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Abstract. An explicit asymptotic model for transient Love waves is de-
rived from the exact equations of anti-plane elasticity. The perturbation
procedure relies upon the slow decay of low frequency Love waves to
approximate the displacement field in the substrate by a power series in
the depth coordinate. When appropriate decay conditions are imposed
on the series, one obtains a model equation governing the displacement
at the interface between the coating and the substrate. Unusually, the
model equation contains a term with a pseudo-differential operator. This
result is confirmed and interpreted by analysing the exact solution ob-
tained by integral transforms. The performance of the derived model is
illustrated by numerical examples.
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1. Introduction

A. E. H. Love [15] gave the first example of a surface wave guided by a sub-
surface inhomogeneity. Motivated by the anti-plane problem of 2D elastic-
ity, Love’s original contribution focussed on the shear horizontal (SH) waves
guided by a layer bonded to a half-space. In contrast to the (non-dispersive)
Rayleigh waves, the resulting solutions were shown to form an infinite spec-
trum of dispersive modes propagating in a fixed range of phase velocities.
Subsequently, these results were generalised to multiple and/or periodic lay-
ers of anisotropic and functionally-graded materials, see [9, 3, 8, 22] and
references therein.

The research on Love waves and their generalisations has for a long time
been driven by applications to geophysics and ocean acoustics. This motivated
particular interest in the exact solutions of transient problems for sub-surface
sources and complex inhomogeneity profiles. For instance, the excitation of
Love waves by sub-surface sources was analysed in [19, 18]. Much has been
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written on the closely related problems in ocean acoustics, concerning the
transient response of Pekeris’ waveguide [17, 5, 7].

If one assumes that the solution is dominated by the low frequencies
or, equivalently, that a dominant wavelength greatly exceeds the thickness
of the coating layer, then the problem offers dramatic simplifications due
to the quasi-static conditions governing the field within the coating. The
dispersion of Love waves in this asymptotic regime has been studied in the
works [20, 21, 23]. It is worth remarking that the low-frequency asymptotics
are less relevant in ocean acoustics, because Pekeris’ waveguide does not have
a fundamental mode.

An elegant way to make use of the simplifications offered by the low fre-
quency regime in the presence of external forces originates from the work of
Achenbach, Keshava and Tiersten, see [2, 24], who showed that the response
of a thin coating can be reproduced by asymptotically equivalent effective
boundary condition(s), see also [4, 25, 6]. This methodology was recently
extended to develop explicit models for surface waves. In these models, solu-
tions of partial differential equations describing the evolution of the surface
wave serve as boundary conditions for the field in substrate [1, 12, 16, 14].

This paper is devoted to the analysis of the transient surface excitation
problem for SH Love waves in the limit of vanishing thickness of the coating
layer. The perturbation procedure implemented is novel in that it relies upon
the slow decay of low frequency Love waves to approximate the field in the
substrate by a power series in terms of the depth coordinate. The associated
asymptotic model is then generated by imposing an appropriate behaviour
of the displacement field at infinity. Unusually, the resulting low frequency
model for Love waves features a term with a pseudo-differential operator. The
exact integral transform solution of the problem is then studied to analyse the
significance of this result. The performance of the derived model is illustrated
by several numerical examples.

2. Statement of the problem

Consider an isotropic elastic layer of thickness H, bonded at the interface
y = 0 to the substrate of another isotropic elastic material occupying the
upper half-space y > 0, see Figure 1. The propagation of SH waves in this
setting is governed by the anti-plane equations of motion

∂2ul

∂x2
+

∂2ul

∂y2
=

1

c2l

∂2ul

∂t2
, (1)

∂2us

∂x2
+

∂2us

∂y2
=

1

c2s

∂2us

∂t2
, (2)

where u = u(x, y, t) is the out-of-plane displacement, c ≡
√

µ/ρ the shear
wave speed, µ the shear modulus and ρ the density. The subscripts “l” and
“s” are used to denote quantities related to the layer and the substrate,
respectively.
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Figure 1. The coordinate system used in the paper.

Love waves are harmonic plane wave solutions of the equations (1)–(2)
that satisfy the homogeneous boundary conditions
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, (3)

and are localised near the surface, i.e. decay exponentially in the substrate.
It is readily verified that the appropriate solutions are of the following form(

ul

us

)
= C

(
cos(plk(y +H))

cos(plkH) exp(−psky)

)
eik(x−vt) , (4)

where k is the wave number, pl =
√

χ2v2/c2s − 1 and ps =
√
1− v2/c2s. The

phase velocity v, cl < v < cs, must then satisfy the Love secular equation

tan(plkH) = γ
ps
pl

. (5)

The non-dimensional ratios of characteristic velocities and shear modulae, χ
and γ, that appear within (4)–(5) are defined by

χ =
cs
cl

, γ =
µs

µl
. (6)

The implicit relation (5) describes the dispersion of Love waves. Our main
focus in this paper is on those Love waves whose typical wavelength λ ≡ 1/k
is much larger than the thickness of the coating layer H. Thus, our problem
possesses a natural small parameter η ≡ H/λ = kH ≪ 1. The relation (5)
indicates that when η → 0, we have ps → 0, hence v/cs ∼ 1. Consequently,
the appropriately rescaled frequency ω̄ ≡ ωH/cs = vkH/cs ∼ η must also be
low. Further expansion of (5) yields

η = ω̄ +
(χ2 − 1)2

2γ2
ω̄3 +O(ω̄5) . (7)

This long wave limit may also be referred to as the low frequency limit.
The rest of the paper is concerned with the solution of inhomogeneous

problem, in which condition (3)1 is replaced by

µl
∂ul

∂y

∣∣∣∣
y=−H

= P , (8)
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with P = P (x, t) denoting the load on the surface of the coating. In prin-
ciple, this problem can be solved explicitly, for example, by the application
of Green’s function that is available in this case [7]. Nevertheless, our main
interest here is in the development of asymptotic methodologies that can be
applied to problems where no explicit Green’s function is available, see e.g.
[13].

3. Transient Love waves in a thin coating

Consider the situation when the wavelength λ dominating the dynamic re-
sponse is much longer than the coating thickness H. We begin the asymptotic
analysis of this problem by appropriately non-dimensionalising the governing
equations (1)–(2) and the boundary conditions (3)2,3 and (8). The space and
time coordinates are rescaled according to

x = λξ , y = Hζ, t =
λ

cs
τ . (9)

The appropriate displacement and stress fields are rescaled as

ul = λu∗
l , us = λu∗

s , P = ηµsP
∗ , (10)

with asterisks denoting non-dimensional quantities. The resulting boundary
value problem is then given by

∂2u∗
l

∂ζ2
+ η2J [u∗

l ] = 0 ,
∂2u∗

s

∂ζ2
− η4L[u∗

s] = 0 , (11)

∂u∗
l

∂ζ

∣∣∣∣
ζ=−1

= γη2P ∗ , u∗
l

∣∣
ζ=0

= u∗
s

∣∣
ζ=0

,
∂u∗

l

∂ζ

∣∣∣∣
ζ=0

= γ
∂u∗

s

∂ζ

∣∣∣∣
ζ=0

, (12)

in which we have introduced the operators

J ≡ ∂2

∂ξ2
− χ2 ∂2

∂τ2
and L ≡ η−2

(
∂2

∂τ2
− ∂2

∂ξ2

)
, (13)

such that J [u∗
l ] ∼ u∗

l and L[u∗
s] ∼ u∗

s. The fourth boundary condition for this
problem is furnished by requiring that the displacement field u∗

s is generated
solely by the surface source in (12)1 and, consequently, decays as ζ → ∞.

The solution is sought in the form of the ansatz

u∗
l (ξ, ζ, τ) = u

(0)
l + η2u

(2)
l + η4u

(4)
l + . . . , (14)

u∗
s(ξ, ζ, τ) = u(0)

s + η2u(2)
s + η4u(4)

s + . . . , (15)

where u(i) = u(i)(ξ, ζ, τ), with superscripts indicating the asymptotic orders
of the associated functions. Upon substituting this ansatz into the bound-
ary value problem (11)–(12) we end up with a hierarchy of boundary value
problems for various orders of η.
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The leading-order problem is given by

∂2u
(0)
l

∂ζ2
= 0 ,

∂2u
(0)
s

∂ζ2
= 0 , (16)

∂u
(0)
l

∂ζ

∣∣∣∣
ζ=−1

= 0 , u
(0)
l

∣∣
ζ=0

= u(0)
s

∣∣
ζ=0

,
∂u

(0)
l

∂ζ
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ζ=0

= γ
∂u

(0)
s

∂ζ

∣∣∣∣
ζ=0

. (17)

It is easily verified that the solutions of the equations (16) satisfying the
boundary conditions (17)1,3 can be written as

u
(0)
l = U

(0,0)
l (ξ, τ) , u(0)

s = U (0,0)
s (ξ, τ) . (18)

Here and henceforth we shall use double superscripts to indicate the quanti-
ties independent of the normal coordinate ζ. The remaining boundary con-
dition (17)2 requires that

U
(0,0)
l = U (0,0)

s . (19)

The leading order solution is now presented in terms of the function U
(0,0)
s ,

which is unspecified as of yet. This is the usual situation in applications of
asymptotic integration, see e.g. [13]. We expect to be able to identify this
function by considering boundary value problems of higher orders and taking
into account (still unspecified) conditions of decay at infinity.

The problem for the next order has the form

∂2u
(2)
l

∂ζ2
= −J [U (0,0)

s ] ,
∂2u

(2)
s

∂ζ2
= 0 , (20)

∂u
(2)
l

∂ζ

∣∣∣∣
ζ=−1

= γP ∗ , u
(2)
l

∣∣
ζ=0

= u(2)
s

∣∣
ζ=0

,
∂u

(2)
l

∂ζ

∣∣∣∣
ζ=0

= γ
∂u

(2)
s

∂ζ

∣∣∣∣
ζ=0

. (21)

The general solution of equations (20) may be written as

u
(2)
l = −1

2
J [U (0,0)

s ]ζ2 + U
(2,1)
l ζ + U

(2,0)
l , u(2)

s = U (2,1)
s ζ + U (2,0)

s . (22)

Upon invoking boundary conditions (21), most unknown quantities within (22)

can be expressed in terms of U
(0,0)
s and P ∗, which yields

U
(2,1)
l = −J [U (0,0)

s ] + γP ∗ , U
(2,0)
l = U (2,0)

s ,

U (2,1)
s = −γ−1J [U (0,0)

s ] + P ∗ .
(23)

It is worth noting that the leading order displacement U
(0,0)
s remains un-

specified, as well as the newly introduced displacement function U
(2,0)
s . To

determine these functions one needs to consider higher order problems.
The second order boundary value problem is given by

∂2u
(4)
l

∂ζ2
= −J [u

(2)
l ] ,

∂2u
(4)
s

∂ζ2
= L[u(0)

s ] , (24)

∂u
(4)
l

∂ζ

∣∣∣∣
ζ=−1

= 0 , u
(4)
l

∣∣
ζ=0

= u(4)
s

∣∣
ζ=0

,
∂u

(4)
l

∂ζ

∣∣∣∣
ζ=0

= γ
∂u

(4)
s

∂ζ

∣∣∣∣
ζ=0

. (25)



6 M. Ahmad, E. Nolde and A. V. Pichugin

The solution of this problem can be written in the form of polynomials in ζ

u
(4)
l =

4∑
i=0

U
(4,i)
l ζi , u(4)

s =
2∑

i=0

U (4,i)
s ζi , (26)

where

U
(4,4)
l =

1

24
J 2[U (0,0)

s ] , U
(4,3)
l =

1

6
J 2[U (0,0)

s ]− 1

6
γJ [P ∗] ,

U
(4,2)
l = −1

2
J [U (2,0)

s ] , U (4,2)
s =

1

2
L[U (0,0)

s ] .

(27)

The remaining quantities with a double superscript are found from boundary
conditions (21), with the result

U
(4,1)
l =− 1

3
J 2[U (0,0)

s ] +
1

2
γJ [P ∗]− J [U (2,0)

s ] ,

U (4,1)
s = γ−1U

(4,1)
l , U

(4,0)
l = U (4,0)

s .

(28)

Thus, the functions U
(4,i)
l and U

(4,j)
s (i = 1, 4, j = 0, 2) have now all been

expressed in terms of U
(0,0)
s and U

(2,0)
s . At the same time yet another un-

specified function U
(4,0)
s has arisen.

The solutions of the boundary value problems considered thus far may
be combined, with the resulting expansion for u∗

s of the form

u∗
s =

{
U (0,0)
s + η2U (2,1)

s ζ + η4U (4,2)
s ζ2

}
+ η2

(
U (2,0)
s + η2U (4,1)

s ζ
)
+ η4U (4,0)

s + . . . .
(29)

Solutions that satisfy the decay conditions at infinity must behave as an
exponential decaying as ζ → ∞. Note that all the quantities within the

braces only depend upon the unknown function U
(0,0)
s , but do not depend

upon U
(2,0)
s or U

(4,0)
s . Therefore, we observe that the decay conditions may

be satisfied to O(η2) by requiring that the terms in braces match the first

three terms in the formal series expansion of exp(−η2ζF)U
(0,0)
s , where F

is a pseudo-differential operator to be determined. The resulting matching
procedure requires one to satisfy the two relations

F2[U (0,0)
s ] = L[U (0,0)

s ] , F [U (0,0)
s ]− γ−1J [U (0,0)

s ] + P ∗ = 0 . (30)

From (30)1 we conclude that F = L 1
2 , so that (30)2 leads to the pseudo-

differential governing equation for the long wave displacement U
(0,0)
s given

by

L 1
2 [U (0,0)

s ]− γ−1J [U (0,0)
s ] = −P ∗ . (31)

It is worth remarking that the more accurate counterpart of (31), as well as

the governing equation for U
(2,0)
s , may be obtained by enforcing the decay

condition on the next order solution.
The long wave governing equation (31) describes the displacement at

the interface between the layer and the substrate as a function of the sur-
face loading. Hence, the solutions of initial/boundary value problems for a
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half-space with a thin coating can be found to within O(η2) by solving the
equation (31) subject to appropriate initial conditions. The associated dis-
placement fields can then be recovered using (14)–(15) and (22).

In the absence of the surface loads equation (31) can be satisfied by plane

wave solutions U
(0,0)
s = Uei(kx−ωt) ≡ Uei(ξ−ω̄τ/η), where we have re-used

some of the notation from Section 2. By inserting these solutions into (31)
and re-expanding the result for small ω̄ one obtains the approximate secular
equation (7) exactly, hence confirming the consistency of our approach.

4. Analysis of the exact solution

The described perturbation method does not provide any estimate for the
range of applicability of the governing equation (31). In order to better un-
derstand the assumptions underlying our low frequency model, the exact
integral transform solution of the original two-dimensional problem is con-
structed and analysed in this Section. This analysis will also provide an alter-
native demonstration of validity of the equation (31) and help in interpreting
the physical significance of the term with the pseudo-differential operator
appearing in (31).

Suppose that the (non-dimensional) boundary value problem (11), (12)
is solved subject to zero initial conditions. An application of the Fourier trans-
form with respect to longitudinal coordinate ξ, followed by an application of
the Fourier transform with respect to time τ , leads to the system of ordinary
differential equations

∂2uF
l

∂ζ2
+ q2l η

2uF
l = 0 ,

∂2uF
s

∂ζ2
− q2sη

2uF
s = 0 , (32)

with q2l ≡ χ2Ω2 − κ2 and q2s ≡ κ2 −Ω2; which must be solved subject to the
inhomogeneous boundary conditions

∂uF
l

∂ζ

∣∣∣∣
ζ=−1

= γη2PF , uF
l

∣∣
ζ=0

= uF
s

∣∣
ζ=0

,
∂uF

l

∂ζ

∣∣∣∣
ζ=0

= γ
∂uF

s

∂ζ

∣∣∣∣
ζ=0

, (33)

where

PF (κ,Ω) =

∫ ∞

−∞

∫ ∞

−∞
P ∗(ξ, τ) e−i(κξ−Ωτ) dτ dξ . (34)

This problem can be solved explicitly and, in particular, gives a simple ex-
pression for the transformed displacement field in the substrate,

uF
s = − ηPF e

−qsηζ

qs cos(qlη)− γ−1ql sin(qlη)
, (35)

which immediately leads to the exact formal solution for the displacement

us(ξ, ζ, τ) = − 1

4π2

∫ ∞

−∞

∫ ∞

−∞

ηPF e
−qsηζ

qs cos(qlη)− γ−1ql sin(qlη)
ei(κξ−Ωτ) dΩdκ .

(36)
Note that we fixed the branch of the radical implicit in the definition of pa-
rameter qs by requiring that ℜ(qs) > 0. A similar expression can be obtained
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−κ

κ

ℑ(Ω)

ℜ(Ω)

Figure 2. The choice of branch cuts and integration con-
tour in complex Ω plane for the inner Fourier integral in (36).

for displacement within the layer, however, it is omitted here for the sake of
brevity. Henceforth, we shall assume that κ is real and that we are working
in the complex Ω plane. Since we are interested in the far field (long time)
solutions at the interface ζ = 0, the decay of the right-propagating waves at
τ → ∞ requires that ℑ(Ω) 6 0. Similar argument applied to left-propagating
waves leads to the conclusion that the Ω-integration contour must be confined
to the second and fourth quadrants. A standard configuration of branch cuts
and integration contour for this type of problem is illustrated in Figure 2; a
detailed discussion of this choice is provided in [10] or, for a slightly different
problem of transient excitation of Pekeris’ waveguide, in [7].

For every fixed value of κ the transform solution (35) has a number of
singularities in complex Ω plane. These include one (or several) pairs of real
poles corresponding to Love wave modes; branch cuts emanating from the
branch points Ωs = ±κ, associated with the wave front propagating in the
substrate; as well as an infinite number of complex poles deep in the second
and fourth quadrants. The relative contributions of these singularities are,
to a large extent, determined by the function PF characterising the spectral
density of surface loading, see (34). The assumption that the coating layer is
thin is equivalent to saying that the parameter η is small in (35), so for a PF

that decays sufficiently rapidly as |Ω| → ∞ and |κ| → ∞, the response can
be dominated by the low frequency (low wave number) singularities of the
integrand. Henceforth, we assume that PF → 0 as |Ω| → ∞ and |κ| → ∞ in
such way that the denominator of (35) can be replaced by the first two terms
in its Maclauren series expansion in η. The resulting approximation may be
written as

uF
s ≈ − PF e

−qsηζ

qs/η − γ−1q2l
. (37)

If we specialise (37) to determine displacement field at the interface ζ =
0, then it is immediately clear that approximation (37) is fully equivalent
to pseudo-differential equation (31). The response associated with (37) is
dominated by contribution of the poles corresponding to the fundamental
Love wave mode, as well as by the contribution of adjacent branch cuts,
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Figure 3. Displacement at the interface us|ζ=0 produced
by the loading (38) is evaluated at three instants of time:
τ = 25, τ = 50 and τ = 75, where η = 0.5, χ = 1.2 and γ =
1.5. Exact and asymptotic solutions corresponding to (35)
and (37) are plotted as solid and dashed lines, respectively.

see Figure 2. When modelling non-dispersive surface waves in the far field,
one can often neglect the rapidly decaying contributions of the branch-cuts
related to the wave front, see e.g. [11, 12]. The vicinity of the Love wave poles
to the branch points precludes this possibility in our problem and explains the
necessity of having a pseudo-differential operator in the governing equation.

The applicability of the approximation (37) may be analysed more pre-
cisely by specifying an explicit form for the function PF . When the applied
loading is an appropriately scaled Gaussian distribution with respect to both
time and space, PF takes a particularly simple form

P ∗ = M
exp[−(ξ2 + τ2)/4a2]

4πa2
, so PF = M exp[−a2(κ2 +Ω2)] , (38)

with the non-dimensional magnitude M and the parameter a characterising
the degree of load concentration. The second pair of real poles in the de-
nominator of (35), omitted in the approximation (37), appears when qs and
sin(qlη) vanish simultaneously. This happens first when

Ω = κ =
π

2η
√

χ2 − 1
. (39)

By assuming that the material contrast is O(1), the contributions of the
second (and higher) pairs of real poles are negligible for the loading (38) as
long as a2/η2 ≫ 1.

The presented analysis was supported by brute-force numerical com-
putations of the integral (36). The load on the surface of the coating layer
was chosen in the form (38) with M = 100 and a = 1/3. The snapshots of
the displacement at the interface between the layer and the substrate were
then computed for several fixed instants of time. In our computations, the
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Figure 4. Displacement at the interface us|ζ=0 produced
by the loading (38) is evaluated at three instants of time:
τ = 25, τ = 50 and τ = 75, where η = 1.0, χ = 1.2 and γ =
1.5. Exact and asymptotic solutions corresponding to (35)
and (37) are plotted as solid and dashed lines, respectively.

conservative choices for η, which ensured that a2/η2 ≫ 1, resulted in ex-
cellent correspondence between the exact and approximate solutions, to the
point that their plots were indistinguishable. Therefore, we felt justified in
selecting relatively large values of η capable of exposing the deficiencies of
the approximate model.

The traces in Figure 3 show the evolution of the original Gaussian pulse
as it propagates away from the loading point along the half-space coated by a
relatively thin layer. The marked non-symmetry of the travelling disturbance
is explained by two effects: the low-frequency dispersion of the Love funda-
mental mode, which results in the oscillations trailing the main pulse, and
the contribution of the wave front, which caused the long tail of the distur-
bance. The principal deficiency of the approximate model manifests itself as
a phase error best seen in the oscillatory trail of the propagating Gaussian.
As the relative thickness of the coating grows, the inaccuracies involved in
using (37) (or, equivalently, (31)) increase, so that both phase and magnitude
of the propagated disturbance become distorted. This is best evidenced by
Figure 4 computed for a thicker coating.
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