2 
Sliding 

wear test  
Combination of 
test specimen A B C D E 

Machine 
A 

Si3N4 ball vs. 
Mild steel plate 0.0001 0 0.92 0 0.0001 

Machine 
B 

Si3N4 ball vs. 
Mild steel plate 0 0.33 0.20 0.18 0 

Steel ball vs. 
Mild steel plate 0 0.25 0.24 0.20 0 

 

 
Fig 5.5.2 Distribution map of magnetic flux density at nearby contact surface 

A and E point: Air 

B and D point: The 
side of contact area 

C point: the bottom of 
contact surface 
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5.5.2 Influence of magnetic field combined with high frequency sliding 

Using the paramagnetic ball and the ferromagnetic plate, the increase of sliding 

frequency at the presence of magnetic field is compared with the sliding contact in the 

absence of magnetic field. Firstly, it brought a larger change in the topography of the 

wear track. In an intermediate frequency, the oxidation formation on the wear track of 

the plate specimen appears at high magnetic flux density. However, it is estimated that 

the formation of brittle oxide layer on the surface is facilitated by the presence of 

magnetic field because of a deeper wear track. Thus, it is assumed that the influence of 

magnetic field is manifested by the formation of brittle oxides such as FeO (Stachowiak 

2005 p.588). 

In addition, magnetic field with the high frequency sliding lowered the surface 

roughness of the wear track on the plate specimen. Furthermore, it is assumed that high 

frequency sliding is associated with the mild (oxidative) to severe (adhesive) wear 

transition reported by Hirazuka et al (1989). In that connection, Zaidi et al (2007) also 

report the enhancement of the ferromagnetic oxide by carrying out tests on the 

magnetised sliding contacts with perpendicular magnetic field direction.  

Therefore, it is possible to say that high frequency sliding is enhancing the adsorption of 

oxygen to oxide iron such as FeO because the mild wear is associated with the 

formation of protective oxides such as Fe3O4 (Stachowiak 2005 p.588). 

In conclusion, it can be said that the increase in sliding frequency reduces, in principle, 

the mass loss and lowers the surface roughness of the plate specimen in the presence of 

magnetic field. 

If that is the case, it is justified to say that external magnetic field enhances 

chemisorptions activity by oxygen and the ferromagnetic material as reported by 
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Hiratsuka and Sasada (1986). The external magnetic field in high frequency sliding 

contacts has negligible effects on the wear debris on the wear track. Also, the intensity 

of magnetisation flow toward the ball from the contact surface of the plate specimen is 

low (see Table 5.5.1 and Figure 5.5.2). Thus, it is supposed that the influence of internal 

magnetic field induces the enhancement of the chemisorptions activity of oxygen on a 

ferromagnetic material. 

 

5.5.3 Wear debris behaviour in the presence of magnetic field 

35 degree orientation of the magnetic field combined with high frequency shows 

increasing wear trend and decreasing Ra value. Besides, it forms different appearance of 

wear surface forward on plate specimen. For instance, it is fine particles aligned in the 

same direction or it is the black region formation as shown in Figure 4.4.11 to 4.4.13. 

Thus, it is estimated that these results are attributed to the magnetic field controlling the 

behaviour of wear debris in the contact area. In other words, it is helping to explain the 

influence of the magnetic field on the contact area and to elucidate why different 

magnetic field orientations contribute to forms different appearances of wear track. 

In sliding contact of ferromagnetic materials couples at low sliding frequency, the 

accumulation layer of striped pattern of a wide line was formed on the wear track in the 

absence of the magnetic field. However, the wear track in the presence of magnetic field 

is covered in narrow lines consisting of the iron oxide spreading linearly in the sliding 

direction (see Figure 4.4.23 and 4.4.25).  

Therefore, these observations may provide evidence linking the magnetic field to the 

wear debris behaviour that oxide iron wear particles are moved or attracted toward the 

permanent magnets along the lines of magnetic force. In other words, it is possible to 
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say that the magnetic field aligns wear particles, which are estimated to be iron or oxide 

iron, parallel to wear side of the magnetic field direction.  

Meanwhile, high frequency sliding combined with the magnetic field covers the contact 

area of the plate with oxidised iron caused by gathering oxide iron wear particles (see 

Figure 4.4.24, 4.4.25 and 5.5.3). It arranges lines of magnetic force through the 

accumulation of the oxide iron wear particles from the plate specimen in the vertical 

direction. Therefore, it is estimated that piled oxide iron wear particles did not form a 

striped pattern. 

 

 

Fig 5.5.3 Comparison of piled wear debris up on the central wear track of the plate specimen, 
which was produced by the sliding contacts test of paramagnetic/ferromagnetic couples sliding 

at high frequency 
 

Furthermore, the formation of black or white region consisting of the silicon and iron 

can be explained based on the reasoning mentioned above. The magnetic field improves 

the fluidity of wear debris between the contact areas in order to align iron wear particles 

to the 35 degrees orientation of the magnetic field. Furthermore, the phenomenon may 

cause rotary motion of silicon wear particles and may be associated with the formation 

of a dent indicated in Figure 5.5.4. The white and black region formation process is 
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explained briefly in the next section.  

In conclusion, the presence of the magnetic field leads the iron wear debris toward the 

permanent magnets and alters the fluidity of the wear debris.  

 

 
Fig 5.5.4 Detailed black region on the wear track, low frequency sliding contact combines with 

35 degree orientation of magnetic field 
 

 
5.5.4 Suggested mechanism for high frequency sliding contacts in the 

presence of magnetic field 

The mechanism for 0 and 35 degree orientations of magnetic field has common features. 

Iron wear particles are attracted by the permanent magnets and move along in the 

magnetic field direction. Meanwhile, silicon wear particles move along in the sliding 

direction. In other words, the 0 degree orientation of magnetic field forms a right angle 

to the sliding direction. Thus, the movements of silicon wear particles are hindered by 
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the interference of iron wear particles being attracted in the magnetic field direction. 

Low sliding frequency with magnetic field (see Figure 5.5.5) 

At first, the grits, which are forward by silicon wear particles detached from wear 

surface of the ball specimen, remove the oxide film from the contact area without 

causing interference with underlying iron (Stachowiak 2005 p.580). However, the 

movement of grits is interfered with by the iron wear particles. Then, the angle of the 

pressure changes due to the decrease of the movement of the wear debris forward by 

grits. Finally, the grits are stuck into the contact area.  

Meanwhile, the 35 degree orientations of magnetic field smoothes the movement of 

wear debris. Therefore, it is estimated that the frictional coefficient is lower compared 

with 0 degree orientation of magnetic field. Finally, it rolls the grits, and it makes plenty 

of dents in the contact area by the rolling movement of grits. 

 

Intermediate sliding frequency with magnetic field 

The influence of the intermediate sliding frequency with magnetic field consists in that 

the increase in the frequency grows in thickness of the oxide film (Stachowiak 2005 

p.582). On the other hand, some of detaching oxide iron wear particles are piled up for 

surface asperities of the contact area of the plate specimen and makes the bulge. The 

bulge is deformed by opposite surface asperities.  

In 35 degree orientation of magnetic field plenty of small bulges are formed in the 

contact area of plate specimen because the bulges are not removed by the grits. On the 

other hand, the grits cause the rolling movement and make the dents in the contacting 

asperities. Finally, wear track is created which has plenty of deformed bulge and dents. 
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Fig 5.5.5 Mechanism of the low frequency sliding contacts with the magnetic field, the red and 

purple arrows denote movement behaviour of the grit or iron wear particles. 
 

High sliding frequency with magnetic field 

At first, 0 degree orientation of the magnetic field combined with high frequency 

produces fine wear debris consisting of magnetised oxide iron wear particles and silicon 

wear particles. Then, the iron oxide wear particles are piled up and a bulge is formed. 

Finally, the size of the bulge is expanding by the piled iron wear particle and sliding 

contact. The reason, is that the presence of magnetic field enhances chemical adsorption 

activity of iron wear particles or oxide iron wear particles and oxygen. Accumulation of 

magnetised iron oxide particles is tracking the iron wear particles.  

(a-1) Abrasive wear: Generation of 
the wear debris, iron and silicon wear 

particles 

Sliding direction Si3N4 ball 

Mild steel plate 

(a-2) Abrasive wear: The grits, silicon wear 
particles, remove the oxide film. 

(a-3) Abrasive wear: The some grits are 
stuck in the oxide film. 

Grit 

(b-2) Abrasive wear: Iron and silicon wear particles move 
smoothly in the close direction. However, the rolling movement 

of the grit makes a dent in the contact asperity 

(b) 35 degree orientations of magnetic 
 

(b-1) Abrasive wear: 
Generation of the wear debris, 
iron and silicon wear particles 

 

Oxide film 

(a) 0 degree orientation of magnetic field 
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For 35 degrees orientation of the magnetic field smooth wear surface and clear lines of 

the bulge aligned with the sliding direction are formed. 
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Chapter 6 Conclusions and future study 

6.1 Conclusions 

The goal of the study is to clarify the effect and mechanism of horizontal magnetic field 

on tribological characteristics of sliding contacts through experimental approach. In 

order to accomplish the goal, experimental investigations have been carried out for 

different directions of magnetic field, different contact conditions, different surface 

modifications and two sliding frequencies, using a ball-on-plate contact configuration. 

 

In conclusion, the influence of the magnetic field on dry sliding contacts weakens 

internal structure of uncoated ferromagnetic material however strengthens the 

following: 

 Removal of the iron wear particles from contact zone 

 Chemical adsorption activity of iron wear particles or oxide iron wear particles   

 

In low sliding frequency combined with magnetic field,  

 The prevailing wear mechanism is weakened due to the low frictional 

temperature, and the removal of bulging 

 The bulging formation process is postulated to be generated by accumulation of 

anti-ferromagnetic material produced by oxidation at low temperature and the 

oxygen adsorption due to influence of the magnetic field. 

 When the orientation of the magnetic field is parallel to the sliding direction, it 

increases the surface roughness and the mass losses of the uncoated plate. 
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In high sliding frequency combined with magnetic field, 

 Adsorption of the oxygen is enhanced by oxide iron such as FeO because the 

mild wear is associated with the formation of protective oxides such as Fe3O4.  

 The increase in sliding frequency reduces, in principle, the mass loss and lowers 

the surface roughness of the plate specimen in the presence of magnetic field. 

 Enhanced chemisorption activity of oxygen by a ferromagnetic material due to 

the influence of internal magnetic field is postulated. 

 

In 35 degree orientation of the magnetic field combined with high sliding 

frequency, 

 Trend in wear rate is increased and the Ra value is decreased. 

 Distinctly different appearances of wear surface are created on plate specimen.  

 It is estimated that these results are attributed to the magnetic field controlling 

the behaviour of wear debris in the contact area. In addition, the presence of the 

magnetic field alters the “fluidity” of the wear debris, movement. 

 

In dry sliding contact on the carbon steel coating in the presence of magnetic field, 

The fall of the micro-Vickers hardness of the carbon steel coating by approximately 

12% temporarily in the presence of magnetic field suggests that the adhesive strength of 

the interface between oxide layer and steel layer is decreased by the influence of 

magnetic field.  
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 Magnetic field influences the carbon steel coating by a significant decrease of 

the mass loss and a fall of the surface roughness.  

 Minute wear particles are generated.  

 The progress of wear takes place at the interface between steel layer and oxide 

steel layer.  

 The carbon steel layer wears slowly because initial cracks occur in oxides 

surrounding it. 

 
In the presence of magnetic field on lubricated sliding contact,   

 The jagged delamination region is the oxygen state that is easily adsorbed. 

 Acceleration of the abrasive action is caused. 

 Mass loss of plate specimen is reduced. 

It is postulated that the above is caused by the influence of magnetic field on the 

electrical charge of the wear surface of Si3N4 ball. 
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6.2 Recommendations for Future Work 

This study revealed some problems that remain to be solved, and also it identified new 

problems.  

At first, the bulging formation process which is occurring at low sliding frequency 

combined with magnetic field is not completely clarified whether the accumulation 

consists of anti-ferromagnetic material or not. If it is anti-ferromagnetic material, it may 

be effective in preventing of surface activity. Therefore, it is indescribable to identify 

the mechanism of bulge formation in detail. 

  

This study postulates that the presence of the magnetic field alters the behaviour of wear 

debris. The increased “fluidity” of wear debris movement may contribute to the control 

wear. Moreover, this phenomenon might induce the variation of frictional coefficient. 

Therefore, the frictional coefficient under different orientations of magnetic field ought 

to be evaluated in experimental research combined with computer simulation. 

 

Finally, the decrease in the adhesive strength of the interface between oxide layer and 

steel layer of the carbon steel coating is suggested. However, it has not been fully 

demonstrated through the evaluation of tribological characteristics of a sliding contact 

under the influence of magnetic field. Therefore, it is suggested that the elucidation of 

the crack formation mechanism related to the dislocations behaviour into the internal 

structure of the carbon steel coating is undertaken. 

  



Appendix A 

217 

Appendix A Fabrication procedure of thermal spray coating plate and 

general properties of thermal spray process 

Firstly, the surface of a mild steel plate, it is countersunk rectangular plate, was stuck 

masking tape on both end of the plate. Secondly, it was sandblasted on the surface of the 

plate in order to clean. The surface treatment was to blow the alumina powder with 

pressure of 0.6 MPa. Thirdly, the plate was preheated by plasma to improve the 

adherent strength of coating and substance. Then, it was sprayed iron or austenite 

stainless steel by APS process. The characteristic of the powders are shown in Figure 

A-1 and A-2 and Table A-1 and A-2. The parameter of the APS is shown in Table A-3. 

Finally, the surface was polished with the abrasive paper (number 2400) before the plate 

specimen is used in sliding contact experiment. The thickness of thermal spray coating 

respectively is approximately 250 µm. Surface treatment by blast processing and APS 

process were conducted at Ashikaga Institute of Technology in Japan. 
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Table A-1 Carbon steel powder, thermal spray powder 

Company : Sulzer Metco 

Name : SULZER 4052 Low Alloy Steel Powder 

Magnetism : Strong 

Chemistry : Fe 1.4Cr 1.4Mn 1.2C 

Particle Size : -38 +15μm (-400 mesh +15μm) 

Morphology : Spheroidal, Gas Atomized 

 
Table A-2 Austenite stainless steel powder, thermal spray powder 

Company : Praxiar 

Name : FE-101 

Magnetism : weak 

Chemistry : Bal.Fe, Cr17%, Ni12%, Mo2.5% 

Particle size : -45 μm/+15μm (-325 mesh/+15μm) 

Morphology : Atomized 

 

Table A-3   Parameters of APS process for iron coating and stainless steel coating   

Contents Unit Preheating Thermal spray 

Arc gas (psi), Argon 50 50 

Auxiliary gas (psi), Helium - 100 

Current (A) 500 800 

Power voltage (V) 30 32 

Hopper feed (rpm) - 1 

Carrier gas (psi), Argon - 40 

Spraying distance (mm) - 100 

Spraying pitch (mm/pitch) - 4 

Traverse speed (mm/s) 8000 8000 
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Fig A-1 XRD pattern and SEM image of the carbon steel powder 

 

 
Fig A-2 XRD pattern and SEM image of the austenite stainless steel powder 
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Appendix B Parameters for the flow of the magnetic field inside the 

test plate is analysed by Finite Element Analysis (FEA) (see section 3.5) 

Table B-1 Model scale (single section) 
Zone Element type Material property Size, mm 

Air (vacuum) Plane13 Relative permeability =1 - 
Magnetic body, 

Mild steel Plane13 B-H loop (see table2) Length 6, width 5 

Magnet, 
Rare earth magnet Plane13 

Relative permeability =1 
Coercive Force of flux 
density=-873105[A/m] 

Length 4, width 20 

Infinite boundary Infin110 Relative permeability =1 - 
Notice; defined element types was set up ‘Axisymmetric’. 

 

Table B-2 size of elements, (unit is metre) 
Zone Field Parameters 

Air X1 X2 -0.5 0.5 
Y1 Y2 -0.5 0.5 

Si3N4 and 
Steel ball 

Diameter D=0.00635 
Positioning X=0, Y=-0.0001, Z=0 

Specimen 
X1 X2 -0.0125 0.0125 

Y1 Y2 -0.00635 -0.00935 
(actual data is -0.00835) 

Magnet A X1 X2 0.0175 0.0375 
Y1 Y2 -0.00635 -0.00235 

Magnet B X1 X2 -0.0175 -0.0375 
Y1 Y2 -0.00635 -0.00235 

 
Mesh size 
Zone of Si3N4 ball is smart size, fine 1. Other zones are fine 6. 
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