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This paper introduces a novel methodology that combines the multiresolution feature of the discrete wavelet transform (DWT)
with the local interactions of the facial structures expressed through the structural hidden Markov model (SHMM). A range of
wavelet filters such as Haar, biorthogonal 9/7, and Coiflet, as well as Gabor, have been implemented in order to search for the best
performance. SHMMs perform a thorough probabilistic analysis of any sequential pattern by revealing both its inner and outer
structures simultaneously. Unlike traditional HMMs, the SHMMs do not perform the state conditional independence of the visible
observation sequence assumption. This is achieved via the concept of local structures introduced by the SHMMs. Therefore, the
long-range dependency problem inherent to traditional HMMs has been drastically reduced. SHMMs have not previously been
applied to the problem of face identification. The results reported in this application have shown that SHMM outperforms the
traditional hidden Markov model with a 73% increase in accuracy.
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1. INTRODUCTION

With the current perceived world security situation, govern-
ments, as well as businesses, require reliable methods to ac-
curately identify individuals, without overly infringing on
rights to privacy or requiring significant compliance on the
part of the individual being recognized. Person recognition
systems based on biometrics have been used for a signifi-
cant period for law enforcement and secure access. Both fin-
gerprint and iris recognition systems are proven as reliable
techniques; however, the method of capture for both lim-
its their versatility [1]. Although face recognition technol-
ogy is not as mature as other biometric verification meth-
ods, it is the subject of intensive research and may provide
an acceptable solution to some of the problems mentioned.
As it is the primary method used by humans to recognize
each other, and because an individual’s face image is already
stored in numerous locations, it is seen as a more acceptable
method of automatic recognition [2]. A robust face recogni-
tion solution has many potential applications. Business orga-
nizations are aware of the ever-increasing need for security,

this is mandated not only by both their own desire to protect
property and processes, but also by their workforce’s increas-
ing demands for workplace safety and security [3]. Local law
enforcement agencies have been using face recognition for
rapid identification of individuals suspected of committing
crimes. They have also used the technology to control ac-
cess at large public gatherings such as sports events, where
there are often watchlists of known trouble-makers. Simi-
larly, face recognition has been deployed in national ports-
of-entry, making it easier to prevent terrorists from entering
a country.

However, face recognition is a more complicated task
than fingerprint or iris recognition. This is mostly due to the
increased variability of acquired face images. Whilst controls
can sometimes be placed on face image acquisition, for ex-
ample, in the case of passport photographs, in many cases
this is not possible. Variation in pose, expression, illumi-
nation, and partial occlusion of the face therefore become
nontrivial issues that have to be addressed. Even when strict
controls are placed on image capture, variation over time of
an individual’s appearance is unavoidable, both in the short
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term (e.g., hairstyle change) and in the long term (aging pro-
cess). These issues all increase the complexity of the recogni-
tion task [4].

A multitude of techniques have been applied to face
recognition and they can be separated into two categories:
geometric feature matching and template matching. Geo-
metric feature matching involves segmenting the distinctive
features of the face, eyes, nose, mouth, and so on, and ex-
tracting descriptive information about them such as their
widths and heights. Ratios between these measures can then
be stored for each person and compared with those from
known individuals [5]. Template matching is a holistic ap-
proach to face recognition. Each face is treated as a two-
dimensional array of intensity values, which is compared
with other facial arrays. Techniques of this type include prin-
cipal component analysis (PCA) [6], where the variance
among a set of face images is represented by a number of
eigenfaces. The face images, encoded as weight vectors of the
eigenfaces, can be compared using a suitable distance mea-
sure [7, 8]. In independent component analysis (ICA), faces
are assumed to be linear mixtures of some unknown latent
variables. The latent variables are assumed non-Gaussian and
mutually independent, and they are called the independent
components of the observed data [9]. In neural network
models (NNMs), the system is supplied with a set of train-
ing images along with correct classification, thus allowing the
neural network to ascertain a weighting system to determine
which areas of an image are deemed most important [10].

Hidden Markov models (HMMs) [11], which have been
used successfully in speech recognition for a number of
decades, are now being applied to face recognition. Samaria
and Young used image pixel values to build a top-down
model of a face using HMMs. Nefian and Hayes [12] modi-
fied the approach by using discrete cosine transform (DCT)
coefficients to form observation vectors. Bai and Shen [13]
used discrete wavelet transform (DWT) [14] coefficients
taken from overlapping image subwindows taken from the
entire face image, whereas Bicego et al. [15] used DWT coef-
ficients of subwindows generated by a raster scan of the im-
age.

As HMMs are one dimensional in nature, a variety of
approaches have been adopted to try to represent the two-
dimensional structure of face images. These include the 1D
discrete HMM (1D-DHMM) approach [16], which models a
face image using two standard HMMs, one for observations
in the vertical direction and one for the horizontal direction.
Another approach is the pseudo-2D HMM (2D-PHMM)
[17], which is a 1D HMM, composed of super states to model
the sequence of columns in the image, in which each super
state is a 1D-HMM, itself modeling the blocks within the
columns. An alternative approach is the low-complexity 2D-
HMM (LC 2D-HMM) [18], which consists of a rectangu-
lar constellation of states, where both vertical and horizon-
tal transitions are supported. The complexity of the LC 2D-
HMM is considerably lower than that of the 2D-PHMM and
the two-dimensional HMM (2D-HMM), however, recogni-
tion accuracy is lower as a result. The hierarchical hidden
Markov models (HHMMs) introduced in [19] and applied
in video-content analysis [20] are capable of modeling the

complex multiscale structure which appears in many natural
sequences. However, the original HHMM algorithm is rather
complicated since it takes O(T3) time, where T is the length
of the sequence, making it impractical for many domains.

Although HMMs are effective in modeling statistical in-
formation [21], they are not suited to unfold the sequence of
local structures that constitutes the entire pattern. In other
words, the state conditional independence assumption inher-
ent to traditional HMMs makes these models unable to cap-
ture long-range dependencies. They are therefore not opti-
mal for handling structural patterns such as the human face.
Humans distinguish facial regions in part due to our ability
to cluster the entire face with respect to some features such
as colors, textures, and shapes. These well-organized clus-
ters sensed by the human’s brain are the facial regions such
as lips, hair, forehead, eyes, and so on. They are all com-
posed of similar symbols that unfold their global appear-
ances. One recently developed model for pattern recognition
is the structural hidden Markov model (SHMM) [22, 23].
To avoid the complexity problem inherent to the determina-
tion of the higher level states, the SHMM provides a way to
explicitly control them via an unsupervised clustering pro-
cess. This capability is offered through an equivalence re-
lation built in the visible observation sequence space. The
SHMMs approach allows both the structural and the statisti-
cal properties of a pattern to be represented within the same
probabilistic framework. This approach also allows the user
to weight substantially the local structures within a pattern
that are difficult to disguise. This provides an SHMM rec-
ognizer with a higher degree of robustness. Indeed, SHMMs
have been shown to outperform HMMs in a number of ap-
plications including handwriting recognition [22], but have
yet to be applied to face recognition. However, SHMMs are
well-suited to model the inner and outer structures of any
sequential pattern (such as a face) simultaneously.

As well as being used in conjunction with HMMs for face
recognition, DWT has been coupled with other techniques.
Its ability to localize information in terms of both frequency
and space (when applied to images) makes it an invaluable
tool for image processing. In [24], the authors use it to ex-
tract low frequency features, reinforced using linear discrim-
inant analysis (LDA). In [25], wavelet packet analysis is used
to extract rotation invariant features and in [5], the authors
use it to identify and extract the significant structures of the
face, enabling statistical measures to be calculated as a re-
sult. DWT has also been used for feature extraction in PCA-
based approaches [26, 27]. The Gabor wavelet in particular
has been used extensively for face recognition applications.
In [28], it is used along with kernel PCA to recognize faces
where a large degree of rotation is present, whereas in [29],
AdaBoost is employed to select the most discriminant Gabor
features.

The objective of the work presented in this paper is to de-
velop a hybrid approach for face identification using SHMMs
for the first time. The effect of using DWT for feature extrac-
tion is also investigated, and the influence of wavelet type is
analyzed.

The rest of this paper is organized as follows. Section 2
describes face recognition using an HMM/DWT approach.
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Section 3 proposes the use of SHMM for face recognition.
Section 4 describes the experiments that were carried out and
presents and analyzes the results obtained. Section 5 contains
concluding remarks.

2. RECOGNITION USING WAVELET/HMM

2.1. Mathematical background

(1) Discrete wavelet transform

In the last decade, DWT has been recognized as a powerful
tool in a wide range of applications, including image/video
processing, numerical analysis, and telecommunication. The
advantage of DWT over existing transforms such as discrete
Fourier transform (DFT) and DCT is that DWT performs a
multiresolution analysis of a signal with localization in both
time and frequency [14, 30]. In addition to this, functions
with discontinuities and functions with sharp spikes require
fewer wavelet basis vectors in the wavelet domain than sine-
cosine basis vectors to achieve a comparable approximation.
DWT operates by convolving the target function with wavelet
kernels to obtain wavelet coefficients representing the con-
tributions of wavelets in the function at different scales and
orientations.

DWT can be implemented as a set of filter banks, com-
prising a high-pass and low-pass filters. In standard wavelet
decomposition, the output from the low-pass filter can then
be decomposed further, with the process continuing recur-
sively in this manner. DWT can be mathematically expressed
by

DWTx(n)=

⎧
⎪⎨

⎪⎩

dj,k =
∑
x(n)h∗j

(
n− 2 jk

)
,

aj,k =
∑
x(n)g∗j

(
n− 2 jk

)
.

(1)

The coefficients dj,k refer to the detail components in sig-
nal x(n) and correspond to the wavelet function, whereas aj,k
refer to the approximation components in the signal. The
functions h(n) and g(n) in the equation represent the co-
efficients of the high-pass and low-pass filters, respectively,
whilst parameters j and k refer to wavelet scale and transla-
tion factors. Figure 1 illustrates DWT schematically.

For the case of images, the one-dimensional DWT can
be readily extended to two dimensions. In standard two-
dimensional wavelet decomposition, the image rows are
fully decomposed, with the output being fully decomposed
columnwise. In nonstandard wavelet decomposition, all the
rows are decomposed by one decomposition level followed
by one decomposition level of the columns.

The decomposition continues by decomposing the low
resolution output from each step, until the image is fully
decomposed. Figure 2 illustrates the effect of applying the
nonstandard wavelet transform to an image from the AT&T
Database of Faces [31]. The wavelet filter used, number of
levels of decomposition applied, and quadrants chosen for
feature extraction are dependent upon the particular appli-
cation. For the experiments described in this paper, the non-
standard DWT is used, which allows for the selection of ar-
eas with similar resolutions in both horizontal and vertical

directions to take place for feature extraction. For further in-
formation on DWT, see [32].

(2) Gabor wavelets

Gabor wavelets are similar to DWT, but their usage is dif-
ferent. A Gabor wavelet is convolved with an image either
locally at selected points in the image, or globally. The out-
put reveals the contribution that a frequency is making to the
image at each location. A Gabor wavelet ψu,v(z) is defined as
[28]

ψu,v(z) =
∥
∥ku,v

∥
∥2

σ2
e−(‖ku,v‖2‖z‖2)/2σ2[

eiku,vz − e−σ2/2], (2)

where z = (x, y) is the point with the horizontal coordinate x
and the vertical coordinate y. The parameters u and v define
the orientation and scale of the Gabor kernel, ‖·‖ defines the
norm operator, and σ is related to the standard deviation of
the Gaussian window in the kernel and determines the ratio
of the Gaussian window width to the wavelength. The wave
vector ku, v is defined as follows:

ku,v = kve
iφu , (3)

where kv = kmax / f v and φu = πμ/n if n different orienta-
tions have been chosen. kmax is the maximum frequency, and
f v is the spatial frequency between kernels in the frequency
domain.

(3) Hidden markov models

HMMs are used to characterize the statistical properties of a
signal [11]. They have been used in speech recognition ap-
plications for many years and are now being applied to face
recognition. An HMM consists of a number of nonobserv-
able states and an observable sequence, generated by the in-
dividual hidden states. Figure 3 illustrates the structure of a
simple HMM.

HMMs are defined by the following elements.

(i) N is the number of hidden states in the model.
(ii) M is the number of different observation symbols.

(iii) S = {S1, S2, . . . , SN} is the finite set of possible hidden
states. The state of the model at time t is given by qt ∈
S, 1 ≤ t ≤ T , where T is the length of the observation
sequence.

(iv) A = {ai j} is the state transition probability matrix,
where

ai j = P
[
qt+1 = Sj | qt = Si

]
, 1 ≤ i, j ≤ N , (4)

with

0 ≤ ai, j ≤ 1,
N∑

j=1

ai j = 1, 1 ≤ i ≤ N.
(5)



4 EURASIP Journal on Advances in Signal Processing

x(n)

First-level

Low-
pass

High-
pass

2

2

Second-level

Low-
pass

High-
pass

2

2

Third-level

Low-
pass

High-
pass

2

2

Approximate

signal (a3)

Detail 3 (d3)

Detail 2 (d2)

Detail 1 (d1)

Figure 1: A three-level wavelet decomposition system.
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Figure 2: Wavelet transform of image: (a) original image, (b) 1-
level Haar decomposition, (c) complete decomposition.
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Figure 3: A simple left-right HMM.

(i) B = {bj(k)} is the emission probability matrix, indi-
cating the probability of a specified symbol being emit-
ted given that the system is in a particular state, that is,

bj(k) = P
[
Ot = k | qt = Sj

]
(6)

with 1 ≤ j ≤ N and Ot is the observation symbol at
time t.

Face image being
segmented into strips

j

k

Face strip being
segmented into blocks

Face blockj

k

p

p

· · ·

···

Figure 4: An illustration showing the creation of the block se-
quence.

(ii) Π = {πi} is the initial state probability distribution,
that is,

πi = P[q1 = Si], 1 ≤ i ≤ N , (7)

with πi ≥ 0 and
∑ N

i=1πi = 1.
An HMM can therefore be succinctly defined by the
triplet

λ = (A,B,Π). (8)

HMMs are typically used to address three unique
problems [11].

(i) Evaluation. Given a model λ and a sequence of obser-
vationsO, what is the probability thatO was generated
by model λ, that is, P(O | λ).

(ii) Decoding. Given a model λ and a sequence of ob-
servations O, what is the hidden state sequence q∗

most likely to have produced O, that is, q∗ =
arg max q[P(q | λ,O)].

(iii) Parameter estimation. Given an observation sequence
O, what model λ is most likely to have produced O.

For further information on HMMs, see [11].

2.2. Recognition process

(1) Training

The first phase of identification is feature extraction. In the
cases where DWT is used, each face image is divided into
overlapping horizontal strips of height j pixels where the
strips overlap by p pixels. Each horizontal strip is subse-
quently segmented vertically into blocks of width k pixels,
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with overlap of p. This is illustrated in Figure 4. For an im-
age of width w and height h, there will be approximately
(((h/( j − p)) + 1)∗(w/(k − p)) + 1) blocks.

Each block then undergoes wavelet decomposition, pro-
ducing an average image and a sequence of detail images.
This can be shown as [aJ, {d1

j ,d
2
j ,d

3
j } j=1,...,J] where aJ refers to

the approximation image at the Jth scale and dkj is the detail
image at scale j and orientation k. For the work described,
4-level wavelet decomposition is employed, producing a vec-
tor with one average image and twelve detail images. The L2
norms of the wavelet detail images are subsequently calcu-
lated and it is these that are used to form the observation
vector for that block. The L2 norm of an image is simply the
square root of the sum of all the pixel values squared. As three
detail images are produced at each decomposition level, the
dimension of a block’s observation vector will be three times
the level of wavelet decomposition carried out. The image
norms from all the image blocks are collected from all im-
age blocks, in the order the blocks appear in the image, from
left to right and from top to bottom, this forms the image’s
observation vector [13].

In the case of Gabor being used for feature extraction,
the image is convolved with a number of Gabor filters, with 4
orientations and 6 scales being used. The output images are
split into blocks in the same manner as that used for DWT.
For each block, the L2 norm is calculated. Therefore, each
block from the original image can be represented by a feature
vector with 24 values (4 orientations × 6 scales). The image’s
observation vector is then constructed in the same manner as
for DWT, with the features being collected from each block
in the image, from left to right and from top to bottom.

This vector, along with the observation vectors from all
other training images of the same individual, is used to train
the HMM for this individual using maximum likelihood
(ML) estimation. As the detail image norms are real values,
a continuous observation HMM is employed. One HMM is
trained for each identity in the database.

(2) Testing

A number of images are used to test the accuracy of the face
recognition system. In order to ascertain the identity of an
image, a feature vector for that image is created in the same
way as for those images used to train the system. For each
trained HMM, the likelihood of that HMM producing the
observation vector is calculated. As the identification process
assumes that all probe images belong to known individuals,
the image is classified as the identity of the HMM that pro-
duces the highest likelihood value.

3. STRUCTURAL HIDDEN MARKOV MODELS

3.1. Mathematical background

One of the major problems of HMMs is due to the state con-
ditional independence assumption that prevents them from
capturing long-range dependencies. These dependencies of-
ten exhibit structural information that constitute the entire
pattern. Therefore, in this section, the mathematical expres-

sion of SHMMs is introduced. The entire description of the
SHMM can be found in [22, 23].

Let O = (O1,O2, . . . ,Os) be the time series sequence
(the entire pattern) made of s subsequences (also called
subpatterns). The entire pattern can be expressed as: O =
(o11o12 . . . o1r1 , . . . , os1, os2, . . . , osrs), where r1 is the number
of observations in subsequence O1 and r2 is the number
of observations in subsequence O2, and so forth, such that
∑ i=s

i=1ri = T . A local structure Cj is assigned to each sub-
sequence Oi. Therefore, a sequence of local structures C =
(C1,C2, . . . ,Cs) is generated from the entire pattern O. The
probability of a complex pattern O given a model λ can be
written as

P(O | λ) =
∑

C

P(O,C | λ). (9)

Therefore, we need to evaluate P(O,C | λ). The model λ is
implicitly present during the evaluation of this joint proba-
bility, so it is omitted. We can write

P(O,C) = P(C,O) = P(C | O)× P(O)

= P
(
Cs | Cs−1 · · ·C2C1Os · · ·O1

)

× P(Cs−1 · · ·C2C1 | Os · · ·O1
)× P(O).

(10)

It is assumed that Ci depends only on Oi and Ci−1, and the
structure probability distribution is a Markov chain of order
1. It has been proven in [22] that the likelihood function of
the observation sequence can be expressed as

P(O | λ) ≈
∑

C

[ s∏

i=1

P
(
Ci | Oi

)
P
(
Ci | Ci−1

)

P
(
Ci
) × P(O)

]

. (11)

The organization (or syntax) of the symbols oi = ouv is in-
troduced mainly through the term P(Ci | Oi) since the tran-
sition probability P(Ci | Ci−1) does not involve the interrela-
tionship of the symbols oi. Besides, the term P(O) of (11) is
viewed as a traditional HMM.

Finally, an SHMM can be defined as follows.

Definition 1. A structural hidden Markov model is a quintu-
ple λ = [π, A, B, C, D], where

(i) π is the initial state probability vector;
(ii) A is the state transition probability matrix;

(iii) B is the state conditional probability matrix of the vis-
ible observations,

(iv) C is the posterior probability matrix of a structure
given a sequence of observations;

(v) D is the structure transition probability matrix.

An SHMM is characterized by the following elements.

(i) N is the number of hidden states in the model. The
individual states are labeled as 1, 2, . . . ,N , and denote
the state at time t as qt.

(ii) M is the number of distinct observations oi.
(iii) π is the initial state distribution, where πi = P(q1 = i)

and 1 ≤ i ≤ N ,
∑

iπi = 1.
(iv) A is the state transition probability distribution ma-

trix: A = {ai j}, where ai j = P(qt+1 = j | qt = i) and
1 ≤ i, j ≤ N ,

∑
jai j = 1.
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O1 O2 Oi Om

o11 o12 · · · o1r1 o21 o22 · · · o2r2 · · · om1 om2 · · · oT(mrm)

q11 q12 · · · q1r1 q21 q22 · · · q2r2 · · · qm1 qm2 · · · qT(mrm)

Figure 5: A graphical representation of a first-order structural hidden Markov model.

(v) B is the state conditional probability matrix of the ob-
servations, B = {bj(k)}, in which bj(k) = P(ok | qj),
1 ≤ k ≤ M, and 1 ≤ j ≤ N ,

∑
kbj(k) = 1. In the

continuous case, this probability is a density function
expressed as a finite weighted sum of Gaussian distri-
butions (mixtures).

(vi) F is the number of distinct local structures.
(vii) C is the posterior probability matrix of a structure

given its corresponding observation sequence: C =
ci( j), where ci( j) = P(Cj | Oi). For each particular
input string Oi, we have

∑
j ci( j) = 1.

(viii) D is the structure transition probability matrix: D =
{di j}, where di j = P(Ct+1 = j | Ct = i),

∑
jdi j = 1,

1 ≤ i, j ≤ F.

Figure 5 depicts a graphical representation of an SHMM of
order 1. The problems that are involved in an SHMM can
now be defined.

3.2. Problems assigned to a structural HMM

There are four problems that are assigned to an SHMM: (i)
probability evaluation, (ii) statistical decoding, (iii) struc-
tural decoding, and (iv) parameter estimation (or training).

(i) Probability evaluation. Given a model λ and an obser-
vation sequence O = (O1, . . . ,Os), the goal is to evalu-
ate how well does the model λ match O.

(ii) Statistical decoding. In this problem, an attempt is
made to find the best state sequence. This problem is
similar to problem 2 of the traditional HMM and can
be solved using Viterbi algorithm as well.

(iii) Structural decoding. This is the most important prob-
lem. The goal is to determine the “optimal local struc-
tures of the model.” For example, the shape of an ob-
ject captured through its external contour can be fully
described by the local structures sequence: 〈round,
curved, straight,..., slanted, concave, convex,...,〉. Sim-
ilarly, a primary structure of a protein (sequence of
amino acids) can be described by its secondary struc-
tures such as “Alpha-Helix,” “Beta-Sheet,” and so forth.
Finally, an autonomous robot can be trained to recog-
nize the components of a human face described as a

sequence of shapes such as 〈round (human head), ver-
tical line in the middle of the face (nose), round (eyes),
ellipse (mouth),...,〉.

(iv) Parameter estimation (Training). This problem con-
sists of optimizing the model parameters λ =
[π, A, B, C, D] to maximize P(O | λ). We now define
each problem involved in an SHMM in more details.

(1) Probability evaluation

The evaluation problem in a structural HMM consists of de-
termining the probability for the model λ = [π, A, B, C, D]
to produce the sequence O. From (11), this probability can
be expressed as

P(O | λ) =
∑

C

P(O,C | λ) =
∑

C

{ s∏

i=1

ci(i)× di−1,i

P
(
Ci
)

}

×
∑

q

πq1bq1

(
o1
)
aq1q2bq2

(
o2
) · · · aq(T−1)qT bqT

(
oT
)
.

(12)

(2) Statistical decoding

The statistical decoding problem consists of determining the
optimal state sequence q∗ = arg max q(P(Oi, q | λ)) that best
“explains” the sequence of symbols within Oi. It is computed
using Viterbi algorithm as in traditional HMM’s.

(3) Structural decoding

The structural decoding problem consists of determining the
optimal structure sequence C∗ = 〈C∗1 ,C∗2 , . . . ,C∗t 〉 such that

C∗ = arg max
C

P(O,C | λ). (13)

We define

δt(i) = max
C

[
P
(
O1,O2, . . . ,Ot,C1,C2, . . . ,Ct = i | λ)] (14)
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that is, δt(i) is the highest probability along a single path,
at time t, which accounts for the first t strings and ends in
structure i. Then, by induction we have

δt+1( j) = [max
i
δt(i)di j

]
ct+1( j)

P
(
Ot+1

)

P
(
Cj
) . (15)

Similarly, this latter expression can be computed using
Viterbi algorithm. However, δ is estimated in each step
through the structure transition probability matrix. This op-
timal sequence of structures describes the structural pattern
piecewise.

(4) Parameter estimation (training): the estimation of
the density function

P(Cj | Oi) ∝ P(Oi | Cj) is established through a weighted
sum of Gaussian mixtures. The mathematical expression of
this estimation is

P
(
Oi | Cj

) ≈
m=R∑

r=1

αj,rN
(
μj,r ,Σ j,r ,Oi

)
, (16)

where N(μj,r ,Σ j,r ,Oi) is a Gaussian distribution with mean
μj,r and covariance matrix Σ j,r . The mixing terms are subject

to the constraint
∑m=R

r=1 αj,r = 1.
This Gaussian mixture posterior probability estimation

technique obeys the exhaustivity and exclusivity constraint
∑

j ci( j) = 1. This estimation enables the entire matrix C
to be built. The Baum-Welch optimization technique is used
to estimate the matrix D . The other parameters, π = {πi},
A = {ai j}, B = {bj(k)}, were estimated like in traditional
HMM’s [33].

(5) Parameter reestimation

Many algorithms have been proposed to re-estimate the pa-
rameters for traditional HMM’s. For example, Djurić and
chun [34] used “Monte Carlo Markov chain” sampling
scheme. In the structural HMM paradigm, we have used a
“forward-backward maximization” algorithm to re-estimate
the parameters contained in the model λ. We used a bottom-
up strategy that consists of re-estimating {πi}, {ai j}, {bj(k)}
in the first phase and then re-estimating {cj(k)} and {di j} in
the second phase. Let us define

(i) ξr(u, v) as the probability of being at structure u at
time r and structure v at time (r + 1) given the model λ and
the observation sequence O. We can write

ξr(u, v) = P
(
qr = u, qr+1 = v | λ,O

)

= P
(
qr = u, qr+1 = v,O | λ)

P(O | λ)
.

(17)

Using Bayes formula, we can write

ξr(u, v) = P
(
O1O2 · · ·Or , qr = u | λ)duvPv(Or+1)

P
(
O1O2 . . . OT | λ

)

× P
(
Or+2Or+3 · · ·OT | qr = v, λ

)

P
(
O1O2 · · ·OT | λ

) .

(18)

Then we define the following probabilities:

(i) αr(u) = P(O1O2 · · ·Or , qr = u | λ),
(ii) βr(u) = P(Or+1Or+2 · · ·OT | qr = u, λ),

(iii) Pv(Or+1) = P(qr+1 = v | Or+1)× P(Or+1)/P(qr+1 = v),

therefore,

ξr(u, v) = αr(u)duvsr+1(v)P(Or+1)βr+1(v)

P(O1O2 · · ·OT | λ)P(qr+1 = v)
. (19)

We need to compute the following:

(i) P(Or+1) = P(o1
r+1 · · · okr+1 | λ) = ∑

all qP(Or+1 |
q, λ)P(q | λ) =∑ q1,...,qT πq1bq1 (o1)aq1q2 · · · bqk (ok),

(ii) P(qr+1 = v) =∑ jP(qr+1 = v | qr = j),
(iii) The term P(O1O2 · · ·OT | λ) requires π, A, B, C,

D . However, the parameters π, A, and B can be
re-estimated as in traditional HMM. In order to re-
estimate C and D , we define

γr(u) =
N∑

v=1

ξr(u, v). (20)

Then we compute the improved estimates of cv(r) and duv as

d̂uv =
∑ T−1

r=1 ξr(u, v)
∑ T−1

r=1 γr(u)
, (21)

ĉv(r) =
∑ T−1

r=1,Or=vr γr(v)
∑ T

r=1γr(v)
. (22)

From (22), we derive

ĉr(v) = ĉv(r)×
P̂
(
qr = v

)

P̂(Or)
. (23)

We calculate improved ξr(u, v), γr(u), d̂uv, and ĉr(v) re-
peatedly until some convergence criterion is achieved.
We have used the Baum-Welch algorithm also known as
forward-backward (an example of a generalized expectation-
maximization algorithm) to iteratively compute the esti-

mates d̂uv and ĉr(v).
The stopping or convergence criterion that we have se-

lected in line 8 halts learning when no estimated transi-
tion probability changes more than a predetermined positive
amount ε. Other popular stopping criteria (e.g., as the one
based on overall probability that the learned model could
have produced the entire training data) can also be used.
However, these two criteria can produce only a local opti-
mum of the likelihood function, they are far from reaching a
global optimum.

3.3. Novel SHMM modeling for human
face recognition

(1) Feature extraction

SHMM modeling of the human face has never been under-
taken by any researchers or practitioners in the biometric
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(1) Begin initialize d̂uv , ĉr(v), training sequence, convergence criterion ε
(2) repeat
(3) z ← z + 1

(4) compute d̂(z) from d(z − 1) and c(z − 1) using (21)
(5) compute ĉ(z) from d(z − 1) and c(z − 1) using (22)

(6) duv(z) ← d̂uv(z − 1)
(7) crv(z) ← ĉrv(z − 1)
(8) until max u,r,v[duv(z)− duv(z − 1), crv(z)− crv(z − 1)] < ε (convergence achieved)

(9) return duv ← d̂uv(z); crv ← ĉrv(z)
(10) End

Algorithm 1

O1 O2 O3 O4 O5 O6· · ·
Hair Forehead Ears Eyes Nose Mouth

Figure 6: A faceO is viewed as an ordered sequence of observations
Oi. Each Oi captures a significant facial region such as “hair,” “fore-
head,” “eyes,” “nose,” “mouth,” and so on. These regions come in a
natural order from top to bottom and left to right.

O11 O12 O13

O14 O15 O16

An observation sequence Oi

Its local structure Ci

Figure 7: A block Oi of the whole face O is a time-series of norms
assigned to the multiresolution detail images. This block belongs to
the local structure “eyes.”

community. Our approach of adapting the SHMM’s machine
learning to recognize human faces is novel. The SHMM ap-
proach to face recognition consists of viewing a face as a se-
quence of blocks of information Oi which is a fixed-size two-
dimensional window. Each block Oi belongs to some prede-

fined facial regions as depicted in Figure 6. This phase in-
volves extracting observation vector sequences from subim-
ages of the entire face image. As with recognition using stan-
dard HMMs, DWT is used for this purpose. The observation
vectors are obtained by scanning the image from left to right
and top to bottom using the fixed-size two-dimensional win-
dow and performing DWT analysis at each subimage. The
subimage is decomposed to a certain level and the energies of
the subbands are selected to form the observation sequence
Oi for the SHMM. If Gabor filters are used, the original im-
age is convolved with a number of Gabor kernels, produc-
ing 24 output images. These images are then divided into
blocks using the same fixed-size two-dimensional window
as for DWT. The energies of these blocks are calculated and
form the observation sequence Oi for the SHMM. The local
structures Ci of the SHMM include the facial regions of the face.
These regions are hair, forehead, ears, eyes, nose, mouth, and
so on. However, the observation sequence Oi corresponds to
the different resolutions of the block images of the face. The
sequence of norms of the detail images dkj represents the obser-
vation sequence Oi. Therefore, each observation sequence Oi

is a multidimensional vector. Each block is assigned one and
only one facial region. Formally, a local structure Cj is simply
an equivalence class that gathers all “similar” Oi. Two vectors
O′i s (two sets of detail images) are equivalent if they share the
same facial region of the human face. In other words, the facial
regions are all clusters of vectors O′i s that are formed when
using the k-means algorithm. Figure 7 depicts an example of
a local structure and its sequence of observations. This mod-
eling enables the SHMM to be trained efficiently since several
sets of detail images are assigned to the same facial region.

(2) Face recognition using SHMM

The training phase of the SHMM consists of building a
model λ = [π, A, B, C, D] for each human face during a
training phase. Each parameter of this model will be trained
through the wavelet multiresolution analysis applied to each
face image of a person. The testing phase consists of decom-
posing each test image into blocks and automatically assign-
ing a facial region to each one of them. As the structure of
a face is significantly more complex than other applications
for which SHMM has been employed [22, 23], this phase is
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(a)

(b)

Figure 8: Samples of faces from (a) the AT&T Database of Faces
[17] and (b) the Essex Faces95 database [35]. The images contain
variation in pose, expression, scale, and illumination, as well as
presence/absence of glasses.

conducted via the k-means clustering algorithm. The value of
k corresponds to the number of facial regions (or local struc-
tures) selected a priori. The selection of this value was based
in part upon visual inspection of the output of the cluster-
ing process for various values of k. When k equalled 6, the
clustering process appeared to perform well, segmenting the
face image into regions such as forehead, mouth, and so on.
Each face is expressed as a sequence of blocks Oi with their
facial regions Ci. The recognition phase will be performed by
computing the model λ∗ in the training set (database) that
maximizes the likelihood of a test face image.

4. EXPERIMENTS

4.1. Data collection

Experiments were carried out using three different training
sets. The AT&T (formerly ORL) Database of Faces [17] con-
tains ten grayscale images each of forty individuals. The im-
ages contain variation in lighting, expression, and facial de-
tails (e.g., glasses/no glasses). Figure 8(a) shows some im-
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Figure 9: Cumulative match scores for FERET database using Haar
wavelet.

ages taken from the AT&T Database. The second database
used was the Essex Faces95 database [35], which contains
twenty color images each of seventy-two individuals. These
images contain variation in lighting, expression, position,
and scale. Figure 8(b) shows some images taken from the
Essex database. For the purposes of the experiments carried
out, the Essex faces were converted to grayscale prior to train-
ing. The third database used was the Facial Recognition Tech-
nology (FERET) grayscale database [36, 37]. Images used for
experimentation were taken from the fa (regular facial ex-
pression), fb (alternative facial expression), ba (frontal “b”
series), bj (alternative expression to ba), and bk (different
illumination to ba) images sets. Those individuals with at
least five images (taken from the specified sets) were used
for experimentation. This resulted in a test set of 119 indi-
viduals. These images were rotated and cropped based on
the known eye coordinate positions, followed by histogram
equalization. Experimentation was carried out using Matlab
on a 2.4 Ghz Pentium 4 PC with 512 Mb of memory.

4.2. Face identification results using wavelet/HMM

The aim of the initial experiments was to investigate the ef-
ficacy of using wavelet filters (DWT/Gabor) for feature ex-
traction with HMM-based face identification. A variety of
DWT filters were used, including Haar, biorthogonal9/7, and
Coiflet(3). The observation vectors were produced as de-
scribed in Section 2, with both height j and width k of
observation blocks equalling 16, with overlap of 4 pixels.
The size of the blocks was chosen so that significant struc-
tures/textures could be adequately represented within the
block. The overlap value of 4 was deemed large enough to
allow structures (e.g., edges) that straddled the edge of one
block to be better contained within the next block. Wavelet
decomposition was carried out to the fourth decomposition
level (to allow a complete decomposition of the image). In
the case of Gabor filters, 6 scales and 4 orientations were
used, producing an observation blocks of size 24.
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Figure 10: Cumulative match scores for FERET database using
Biorthogonal9/7 wavelet.
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Figure 11: Cumulative match scores for FERET database using
Coiflet(3) wavelet.

The experiments were carried out using five-fold cross
validation. This involved splitting the set of training images
for each person into five equally sized sets and using four of
the sets for system training with the remainder being used
for testing. The experiments were repeated five times with
a different set being used for testing each time to provide a
more accurate recognition figure. Therefore, with the AT&T
database, eight images were used for training and two for
testing during each run. When using the Essex95 database,
sixteen images were used for training and four for testing
during each run. For the FERET database, four images per
individual were used for training, with the remaining image
being used for testing.

One HMM was trained for each individual in the
database. During testing, an image was assigned an identity
according to the HMM that produced the highest likelihood
value. As the task being performed was face identification,

Table 1: Comparison of HMM face identification accuracy when
performed in the spatial domain and with selected wavelet filters
(%).

AT&T Essex95 FERET

Spatial 87.5 71.9 31.1

Haar 95.75 84.2 35.8

Biorthogonal 9/7 93.5 78.0 37.5

Coiflet(3) 96.5 85.6 40.5

Gabor 96.8 85.9 42.9
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Figure 12: Cumulative match scores for FERET database using Ga-
bor features.

it was assumed that all testing individuals were known indi-
viduals. Accuracy of an individual run is thus defined as the
ratio of correct matches to the total number of face images
tested, with final accuracy equalling the average accuracy fig-
ures from each of the five cross-validation runs. The accuracy
figures for HMM face recognition performed in both the spa-
tial domain and using selected wavelet filters are presented in
Table 1.

As can be seen from Table 1, the use of DWT for feature
extraction improves recognition accuracy. With the AT&T
database, accuracy increased from 87.5%, when the observa-
tion vector was constructed in the spatial domain, to 96.5%
when the Coiflet(3) wavelet was used. This is a very substan-
tial 72% decrease in the rate of false classification. The in-
crease in recognition rate is also evident for the larger Essex95
database. Recognition rate increased from 71.9% in the spa-
tial domain to 84.6% in the wavelet domain. As before, the
Coiflet(3) wavelet produced the best results. Recognition rate
also increased for the FERET database, with the recognition
rate increasing from 31.1% in the spatial domain to 40.5% in
the wavelet domain. DWT has been shown to improve recog-
nition accuracy when used in a variety of face recognition ap-
proaches, and clearly this benefit extends to HMM-based face
recognition. Using Gabor filters increased recognition results
even further. The identification rate for the AT&T database
rose to 96.8% and the Essex figure became 85.9%.
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Table 2: Comparison of face identification accuracy when performed using wavelet/HMM and wavelet/SHMM (%).

AT&T Essex FERET

DTW/HMM DWT/SHMM DWT/HMM DWT/SHMM DWT/HMM DWT/SHMM

Haar 95.75 97.5 84.2 89.4 35.8 62.0

Biorthogonal 9/7 93.5 95.1 78.0 84.6 37.5 63.9

Coiflet(3) 96.5 97.8 85.6 90.7 40.5 65.2

Gabor 96.8 97.3 85.9 88.7 42.9 58.7

Table 3: Comparative results on AT&T database.

Method Accuracy (%) Ref.

DCT/HMM 84 [12]

ICA 85 [38]

Weighted PCA 88 [39]

Gabor filters and rank correlation 91.5 [40]

2D-PHMM 94.5 [17]

NMF 96 [41]

LFA 97 [42]

DWT/SHMM 97 (Proposed)

Table 4: Comparison of training and classification times for AT&T
database images (s).

Training time Classification time

per image per image

Spatial/HMM 7.24 22.5

DWT/HMM 1.09 1.19

DWT/SHMM 4.31 3.45

4.3. Face identification results using wavelet/SHMM

The next set of experiments was designed to establish if
SHMM provided a benefit over HMM for face recogni-
tion. Where appropriate, the same parameters were used for
SHMM as for HMM (such as block size). The experiments
were carried out solely in the wavelet domain, due to the
benefits identified by the previous results. The recognition
accuracy for SHMM face recognition is presented in Table 2.
In addition, Figures 9 to 12 present the cumulative match
score graphs for the FERET database.

As can be seen from the results, the use of SHMM in-
stead of HMM increases recognition accuracy in all cases
tested. Indeed, the incorrect match rate for Haar/SHMM is
40% lower than the equivalent figure for Haar/HMM when
tested using the AT&T database. This is a significant increase
in accuracy.

The most significant increases in performance, how-
ever, were for the FERET dataset. The use of 5-fold cross-
validation constrained options when it came to choosing im-
ages for experimentation. As the system was not designed
to handle images with any significant degree of rotation,
they were selected from those subsets which were deemed
suitable—Fa, Fb, ba, bj, and bk. Within these subsets, how-

ever, there was variation in illumination, pose, scale, and ex-
pression. Most significantly, the “b” set images were captured
in different sessions from the images in the “F” sets. Coupled
with the number of identities in the FERET dataset that were
used (119), the variation among the images made this a dif-
ficult task for a face identification system. It is for this reason
that the recognition rates for wavelet/HMM are rather low
for this database, ranging from 35.8% when Haar was used
to 42.9% for Gabor. The recognition rates increase dramati-
cally though when SHMM is used. 62.9% of images are cor-
rectly identified when Haar is used, with a more modest in-
crease to 58.7% for Gabor filters. The Coiflet(3) wavelet pro-
duces the best results, with 65.2% correctly identified, as op-
posed to 40.5% for wavelet/HMM. In many face recognition
applications, it is less important that an individual is recog-
nized correctly than it is that an individual’s identity appears
within the top x matches, where x could be, perhaps, 10. The
cumulative match score graphs allow for this information to
be retrieved. SHMM provides a substantial benefit in cases
where the top x matches can be considered. For example, us-
ing the Biorthogonal9/7 wavelet, the correct identity appears
within the top 10 matches 60.2% of the time. This increases
to 81.3% with SHMM. If the Haar wavelet is used, the figure
increases from 65.0% to 82.9%.

Experiments were also carried out to enable comparison
of the results with those reported in the literature. Although
the ability to compare works was an important consideration
in the creation of the FERET database, many authors use sub-
sets from it that match their particular requirements. There
are, however, many studies employing the AT&T database
that use 50% of the database images for training and the re-
maining 50% for testing. With this in mind, an experiment
was performed with these characteristics. Table 3 shows that
the DWT/SHMM approach performs well when compared
with other techniques that have used this data set.

In addition to recognition accuracy, an important factor
in a face recognition system is the time required for both sys-
tem training and classification. As can be seen from Table 4,
this is reduced substantially by the use of DWT. Feature ex-
traction and HMM training took approximately 7.24 seconds
per training image when this was performed in the spatial
domain using the AT&T database, as opposed to 1.09 sec-
onds in the wavelet domain, even though an extra step was
required (transformation to wavelet domain). This is a very
substantial time difference and is due to the fact that the
number of observations used to train the HMM is reduced
by a factor of almost 30 in the wavelet domain. The time ben-
efit realized by using DWT is even more obvious during the
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recognition stage, as the time required is reduced from 22.5
seconds to 1.19 seconds.

SHMM does increase the time taken for both training
and classification, although this is offset by the improvement
in recognition accuracy. Fortunately, the increase in time
taken for classification is still a vast improvement on the time
taken for HMM recognition in the spatial domain. The time
taken for classification is particularly important, as it is this
stage where real-time performance is often mandated.

5. CONCLUSION

In this paper, we have carried out an analysis of the benefits
of using DWT along with HMM for face recognition. In ad-
dition, a novel approach to this problem has been proposed,
based on the fusion of the DWT and, for the first time in the
field of face recognition, the SHMM. It is worth noting that
the SHMM allows both the statistical and the structural in-
formation of a pattern to be modeled within the same prob-
abilistic framework. The combination of the DWT and the
SHMM has been shown to outperform the combination of
DWT and HMM for face identification, as well as techniques
such as PCA and ICA. Our future work is twofold: we plan to

(i) study the effect of window size (block dimension) on
the SHMM model parameters and therefore on the ac-
curacy;

(ii) adapt the SHMM modeling to account for prior infor-
mation such as morphological differences of human
faces with respect to their geographical environment,
this external information will enhance the power of
generalization of the SHMMs.
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Preliminary call for papers

The 2011 European Signal Processing Conference (EUSIPCO 2011) is the
nineteenth in a series of conferences promoted by the European Association for
Signal Processing (EURASIP, www.eurasip.org). This year edition will take place
in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) and the
Universitat Politècnica de Catalunya (UPC).
EUSIPCO 2011 will focus on key aspects of signal processing theory and
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Organizing Committee

Honorary Chair
Miguel A. Lagunas (CTTC)

General Chair
Ana I. Pérez Neira (UPC)

General Vice Chair
Carles Antón Haro (CTTC)

Technical Program Chair
Xavier Mestre (CTTC)

Technical Program Co Chairsapplications as listed below. Acceptance of submissions will be based on quality,
relevance and originality. Accepted papers will be published in the EUSIPCO
proceedings and presented during the conference. Paper submissions, proposals
for tutorials and proposals for special sessions are invited in, but not limited to,
the following areas of interest.

Areas of Interest

• Audio and electro acoustics.
• Design, implementation, and applications of signal processing systems.
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Technical Program Co Chairs
Javier Hernando (UPC)
Montserrat Pardàs (UPC)

Plenary Talks
Ferran Marqués (UPC)
Yonina Eldar (Technion)

Special Sessions
Ignacio Santamaría (Unversidad
de Cantabria)
Mats Bengtsson (KTH)

Finances
Montserrat Nájar (UPC)• Multimedia signal processing and coding.

• Image and multidimensional signal processing.
• Signal detection and estimation.
• Sensor array and multi channel signal processing.
• Sensor fusion in networked systems.
• Signal processing for communications.
• Medical imaging and image analysis.
• Non stationary, non linear and non Gaussian signal processing.

Submissions

Montserrat Nájar (UPC)

Tutorials
Daniel P. Palomar
(Hong Kong UST)
Beatrice Pesquet Popescu (ENST)

Publicity
Stephan Pfletschinger (CTTC)
Mònica Navarro (CTTC)

Publications
Antonio Pascual (UPC)
Carles Fernández (CTTC)

I d i l Li i & E hibiSubmissions

Procedures to submit a paper and proposals for special sessions and tutorials will
be detailed at www.eusipco2011.org. Submitted papers must be camera ready, no
more than 5 pages long, and conforming to the standard specified on the
EUSIPCO 2011 web site. First authors who are registered students can participate
in the best student paper competition.

Important Deadlines:

P l f i l i 15 D 2010

Industrial Liaison & Exhibits
Angeliki Alexiou
(University of Piraeus)
Albert Sitjà (CTTC)

International Liaison
Ju Liu (Shandong University China)
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Tamas Sziranyi (SZTAKI Hungary)
Rich Stern (CMU USA)
Ricardo L. de Queiroz (UNB Brazil)

Webpage: www.eusipco2011.org

Proposals for special sessions 15 Dec 2010
Proposals for tutorials 18 Feb 2011
Electronic submission of full papers 21 Feb 2011
Notification of acceptance 23 May 2011
Submission of camera ready papers 6 Jun 2011


