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MULTIPLE BOUNDARY PEAK SOLUTIONS FOR SOME

SINGULARLY PERTURBED NEUMANN PROBLEMS

CHANGFENG GUI, JUNCHENG WEI, AND MATTHIAS WINTER

Abstract. We consider the problem{
ε2∆u − u + f(u) = 0 in Ω
u > 0 in Ω, ∂u

∂ν = 0 on ∂Ω,

where Ω is a bounded smooth domain in RN , ε > 0 is a small parameter
and f is a superlinear, subcritical nonlinearity. It is known that this equa-
tion possesses boundary spike solutions such that the spike concentrates,
as ε approaches zero, at a critical point of the mean curvature function
H(P ), P ∈ ∂Ω. It is also known that this equation has multiple bound-
ary spike solutions at multiple nondegenerate critical points of H(P ) or
multiple local maximum points of H(P ).

In this paper, we prove that for any fixed positive integer K there
exist boundary K − peak solutions at a local minimum point of H(P ).
This implies that for any smooth and bounded domain there always exist
boundary K − peak solutions.

We first use the Liapunov-Schmidt method to reduce the problem to
finite dimensions. Then we use a maximizing procedure to obtain multiple
boundary spikes.

1. Introduction

The aim of this paper is to construct a family of multiple boundary peak

solutions to the following singularly perturbed elliptic problem

{
ε2∆u − u + up = 0 in Ω,
u > 0 in Ω and ∂u

∂ν
= 0 on ∂Ω,

(1.1)

where ∆ =
∑N

i=1
∂2

∂x2
i

is the Laplace operator, Ω is a bounded smooth domain

in RN , ε > 0 is a constant, the exponent p satisfies 1 < p < N+2
N−2

for N ≥ 3

and 1 < p < ∞ for N = 2 and ν(x) denotes the normal derivative at x ∈ ∂Ω.

Equation (1.1) is known as the stationary equation of the Keller-Segal

system in chemotaxis. It can also be seen as the limiting stationary equation
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of the so-called Gierer-Meinhardt system in biological pattern formation, see

[33] for more details.

In the pioneering papers of [17], [20] and [21], Lin, Ni and Takagi estab-

lished the existence of least-energy solutions and showed that for ε suffi-

ciently small the least-energy solution has only one local maximum point Pε

and Pε ∈ ∂Ω. Moreover, H(Pε) → maxP∈∂Ω H(P ) as ε → 0, where H(P ) is

the mean curvature of P at ∂Ω. In [22], Ni and Takagi constructed bound-

ary spike solutions for axially symmetric domains. The second author in

[33] studied the general domain case and showed that for single boundary

spike solutions, the boundary spike must approach a critical point of the

mean curvature; on the other hand, for any nondegenerate critical point of

H(P ), one can construct boundary spike solutions whose spike approaches

that point. The first author in [11] constructed multiple boundary spike

layer solutions at multiple local maximum points of H(P ) while the second

and third authors in [36] constructed multiple boundary spike layer solutions

at multiple nondegenerate critical points of H(P ). Later these results were

improved by Y. Y. Li in [16] in a unified approach. When p = N+2
N−2

, similar

results for the boundary spike layer solutions have been obtained in [1], [2],

[3], [12], [19], [26], [27], [28], [30] etc.

In this paper, we study the existence of multiple boundary peak solutions

at a local minimum point of H(P ).

More precisely, we consider the problem

⎧⎪⎨
⎪⎩

ε2∆u − u + f(u) = 0 in Ω,

u > 0 in Ω and ∂u
∂ν

= 0 in ∂Ω.
(1.2)

We will assume that f : R+ → R is of class C1+σ and satisfies the following

conditions

(f1) f(t) ≡ 0 for t ≤ 0 and f(t) → +∞ as t → ∞
(f2) There exist some constants 1 < p1, p2, p3 <

(
N+4
N−4

)
+

(= ∞ if N ≤
4; = N+4

N−4
if N > 4) such that f(0) = 0, f

′
(0) = 0 and

f(u) = O(|u|p1), f
′
(u) = O(|u|p2−1) as |u| → ∞,
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|fu(u + φ) − fu(u)| ≤
{

C|φ|p3−1 if p3 > 2
C(|φ| + |φ|p3−1) if p3 ≤ 2.

(f3) The equation ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�w − w + f(w) = 0 in RN ,

w > 0, w(0) = max
z∈RN

w(z),

w → 0 at ∞
(1.3)

has a unique solution w(y) (by the results of [9], w is radial, i.e.,

w = w(r) and w
′

< 0 for r = |y| �= 0) and w is nondegenerate.

Namely the operator

L := �− 1 + f
′
(w) (1.4)

is invertible in the space H2
r (RN) :=

{
u = u(|y|) ∈ H2(RN)

}
.

Two important examples of f are the following.

Example 1 (chemotaxis and pattern formation): f(u) = up where

1 < p < (N+2
N−2

)+(= ∞ if N = 2; = N+2
N−2

if N > 2). It is easy to see that f

satisfies (f1), (f2) and (f3). This problem arises from the Keller-Segal model

in chemotaxis and the Gierer-Meinhardt system in pattern formation (see

[20], [21] and the references therein).

Example 2 (population dynamics and chemical reaction theory):

f(u) = u(u − a)(1 − u) where 0 < a < 1
2
. This is a famous model from

population dynamics and chemical reaction theory (see [5], [14], [29]). If

N ≤ 8 then by the result of [8], f satisfies (f1)-(f3).

Other nonlinearities satisfying (f1), (f2) and (f3) can be found in [6].

Let Λ ⊂ ∂Ω be an open set such that

min
P∈∂Γ

H(P ) > min
P∈Γ

H(P ). (1.5)

We now state the main result in this paper.

Theorem 1.1. Assume that condition (1.5) holds. Let f satisfy assump-

tions (f1)-(f3). Then for ε sufficiently small problem (1.2) has a solution

uε which possesses exactly K local maximum points Qε
1, ..., Q

ε
K with Qε =
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(Qε
1, ..., Q

ε
K) ∈ Γ × ... × Γ. Moreover H(Qε

i ) → minP∈Γ H(P ), w(
|Qε

k−Qε
l |

ε
) →

0, i, k, l = 1, ..., K, k �= l as ε → 0. Furthermore, we have

uε(x) ≤ aexp(−b mini=1,...,K(|x − Qε
i |)

ε
) (1.6)

for certain positive constants a, b.

Theorem 1.1 can be derived from a more general theorem as follows.

Theorem 1.2. Let Γi, i = 1, ..., K be open sets in ∂Ω such that

min
P∈∂Γi

H(P ) > min
P∈Γi

H(P ), i = 1, ..., K.

Let f satisfy assumptions (f1)-(f3). Then for ε sufficiently small problem

(1.2) has a solution uε which possesses exactly K local maximum points

Qε
1, ..., Q

ε
K with Qε = (Qε

1, ..., Q
ε
K) ∈ Γ1 × ... × ΓK. Moreover H(Qε

i ) →
minP∈Γi

H(P ), w(
|Qε

k−Qε
l |

ε
) → 0, i, k, l = 1, ..., K, k �= l as ε → 0. Further-

more, we have

uε(x) ≤ aexp(−b mini=1,...,K(|x − Qε
i |)

ε
) (1.7)

for certain positive constants a, b.

More details about the asymptotic behavior of uε can be found in the

proof of Theorem 1.2.

We have the following interesting corollary.

Corollary 1.3. For any smooth and bounded domain and any fixed positive

integer K ∈ Z, there always exists a boundary K-peaked solution of (1.2) if

ε is small enough.

Theorem 1.1 is the first result in proving the existence of multiple bound-

ary spike solutions for problem (1.2) in any smooth bounded domain. Note

that the boundary spikes can approach the same point on the boundary when

Λ has a strictly local minimum point of H(P ). This is new and interesting

in its own right.

We shall only prove Theorem 1.2. To introduce the main idea of the proof

of Theorem 1.2, we need to give some necessary notations and definitions

first.
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Let w be the unique solution of (1.3). It is known (see [9]) that w is

radially symmetric, decreasing and

lim
|y|→∞

w(y)e|y||y|N−1
2 = c0 > 0.

Associated with problem (1.2) is the following energy functional

Jε(u) =
1

2

∫
Ω
(ε2|∇u|2 + u2) −

∫
Ω

F (u)

where F (u) =
∫ u
0 f(s)ds and u ∈ H1(Ω).

For any smooth bounded domain U we set PUw to be the unique solution

of {
∆u − u + f(w) = 0 in U,
∂u
∂ν

= 0 on U.
(1.8)

Let η > 0 be a small number. Let Γi be as in Theorem 1.2. Set

Λ = {P = (P1, ..., PK) ∈ Γ1×...×ΓK , w(
|Pk − Pl|

ε
) < ηε, k, l = 1, ..., K, k �= l}.

For P ∈ ∂Ω, we set

Ωε = {y : εy ∈ Ω}, Ωε,P = {y : εy + P ∈ Ω}.
Fix P = (P1, P2, ..., PK) ∈ Λ. We set

Pwi(y) = PΩε,Pi
w(y − Pi

ε
), wi(y) = w(y − Pi

ε
), y ∈ Ωε,

u =
K∑

i=1

Pwi + Φε,P ∈ H2(Ωε),

Kε,P = span{ ∂Pwi

∂τPi,ij

, i = 1, ..., K, j = 1, ..., N − 1} ⊂ H2(Ωε),

Cε,P = span { ∂Pwi

∂τPi,ij

, i = 1, ..., K, j = 1, ..., N − 1} ⊂ L2(Ωε)

where τPi,ij
are the (N − 1) tangential derivatives at Pi (without loss of

generality we assume that the inward normal derivative at Pi is eN and

denote τPi,ij
as τPi,j

in the rest of the paper.)

We first solve for Φε,P in K⊥
ε,P up to C⊥

ε,P by using the Liapunov-Schmidt

reduction method. This method evolves from that of [7], [24] and [25] on
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the semi-classical (i.e. for small parameter h) solution of the nonlinear

Schrödinger equation

h2

2
∆U − (V − E)U + Up = 0 (1.9)

in RN where V is a potential function and E is a real constant. The method

of Liapunov-Schmidt reduction was used in [7], [24] and [25] to construct

solutions of (1.9) close to nondegenerate critical points of V for h sufficiently

small.

Then we show that Φε,P is C1 in P. After that, we define a new function

Mε(P) = Jε(
K∑

i=1

Pwi + Φε,P). (1.10)

We maximize Mε(P) over Λ. Condition (1.5) ensures that Mε(P) attains

its maximum inside Λ. We show that the resulting solution has the properties

of Theorem 1.2.

The paper is organized as follows. Notation, preliminaries and some use-

ful estimates are explained in Section 2. Section 3 contains the setup of our

problem and we solve (1.2) up to approximate kernel and cokernel, respec-

tively. We set up and solve a maximizing problem in Section 4. Finally, in

Section 5, we show that the solution to the maximizing problem is indeed a

solution of (1.2) and satisfies all the properties of Theorem 1.2.

Throughout this paper, unless otherwise stated, the letter C will always

denote various generic constants which are independent of ε, for ε sufficiently

small. δ > 0 is a very small number. o(1) means |o(1)| → 0 as ε → 0.

Acknowledgement. The research of the second author is supported by

an Earmarked Grant from RGC of Hong Kong.

2. Technical Analysis

In this section we introduce a projection and derive some useful esti-

mates. Throughout the paper we shall use the letter C to denote a generic

positive constant which may vary from term to term. We denote RN
+ =

{(x′, xN)|xN > 0}. Let w be the unique solution of (1.3).
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Set

I(w) =
1

2

∫
RN

(|∇w|2 + w2) −
∫

RN
F (w),

Let P ∈ ∂Ω. We can define a diffeomorphism straightening the boundary

in a neighborhood of P . After rotation of the coordinate system we may

assume that the inward normal to ∂Ω at P is pointing in the direction of the

positive xN -axis. Denote x′ = (x1, . . . , xN−1), B′(R0) = {x′ ∈ RN−1| |x′| <

R0}, B(P,R0) = {x ∈ RN | |x − P | < R0}, and Ω0 = Ω ∩ B(P,R0) =

{(x′, xN) ∈ B(P,R0)|xN − PN > ρ(x′ − P ′)}. Then, since ∂Ω is smooth, we

can find a constant R0 > 0 such that ∂Ω ∩ Ω0 can be represented by the

graph of a smooth function ρP : B′(R0) → R where ρP (0) = 0,∇ρP (0) = 0.

From now on we omit the use of P in ρP and write ρ instead if this can

be done without causing confusion. The mean curvatures of ∂Ω at P is

H(P ) = 1
n−1

∑N−1
i=1 ρii(0) where

ρi =
∂ρ

∂xi

, i = 1, . . . , N − 1

and higher derivatives are defined in the same way. By Taylor expansion we

have

ρ(x′ − P ′) =
1

2

N−1∑
i,j=1

ρij(0)(xi − Pi)(xj − Pj)

+
1

6

N−1∑
i,j,k=1

ρijk(0)(xi − Pi)(xj − Pj)(xk − Pk) + O(|x′ − P
′ |4)

Recall that for a smooth bounded domain U the projection PU of H2(U)

onto {v ∈ H2(U)|∂v/∂ν = 0 at ∂U} is defined as follows: For v ∈ H2(U) let

ω = PUv be the unique solution of the boundary value problem{
∆ω − ω + f(v) = 0 in U,
∂w
∂ν

= 0 on ∂U.
(2.1)

Let hε,P (x) = w
(

x−P
ε

)
− PΩε,P

w
(

x−P
ε

)
, x ∈ Ω where

Ωε,P = {z ∈ Rn|εz + P ∈ Ω}.
Then hε,P satisfies {

ε2∆v − v = 0 in Ω,
∂v
∂ν

= ∂
∂ν

w(x−P
ε

) on ∂Ω.
(2.2)
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We denote

‖v‖2
ε = ε−N

∫
Ω
[ε2|∇v|2 + v2].

For x ∈ Ω0 set now {
εy′ = x′ − P ′,
εyN = xN − PN − ρ(x′ − P ′). (2.3)

Furthermore, for x ∈ Ω0 we introduce the transformation T by{
Ti(x

′) = xi, i = 1, . . . , N − 1,
TN(x′) = xN − PN − ρ(x′ − P ′). (2.4)

Note that then

y =
1

ε
T (x).

Let v1 be the unique solution of{
∆v − v = 0 in RN

+ ,
∂v

∂yN
= −w′

|y|
1
2

∑N−1
i,j=1 ρij(0)yiyj on ∂RN

+
(2.5)

where w′ is the radial derivative of w, i.e. w′ = wr(r), and r =
∣∣∣x−P

ε

∣∣∣.
Note that v1 is an even functions in y

′
= (y1, ..., yN−1). Moreover, it is

easy to see that |v1| ≤ Ce−µ|y| for some 0 < µ < 1.

Let χ(x) be a smooth cutoff function such that χ(x) = 1, x ∈ B(0, 0.8R0)

and χ(x) = 0 for x ∈ B(0, R0)
C .

In fact we set R0 be such that w(R0

ε
) = 0.9ηε.

Note that this χ is as good as the cut-off function in [33].

Set

hε,P (x) = εv1(y)χ(x − P ) + ε2Ψε,P (x), x ∈ Ω.

Then we have

Proposition 2.1.

‖Ψε,P‖ε ≤ C.

Proof. Proposition 2.1 was proved in [35] by Taylor expansion and a rigor-

ous estimate for the remainder using estimates for elliptic partial differential

equations. �

Similarly, we know from [35] that
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Proposition 2.2.[
∂w

∂τPj

− ∂PΩε,P
w

∂τPj

] (
x − P

ε

)
= w1(y)χ(x − P ) + εwε

2(x), x ∈ Ω

where εy = T (x) and w1 satisfies{
∆v − v = 0 in RN

+ ,
∂v

∂yN
= −1

2

(
w′′
|y|2 − w′

|y|3
) ∑N−1

k,l=1 ρkl(0)ykylyj − w′
|y|

∑N−1
k=1 ρjk(0)yk on ∂RN

+

(2.6)

and

‖wε
2‖ε ≤ C.

Note that |w1| ≤ C exp(−µ|y|) for some µ < 1 and w1 is an odd function

in y
′
. Finally, let

L0 = ∆ − 1 + f ′(w).

We have

Lemma 2.3.

Ker(L0) ∩ H2
N(RN

+ ) = span

{
∂w

∂y1

, . . . ,
∂w

∂yN−1

}
.

where H2
N(RN

+ ) = {u ∈ H2(RN
+ ), ∂u

∂yN
= 0 on ∂RN

+}.

Proof. See Lemma 4.2 in [21]. �

Next we state some useful lemmas about the interactions of two w’s.

Lemma 2.4. Let P = (P1, ..., PK) ∈ Λ. Then we have∫
Ωε

f(wk)wl = (γkl + o(1))w(
|Pk − Pl|

ε
), k, l = 1, ..., K, k �= l

(2.7)

where γkl ∈ Σ and Σ is defined as follows

Σ = {
∫

RN
+

f(w(y))e〈b,y〉 dy|b ∈ RN , |b| = 1}. (2.8)

Furthermore, if w( |Pk−Pl|
ε

) = ηε, we have γkl ∈ Σ1 where

Σ1 = {
∫

RN
+

f(w(y))e〈b,y〉 dy|b = (b1, ..., bN ) ∈ RN , bN = 0, |b| = 1}.
(2.9)
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Proof: Note that as |Pk−Pl|
ε

→ ∞ we have

w(
|Pk − Pl|

ε
) = (

|Pk − Pl|
ε

)−
N−1

2 e−
|Pk−Pl|

ε (1 + o(1)). (2.10)

Hence if we straighten the boundary at Pk we have∫
Ωε

f(wk)wl =
∫

RN
+

f(w(y))w(y − Pl − Pk

ε
)(1 + o(1))

= w(
|Pk − Pl|

ε
)(1 + o(1))

∫
RN

+

f(w(y))w(y − Pl − Pk

ε
)w−1(

|Pk − Pl|
ε

)

= w(
|Pk − Pl|

ε
)(1 + o(1))

∫
RN

+

f(w(y))e〈b,y〉dy

for some b = limε→ Pk−Pl

|Pk−Pl| ∈ RN , |b| = 1.

Note that if w( |Pk−Pl|
ε

) = ηε, we have Pk → Pl and bN = 0 where bN is the

N−th component of b.

�
Note: γkl = γlk.

Next we are going to show three technical lemmas.

The first lemma is about some relations of several integrals associated with

w in RN−1.

Let

γ1 =
1

N + 1

∫
RN−1

|∇w|2|y′|2dy′, (2.11)

We have

Lemma 2.5.

N − 3

2
γ1 =

∫
RN−1

F (w(|y′|)|y′|2dy′ − 1

2

∫
RN−1

|w|2|y′|2dy′ (2.12)

(N + 1)γ1 =
N − 1

2

∫
RN−1

|w|2dy′ −
∫

RN−1
|w|2|y′|2dy′

+
∫

RN−1
f(w)w|y′|2dy′. (2.13)

Proof:

Let y = (y′, yN). The operators ∆ and ∇ below are with respect to

y ∈ RN , and the integrations are with respect to y′ = (y′, 0) ∈ RN−1. We

will also use r for |y′|.



MULTI-PEAK SOLUTIONS 11

By straightforward computations we have∫
RN−1

|y′|2∆w(∇w · y)dy′

= ωN−2

∫ ∞

0
(w′′(r) +

N − 1

r
w′(r))w′(r)rN+1dr

=
N − 3

2
ωN−2

∫ ∞

0
rN(w′(r))2dr

=
(N + 1)(N − 3)

2
γ1, (2.14)

and ∫
RN−1

|y′|2w(∇w · y)dy′

= ωN−2

∫ ∞

0
w′(r)w(r)rN+1dr

= −N + 1

2
ωN−2

∫ ∞

0
rNw2dr

= −N + 1

2

∫
RN−1

w2|y′|2dy′ (2.15)

and ∫
RN−1

|y′|2f(w)(∇w · y)dy′

= ωN−2

∫ ∞

0
f(w)w′(r)rN+1dr

= −(N + 1)ωN−2

∫ ∞

0
rNF (w)dr

= −(N + 1)
∫

RN−1
F (w)|y′|2dy′. (2.16)

Since w satisfies

∆w − w + f(w) = 0, y ∈ RN (2.17)

by multiplying (2.17) by |y′|2(∇w · y) and integrating it with respect to y′ in

RN−1 we obtain (2.12).∫
RN−1

|y′|2w∆wdy′ = ωN−2

∫ ∞

0
w(r)(w′′(r) +

N − 1

r
w′(r))rN dr

= −ωN−2

∫ ∞

0
rN(w′(r))2 +

N − 1

2
ωN−2

∫ ∞

0
rN−2w2dr

= −(N + 1)γ1 +
N − 1

2

∫
RN−1

w2dy′.

Multiply (2.17) by |y′|2w and integrate it in RN−1. Then (2.13) is derived.
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This proves Lemma 2.5.

�

Lemma 2.6. For any function G(t) in C1+σ([0,∞)) with G(0) = G′(0) = 0,

we have∫
Ωε,P

G(w(y))dy =
∫

RN
+

G(w(y))dy − εH(P )
1

2

∫
RN−1

G(w(y′, 0))|y′|2dy + o(ε).

Proof:

Since w decays exponentially in y at infinity, we have∫
Ωε,P

G(w(y))dy =
∫
(Ω0)ε,P

G(w(y))dy + o(ε)

=
∫

B+(
R0
ε

)
G(w(y))dy −

∫
B+(

R0
ε

)\(Ω0)ε,P

G(w(y))dy + o(ε)

=
∫

RN
+

G(w(y))dy −
∫
|y′|≤R0

ε

∫ 1
ε
ρ(εy′)

0
G(w(y′, yN))dyNdy′ + o(ε)

=
∫

RN
+

G(w(y))dy −
∫
|y′|≤R0

ε

∫ 1
ε
ρ(εy′)

0
G(w(y′, 0))dyNdy′

+
∫
|y′|≤R0

ε

∫ 1
ε
ρ(εy′)

0
(G(w(y′, yN) − G(w(y′, 0))) dyNdy′ + o(ε)

=
∫

RN
+

G(w(y))dy −
∫
|y′|≤R0

ε

G(w(y′, 0))
ρ(εy′)

ε
dy′

+
∫
|y′|≤R0

ε

O

(
|w(y′, 0)|σ(

ρ(εy′)
ε

)2

)
dy′ + o(ε)

=
∫

RN
+

G(w(y))dy − 1

2
ε

∫
|y′|≤R0

ε

G(w(y′, 0))
N−1∑
i,j=1

ρij(0)yiyjdy′

+
∫
|y′|≤R0

ε

O(ε2|y′|3)dy′ + o(ε)

=
∫

RN
+

G(w(y))dy − εH(P )
1

2

∫
|y′|≤R0

ε

G(w(y′, 0))|y′|2dy′ + o(ε)

=
∫

RN
+

G(w(y))dy − εH(P )
1

2

∫
RN−1

G(w(y′, 0))|y′|2dy′ + o(ε) (2.18)

where

B+
(

R0

ε

)
= B

(
R0

ε

)
∩ RN

+

and

(Ω0)ε,P = {y|εy + P ∈ Ω0}.
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Hence Lemma 2.6 is proven.

�
Lemma 2.7.∫

RN
+

f(w)(PΩε,P
w − w) = εH(P )

N − 1

4

∫
RN−1

|w|2dy′ + o(ε).

Proof:

Using (2.5), (2.17) and the exponential decay of w and v1, we have∫
RN

+

f(w(y))v1(y)dy =
∫

RN
+

(w − ∆w)v1(y)dy

=
∫

RN
+

(w(v1 − ∆v1) +
∫

RN−1
(v1

∂w

∂yN

− w
∂v1

∂yN

)dy′

=
1

2

∫
RN−1

w(r)w′(r)r−1
N−1∑
i,j=1

ρij(0)yiyjdy′

=
1

2

∫
RN−1

w(r)w′(r)r−1
N−1∑
i=1

ρii(0)|yi|2dy′

=
1

2
H(P )ωN−2

∫ ∞

0
w(r)w′(r)rN−1dr

= −N − 1

4
H(P )

∫
RN−1

w2dy′. (2.19)

In view of Proposition 2.1, Lemma 2.7 follows immediately.

�
The next lemma is the key result in this section.

Lemma 2.8. For any P = (P1, ..., PK) ∈ Λ and ε sufficiently small

Jε(
K∑

i=1

Pwi) = εN [
K

2
I(w) − ε(γ1 + o(1))

K∑
i=1

H(Pi)

−1

2

K∑
k,l=1,k 	=l

(γkl + o(1))w(
|Pk − Pl|

ε
) + o(ε)], (2.20)

where γ1 is defined in (2.11) γkl = γlk ∈ Σ and Σ is defined by (2.8) and γ1

is defined in (2.11).

Furthermore, if w( |Pk−Pl|
ε

) = ηε, we have γkl ∈ Σ1 where Σ1 is defined by

(2.9).

Proof:
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We shall prove the case when K = 2. The other cases are similar.

Since P = (P1, P2) ∈ Λ, we have that w( |P1−P2|
ε

) < ηε.

First we look at the case K = 1. Note that by Proposition 2.1, Lemma

2.6 and Lemma 2.7 we have

ε2
∫
Ω
|∇(PΩε,P

w(
x − P

ε
)|2 +

∫
Ω
|PΩε,P

w(
x − P

ε
)|2

= εN
∫
Ωε,P

f(w)PΩε,P
w

= εN

(∫
Ωε,P

f(w)w +
∫
Ωε,P

f(w)(PΩε,P
w − w)

)

= εN

(∫
RN

+

f(w)w − εH(P )
1

2

∫
RN−1

f(w)w|y′|2dy′

+εH(P )
N − 1

4

∫
RN−1

|w|2dy′) + o(ε)
)

.

(2.21)

Similarly we have∫
Ω

F (PΩε,P
w(

x − P

ε
))dx

= εN

(∫
Ωε,P

F (w)dy +
∫
Ωε,P

(F (PΩε,P
w) − F (w))dy

)

= εN

(∫
RN

+

F (w)dy − εH(P )
1

2

∫
RN−1

f(w)w|y′|2dy′

+εH(P )
N − 1

4

∫
RN−1

|w|2dy′) + o(ε)
)

. (2.22)

Then

Jε(PΩε,P
w) = εN(

1

2
I(w) − γ1H(P ) + o(ε)).

For the case K = 2, we can write∫
Ω

F (Pw1+Pw2) =
∫
Ω1

F (Pw1+Pw2)+
∫
Ω2

F (Pw1+Pw2)+
∫
Ω3

F (Pw1+Pw2)

= I1 + I2 + I3

where Ii, i = 1, 2, 3 are defined at the last equality and

Ω1 = {|x − P1| ≤ 1

2
|P1 − P2|}, Ω2 = {|x − P2| ≤ 1

2
|P1 − P2|},

Ω3 = Ω\(Ω1 ∪ Ω2).
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For I3, we have

|ε−NI3| ≤ C
∫
(Ω3)ε

(w1 + w2)
2+σ = O(w(

|P1 − P2|
ε

)1+0.5σ) = O(ε1+0.5σ).

For I1, using w( |P1−P2|
ε

) = O(ε) we have

ε−NI1 =
∫
(Ω1)ε

(F (Pw1) + f(Pw1)Pw2) + O(ε1+0.5σ)

=
∫
Ωε

F (Pw1) +
∫
(Ω1)ε

f(w1)w2 + O(ε1+0.5σ)

=
∫

RN
+

F (w) − εH(P1)
(

1

2

∫
RN−1

F (w)|y′|2dy′ − N − 1

4

∫
RN−1

|w|2dy′
)

+
∫
(Ω1)ε

f(w1)w2 + O(ε1+0.5σ).

Similarly,

ε−NI2 =
∫

RN
+

F (w) − εH(P2)
(

1

2

∫
RN−1

F (w)|y′|2dy′ − N − 1

4

∫
RN−1

|w|2dy′
)

+
∫
(Ω2)ε

f(w2)w1 + O(ε1+0.5σ).

Hence

ε−NJε(
K∑

i=1

Pwi)

=
∫
Ωε

[
1

2
(

2∑
i=1

(|∇Pwi|2 + (Pwi)
2)) + ∇Pw1∇Pw2 + Pw1Pw2]

−
∫
Ωε

F (Pw1 + Pw2)

=
∫
Ωε

[
1

2
(

2∑
i=1

(|∇Pwi|2 + (Pwi)
2))] +

∫
Ωε

f(w1)Pw2

−
∫
Ωε

F (Pw1 + Pw2)

= 2I(w) − γ1ε
2∑

i=1

H(Pi) +
∫
Ωε

f(w1)Pw2

−
∫
(Ω1)ε

f(w1)w2 −
∫
(Ω2)ε

f(w2)w1 + o(w(
|P1 − P2|

ε
) + O(ε1+0.5σ))

= 2I(w) −γ1ε
2∑

i=1

H(Pi)−(γ12 + o(1))w(
|P1 − P2|

ε
) + O(ε1+0.5σ)).(2.23)
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Here we have used Lemma 2.4∫
Ωε

f(w1)w2 = (γ12 + o(1))w(
|P1 − P2|

ε
)

and similarly ∫
(Ω1)ε

f(w1)w2 = (γ12 + o(1))w(
|P1 − P2|

ε
),

∫
(Ω2)ε

f(w2)w1 = (γ21 + o(1))w(
|P1 − P2|

ε
) = (γ12 + o(1))w(

|P1 − P2|
ε

).

�

3. Liapunov-Schmidt Reduction

In this section, we reduce problem (1.2) to finite dimensions by the Liapunov-

Schmidt method. We first introduce some notations.

Let H2
N(Ωε) be the Hilbert space defined by

H2
N(Ωε) =

{
u ∈ H2(Ωε)

∣∣∣∣∣ ∂u

∂νε

= 0 on ∂Ωε

}
.

Define

Sε(u) = ∆u − u + f(u)

for u ∈ H2
N(Ωε). Then solving equation (1.2) is equivalent to

Sε(u) = 0, u ∈ H2
N(Ωε).

Fix P = (P1, ..., PK) ∈ Λ. To study (1.2) we first consider the linearized

operator

L̃ε : u �→ ∆u − u + f ′
(

K∑
i=1

Pwi

)
u,

H2
N(Ωε) → L2(Ωε).

It is easy to see (integration by parts) that the cokernel of L̃ε coincides

with its kernel. Choose approximate cokernel and kernel as

Cε,P = Kε,P

= span

{
∂Pwi

∂τPi,j

∣∣∣∣∣ i = 1, . . . , K, j = 1, . . . , N − 1

}
.
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Let πε,P denote the projection fromL2(Ωε) onto C⊥
ε,P. Our goal in this section

is to show that the equation

πε,P ◦ Sε(
K∑

i=1

Pwi + Φε,P) = 0

has a unique solution Φε,P ∈ K⊥
ε,P if ε is small enough and P = (P1, ..., PK) ∈

Λ.

As a preparation in the following two propositions we show the invertibility

of the corresponding linearized operator.

Proposition 3.1. Let Lε,P = πε,P ◦ L̃ε. There exist positive constants ε, λ

such that for all ε ∈ (0, ε) and P = (P1, . . . , PK) ∈ Λ

‖Lε,PΦ‖L2(Ωε) ≥ λ‖Φ‖H2(Ωε) (3.1)

for all Φ ∈ K⊥
ε,P.

Proposition 3.2. For any ε ∈ (0, ε̃) and P = (P1, . . . , PK) ∈ Λ the map

Lε,P = πε,P ◦ L̃ε : K⊥
ε,P → C⊥

ε,P

is surjective.

Proof of Proposition 3.1: We will follow the method used in [7], [24],

[25], and [35]. Suppose that (3.1) is false. Then there exist sequences

{εk}, {Pk} = {(P1,k, . . . , PK,k)}, and {Φk} (i = 1, 2, . . . , K, k = 1, 2, . . . )

with εk > 0, Pk ∈ Λ, Φk ∈ K⊥
εk,Pk

such that

εk → 0, (3.2)

Pk → P ∈ Λ, (3.3)

‖Lεk,Pk
Φk‖L2(Ωεk

) → 0, (3.4)

‖Φk‖H2(Ωεk
) = 1, k = 1, 2, . . . . (3.5)

For j = 1, 2, . . . , N − 1 denote

eij,k =
∂

∂τ(Pi,k)
j

Pwi,k/

∥∥∥∥∥∥
∂

∂τ(Pi,k)
j

Pwi,k

∥∥∥∥∥∥
L2(Ωεk

)

where

Pwi,k(y) = PΩεk,Pi,k
w(y − Pi,k

εk

), y ∈ Ωεk
.
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Note that

< ei1j1,k, ei2j2,k >= δi1i2δj1j2 + O(εk) as k → ∞
by Proposition 2.2 , the symmetry of the function w and the fact that P ∈ Λ

(recall that w( |Pk−Pl|
ε

) ≤ ηε). Here δi1i2 is the Kronecker symbol. Further-

more, because of (3.4),

‖L̃εk
Φk‖2

L2 −
K∑

i=1

N−1∑
j=1

(∫
Ωεk

L̃εk
Φkeij,k

)2

→ 0 (3.6)

as k → ∞. Let Ω0, χ, ρ and T be as defined in Section 2. (Note that we

allow R0 → 0 but R0

ε
→ ∞). Then T has an inverse T−1 such that

T−1 : T (B(P,R0) ∩ Ω) → B(P,R0) ∩ Ω.

Recall that εy = T (x). We use the notation T (i) if P is replaced by Pi. We

introduce new sequences {ϕi,k} by

ϕi,k(y) = χ(
1

εk

(T (i))−1(εky))Φk

(
(T (i))−1(εky)

)
(3.7)

for y ∈ RN
+ . Since T (i) and (T (i))−1 have bounded derivatives it follows from

(3.5) and the smoothness of χ that

‖ϕi,k‖H2(RN
+ ) ≤ C

for all k sufficiently large. Since also

‖ϕi,k‖H2(RN
+ \B(0,R)) → 0 as R → ∞

uniformly in k for all k large enough there exists a subsequence, again de-

noted by {ϕi,k} which converges weakly in H2(RN
+ ) to a limit ϕi,∞ as k → ∞.

We are now going to show that ϕi,∞ ≡ 0. As a first step we deduce∫
RN

+

ϕi,∞
∂w

∂yj

= 0, j = 1, . . . , N − 1. (3.8)

This statement is shown as follows (note that det DT = det DT−1 = 1)

∫
RN

+

ϕi,k(y)

⎡
⎣ ∂Pwi,k

∂τ(Pi,k)
j

(
(T (i))−1(εky)

εk

)⎤
⎦ dy

= ε−N
k

∫
Ω0

χ(x − Pi,k)Φk(
x

εk

)
∂Pwi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

) dx
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= ε−N
k

∫
Ω

Φk(
x

εk

)
∂Pwi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

−ε−N
k

∫
Ω\Ω0

Φk(
x

εk

)
∂Pwi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

−ε−N
k

∫
Ω0

[1 − χ(x − Pi,k)]Φk(
x

εk

)
∂Pwi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

= 0 − ε−N
k

∫
Ω\Ω0

Φk(
x

εk

)

⎡
⎣ ∂w

∂(Pi,k)j

(
x − Pi,k

εk

)
− ∂Pwi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

⎤
⎦

−ε−N
k

∫
Ω0

[1 − χ(x − Pi,k)]Φk(
x

εk

)

⎡
⎣ ∂w

∂(Pi,k)j

(
x − Pi,k

εk

)
− ∂Pwi,k

∂τ(Pi,k)
j

(
x − Pi,k

εk

)

⎤
⎦

−ε−N
k

∫
Ω\Ω0

Φk(
x

εk

)
∂w

∂(Pi,k)j

(
x − Pi,k

εk

)

−ε−N
k

∫
Ω0

[1 − χ(x − Pi,k)]Φk(
x

εk

)
∂w

∂(Pi,k)j

(
x − Pi,k

εk

)

where Ω0 is as defined in section 2. In the last expression the first two terms

tend to zero as k → ∞ since εk
−NΦk is bounded in L2(Ω) and the term

in the square bracket converges to 0 strongly in L2(Ω). The last two terms

tend to zero as k → ∞ because of the exponential decay of ∂w/∂(Pi,k)j at

infinity.

We conclude

lim sup
k→∞

∣∣∣∣∣∣
∫

RN
+

ϕi,k(y)

⎡
⎣ ∂Pwi,k

∂τ(Pi,k)
j

(
(T (i))−1(εky)

εk

)⎤
⎦

∣∣∣∣∣∣ = 0

i = 1, . . . , K, j = 1, . . . , N − 1.
(3.9)

This implies (3.8).

Let K0 and C0 be the kernel and cokernel, respectively, of the linear oper-

ator S ′
0(w) which is the Fréchet derivative at w of

S0(v) = ∆v − v + f(v),

S0 : H2
N(RN

+ ) → L2(RN
+ )

where

H2
N(RN

+ ) =

{
u ∈ H2

N(RN
+ )

∣∣∣∣∣ ∂u

∂yN

= 0

}
.
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Note that

S ′
0(w)v = ∆v − v + f ′(w)v,

K0 = C0 = span

{
∂w

∂yj

|j = 1, . . . , N − 1

}
.

Equation (3.8) implies that ϕi,∞ ∈ K⊥
0 . By the exponential decay of w and

by (3.4) we have after possibly taking a further subsequence that

∆ϕi,∞ − ϕi,∞ + f ′(w)ϕi,∞ = 0,

i.e. ϕi,∞ ∈ K0. Therefore ϕi,∞ = 0.

Hence

ϕi,k ⇀ 0 weakly in H2(RN
+ ) as k → ∞. (3.10)

By the definition of ϕi,k we get Φk ⇀ 0 in H2 and

‖Φk‖L2(Ωεk
) → 0 as k → ∞.

Furthermore,

‖f ′(
K∑

i=1

Pwi)Φk‖L2(Ωεk
) → 0

and therefore

‖(∆ − 1)Φk‖L2(Ωεk
) → 0 as k → ∞.

Since ∫
Ωεk

|∇Φk|2 + Φ2
k =

∫
Ωεk

[(1 − ∆)Φk]Φk

≤ C‖(∆ − 1)Φk‖L2(Ωεk
)

we have that

‖Φk‖H1(Ωεk
) → 0 as k → ∞.

In summary:

‖∆Φk‖L2(Ωεk
) → 0 and ‖Φk‖H1(Ωεk

) → 0. (3.11)

From (3.11) and the following elliptic regularity estimate (for a proof see

Appendix B in [35])

‖Φk‖H2(Ωεk
) ≤ C(‖∆Φk‖L2(Ωεk

) + ‖Φk‖H1(Ωεk
)) (3.12)

for Φk ∈ H2
N(Ωεk

) we deduce that

‖Φk‖H2(Ωεk
) → 0 as k → ∞.
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This contradicts the assumption

‖Φk‖H2(Ωεk
) = 1

and the proof of Proposition 3.1 is completed. �

Proof of Proposition 3.2:

We define a linear operator T from L2(Ωε) to itself by

T = πε,P ◦ L̃ ◦ πε,P

Its domain of definition is H2
N(Ωε). By the theory of elliptic equations and

by integration by parts it is easy to see that T is a (unbounded) self-adjoint

operator on L2(Ωε) and a closed operator. The L2 estimates of elliptic equa-

tions imply that the range of T is closed in L2(Ωε). Then by the Closed

Range Theorem ([37], page 205), we know that the range of T is the orthog-

onal complement of its kernal which is, by Proposition 3.1, Kε,P. This leads

to Proposition 3.2. �

We are now in a position to solve the equation

πε,P ◦ Sε(
K∑

i=1

Pwi + Φε,P) = 0. (3.13)

Since Lε,P|K⊥
ε,P

is invertible (call the inverse L−1
ε,P) we can rewrite

Φ = −(L−1
ε,P ◦ πε,P)(Sε(

K∑
i=1

Pwi))

−(L−1
ε,P ◦ πε,P)Nε,P(Φ)

≡ Gε,P(Φ) (3.14)

where

Nε,P(Φ) = Sε(
K∑

i=1

Pwi + Φ)

−[Sε(
K∑

i=1

Pwi) + S ′
ε(

K∑
i=1

Pwi)Φ]

and the operator Gε,P is defined by the last equation for Φ ∈ H2
N(Ωε). We

are going to show that the operator Gε,P is a contraction on

Bε,δ ≡ {Φ ∈ H2(Ωε)|‖Φ‖H2(Ωε) < δ}
if δ is small enough.
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In fact we have the following lemma

Lemma 3.3. For ε sufficiently small, we have

|Nε,P| ≤ C(|Φε,P|1+σ + |Φε,P|p1), (3.15)

‖Sε(
K∑

i=1

Pwi)‖L2(Ωε) ≤ Cε
1+σ

2 . (3.16)

Proof: (3.16) follows from the mean value theorem.

To prove (3.17), we divide the domain into (K +1) parts: let Ω = ∪K+1
i=1 Ωi

where

Ωi = {|x − Pi| ≤ 1 − δ

2
min
k 	=l

|Pk − Pl|}, i = 1, ..., K, ΩK+1 = Ω\ ∪K
i=1 Ωi.

Note that

Sε(
K∑

i=1

Pwi) = f(
K∑

i=1

Pwi) −
K∑

i=1

f(wi).

We now estimate Sε(
∑K

i=1 Pwi) in each domain.

In ΩK+1, we have

|Sε(
K∑

i=1

Pwi)| ≤ (w1 + ... + wK)1+σ ≤ O(ε
1+σ

2 ).

Hence, using also the fact that w(y) decays exponentially in |y| we obtain

‖Sε(
K∑

i=1

Pwi)‖L2((ΩK+1)ε) ≤ O(ε
1+σ

2 ).

In Ωi, i = 1, ..., K, we have

|Sε(
K∑

i=1

Pwi)| ≤
∑
j 	=i

(
|f ′

(wi)wj| + |f ′
(wi)(Pwj − wj)|

)
|

+O(
∑
j 	=i

(|Pwj|1+σ + |wj|1+σ)) + O(|Pwi − wi|1+σ).

Using Proposition 2.1 and the facts that Pw, w and v1 decay exponentially,

we obtain

‖Sε(
K∑

i=1

Pwi)‖L2((Ωi)ε) ≤ O(ε
1+σ

2 ).

�
Thus

‖Gε,P(Φ)‖H2(Ωε) ≤ λ−1(‖πε,P ◦ Nε,P(Φ)‖L2(Ωε)
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+‖πε,P ◦ (Sε(
K∑

i=1

Pwi))‖L2(Ωε))

≤ λ−1C(c(δ)δ + ε
1+σ

2 )

where λ > 0 is independent of δ > 0 and c(δ) → 0 as δ → 0. Similarly we

show

‖Gε,P(Φ) − Gε,P(Φ′)‖H2(Ωε) ≤ λ−1Cc(δ)‖Φ − Φ′‖H2(Ωε)

where c(δ) → 0 as δ → 0. Therefore Mε,P is a contraction on Bδ. The

existence of a fixed point Φε,P now follows from the Contraction Mapping

Principle and Φε,P is a solution of (3.14).

Because of

‖Φε,P‖H2(Ωε) ≤ λ−1(‖Nε,P(Φε,P)‖L2(Ωε)

+‖Sε(
K∑

i=1

Pwi)‖L2(Ωε))

≤ λ−1C(ε
1+σ

2 + c(δ)‖Φε,P‖H2(Ωε))

we have

‖Φε,P‖H2(Ωε) ≤ Cε
1+σ

2 .

We have proved

Lemma 3.4. There exists ε > 0 such that for every (N+1)-tuple ε, P1, . . . , PK

with 0 < ε < ε and P = (P1, ..., PK) ∈ Λ there is a unique Φε,P ∈ K⊥
ε,P sat-

isfying Sε(
∑K

i=1 Pwi + Φε,P) ∈ Cε,P and

‖Φε,P‖H2(Ωε) ≤ Cε
1+σ

2 . (3.17)

The next lemma is our main estimate.

Lemma 3.5. Let Φε,P be defined by Lemma 3.4. Then we have

Jε(
K∑

i=1

Pwi + Φε,P) (3.18)

= εN

⎡
⎣K

2
I(w) − γ1ε

K∑
i=1

H(Pi)

−1

2

∑
k,l=1,...,K,k 	=l

(γkl + o(1))w(
|Pk − Pl|

ε
) + o(ε)

⎤
⎦
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where γ1 and γkl are defined in Lemma 2.5.

Proof:

In fact for any P ∈ Λ, we have

ε−NJε(
K∑

i=1

Pwi + Φε,P) = ε−NJε(
K∑

i=1

Pwi) + gε,P(Φε,P) + O(‖Φε,P‖2
H2(Ωε))

where

gε,P(Φε,P)

=
∫
Ωε

K∑
i=1

(∇Pwi∇Φε,P + PwiΦε,P) −
∫
Ωε

f(
K∑

i=1

Pwi)Φε,P

=
∫
Ωε

[
K∑

i=1

f(wi) − f(
K∑

i=1

Pwi)]Φε,P

≤ ‖
K∑

i=1

f(wi) − f(
K∑

i=1

Pwi)‖L2‖Φε,P‖L2(Ωε)

≤ O(ε1+σ)

by Lemma 3.3 and Lemma 3.4.

Estimate (3.19) now follows from Lemma 2.6 and Lemma 3.4. �
Finally, we show that Φε,P is actually smooth in P.

Lemma 3.6. Let Φε,P be defined by Lemma 3.4. Then Φε,P ∈ C1 in P.

Proof. Recall that Φε,P is a solution of the equation

πε,P ◦ Sε(
K∑

i=1

Pwi + Φε,P) = 0 (3.19)

such that

Φε,P ∈ K⊥
ε,P . (3.20)

By differentiating equation (3.19) twice we easily conclude that the functions

Pwi and ∂2Pwi/(∂τPi,j
∂τPi,k

) are C1 in P. This implies that the projection

πε,P is C1 in P. Applying ∂/∂τPi,j
gives

πε,P ◦ DSε(
K∑

i=1

Pwi + Φε,P)

(
K∑

i=1

∂Pwi

∂τPi,j

+
∂Φε,P

∂τPi,j

)
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+
∂πε,P

∂τPi,j

◦ Sε(
K∑

i=1

Pwi + Φε,P) = 0. (3.21)

where

DSε(
K∑

i=1

Pwi + Φε,P) = ∆ − 1 + f
′
(

K∑
i=1

Pwi + Φε,P).

We decompose
∂Φε,P

∂τPi,j
into two parts:

∂Φε,P

∂τPi,j

=

(
∂Φε,P

∂τPi,j

)
1

+

(
∂Φε,P

∂τPi,j

)
2

where
(

∂Φε,P

∂τPi,j

)
1
∈ Kε,P and

(
∂Φε,P

∂τPi,j

)
2
∈ K⊥

ε,P.

We can easily show that
(

∂Φε,P

∂τPi,j

)
1

is continuous in P since

∫
Ωε

Φε,P
∂Pwk

∂τPk,l

= 0, k = 1, ..., K, l = 1, ..., N − 1

and ∫
Ωε

∂Φε,P

∂τPi,j

∂Pwk

∂τPk,l

+
∫
Ωε

Φε,P
∂2Pwk

∂τPi,j
∂τPk,l

= 0

k, i = 1, ..., K, l, j = 1, ..., N − 1.

We can write equation (3.23) as

πε,P ◦ DSε(
K∑

i=1

Pwi + Φε,P)

(
(
∂Φε,P

∂τPi,j

)2

)

+πε,P ◦ DSε(
K∑

i=1

Pwi + Φε,P)

(
K∑

i=1

∂Pwi

∂τPi,j

+ (
∂Φε,P

∂τPi,j

)1

)

+
∂πε,P

∂τPi,j

◦ Sε(
K∑

i=1

Pwi + Φε,P) = 0. (3.22)

As in the proof of Propositions 3.1 and 3.2, we can show that the operator

πε,P ◦ DSε(
K∑

i=1

Pwi + Φε,P)

is invertible from K⊥
ε,P to C⊥

ε,P. Then we can take inverse of πε,P◦DSε(
∑K

i=1 Pwi+

Φε,P) in the above equation and the inverse is continuous in P.

Since ∂Pwi

∂τPi,j
, (

∂Φε,P

∂τPi,j
)1 ∈ Kε,P are continuous in P and so is

∂πε,P

∂τPi,j
, we conclude

that (∂Φε,P/(∂τPi,j
))2 is also continuous in P. This is the same as the C1

dependence of Φε,P in P. The proof is finished. �
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4. The reduced problem: A Maximizing Procedure

In this section, we study a maximizing problem.

Fix P ∈ Λ. Let Φε,P be the solution given by Lemma 3.4. We define a

new functional

Mε(P) = Jε(
K∑

i=1

Pwi + Φε,P) : Λ → R. (4.1)

We shall prove

Proposition 4.1. For ε small, the following maximizing problem

max{Mε(P) : P ∈ Λ} (4.2)

has a solution Pε ∈ Λ.

Proof: Since Jε(
∑K

i=1 PΩε,Pi
w + Φε,P) is continuous in P, the maximizing

problem has a solution. Let Mε(P
ε) be the maximum where Pε ∈ Λ.

We claim that Pε ∈ Λ.

In fact for any P ∈ Λ, by Lemma 3.5, we have

Mε(P) = εN

⎡
⎣K

2
I(w) − εγ(

K∑
i=1

H(Pi))

−1

2

∑
k,l=1,...,K,k 	=l

(γkl + o(1))w(
|Pk − Pl|

ε
) + o(ε)

⎤
⎦.

Since Mε(P
ε) is the maximum, we have

γ1

K∑
i=1

H(P ε
i ) +

1

ε

∑
k 	=l

(
1

2
γkl + o(1))w(

|P ε
k − P ε

l |
ε

)

≤ γ1

K∑
i=1

H(Pi) +
1

ε

∑
k 	=l

(
1

2
γkl + o(1))w(

|Pk − Pl|
ε

) + o(1)

for any P = (P1, ..., PK) ∈ Λ.

Choose Pi such that H(Pi) → minP∈Γi
H(P ) and w( |Pk−Pl|

ε
)1

ε
→ 0. This

implies that

γ1

K∑
i=1

H(P ε
i ) +

1

ε

∑
k 	=l

(
1

2
γkl + o(1))w(

|P ε
k − P ε

l |
ε

) ≤ γ1

K∑
i=1

min
P∈Γi

H(P ) + δ

for any δ > 0.
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Note that ∂Λ ⊂ {Pi ∈ ∂Γi or w( |Pk−Pl|
ε

) = εη}. Hence if P ∈ ∂Λ , we have

that either

H(Pi) ≥ min
P∈∂Γi

H(P ) ≥ min
P∈Γi

H(P ) + 2η0

for some i = 1, ..., K and η0 > 0 (by condition (1.5)) or

1

ε
w(

|Pk − Pl|
ε

) = η

for some k �= l.

Hence if P ∈ ∂Λ we have

γ1

K∑
i=1

H(P ε
i ) +

1

ε

∑
k 	=l

(
1

2
γkl + o(1))w(

|P ε
k − P ε

l |
ε

)

≥ γ1

K∑
i=1

min
P∈Γi

H(P ) + min(γ1η0, min
k 	=l,w(

|Pk−Pl|
ε

)=ηε

γklη).

Note that min
k 	=l,w(

|Pk−Pl|
ε

)=ηε
γkl ≥ infτ∈Σ1 τ ≥ δ0 > 0 since for any τ ∈ Σ1,

we have

τ =
∫

RN
+

f(w)e〈b,y〉 =
1

2

∫
RN

f(w)e〈b,y〉 > 0.

A contradiction to (4.3) if we choose δ small enough.

It follows that Pε ∈ Λ.

This completes the proof of Proposition 4.1. �

5. Proof of Theorem 1.2

In this section section, we apply results in Section 3 and Section 4 to prove

Theorem 1.1, Theorem 1.2 and Corollary 1.3.

Proofs of Theorem 1.1, Theorem 1.2 and Corollary 1.3

By Lemma 3.4 and Lemma 3.6, there exists ε0 such that for ε < ε0 we

have a C1 map which, to any P ∈ Λ, associates Φε,P ∈ K⊥
ε,P such tha

t

Sε(
K∑

i=1

Pwi + Φε,P) =
∑

k=1,...,K;l=1,...,N−1

αkl
∂Pwk

∂τPk,l

(5.1)

for some constants αkl ∈ RK(N−1).

By Proposition 4.1, we have Pε ∈ Λ, achieving the maximum of the maxi-

mization problem in Proposition 4.1. Let Φε = Φε,Pε and uε =
∑K

i=1 PΩε,Pε
i
w+
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Φε,Pε . Then we have

∂

∂τPi,j

|P=PεMε(P
ε) = 0, i = 1, ..., K, j = 1, ..., N − 1.

Hence we have∫
Ωε

[∇uε∇∂(
∑K

i=1 Pwi + Φε,P)

∂τPi,j

|P=Pε + uε
∂(

∑K
i=1 Pwi + Φε,P)

∂τPi,j

|P=Pε

−f(uε)
∂(

∑K
i=1 Pwi + Φε,P)

∂τPi,j

|P=Pε ] = 0.

Thus ∫
Ωε

∇uε∇∂(Pwi + Φε,P)

∂τPi,j

|P=Pε

+uε
∂(Pwi + Φε,P)

∂τPi,j

|P=Pε − f(uε)
∂(Pwi + Φε,P)

∂τPi,j

|P=Pε = 0

for i = 1, ..., K and j = 1, ..., N − 1.

Therefore we have∑
k=1,...,K;l=1,...,N−1

αkl

∫
Ωε

∂Pwk

∂τPk,l

∂(Pwi + Φε,P)

∂τPi,j

= 0. (5.2)

Since Φε,P ∈ K⊥
ε,P, we have that∣∣∣∣∣
∫
Ωε

∂Pwk

∂τPk,l

∂Φε,P

∂τPi,j

∣∣∣∣∣ =

∣∣∣∣∣−
∫
Ωε

∂2Pwi

∂τPk,l
∂τPi,j

Φε,P

∣∣∣∣∣
≤ ‖ ∂2Pwi

∂τPk,l
∂τPi,j

‖L2‖Φε,P‖L2

= O(ε−2+ 1+σ
2 ).

Note that ∫
Ωε

∂Pwk

∂τPk,l

∂Pwi

∂τPi,j

=
1

ε2
δikδlj(A + o(1))

where

A =
∫

RN
+

(
∂w

∂y1

)2 > 0.

Thus equation (5.2) becomes a system of homogeneous equations for αkl

and the matrix of the system is nonsingular since it is diagonally dominant.

So αkl ≡ 0, k = 1, ..., K, l = 1, ...N − 1.

Hence uε =
∑K

i=1 PΩε,Pε
i
w + Φε,P ε

1 ,...,P ε
K

is a solution of (1.2).

By our construction, it is easy to see that by the maximum principle

uε > 0 in Ω. Moreover εN Jε(uε) → K
2
I(w) and uε has only K local maximum
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points Qε
1, ..., Q

ε
K and Qε

i ∈ ∂Ω. By the structure of uε we see that (up to a

permutation) Qε
i − P ε

i = o(1). This proves Theorem 1.2.

Theorem 1.1 follows from Theorem 1.2 by taking Γi = Γ, i = 1, ..., K.

Finally, we prove Corollary 1.3.

If Ω is not a ball, then H(P ) has a local minimum on some open set Γ,

Theorem 1.1 can be applied.

If Ω is a ball, Corollary 1.3 follows by minimizing energy in symmetric

spaces. See [20] and [22].

�
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