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Abstract. We construct solutions with a single interior condensation point for the two-dimensional

Gierer-Meinhardt system with strong coupling. The condensation point is located at a nondegenerate critical

point of the diagonal part of the regular part of the Green’s function for −∆+1 under the Neumann boundary

condition. Our method is based on Liapunov-Schmidt reduction for a system of elliptic equations.
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1. Introduction. We study the Gierer-Meinhardt system (see [14]) which models bi-
ological pattern formation and can be written as follows (already suitably scaled)

(GM)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

At = ε2∆A − A + Ap

Hq , A > 0 in Ω,

τHt = D∆H − H + Ar

Hs , H > 0 in Ω,

∂A
∂ν = ∂H

∂ν = 0 on ∂Ω.

Here, the unknowns A = A(x, t) and H = H(x, t) represent the concentrations at a point
x ∈ Ω ⊂ RN and at time t of the biochemicals called activator and inhibitor, respectively;
ε, τ,D are positive constants; ∆ :=

∑N
j=1

∂2

∂x2
j

is the Laplace operator in RN ; Ω is a smooth

bounded domain in RN ; ν(x) is the outer normal at x ∈ ∂Ω. The exponents p, q, r, s are
assumed to satisfy the conditions

(A) 1 < p <

(
N + 2
N − 2

)
+

, q > 0, r > 0, s ≥ 0, and 0 <
p − 1

q
<

r

s + 1

where (N+2
N−2 )+ = N+2

N−2 if N ≥ 3; = +∞ if N = 1, 2.

In numerical simulations of the activator-inhibitor system (GM), it is observed that,
when the ratio ε2/D is small, (GM) seems to have stable stationary solutions with the
property that the activator concentration is localized around a finite number of points in Ω.
Moreover, as ε → 0 the pattern exhibits a “point condensation phenomenon”. By this we
mean that the activator concentration is localized in narrower and narrower regions around
some points and eventually shrinks to a certain set of points as ε → 0. Hereby the maximum
value of the inhibitor concentration diverges to +∞.
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The stationary equation for (GM) is the following system of elliptic equations:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2∆A − A + Ap

Hq = 0, A > 0 in Ω,

D∆H − H + Ar

Hs = 0, H > 0 in Ω,

∂A
∂ν = ∂H

∂ν = 0 on ∂Ω.

(1.1)

Generally speaking system (1.1) is quite difficult to solve since it does neither have a
variational structure nor a priori estimates. One way to study (1.1) is to examine the so-
called shadow system. Namely, we let D → +∞ first. It is known (see [23], [31], [34], [39])
that the study of the shadow system amounts to the study of the following single equation:

⎧⎪⎨
⎪⎩

ε2∆u − u + up = 0, u > 0 in Ω,

∂u
∂ν = 0 on ∂Ω.

(1.2)

Equation (1.2) has a variational struture and has been studied by numerous authors. It
is known that equation (1.2) has both boundary spike solutions and interior spike solutions.
For boundary spike solutions, see [5], [9], [15], [17], [22], [29], [30], [31], [39], [44], [46], and
the references therein. (When p = N+2

N−2 , N ≥ 3, boundary spike solutions of (1.2) have been
studied in [1], [2], [3], [12], [13], [27], etc.) For interior spike solutions, please see [4], [6], [18],
[21], [40], [41], [45]. For stability of spike solutions, please see [7], [19], [32], [42] and [43].

In the case when D is finite and not large (this is the so-called strong coupling case),
there are only very few results available. For N = 1, one can construct spike solutions for all
D ≥ 1. See [37]. In higher dimensions, as far as we know, there are no results, yet. (See [8],
[28], and [34] for the study of related systems.) In this paper, we consider the case N = 2
since it has a particular asymptotic behavior.

Remark. Our approach does not work for dimensions N ≥ 3 due to a different asymptotic
behavior of the Green’s function of −∆ + 1 with the Neumann boundary condition.

From now on we suppose that N = 2. For simplicity we let D = 1.
We construct solutions with a single interior condensation point. It turns out that the

condensation points in this case are different from those in the shadow system. We need to
introduce some notation. Let G(P, x) be the Green’s function of −∆+1 under the Neumann
condition, i.e., G satisfies

⎧⎪⎨
⎪⎩

−∆G + G = δP in Ω,

∂G
∂ν = 0 on ∂Ω

where δP is the Dirac delta distribution at point P . It is also known that

G(P, x) = K(|x − P |) − H(P, x)

where K(|x|) is the fundamental solution of −∆+1 in R2 with singularity at 0 and H(P, x)
is C2 in Ω. It is known that

K(r) = − log r − µ + O(r) for r small.(1.3)
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We call h(P ) := H(P, P ) the diagonal part of H(P, x).
We have
Theorem 1.1. Let P0 ∈ Ω be a nondegenerate critical point of h(P ). Then for ε

sufficiently small, problem (1.1) has a solution (Aε,Hε) with the following properties:
(1) Aε(x) = ξ

q/(p−1)
ε (w(x−Pε

ε ) + o(1)) uniformly for x ∈ Ω̄ where ξε > 0 will be deter-
mined later, Pε → P0 as ε → 0, and w is the unique solution of the problem⎧⎪⎨

⎪⎩
∆w − w + wp = 0, w > 0 in R2,

w(0) = maxy∈R2 w(y), w(y) → 0 as |y| → ∞.
(1.4)

(2) Hε(x) = ξε(1 + O( 1
| log ε| )) uniformly for x ∈ Ω̄.

(3) ξ
s+1− qr

p−1
ε = (1 + o(1))ε2 log 1

ε

∫
R2 wr.

Remark. It is known that the solution w to (1.4) is radial, unique and decays exponentially.
(See [16], [24].)

We now outline the proof of Theorem 1.1.
Our method is based on Liapunov-Schmidt reduction which was used in [11], [35] and

[36] to study semi-classical solutions of the nonlinear Schrödinger equation

h2

2
∆U − (V − E)U + Up = 0(1.5)

in RN where V is a potential function and E is a real constant. Namely, in [11], [35] and [36]
solutions of (1.4) are constructed near a nondegenerate critical point of V provided that h is
sufficiently small. Later this method was used in [17], [18], [41], [44], [45], [46] to construct
spike solutions for (1.2).

Here we face a system of elliptic equations. Therefore the process is more complicated.
To lay down the basic idea of our proof, we let

Aε = ξq/(p−1)
ε Āε, Hε = ξεH̄ε

where ξε is to be chosen later. It is easy to see that system (1.1) is equivalent to the following⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2∆Āε − Āε + Āp
ε/H̄q

ε = 0 in Ω,

∆H̄ε − H̄ε + cεĀ
r
ε/H̄s

ε = 0 in Ω,

∂Āε

∂ν = ∂H̄ε

∂ν = 0 on Ω,

(1.6)

where

cε = ξ
qr

p−1−(s+1)
ε .

We fix a point P ∈ Ω. We rescale

Ãε(y) := Āε(P + εy), x = εy + P, y ∈ Ωε,P := {y|P + εy ∈ Ω}.
Then as ε → 0, if we assume that H̄ε(P + εy) → 1 in L∞

loc(Ωε,P ), we have that Ãε → V (y)
where V satisfies ⎧⎪⎨

⎪⎩
∆V − V + V p = 0, V > 0 in R2,

V (0) = maxy∈R2 V (y), V ∈ H1(R2).
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By a uniqueness result it is known that V (y) = w(y) where w is the unique solution of (1.4).
(See [16], [24].) Hence

Ãε(y) ∼ w(y).

(Here and thereafter A ∼ B means A = (1 + o(1))B as ε → 0 in the corresponding norm.)
To ensure that H̄ε(P + εy) ∼ 1, we note that

H̄ε(P ) =
∫

Ω

G(P, x)ξ
qr

p−1−(s+1)
ε

Ār
ε(x)

H̄s
ε (x)

dx

= ε2
∫

Ωε,P

G(P, P + εy)ξ
qr

p−1−(s+1)
ε

Ãr(y)
H̄s

ε (P + εy)
dy

(by (1.3), K(r) = − log r − µ + O(r) for r small)

∼ ξ
qr

p−1−(s+1)
ε ε2 log

1
ε

∫
R2

wr(y) dy.

This suggests that we take

ξ
qr

p−1−(s+1)
ε ε2 log

1
ε

∫
R2

wr(y) dy ∼ 1.

Hence we should look for solutions of (1.1) with the following properties

Aε = ξq/(p−1)
ε Āε, Āε(y) = w(y) + φε(y), φε ∼ 0

where y =
x − Pε

ε
and |Pε − P0| = o(1) as ε → 0,

Hε = ξεH̄ε, H̄ε(x) = 1 + ψε(x), ψε ∼ 0,

and

ξ
qr

p−1−(s+1)
ε ε2 log

1
ε

∫
R2

wr(y) dy ∼ 1.

There are three main difficulties: First, w(x−Pε

ε ) does not satisfy the Neumann boundary
condition. Second, the linearized problem arising from (1.4) has the N -dimensional kernel
span{ ∂w

∂y1
, . . . , ∂w

∂yN
}. Therefore, if we linearize system (1.6) at (w(x−P

ε ), 1) the linearized
operator is not uniformly invertible with respect to ε. Third, we have two scales: (log 1

ε )−1

and ε. They are simply incomparable.
The first difficulty can be overcome by introducing the following projection: Let U ⊂ R2

be a smooth and open set. Suppose that W ∈ H1(R2). The projection PUW is defined by
PUW = W −QUW where QUW satisfies⎧⎪⎨

⎪⎩
∆QUW −QUW = 0 in U,

∂QU W
∂ν = ∂W

∂ν on ∂U.
(1.7)
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The second difficulty is overcome by first “solving” (1.6) module approximate kernel
and cokernel, respectively. Subsequently we use the nondegeneracy of the critical point of
h at P0 to choose Pε near P0 such that the finite-dimensional part lying in the approximate
cokernel vanishes.

The third difficulty can be managed by choosing suitable approximate solutions.
From now on, we work with (1.6). The main points of the proof of Theorem 1.1 and the

organization of this paper can be described as follows:
A)-Choose good approximate solutions.
We first study the solution (Aε,µ(x),Hε,µ(x), cε,µ) of the following problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2∆A − A + Ap

(H(x)−µ)q = 0, x ∈ R2,

∆H − H + cε,µ
Ar

(H(x)−µ)s = 0, x ∈ R2,

H(0) = 1 + O( 1
log 1

ε

+ µ)

(1.8)

where µ is small.
Next we choose µ := µε(P ) so that

µ = QΩ(Hε,µ(· − P ))(P ).(1.9)

Set

Âε,P (x) := Aε,µε(P )(x − P ), Ĥε,P (x) := Hε,µε(P )(x − P ),

cε = ξ
qr

p−1−(s+1), cε,P := cε,µε(P ).

We now choose our approximate solutions:

Aε,P (y) := PΩε,P
Âε,P (P + εy), Hε,P (x) := PΩĤε,P (x).(1.10)

Set

ϕε,P (y) := Âε,P (y) − Aε,P (y), ψε,P (x) := Ĥε,P (x) − Hε,P (x).

It will be proved that ϕε,P (y) = O(e−d(P,∂Ω)/ε) for a.e. y ∈ Ωε,P and ψε,P = 1
log 1

ε

(H(P, x)+
o(1)) uniformly with respect to x ∈ Ω.

We will analyze Aε,P and Hε,P in Section 2 and Section 3.
B)-The idea now is to look for a solution of (1.6) of the form

Āε(P + εy) = Aε,P (y) + φ(y), H̄ε(x) = Hε,P (x) + ψ(x).

We will show that, provided P is properly chosen, φ and ψ are expected to be insignificantly
small.

We now write system (1.6) in operator form.
For any smooth and open set U ⊂ R2, let

W 2,t
N (U) = {u ∈ W 2,t(U)|∂u

∂ν
= 0 on ∂U}, H2

N (U) = W 2,2
N (U).
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For A(y) ∈ H2
N (Ωε,P ), H(x) ∈ W 2,t

N (Ω) where 1 < t < 1.1. (We need t > 1 so that the
Sobolev embedding W 2,t(Ω) ⊂ L∞(Ω) is continuous.) Set

Sε

⎛
⎝ A

H

⎞
⎠ =

⎛
⎝ S1(A,H)

S2(A,H)

⎞
⎠

where S1(A,H) = ∆yA − A + Ap/Hq, S2(A,H) = ∆xH − H + cε,P Ar/Hs.
Then solving equation (1.6) is equivalent to

Sε

⎛
⎝ A

H

⎞
⎠ = 0, A ∈ H2

N (Ωε,P ), H ∈ W 2,t
N (Ω).(1.11)

We now substitute A = Aε,P (y) + φ(y), H = Hε,P (x) + ψ(x) into (1.11). The system
determining φ and ψ can be written as

S′
ε

⎛
⎝ Aε,P

Hε,P

⎞
⎠

⎡
⎣ φ

ψ

⎤
⎦ +

⎛
⎝ E1

ε,P

E2
ε,P

⎞
⎠ +

⎛
⎝ O(‖φ‖2

L2(Ωε,P ) + ‖ψ‖2
Lt(Ω))

O(‖φ‖2
L2(Ωε,P ) + ‖ψ‖2

Lt(Ω))

⎞
⎠ = 0,

where Ei
ε,P , i = 1, 2 denote the error terms and E1

ε,P = S1(Aε,P ,Hε,P ), E2
ε,P = S2(Aε,P ,Hε,P ).

We will estimate the error terms in Section 3.
It is then natural to try to solve the equations for (φ, ψ) by a contraction mapping argu-

ment. The problem is that the linearized operator S′
ε

⎛
⎝ Aε,P

Hε,P

⎞
⎠ is not uniformly invertible

with respect to ε.
Thererefore, we now replace the above equation with

S′
ε

⎛
⎝ Aε,P

Hε,P

⎞
⎠

⎡
⎣ φ

ψ

⎤
⎦ +

⎛
⎝ E1

ε,P

E2
ε,P

⎞
⎠ +

⎛
⎝ O(‖φ‖2

L2(Ωε,P ) + ‖ψ‖2
Lt(Ω))

O(‖φ‖2
L2(Ωε,P ) + ‖ψ‖2

Lt(Ω))

⎞
⎠ =

⎛
⎝ vε,P

0

⎞
⎠

(1.12)

where vε,P lies in an appropriately chosen approximate cokernel of the linear operator

Lε := ∆y − 1 + pAp−1
ε,P H−q

ε,P − qr

s + 1

∫
Ωε,P

Ar−1
ε,P ·∫

Ωε,P
Ar

ε,P

Ap
ε,P ,

Lε : H2(Ωε,P ) → L2(Ωε,P )

and φ is orthogonal in L2(Ωε,P ) to the corresponding approximate kernel of Lε.
C)-We solve (1.12) for (φ, ψ) module the approximate kernel. To this end, we need a

detailed analysis of the operators Lε and S
′
ε. This together with the contraction mapping

argument is done in Section 4.
D)-In the last step, we study a vector field P → Wε(P ) such that Wε(P ) = 0 implies

vε,P = 0 (and hence solutions of the system (1.6) can be found). To discuss the zeros of
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P → Wε(P ) we need very good estimates for the error terms E1
ε,P and E2

ε,P . Much of Section
3 is devoted to this analysis. With a good estimate of Ei

ε,P , i = 1, 2, we discover that under
the geometric condition described in Theorem 1.1 there is a point Pε in a small neighborhood
of P0 ∈ Ω such that Wε(Pε) = 0. This will complete the proof of Theorem 1.1 and is done
in Section 5.

Finally, we remark that the stability of the solutions constructed in Theorem 1.1 should
be related to the matrix (∇i∇jh(P0)). This will be studied in a forthcoming paper.

Throughout this paper, we always assume that P ∈ Br(P0) for some fixed small number
r > 0. We shall frequently use the following technical lemma.

Lemma 1.2. Let u be a solution of

∆u − u + f = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω.

Suppose

|f(x)| ≤ ηe−
α|x−P |

ε

for some α > 0. Then if ε > 0 is small enough we have

|u(P )| ≤ C1ηε2 log
1
ε
,(1.13)

and

|u(P ) − u(x)| ≤ C2ηε2 log
( |x − P |

ε
+ 1

)
(1.14)

where C1 > 0, C2 > 0 are generic constants (which are independent of ε > 0 and η > 0).
Proof. By the representation formula we calculate

u(x) =
∫

Ω

G(x, z)f(z)dz

and

u(P ) =
∫

Ω

G(P, z)f(z)dz = ε2
∫

Ωε,P

G(P, P + εy)f(P + εy)dy

≤ C1ηε2 log
1
ε
.

Similarly we can obtain (1.14).
�

2. Study of the Approximate Solutions. In this section, we define a good approx-
imate solution and study its properties. We will use the implicit function theorem and
perturbation arguments. To this end, it is essential that we have the following important
lemma.

Lemma 2.1.

The operator

L := ∆ − 1 + pwp−1 − qr

s + 1

∫
R2 wr−1·∫

R2 wr
wp
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with w defined in (1.4) is an invertible map from H2
r (R2) to L2

r(R
2), where H2

r (R2) (L2
r(R

2))
is the subset of those functions of H2(R2) (L2

r(R
2) which are radially symmetric.

Proof. We just need to prove that

kernel(L) ∩ H2
r (R2) = {0}, kernel(L∗) ∩ H2

r (R2) = {0}

where L∗ is the conjugate operator of L.
In fact, let Lφ = 0 for φ ∈ H2

r (R2). Then we have

L0(φ − qr

(p − 1)(s + 1)

∫
R2 wr−1φ∫

R2 wr
w) = 0

where L0 := ∆−1+pwp−1. By Lemma 4.2 of [30], φ− qr
(p−1)(s+1)

∫
R2 wr−1φ∫

R2 wr w = 0. Multiplying

this equation by wr−1 and integrating over R2 we see that
∫

R2
wr−1φ = 0.

Since qr
(p−1)(s+1) > 1 we conclude φ = 0.

Next we claim that kernel(L∗)∩H2
r (R2) = {0}. Let φ ∈ H2

r (R2) be such that L∗φ = 0.
Namely we have

L0φ − qr

s + 1

∫
R2 wpφ∫
R2 wr

wr−1 = 0.(2.1)

Multiplying (2.1) by w and integrating over R2, we obtain

(p − 1 − qr

s + 1
)
∫

R2
wpφ = 0

Since p − 1 − qr
s+1 < 0 we get

∫
R2

wpφ = 0.

Hence L0φ = 0 and φ = 0.
�

We now study the following system
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2∆A − A + Ap

(H−QΩH(P ))q = 0, x ∈ R2,

∆H − H + cε,P
Ar

(H−QΩH(P ))s = 0, x ∈ R2,

H(P ) = 1 + O( 1
log 1

ε

).

(2.2)

We have
Theorem 2.2. For ε << 1, there exists a unique solution (Âε,P (x), Ĥε,P (x), cε,P ) of

(2.2) with the following properties:
(1) Âε,P (x) and Ĥε,P (x) depend on |x − P | only;
(2) Âε,P = (1 + o(1))w( |x−P |

ε );
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(3) Ĥε,P (0) = 1 + O( 1
log 1

ε

);

(4) Ĥε,P (x) = σP

log 1
ε

K(|x − P |) + ε
log 1

ε

Jε,P (|x − P |) for |x| ≥ δ where σP = 1 +
o(1), Jε,P (|x − P |), ∇xJε,P (|x − P |) = O(1).
Proof of Theorem 2.2. The proof is divided into the following steps:

Step 1. We first look for radially symmetric solutions (Aε,µ,Hε,µ, cε,µ) of the following
parametrized equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2∆A − A + Ap

(H−µ)q = 0, x ∈ R2,

∆H − H + cε,µ
Ar

(H−µ)s = 0, x ∈ R2,

A(x) = A(|x|), H(x) = H(|x|), H(0) = 1 + O( 1
log 1

ε

+ µ)

(2.3)

for 0 < µ << 1.
Problem (2.3) can be solved by the contraction mapping principle. We first need suitable

approximate solutions. We note that the problem
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∆yA − A + Ap

(1−µ)q = 0, y ∈ R2,

∆xH − H + cε,µ,0
Ar

(H−µ)s = 0, x ∈ R2,

x = εy,A(y) = A(|y|),H(x) = H(|x|),H(0) = 1

(2.4)

has a unique solution (Aε,µ,0(y),Hε,µ,0(x), cε,µ,0) for 0 < µ << 1. In fact, it is well-known
that (for given µ small) the first equation has the unique positive solution Aε,µ,0(y) =
(1 − µ)q/(p−1)w(y) with maximum at 0 and decaying to 0 at infinity (compare equation
(1.4)). It is also easy to see that for given µ and A ∈ H2(R2), the second equation has a
unique solution Hε,µ,0(x) ∈ H2(R2) (note that the nonlinearity is concave). To ensure that
Hε,µ,0(0) = 1, we just need to choose cε,µ,0. In fact, by the standard representation formula

Hε,µ,0(x) =
∫

R2
K(|x − z|) cε,µ,0 (1 − µ)rq/(p−1)(Hε,µ,0 − µ)−s(z)wr

(z

ε

)
dz.

Taking x = 0, we obtain

cε,µ,0 = (1 − µ)s−rq/(p−1)

(∫
R2

K(|z|)(1 + O(
1

log 1
ε

+ µ))wr
(z

ε

)
dz

)−1

= (1 − µ)s−rq/(p−1)

(
ε2(1 + O((log

1
ε
)−1 + µ)

∫
R2

K(|εy|)wr(y) dy

)−1

= (1 − µ)s−rq/(p−1) 1
ε2 log(1/ε)

(∫
R2

wr(y) dy

)−1

+ O

(
1/ log(1/ε) + µ

ε2 log(1/ε)2

)

as ε → 0.
(Here we have used the fact that (by Lemma 1.2)

|Hε,µ,0(x) − Hε,µ,0(0)| ≤ C
1

log 1
ε

log
( |x − P |

ε
+ 1

)
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for some generic constant C > 0.)
Using the ansatz

Aε,µ(y) = Aε,µ,0(y) + aε,µ(y),

Hε,µ(x) = Hε,µ,0(x) + hε,µ(x),

and inserting it into (2.3) (with cε,µ = cε,µ,0) gives us

∆yaε,µ − aε,µ =
Ap

ε,µ,0

(1 − µ)q
− (Aε,µ,0 + aε,µ)p

(Hε,µ,0 + hε,µ − µ)q
,

∆xhε,µ − hε,µ = cε,µ,0

Ar
ε,µ,0

(Hε,µ,0 − µ)s
− cε,µ,0

(Aε,µ,0 + aε,µ)r

(Hε,µ,0 + hε,µ − µ)s
.

The first equation can be rewritten as follows:

∆yaε,µ − aε,µ +
pAp−1

ε,µ,0aε,µ

(1 − µ)q
− qAp

ε,µ,0hε,µ

(1 − µ)q+1
= e1

where

e1 =
(Aε,µ,0 + aε,µ)p

(1 + hε,µ − µ)q
− (Aε,µ,0 + aε,µ)p

(Hε,µ,0 + hε,µ − µ)q

− (Aε,µ,0 + aε,µ)p

(1 + hε,µ − µ)q
+

Ap
ε,µ,0

(1 − µ)q
+

pAp−1
ε,µ,0aε,µ

(1 − µ)q
− qAp

ε,µ,0hε,µ

(1 − µ)q+1
.

This implies

‖e1(y)‖L2(R2) = O
(
‖aε,µ(y)‖2

L2(R2)

)
+ O(‖hε,µ(x)‖2

L∞(Ω)) + O(
1

log 1
ε

+ µ).

For a given aε,µ, we can solve the second equation directly since the nonlinearity is concave.
Moreover, we have that hε,µ satisfies

∆xhε,µ − hε,µ + cε,µ

rAr−1
ε,µ,0aε,µ

(Hε,µ,0 − µ)s
− cε,µ

sAr
ε,µ,0hε,µ

(Hε,µ,0 − µ)s+1
= e2

where

e2 = cε,µ

Ar
ε,µ,0

(Hε,µ,0 − µ)s
− cε,µ

(Aε,µ,0 + aε,µ)r

(Hε,µ,0 − µ)s

+cε,µ

rAr−1
ε,µ,0aε,µ

(Hε,µ,0 − µ)s
− cε,µ

sAr
ε,µ,0hε,µ

(Hε,µ,0 − µ)s+1
.

This implies

‖e2‖L2(R2) = O(‖aε,µ‖2
L2(R2)) + O(‖hε,µ‖2

L∞(Ω)‖Ar−1
ε,µ,0‖L2(R2)).
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Thus by Lemma 1.2

hε,µ(x) = hε,µ(0) + O(
1

log 1
ε

)

and

hε,µ(0) =
∫

R2
K(z)[cε,µ

rAr−1
ε,µ,0aε,µ

(Hε,µ,0 − µ)s
− cε,µ

sAr
ε,µ,0hε,µ

(Hε,µ,0 − µ)s+1
] + O(‖aε,µ‖2

L2(R2))

= cε,µ

∫
R2

rAr−1
ε,µ,0aε,µ(1 + O(

1
log 1

ε

+ µ))

−cε,µshε,µ(0)
∫

R2
Ar

ε,µ,0(1 + O(
1

log 1
ε

+ µ)) + O(‖aε,µ‖2
L2(R2)).

So

hε,µ(0) =
r

s + 1

∫
Ar−1

ε,µ,0aε,µ∫
Ar

ε,µ,0

+ O(
1

log 1
ε

+ µ) + O(‖aε,µ‖2
L2(R2)).

Substituting this into the first equation, the equation for aε,µ becomes

∆yaε,µ − aε,µ +
pAp−1

ε,µ,0aε,µ

(1 − µ)q
− qrAp

ε,µ,0

(s + 1)(1 − µ)q+1

∫
R2 Ar−1

ε,µ,0aε,µ∫
R2 Ar

ε,µ,0

= e1 + O(
1

log 1
ε

+ µ) + O(‖aε,µ‖2
L2(R2))

in L2(R2).
By Lemma 2.1 and a perturbation argument for ε << 1, µ << 1, the equation for aε,µ

can be solved and the solution is unique. Thus we have obtained a solution to (2.3).
Step 2. We choose µ such that

µ = Hε,µ(0) − PΩ(Hε,µ(· − P ))(P ).(2.5)

To this end, we note that this is equivalent to

µ =
∫

R2
(K(|z|) − G(P, P + z)) cε,µ (Hε,µ(z) − µ)−sAr

ε,µ

(z

ε

)
dz

=
∫

R2
H(P, P + z)cε,µ(Hε,µ(z) − µ)−sAr

ε,µ(
z

ε
)dz

= H(P, P )cε,µ

∫
R2

(Hε,µ(z) − µ)−sAr
ε,µ(

z

ε
)dz

+O(ε)
∫

R2
|z|cε,µ(Hε,µ(z) − µ)−sAr

ε,µ(
z

ε
)dz.
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Since cε,µ

∫
R2(Hε,µ(z)−µ)−sAr

ε,µ( z
ε )dz = 1+o(1)

log 1
ε

, it is easy to see that by the contraction
mapping principle, (1.9) has a unique solution µ = µε(P ).

We further calculate

µ =
1 + o(1)

log 1
ε

[H(P, P ) + O(
1

log 1
ε

)]

as ε → 0.
Let now

Âε,P (x) = Aε,µ(x − P ), Ĥε,P (x) = Hε,µ(x − P ), cε,P = cε,µ

where µ := µε(P ) is given by (1.9).
It is easy to see that (1), (2) and (3) of Thorem 1.1 are satisfied. It remains to prove

(4). We have for |x| ≥ δ:

Ĥε,P (x) =
ε2

∫
R2 K(|x − P − εy|)Ar

ε,µ(y)

Hs
ε,µ

dy
∫

R2 K(|εy|)Ar
ε,µ(y)

Hs
ε,µ

dy

=
σP

log 1
ε

[K(|x − P |) + O(ε)], σP = 1 + o(1)

as ε → 0.
This implies Theoreom 2.2. �

3. Estimates of the Error Terms. In this section, we give some preliminary esti-
mates. These will be used in the later sections.

Recall that we choose our approximate solution as follows:

Aε,P (y) = PΩε,P
Âε,P , Hε,P (x) = PΩĤε,P (x).

Note that in this case

µ = QΩĤε,P (P ).

Also recall that

ϕε,P (y) = QΩε,P
Âε,P = Âε,P − Aε,P , ψε,P (x) = QΩĤε,P = Ĥε,P − Hε,P .

We note that ϕε,P satisfies

∆yϕε,P − ϕε,P = 0 in Ωε,P ,

∂ϕε,P

∂ν
=

∂Âε,P

∂ν
= O(e−d(P,∂Ω)/ε) on ∂Ωε,P .

Hence

‖ϕε,P ‖H2(Ωε,P ) = O(e−d(P,∂Ω)/ε).(3.1)
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By Theorem 2.2 we have

PΩĤε,P (x) =

∫
Ωε,P

G(x, P + εy) Âr
ε,P (y)

(Ĥε,P −µε(P ))s
dy

∫
R2 K(|εy|) Âr

ε,P (y)

(Ĥε,P −µε(P ))s
dy

=
1 + o(1)

log 1
ε

[K(|x − P |) − H(x, P ) + O(ε)].

This implies

ψε,P (x) = Ĥε,P (x) − PΩĤε,P (x − P ) =
1 + o(1)

log 1
ε

[H(x, P ) + O(ε)]

or, equivalently,

ψε,P (x) =
1 + o(1)

log 1
ε

H(P, x) + O

(
ε

log 1
ε

)
.(3.2)

By (3.1) and (3.2), we see that the term involving ϕε,P can be neglected. This is what
we will do in the later sections.

The reason for choosing Aε,µ and Hε,P as we did lies in the two following estimates:

S1(Aε,P ,Hε,P ) = ∆yAε,P − Aε,P +
Ap

ε,P

Hq
ε,P

=
(Âε,P − ϕε,P )p

(Ĥε,P − ψε,P )q
− (Âε,P )p

(Ĥε,P − ψε,P (P ))q

= O(e−d(P,∂Ω)/ε) + (Âε,P )p[(Ĥε,P − ψε,P )−q − (Ĥε,P − ψε,P (P ))−q] (by (3.1))

= O(e−d(P,∂Ω)/ε) − q(Âε,P )p(Ĥε,P )−q−1(ψε,P (x) − ψε,P (P )) + O((
ε

log 1
ε

)2Âp
ε,P )

for a.e. y ∈ Ωε,P . Similarly we have

S2(Aε,P ,Hε,P ) = ∆xHε,P − Hε,P + cε,P

Ar
ε,P

Hs
ε,P

= O(e−d(P,∂Ω)/ε) − scε,P (Âε,P )r(Ĥε,P )−s−1(ψε,P (x) − ψε,P (P )) + O(cε,P (
ε

log 1
ε

)2Âr
ε,P )

for a.e. x ∈ Ω.
We have thus obtained
Lemma 3.1. We have

S1(Aε,P ,Hε,P ) = O(e−d(P,∂Ω)/ε)−q(Âε,P )p(Ĥε,P )−q−1(ψε,P (x)−ψε,P (P ))+O((
ε

log 1
ε

)2Âp
ε,P )

(3.3)
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for a.e. y ∈ Ωε,P .

S2(Aε,P ,Hε,P ) = O(e−d(P,∂Ω)/ε)−scε,P (Âε,P )r(Ĥε,P )−s−1(ψε,P (x)−ψε,P (P ))+O(cε,P (
ε

log 1
ε

)2Âr
ε,P )

(3.4)
for a.e. x ∈ Ω.

Hence

‖S1(Aε,P ,Hε,P )‖L2(Ωε,P ) = O(
ε

log 1
ε

),(3.5)

‖S2(Aε,P ,Hε,P )‖Lt(Ω) = O(ε2t−1−1(
1

log 1
ε

)2)(3.6)

for any 1 < t < 1.1.
Proof. By direct computation. �

4. The Liapunov-Schmidt Reduction Method. This section is devoted to studying
the linearized operator defined by

L̃ε,P := S′
ε

⎛
⎝ Aε,P

Hε,P

⎞
⎠ ,

L̃ε,P : H2
N (Ωε,P ) × W 2,t

N (Ω) → L2(Ωε,P ) × Lt(Ω)

where 1 < t < 1.1 is a fixed number.
Set

Kε,P := span {∂Aε,P

∂Pj
|j = 1, ..., N} ⊂ H2

N (Ωε,P ),

Cε,P := span {∂Aε,P

∂Pj
|j = 1, ..., N} ⊂ L2(Ωε,P ),

Lε := ∆ − 1 + pAp−1
ε,P H−q

ε,P − qr

s + 1

∫
Ωε,P

Ar−1
ε,P ·∫

Ωε,P
Ar

ε,P

Ap
ε,P

and

Lε,P := πε,P ◦ Lε : K⊥
ε,P → C⊥

ε,P

where πε,P is the projection in L2(Ωε,P ) onto C⊥
ε,P .

We remark that since Aε,P (y) = (1 + O( 1
log 1

ε

))w(y), it is easy to see that

lε,P := πε,P ◦ (∆ − 1 + pAp−1
ε,P ) : K⊥

ε,P → C⊥
ε,P
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is a one-to-one and surjective map. For the proof please see the proof of Propositions 6.1-6.2
in [41].

The following proposition is the key estimate in applying the Liapunov-Schmidt reduc-
tion method.

Proposition 4.1. For ε sufficiently small, the map Lε,P is a one-to-one and surjective
map. Moreover the inverse of Lε,P exists and is bounded uniformly with respect to ε.
Proof. We will follow the method used in [11], [35], [36], [41] and [44]. We first show that
there exist constants C > 0, ε̄ > 0 such that for all ε ∈ (0, ε̄),

‖Lε,P Φ‖L2(Ωε,P ) ≥ C‖Φ‖H2(Ωε,P )(4.1)

for all Φ ∈ K⊥
ε,P .

Suppose that (4.1) is false. Then there exist sequences {εk}, {Pk}, and {φk} with
Pk ∈ Ω, φk ∈ K⊥

εk,Pk
such that

‖Lεk,Pk
φk‖L2(Ωεk,Pk

) → 0,(4.2)

‖φk‖H2(Ωεk,Pk
) = 1, k = 1, 2, . . . .(4.3)

Namely we have the following situation

∆yφk − φk + pAp−1
εk,Pk

H−q
εk,Pk

φk − qr

s + 1

∫
Ωεk,Pk

Ar−1
εk,Pk

φk∫
Ωεk,Pk

Ar
εk,Pk

Ap
εk,Pk

= fk,(4.4)

where

‖fk‖L2(Ωεk,Pk
) → 0

φk ∈ K⊥
εk,Pk

, ‖φk‖H2(Ωεk,Pk
) = 1.(4.5)

We now show that this is impossible. Set Ak = Aεk,Pk
,Ωk = Ωεk,Pk

.
Note that

Hεk,Pk
= 1 + o(1) in L∞(Ω),

(∆y − 1 + pAp−1
k )

Ak

p − 1
= Ap

k + o(1) in L2(Ωk).

Thus we have

(∆y − 1 + pAp−1
k )(φk − qr

(s + 1)(p − 1)

∫
Ωk

Ar−1
k φk∫

Ωk
Ar

k

Ak) = fk + o(1) in L2(Ωk).

Since the projection of Ak into Kεk,Pk
is o(1) in H2(Ωk) and the operator

∆y − 1 + pAp−1
k

is an one-to-one and invertible map (with the inverse bounded uniformly with respect to ε)
from K⊥

εk,Pk
to C⊥

εk,Pk
, we have

φk − qr

(s + 1)(p − 1)

∫
Ωk

Ar−1
k φk∫

Ωk
Ar

k

Ak = o(1) in H2(Ωk).(4.6)
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Since qr
(p−1)(s+1) > 1, (4.6) implies that

‖φk‖H2(Ωk) = o(1).

A contradiction !
Thus (4.1) holds and Lε,P is a one-to-one map.
Next we show that Lε,P is also surjective. To this end, we just need to show that the

conjugate of Lε,P (denoted by L∗
ε,P ) is injective from K⊥

ε,P to C⊥
ε,P .

Let L∗
ε,P φ ∈ C⊥

ε,P , φ ∈ K⊥
ε,P . Namely we have

∆yφ − φ + pAp−1
ε,P H−q

ε,P φ − qr

s + 1

∫
Ωε,P

Ap
ε,P φ∫

Ωε,P
Ar

ε,P

Ar−1
ε,P ∈ Cε,P .(4.7)

We can assume that ‖φ‖H2(Ωε,P ) = 1.
Multiplying (4.7) by Aε,P and integrating over Ωε,P , we obtain

(p − 1 − qr

s + 1
)
∫

Ωε,P

Ap
ε,P φ = o(1)

or, equivalently, ∫
Ωε,P

Ap
ε,P φ = o(1).

Hence φ satisfies

∆yφ − φ + pAp−1
ε,P H−q

ε,P φ + o(1) ∈ Cε,P , φ ∈ K⊥
ε,P

which implies that ‖φ‖H2(Ωε,P ) = o(1). A contradiction !
Therefore Lε,P is also surjective.
�

We now deal with system (1.6).
L̃ε,P is not uniformly invertible in ε due to the approximate kernel

Kε,P := Kε,P ⊕ {0} ⊂ H2
N (Ωε,P ) × W 2,t

N (Ω).

We choose the approximate cokernel as follows:

Cε,P := Cε,P ⊕ {0} ⊂ L2(Ωε,P ) × Lt(Ω).

We then define

K⊥
ε,P := K⊥

ε,P ⊕ W 2,t
N (Ω) ⊂ H2

N (Ωε,P ) × W 2,t
N (Ω),

C⊥
ε,P := C⊥

ε,P ⊕ Lt(Ω) ⊂ L2(Ωε,P ) × Lt(Ω).

Let πε,P denote the projection in L2(Ωε,P ) × Lt(Ω) onto C⊥
ε,P . (Here the projection in the

second component is the identity map.) We then show that the equation

πε,P ◦ Sε

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠ = 0
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has the unique solution Σε,P =

⎛
⎝ Φε,P (y)

Ψε,P (x)

⎞
⎠ ∈ K⊥

ε,P if ε is small enough.

As a preparation in the following two propositions we show the invertibility of the
corresponding linearized operator.

Proposition 4.2. Let Lε,P = πε,P ◦ L̃ε,P . There exist positive constants ε, λ such that
for all ε ∈ (0, ε)

‖Lε,P Σ‖L2(Ωε,P )×Lt(Ω) ≥ λ‖Σ‖H2(Ωε,P )×W 2,t(Ω)(4.8)

for all Σ ∈ K⊥
ε,P .

Proposition 4.3. There exists a positive constant ε such that for all ε ∈ (0, ε) the map

Lε,P = πε,P ◦ L̃ε : K⊥
ε,P → C⊥

ε,P

is surjective.
Proof of Proposition 4.2. This proposition follows from Proposition 4.1. In fact, suppose
that (4.8) is false. Then there exist sequences {εk}, {Pk}, and {Σk} with Pk ∈ Ω, Σk =⎛
⎝ φk(y)

ψk(x)

⎞
⎠ ∈ K⊥

εk,Pk
such that

‖Lεk,Pk
Σk‖L2(Ωεk,Pk

)×Lt(Ω) → 0,(4.9)

‖Σk‖H2(Ωεk,Pk
)×W 2,t(Ω) = 1, k = 1, 2, . . . .(4.10)

Namely we have the following situation

∆yφk − φk + pAp−1
εk,Pk

H−q
εk,Pk

φk − qAp
εk,Pk

H−q−1
εk,Pk

ψk = fk, ‖fk‖L2(Ωεk,Pk
) → 0,(4.11)

∆xψk − ψk + rcεk,Pk
Ar−1

εk,Pk
H−s

εk,Pk
φk − scεk,Pk

Ar
εk,Pk

H−s−1
εk,Pk

ψk = gk(4.12)

where

‖gk‖Lt(Ω) → 0,

φk ∈ K⊥
εk,Pk

,(4.13)

‖φk‖2
H2(Ωεk,Pk

) + ‖ψk‖2
W 2,t(Ω) = 1.(4.14)

We now show that this is impossible. Set Ak = Aεk,Pk
,Ωk = Ωεk,Pk

.
We first note that by (4.12) we have

‖ψk‖L∞(Ω) ≤ C

and hence by Lemma 1.2 and Sobolev embedding,

|ψk(x) − ψk(Pk)| ≤ C|x − Pk|α +
1

log 1
ε

log
( |x − P |

ε
+ 1

)
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for some α > 0 since t > 1. Thus

‖Ap
k(ψk − ψk(Pk))‖L2(Ωk) → 0, k = 1, 2, . . . in L2(Ωk).(4.15)

Moreover by (4.12),

ψk(Pk) =
∫

Ωk

G(P, z)(rcεk,Pk
Ar−1

k H−s
εk,Pk

φk − scεk,Pk
Ar

kH−s−1
εk,Pk

ψk − gk)

= (1 + o(1))rcεk,Pk
log

1
εk

∫
Ωk

Ar−1
εk,Pk

φk − (1 + o(1))sψk(Pk)cεk,Pk

∫
Ωk

Ar
k + o(1).

So

ψk(Pk) =
r

s + 1

∫
Ωk

Ar−1
k φk∫

Ωk
Ar

k

+ o(1).

Thus we have

Lεk,Pk
φk = o(1) in L2(Ωk), φk ∈ K⊥

εk,Pk
.(4.16)

By Proposition 4.1, ‖φk‖H2(Ωk) = o(1). Hence ψk(Pk) = o(1) and by elliptic estimates
‖ψk‖W 2,t(Ω) = o(1).

This contradicts the assumption (4.14) and the proof of Proposition 4.2 is completed.
�

Proof of Proposition 4.3. We just need to show that the conjugate operator of Lε,P (denoted
by L∗

ε,P ) is injective from K⊥
ε,P to C⊥

ε,P . Suppose not. Then there exist φ ∈ K⊥
ε,P , ψ ∈

W 2,t(Ω) such that

∆yφ − φ + pAp−1
ε,P H−q

ε,P φ + rcε,P Ar−1
ε,P H−s

ε,P ψ ∈ C⊥
ε,P ,

∆xψ − ψ − scε,P Ar
ε,P H−s−1

ε,P ψ − qAp
ε,P H−q−1

ε,P φ = 0,

‖φ‖2
H2(Ωε,P ) + ‖ψ‖2

W 2,t(Ω) = 1.

Similar to the proof of Proposition 4.2, we have

ψ(P ) = −(1 + o(1))cε,P
q

s + 1

∫
Ωε,P

Ap
ε,P φ∫

Ωε,P
Ar

ε,P

and substituting into the equation for φ we obtain

Lε,P φ + o(1) ∈ C⊥
ε,P , φ ∈ K⊥

ε,P .

By Proposition 4.1, ‖φ‖H2(Ωε,P ) = o(1) and hence ‖ψ‖W 2,t(Ω) = o(1). A contradiction !
�

Now we are in a position to solve the equation

πε,P ◦ Sε

⎛
⎝ Aε,P + φ

Hε,P + ψ

⎞
⎠ = 0.(4.17)
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Since Lε,P |K⊥
ε,P

is invertible (call the inverse L−1
ε,P ) we can rewrite

Σ = −(L−1
ε,P ◦ πε,P )(Sε

⎛
⎝ Aε,P

Hε,P

⎞
⎠) − (L−1

ε,P ◦ πε,P )Nε,P (Σ) ≡ Mε,P (Σ)(4.18)

where

Nε,P (Σ) = Sε

⎛
⎝ Aε,P + φ

Hε,P + ψ

⎞
⎠ − Sε

⎛
⎝ Aε,P

Hε,P

⎞
⎠ − S′

ε

⎛
⎝ Aε,P

Hε,P

⎞
⎠

⎡
⎣ φ

ψ

⎤
⎦

and the operator Mε,P is defined by the last equation for Σ ∈ H2
N (Ωε,P )×W 2,t(Ω). We are

going to show that the operator Mε,P is a contraction on

Bε,δ ≡ {Σ ∈ H2(Ωε,P ) × W 2,t(Ω)|‖Σ‖H2(Ωε,P )×W 2,t(Ω) < δ}

if δ is small enough. We have by Lemma 3.1, Propositions 4.2 and 4.3,

‖Mε,P (Σ)‖H2(Ωε,P )×W 2,t(Ω) ≤ λ−1(‖πε,P ◦ Nε,P (Σ)‖L2(Ωε,P )×Lt(Ω)

+

∥∥∥∥∥∥πε,P ◦ Sε

⎛
⎝ Aε,P

Hε,P

⎞
⎠

∥∥∥∥∥∥
L2(Ωε,P )×Lt(Ω)

)

≤ λ−1C(c(δ)δ + ε2t−1−1 1
log 1

ε

) (by Lemma 3.1)

where λ > 0 is independent of δ > 0 and c(δ) → 0 as δ → 0. Similarly we show

‖Mε,P (Σ) − Mε,P (Σ′)‖H2(Ωε,P )×W 2,t(Ω) ≤ λ−1C(ε1/2 + c(δ)δ)‖Σ − Σ′‖H2(Ωε,P )×W 2,t(Ω)

where c(δ) → 0 as δ → 0. If we choose δ small enough, then Mε,P is a contraction on Bε,δ.
The existence of a fixed point Σε,P now follows from the Contraction Mapping Principle and
Σε,P is a solution of (4.18).

We have thus proved
Lemma 4.4. There exists ε > 0 such that for every pair of ε, P with 0 < ε < ε there

exists a unique (Φε,P ,Ψε,P ) ∈ K⊥
ε,P satisfying Sε(

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠) ∈ Cε,P and

‖(Φε,P ,Ψε,P )‖H2(Ωε,P )×W 2,t(Ω) ≤ Cε2t−1−1.(4.19)

We can improve the estimates in Lemma 4.4.
Lemma 4.5.

Let (Φε,P , ψε,P ) be given by Lemma 4.4. Then we have

‖Φε,P ‖L∞(Ωε,P ) = O(
ε

log 1
ε

), ‖Ψε,P ‖L∞(Ω) = O(
ε

log 1
ε

)(4.20)
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and

|Ψε,P (x) − Ψε,P (P )| ≤ C
ε

(log 1
ε )2

log
( |x − P |

ε
+ 1

)
for x �= P.(4.21)

Proof. The proof is divided into several steps.
First we note that by the equation for Φε,P and Lemmas 3.1 and 4.4

∆yΦε,P − Φε,P + pAp−1
ε,P H−q

ε,P − qAp
ε,P H−q−1

ε,P Ψε,P + f1 ∈ Cε,P

where ‖f1‖L2(Ωε,P ) = O( ε
log 1

ε

). Hence we obtain

‖Φε,P ‖H2(Ωε,P ) ≤ C‖Ap
ε,P H−q−1

ε,P Ψε,P ‖L2(Ωε,P ) + O(
ε

log 1
ε

)

≤ C‖Ψε,P (x)‖L∞(Ω) + O(
ε

log 1
ε

).(4.22)

Next Ψε,P satisfies

∆xΨε,P − Ψε,P = f2 := cε,P

Âr
ε,P

(Ĥε,P − ψε,P (P ))s
− cε,P

(Âε,P + Φε,P )r

(Ĥε,P − ψε,P (x) + Ψε,P )s

We have

|f2(x)| ≤ Ccε,P (w(y)r−1|Φε,P (y)| + wr(y)|Ψε,P (x)|) + O(
ε

log 1
ε

cε,P wr(y))(4.23)

for a.e. x ∈ Ω.
Therefore we have by Lemma 1.2 and (4.22)

Ψε,P (x) = O(
ε

log 1
ε

) + O(
1

log 1
ε

‖Ψε,P ‖L∞(Ω))

and so

‖Ψε,P ‖L∞(Ω) = O(
ε

log 1
ε

),

or, equivalently,

‖Ψε,P ‖L∞(Ωε,P ) = O(
ε

log 1
ε

)

where y = (x − P )/ε. Lemma 4.5 is proved. �

Moreover by Lemma 1.2 and (4.23),

Ψε,P (x) − Ψε,P (P ) = O(
ε

(log 1
ε )2

| log |y||).
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5. The reduced problem. In this section we solve the reduced problem and prove
our main theorem.

By Lemma 4.4 there exists a unique solution (Φε,P , ψε,P ) ∈ K⊥
ε,P such that

Sε

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠ =

⎛
⎝ vε,P

0

⎞
⎠ ∈ Cε,P .

Our idea is to find P such that

Sε

⎛
⎝ Aε,P + Φε,P

Hε,P + Ψε,P

⎞
⎠ ⊥ Cε,P .

Let

Wε,j(P ) :=
log 1

ε

ε2

∫
Ω

(S1(Aε,P + Φε,P ,Hε,P + Ψε,P )
∂Aε,P

∂Pj
),

Wε(P ) := (Wε,1(P ), ...,Wε,N (P )).

Then Wε(P ) is a continuous map in P and our problem is reduced to finding a zero of
the vector field Wε(P ).

Let us now calculate Wε(P ).
By Lemma 4.5,

Ψε,P (x) − Ψε,P (P ) = O

(
ε

(log 1
ε )2

log
( |x − P |

ε
+ 1

))
.(5.1)

By (3.3) and (3.4), we have
∫

Ω

(S1(Aε,P + Φε,P ,Hε,P + ψε,P )
∂Aε,P

∂Pj
)

= ε2
∫

Ωε,P

(∆yΦε,P − Φε,P + pAp−1
ε,P H−q

ε,P Φε,P − qAp−1
ε,P H−q−1

ε,P Ψε,P )
∂Aε,P

∂Pj

+O(ε3(
1

log 1
ε

)2)

+ε2
∫

Ωε,P

−q(Âε,P )p(Ĥε,P )−q−1[ψε,P (P + εy) − ψε,P (P )]
∂Aε,P

∂Pj
(y) dy

+O(e−d(P,∂Ω)/ε) = I1 + I2

where I1, I2 are defined by the last equality.
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For I1, we note that ‖Ψε,P ‖L∞(Ωε,P
= O( ε

log 1
ε

), ∂Aε,P

∂Pj
= − 1+o(1)

ε
∂w
∂yj

and hence

I1 = ε

∫
Ωε,P

(qAp−1
ε,P H−q−1

ε,P Ψε,P )
∂w

∂yj
+ O(ε2(

1
log 1

ε

)2)

= ε

∫
Ωε,P

(qwp−1Ψε,P )
∂w

∂yj
+ O(ε2(

1
log 1

ε

)2)

= ε

∫
Ωε,P

(qwp−1(y)H−q−1
ε,P (Ψε,P (P + εy) − Ψε,P (P )))

∂w

∂yj
+ O(ε2(

1
log 1

ε

)2)

= O(ε2
1

(log 1
ε )2

)

by (5.1).
For I2 we have

I2 = Cε

∫
Ωε,P

[ψε,P (P + εy) − ψε,P (P )]
∂w

∂yj
] dy(1 + O(

1
log 1

ε

))

= C
ε

log 1
ε

∫
R2

−[H(P, P + εy) − H(P, P )]w′(|y|) yi

|y| dy(1 + O(
1

log 1
ε

))

= −C
ε2

log 1
ε

∂

∂Pj
H(P, P )

∫
R2

w′(|y|)|y| dy + O

(
εN

(log 1
ε )2

)

as ε → 0 uniformly in P , where w′(|y|) = d
drw(r) for r = |y| and C �= 0 denotes a generic

constant.
Combining I1 and I2, we have

Wε(P ) = c0∇P H(P, P ) + O(
1

log 1
ε

),

where c0 �= 0 is a generic constant.
Suppose at P0, we have ∇P H(P0, P0) = 0,det(∇j∇kH(P0, P0)) �= 0 then the standard

Brouwer’s fixed point theorem shows that for ε << 1 there exists a Pε such that Wε(Pε) = 0
and Pε → P0.

Thus we have proved the following proposition.
Proposition 5.1. For ε sufficiently small there exist points Pε with Pε → P0 such that

Wε(Pε) = 0.
Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 5.1, there exists Pε → P0 such that Wε(Pε) =

0. In other words, S1(Aε,Pε
+ Φε,Pε

,Hε,Pε
+ Ψε,Pε

) = 0. Let ξ
qr

(p−1)(s+1)−qr
ε = cε,Pε

, Aε =
ξ

q/(p−1)
ε (Aε,Pε

+ Φε,Pε
),Hε = ξε(Hε,P + Ψε,Pε

). It is easy to see that Hε = 1 + O( 1
log 1

ε

) > 0
and hence Aε ≥ 0. By the Maximum Principle, Aε > 0. Moreover Aε,Hε satisfy Theorem
1.1.
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