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Abstract 

The thesis presents research into the understanding and improvement of heat 

dissipation from friction brakes. The investigations involved two brake types, 

considered to be the most thermally loaded and therefore most challenging; axle 

mounted high speed railway and commercial vehicle disc brakes. All three modes of 

heat transfer (conduction, convection and radiation) and airflow characteristics have 

been analysed experimentally and theoretically in order to increase the understanding 

of heat dissipation. Despite the very practical aspects of this research, a 'generic heat 

transfer approach' was applied, enabling wider engineering applications of the 

results. 

Experimental analyses conducted on a specially developed Spin Rig allowed 

measurements of cooling and airflow characteristics for different designs. 

Methodologies have been developed to determine thermal contact resistance, heat 

transfer coefficients, emissivity and aerodynamic (pumping) losses. Established 

values and relationships compared very favourably with theoretical work. Analytical, 

FE and CFD analyses were employed to further investigate design variations and 

perform sensitivity studies. Inertia dynamometer route simulations provided disc 

temperatures for validation of the overall work. 

Recommendations have been made for optimising heat dissipation, by proposing 

practically acceptable and economically viable design solutions. A proposed 

ventilated disc design efficiency ratio allows large, high speed ventilated disc 

designs, to be efficiently and accurately evaluated and compared, providing a 

valuable disc design optimisation tool. 

The determination of the methodologies, parameters and functions defining cooling 

characteristics, enable heat dissipation to be predicted confidently and accurately for 

brakes and other engineering assemblies at early design stages. 
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Chapter 1 

Introduction and Research Objectives 

1. 1 Introduction 

Braking is one of the most important and safety critical elements of vehicle control. 

For rail and automotive vehicles to operate safely, it is paramount to provide a stable 

and effective brake system that can decelerate or stop the vehicle as required. This 

thesis is concerned with the dry friction disc brake, which is the configuration found 

in most braking systems due to its superior braking efficiency and reliability. To 

achieve adequate brake operation, acceptable temperatures must be maintained 

during all service conditions. The thesis deals with the heat dissipation phenomenon, 

which is essential for the safe and efficient operation of all brakes. 

Throughout a heavy-duty single brake application, virtually all the thermal energy is 

absorbed by the brake disc and pad, the short braking time does not allow significant 

heat dissipation. Brake disc thermal capacity must be sufficient to ensure acceptable 

temperature rise. If temperatures are allowed to become too high, deterioration of the 

brake structural integrity and friction performance will take place. For repeated brake 

applications or drag braking, the brake disc must be able to dissipate the thermal 
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energy that is generated. Adequate brake cooling is necessary to keep the brake 

temperature within a safe operating range. 

By design, friction brakes generate thermal energy and can achieve very high 

temperatures. It is the duty of the brake designer to ensure that adequate heat 

dissipation is provided in all expected vehicle service conditions. This can only be 

achieved by studying all the modes of heat dissipation; convection, conduction and 

radiation. Sufficient brake cooling must be achieved since excessive thermal loading 

can result in brake fade, surface cracking, judder and high wear of the friction pair. 

High temperatures can also lead to overheating of brake fluid, seals and other 

components. The complex design requirements are difficult to satisfy and extensive 

research, development and testing are required. 

1.2 Main Brake Types Studied 

The research has mainly concentrated on two brake types considered to be the most 

thermally loaded and therefore most challenging; axle mounted high speed train disc 

brakes and commercial vehicle disc brakes. Different designs of these brake types 

have been analysed. 

Railway Brakes - Axle Mounted High Speed Train Discs 

High speed train discs must be capable of absorbing large amounts of heat in 

emergency brake applications from maximum speed. Heat dissipation during braking 

is low and therefore it is crucial to ensure low initial brake temperatures. This can 

only be achieved with good cooling characteristics, since brake mass must be kept to 

a minimum to ensure low unsprung mass. It must also be taken into consideration 

that emergency braking from maximum speed is relatively rare, however the brake 

system must be capable of performing this duty without excessive thermal loading. 

Ventilated brake discs are commonly employed for their good cooling qualities, 

however this type of brake disc can generate substantial pumping losses when 

rotating at high speed. The effects are very serious because a high number of discs 

(usually 4 discs per axle) rotating at high speed (up to 2000 min-I) require very high 

levels of power, just for disc rotation. This has resulted in the development of 

numerous 'low loss' ventilated disc designs and the use of solid discs. Obviously, a 
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very fine balance of low pumpIng losses and good cooling characteristics are 

necessary to satisfy braking and power consumption requirements for all vehicle 

routes. 

Automotive Brakes - Commercial Vehicle Discs 

Compared to passenger cars, commercial vehicles have a much higher wheel load to 

wheel diameter ratio. This inevitably limits the size of the brake system that can be 

installed. Commercial vehicle speeds are usually lower than passenger cars, which 

combined with larger wheels, substantially reduce disc rotational speeds. Brake 

applications are often more frequent and combined with high axle loads results in the 

generation of large amounts of thermal energy, which have to be dissipated in a 

confined space at lower rotational speeds, with a restricted supply of cool air. 

1.3 Research Objectives 

The phenomenon of heat dissipation from friction brakes IS very complex and 

requires carefully planned research, combining detailed literature study and 

analytical, numerical and experimental techniques. It is important to ensure that 

research results are of a generic nature, applicable to other brake designs and have 

wider engineering applications. At the same time, analysis must be orientated to 

finding ways of improving and optimising brake cooling using practically acceptable 

and economically viable methods. 

Based on previous considerations, literature studies, suggestion of industrial partners 

involved, and taking into account financial and time limitations imposed upon the 

project, the following research objectives have been set: 

• 

• 

To establish values of contact resistance, heat transfer coefficients and 

emissivity values for main brake areas. 

To establish the main parameters influencing the above coefficients and 

recommend functions defining appropriate relationships. 

• To study analytical, numerical and experimental techniques used In 

determining brake heat dissipation and airflow characteristics. 
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• To perform sensitivity analyses and make recommendations for appropriate 

brake thermal modelling and experimental measurements. 

• To compare different modes of heat dissipation and make recommendations 

for optimal brake designs. 

• To validate overall work by performing a number of route simulations. 

Meeting the above research objectives will lead to a better understanding of all the 

modes of heat dissipation and aerodynamic losses from friction brakes. With this 

understanding, higher performance brakes can be designed in a shorter time, with 

more predictable performance limits and lower testing requirements. This will reduce 

development costs and risks, increasing brake manufacture's competitiveness, and 

overall vehicle performance. 
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Chapter 2 

Literature Survey 

2. 1 Introduction 

The field of brake cooling has been a subject of research since the 1950s and 

consequently many papers can be found on the subject. Since the use of the first 

brake, vehicle speeds and weights have steadily increased. These increases lead to 

braking energy rise resulting in higher brake temperatures, necessitating further 

research. However, the published research is fragmented and applied to specific 

cooling problems or brake designs. 

Initially, analytical techniques were used to predict brake temperatures during 

cooling, which were limited to steady-state analysis and simple geometries. Now 

brake thermal research has been dominated by finite element analysis and more 

recently, computational fluid dynamics. The objective of this chapter is to present an 

extensive review of previous work in the area of dry friction brake heat dissipation 

and associated topics. Literature specific to areas of investigation has been 

referenced in the relevant section of the thesis. The area of friction heat generation 

and resulting brake temperature has also been researched and used in brake cooling 

5 



performance simulation (Chapter 8). As it is not directly associated with brake 

cooling analyses, this topic is discussed, with relevant literature in Appendix C. 

2.2 Friction Braking Development 

The problem of safe vehicle braking became apparent at the beginning of self­

propelled vehicle development. Newcomb and Spurr (1970) highlighted the story of 

1769 when the Frenchman, Cugnot, made the first self-propelled steam road vehicle. 

The vehicle had a top speed of about 5 kmIh and demolished a wall because of 

braking system failure. The story goes that hot embers and boiling water spilled 

everywhere; Cugnot was arrested and sent to prison. 

Early combustion engine car brake systems were also inadequate, Benz pressed a 

small block against a drum and Daimler used spoon brakes acting on the rear tyres. A 

reliable and contamination resistant brake system was not developed until 1903 when 

Daimler introduced the first internal drum brake. In the 1920s cars became much 

faster, the need for improved braking became apparent and vehicle braking systems 

evolved to hydraulic brakes on all four wheels. The first car of any consequence to 

use hydraulic brakes at all four wheels was the 1921 Duesenberg of the U.S. 

(Freudenberger 1999). 

The main disadvantage of the drum brake is its non-linear relationship between brake 

torque and pad/disc friction coefficient, which is exaggerated by the poor cooling 

characteristics of the design. Temperature rise causes drum expansion increasing 

pedal travel, soft pedal feel and improper contact between drum and brake shoe 

lining. The need for improved braking systems led to the development of the disc 

brake, which has a more linear relationship between brake torque and pad/disc 

friction coefficient and far superior cooling characteristics. The first disc brake was 

patented in 1902 by F. Lanchester. However, interest in the design was not 

established until it was introduced at the UK 1951 International Motor Show and 

later when the Jaguar C-Type won the 1953 Le Mans fitted with Dunlop disc brakes. 

During the 1950s the disc brake became more commonplace on cars. Present day 

road vehicles (passenger cars and commercial vehicles) are fitted with disc brakes at 

the front wheel as standard and discs fitted to the rear wheels are increasingly more 

common. 
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George Westinghouse invented the first version of the railway air brake in 1869, 

acting on a tread (wheel) brake. The tread brake method has many disadvantages 

including limited energy capacity, high wheel tread wear and accelerated tread 

damage. Since then train speeds have increased dramatically and more advanced disc 

braking has been employed. Operation at 200 kmlh has existed since the 1970s and 

in 1989 TGV (Train a Grande Vitesse) trains were running at 300 kmlh. In 1990 

TGV set a new world record travelling at 515.3 kmlh. In order to provide the 

necessary braking energy capacity for the new generation of high-speed trains TGV 

incorporated four brake discs on each trailer axle (Russell and Williams 1990) and 

later wheel mounted discs on power cars (replacing tread brakes). 

The development of the motorcycle brake was much slower than that of the car. The 

first drum brake was introduced in 1935 by BMW on the BMW R 32. At the Tokyo 

Show of 1968 Honda unveiled the CB750F, fitted with the first disc brake. 

2.3 Studies of Heat Dissipation 

In the brake disc heat is generated at the friction surface and conducted through the 

brake assembly, where is it dissipated. All three modes of heat transfer; convection, 

conduction and radiation are introduced and studied in this section. Their 

characteristics related to heat dissipation from friction brakes are described and 

analytical equations given for the prediction of heat transfer by each mode. 

2.3.1 Convective Heat Dissipation 

The convective heat transfer coefficient (hconv) is a function of geometry, rotational 

speed and temperature, which influences the flow pattern and velocity of the airflow 

over its surface. The geometry of the brake is generally broken down into regions 

defining simple shapes. For each area, hconv can be determined using equations found 

in the literature. The brake disc geometry can be divided into a rotating disc (for the 

friction surfaces) and rotating cylinders (for the rim and hat sections). In addition, for 

the ventilated disc the channels can be defined as rectangular channels. 
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2.3.1.1 Convective Heat Transfer Coefficient Equations 

Equations describing convective heat transfer for each area of the brake disc are 

shown in Table 2.1. Measurement of laboratory experiments have established 

Nusselt equations for each surface region, where: 

(2.1) 

Where I is the characteristic length (generally the disc radius or ventilation channel 

hydraulic length), k is the thermal conductivity of air and hconv is the convective heat 

transfer coefficient. The rotating Reynolds number (Reo) and cross flow Reynolds 

number (Ret) are given by the following equations: 

2 

R 
ror 

e ----
o V 

(2.2) 

R 
vr 

e ---
t V 

(2.3) 

Where, r is the disc outside radius and v is the cross flow velocity. When the disc is 

ventilated, it acts like a fully shrouded impeller, pumping air through the ventilation 

channels. Before a Nusselt value can be found for the ventilation channels of the 

disc, the mean velocity in the ventilation channel must be determined using the 

hydraulic diameter. The hydraulic diameter is defined as the average ratio of four 

times the cross sectional flow area (wetted area) divided by the wetted perimeter 

(Limpert 1975). Table 2.2 shows published equations used to determine average vane 

velocity. 
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Table 2.1 Convective heat transfer coefficients 

Equation 
Description Equation Critical Re 

Reference number Number 

Cylinder 0.02 ReO.75 k . (Kohto 1984), 
(2.4) rotating in still h = 0 mr - (Fukano and Matsui 

air conv 1-0.67 Re:·125 d 1986) 

(Morgan and Dennis 
Cylinder 1 1972), (Day 1998), 

(2.5) rotating in still Nu = O.06{2Re~+ 4Re;}3 - (Newcomb 1979), 
or moving air (Sheridan, Kutchey et 

aI. 1988) 

Disc rotating in 0.5 Re<240000, 
(Cobb and Saunders 

(2.6) Nu = 0.36 Re 1955), (Day 1998), still air 0 laminar 
(Newcomb 1979) 

Disc rotating in Nu = 0.015 Re~·8 Re>240000, 
(Cobb and Saunders 

(2.7) 
still air turbulent 

1955), (Day 1998), 
(Newcomb 1979) 

/ '\ 

(2.8) 
Disc rotating in h = 07 kair R 0.55 Re<240000, 

(Limpert 1975) 
still air cony . d eo laminar 

/ 

(2.9) 
Disc rotating in hconv = 0.04 kair Reo 0.8 Re>240000, 

(Limpert 1975) 
still air d turbulent 

Disc rotating in 0.8 
(Dennis, Newstead et 

(2.10) Nu = 0.0195 Reo - aI. 1970), (Sheridan, 
still air Kutchey et aI. 1988) 

( r Disc rotating in h = O.399k. ~ Pr°.43 (Dorfman 1963), 
(2.11) cony azr - (Fukano and Matsui 

still air Vair 1986) 

[ ]"" 
(Morgan and Dennis 

(2.12) 
Disc rotating in Nu = 0.0436 Ret Re~·8 1972), (Day 1998), 

-
(Sheridan, Kutchey et a cross flow Reo 

aI. 1988) 
(Dennis, Newstead et 

Used for all al. 1970), (Grieve, 

free surfaces in Nu = 0.037 Re 0 

0.8 Barton et al. 1998), (2.13) -
still air (Koetniyom, Brooks 

et al. 2000) 

N u = 0.02+ + ( ~' lJ Re:' Pr045 Factorise by (Hausen 1950), (Day 
1.7 for 

(2.14) Vane turbulent 
1998), (Newcomb 

flow 
1979) 

(d r 66d (Sisson 1978), Nu = 0.045 Reo.8 _2 +_'_2 

(2.15) Vane t 2 2 - (Sheridan, Kutchey et 
al. 1988) 

h = 0.023[1 +( d, f' JRe 0.' pro
.
n

( k •• Re>10000, (Kreith 1986), 
(2.16) Vane conY I t d

h turbulent (Limpert 1975) 

1 ( d J33[ k J (Kreith 1986), h = 1.86(Re Pr)3 -1L - Re<10000, 
(2.17) Vane cony tid 

laminar (Limpert 1975) h 
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Table 2.2 Vane velocity equations 

Equation Vane inlet velocity Vane outlet Vane average velocity [m/s] Reference 
number [m/s] velocity [m/s] 

(2.18) U in =O.171n(d; -dn u =u (~) _ uin + uout 
(Day 1998), 

oul In A uavg - (Newcomb 
out 2 1979) 

\ 

u =u (~) (2.19) Uin =O.0158n(d; -dn"2 u. +U (Limpert oul in A U = In out 
oul avg 1975) 2 

\ 
(Sheridan, 

(2.20) 
_ (-0.02 + 0.0091dl -0.OOO02d\2)2{()d 

- - uavg - Kutcheyet 2 
a1. 1988) 

ndn ! 

(2.21) - -
Uavg = 6~ (-O.0201+0.2769xd1 -O.0188xdI

2
)2 (Sisson 

1978) 

2.3.1.2 Cooling Parameters 

An alternative approach is to define cooling parameters for an actual brake assembly 

on the vehicle. Results indicate that a 'cooling body' can be expressed as (Newcomb 

and Millner 1965): 

b=b +KvO.8 

o 
(2.22) 

The term bo involves a conduction and natural convection component and the KvO.
8 

is 

the forced convective component where v is the linear velocity of the vehicle and K 

is a constant relating to the geometry of the body. A comparison between the cooling 

rates of a solid disc and two ventilated discs of similar outside diameters (280 mm) 

were made on a dynamometer. The solid disc was 12.5 mm in thickness and had a 

mass of 5.7 kg. One ventilated disc was made from cast iron with a mass of 17.4 kg, 

the other ventilated disc was made of aluminium alloy coated with steel and had a 

mass of 3.1 kg, both discs had a thickness of 6.25 mm excluding the vane. Table 2.3 

shows experimental values of b. The cooling rates were determined by bringing the 

disc to a uniform temperature of 300° to 400°C by drag braking and cooling. 
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Table 2.3 Experimental values of b (Newcomb and Millner 1965) 

Disc l03b [S-l] 

Solid cast-iron 2.36 

Ventilated cast-iron 2.91 

Ventilated aluminium 4.96 

2.3.2 Conductive Heat Dissipation 

Heat generated at the friction surface of the disc is conducted through the disc to the 

disc flange area. Heat is then conducted to the hub and, or wheel assembly. The rate 

of heat conduction through a solid object is governed by the cross section area, 

material properties (conductivity, specific heat and density) and temperature. 

2.3.2.1 Thennal Contact Resistance 

Thennal conductivity is very important In the investigation of conductive heat 

transfer through assemblies. The value of thermal contact resistance (TCR) at the 

interface between two mating surfaces depends on the surface roughness, material 

properties, temperature and pressure at the interface, and also the type of interstitial 

medium. In general, TCR will increase with increased surface roughness, reduced 

interface pressure and increased material hardness. 

There is much published work in the area of TCR, though this has not applied to 

brake cooling. In order to predict the TCR across a given area, the number and 

average size of the micro-contacts that make up the apparent contact area must be 

accurately predicted. Greenwood and Williams (1966) proposed one of the first 

models to predict contact area known as the GW model, which can be summarised as 

an elastic micro-contact model. McCool (1986) has compared several models and 

reports that the GW model gives good results. The GW model has been modified by 

McCool (1986) using the random process model of rough surfaces. The modified 

version of the GW model has been applied by Mc W aid and Marschall (1992) to 

predict TCR and results compare well with experimental data. 

The GW model does not take into account the presence of surface films, which may 

take the fonn of natural oxidisation, liquid, powder, foil or plating. Research in the 

area of oxidisation has been summarised by Madhusudana and Fletcher (1986). A 
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generally accepted conclusion is that oxide films, unless sufficiently thick, do not 

appreciably increase the TCR. Lambert, Fletcher, et al. (1995) investigated the TCR 

of anodised coatings, noticing that TCR drops after the break up of the oxide layer 

(due to deformation of the base metal) allowing flow through the cracks in the oxide. 

Unless the oxide layer is thicker than the mean height of the surface peaks, oxide 

layers will not appreciably increase the TCR. Mian, AI-Astrababi et al. (1979) have 

shown experimentally that TCR increases with the film thickness and the ratio of the 

total film thickness to the mean surface roughness. TCR was found to decrease with 

increased loading and mean surface roughness. 

To decrease the TCR, the air within interstitial areas at the contact interface can be 

replaced with a medium of higher conductance. Interstitial fillers may take the form 

of grease, metal foil, wire screens or powders. Indium foil and silicon grease appear 

to be the best materials in this category (Madhusudana and Fletcher 1986). It has 

been shown that thermal conductive conductance (the reciprocal of TCR) can be 

increased up to a factor of seven, by inserting a metallic foil at the interface (Cengel 

1998), see Figure 2.1. 

Contact pressure (psi) 
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Figure 2.1 Effect of metallic coatings on thermal contact conductance (CengeI1998) 

Foils, greases and powders are difficult to apply during component assembly and 

plating mating surfaces may be the most convenient method of enhancing thermal 

conductivity. Mikic and Camasciali (1970) analysed the effects of plating material 

on TCR. Results showed that considerable reduction of TCR could be achieved with 
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plating. Stainless steel plated with copper of a thickness of the order of the contact 

size radius, will reduce resistance by more than an order of magnitude. 

Reduction of TCR by metallic coatings has been analysed by Antonetti and 

Yovanovich (1985). It was found that a silver layer can reduce the TCR of nominally 

flat, rough, contacting nickel specimens by as much as an order of magnitude; and 

that for a given layer thickness, the smoother the bare contacting surface the greater 

the enhancement will be. 

Madhusudana and Fletcher (1986) report on experimental observations regarding the 

sensitivity of conductance to direction of heat flow. This phenomenon, known as 

thermal rectification, is observed in dissimilar mating surfaces. It is generally 

accepted that the thermal rectification is caused by the distortion of the contact 

surface due to local temperature gradients. Experiments on stainless steel/stainless 

steel contact observed a large directional effect when one surface was bead blasted 

and the other lapped; the conductance was higher when the heat flowed from the 

rougher to the smoother surface. Conductance through stainless steel/aluminium 

contact showed higher conductance in the SS~AI direction, the same was found for 

copper, a higher conductance was found in the SS~Cu direction, stainless steel 

being the harder material in both cases. 

Determining TCR becomes more complex when bolts or rivets fasten the two 

materials. These are the most common methods of mechanical connection and are 

often found in braking systems. The interface pressure in this case is non-uniform, 

the highest being near the bolt or rivet shank, and reducing away from the centre line. 

The thermal contact resistance in this case is dependent on the plate thickness, bolt or 

rivet thickness and size of contact zone. Mittelbach, Vogd et al. (1994) presented 

experimental interface pressure distributions and thermal conductance data for a 

bolted joint, see Figure 2.2. Results show that thermal conductance is a function of 

plate thickness ratio. The actual area of contact will be circular in shape, with the 

contact pressure decreasing with distance from the bolt centre line. The area of actual 

contact zone is directly associated with TCR. This implies that the heat transfer 
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through a bolted joint is dependent upon the pressure distribution at the joint as well 

as the macroscopic and microscopic contact resistance . 
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Figure 2.2 Contact conductance as a function of dimensionless radius for a plate 
thickness tl/h = 4/3 (Mittelbach, Vogd et al. 1994) 

2.3.2.2 Conductive Heat Transfer Coefficient 

From various experimental data on brake discs, it has been found most efficient to 

quantify the conduction of heat to the hub as an apparent heat transfer rate (the 

reciprocal of TCR). Quantified values were determined by Fukano and Matsui 

(1986) by changing the apparent rate of heat transfer to the hub and by comparing 

with experimental values. In a certain vehicle test the calculation corresponded best 

with the experimental results when the apparent heat transfer rate to the hub was 712 

W/m2K. 

Morgan and Dennis (1972) found that conduction coefficients are extremely variable 

for the theoretical prediction of brake temperatures and comparison with 

experimental data. Cetinkale and Fishenden (1951) suggested that the contact 

coefficient is likely to change dramatically with time or with subsequent dismantling 

and reassembly during servicing. Sheridan, Kutchey et al. (1988) modelled the 

conduction heat transfer that exists between the disc flange and the hub and wheel by 

doubling the convective heat transfer coefficients used on the disc friction surfaces. 

An even more simple approach was taken by D'Cruz (D'Cruz 1989) using a blanket 

heat transfer coefficient of 100 W /m2K to all free surfaces. 
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Aikawa and Winer (1994) and McWaid and Marschall (1992) have published the test 

procedure used for thermal contact resistance measurement. The apparatus shown in 

Figure 2.3 consists of a vertical column composed of the bolted test specimens, a 

heat flow meter and heat sink. The heat flow through the specimens is kept constant 

by using a heating element attached to the top of the first specimen. A constant 

temperature heat sink is used to remove energy from the bottom of the test column. 

To allow examination of the temperature gradient at the specimen, interface 

thermocouples are placed into the specimens at known axial locations. A heat flow 

meter is used in order to measure actual heat flow though the column. The heat flow 

meter is fabricated from a standard reference material with a known thermal 

conductivity. To determine the temperature gradient, thermocouples are placed into 

the heat flow meter at known axial locations. The heat flow meter is necessary 

because of difficulties determining the power input via the heater. The thermal 

contact resistance is determined using the temperature gradient and area taken at the 

sample interface. It is assumed that there are no losses in the system between the 

specimen and the heat flow meter. Convection and radiation losses are be reduced by 

shielding and keeping the operating temperature to a minimum. 

V",uum 
cllamlxr 

Figure 2.3 Thermal contact resistance test rig (Aikawa and Winer 1994) 
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2.3.3 Radiative Heat Transfer 

Radiative heat transfer is a function of surface emissivity and more so temperature 

(to the fourth power). Until only very recently radiative heat transfer has been 

neglected or greatly simplified in brake cooling analysis. Brake temperatures were 

lower in the early period of brake analysis and available modelling techniques less 

complex. However, today's brake temperatures can reach much higher values with 

the use of new materials and high performance designs. That, along with more 

complex modelling requires radiative heat transfer to be included in thermal analysis. 

In a comparison of theoretical and experimental data by Morgan and Dennis (1972) 

radiation losses were neglected as radiation was thought to be responsible for only a 

very small fraction of total heat losses. However, in the discussion of the alpine 

simulation test it is stated that radiation was probably quite significant at the high 

temperatures reached in this test (up to 700°C). Radiation losses were also neglected 

by Fukano and Matsui (1986), and Sheridan Kutchey et al. (1988) in their disc 

temperature calculations. Allowance for radiation is given in temperature predictions 

by Limpert (1975) and Newcomb (1979), with Limpert recommending an emissivity 

value of 0.55 for cast iron discs. Noyes and Vickers (1969) provided for radiative 

heat transfer in FEA simulation by assuming all emissivity to be 0.8 with a 

background temperature of 38°C. 

2.4 Experimental Studies of Brake Cooling 

Experimental measurement techniques related to brake cooling described in the 

literature have been reviewed because of their relevance to the experimental part of 

the thesis. 

2.4.1 Temperature 

The most common methods of temperature measurement in industrial and research 

environments are resistance temperature detectors (RDTs), thermocouples, and 

infrared sensors. Thermocouples have been used in most brake temperature analysis 

due to their ruggedness, operating temperatures, small size, response, cost and 

availability. 
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Embedded thermocouples have been used to measure the temperatures of sliding 

mechanical components, but Kennedy (1984) has concluded that they cannot give a 

true indication of surface temperature peaks. The thermocouples have a limited 

transient response owing to their mass and distance from the points of intimate 

contact, and their emplacement close to the contact may change the flow of frictional 

heat. Although these problems are not as severe with fast response micro­

thermocouples, embedded thermocouples maybe more useful for the measurement of 

the bulk temperatures within the sliding bodies and not contact temperatures. It must 

be remembered that the permanently fixed thermocouples measure temperature at 

one particular point, and this specific point may not be representative of the average 

temperature. Lee and Barber (1994) used six chromel-constantan thermocouples 

press-fitted though holes drilled 1.5 mm below the disc surface for brake temperature 

measurement. The outer halves of the holes were filled with cast iron rods. Readings 

for the disc temperatures were extracted via slip rings. The depth of the 

thermocouple from the friction surface will affect the response, Daudi (1998) 

conducted experimental measurements based on thermocouples that were mounted 

closer to the friction surface (1 mm below). 

Newcomb and Millner (1965) obtained temperature measurements from a test 

vehicle using copper-constantan thermocouples mounted midway in the brake disc 

below the middle of the rubbing path and the hub. The thermocouple outputs were 

collected by slip-ring units mounted to the wheels. Some measurements were also 

made using rubbing thermocouples attached to the dust shields. Cooling rates 

determined in this manner were found identical to those derived from the embedded 

thermocouples. Bailey, Buckingham et al. (1991) have also used embedded 

thermocouples and slip rings amplified by a circuit rotating with the disc. This 

arrangement reduced noise problems associated with slip rings. It was noted that the 

embedded thermocouples demonstrated slow response time and low temperature 

readings as they are not quite at the surface of the disc. Basch, Fash et al. (2000) also 

used embedded thermocouples with slip rings to evaluate thermally sprayed 

aluminium brake discs. 

Dynamic thermocouples are contacting bodies themselves or part of them (Kennedy 

1984). They act to create a thermocouple junction at the sliding interface. The 
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technique has been used for suitable dissimilar sliding metals but the e.mJ. produced 

is the weighted average of all temperatures across the sliding thermocouple junction. 

Qi, Noor et al. (2002) have showed that exposed thermocouples with open and closed 

hot junctions can provide useful data on the interaction between pad and disc. The 

closed junction can record the pad surface temperature during braking, the open 

junction can detect when the disc and pad are in contact locally, and indicate the 

formation of an interfacial layer (tribo-Iayer) at the interface of the brake friction 

palf. 

The thermal mass of a contact sensor, the process of conducting heat from the object 

into the sensor, and associated thermal resistance at the point of contact can limit 

response time (Young 2000). Because of their non-contacting nature, infrared 

temperature sensors can respond almost instantaneously to temperature changes, 

permitting measurement of fast moving objects or objects whose temperature 

changes rapidly. Dubensky (1986) used infrared techniques for obtaining 

temperatures on brake discs. An Inframetric scanner was used and temperature 

patterns were recorded on videotape. This technique can provide detailed inputs for 

finite element techniques. This technique was also used by Bailey, Buckingham et al. 

(1991) and Dufrenoy and Weichert (1995) with results agreeing well with test data. 

From thermal imaging work carried out on a brake dynamometer Grieve Barton et al. 

(1998) used the emissivity value 0.4 for cast iron and aluminium MMC discs. 

Radiative heat transfer was not used on the ventilation channel interior of the 

ventilated disc because of its enclosed nature. 

Eisengraber, Grochowicz et al. (1999) compared different methods for the 

determination of disc brake temperature on a dynamometer and stated that the usage 

of a pyrometer at the friction surface is only possible when the disc surface 

emissivity can be permanently corrected. The measured emissivity (€) of the disc 

surface during the tests ranged between 0.15-0.9 (€ = 0.9 during hot spot formation). 
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2.4.2 Airflow 

Airflow is an important factor of heat dissipation from friction brakes. Air heated by 

the brake assembly surface is transported away from the brake assembly by airflow 

and replaced with cooler air. Airflow also directly influences convective heat transfer 

coefficients, which increase with air velocity. 

Several results have been published for the ventilation channel velocity of a rotating 

disc, however methods of measurement are not discussed or are unclear. Sisson 

(1978) measured the average air velocity for a range of rotational speeds for a model 

disc with an inside diameter of 140mm, an outside diameter of 267 mm and 40 

straight radial vanes of 25.4 mm width. A linear relationship was established; at 1000 

min-I average vent velocity was 7.3 mls. A 72 curved fin disc produced by Hayes 

Lemmerz (Daudi 1999) with an inside diameter of 165 mm and an outside diameter 

280 mm, showed a power curve relationship between rotation and vane velocity. The 

average airflow through the vane was measured to be 0.3 mls at 700 min-I. 

Krusemann and Schmidt (1995) applied CFD analysis to major wheel arch 

components (excluding the wheel and tyre) of an automotive vehicle travelling at a 

constant velocity of 120 krnIh (1224 min-I), an average mass flow rate of air through 

the ventilated channel was shown to be 0.04 kg/s giving an average airflow velocity 

of 2.5 mls. From the above data, it can be established that predicted and measured 

airflow vary considerably from one set of findings to another. 

The use of smoke to visualize the flow in wind tunnels was first adopted by L. Mach 

(Vienna, 1893) and E. 1. Marey (Paris, 1899). The important advances toward the 

eventual use of smoke visualization as a research tool began in the 1930s with the 

work of A. M. Lippish (Darmstadt, 1937) and F.N.M. Brown (Notre Dame, 1937). A 

large number of materials have been used to generate smoke including; tobacco, 

rotten wood, titanium chloride, water vapour and oil vapour. Smoke particles must be 

small enough so they closely follow the flow pattern being visualized but also large 

enough to scatter a sufficient amount of light. Kerosene oil smoke is commonly used; 

the smoke generator generally uses an oil drip feed onto strip heater mounted inline 

with a blower to force the smoke through a tube (Goldstein 1996). 
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Kubota, Hamabe et al. (2000) investigated the airflow through ventilated brake disc 

cooling channels using a one-tenth scale model of a wheel unit incorporating a disc 

brake assembly submersed in a water tank. Flow through the ventilation channels 

were visualised by photographing the movement of a tracer through the fins, showing 

a relationship between rotor shapes and cooling performance. 

2.5 Studies of Heat Dissipation Optimisation 

Many methods of optimising heat dissipation from brake discs have been published 

and are mainly concerned with increasing the airflow around the disc surface. 

Newcomb and Millner (1965) measured the cooling rates of a small saloon car fitted 

with and without dust shields. At low speeds the effect of removing dust shields is 

small but at 32 km/h the cooling rate is increased by 15% and above this speed 30%, 

showing that the elimination of dust shields can increase the cooling rate by 

approximately 30% at cruising speed. It is noted however that the reduced life of disc 

and pad due to particles of road debris outweigh the cooling advantages. 

Cooling rates were also compared on cars fitted with solid wheels and wire wheels; 

little improvement of cooling rates resulted. Blanking off the small air vents in the 

front wheels of the car to prevent additional air flow from the inside to the outside of 

the wheel caused little change to the cooling rates of the disc up to a speed of 

approximately 64 kmIh. Above this speed, an increase in cooling was measured, 

which was approximately 10% at 113 kmlh. On the same car measurements of 

cooling rates were made with the engine bonnet and wings removed. The cooling 

rate of the exposed disc was only 13% higher. During these test it was noted that rain 

had little effect on the cooling rates. 

The convective cooling capacity of a brake can be improved by increasing the 

effective surface area of the disc and by increasing the convective heat transfer 

coefficient. The heat transfer coefficient can be improved through better airflow 

ducting to the brake as well as through the interior vanes of the disc. Tests have 

shown (Limpert 1975) that straight vanes are inferior to the curved cooling vanes of 

a ventilated disc. Under identical test conditions, the curved vane disc produced 
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steady-state power capacities that were approximately 12% higher than the straight 

vane disc. Further improvements in cooling capacity may be achieved with axial as 

well as radial cooling passages as indicated in Figure 2.4. The increased cooling is 

achieved by the larger surface area and increasing convective heat transfer 

coefficients are expected. Comparison analysis shows that standard ventilated discs 

exhibit higher temperatures during the cooling down period than the axiallradial disc. 

Axial/radial ventilated discs exhibit advantages over radial ventilated discs only 

during a large number of repeated brake applications . 
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Figure 2.4 Ventilated disc with axial cooling passages (Limpert 1975) 

Kubota, Hamabe et al. (2000) found that the air velocity through the ventilation 

channels increases in proportion to the inner radius of the disc. In addition to the 

wider opening area resulting from a larger inner radius, it is thought that the offset 

(Rin-Rout) of the disc works to promote smooth introduction of cooling air into the 

ventilation channels, increasing air velocity. Alternately arranging two different 

length fins increases cooling air inlet area resulting in a higher air velocity, however 

there is an optimum fin length when considering the surface area of the ventilation 

channels. The air velocity was found to increase through the ventilation holes with 

the use of alternate gourd-shaped fins and short, straight fins, see Figure 2.10. 

Sheridan (1988) showed a companson of measured and calculated plateau 

temperatures for a mountain descent with a steel wheel and aluminium wheel with 
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more than twice the vent area of the steel wheel. The benefits of the increased 

cooling flow rate through the aluminium wheel and increased conductive heat 

dissipation through the hat section to the wheel are shown in the reduced brake 

temperatures. 

2.6 Numerical Analysis 

The analytical solutions given in Appendix C assume the disc geometry can be 

approximated by a semi-finite slab with a heat flux varying linearly with time applied 

at each of its two faces. The assumptions include that; the disc is homogenous, 

cooling occurs at the friction surface, deceleration is constant and disc material 

thermal properties are constant with temperature. Most braking systems involve 

complex geometry, and transient boundary conditions and thermal properties, which 

cannot be solved analytically. In such cases, sufficiently accurate results must be 

obtained by computer using numerical methods. Numerical solution methods are 

based on solving the governing differential equations together with the boundary 

conditions. 

2.6.1 Finite Element Methods 

Abbas, Cubbitt et al. (1969) were one of the first to use an FE model to predict brake 

temperatures. A half section of the disc is shown in Figure 2.5. Simplification is 

achieved by assuming the brake temperature does not vary through the disc thickness 

at any point, reducing it to a one-dimensional problem. Comparison of the computer 

program's results and experimental results for a single stop show good agreement. 
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Figure 2.5 Half-section of hypothetical brake disc (Abbas, Cubbitt et al. 1969) 
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Morgan and Dennis (1972) created a rectangular mesh of parallelpiped elements over 

the cross section of the disc. Sets of linear, simultaneous equations were solved, 

which allowed for convenient solution of transient temperatures. Comparison with 

experimental results showed reasonable agreement although the cooling was slightly 

over predicted, probably due to the effective cross flow velocity being lower than the 

vehicle velocity used in the model. 

Noyes and Vickers (1969) produced an FE model for a vented disc undergoing 97 

km/h fade stops. The disc was split at its lines of symmetry (using half a vane and 

ventilation channel) producing a 4.5 0 segment, shown in Figure 2.6. The three­

dimensional (3-D) model was approximated with parallelpiped elements containing 

104 nodes. Comparisons of predicted results with measured temperatures on the 

Pikes Peak descent showed that measured temperatures lag appreciably behind 

predicted surface temperatures. This is reported to be due to the high thermal 

resistance of the brake linings in which the measuring thermocouples were 

embedded. 
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Figure 2.6 Half vane segment model (Noyes and Vickers 1969) 

Day and Newcomb (1984) incorporate the effects of interface pressure distribution, 

material wear and thermal expansion on the dissipation of frictional energy from the 

interface of an annular disc brake. It is suggested that conventional methods of 

thermal analysis have been limited by the assumption of a uniform heat flux over the 

friction interface. Braking friction is simulated using FE techniques by dividing up 

individual brake applications into a number of time steps over which the combined 
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influence of pressure, temperature and wear was predicted. Calculated temperature, 

interface contact and pressure, and wear distributions are compared with observed 

and measured experimental results. 

Fukano and Matsui (1986) created a similar FE model, however a whole vane was 

included in the model, see Figure 2.7. This is not the smallest segment of symmetry 

possible reSUlting in an increase of computing costs. 
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Figure 2.7 Full vane segment mesh (Fukano and Matsui 1986) 

Sheridan, Kutchey et al. (1988) carried out different modelling approaches for the 

thermal analysis of disc brakes. A one-dimensional model provided peak surface as 

well as bulk temperatures. A steady state 2-D model of the entire brake system 

predicted plateau temperatures during a multi-stop driving schedule and finally, a 

complex 3-D transient model was used to obtain detailed local disc temperature 

distributions for any stopping sequence. For the 3-D model convective heat transfer 

coefficients were derived for each area of the disc. To simulate the conductive heat 

transfer that exists between disc flange and hub and wheel, the heat transfer 

coefficients were double those used on the disc cheeks. A heat flux varying with time 

was imposed on the disc cheek faces. Radiation energy exchange was assumed to be 

zero. All models compared well to experimental measurements. 

D'Cruz (1989) created a 3-D model using the rotational symmetry of the vent and 

vanes, similar to Fukano and Matsui (1986) resulting in 194 twenty noded brick 

elements and a total of 1530 nodes. Radiation energy exchange was assumed to be 
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zero and a blanket convective film coefficient of 100 W/m2K was applied to all free 

surfaces except along lines of symmetry. A time dependent heat flux was applied to 

the braking surfaces of the disc. Transient heat transfer and stress analysis was 

carried out using the ABAQUS FE package. 

Barozzi, Nobile et al. (1989) modelled a railway brake disc, analysing a 36° 

symmetrical section; cooling fins were ignored to further simplify the model. Cubic 

8-noded brick type elements were used amounting to 1275 nodes. Again, the 

ABAQUS FE package was used to analyse temperature distribution and thermal 

stresses. 

Bailey, Buckingham et al. (1991) carried out FE studies using ABAQUS FE package 

with a full 3-D model of a passenger car brake disc. Temperature distributions 

measured during dynamometer testing by a thermal imaging camera were mapped 

onto the disc surface, the disc consisted of 2640 nodes. Heat loss from the disc was 

simulated using surface heat transfer coefficients of 100 W/m2K from all free faces. 

It was assumed that conductive heat losses at the mating surfaces of the disc were 

equal to convective heat losses. 

Day, Tirovic et al (1991) discussed how many of the thermal problems associated 

with brake friction pairs can be analysed in terms of localized frictional heat 

generation. A 2-D axisymmetric model was used to predict temperature distributions 

in the brake disc. The disc distortion was modelled in a 3-D pad/disc assembly 

model, where gap elements were used to connect the pad friction surface to a 'rigid' 

disc surface. FE methods were used to indicate that uniform friction interface 

pressure distribution is very important in minimizing brake thermal problems. 

Kao, Richmond et al. (1993) used an FE technique to predict hot spot formation. An 

axisymmetric model was used consisting of the disc, pads and pad baking plates. 

Special four node interface elements were developed, which link the rotational disc 

element on one side and stationary ring sector pad elements on the other. The 

frictional heat generation and wear characteristics were incorporated into this 

element. 
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Dufrenoy and Weichert (1995) conducted FE analysis using ANSYS FE software to 

predict railway disc brake temperatures taking into account the friction surface 

variations. A half cross section of the disc is modelled with the cross section of one 

of the pads. Meshing has been refined near the region of high thermal gradients. 

Assumption of uniform circumferential heat flux distribution allows a 2-D 

axisymmetric model to be used and then to study only one half of the structure. A 

comparison with a 3-D model was carried out to validate these assumptions. 

The ABAQUS FE package was used by Grieve, Barton et al. (1998). A 3-D model of 

a 10° segment of a ventilated front disc, hub and wheel for a typical medium sized 

passenger car was generated. Quadratic brick elements were used so as to include 

one vent and two half vanes giving a total of 1824 nodes. The disc wheel and hub are 

combined into one solid model to enable conductive heat transfer. Sensitivity studies 

to investigate the thermal resistance between the disc and hub and the hub and wheel 

surfaces revealed that little or no thermal resistance was apparent owing to 

mechanical clamping of the wheel to the hub and disc. The wheel was truncated in 

order to reduce the complexity of the model as shown in Figure 2.8. Convective heat 

transfer coefficients were calculated and used for all free surfaces. Radiative heat 

transfer was also modelled except at the vane. 
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Figure 2.8 Segment FE mesh of a vented brake disc, hub and truncated wheel 

(Grieve, Barton et al. 1998) 
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2.6.2 Computational Fluid Dynamic Methods 

Computational fluid dynamics (CFD) is the latest technique used for brake cooling 

analysis and temperature prediction. This method can analyse the airflow through 

complex rotating brake geometry and provide convective heat transfer coefficients 

for all brake surfaces. 

Kruseman and Schmidt (1995) used the STAR-CD CFD code to simulate the airflow 

through the brake disc in order to optimise cooling, see Figure 2.9. CFD analysis 

gave a new fundamental insight into the behaviour of the airflow through the disc. 

The simulation of geometric modifications is also presented and provides a good 

estimation of disc cooling potential. 
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Figure 2.9 CFD mesh of a brake disc and surrounding components (Krusemann and 
Schmidt 1995) 

Axon, Garry et al. (1999) developed a 3-D CFD model of a wheelhouse cavity. Both 

stationary and rotating wheels were considered and comparisons made with wind 

tunnel tests. 

A Paper published by Basara, Beader et al. (2000) determines the influence of 

turbulence models on the development of the unsteadiness the airflow around an 

isolated wheel. The paper is presented by A VL who are developing CFD software 

for rotating parts, such as ventilated brake discs, using moving meshes. 
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Daudi and Narain (2000) used CAE prediction and experimental verification to 

determine the maximum temperature of a ventilated automotive disc. FEA was used 

to verify structural strength, and Fluent CFD software was used to find the highest 

airflow velocity through the vane and the heat transfer coefficient. ABAQUS 

software used the heat transfer coefficients to predicte the temperature of the disc. 

The analysis assumes heat is removed by airflow only and zero heat flow was 

assumed through hub. The CAE analyses correctly predict the temperature difference 

trends corresponding to disc design changes but temperature predictions are much 

higher than experimental results. 

Kubota, Hamabe et al. (2000) performed parametric studies based on an analysis of 

airflow through discs. Brake cooling performance is determined by the airflow 

around the wheel unit and the airflow through the disc vanes. A one-tenth-scale 

model of a wheel unit incorporating a disc is tested in a water tank. Findings show 

the air velocity through the ventilation channels increased in proportion with the disc 

inner radius and alternately arranging fins of two different lengths increased the 

ventilation channel inlet, which in tum increased velocity. Velocity through the 

vanes increases with gourd-shaped vanes and short straight vanes, see Figure 2.10. 

CFD results compared well with the water tank results. It was also found that 

increasing the number of fins achieves a more uniform stress distribution. 

Figure 2.10 CFD predicted airflow through gourd-shaped and short straight vanes of 
a ventilated disc (Kubota, Hamabe et al. 2000) 
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CFD analysis is used to a great extent in the design of hydrodynamic pumps. A 

computer-aided design system has been developed by Goto, Nohmi et al. (2002) for 

hydraulic parts of pumps including impellers. The key technologies include 3-D 

CAD modelling, automatic grid generation, CFD analysis, and a 3-D inverse design 

method. The design system is directly connected to a rapid prototyping production 

system and a flexible manufacturing system composed of a group of DNC (direct 

numerical control) machines. The use of this novel design system leads to a drastic 

reduction of the development time of pumps having high performance, reliability, 

and innovative "Blade Design System" design concepts. 

Surface flow patterns generated with oils have been used in centrifugal pump design 

for many years. Hamkins and Bross (2002) have showed how modern image analysis 

methods allow quantitative predictions of the corresponding pressure distributions by 

analysing surface flow patterns. The surface flow patterns can be used to confirm 

CFD results and improve boundary conditions. 

The author of this thesis has published three papers on the topics of brake cooling 

analysis of automotive disc brakes (Voller and Tirovic 2002), improving cooling of 

commercial vehicle brakes (Tirovic and Voller 2002) and optimisation of heat 

dissipation from commercial vehicle brakes (Tirovic and Voller 2002). The work is 

based on experimental and numerical analyses, most of which will be discussed 

throughout the thesis. 

2.7 Summary 

The problems of adequate brake cooling are associated with all brake types and heat 

dissipation has attracted much investigation and research. The experimental and 

theoretical results were limited with the tools available at the time. Most of the recent 

published work has been fragmented and the efforts concentrated on the specific 

problem, design or heat transfer mode. 

Conduction is the least studied mode of heat dissipation from brakes. From published 

research on TCR at the interface of two mating components, the effect of interface 

condition has been shown but not directly related to brake components. Brake 
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interface conditions vary due to corrosion and dismantling and re-assembly 

procedures. Different material combinations also complicate the issue. Published 

research, dealing with brake thermal modelling, takes a simplified approach to 

conductive heat dissipation, applying general heat transfer coefficients to brake areas 

conducting heat to adjacent parts. 

A number of published papers deal with convective cooling from specific disc areas. 

Research has also been focused on the heat transfer in the channels of ventilated 

discs. Comparison of the suggested approaches show that, although similar heat 

transfer coefficients can be obtained in some cases, in other cases differences can be 

substantial. More recent approaches have been published using CFD methods to 

predict airflow around the vehicle's front ventilated disc brakes. Most of the 

published work relates to automotive applications. Available data is insufficient to 

offer a reliable guide regarding the heat transfer coefficients that should be used for 

railway brake thermal analyses. Limited published data shows that ventilated railway 

discs can cause substantial aerodynamic losses, and a compromise with cooling must 

be achieved. 

Radiative cooling has often been neglected in published brake thermal analyses, even 

though at higher temperatures radiation is a very significant mode of heat dissipation. 

It is interesting to note the substantial differences of published cast iron disc surface 

emissivity; values range from 0.15 to 0.9. Again, available data is very limited and 

insufficient for adequate modelling of radiative heat losses. It is particularly 

important to accurately model this mode of heat dissipation, because of its significant 

influence at the high temperatures reached by new disc and pad materials and high 

performance designs. 
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Chapter 3 

Experimental Apparatus and Test 

Components 

3. 1 Introduction 

The experimental study of friction brakes is generally conducted on a dynamometer 

or test vehicle. The dynamometer is used to design and develop a brake for a range of 

duties. However the brake is only one component of a vehicle system and so vehicle 

tests are necessary to test and tune the braking system for a specific vehicle. 

3.1.1 Road and Track Tests 

Brake measurements on vehicles are very valuable, however they are prone to 

substantial external factors including ambient temperature, wind speed and direction, 

road surface, dirt and spray from the road, and driver. These factors mean there are 

often considerable differences between dynamometer and vehicle tests and 

comparing results is difficult. The cost of vehicle testing is also high, requiring a 

specially instrumented vehicle, test driver, test track facilities and good weather 

conditions. Vehicle testing is still vital for final evaluation of system design and 

brake approval and test tracks specifically for braking have been developed. 
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There are many test tracks in use, such as MIRA and Millbrook, in the UK and 

abroad. Details are given on one of the newest, Idiada, Spain, which is made up of an 

acceleration stretch of 960 m and a braking area with surfaces of different 

coefficients of friction, see Figure 3.1 and Table 3.1. 

Figure 3.1 Four surface brake test track, IDIADA, Spain 

Table 3.1 Coefficient of friction values for the track surfaces, IDIADA, Spain 

Surfaces J.L [-] Length [m] 

High-friction asphalt 0.8 200 

Treated concrete 0.4 200 

Basalt slabs 0.3 200 

Ceramic tiles 0.1 250 

3.1.2 Dynamometers 

Tests are used to represent all aspects of vehicle brake application, maximum brake 

duty, friction evaluation, drag and repeated brake applications and cooling. 

Dynamometers can provide fast, accurate repeatable tests unaffected by road or 

weather conditions. High torques are achieved during braking and dynamometers are 

usually of the inertia type, using a flywheel as the main source of energy during 

braking. Typically, the braking torque of a passenger vehicle can amount to 5000 Nm 

and a typical motor used on an inertia dynamometer produces a maximum of 1500 

Nm (Slevin and Smales 2002). A range of flywheels can be fitted to the 

dynamometer depending on torque requirement. In Figure 3.2 the brake disc is 

situated on the left and flywheels are clearly shown at the centre of the picture. The 

motor is used to add to or subtract torque from the flywheel to interpolate between 

available flywheels and constantly adjust torque during testing. Constant torque 
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adjustment compensates for mechanical losses, rolling resistance, wind resistance, 

work done on a gradient and vehicle loading. 

The disadvantages of inertia dynamometers are that they are expensive to purchase 

and run, their operation requires manpower and high energy consumption. Also, 

small changes in brake characteristics performed during brake system refining are 

difficult to detect. Furthermore, for health and safety reasons, extraction fans are 

necessary to remove brake dust and vapours during testing. 

Figure 3.2 Inertia brake dynamometer, Motor vehicle research institute, CZ 

Railway discs require particularly high inertia brake dynamometers. The Sabwabco 

inertial dynamometer test facility is shown in Figure 3.3. Discs or whole axles are 

mounted on special frames (shown in Figure 3.3), allowing more efficient operation 

(frames can be prepared while other tests are running). 

Figure 3.3 SabWabco's Rl inertia brake dynamometer test facility, UK 
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Investigations of friction brake heat dissipation from vehicles and dynamometers are 

confronted with problems of accuracy, repeatability and cost. Most of the friction 

brake applications are performed in the thermoelastic instability regime, which 

causes variation of interface pressure and heat generation at the disc/pad interface 

throughout braking. Hot spots are created making it difficult to determine surface 

temperatures and measured results usually vary, often to a high degree, for otherwise 

identical brake applications (initial temperature, speed, load, deceleration). Figure 

3.4 clearly shows the hot bands generated by hot spots on the disc surface. During 

the brake cooling period, these influences are reduced as temperature dissipates 

towards an average temperature. 

Figure 3.4 Hot bands on disc surface (Chemical 2002) 

Specialised brake test rigs have been developed to allow for more accurate, 

repeatable and specific brake measurement with reduced cost. Different test rigs have 

been designed focusing on areas of hydraulic and pneumatic systems, calliper 

fatigue, parking brake fatigue, operating loads (Kruger, Boss, et al. 1990) and airflow 

analysis (Wild 1989). To overcome the problems of brake cooling measurement and 

achieve more accurate brake heat dissipation and pumping loss measurement, a 

dedicated Spin Rig test facility was developed. 

3.2 Spin Rig 

The developed Spin Rig, shown in Figure 3.5, allows brake assemblies to be heated 

and cooled, providing accurate heat dissipation measurements and airflow analysis. 

The design and manufacture of the Spin Rig has been conducted in conjunction with 

the thesis research project during the three-year time period provided. Careful 
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planning has been necessary to ensure that the Spin Rig was completed with 

sufficient time remaining for brake testing. 

3.2.1 Design Brief 

A design brief was prepared based on the research objectives, further use by industry, 

the available time and financial constraints. Nevertheless, the Spin Rig can 

accommodate and provide accurate measurements for a variety of research areas: 

• Aerodynamic losses of brakes (and wheels) 

• Airflow and cooling of brakes (with and without wheels) 

• Heat transfer and interaction of brakes and wheels 

• Other applications where torque and speed measurements are required 

• Other studies of heat transfer problems 

The development and commissioning of the Spin Rig is detailed in Appendix C 

3.2.2 Design and Specification 

The Spin Rig (Figure 3.5 and Figure 3.6) has a simple, in-line arrangement of the 

brake disc, torque transducer, speed sensor and electric motor. The disc is heated 

using electric heaters or gas flame heaters. Cooling characteristics are studied by 

rotating the brake disc at different rotational speeds. Temperatures are measured 

throughout the tests using rubbing and imbedded thermocouples, as well as infrared 

sensors. Uniform heating ensures high test repeatability. The Spin Rig also enables 

the determination of ventilated disc 'pumping losses' by measuring the torque 

required to spin the disc at different rotational speeds, which is crucial for high-speed 

railway disc brakes. Airflow measurements are conducted with a handheld 

anemometer velocity. 

The Spin Rig can accommodate a range of brake discs, from motorbike discs up to 

high speed train discs. The Spin Rig guarding has clearance for a diameter of 1 metre 

providing room to mount a wheel carrier, wheel, tyre and calliper up to a mass of 250 

kg. This capacity allows the investigation of the influence of brake component 

design, material and condition of contact surface on brake cooling. 
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Figure 3.5 Spin Rig for studying airflow and heat dissipation from brakes 

The Spin Rig is aimed at experiments related to brake heat dissipation and flow 

characteristics and not for studies of friction couple or brake structural integrity. 

Compared to dynamometers, achieving high disc temperatures is more difficult on 

the Spin Rig. In addition, the heat is not generated by rubbing the friction pads 

against the disc surface, which results in a different condition of these surfaces 

compared with discs used on dynamometers and vehicles. However, the above 

effects can be taken into consideration by adequate measurements and calculations. 

As a result, the prediction of 'real friction brake' temperatures can be very accurate. 

Spin Rig tests are much cheaper to prepare and run than brake dynamometer or 

vehicle tests, due to much lower cost and complexity of the equipment, lower energy 

consumption and manpower required. Figure 3.6 and Table 3.2 shows the Spin Rig 

specification. 
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Table 3.2 Spin Rig specification 

Motor speed 0- 2000 min- l 

Motor power 7.5kW 

Maximum transducer torque 
50 Nm (running) 

70 Nm (overload) 

Maximum rotating assembly mass 250 kg 

Maximum rotating diameter 1.05 m 

Main shaft bearing type (SKF) 
7314B (motor side) 

7315B (wheel side) 

Flame heater Gas/air torch 

Electrical heater airflow 30-500 SLPM 

Maximum combined heater power 8kW 

Maximum electrical heater temperature 750°C 

Main power requirements 415V A.C., 50 Hz, 3-phase at 22 A 

Heater power requirements 230 V A.C, 50 Hz 

Torque transducer full scale output ±5V 

Speed full scale FIV converter output ± 10V 

Data acquisition channels 16 

Input full scale range ± 0.05 V, ± 0.5V, ± 5V, ± 10 V 

Maximum sample period 1 ms (1 kHz) 

Dimensions, H x W x L 1.5 x 2.45 x 1.75 m 

Spin Rig mass 250 kg 
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Figure 3.6 Spin Rig layout 
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3.2.3 Equipment 

The Spin Rig is fitted with apparatus for heating the brake assembly and 

instrumentation for the measurement and logging of temperatures, rotational speed 

and torque. Details are given in this section. 

3.2.3.1 Torque and Rotational Velocity Measurement 

The Spin Rig (Figure 3.6) is fitted with an inline torque transducer; see Figure 3.7 

and Table 3.3. The transducer consists of a housing containing the measuring shaft 

wi th free shaft ends. On the measuring shaft there is a torsion distance with strain 

gauges and signal amplifier employing induction technology. It can be used to 

measure static and dynamic torque and rotational speed. Rotational speed IS 

measured using digital pulses at 60 pulses per revolution. 

Table 3.3 Torque transducer 0160 DM specification 

Torque rating 50Nm 

Maximum rotation speed 12,000 min- 1 

Overload capacity 1.3 x rated torque 

Break capacity > 5 x rated torque 

Bearing life 20,000 hours 

Speed transducer 60 pulses 

Linearity deviation < 0.1 % of full scale 

Output ± 5.0 V at rated torque 

Operating temperature range o to 70°C 

Figure 3.7 Torque transducer 0160 DM, Dr. Staiger, Mohilo + Co GmbH, Germany 
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3.2.3.2 Signal Processing and Data Logging 

The torque and speed of the shaft are measured by the torque transducer. This unit 

outputs + 5 V for + 50 Nm of torque and a frequency proportional to speed of 

rotation, 2 kHz = 2000 min-I. The torque voltage is fed directly to the data 

acquisition card of the Spin Rig computer. The speed frequency is fed into a 

frequency/voltage converter, the resultant 0 to 10 V output is then fed to the data 

acquisition card of the Spin Rig computer. The data acquisition card is a National 

Instruments 6023E PCI card with 16 single ended, 8 differential channels and 2 

output channels. The input range is + 0.05 V, + 0.5 V, + 5 V or + 10 V with a 

maximum sampling rate of 1000 Hz. A dedicated Spin Rig program has been written 

to view channel outputs and log the data as a comma space variable file. 

Data acquisition of the thermocouples measurements have been performed with a 

dedicated data logger designed for thermocouple input. Signal processing of the 

thermocouple output requires cold junction compensation, signal amplification and 

linearization. The RS Datascan 2200 data acquisition system has been used, see 

Figure 3.8, providing software configurable inputs, on-board processor to pass data 

to the host PC in engineering units, and a RS-232 computer interface. Sixteen 

channel inputs are individually configurable for dc voltage, thermocouple and 4 to 20 

rnA. Cold junction compensation provides direct thermocouple measurement. 

Figure 3.8 RS Datascan 2200 data acquisition system 

Orchestrator by Measurement Systems Ltd., UK is the monitoring and recording 

software used with the RS Datascan, a real time data acquisition software for 

Microsoft Windows NT. Orchestrator provides integrated data acquisition, 

monitoring, data logging, and report generation. It interfaces with the Datascan 

device from which it imports the data to a real time memory database. This data is 
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processed and redirected to other tasks such as alann monitors, data loggers, real 

time calculators, and trend displays. 

3.2.3.3 Heating System 

The Spin Rig is fitted with a 4 kW industrial high temperature air heater, shown in 

Figure 3.9. It is designed for continuous high temperature operations up to 650°C, 

supplying an airflow rate up to 1400 IImin. Hot air flowing over the rotating disc 

provides unifonn heating and can be switched off instantly ready for cooling 

measurement. This method of heating is suited to the ventilated disc, which has a 

large surface area for heating. Inductive heating methods were considered (discussed 

in Appendix D) but cost were too high. 
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Figure 3.9 Hot air heater, Hawco Ltd, UK 

A problem associated with the air heater is high heat loss. Hot air flows over the disc 

surface with little of the heat transfer from the air to the disc. Also the disc dissipates 

heat to the atmosphere and to adjacent components during the heating phase, these 

losses make the air heater relatively inefficient. To use the heated air more efficiently 

it must flow over more of the disc surface to transfer heat and the disc requires 

insulating to avoid heat loss during the heating phase. 

To substantially reduce losses a heater box has been manufactured to control the hot 

airflow and insulate to the disc during the heating phase, see Figure 3.10. A Teflon 

insulating disc is also fitted between the shaft flange and the disc adaptor to reduce 

heat flow from the disc back to the shaft. The heater box is design to accommodate 

two hot air guns each providing an extra 2 kW of heating power. The box ducts the 

hot air from the Spin Rig air heater as it exits the disc vane; hot air is guided back 

over the rubbing surface of the disc, finally exiting at the top of the heater box 
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through ventilation holes. The hot air guns provide additional hot airflow over the 

rubbing faces of the disc. Total heating power is equal to 8 kW. 

Figure 3.10 Heater box with additional air heaters 

With the Spin Rig heater air temperature set to 600°C, the hot air guns set at 

maximum output, airflow set to 45 11m and the disc rotating at 25 min-I, a 45 minute 

heating cycle produces an average commercial vehicle disc temperature of 250°C. 

The temperatures reach a steady state condition. This is a temperature rise of 230°C, 

and is the limit for the hot air disc heating method (at a disc temperature of 250°C 

there is sufficient heat for the analysis of disc cooling and this method has been used 

for the cooling analysis of the commercial vehicle disc in this project). 

For tests requiring higher disc temperatures, an airlgas torch has been used. The 

flame heating allows controllable localised heat input and uniform heating with the 

disc rotating through the flame. Surface temperatures of up to 600°C can be achieved 

with this method. 

The large thermal capacity of the TOV railway disc, see Section 3.4.2, meant that the 

disc could not be heated using the hot-air heaters. The disc mass is three time greater 

than the commercial vehicle disc, and assuming that the losses are the same, the 

TOV disc would take three times longer to heat. This was impractical, and too much 

heat would be conducted through to the Spin Rig shaft and bearings. To overcome 

this problem the disc was heated in an industrial oven before being mounted to the 

Spin Rig, see Figure 3.11. The oven temperature was set to 500°C and the disc left to 

soak at this temperature for three hours. The disc was placed in a metal frame to ease 

handling. A chain and crane were used to mount the disc to the Spin Rig shaft. The 
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mounting procedure took approximately 20 minutes by which time the disc 

temperature was 300°C, which was sufficient for testing. 

Figure 3.11 Industrial oven used to heat TGV railway disc 

3.3 Measurement and Instrumentation 

The measurement system used to provide information about the physical value of the 

variable being measured generally comprises of several elements, as shown in Figure 

3.12. All measuring instruments have a primary transducer, this gives an output that 

is a function of the input to the measuring instrument. It is common that the 

transducer will give an output in an inconvenient form; the thermocouple output for 

example is a non-linear increase of flV/oC. Signal processing is used to enhance 

output of a transducer in some way. Processing can include linearization, 

amplification, and filtering. The final stage of measurement is transmission of the 

processed signal for visualization and recording. 

Physical Transducer Signal Signal Signal 
variable ~ ~ processor ~ visualization ~ recording 

Figure 3.12 Elements of a measuring system 
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Measurement system selection is dependent on the physical property to be measured, 

working conditions, level of accuracy, sensitivity, output and recording requirements. 

The physical properties measured during the study of disc brake cooling included; 

temperature, air velocity, torque and angular velocity. 

3.3.1 Temperature measurements 

The two most common ways of measuring temperatures in industrial and research 

environments are resistance temperature detectors (RTDs) and thermocouples. To 

determine the most appropriate device several factors should be considered as 

outlined in Table 3.4 (Sulciner 1999): 

Table 3.4 Properties of RTDs and thermocouples 

Property RTD Thermocouple 

Temperature [DC] -200 to 500 -250 to 1200 

Response time Seconds Milliseconds 

Sheath size diameter [mm] 3-6 > 1.5 

Accuracy [DC] >±2 <±2 

Thermocouples have been proven to be the most suitable method of thermometry for 

brake temperature measurement and have been used extensively throughout the 

experimental analysis in this project. They have many advantages, performing well 

over the brake operating temperature range and in rugged conditions, they have fast 

response time, are small in size, relatively inexpensive and simple to use. 

3.3.1.1 Thermocouples 

The K-type (ChromeIlAlumel) thermocouple was chosen, which is a good general 

purpose thermocouple. It is a low cost thermocouple with good resistance to 

oxidation and owing to its popUlarity is available in a wide variety of probes. 

Brake temperatures 

The embedded thermocouples used throughout this project are K-type welded tip 

glass fibre insulated thermocouples, with two metre long thermocouple wire 

insulated with a varnish impregnated glass fibre sleeving, the tip welding prevents 

oxidisation. 
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Rubbing thermocouples are available in vanous designs, see Figure 3.13, some 

designs incorporate a floating shoe onto which a miniature thermocouple is mounted. 

The shoe is mounted to a spring steel arm. Spring pressure setting may be adjusted 

by means of a setscrew and lock nut. Other designs incorporate a flattened copper 

bead brazed to an extension cable to form a grounded hot junction secured by a spot 

welded clip onto a spring steel arm. A graphite tip is also available similar to the 

copper bead design. 

o .5mm dia mineral insulated Thennocouple Spring Loaded Mounting & Adjustment Screw 
L 

A 
~========~~==::::C::~~~~~~Ff.ixing Boss Mni Plug 

L1 (Hole dia 5.1mm) 

<i: of fixing boss 
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B r 1 
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c Include 1/2 of rubber boot pe.ir vvith completed e.ssembly 
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Figure 3.13 Rubbing thermocouple types, A) low friction sled, B) copper tip, C) 
graphite tip, UTL, Kent, UK 

Rubbing thermocouples have been used extensively for brake testing but not without 

their problems. Rubbing thermocouples will generate some heat due to friction, see 

Chapter 5, they are also prone to wear, permitting the thermocouple tip to score the 
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brake disc. The brake temperature must conduct through the shoe or bead leading to 

relatively long response times, but this is not a problem for measuring the cooling 

rates achieved on the Spin Rig. 

Spin Rig temperatures 

The K-type welded tip glass fibre insulated thermocouples have been used to monitor 

the Spin Rig bearing temperature. A self-adhesive PTFE glass cloth pad is used to 

locate the thermocouple. These have been used in conjunction with liquid crystal 

strips that respond to temperature fluctuations. They can be used on moving parts 

and show temperature values in increments of 5° steps. 

Air temperatures 

Air temperature measurement has been performed close to the rubbing surface of the 

brake, the disc ventilation channel inlet and exit; ambient temperatures have also 

been measured. K-type welded tip glass fibre insulated thermocouples are used, the 

same as those used for embedded measurements. 

3.3.1.2 Radiation Thermometry 

Energy is emitted by all bodies having a temperature greater than absolute zero. This 

energy is a function of temperature, permitting the temperature measurement by the 

measurement of the radiation. The major part of the frequency spectrum measured 

lies within the infrared range. Radiation thermometers have one major advantage in 

that they do not require contact with the hot body in order to measure its temperature. 

This makes them very suitable for measuring high temperature and moving bodies 

such as the rotating brake disc; furthermore no wear denotes a longer life. However, 

their use is not straightforward because the radiation emitted from a body depends on 

its material, surface condition and the temperature being measured. This dependence 

is quantified by the emissivity (discussed in Chapter 7). Radiation is also absorbed 

by carbon dioxide, ozone and water vapour molecules and is scattered by 

atmospheric dust and water droplets. Therefore all radiation thermometers have to be 

carefully calibrated for each application. 

Radiation thermometry use has been investigated and compared with rubbing 

thermocouples for the measurement of brake temperatures. Two types of infrared 
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sensor have been selected for their small size, versatility and low cost; the Calex 

Convir MT20 two-piece fixed head infrared thermometer, see Figure 3.14(a), and the 

hand held Raytec ST60 infrared thermometer, see Figure 3.14(b). Their 

specifications are given in Table 3.5. The Calex two-piece infrared thermometer 

consists of a miniature sensing head and separate electronics. The sensor is housed in 

stainless steel and is small enough to fit between the disc brake and the wheel. The 

Raytec handheld device reads surface temperature without the need to carefully 

position the probe or interfere with the object being measured. 

(a) (b) 

Figure 3.14 Radiation thermometers, (a) Calex two-piece and (b) Raytec handheld 

Table 3.5 Infrared thermometer specifications 

Property Calex Convir MT20 Raytek ST60 

~easurementrange o to 500°C -32 to + 600 °C 

Emissivityadjustability 0.2 to 1.0 0.1 to 1.0 

Response 150 ms 500 ms 

Ambient temperature o to 85°C o to 50°C 

Output 
Type K, J Thermocouple, 

Digital display resolution 0·1 °C o to 5 VDC 

Optical resolution (distance from 2:1 30:1 
object:measurement diameter) 

To determine the emissivity of the material to be measured a list of common 

emissivity values are given by the sensor manufacturer (see Chapter 7). To gain extra 

precision a thermocouple probe device in contact with the surface can be used and 

the emissivity setting adjusted until the infrared reading agrees with the contact 

reading. 
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3.3.2 Airflow Measurements 

The study of airflow around the disc is an integral part of understanding convective 

heat dissipation. To fully investigate the airflow around the disc, flow patterns have 

been investigated. Flow visualization can be performed by measuring the three 

velocity components at a single point using a triple sensor hot wire anemometer or 

rotating a single sensor and taking sample measurements at three orientations. 

Simple qualitative methods included using yam tufts or smoke and still camera, as 

described in Chapter 2. Areas of interest are the airflows due to disc ventilation 

pumping and surface air velocities. A full-bore flow meter cannot be fitted into the 

ventilation channel of the disc, and so single measurements are necessary. 

3.3.2.1 Air Velocity 

For reasons of availability and ease of use, a hand held hot wire anemometer has 

been used throughout. The sensor probe head is 7 mm in diameter and can be used to 

gi ve a mean flow measurement over the diameter. In taking one measurement slight 

variations in position or turbulence in the flow could affect readings (Baker 200 1). In 

addition the probe may modify the flow in the ventilation channel. However, the 

flow around a rotating disc and wheel assembly will not be greatly affected because 

of the small scale of the probe. The hot-wire anemometer measures a fluid velocity 

by sensing heat convected away from the hot wire by the fluid. The core of the 

anemometer is an exposed hot wire maintained at a constant temperature. The heat 

lost to fluid convection is a function of the fluid velocity. By measuring the change 

in the electrical current required to maintain a constant wire temperature, the heat 

lost is obtained and converted to fluid velocity. A Velocicalc Plus 8386 handheld 

device has been used throughout the project (see Figure 3.15 and Table 3.6) and is 

ideal for measuring various air velocities around the brake assembly, providing good 

comparati ve data. 
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Table 3.6 Airflow meter, Velocica1c Plus specifications model 8386 

Velocity From Thermal Sensor (all models): 

Range o to 50 m/s 

Accuracy ± 3.0 % of reading or ± 0.015 m/s 

Resolution 0.01 m/s 

Instrument Temperature Range: 

Operating -10 to 60°C 

Operating (Electronics) 5 to 45°C 

Storage -20 to 60 °C 

Resolution O.l°C 

Accuracy ± 0.3 °C 

Relative Humidity: 

Range o to 95 % rh 

Accuracy ± 3 %rh 

Resolution 0.1 % rh 

Meter Probe Dimensions (all models): 

Probe Length 1016 mm 

Probe Diameter of Tip 7.01 mm 

Probe Diameter of Base 10.03 mm 

I 

1/ 

II 

0 ... 

Model 8386 

Figure 3.15 Airflow meter, Velocica1c Plus 8386, TSI Inc., USA 
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3.3.2.2 Airflow Visualization 

Flow visualization in this research has been conducted with an SP Teknik AB, RG-

100 smoke generator, see Figure 3.16. The smoke generator was available for use on 

this project and is of convenient dimensions for brake disc analysis. The smoke 

generator vaporizes odina oil and pumps it through a flexible pipe to a nozzle. The 

smoke generator has an on/off control at the nozzle. The oil feed is controllable to 

govern the amount of smoke produced. A digital camera has been used to capture the 

smoke patterns generated by the airflow, giving information on the flow pattern 

around the brake assembly. 

Figure 3.16 SP Teknik AB airflow visualization smoke generator 

3.3.3 Bolt Force Measurement 

To fully analyse conductive heat dissipation through brake assembly components the 

clamping forces must be known. To measure the bolt force, a low profile force 

washer has been used in conjunction with a digital meter (see Chapter 6). The low 

profile force washer is a stainless steel construction load cell with a through hole 

design for the measurement of bolt forces. Supplied by Procter and Chester (Meas) 

Ltd. , the load cell type T.W.S 25TE is shown in Figure 3.17(a). The digital meter is 

manufactured by Kosmos, model Micra-C, and custom configured for the load cell 

displaying load in imperial tons, see Figure 3.17(b). 

(a) (b) 

Figure 3.17 Bolt force (a) F.W.S 25TE Load cell and b) Kosmos Micra-C digital 
meter 
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3.4 Test Components 

The problems of adequate heat dissipation are associated with all brake types, but 

they are particularly severe in the case of commercial vehicles (CVs) and high speed 

trains. 

Compared to passenger cars, CV s have a much higher wheel load to wheel diameter 

ratio. This inevitably limits the size of the brakes that can be installed. The CV 

speeds are usually lower than passenger cars and combined with larger wheels, 

substantially reduce disc rotational speeds. However, brake applications are often 

more frequent (e.g. mountain descent). High axle loads result in the generation of 

large amounts of thermal energy, which have to be dissipated in a confined space at 

lower rotational and transversal air speeds, with a restricted supply of cool air 

(Tiro vic and Voller 2002). For these reasons the CV brake is an obvious area of 

study. 

High speed train discs must be capable of absorbing large amounts of heat in 

emergency brake applications from maximum speed. Heat dissipation during braking 

is low; it is therefore crucial to ensure low initial brake temperatures. This can only 

be achieved with good cooling characteristics, since brake mass must be kept to a 

minimum to ensure low unsprung mass. Ventilated brake discs are commonly 

employed for their cooling qualities, however when these types of brake disc rotate 

at high speed, they cause substantial pumping losses. The effects are very serious, 

since a single ventilated disc with radial vanes would require, just for rotation, in 

excess of 10 kW at maximum vehicle speed (300 kmlh, corresponding to about 2000 

min-I). Obviously, this is not acceptable, because at 4 discs per axle, with 26 braked 

axles, over 1 MW of power per train would be required, just to rotate the discs. 

Therefore, a different approach is required and numerous 'low loss' disc designs 

have been developed. Current vehicle designers and railway operators require that 

this power does not exceed 1 kW per disc, but the disc must maintain good 

convective cooling properties. Obviously, a very fine balance of low pumping losses 

and good cooling characteristics is required at all speeds. 
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3.4.1 Commercial Vehicle Brake 

For the study of automotive brake heat dissipation BruneI University have 

collaborated with ArvinMeritor Heavy Vehicle Braking Systems, UK, who provided 

a range of commercial (CV) braking components. ArvinMeritor is a global supplier 

to the automotive industry, providing a broad range of integrated systems, modules 

and components to OEMs. The CV brake assembly studied is designed for a Renault 

vehicle (see Figure B1), consisting of the brake disc, wheel carrier, wheel and tyre. 

Figure 3.18 shows the assembly and Table 3.7 the component details. The calliper 

has not been shown. 

Brake 
Disc 

Figure 3.18 Commercial vehicle wheel assembly 

Carrier 
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Table 3.7 Commercial vehicle brake design characteristics 

Component 

Disc 

Wheel Carrier (standard) 

Wheel Carrier (modified) 

SAF wheel Carrier 

Steel wheel 

Aluminium wheel 

Material 

Grey cast 
Iron 

SG cast iron 

SG cast iron 

SG cast iron 

Steel 

Aluminium 
alloy 

Mass 
[kg] 

33 

21.5 

20.5 

18.5 

35 

26.5 

Nominal Outside Diameter 
[m] 

0.434 

0.390 

0.390 

0.390 

0.570 

0.570 
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Several types of brake disc are available in relation to the ventilation design; see 

Table 3.8, all of which have been studied. Drawings of the discs are shown in 

Appendix B. 

A detailed drawing of the standard radial disc is shown in Figure 3.19. All discs are 

manufactured from grey cast iron (see Appendix A) and have the same external 

dimensions, giving them very similar masses and surface areas. The average surface 

areas are given in Table 3.9, detailing the areas dissipating heat to surrounding air 

(wetted area) and the areas conducting heat. 

Table 3.8 Description of disc designs 

Disc type Drawing number Description 

Standard B1.1 30 straight radial vanes, inboard inlet 

Anti-coning B1.2 30 radial vanes, outboard inlet to reduce coning 

30 curved vanes, designed to provide improved cooling 
Curved B1.3 performance without adding weight over comparable 

dimensioned straight vane discs 

Pillar B1.4 
30 pillar vanes to increase cooling at low speeds, outboard inlet 
to reduce coning 

Table 3.9 Average surface areas of the standard CV disc 

Surface Area [m2
] 

Total 0.631 

Total 'wetted' 0.565 

Friction faces 0.207 

Rim 0.040 

Vane 0.240 

Top hat 0.078 

Total conductive (flange - holes) 0.066 
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Figure 3.19 ArvinMeritor standard radial CV brake disc drawing 
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The CV disc design features the disc and hat as one piece. Two disc forms are used: 

the standard (hat attached to the outboard friction face) and anti-coning (hat attached 

to the inboard friction face). Disc coning may have serious consequences on disc and 

pad wear, noise and vibration. 

The wheel carrier is a standard design; a modified version has been studied as well as 

a new ventilated SAF wheel carrier. The wheel is available in two materials, 

aluminium and steel, the aluminium wheel has a thicker wall thickness and reduced 

ventilation hole diameter. The tyre is a standard type and although available has not 

been used in Spin rig tests. It was considered that the tyre does not influence disc 

cooling in still air conditions. 

3.4.2 TGV Brake 

For the railway brake heat dissipation aspect of the study, BruneI University 

collaborated with SabWabco (UK) Ltd., and they have provided a ventilated axel 

mounted TGV (Train a Grande Vitesse) high speed railway disc and a modified hub 

(original hub no available). Sab Wabco are a supplier of complete brake systems, 

brake products, wheels and couplings for rail vehicles. 

The TGV is a high speed train that travels at speeds up to 320 kmlh (200 mile/h), see 

Figure B2. It is fitted with a variety of discs depending on service conditions. The 

railway brake disc studied in this project is mounted to the axle of the frequently 

stopping train; four discs are fitted on each axle. 

The TOV disc brake consists of a hub, ventilated disc and retaining nng, the 

assembly is shown in Figure 3.20 and a detailed drawing of the assembly is shown in 

Figure 3.21. The assembly was mounted to the Spin Rig shaft using a specially 

designed adaptor; Table 3.10 shows the details of the components. The disc surface 

areas are given in Table 3.11, detailing the areas dissipating heat to surrounding air 

(wetted area) and the areas conducting heat. 
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Figure 3.20 TOV axle mounted brake disc assembly, ready for dynamometer 
tests 

Table 3.10 TOV brake design characteristics 

Component 

Disc 

Hub and adaptor 

Retaining ring 

Material 

Cast steel 
(15CDY06) 

Forged 
steel 

Steel 
(15CDY06) 

Mass 
[kg] 

91 

49 

2 

Nominal Outside Diameter 
[m] 

0.640 

0.280 

0.330 
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Figure 3.21 SabWabco TOV axle mounted railway brake disc assembly used 
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Table 3.11 Average surface areas of the TGV disc 

Surface Area [m2
] 

Total 1.308 

Total 'wetted' 1.306 

Friction faces 0.451 

Rim 0.092 

Vane 0.763 

Total conductive (lugs) 0.002 

The vane design of the TGV disc can be seen in Figure B8. The design incorporates 

vanes and pillars to provide optimum cooling with low pumping loss, which is an 

important factor in the design of railway brake discs. The vanes pump air through the 

disc and over the pillars. The disc is fixed to the hub by eight lugs. A retaining ring is 

used to clamp the disc to the hub, see Figure 3.20. Slip washers are placed at the 

interface of the disc lugs and ring and disc lugs and hub. The slip washers allow 

thermal expansion of the disc during service, reducing stresses in the assembly. The 

retaining ring almost completely blocks the vane inlet on one side affecting the 

cooling performance of the disc (see Figure 3.21). 
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Chapter 4 

Disc Brake Airflow 

4.1 Introduction 

Air heated by the brake assembly surface is transported away from the brake 

assembly by airflow in the region and gets replaced by cooler air. Heat dissipation 

increases with temperature difference between the brake surface and surrounding air. 

Airflow also directly influences convective heat transfer coefficients (hconv), with 

hconv increasing with air velocity. Railway ventilated disc brakes rotate at high speed, 

which causes substantial pumping power requirements. These effects are very 

serious; a single ventilated disc with radial vanes would require excessive power just 

for rotation. This chapter is dedicated to the analysis of airflow in the region of the 

brake, to enable better understanding and improvement this process, which is crucial 

for disc cooling. To achieve this, airspeed and pumping losses have been studied 

using analytical, experimental and numerical methods. 

4.2 Analytical Airflow Analysis 

Near the surface of a rotating disc, air flows mainly in the direction tangential to 

rotation. An additional component of airflow is caused by the centrifugal forces due 
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to rotation. Accordingly, ambient air moves from the surroundings towards the 

surface of the disc (Wagner 1948). According to Von Karman (Karman 1946), the 

velocity components, Ur (radial) and Ur (tangential), of the air flowing in the radial 

and tangential direction inside the boundary layer are given approximately by the 

equations (4.1) and (4.2): 

u, = rW[l.026 ;( 1-; J(1+2;)- ~(; J( 1-; J}f x=<8 (4.1) 

U, = rw ~[( 2+; J( 1-; JJ if x=<8 (4.2) 

Where, r represents the radial distance from the axis, x the axial distance from the 

disc, ill is the angular velocity, and b, the boundary layer thickness, is given by the 

equation (4.3): 

1 

8 = 2.58(v/m)2 (4.3) 

Where, v is the kinematic viscosity of air. The brake disc is also subject to external 

airflow. A moving vehicle provides airflow to the disc, causing a cross flow over the 

disc surface. The cross flow is generally restricted, firstly by the vehicle structure 

(body panels, wheel arch), secondly by the wheel assembly (wheel, dust shields, 

suspension components, etc.) and thirdly by the ground effect. 

Ventilation of the brake disc represents the primary system designed to improve 

brake disc cooling, by pumping air through the disc ventilation channels and 

providing a larger wetted area for convective heat dissipation. The ventilated brake 

disc acts like a rotodynamic radial flow pump, more commonly known as the 

centrifugal fan or impellor. There are six types of centrifugal fan in common use, as 

shown in Figure 4.1: 
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• Aerofoil blade (AF) 

• Backward curved blade (BC) 

• Backward inclined blade (BI) 

• Radial tip blade (RT) 

• Forward curved blade (FC) 

• Radial blade (RB) 

Figure 4.1 shows the vane configurations with their corresponding pumping 

efficiencies (1Jp) as defined by equation (4.4), where Qa is the power of the air 

pumped by the fan and Qb is the power to rotate the fan. The centrifugal fan with AF 

blades has the best pumping efficiency and the most complex blade design. For the 

centrifugal fan, the aerofoillift contributes only by a small proportion of the pressure 

produced and the improvements due to airfoil blades are not as pronounced as they 

are for axial flow fans. The RB design is the least efficient in pumping and has the 

simplest blade design. The 90° blade angle at the leading edges results in poor flow 

conditions. An advantage of the RB design is that it is bi-directional unlike the other 

designs, which are designed to operate in one direction only. On a vehicle a single 

RB disc can be fitted to either the right hand or left hand side. For this reason and 

manufacturing simplicity, the RB design is the most common design for disc brakes. 

AF 
92'Ka 

BC 
85" 

81 
78,. 

RT 
7016 

Fe 
65% 

(4.4) 

RB 
~ 

Figure 4.1 Six blade shapes commonly used in centrifugal fans and their 
approximate efficiency (Bleier 1998) 

The flow pattern for the RB design begins as the airflow enters the disc axially and 

then turns 90° into a radial direction as it enters the ventilation channel. The air 

leaves the channel in a circumferential direction as shown in Figure 4.2. The 
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operating principle is a combination of two effects: centrifugal force and deflection 

of airflow by the vanes. As the brake disc rotates together with the air inside the 

cooling channels, the air is subject to centrifugal force, this is the main cause for the 

outward flow of air. The air moving from the channel inlet to the channel outlet 

causes a pressure drop at the channel inlet drawing more air into the channel. The 

change in static pressure is only enough to overcome resistance to the motion and so 

the variation of fluid density is negligible, and air maybe regarded as incompressible. 

Air deflection only has a strong influence on the flow pattern and performance in the 

case of the FC blade design. 

(FC) Forward-facing btadesJ • (RB) Radial bla~es, (BC) Backward .. facing blades, 
~ > 900 ~ = 90° rb:l < 90° 

Figure 4.2 Outlet angle of centrifugal fan blades (Massey and Ward-Smith 1998) 

4.2.1 Velocity Diagrams 

Figure 4.2 and Figure 4.3 show the velocity diagrams for the rotating disc in still air 

at the leading and trailing edges of the vane. From the diagrams, velocity calculations 

can be derived. The vector sum of the air velocity (R) and the blade velocity (U) 

result in the absolute air velocity (V). This is true for the leading (1) and trailing 

edges (2). Figure 4.2 shows the outlet vector diagrams for different outlet angles, 

assuming that there is no discrepancy between the direction of relative velocity R2 

and the outlet edge of the blade. The airflow exit vector triangle is dependent on the 

outlet angle of the centrifugal fan. The outlet blade angle is defined by ¢>2. Vw2 is the 

velocity of whirl, the component of absolute velocity in the direction tangential to the 
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vane circumference. There are no guide vanes at the ventilation channel inlet; the air 

therefore enters the centrifugal fan at right angles to the blade velocity (U). This 

means the Vw component is equal to zero at the inlet (Vw]) (Figure 4.3). 

Disc 

Figure 4.3 Centrifugal fan velocity diagram for the leading edge (Massey and Ward­
Smith 1998) 

At the leading edge the following conditions exist in most cases (Bleier 1998): 

The cylindrical area, A], through which the airflow will pass, can be derived 

from the blade width (b]): 

The blade velocity, U]: 

U = dIOJ 
I 2 

(4.5) 

(4.6) 

The absolute air velocity (V]) is perpendicular to the area, A] and can be 

derived from the total volumetric flow rate (v): 

v, =~ 
I A 

1 

(4.7) 
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The blade angle, /31 can be calculated from: 

V. tanfl =_1 
1 U 

1 

At the blade tip the following conditions exits: 

The cylindrical area of A2 : 

The blade velocity, U2 : 

u = d20J 
2 2 

(4.8) 

(4.9) 

(4.10) 

The absolute air velocity, V2, can be resolved into two components: a radially 

outward component (V2r) and a circumferential component (V2c): 

(4.11) 

v =Kl 
2c d 

OJ 2 

(4.12) 

Where Ps is the static pressure. The constant K contains two correction factors for 

hydraulic and circulatory flow losses, which can only be estimated. 

The V2c component cannot be calculated accurately because of hydraulic and 

circulatory flow losses. The hydraulic losses are the pressure losses due to friction as 

the air flows across the disc surfaces. The circulatory flow is the rotation of air 

within the ventilation channel. Air particles within this space lag behind the rotation 

of the ventilation channels reducing the pressure in the ventilation channel. 
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An increase in the angles /31 and /h results in an increase in air volume and static 

pressure but in a decrease in efficiency. However, if the angle becomes too large 

circulatory flow will become excessive. 

The blade angle fh. can be calculated from: 

V 
tan /3

2 
= 2r 

U 2 -V2c 

(4.13) 

4.2.2 Pumping Power 

Since the torque about a fixed axis must be equal to the rate of increase of angular 

momentum about that axis, the torque on the fluid must be equal to the angular 

momentum of the fluid leaving the rotor per unit time minus the angular momentum 

of the fluid entering the rotor per unit time. Therefore (Massey and Ward-Smith 

1998): 

(4.14) 

This expression only involves the conditions at the inlet and outlet and therefore is 

independent of losses from bearings and air friction or air turbulence. 

rm = f Vw2mr2drh - f Vw1m1J.drh 

rm= fVW2U2drh- fVWIUl drh 

rm = U2VW2 f drh-U1Vw1f drh 

rm = rh(U2VW2 -U1VW1 ) = Qpump 

(4.15) 

As previously mentioned, the component Vwl IS equal to zero, therefore the 

expression becomes: 

Qpump = rhU2Vw2 (4.16) 
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For the radial vane disc the Vw2 component is equal to the U2 component, see Figure 

4.2, thus the power equation is modified to: 

(4.17) 

The above equation been used to determine Qpump (ventilated brake disc pumping 

losses) for the standard radial vane CV disc and Figure 4.4 shows the power curve, at 

the rotational speed of 2000 min- l 
Qpump is 550 W. The theoretical calculation of 

pumping losses will be compared with experimental measurements and CFD 

predictions. 

soo 

400 

~ .... J 300 

200 

100 

o~------======~~--------~------------~------------~--~ 
o 500 1000 1500 2000 

Rotational speed [min-II 

Figure 4.4 Theoretical standard CV disc ventilation channel pumping power 

In order to compare the pumping performance of a ventilated disc at one rotational 

speed (1) to another rotational speed (2), the following rules generally apply to all 

types of fans (Bleier 1998). These relationships are useful in ventilated disc design 

for performance prediction and modelling validation. 

The volume rate of flow (6) varies directly with the rotational speed (n): 

(4.18) 
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The static pressure (Ps) varies with the square of the rotational speed: 

~2 =(~ ~2 
~l n. ) 

Qpump varies with the cube of the rotational speed: 

4.3 Vane Design 

Qpump2 

Qpumpl 

(4.19) 

(4.20) 

When designing a ventilated disc, the required outside diameter and inside diameter 

can be calculated from the required thermal capacity, available space, disc thickness 

and airflow requirements; n, v and Ps, enabling ventilated disc cooling and pumping 

efficiency to be achieved. Equation (4.21) can be used to calculate the inside 

diameter (d]): 

(4.21) 

To calculate the outside diameter, the following equation can be used: 

d . = 18000 rp 
2,nuD V r s 

n 
(4.22) 

From the above equations, it can be seen that air volume increases with the inside 

diameter. The static pressure will only be produced after the air has entered the 

channel and flowed to the outside diameter. 

Further formulae are available relating the centrifugal fan performance with disc 

size. These fan relationships can only be used if the two fans are geometrically in 
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proportion. D 1 is the outside diameter of known rotor performance; D2 is the outside 

diameter of the modified rotor (Bleier 1998). 

V varies as the cube of the size: 

(4.23) 

P s varies as the square of the size: 

(4.24) 

Qpump varies as the fifth power of the size: 

(4.25) 

For changes in the outside diameter only there is a modification to the above fan 

laws. 

V varies as the square of the size: 

(4.26) 

Ps varies as the square of the size: 

(4.27) 
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Qpump varies as the forth power of the size: 

(4.28) 

Equations (4.26) to (4.28) are of sufficient accuracy for practical purposes (Bleier 

1998). 

4.3.1 Blade Width 

The airflow enters the ventilated brake disc axially and then decelerating turns 

through 90° to a radial direction. The air stream tends to follow its inertia by moving 

across the blade width (b), 'crowding' the back plate reducing the airflow entering 

the ventilation channels. Smooth curves can improve the condition. Bleier (1998) has 

empirically calculated the maximum recommended blade width: 

b=O.46dj (4.29) 

However smaller blade widths are often used in fan designs when less air volume is 

required. A reduced blade width, which may be used when there is limited space for 

the brake disc, will result in less deceleration or even acceleration during the right­

angled tum. Acceleration will take place when: 

(4.30) 

4.3.2 Number of Blades 

The channel between the blades must be narrow enough to give good guidance to the 

air stream but needs to be wide enough so that resistance to the airflow is not too 

high. Inserting partial blades in the outer portion of the annular space will reduce the 

channel where it is largest, providing a more uniform distance between the channels. 

However, tests on such configurations show that this will not improve pumping 
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performance, because the increased number of blade edges increase turbulence in the 

airflow (Bleier 1998). 

4.3.3 Blade Under Filling and Over Filling 

Under filling is a method of achieving an increase in flow. The increase in exit area 

causes an increase in the tangential component V w. Over filling does not change the 

area but increases the efficiency by making the exit smoother, flow increases by 

lowering friction and turbulence (Nelik 1999), see Figure 4.5. 

Figure 4.5 Under filling and over filling of blades (Nelik 1999) 

4.4 Airflow around Disc 

Convective heat dissipation from the brake disc is directly related to the airflow 

around the disc. Airflow enhances the heat transfer by bringing cooler air into 

contact with the disc surface. The rate of heat transfer is increased by an increase in 

air velocity. Measuring the airflow around the disc, and analysing the flow patterns, 

allows convective heat transfer coefficients (hconv) to be more accurately calculated, 

in order to verify CFD results predicting hconv values. 
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4.4.1 Experimental Measurements 

The airflow velocity around the commercial vehicle (CV) and TOV railway disc (see 

Chapter 3) has been measured using the hand held hot wire anemometer described in 

Chapter 3. The anti-coning disc was analysed in the most detail, measuring 

surrounding air velocities for the disc only and the disc shrouded by the wheel 

assembly, with and without the SAP ventilated wheel carrier. 

The measuring head of the anemometer was placed at the measurement point and 

supported by a retort stand as shown in Figure 4.6a. Figure 4.6a shows the 

measurement of air velocity at the anti-coning disc ventilation channel inlet, Figure 

4.6b shows the measurement of air velocity at the ventilation holes of the SAP wheel 

carrier. The measurement head of the anemometer was adjusted until the maximum 

air velocity was measured; maximum velocity measurement is achieved when the 

anemometer head is inline with the airflow. Airflow velocity has been measured for 

various rotational speeds ranging from 150 to 1000 min-1 for the CV disc and 200 to 

1800 min-1 for the TOV disc. All measurements were taken at room temperature; the 

average ambient temperature was 24°C with a relative humidity of 43%. It is 

understood that the anemometer head will influence the flow, reducing the measuring 

accuracy. However, no other equipment could be provided and measured data will be 

compared with other sources, to confirm equipment suitability and accuracy. 
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Figure 4.6 Measurement of air velocity using hot wire anemometer 

More details of measurement points are given in Figure 4.7, measurements were 

taken at the channel inlets (1, 2), channel exit (3), the inboard and outboard rubbing 

faces of the disc at the mean radius (4, 5), the wheel carrier ventilation holes (6), and 

the wheel ventilation holes (7). 
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o 

a) anti-coning CV disc with wheel b) standard CV disc 

c) TGV disc 

Figure 4.7 Air velocity measurement points for each brake assembly 

Figure 4.8 shows the air velocity measured for the anti-coning radial vane CV disc as 

shown in Figure 4.7a but with the wheel and carrier removed. The curves show that 

the air velocities increase linearly with rotational speed, the highest velocity being at 

the channel exit (24 mls at 1000 min-I). High velocities are also measured at the 

rubbing faces due to the non-slip condition of the disc surface. The slope of the 

friction surface air velocity curve reduces at around 10 mls. The Reynolds number at 
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10 mls is 210000, which is in the laminar region. The transition between laminar and 

turbulent flow occurs at a Reynolds number of approximately 240000 at 11.5 mis, 

which explains the change in air velocity slope. 
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Figure 4.8 Measured air velocity for the CV anti-coning disc 

Figure 4.9 shows the channel velocities for the standard (Figure 4.7b) and anti­

coning disc (Figure 4.7a, wheel and carrier removed). Higher channel exit velocities 

have been measured for the standard disc; the channel inlet is less restricted for this 

disc design, which can be seen in Figure 4.7. It can also be seen that the channel inlet 

air velocity for the standard disc is lower, a result of the larger inlet area. 
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Figure 4.9 Measured air velocity comparison; standard and anti-coning CV disc 

Figure 4.10 shows the air velocities measured at the anti-coning disc with the 

ventilated wheel carrier wheel assembly (as shown in Figure 4.7a). Only the channel 

exit (3), wheel (7) and wheel carrier (6) velocities could be measured because of the 

wheel assembly restricting access to the disc. Compared with the results shown in 

Figure 4.8, the wheel assembly reduces the channel exit velocities at 1000 min-1 by 

14%. Relatively high air velocities are measured at the wheel ventilation holes (7), 

this is air forced out of the wheel by the channel exit pressure. A lower air velocity is 

measured at the wheel carrier ventilation holes (6). The anemometer measuring head 

could not be placed directly at the ventilation hole because of the wheel carrier 

profile restricting access; the measurement is taken at a distance of 15 mm from the 

face of the hole. 
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Figure 4.10 Measured air velocity for the CV anti-coning disc with ventilated carrier 
wheel assembly 

The TGV railway disc (see Figure 4.7c) air velocities also show a linear 

characteristic relative to rotational speed. Figure 4.11 shows a maximum velocity of 

44 mls at the channel exit (3) when the disc is rotating at 1800 min-I. The channel 

inlet velocity (2) is 10.3 mls at 1800 min-I, over 75% lower than the channel exit. 

The channel inlet velocity (1) on the retaining ring side, see Figure 4.7c, restricts 

flow by a further 60 % to 3.8 mis, this is consistent throughout the velocity range. 
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Figure 4.11 TGV railway disc ventilation channel velocity 
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4.4.2 CFD Modelling 

The SDRC I-DEAS package and the electronic system cooling (ESC) module was 

used for the CFD analyses. The software uses a control volume approach in 

formulating the discrete finite difference equations, which approximate the 

governing partial differential equations. The technique involves the meshing of the 

model into control volume regions. Heat balance equations are established for each 

of these control volumes. ESC combines finite element-based analysis with control 

volume based formulation. The thermal model (conduction) and the fluid flow model 

(convection) are solved individually. The solution is thermally coupled (by 

convection) at the solid/fluid interface defined by flow surfaces (SDRC 2000). A 

rotating mesh was used to model the air inside the disc ventilation channels. The 

ESC analyses provided output results including airflow distribution and temperature, 

solid temperatures, hconv distribution on solid surfaces, pressure distributions and 

torque on rotating flow surfaces. Post-processing allows the display of contour and 

arrow plots to view temperature and fluid flow directions and magnitude results for 

the model. 

Turbulence is important for accurate simulation of airflow and convective heat 

transfer. A K-E turbulence model available within the ESC model has been used 

throughout the CFD analyses. The turbulent viscosity is not assumed constant 

throughout the fluid mesh domain and the model computes turbulent flow viscosity 

at every node. 

4.4.2.1 Commercial Vehicle Brake Disc 

A CFD model was designed to simulate the airflow generated by the rotating CV 

standard radial vane disc (Figure 4. 7b). The disc was modelled mounted to the Spin 

Rig to allow verification of results by Spin Rig measurement. The disc solid mesh (a) 

rotates within an air volume mesh (b), which is vented to ambient conditions, as 

shown in Figure 4.12. The mesh comprises of 35915 thin shell elements (modelling 

flow surfaces, vents and rotating air screens), 140238 solid elements modelling fluid 

and solid bodies and a total of 73640 nodes. Initial temperatures for ambient and the 

air volume were set at 20°C. Surfaces were given perfectly smooth properties with 

zero surface roughness. Rotating surfaces were set to rotate about the shaft axis. The 
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fluid mesh within the channels was modelled as a rotating frame rotating about the 

shaft axis. Solid material properties are not required as the solid model only acts as a 

3-D obstruction to fluid flow. The fluid elements were given standard air properties, 

shown in Table A5. 

b) 

Figure 4.12 Standard radial vane CV disc CFD (a) solid mesh and (b) fluid mesh 
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The solution time increased with rotational speed and took between 18 and 24 hours 

to converge. Fluid turbulence and buoyancy were included in the analysis to give a 

much more accurate model of the flow. However, this added significant 

computational time to the solution. Figure 4.13 shows the arrow velocity plot for the 

standard radial vane CV disc mounted to the Spin Rig rotating at 450 min"I. It can be 

seen that the velocity at the channel increases from 6 mls at the channel inlet to 8 mls 

at the channel exit. The rubbing surface velocities are 3 to 4 mls. The direction 

arrows show the airflow enters the disc axially and then turns 90° to a radial 

direction as it enters the ventilation channels. The air leaves the channels in a 

tangential direction. 
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Figure 4.13 Air velocity profile for the standard CV disc rotating at 450 min"I 

From the velocity profiles of the CFD analyses for disc rotational speeds between 40 

and 1000 min"I, Figure 4.14 shows the air velocities at distinct points of the model. 

The velocity points are shown in Figure 4.13, coinciding with the measurements 

taken from Spin Rig tests (Figure 4.7b). Figure 4.14 also shows the predicted 

velocity as the air enters the channel. It can be seen that the air channel exit speed 

increases with rotational speed of the disc to a maximum of 21 mls. Maximum 
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channel entry speed is slightly lower at approximately 16 mls. It should be noted that 

these are not average velocities but point velocity vector values. The results for the 

friction surfaces and channel inlet indicate an increase with disc rotational speed as 

expected. The difference between the actual channel inlet (CD) and the measuring 

point (0) is shown to be 1.5 mls at 450 min- l and increasing to 6.5 mls at 1000 min-I. 
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Figure 4.14 CFD air velocity results for the standard radial vane CV disc 

CFD and Experimental Results Comparison 

Measured and predicted channel air velocities for the standard radial vane CV disc 

are compared in Figure 4.15. Measured and CFD results are shown for the channel 

inlet and exit, whereas the analytical (equation (2.16)) results are available for the 

average channel velocity only. It can be seen that CFD and measured average 

velocities (average of channel exit and inlet) agree with the values predicted by 

equation (2.18) for average channel velocity. Throughout the speed range of the disc 

(0 - 450 min-I) CFD and measured values are in good agreement. At 150 min- l 

(approx 30 kmlh) CFD and measured values are within 10% of the maximum value. 

At 300 min-l (approx 60 kmIh) good agreement between CFD and measured results 

are shown, CFD predicts ventilation channel exits speed 18% lower than the 

measured value. At the maximum operating speed, 450 min- l (approximately 90 

kmIh), the differences between measured and CFD results are within 25% of the 
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maximum value. CFD predictions do show lower velocities than those measured for 

the channel exit, however at the inlet higher velocities are predicted. CFD predictions 

show a large increase in inlet velocity between 300 and 450 min-l. There is no 

obvious reason for the change in the rate of increase in velocity at this point and 

further analysis would be required to fully explain the irregularity. 
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Figure 4.15 Ventilation channel air velocities; comparison of predicted and 
measured values for the standard radial vane CV disc 

4.4.2.2 TOV Railway Brake Disc 

i 
I 

1000 

CFD modelling has also been used to analyse the TOV railway disc. The same 

modelling methods described for the CV disc were used. Figure 4.16 shows the solid 

mesh (a) and fluid mesh (b). The mesh comprises of 90502 thin shell elements 

(modelling flow sutiaces, vents and rotating air screens), 487840 solid elements 

modelling fluid and solid bodies and a total of 251043 nodes. 
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a) 

b) 

Figure 4.16 TOV railway disc (a) solid mesh and (b) CFD fluid mesh 

83 



Figure 4.17 and Figure 4.18 show velocity arrow plots of the airflow through the 

centre section of TOV disc rotating at 500 (Figure 4.17) and 1000 min-1 (Figure 

4.18). Figure 4.17 clearly shows how the vane design influences the airflow through 

the disc . High air velocity is seen between the vane and front lug face area (a), 

stagnation and swirl can be seen at the back of the lug (b) indicating areas of 

inefficient vane design. It should be remembered that the disc must operate equally 

in both directions, making design improvements difficult. In Figure 4.18 the effect of 

the retaining ring on airflow is seen, with an uneven velocity profile across the 

ventilation channel. 

RESLU~ 5-5 - 'vtlOC n-c AT NODES 
VLJCIT - f, \11 ·' ,,9E-02MA ' 1 10E+01 

VELOCITY-C / AT NODES 

FR ' M: OF 'EF. · PART 

. . - - --- --

\ 

, 

"'b ·"" " ' ..... 
/." .1 • • , .\\ t \: ..... .. . 

) ...... \'. ... \ .. ..... \ . ' 
, \, J • • ..; \', \ 

~ ..... . ::. ./ .. y \) r \ '\\'\ 1 

..... \ -( J, \ I .\ \ 

..... , • \ ' \ ) r- ) " ". \ 

"A" ..... \ \ r - - ; , ~ J ' \ ' ' .\ \ 

~ ...... ..... \ \ \ -.:~ .-' - t) . '". t)' \ .. \ ; 
\............. \ :\ 1 ~.':~~-::..::"'. \ '(\' ,'I: I I 

-~~, ,\ ), \ ' \, ': 

VALUE OPTION :ACTUAL 
SHELL SURFACE TOP 

1. 100+01 

9.920+00 

8.820+00 

7.730+00 

6.640+00 

' ~A" 
5.540+00 

, ) 4.450+00 ..... 

3. 360tOO 

2270tOO 

1.170+00 
y 

7.89.0-02 

Figure 4.17 CFD velocity arrow plot of TO V disc rotating at 500 min-
1 

84 



R~~~~'l~ 67" 1 OO(}-Y~LOC I TY -A A'T NODES' , " ' ~~l?C ny -A / Al ,NO[;)ES , , , , . , 
~~~ OF R~~Gp~Rr 2. 16E-ol MAX: 3. 19E+01 ' , , " , , , 

• I "'" , I' t " , It •• I , •• , • I I 

I I I I . , 

• • , 'I, I • ' I I •• I, , , , I 

:: :: :: " """ " ,. C) .,~ ' " , ... " ' : ': ' : ': 

'.' . 

'. ' . " . : . : .: 
.' .' " 

" I. " 

" " " , , , 
. ' .' .' : ' : ' :' 

. , :::::" I 
o 

j 
,',',' 
I, " '. 

, " " " 
, , , 
I, • I I • 

.' • I .' .' .' " 
: I :' : ' 

" .' .' 
~: !: :: 
'. ' . " '. '. " 
, , , 
" " .' :. :' :' 

l 
I 

:2.550+0 

· ' · ' 

~ 1 ,920+0 ' 

: 1.~00+0 

:1.290+0 

· , 

: 6.~50+0 

,3.380+0 

'2. 16D-0 

Figure 4.18 CFD arrow plot of TGV disc rotating at 1000 min-I, section "A-A" 
(from Figure 4.17) 

Figure 4.19 shows the TGV ventilation channel velocities predicted by CFD analysis 

for the rotational speeds ranging between 500 and 2000 min- 1 in the three areas 

specified in Figure 4.18. Channel air velocities are increasing linearly with disc 

rotational speed. It can be seen that the fixing ring restricts air entering this side of 

the disc. Channel inlet speeds are typically 50% lower than channel exit speeds. 
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Figure 4.19 TGV railway disc CFD predicted ventilation channel air velocities 

CPD and Experimental Results Comparison 

Figure 4.20 shows the measured and CFD predicted air velocities for the TGV disc 

ventilation channel inlet and exit. CFD results predict exit speeds comparable to 

measured speeds; exit speeds are almost equal up to 1000 min-I. At higher rotational 

speeds (above 1000 min-I) predicted velocities are lower than those measured, at 

1800 min- I approximately 16%. CFD results predicted inlet speeds are approximately 

twice the measured value throughout the speed range. Comparable trends are 

predicted throughout the speeds range for the measured points and again good 

average velocity prediction is attained. 

Due to the complexity of the TGV vane design, analytical formulae cannot be used to 

predict accurate channel velocities. Overall CFD channel exit velocity predictions are 

very close to measured values, for both the TGV and CV discs. However for both 

disc designs CFD inlet air velocities are approximately twice the measured speed. It 

can be seen in Figure 4.13 and Figure 4.18 that air approaching the ventilation 

channel inlet converges towards it. Because an instantaneous change in direction is 

impossible, streamlines do not become parallel until after entering the channel inlet, 

making airflow measurement difficult. At the channel exit airflow does not diverge 

until some distance away from the exit, the parallel streamlines providing good 
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airflow measurement. This phenomenon can explain the difficulties in comparing the 

complex CFD and measured channel velocity values. 
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Figure 4.20 Ventilation channel air velocities; comparison of predicted and 
measured values for the TGV railway disc 

4.5 Pumping Loss Measurement 

The aim of the pumping loss measurement experiments is to determine vane design 

efficiency in providing high cooling but low energy consumption. The pumping loss 

of the disc is measured using the Spin Rig torque transducer, see Chapter 3. The shaft 

torque and rotational speed measurements are used to determine the power lost due 

to pumping and hydraulic losses (due to friction as airflow passes over the surface) in 

the ventilation channels (bearing and hydraulic losses from the other surfaces of the 

disc have also been measured). Various disc designs have been tested and pumping 

losses compared. 

4.5.1 Experimental Procedure 

The disc was rotated on the Spin Rig and the shaft torque measured at a fixed 

velocity to determine shaft power requirements. The torque transducer is located 

between the Spin Rig motor and shaft bearing, see Chapter 3. The transducer will 
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therefore measure the total torque, comprising of the pumping and hydraulic losses 

of the brake disc and bearing friction . The total resistance to rolling in a bearing is 

made up of the rolling and sliding friction in the rolling contacts, in the contact areas 

between the rolling elements and cage, the friction in the lubricant and the sliding 

friction of rubbing seals (SKF 1994). Bearing friction is a function of bearing load, 

velocity and temperature. 

Figure 4.21 shows the change in Spin Rig shaft torque with bearing housing 

temperature. The measurement was taken with the standard CV disc. Measurements 

are from start-up to 1 hour and 20 minutes of running, after which time both bearing 

housing and shaft torque have stabilized. To ensure repeatability of pumping loss 

measurements, the Spin Rig must be run at maximum measurement velocity with the 

disc mounted to the shaft until the torque reading stabilizes. 
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Figure 4.21 Stabilization of Spin Rig shaft torque and bearing housing temperature 

To measure the losses incurred solely by the ventilation channels of the disc all tests 

consist of two measurements; one to measure the torque required to rotate the disc, 

through the velocity range, and the second, to measure the torque required to rotate 

the disc with the ventilation channels blocked, through the velocity range. The 

unblocked ventilation channel shaft power (Qt) is subtracted from the blocked 

'1 ' h I haft power (Qb) to derive the power lost by ventilation channel ventI atton c anne s 
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pumpIng (Qpump) , see equation (4.31). The ventilation channel inlet and exit are 

blocked using industrial sealing tape. 

(4.31) 

When the shaft torque stabilized at the maximum test rotational speed, shaft torque 

and rotational speed data is logged at a frequency of 4 Hz for a period of 4 minutes. 

The velocity was then reduced by 100 min- I and held for a further 4 minutes at 

constant velocity for data logging. The shaft rotational speed was reduced in 

increments of 100 min- I to 0 min-I. Figure 4.22 shows the torque and rotational speed 

of the shaft throughout the duration of the test for the TOV railway disc. It can be 

seen that the torque decreases with rotational speed and that the torque transducer is 

measuring some torsional vibrations. When the shaft rotational speed is reduced, the 

shaft torque reduces until the shaft has decelerated to the required rotational speed. 

The fluctuation of torque at constant rotational speed is a consequence of the motor 

controller constantly adjusting the frequency to the motor to maintain the required 

rotational speed. 
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Figure 4.22 Spin Rig shaft torque and rotati~nal speed measurement for a ventilated 
brake dISC 
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The shaft power has been derived by mUltiplying the shaft torque by angular 

velocity, using the following equation: 

(4.32) 

The torque and angular velocity used for calculation are average values taken at 

constant rotational speeds. A value for the shaft power is then derived for the range 

of rotational speeds. 

4.5.2 Commercial Vehicle Brake Disc 

Tests were carried out on four different ventilated CV brake disc designs, a standard 

radial vane disc, an anti-coning radial vane disc, a pillar vane disc and a curved vane 

disc (see Chapter 3 for disc design details). The velocity range of the CV disc brake 

is 0 to 450 min-I, however measurements were taken at rotational speeds up to 1000 

min-I. It is apparent from the results shown in this section that pumping losses are 

very low at rotational speeds lower than 600 min-I. The investigation of CV disc 

ventilation channel pumping losses at high rotational speeds are still valid as the 

findings can be applied to disc brake designs for vehicles with higher rotational 

speed applications such as the railway brake disc. Also, ventilation designs can be 

more accurately compared. 

Figure 4.23 shows the shaft power change with shaft rotational speeds for the shaft 

fitted with the mounting flange only (unloaded shaft) and the radial vane CV disc. 

The graph shows curves for the CV disc with the ventilation channel exit blocked 

(OD), ventilation channel inlet blocked (ID), and both inlet and exit blocked. Below 

a rotational speed of 600 min-I, the shaft power is the same for both the blocked and 

unblocked discs and the shaft with mounting flange. At higher rotational speeds the 

power for the unblocked ventilated disc increases at a greater rate than the blocked, 

partially blocked or unloaded shaft, which all have similar power curves. The 

maximum power required by the unblocked ventilated disc is 1 kW at 1000 min-I. 

The shaft with flange requires similar power as the blocked channel disc (500 W 
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maximum) showing that the ventilation channel pumping loss is the primary mode of 

power loss. 
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Figure 4.23 Pumping power curve for the standard CV disc channels blocked, 
unblocked and shaft with mounting flange 

2000 

Figure 4.24 shows the shaft power change with rotational speed for the range of CV 

disc vane designs (unblocked). At rotational speeds over 500 min-l
, there is a clear 

distinction between the designs, the standard radial vane design showing the highest 

power requirement. The curved vane requires the second highest amount of power 

followed by the anti-coning disc. The pillared vane design requires the least amount 

of power for rotation. Less air is directed radially through this disc design reducing 

surface pressures. However, this is at the expense of airflow, as the disc will pump 

less without continual vanes, to guide the air and generate a centrifugal force on the 

air particles. The second lowest pumping loss is provided by the anti-coning disc. 

The channel inlet is reduced compared to the other designs, reducing the volume of 

air pumped by this design of disc. Maximum shaft power values range from 1 kW for 

the standard radial vane design to 650 W for the pillar vane design. 
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Figure 4.24 Comparison of ventilated CV disc total pumping power loss 

In order to determine the power lost by the ventilation channels the required shaft 

power of the unblocked disc was subtracted from the blocked disc, the results are 

shown in Figure 4.25 . The shaft power difference for each vane design is now more 

distinct, the standard radial vane design requiring the most power, 450 W at 2000 

min- I. The curved disc requires a power of 275 W, the anti-coning radial disc 250 W 

and the pillared vane disc 175 W. A large difference in power requirement is seen 

between the standard radial vane and pillar vane design, with the pillar disc requiring 

40% of the power required by the standard radial vane disc. 
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Figure 4.25 Comparison of ventilated CV disc channel power loss 

92 



The curved vane disc is the only 'handed' disc out of the vane designs studied, 

meaning the disc is designed to rotate in one direction only. The curved vane disc 

design shows lower pumping loss than the standard radial vane disc due to its 

superior pumping efficiency characteristics. The curved vane disc has aerofoil 

shaped vanes designed to operate as a backward curved (BC) vane centrifugal fan, 

which is the most efficient fan design (see Figure 4.1). To examine the effects of 

rotating the disc in the opposite direction to its designed direction, i.e. running as a 

forward curve (FC) vane fan, Figure 4.26 shows the shaft power required to rotate 

the disc in the normal and reverse direction. The curves show that the shaft power 

increases by 300/0 at 2000 min-I when the disc is rotated in the reverse direction. It 

can be seen that the FC vane design has approximately the same power requirement 

to the radial vane design, when compared to Figure 4.25 (also shown by Figure 4.1). 
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Figure 4.26 Effect of reverse rotation of the curved (BC) vane CV disc 

4.5.3 TGV Railway Brake Disc 

The shaft power was measured for the rotation of the TOV railway disc, which is a 

radial vane/pillar design (see chapter 3, for the design details). Figure 4.27 shows the 

shaft power losses for the TOV disc with the channels blocked and unblocked. The 

shaft power at 1800 min- I is 1.9 kW for the unblocked disc and 950 W for the 

blocked disc, suggesting that ventilation channel pumping is responsible for 50% of 

the power loss at 1800 min-I. 
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Figure 4.27 TOV disc total power loss 

Figure 4 .28 shows the shaft power for the TOV radial/pillared vane disc with the 

blocked disc shaft power subtracted. The curve shows the resultant ventilation 

channel power increasing with rotational speed. The maximum power produced is 

970 W at 1800 min-I. 
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Figure 4.28 TOV disc ventilation channel power loss 
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The TOV disc incorporates a combination of radial vanes and pillars to provide 

airflow through the disc and reduce pumping losses. Because of the larger diameter, 

the TOV disc cannot be directly compared with the CV disc. From equation (4.25) 

pumping power increases to the 5th power of the ratio of the outside diameters, and 

therefore it would be expect that the pumping loss of the TOV disc would be 7 times 

greater than the CV disc. From the results presented in this section the TOV disc 

power loss is in the region of 3 to 4 times greater than the CV disc. Pumping of the 

TOV disc is reduced because the inside diameter also increases, not accounted for by 

equation (4.25), also the radial vanes are not full length (see Figure BS). Comparing 

the TOV and CV disc pumping losses it can be said that the TOV disc performs very 

well and pumping losses are relatively low for such a large diameter disc. 

4.6 CFD Pumping Loss Prediction 

To predict the pumping losses of ventilated disc designs a simulation method was 

developed. The SDRC I-DEAS ESC models used to determine airflow characteristics 

(described in Section 4.4.3) have been used for this. During model simulation the 

flow element mesh adapts and opens around the embedded flow surface creating a 3-

D obstruction to fluid flow. Thin shell elements on the surface of the solid mesh are 

defined as spinning flow surfaces. Moving surfaces add momentum to the fluid due 

to drag effects between the fluid and the surface. The CFD program outputs the 

pressure and torque on spinning flow surfaces and for illustration purposes Table 4.1 

shows the torque on the spinning surfaces of the TOV brake disc when rotating at 

1000 min-I. The Surface Inside Screen data corresponds to the vane surfaces, the z­

component of the torque along the spin axis is the shaft torque due to vane pressure 

force. The ventilation channel power loss is derived by multiplying the torque 

component by the disc angular velocity. 
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Table 4.1 CFD output: torque on TOV spinning flow surfaces (1000 min-I) 

Torques on Spinning Flow Surfaces x-comp y-comp z-comp IRI 
ROTATING SURFACES 

CG location (m) : 6.192E-08 2. 170E-08 9. 136E-04 -

Pressure Force (N) : 2.204E-03 1.336E-03 4.390E-Ol 4.390E-Ol 

Torque along spin axis (Nm): O.OOOE+OO O.OOOE+OO 1.430E-Ol 1.430E-OI 

Torque normal to spin axis (Nm): 1.961E-04 -6.232E-OS O.OOOE+OO 2.0S8E-04 

SURFACE INSIDE SCREEN 

CG location (m): 3.188E-08 -9. 136E-09 -3.03SE-03 -

Pressure Force (N): -3.484E-02 S.S22E-03 3.661E-OI 3.678E-Ol 

Torque along spin axis (Nm): O.OOOE+OO O.OOOE+OO 2.028E+OO 2.028E+OO 

Torque normal to spin axis (Nm): -1.824E-04 3.398E-OS -4.0S7E+OO 4.0S7E+OO 

4.6.1 Commercial Vehicle Brake Disc 

CFD has been performed on the standard CV disc and pumping loses determined for 

the entire disc surface. Figure 4.29 shows the losses for rotational speeds up to 2000 

min- I (bearing losses are not modelled). The power increases with the third power of 

rotational speed agreeing with theory set out in Section 4.2.2. It can be seen that the 

vane surfaces account for almost all the pumping losses. The remaining disc surface 

account for only 1 to 2% of losses. The analysed rotational speed range coincides 

with the pumping loss measurement discussed in Section 4.5.2. 
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Figure 4.29 Standard CV disc CFD predicted power loss 
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Figure 4.30 shows a comparison of predicted and measured standard radial vane CV 

disc ventilation channel pumping loss. Good agreement of results was achieved with 

experimental values and theory. At 500 min-I the predicted and measured values are 

in excellent agreement. Good agreement is shown at 1200 min-I; CFD values are 

130/0 higher than measured and theoretical values. It can be seen that the theoretical 

results derived from equation (4.17) are higher than measured values above 1200 

min-I; a maximum of 200/0 at 2000 min-I. CFD values at 2000 min-1 are 16% higher 

than theoretical values and 30% higher than measured values. The lower measured 

pumping losses can be due to a reduction in airflow through the disc caused by 

crowding of the air (choking) in the ventilation channels and the inlet at high 

rotational speeds. 

CFD provides detailed local air pressure values for the ventilation surfaces as well as 

airspeeds. Pumping power is a resultant of these factors, which generates torque 

about the axis of rotation. With the CFD data areas responsible for increasing power 

requirements (pumping losses) can be highlighted and design improvements can be 

investigated. Unfortunately restrictions (computing resources and time) prevented 

more CFD investigation into this phenomenon. Reliable prediction within the 

operating range gives confidence in comparing designs. 
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Figure 4.30 Comparison of predicted and measur~d standard radial vane CV disc 
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4.6.2 TGV Railway Brake Disc 

CFD analysis on the TOV disc has produced ventilation channel pumping loss results 

throughout the disc operating rotational speed. Figure 4.31 shows the power loss of 

the TOV disc by hydraulic losses of all the disc surfaces and the vane surfaces only. 

At maximum rotational speed (2000 min-I) the power loss is 1.8 kW for all rotating 

surfaces, the ventilation channel surfaces account for 95% of the losses. Again, the 

power increase trend is to the third power of the rotational speed, agreeing with fan 

theory (Section 4.2.2). 
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Figure 4.31 TOV disc CFD predicted power loss 

Figure 4.32 shows the comparison of predicted and measured TOV disc ventilation 

channel pumping loss. The analytical procedure could not be implemented due to the 

complexity of the vane design. CFD values show good correlation at the low to 

medium speed range. At 700 min- I values show less than 13% difference. At 1200 

min- I the measured value is 22% lower than the CFD value. At 2000 min-1 the 

extrapolated measured value is 23% lower than the CFD value. Higher rotational 

speeds generate over predicted values where airflows become more turbulent and 

'choking' occurs. Predicted pumping loss trends are similar to the measured values 

and adjustment factors could be put in place to modify the predictions and provide 

good results at higher rotation speeds. The CFD analysis has been subject to 

computing limitations, which restricted the size and density of the air volume 
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element mesh surrounding the disc. The CFD analyses may not be accurately 

predicting the airflow through the complex vane and pillar disc ventilation design. A 

larger air volume and finer mesh may improve the CFD TGV disc results. 

Unfortunately restrictions (computing resources and time) prevented more CFD 

investigation into this phenomenon. But the good correlation of results has proven 

the CFD method to be a good practical tool. 
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Figure 4.32 Comparison of predicted and measured TGV disc ventilation channel 
pumping loss 

4.7 Summary 

The ventilated brake disc provides increased convective cooling by pumping air 

through the cooling channels of the disc. The air flowing through the disc dissipates 

heat by forced convection, expelling heated air from the channel exit. 

Disc ventilation channel velocity vector diagrams have been analysed to determine 

the velocity components of airflow and predict the power requirements for disc 

rotation. Experimental analysis included the use of a hotwire anemometer device to 

measure air velocities at specific areas of the disc and wheel assembly including the 

ventilation channel inlet and exit for a range of disc designs, allowing pumping 
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petformance to be analysed. Torque measurements were also taken to determine the 

amount of power required to rotate ventilated discs. A range of disc designs were 

measured and compared with non-ventilated designs. CFD models have been 

developed to predict airflow around ventilated discs. The CFD models predicted the 

air velocity and pressure around and on the sutfaces of the disc, which allowed the 

prediction of the power required for rotation. Over 20 Spin Rig pumping loss tests 

were petformed on six disc designs involving 20 days of laboratory experiments. 

Two CFD models were created, one for the standard radial vane CV disc and one for 

the TOV frequently stopping disc, a total of 10 simulation runs were performed 

requiring 200 hours of computer time. 

It has been shown that there is a range of ventilation channel designs available for 

brake discs, with varying degrees of pumping efficiency, their characteristics are 

defined by given formulae. Results of Spin Rig tests have shown that significant 

power is required to rotate discs at high speeds and also allowed comparisons to be 

made between the designs considered. A procedure has been developed to allow the 

measurement of the pumping losses due to the ventilation channels, eliminating 

losses incurred by bearings and the outer surfaces of the disc. 

The compansons made between predicted analytical and measured pumpIng 

requirements showed very good agreement for the radial vane disc. The comparisons 

made between the CFD and measured results are also in very good agreements for 

the CV and TOV disc airflow and pumping losses. The developed methodologies 

provide accurate and fast airflow and power requirement predictions that are suitable 

for comparing disc ventilation designs in an industrial environment. 
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Chapter 5 

Convective Heat Dissipation 

5.1 Theoretical Background 

Convection is the main mechanism of heat dissipation from brakes in most vehicle 

service conditions (Newcomb and Spurr 1967) and detailed experimental and 

numerical analysis of this mode of heat transfer is discussed in this chapter. 

Convection is a process of heat transfer through a fluid caused by fluid motion and 

conduction from a surface. The fluid motion enhances the heat transfer since it brings 

cooler air into contact with warmer air. The rate of heat transfer is increased by the 

increase in air velocity. 

There are two types of convection, free (or natural) and forced, classified by air 

motion initiation. Natural convection results from the tendency of most fluids to 

expand when heated, thus becoming less dense and rising because of the increased 

buoyancy. Forced convection involves the transport of fluid by external means, such 

as a fan or pump. Forced convection is also classified as external or internal, 

depending on whether the fluid is forced over a surface or through a channel. 
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The rate of convective heat transfer (Qconv) is proportional to the temperature 

difference of the surface and the air (Ts - Too), the convective heat transfer coefficient 

(hconv) and the surface area dissipating heat (A); this is expressed by Newton's law of 

cooling: 

(5.1) 

When air flows over a flat plate the velocity decreases to zero at the plate surface, 

known as the no-slip condition. The surface heat transfer is by conduction (qcond) , 

between the surface and the adjacent fluid layer: 

(5.2) 

As heat is conducted through the still air to the flowing air, it is convected away as 

shown in Figure 5.1. The situation for natural convection is similar except for the 

velocity profile. The velocity increases with reduced distance from the surface due to 

the decreased density of the warmed air. The velocity then decreases as the fluid 

density approaches the value of the surrounding fluid. 

Fluid flow 

y 

Qcofld 

Heat flow 

T~ 

Surface 
of plate 

Figure 5.1 Temperature and velocity distributions in laminar forced convection flow 
over a heated flat plate (Kreith 1986) 
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The hconv value can be determined from the following equation: 

h = -k ( dT / dy ) y=o 

conv T -T 
s 00 

(5.3) 

Where hconv is a function of fluid conductivity, the temperature gradient of the air 

close to the surface and the temperature difference between the ambient air and 

surface. The heat transfer coefficient is commonly non-dimensionalised with the 

Nusselt number (Nu), defined as: 

h 1 
Nu = c;v = f (Re,Pr) (5.4) 

Where, k is the conductivity of the air and 1 is the characteristic length. The Nusselt 

number represents the convective transfer through a fluid layer caused by convection 

relative to the conduction through the same fluid layer. The average value of the 

Nusselt number along a surface is a function of the Reynold (Re) and Prandtl number 

(Pr). 

The internal flow of a fluid through a channel is somewhat different to external flow. 

The boundary layer growth is restricted by the inner surfaces of the channel. The 

velocity of the fluid changes from zero to a maximum at the centre of the channel, 

see Figure 5.2. Once the air enters the channel, the hconv value reduces until the flow 

in the channel is fully developed. 
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Figure 5.2 Variation of h conv values in the flow direction for flow in a tube (Pr > 1) 
(Cengel 1998) 

5.2 Convective Heat Transfer Coefficients and Relationships 

Equations for the calculation of hconv, available from literature are shown in Chapter 

2. To use the equations effectively, the brake disc must be broken down into regions, 

which experience different airflow characteristics, as shown in Figure 5.3. The 

equations refer to a rotating cylinder (disc hat outside diameter, disc rim), rotating 

disc (friction surface) and ventilation channels. The h conv equations are derived 

empirically and theoretically, showing good results for their respective experimental 

conditions. 
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Figure 5.3 Brake disc regions for the hconv calculations 

To investigate the equations suitability, the calculated values of hconv for a standard 

CV disc (see Chapter 3) are shown in Figure 5.4 to Figure 5.9. The differences in 

calculated hconv can be very high, as shown in Figure 5.4. At 450 min- l (maximum 

CV speed) hconv values range from 16 to 60 W/m2K. The hconv values have been 

calculated using standard air properties at a temperature of 30°C, see Table 5.1. 

Table 5.1 Air properties at 30°C (Rogers and Mayhew 1995) 

Property Value 

Viscosity (kinematic) [m2/s] 15.68 x10-6 

Thermal conductivity [W/mK] 26.24 x10-3 
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Figure 5.4 Rotating disc in still air, hconv values for the standard CV disc 

All the fonnulae show an increase in hconv with increased rotational speed, formulae 

allowing for cross flow show further hconv increase with an increase in cross flow 

velocity, as shown in Figure 5.5 and Figure 5.6. 
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Figure 5.5 Comparison of rotating disc hconv in cross flow using equation (2.12), for 
the standard CV disc 
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Figure 5.6 Rotating cylinder with and without cross flow, hconv for standard CV disc 

Further complications anse when considering the ventilation channels of the disc. 

The hcollv value is a function of velocity and, before it can be predicted, the airflow 

through the ventilation channel must be found. Literature equations for predicting 

ventilation channel airflow are given in Chapter 2 and Figure 5.7 shows a large 

difference in the velocities derived by the equation, with the exception of equations 

2.20 and 2.21, which give practically the same results. 
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Figure 5.7 Comparison of standard CV disc vane air velocities using published 
equations 
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Figure 5.S shows hCOII V values for the ventilation channel calculated from published 

equations set out in Chapter 2. As previously mentioned ventilation channel air 

velocities vary considerably for different equations (Figure 5.7) and so the author's 

quoted ventilation channel velocity equation has been used. 
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Figure 5.8 Comparison of vane hcollv with respective ventilation channel velocities 

Figure 5.9 shows hcollv values calculated with a common velocity (from equation 

(2.21». The results vary for each form of hcollv equation. At 450 min-1 (maximum CV 

speed) hcollv calculated values differ greatly, values range from IS to 35 W/m2K. At 

1000 min- 1 hconv calculated values range from 30 to 66 W/m2K. 
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Figure 5.9 Comparison of vane hcollv with air vane velocity derived from equation 
(2.21) 

Vehicles have different global aerodynamics characteristics and individual vehicle 

designs will have different airflow velocities in the wheel cavity area. Furthermore, 

different disc designs show different airflow characteristics. For this reason, care 

must be taken to choose the correct equation for the application. 

When determining a value for hcollv, careful consideration of air properties must be 

made. From Newton's law of cooling, equation (5.1), Too is the temperature of the 

fluid sufficiently far from the surface. The thermal boundary layer varies from Ts, at 

the surface, to Too. Val ues of hconv are sensi ti ve to air temperature and to accurately 

determine hconv values, the air properties must correspond to the correct air 

temperature, see Table 5.2. Fluid properties are usually evaluated at the film 

temperature (Tj ) , defined as (Cengel 1998): 

T =~. + Too 
f 2 

(5.5) 

Table 5.2 Computed relative hconv variation with film temperature (Sheridan, 
Kutchey et al. 1988) 

Tf rOC] 100 200 300 400 500 

hre/ [-] 1.00 0.89 0.81 0.79 0.70 
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From the hcol/\' equations set out in Chapter 2, it can be seen that the h
conv 

is affected 

by fluid properties; however, some equations are more sensitive than others. Figure 

5.10 shows this characteristic for CV vane hcollv using equation (2.14). 
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Figure 5.10 Change in standard CV disc ventilation channel hconv with rotational 
speed and film temperature 

5.3 Cooling Constants 

An alternative approach to predicting cooling performance, developed by Newcomb 

(1965), defines brake cooling parameters and was introduced in Chapter 2. The 

cooling rate b can be determined from logarithmic plots of brake cooling. Results 

obtained when vehicles are driven at various speeds indicate that b can be expressed 

as: 

b = b + KvO.8 

° 
(5.6) 

The term bo involves a conduction and natural convection component and the KvO.
8 

is 

the forced convection component, where v is the linear velocity [mile/h] of the 

vehicle and K is a constant relating to the geometry of the body, radiative heat 

dissipation is neglected. Table 5.3 shows empirical values for K and bo, A is the total 

friction area for a disc and Ac is the area of disc in contact with the hub. 
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Table 5.3 Effective areas and cooling constants of the front discs or drums of various 
vehicles (Newcomb and Spurr 1967) 

Engine Type of Front disc 
Car capacity front or drum A [in2

] Ac [in2
] 103K 103 bo 

[cm3
] brake weight [Ib] 

A 767 Drum 8.8 107 14.0 0.145 2.55 

B 848 Drum 5.3 83 11.0 0.145 1.65 

C 997 Disc 4.3 62 11.1 0.163 3.27 

D 1098 Disc 5.3 81 6.8 0.150 1.30 

E 1172 Drum 10.0 107 18.5 0.100 2.55 

F 1340 Disc 12.0 99 23.4 0.100 2.20 

G 1489 Drum 11.8 149 14.1 0.103 1.45 

H 1592 Disc 6.8 69 6.6 0.107 1.20 

I 1596 Disc 5.5 91 8.6 0.115 2.07 

J 1798 Disc 10.0 113 5.7 0.088 0.90 

K 2279 Disc 9.3 110 13.3 0.081 1.60 

L 2553 Disc 8.3 112 8.1 0.095 1.22 

M 2651 Disc 11.3 134 16.7 0.090 1.45 

N 3770 Drum 17.0 282 32.3 0.198 0.80 

CV 5416 Drum 54.5 316 54.5 0.040 1.10 

To determine the cooling rate of a brake disc or drum a plot of K against A/w [in
2
/lbs] 

(based on Table 5.3), where w is the weight of the disc, gives (Newcomb and Spurr 

1967): 

K = O.0094x10-3 A 
w 

A plot of bo against Aclw gives a linear slope showing that: 

(5.7) 

b
o 

=1.17x10-3 Ac (5.8) 
w 

The respective slopes of these plots show that b is given by: 

1.17x10-3 A +O.0094x10-3 Avo.s 
b = c (5.9) 

w 
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If the convective term is expressed as (Newcomb and Millner 1965): 

(5.10) 

Then the convective heat transfer coefficient can be expressed as: 

(5.11) 

It should be noted that equation (5.11) considers the forced convection component 

only. Using equation (5.11) and the CV parameters of Table 5.3 (K = 0.040 x103
), 

the hconv values for a range of vehicle speeds have been determined for the standard 

CV radial vane disc and presented in Figure 5.11. 
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Figure 5.11 hconv derived from cooling constants (Newcomb and Millner 1965) for 
standard CV disc 
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5.4 Measurement of Commercial Vehicle Disc Cooling 

Experimental studies of convective heat dissipation have been conducted on the Spin 

Rig for the CV discs presented in Chapter 3. A range of brake disc designs and 

assemblies have been heated and the cooling measured. The brake disc was mounted 

to the Spin Rig shaft, which was fitted with a special flange adapter. The shaft 

adapter was insulated to prevent heat conducting back to the shaft. For studies of 

convection cooling with the wheel assembly included, the wheel carrier was also 

fitted to the disc and Spin Rig shaft during the heating phase. Figure 5.12 shows the 

CV disc and wheel carrier during the heating phase of the convective cooling test 

(with heater box and insulation on wheel carrier). The brake disc was heated using 

the heater box fitted with two additional electric air heaters (see Chapter 3) and the 

Spin Rig heater (Figure 5.12), the total heating power being 8 kW. The wheel carrier 

was insulated with fibreglass lagging during the heating phase. The Spin Rig air 

heater temperature was set to 600°C and the airflow set to 45 l/min, the disc was 

rotated at low speed (25 min-I) to provide uniform disc heating and minimise 

convective heat dissipation. The disc was heated for 45 minutes to achieve an 

average disc temperature of 250°C. 

Wheel carrier Spin Rig shaft 

Insulation Spin Rig air heater 

Heater box Additional air heater 

Figure 5.12 Heating of brake during convective cooling test 
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After the heating phase, the heater is switched off, disc rotation is stopped, and the 

insulation and heater box are removed. A series of rubbing thermocouples, see 

Chapter 3, are then placed on the disc and wheel carrier surface. The rubbing 

thermocouples are mounted to an arm profiled to fit around the disc and carrier as , 

shown in Figure 5.13. Welded tip thermocouples (see Chapter 3) are also fitted to the 

arm for measuring air temperatures. The arm is articulated with a centre lock that 

allows quick positioning of the thermocouples. Rubbing thermocouples were used in 

eight positions during the CV disc assembly tests. 

Figure 5.13 CV disc and carrier rubbing thermocouple arm 

Figure 5.14 shows the positions of the thermocouples during cooling tests including 

the wheel carrier and wheel. Two low friction sled rubbing thermocouples are 

positioned on each friction surface of the disc 0), @, @ and ®. Two copper tip 

rubbing thermocouples are placed on the inboard and outboard rim of the disc, @ and 

®. One copper tip rubbing thermocouple is placed on the disc hat ®. One graphite tip 

rubbing thermocouple is located on the wheel carrier ®. 

The sled rubbing thermocouples were used on the friction surfaces of the disc 

because they provided good contact with the flat surface. Copper tip rubbing 

thermocouples provided the best surface contact for the curved surfaces of the disc 

and the graphite tip rubbing thermocouple was profiled to fit the surface profile of 

the wheel carrier. The air temperature thermocouples measured the vane inlet 0, 

vane exit @} and the film temperature 3 mm from the friction surface of the disc at the 

mean diameter (@ and 0). The arrangement was established after many trials and 
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proved to give accurate and reliable results for all CV convection tests. From the 

boundary layer thickness equation given in Chapter 4, the boundary layer thickness 

ranges from 9.25 (high temperature low speed) to 1.50 mm. 

DiSC~~® 

@ ® 
@ 0 

CD ® 

/Wheel 

o _~ ___ : __ \ 
Spin Rig shaft Wheel carrier 

- -_. _---- -- ---- ---- -- ._-- ------------ -- -----------

Figure 5.14 Position of rubbing (0) and air temperature (.) thermocouples for the 
CV disc and wheel assembly 

After the thermocouples are positioned, the wheel is fitted if required. The disc is 

then rotated at the test speed and thermocouple measurements are logged, at a sample 

rate of 0.25 Hz. The brake assembly is rotated until surface temperatures drop to 

levels close to ambient temperature, (approximately 30°C). All the tests were 

performed in still air. 

The heat dissipation characteristics of disc designs and configurations of disc and 

wheel assemblies can be compared using the cooling curves measured on the Spin 

Rig. Based on cooling curves the average heat transfer coefficient (havg) can be 

determined. Figure 5.15 shows the typical cooling curves and surrounding air 

temperatures for a brake assembly during Spin Rig cooling. 
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Figure 5.15 CV brake assembly, surface and air temperatures during cooling 

It can be seen that at the end of the cooling test, when the disc has stopped rotating, 

there is a drop in temperature measured by the rubbing thermocouples. The spring 

force acting on the rubbing thermocouple contact area with the brake surface causes 

frictional heating during disc rotation. Precise adjustment of the rubbing 

thermocouple can minimise the frictional heating effect (shown by identical rotating 

and static temperature measurement). However, in practice, precise adjustment of 

contact force is not possible for the set-up procedure used (limited set-up time). It 

should be noted that the cooling tests are carried out at constant speed and therefore 

friction heat generation (being constant throughout the test) does not practically 

affect the cooling rate measured. 

Figure 5.16 shows the measured temperature drop during brake disc deceleration 

from 450 to 0 min-I. It can be seen that the copper tip thermocouple gives a 

temperature measurement 10°C higher than the actual surface temperature at 450 

min-I, the graphite tip thermocouple gives a temperature measurement 3°C higher 

and the sled type thermocouple gives a temperature measurement 1.5°C higher than 

the surface temperature. 
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Figure 5.16 Measured rubbing thennocouple temperature during deceleration from 
450 to 0 min-1 

Measuring the rate of cooling (~T/~s) of the brake disc allows average heat transfer 

coefficients (havg) to be determined. From equation (5.1) and the energy equation 

(5.12), equation (5.13) is derived. havg is a combined heat transfer coefficient 

incorporating all modes of heat transfer; conduction, convection and radiation. 

mCp~T 
Q=-~-

fl.s 
(5.12) 

h = __ m_c-,-pfl._T __ 
avg fl.sA (I: - T(X) ) 

(5.13) 

The havg value has been detennined for a range of disc rotational speeds and 

temperatures. Radiation and conduction are speed independent, which allows the 

cooling curves and havg values to be used to detennine hconv and compare the 

convective heat dissipation perfonnance of the different brake assemblies. 

The cooling rates are measured at a range of average disc surface temperatures 

between 200 and 75°C, using the slope of the cooling curves. The cooling curve used 

is the average friction surface temperature calculated from the four friction surface 

temperatures CV,@,@ and @, as shown in Figure 5.14. 
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Using equation (5.13) havg is calculated where Lis is the cooling time period, A is the 

disc free surface area, m is the disc mass, Ts is the average surface temperature and 

T CJ;) is the ambient air temperature. The surface areas of the CV discs are detailed in 

Chapter 3. 

5.4.1 Comparison of Disc Designs 

Figure 5.17 shows the cooling curves for three different CV disc designs (standard 

radial, anti-coning and curved vane, see Chapter 3) mounted on the Spin Rig with a 

standard wheel assembly (standard wheel carrier and steel wheel). The cooling 

curves are measured for a rotational speed of 450 min-I. The standard radial vane 

disc has the highest cooling rate and the curved and anti -coning disc have very 

similar (lower) cooling rates. 
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Figure 5.17 Comparison of CV disc vane design rotating at 450 min-
I 

with a 
standard wheel assembly 

At lower rotational speeds, the disc cooling performance changes, from Figure 5.18 it 

can be seen that at a very low rotational speed (40 min-I), the anti-coning disc has a 

cooling rate closer to that of the standard disc. Again, the curved vane disc has the 

lowest cooling rate. The curved disc design's cooling performance is severely 

reduced at lower rotational speeds. There is little airflow at low rotational speeds and 

natural convection is restricted by the curved vane design restricting rising air. 

118 



150r---------------------------______________________________ ~ 

0' 
L .. ... 

130 

~ 110 ... .. 
~ 

E 
! 
Cl 

~ 90 
t: 
~ .. 
c 
o 
;:; 
u 

E 70 
Cl 
a • ... .. 
> 
<t 

50 

- Curved 

-An~-conlng 

-Standard 

~~--------~--------~--------~--------~--------~----~~ 
o 2000 4000 6000 

TIme [s1 

8000 10000 
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12000 

Figure 5.19 shows the havg values calculated from the cooling curves of the different 

disc designs throughout the speed range of the CV for the average disc temperature 

of 100°C. The results are for the disc within the wheel assembly. The havg increases 

with rotational speed for all designs. The standard design has higher values of havg 

throughout the speed range. The anti-coning and curved designs have similar lower 

values of havg . At very low speeds the anti-coning disc design cooling performance is 

seen to improve, this is inconsistent with other measurements. It is thought that the 

anti -coning disc's smaller ventilation channel inlet does not restrict airflow at low 

speeds. 
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Figure 5.19 Effect of CV disc vane design on havg at 100°C, with wheel assembly 

The results of Figure 5.17, Figure 5.18 and Figure 5.19 clearly show that the standard 

radial vane design CV disc cooling performance is superior to the anti-coning and 

curved vane designs. The standard disc draws air into the ventilation channel from 

the inboard side and therefore the wheel assembly has little effect on the cooling 

performance. The anti-coning design however, draws air into the ventilation channels 

on the outboard side and therefore the wheel assembly restricts air entering the 

ventilation channels. This is in agreement with air velocity measurements of 

Chapter 4. 

Figure 5.20 shows a comparison of the havg for the standard and curved vane disc 

designs, measured for the disc only (wheel assembly removed). It can be seen that 

the two designs have similar cooling characteristics. The elaborate curved vane 

design does not improve cooling over the standard design and its performance 

deteriorates more with the wheel assembly fitted as shown in Figure 5.19. 

120 



30 

25 

20 

.. ~: 
E 
! 15 

~ .. 
J:: 

10 

5 

O+-----~----~----~----~------~----~----~----~----~----~ 
o 50 100 150 200 250 300 350 400 450 500 

Rotational speed [mln-1
] 

Figure 5.20 CV disc vane design comparison of havg values at 100°C, disc only 

5.4.2 Influence of Wheel Assembly on Disc Cooling 

Figure 5.21 shows the cooling curves for a standard CV disc with and without the 

standard wheel assembly rotating at 450 and 150 min-I. It can be seen that reducing 

the rotational speed by 300 min-I influences the cooling rate much more than 

'shrouding' the disc with the wheel assembly. 

U 
~ .. ... 
::I ... • ... .. 
Q. 

E .. 
I-

150 

130 

110 

D. Disc with wheel 150 1/mim 

o DISC only 150 1/min 

90 o DISC with wheel 450 1/mln 

o DISC only 450 1/min 

70 

50 

30tO----~50-0-----10~00-----1~50-0-----20~00~~-25~00-----3~00-0----3-5~00-----40~00-----4~50-0--~5~000 
Time [$] 

Figure 5.21 Cooling curves for a standard CV disc with and without wheel assembly 
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The havg results for the standard CV disc without the wheel assembly, with the carrier 

only and with the complete wheel assembly (carrier and steel wheel), are shown in 

Figure 5.22. It can be seen that the wheel carrier has no detrimental influence on the 

cooling perfonnance; this can be expected, further confinning the accuracy of the 

experimental procedure used. The inclusion of the carrier increases the thermal 

capacity of the assembly and provides a larger cooling surface area, however there is 

little conduction between the two components. The complete wheel assembly has a 

greater influence on the havg at higher rotational speeds but the reduction in cooling 

perfonnance is relatively small (reducing the value of havg by approximately 5%). 

Because of the inboard ventilation channel inlet, the wheel only affects the 

ventilation channel outlet airflow (reducing ventilation channel airspeed). The havg 

values will be affected by the reduction in surface airspeed (mainly in the ventilation 

channel) and a reduction in air supply to the outboard friction face. The film 

temperature at the disc surface will rise due to the wheel assembly shrouding the 

disc, reducing convective cooling. 
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Figure 5.22 Effect of wheel assembly on standard CV disc havg at 100°C 
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5.4.3 Convective Heat Transfer Coefficients 

The heat transfer coefficients determined from Spin Rig measurements are average 

'total' heat transfer coefficients incorporating all three modes of cooling; convection, 

conduction and radiation. To determine the convective component, the heat 

dissipated by conduction and radiation components need to be subtracted from the 

total heat transfer coefficient h avg . By modifying equation (5.1), h conv can be 

determined by: 

h = Qtotal - Qcond - Qrad 

con v Aconv ( To - Too ) 
(5.14) 

The thermal power dissipated by conduction, radiation and convection can be 

calculated by equations (5.15), (5.16) and (5.17): 

(5.15) 

(5.16) 

(5.17) 

Substituting equations (5.12), (5.15) and (5.16) into equation (5.14) enables the 

calculation the convective heat transfer coefficient (hconv): 

mc pl!:.T - hcondAcond (To - Tc ) - £a A,.ad (T~ - T: ) 

h conv = A (T -T) cony 0 00 

(5.18) 

By taking the value of hcond and emissivity (E) based on Spin Rig measurements 

detailed in Chapter 6 and 7, h conv has been determined. An average value of 988 

kW/m2K has been used for hcond (the standard interface condition for 300 Nm bolt 

torque). The value of E used is 0.2. The value of cp is assumed constant with 

temperature; a standard value of 420 J/kgK is used (Kreith 1986). The mass used in 
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the determination of heat transfer coefficients is the combined mass of the disc and 

adapter (39.1 kg), see Chapter 3 for details. 

The measured havg for the standard CV disc without wheel assembly (disc only) and 

the hcollv values throughout the CV speed range are shown in Figure 5.23. The 

average friction surface temperature is 100°C. It can be seen from the difference of 

the havg and the hcollv values, that the radiative and conductive components are speed 

independent and account for approximately 2 W/m2K of the total havg• At 450 min- I 

hconv is 25 W/m2K dropping almost linearly to 4 W/m2K at 30 min-I. 
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Figure 5.23 Measured havg and hconv for the standard CV disc (disc only) 

The h
conv 

function for the standard CV disc defining its relationship with angular 

velocity (w [rad/s]) can be calculated by the equation of the hconv curve of Figure 5.23 

and is given by equation (5.19). Equation (5.19) shows a linear relationship, which 

compares well to the published equations given in Section 5.2: 

hconv = 0.484w + 2.64 (5.19) 

Examination of equation (5.19) provides the natural convective component (speed 

2 
independent) value of 2.65 W 1m K. 
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5.5 Measurement of TGV Railway Disc Cooling 

Experimental studies of convective heat dissipation of the TGV railway disc (see 

Chapter 3) were also conducted on the Spin Rig. The obtained cooling curves enable 

heat transfer coefficients to be derived and CFD results to be verified. The cooling 

tests were performed in a similar manner to the CV disc (see Section 5.4). However, 

the TGV disc has three times the mass of the CV disc and the hot air heaters could 

not be used because of insufficient power to heat the disc to test temperature. 

Therefore, an industrial oven was used to heat the disc, before it was mounted to the 

spin Rig shaft, as described in Chapter 3. The disc was positioned in a steel frame 

then placed in the oven and heated to 500°C (taking approximately three hours), see 

Figure 5.24a. The disc was removed from the oven with a forklift and moved to the 

Spin Rig where it was mounted to the Spin Rig shaft, using a crane, see Figure 5.24b. 

The mounting procedure took approximately 20 minutes, by which time the disc 

temperature dropped to approximately 300°C. 

a) b) 

Figure 5.24 TGV disc (a) heated in oven and (b) mounted to Spin Rig shaft 

A series of rubbing and welded tip thermocouples (see Chapter 3) were placed on 

and round the disc, as detailed in Figure 5.25 and Figure 5.26. The thermocouples 

were mounted to an articulated arm with a centre lock for quick positioning. Cooling 

measurements began at a disc surface temperature of approximately 250°C. 
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Figure 5.25 TOV disc rubbing thermocouple arm 

Fourteen thermocouples measurements were taken during the cooling tests as shown 

in Figure 5.26 (the fourteenth thermocouple measured ambient temperature). Three 

low friction sled rubbing thermocouples (Figure 5.25) were positioned on each 

friction surface of the disc (CD, @, @, @, ® and ®), two copper tip rubbing 

thermocouples were placed on the inboard and outboard rim of the disc (@ and @). 

The sled rubbing thermocouples were used on the friction surfaces of the disc 

because they provided good contact with the flat surface. Copper tip rubbing 

thermocouples provided the best surface contact for the curved surfaces of the disc. 

Welded tip thermocouples measured air temperature at the vane outlet 8), and vane 

inlets 0 and 0. The film temperature was measured 3 mm from the friction surface 

of the disc at the mean diameter, @ and O. From boundary layer thickness equation 

(4.3) given in Chapter 4, the boundary layer thickness ranges from 9.25 (high 

temperature low speed) to 0.75 mm. 
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Hub 

Shaft 

-------

Figure 5.26 Position of (0) rubbing and (.) welded tip thermocouples used for the 
TOV disc experiments 

After the thermocouples are positioned, the disc is rotated at the required speed and 

thermocouple measurements are logged, at a sample rate of 0.25 Hz. The brake 

assembly is rotated until surface temperatures reach levels approaching ambient 

temperature, (approximately 40°C). All the tests were performed in still air. Figure 

5.27 shows the typical cooling curves and surrounding air temperature for a brake 

assembly during Spin Rig cooling tests. 
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Figure 5.27 TGV disc typical surface and air temperatures during cooling 

1400 

To calculate havg , the cooling rates are measured at a range of average temperatures 

using the slope of the cooling curves, as explained for the CV disc (Section 5.4). The 

'nominal ' cooling curve was calculated using the average value of the six friction 

surface temperatures ((1) , @ , @ , @, ® and ®), as shown in Figure 5.26, Figure 5.27 

shows that the temperatures values are very close. Using equation (5.13) as described 

in Section 5.4, havg is calculated. The 'wetted' disc areas convecting heat are given in 

Chapter 3. 

Figure 5.28 shows the cooling curves of the average friction surface and au 

temperatures when the disc is rotating at 1000 min-I . The air temperature 

measurements are used to calculate havg and verify the CFD results (in Section 5.6). It 

can be seen that for an average friction surface temperature of 200°C the ventilation 

channel exit temperature (3) is 90°C, which is 50°C higher than the ventilation 

channel inlet temperature (5 and!). The friction surface air temperature (2 and 4) is 

in the region of 70°C. Selected air temperatures are given later in Table 5.7 and are 

compared with CFD modelling results . 
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Figure 5.28 Average friction surface and air temperatures for a TOY disc rotating at 
1000 min- I 

5.5.1 Influence of Rotational Speed on Disc Cooling 

To investigate the influence of rotational speed on the cooling of the TOY disc, tests 

were conducted at rotational speeds ranging from 0 to 1800 min-Ion the Spin Rig. 

Figure 5.29 shows the cooling curves of the TOY disc for the speed range of the 

TOY train. The cooling curves also show the times for the disc to cool from 250°C, 

to near ambient temperature (40°C). The cooling rates increase with rotational speed. 

The disc takes 1000 seconds to cool from 250 to 40°C at 1800 min-I (the top of the 

speed range), compared to 3000 seconds at 360 min-I. Figure 5.29 also shows the 

cooling rate for the stationary disc, which as expected, shows the lowest cooling rate. 

After 3000 seconds, the stationary disc temperature is 75°C higher than the disc 

rotating at 360 min-I. 
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Figure 5.29 Cooling curves for the TOV disc, average friction surface temperatures 

Based on the cooling curves the calculated havg values are shown in Figure 5.30. The 

havg values have been calculated for all the rotational speeds for a range of 

temperatures (100 to 225°C). The value of havg is approximately constant in the 

temperature range considered. A maximum value of 116 W Im2K for havg is 

calculated at 1800 min-I, a minimum value of 7.5 W/m2K is calculated when the disc 

is stationary at 100°C. At 0 min-I, where natural convection is dominant, havg values 

increase slightly with temperature, which can be expected as higher surface 

temperatures increase air buoyancy generating airflow. 
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The hconv values are calculated from prevIous measurements uSIng the same 

methodology described for the CV disc. Figure 5.31 shows the change of havg and 

hcollv with rotational speed for an average disc surface temperature of 200oe. The 

value of havg rises almost linearly from 10 W/m2K at 0 min-I to 112 W/m2K at 1800 

min-I, the rate of havg increase reduces above the rotational speed of 1200 min-I. It 

can be seen from the graph that the radiati ve and conductive components are speed 

independent and account for approximately 3.5 W/m2K of the havg value. At 450 min­

I the value of hcollv is 108 W/m2K dropping at the same rate as the havg curve to 6.4 

W/m2K at 0 min-I. These values show that natural convection for the TOV disc is 

higher than the CV disc. 
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Figure 5.31 Measured havg and hconv values for the TGV disc 

The hconv function for the TGV railway disc defining its approximate relationship 

with angular velocity (w [rad/s]) can be calculated by the equation of the hconv curve 

of Figure S .31, gi ving a 2nd order polynomial trend: 

hconv = -IE-OSar + 0.0793w + 6.4 (S.20) 

Which, can be approximated by the linear function: 

hconv =0.S417w + 11.77 (S.21) 

Examination of equation (S.21) provides the natural convective component (speed 

independent) value of approximately 11.8 W/m2K. The hconv values for the TGV disc 

are higher than those of the CV disc at the same rotational speeds (Section S.4.3), 

this is expected because of the larger diameter and hence surface speeds of the TGV 

disc surface. Similar trends to the theoretical values given in Section S.2 can be seen. 

The TGV disc has a higher natural convection component than the CV disc, shown 

by equations (5.19) and (S.21). The radial vane/pillar design allows air to rise 

through the disc at low rotational speeds, improving low speed cooling 

characteristics. Also the large inside and outside radius of the disc provides large 

ventilation channel openings. 
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5.5.2 Influence of Vane Design on Disc Cooling 

The vane design of the TOY disc is a combination of radial vanes and pillars (see 

Figure B2.1 in Appendix B), used to reduce pumping losses whilst maintaining 

cooling perfonnance. The pillared section of the disc allows air to rise quite freely 

through the spaces between the pillars at stationary or low rotational speeds. Figure 

5.32 shows the cooling curves for a stationary disc with the ventilation channels free 

and blocked. The ventilation channels were blocked with fibreglass lagging placed at 

the vane inlet and outlet. The cooling curves clearly show that the ventilation 

channels substantially aid disc cooling even when the disc is stationary. The cooling 

period from 250 to 60°C is increased by 20% with the cooling channels unblocked. 
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Figure 5.32 TOY disc cooling, average friction surface temperature, 0 min-
1 

5.6 CFD Analysis of Convective Heat Transfer Coefficients 

The SDRC I-DEAS package with the electronic system cooling (ESC) module was 

used for the CFD analyses. The CFD modelling methods are detailed in Chapter 4. 

The ESC analyses provided output results including hconv distribution for all disc 

surfaces. The hconv values are calculated by the temperatures of the model and the 

airflow in the region. To obtain hconv values, a steady state model was analysed with 
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the solid disc elements set at a constant temperature and the disc rotated in a volume 

of still air that is vented to ambient. 

5.6.1 Commercial Vehicle Disc 

Based on the eFD model of Chapter 4 Figure 5.33 and Figure 5.34 show (two half­

section) temperature contour maps of the fluid surrounding the standard ev disc 

mounted on the Spin Rig shaft, for the steady state condition. The discs are rotating 

at 450 min- l and disc temperatures are 100°C and 600°C respectively. The ambient 

air temperature was set at 20°C. The model is of the 'disc only'. 

Figure 5.33 Air temperature for a 100°C standard ev disc rotating at 450 min-
l 
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Figure 5.34 Air temperature for a 600°C standard CV disc rotating at 450 min- l 

Figure 5.33 and Figure 5.34 show similar distributions of air temperature. Both 

figures show differences in the air temperature contours between the inboard and 

outboard side of the disc. The average air temperature is higher on the outboard side 

(hat side) of the disc than the inboard side (in the region of 60°C at the surface of the 

600°C disc). The temperature increase is caused by heat dissipation from the hat 

section. The air temperature in the ventilation channel shows an approximately linear 

increase, from around 23°C at the entry to just over 30°C at the vane exit for the 

100°C disc, and from 50°C to 100°C for the 600°C disc. The air temperature increase 

through the vane is approximately 12% of the disc surface temperature for both disc 

temperatures. 

Table 5.4 and Table 5.5 show the air temperatures for the disc at 100 and 600°C 

throughout the CV rotational speeds. It can be seen that vane exit air temperatures 

drop slightly with increased rotational speed of the disc. The higher velocity of the 

air flowing over the vane surface reduces the amount of heat the air can absorb. The 

larger temperature difference between the air and disc surface, increases the heat 

transfer at the surface, as defined by equation (5.17). The vane inlet air is drawn 

mainly from the surrounding air, as shown in Chapter 4, but higher disc temperatures 
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still influence the air temperature. The friction surface air temperatures are constant 

with rotational speed at a disc surface temperature of 100°C, at 600°C the air 

temperature increases with rotational speed. The air boundary layer near the surface 

of the disc will be at a higher temperature than the surrounding air temperature and 

the thickness of the boundary layer increases with surface temperature, causIng 

higher temperatures at the measuring point, 3 mm from the surface. 

Table 5.4 CFD air temperatures for the standard CV disc at 100°C 

Rotational speed Ventilation channel [OC] Friction surface (mean radius) [OCl 

[min' 1] Inlet Exit AT Inboard Outboard AT 

40 23.1 32.6 9.5 26.2 28.2 2.0 

150 24.7 30.0 5.3 24.9 27.2 2.3 

300 22.6 29.2 6.5 25.0 27.7 2.7 

450 22.6 28.9 6.3 25.0 27.8 2.8 

Table 5.5 CFD air temperatures for the standard CV disc at 600°C 

Rotational speed Ventilation channel [OC] Friction surface (at mean radius) [OCl 

[min,l] 
Inlet Exit AT Inboard Outboard AT 

150 35.0 104.0 69.0 52.0 52.0 0.0 

450 39.3 90.6 51.3 56.7 82.1 25.4 

CFD also enables the contour plot of the hconv values. Figure 5.35 shows the hconv 

values for a standard vane CV disc rotating at 450 min- l at a fixed temperature of 

100°C. It can be seen that the hconv values increase radially from the inside diameter 

to the outside diameter. The highest hconv values are seen at the outer rim of the disc 

(the region with the highest surface speed). The hconv values are shown to be higher at 

the vane inlet, where airflow entering the vane has not fully developed (as shown in 

Figure 5.2). The hconv contour plots are useful for the examination of local hconv 

values allowing the determination of areas dissipating heat inefficiently and allowing 

small design modifications to be directly evaluated. 
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Figure 5.35 Standard CV disc CFD hconv values rotating at 450 min- l at 100°C 
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The ESC software can generate an average hconv value for selected elements. This is a 

nodal average and not a surface area average. However, the element size of the disc 

model is approximately uniform (see Figure 5.35) and thus the nodal average is a 

good approximation of the average hconv value. A number of CFD analyses have been 

performed for two disc temperatures, 100 and 600°C, for the speed range of the CV. 

Comparison of Standard CV Disc hconv Values 

The values of average hcollv values are shown in Figure 5.36. Average hcollv values for 

the CFD model at 600°C are slightly lower throughout the speed range than at 

100°e. CFD results are compared with Spin Rig results at 100°C. Experimental 

values show good agreement with CFD results, particularly at higher rotational 

speeds. The CFD modelling enables detail insight into local heat transfer coefficients 

and convective heat flux distribution. The good agreement of the results gives 

confidence in the local hcollv CFD predictions (see Table 5.6). This allows 

comparative analysis of design changes and determination of the best design 

improvements for specific duties and applications. 
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Figure 5.36 Average hcollv values for the standard CV disc (disc only) 
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The CFD hcollv values have been broken down into surface areas as shown in Figure 

5.3 and presented in Table 5.6. The average CFD hconv values are given for the outer 

rim, friction surface, ventilation channels, and hat regions for the rotational speeds of 

50 and 450 min-I, the results are compared with published hconv equations presented 

in Section 5.2. The hcollv values calculated from equations used by Newcomb (1979) 

and Day (1998) are shown in column 1 and values from equations used by Sheridan, 

Kutchey et aI. (1988) are shown in column 2. For the hat and rim regions identical 

equations are gi ven. 

Table 5.6 Comparison of CFD and published equation local hconv values for the CV 
disc surfaces at 100°C 

Average hconv [W Im2K] 

50 min-l 450 min-l 
Surface 

CFD Source CFD Source 

1 2 1 2 

Rim (outer) 4.3 5.6 30.1 19.7 

Ventilation channel 4.2 10.8 4.0 26.9 63.1 27.0 

Friction 2.2 4.2 4.2 23.1 24.1 31.3 

Hat (outer cylinder) 2.3 4.5 12.0 24.7 

• Source 1: Newcomb (1979) and Day (1998) 
• Source 2: Sheridan, Kutchey et al. (1988) 

As expected the highest values are shown at the outer rim of the disc, where surface 

speeds are at their highest. The ventilation channel region shows the next highest 

hconv values followed by the friction faces and hat region with the lowest values. The 

CFD results show good agreement with the published equation values in most cases. 

For the friction surfaces, ventilated channel and rim regions excellent agreement is 

shown at 450 min- I and for the ventilated channel and rim regions at 50 min-I. 

However, the ventilated channel values of equation set 1 show very high values 

compared to CFD and other published equations (see Figure 5.8). The hat region 

equation hconv values are double the CFD values, which are influenced by proximity 

of the friction surface modifying the airflow and heating air in the region. These 

factors are not accounted for by the published equations. 
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5.6.2 TGV Railway Disc 

Base on the CFD model of Chapter 4, Figure 5.37 shows a half-section temperature 

contour map of the fluid surrounding the TOY disc (see Chapter 3), for the steady 

state condition. The disc is rotating at 1000 min-I and the disc temperature 2000C. 

The ambient air temperature was set at 20°C. The plot shows differences in the air 

temperature contours close to the disc surface for the retaining ring side and 'free' 

side of the disc. The average air temperature is higher on the retaining ring side, 

which has restricting airflow into the vane (as shown in Chapter 4). 

.670+01 
y 

Figure 5.37 Air temperature for a 200°C TOY disc rotating at 1000 min- l 

Table 5.7 compares the predicted temperature change (Figure 5.37) with the 

measured temperatures change of Figure 5.28 relative to ambient temperatures, it can 

be seen that the predicted temperatures are of similar distribution and compare well 

at the ventilation channel inlets and rubbing surface. However, lower temperatures 

are predicted at the ventilation channel exit. It must be noted that ambient 

temperatures during testing were higher than the CFD ambient temperature, see 

Table 5.7. 
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Table 5.7 Comparison of measured and CFD change in air temperature, 
~T = (Tair - Too) for a 200°C TOV disc rotating at 1000 min-1 

Position Measured AT Predicted AT 
[OCl [OCl 

Ventilation channel exit 53 30 

Ventilation channel inlet (free side) 2 10 

Ventilation channel inlet (ring side) -3 10 

Rubbing surface (free side, mean radius) 34 43 

Rubbing surface (ring side, mean radius) 36 45 

I Ambient (Tx ) 43 20 

A contour map of the hconv values are shown in Figure 5.38 for the TOV ventilated 

railway disc rotating at 1500 min-1 at a fixed temperature of 200°C, with ambient air 

temperature at 20°C. It can be seen that the hconv values increase radially from the 

inside diameter to the outside diameter with the disc surface speed. The highest hconv 

values are seen at the outer rim surface (the region with the highest surface speed). 

The retaining ring restricts airflow into the vane and lower values of hconv are shown 

on this side of the disc. The effect of the retaining ring is also seen at the ventilation 

channel exit, lower values of hconv are seen on the retaining ring side of the disc outer 

nm. 

The hconv contour plots give great detail of local ventilation channel hconv values 

allowing the determination of areas dissipated heat inefficiently and allowing small 

design modifications to be directly evaluated. Detailed contour plots are shown in 

Figure 5.39. High hconv values are seen on the front (facing the direction of rotation) 

vane surfaces and on the vane surface at the outer diameter of the disc. Low hconv 

values are seen on the back faces of the disc and in areas of air stagnation (it must be 

noted that the train disc is required to operate in both directions). The hconv values are 

dependent on air speed and high hconv values correspond to high air speeds (shown in 

Chapter 4). 
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Figure 5.39 TOV disc detailed CFD hconv values of the ventilation channels 
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Comparison of Standard TGV Disc hconv Values 

CFD analyses were performed at four rotational speeds spanning the TOV train 

speed range. The values of average CFD hconv values are shown in Figure 5.40 and 

are compared with the Spin Rig results. The CFD results show a similar trend to the 

experimental values. At very low rotational speeds CFD results are within 10% of 

measured values. At higher rotational speeds CFD predicts lower values of hconv• At 

1500 min-
l 

CFD results are 24% lower than experimental values. At very high 

rotational speeds (above 1500 min-I) the difference between the CFD and measured 

hconv values reduces. When Spin Rig values are extrapolated to 2000 min-I, the 

difference between CFD and measured results are less than 15%. 

The differences shown could be the result of nodal averaging reducing hconv values; 

the true area averaged hconv values may be higher. The CFD analysis has been subject 

to computing limitations, which restricted the size and density of the air volume 

element mesh surrounding the disc. No doubt the complex vane and pillar disc 

ventilation design lead to increased errors in the CFD analyses. Measured vane exit 

air velocities are higher than those predicted by CFD (see Chapter 4), these under 

predictions would generate lower hconv values in the model. Also the lower CFD hconv 

values coincide with the lower air temperatures predicted at the vane exit (see Table 

5.7). A larger air volume and finer mesh may improve the CFD TOV disc results. 
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Figure 5.40 Average hconv values for the TOV disc at 200°C 

The CFD hconv values have been broken down into surface areas as shown in Table 

5.8. The average hconv values are given for the friction surface, ventilation channel, 

outer rim and inner rim for the rotational speeds of 500 and 1500 min-I, the results 

are compared with the hconv values calculated from published equations used by 

Newcomb (1979) for railway brakes presented in Section 5.2. The ventilation 

channel results could not be compared due to the vane design complexity. The 

highest CFD values are shown at the outer rim of the disc, where surface speeds are 

at their highest. The friction surface has the next highest hconv values followed by the 

inner rim and vane regions with the lowest values. 

The CFD results show good agreement with the published equation values. For the 

friction surfaces at both speeds and the rim surfaces at 500 min-I, excellent 

agreement is shown. However, the rim surfaces at 1500 min- l show very high CFD 

values compared to the published equations. The lugs and ventilation channel inlet 

influence the hconv value at in the inner rim region, which is not accounted for by the 

equation used. At the outer rim hconv values are influenced by the ventilation channel 

outlet, also not accounted for by the equation used. The pillar/radial vane region of 

the TOV disc shows lower hconv values than the radial vane design of the CV disc, the 

higher surface temperature of the TOV disc will reduce hconv values. 
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Table 5.8 Comparison of CFD and published equation local hconv values for the TOV 
disc surfaces at 200°C 

Surface Average hconv [W Im2K] 

500 min-I 1500 min-I 

CFD Newcomb (1979) (reI. to CFD Newcomb (1979) (reI. to 
CFD) CFD) 

Rim (outer) 36.4 27.6 (0.76) 102.8 57.4 (0.56) 

Friction 27.8 28.5 (1.03) 79.5 68.7 (0.86) 

Rim (inner) 26.6 22.6 (0.85) 74.2 46.9 (0.63) 

Ventilation 26.0 - 71.7 -
channel 

5.7 Summary 

This chapter has introduced the convective mode of heat dissipation showing its 

contribution to brake cooling and examining influencing factors. 

Theoretical convective heat transfer coefficient formulae have been studied and 

comparisons made with alternative approaches. The methods and effects of film 

temperature were also considered. The Spin Rig has been used to determine cooling 

curves for numerous CV disc designs and disc, wheel assembly arrangements; the 

TOV railway disc was also studied. From measured cooling rates, average heat 

transfer coefficients were determined. Repeatability tests were performed to ensure 

confidence in measurements. CFD models used to predict the airflow around 

ventilated discs have been further developed to calculate convective heat transfer 

coefficients at the brake disc surface for a range of speeds and temperatures. A total 

of 50 cooling tests were performed on the CV and TOV discs amounting to a total of 

40 days of laboratory testing. A total of 16 computer simulation runs were performed 

requiring 300 hours of computer time. 

When companng the numerous convective heat transfer coefficient formulae, 

differences in results were occasionally very high and it has been shown that film 

temperature must be taken into consideration. Using the average heat transfer 

coefficients determined from Spin Rig measurements, cooling performance 

comparisons of disc designs has been made. Measured results show that the wheel 
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assembly can have detrimental effects on convective CV disc heat dissipation and 

ventilated disc designs used should be carefully considered. Using known heat 

transfer coefficients of conduction and radiation enabled the determination of 

convective heat transfer values, and functions are given defining the relationship 

with rotational speed. CFD analysis has enabled detailed analysis of local convective 

heat transfer coefficients and the influence of disc ventilation channel design. 

The Spin Rig has been used to provide accurate temperature measurements during 

disc cooling. The comparisons with measured convective heat transfer coefficients 

and values published in the literature show very good agreement with CFD results. 

The developed methods of predicting convective heat transfer coefficient values of 

brake discs allows comparative analysis of design changes and determination of the 

best disc design improvements for specific duties and applications. 
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Chapter 6 

Conductive Heat Dissipation 

6. 1 Introduction 

The aim of this chapter is to introduce the conductive mode of heat dissipation and 

determine values of thermal contact resistance at the interfaces of the brake 

components. In order to study conductive heat transfer clamping bolt forces were 

analysed experimentally and theoretically, interface pressure distribution was 

modelled and compared with measurements and temperature measurements were 

conducted at brake component interfaces. 

The cross section through the commercial vehicle (CV) wheel assembly is shown in 

Figure 6.1. Heat is generated at the CV brake disc friction surfaces and conducted 

through the disc hat section to the flange area. The wheel assembly provides two 

areas of conductive heat dissipation from the disc, one through the bearing assembly, 

the other through the wheel carrier. Heat transfer from the brake disc to the bearing 

must be avoided to ensure bearing temperatures are kept low. However, the wheel 

carrier has a substantial mass of 21 kg, which is approximately 2/3 of disc mass, and 

therefore can provide a very desirable conduction path from the brake disc to the 

wheel of the vehicle. The outer faces of the wheel carrier and wheel have dir 
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ect contact with cool, fast flowing and turbulent air and these boundary conditions 

suggest that the wheel carrier and wheel can offer substantial potential for heat 

dissipation. It is important to consider tyre temperature, since overheating of the tyre 

can lead to extremely dangerous conditions and must be avoided. 

Brake disc 
/Wheel 

--- -...... .. ~ ... --~ 
--.-

~Bearing 

Figure 6.1 Cross section of wheel assembly 

6.1.1 Theoretical Background 

For thermal conduction to occur through a solid, a temperature difference is required. 

The difference in temperature causes the transfer of energy by the more energetic 

molecules to adjacent less energetic molecules and energy transport by free 

electrons, (Cengel 1998). The rate of heat conduction through a solid is governed by 

the cross section area, material thermal conductivity and temperature gradient. This 

is shown in Fourier's law of heat conduction: 

dT 
Qcond = -kA dx (6.1) 

The equation above indicates that conductive heat transfer increases with cross 

section area (A), material conductivity (k) and temperature gradient (dT/dx). 
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Appendix A gives thermal conductivity values for materials commonly used in the 

brake assemblies. 

To analyse the conduction of heat through multi-layer solids, (disc, wheel carrier and 

wheel), it cannot be assumed that the interfaces between layers are perfect. If this 

were the case, the surfaces would have to be microscopically and macroscopically 

flat resulting in no temperature drop between surfaces. In reality, no surface is 

perfectly flat or smooth and this causes a thermal contact resistance (Rcond). The Rcond 

is a result of the actual area of contact between layers being only a small fraction of 

the apparent contact area. The actual contact area being the micro-contacts at the 

peaks on the surfaces as shown in Figure 6.2. Valleys on the surface will form 

interstices filled with the ambient medium. The interstitial medium, which under 

normal ground vehicle conditions is air, acts as an insulator due to its lower 

conducti vi ty. 

I '."r I l .1) l" 

I mperatu . 
dr J 

(a) (b) 

Figure 6.2 Ideal (a) and actual (b) thermal contact (CengeI1998) 

Conductive heat transfer (Qcond) through the interface can be expressed as a sum of 

the conductive heat transfer (Qcontact) through the actual contact areas and the 

interstitial medium (Qgap): 
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Qcond = Qcontact + Q gap (6.2) 

The average thermal contact conductance (hcond) at the interface is the reciprocal of 

Rcond: 

h = 1 
cond R 

cond 
(6.3) 

Qcond can be expressed as: 

(6.4) 

For the CV brake (Figure 6.1) the temperature difference (LlTint) is the temperature 

difference between the disc interface surface (T D) and wheel carrier interface surface 

(Tc). The interface area (Acond) is the area of contact between the disc and the wheel 

carrier and equation (6.4) becomes: 

Giving an expression for hcond: 

h = Qcond 

cond A ( ) 
cond TD -Tc 

(6.6) 

Values of h cond have been published in the literature for several materials under a 

range of conditions (temperature, pressure and surface conditions); Table A6 shows 

h cond values for a range of metal pairs. 

6.1.2 Influencing factors 

The value of hcond at the interface between two mating surfaces will increase with 

interface pressure, as discussed in Chapter 2. In the case of the brake assembly bolts 

are used to clamp the disc to the wheel carrier and wheel, making the interface 

pressure non-uniform, the highest pressure being near the bolt shank, and reducing 

with bolt radius. Components that are fastened together with bolts, such as the hub 

and brake disc (Figure 6.1), may experience changes in clamping force as a result of 
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removal and replacement during vehicle servicing. To determine the hcond values as a 

function of interface contact pressure at the disc and wheel carrier the bolt force is 

first determined. Using an FE model of the interface, the pressure distribution is 

determined and confirmed by experimental measurement. The average hcond values at 

the interface are determined by Spin Rig temperature measurements for a range of 

pressures and temperatures. From the results, expressions are determined for hcond as 

a function of pressure. 

6.2 Bolt Clamping Force Determination 

The average interface contact pressure at the disc flange and wheel carrier can be 

calculated by dividing the total clamp force by the interface area, therefore it is 

crucial to accurately determine the force at the bolt. Experiments were conducted to 

determine the clamp force for a range of bolt torques between 50 and 300 Nm. The 

maximum considered value (300 Nm) being the nominal bolt torque specified by the 

vehicle manufacturer. 

6.2.1 Theoretical Calculation 

The bolt clamp force can be calculated using the theoretical bolt force equation (6.7) 

(Shigley and Mischke 1989). 

T = [( dm J( tan qJ + P sec ¢J ) + 0.625 Pc] F;d 
2d 1 - P tan qJ sec ¢J 

The term in brackets can be defined as a torque coefficient (K): 

K = ( dm J( tan qJ + P sec ¢J ) + 0.625 Pc 
2d 1 - P tan qJ sec ¢J 

(6.7) 

(6.8) 

Where d is the thread outside diameter, dm is the mean thread diameter, qJ is the lead , 

angle, J.i is the coefficient of thread friction, J.ic is the coefficient of collar friction, (j) 

is the half apex angle of the thread and Fi is the preload. Equation (6.7) can now be 

written as: 
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Fi=~ 
Kd 

(6.9) 

Where T is the bolt torque and d is the nominal bolt diameter. Since all the 

parameters can vary considerably, a simplified approach is often used in engineering 

practice by using an average value of 0.2 for K (Shigley and Mischke 1989). Using 

equation (6.9) the following bolt forces have been calculated: 

Table 6.1 Tensile stress at bolt 

Bolt Torque Nominal Bolt K Bolt Force 
[Nm] Dia. [mm] [-] [kN] 

50 16 0.2 15.625 

100 16 0.2 31.250 

150 16 0.2 46.875 

200 16 0.2 62.500 

250 16 0.2 78.125 

300 16 0.2 93.750 

6.2.2 Experimental Measurement 

The bolt clamp force versus torque relationship was measured with a low profile 

force washer load cell connected to a digital meter display detailed in Chapter 3, the 

load cell was calibrated in imperial tons. 

An M16 bolt, of the same specification and surface condition as installed in the CV 

brake assembly and an appropriate nut were used to clamp the load cell. The bolt 

assembly was tightened up to the value of 200 Nm. Figure 6.3 schematically shows 

the test assembly. 
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Figure 6.3 Clamp force measurement 

To digital 
display 
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Table 6.2 gives the measurement results and the average interface contact pressure at 

the interface (Pavg) calculated using equation (6.10). Six load measurements were 

taken for each bolt torque and the average force value (F) used in the calculation. 

The surface area at the disc/carrier interface (Aint) is 21.3 xl0-3 m2 and the number of 

bolts (nb) clamping the interface is 10: 

P = nb F 
avg A . 

.l -'int 

(6.10) 

Table 6.2 Experimental clamp force and average interface contact pressure 

Torque Load [Imperial Ton] 
A verage Bolt Force Average Interface Pressure 

[Nm] Measurement Number 
[kN] [MN/m2] 

1 2 3 4 5 6 

50 2.2 2.4 2.2 2.4 2.2 2.4 22.9 10.76 

100 4.2 4.4 4.1 4.3 4.0 4.0 41.5 19.50 

150 5.8 6.0 6.1 6.2 6.0 6.0 60.0 28.16 

200 7.7 7.8 8.0 8.0 7.8 7.7 78.1 36.66 

Tests were performed up to 200 Nm. The bolt torque has been plotted against the 

calculated average interface pressure in Figure 6.4. The results were extrapolated to 

determine the average interface pressures up to a torque of 300 Nm. The average 

interface contact pressure and total clamp force are detailed in Table 6.3. 
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Figure 6.4 Wheel/carrier interface contact pressure increase with bolt torque 

Comparing the measured results with the theoretically calculated bolt force (Table 

6.3), the theoretically calculated values under predict the bolt force by approximately 

25%. 

Table 6.3 The six bolt tightening torques and average interface contact pressure 

Bolt Torque [Nm] 50 100 150 200 250 300 

Measured total clamp force [kN] (10 bolts) 200 399 600 798 999 1200 

Theoretical total clamp force [kN] (10 bolts) 156 313 469 625 781 938 

Average interface pressure [MN/m2] (measured) 9.4 18.7 28.1 37.4 46.8 56.2 

6.3 FE Analysis of Contact Pressure 

In the previous section, average contact pressure at the interface of the CV disc and 

wheel carrier was determined from the clamp bolt force and surface area. In order to 

study contact pressure in more detail an FE analysis model has been developed to 

predict the contact pressure magnitude and distribution. The ability to model the 

pressure at the interface of two bolted components will allow the prediction of the 

thermal contact resistance and in tum the conductive heat flow (Qcond) from the disc 

to adjacent components. SDRC I-DEAS has been used to model the interface. The 
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model included the standard CV disc and wheel carrier assembly, both the disc and 

wheel carrier were truncated to reduce model complexity, whilst maintaining 

accuracy, see Figure 6.5. Making use of the circumferential symmetry, a 3-D 

segment of 36° was modelled, which included one bolthole (note that boltholes are 

not equally spaced). Appropriate boundary conditions were used. The disc and wheel 

carrier were modelled with 3900 solid elements, 286 gap elements and 4577 nodes. 

The disc was modelled with grey cast iron material properties and the wheel carrier 

was modelled with SO iron properties, values are given in Tables A3 and A4. At the 

interface of the disc and wheel carrier, gap elements were used to join the adjacent 

nodes. This enabled realistic modelling of the interface contact allowing separation. 

Wheel 

Bolt 
force 

'Clamped' 
nodes 

Symmetry 
restraint on 
nodes 

Disc (hat section) 

Figure 6.5 CV disc and wheel carrier interface pressure FE model boundary 
conditions 

For Spin Rig measurement of interface pressure the disc and wheel carrier were 

bolted to the Spin Rig adapter (see Figure 6.15). This has been modelled by applying 

restraints to the nodes on the underside surface of the disc hat (see 'clamped' nodes, 

Figure 6.5). A continuous load (nodal forces) was then applied to the nodes under the 

bolt head on the surface of the disc, from the outside diameter of the bolt to a 
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diameter of 26 mm (outside diameter of washer under the bolt). At the symmetry 

planes of the model (360 apart), appropriate boundary conditions were introduced; 

ensuring nodes remained within these planes during loading. To control stability, 

nodes on the surface of the bolthole were only allowed to move axially in the 

direction of the applied bolt force. 

Figure 6.6 shows the Von Mises stress and deformation of the disc and wheel carrier 

model for a simulated bolt force resulting from a torque of 300 Nm. The bolt force 

was equal to 120 kN (measured value, Table 6.3) and this was distributed over the 

120 nodes under the bolt head washer (see Figure 6.5). High stress and deformation 

can be seen around the bolthole, under the washer. Deformation has also occurred at 

the disc and wheel carrier interface. 

577E~ 

5·3E..ooe 

3 B/sE..ao.;; 

321E..ooe 

I03E .OO8 

I ~QE..oos 

Figure 6.6 Von Mises stress of bolted CV disc and wheel carrier on deformed 
geometry 

Figure 6.7 shows the zz-component (representing interface pressure direction) stress 

contour plot of the disc hat section under loading. High stresses can be clearly seen 

around the hole, reducing radially from the outside diameter of the hole. The 
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maximum pressure is 128 MN/m
2 

and two distinctive areas can be noticed; under the 

bolt (1) the pressure is 95 .0 MN/m
2 

and between the bolts (2) the pressure is 32.3 

MN/m
2

• This compares well with the average pressure of 56.2 MN/m2 given in Table 

6.3. 

P. 
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Figure 6.7 CV disc/wheel carrier interface contact pressure distribution 

Contact pressure analysis has also been carried out for the bolt torque values of 200 

Nm and 150 Nm. Figure 6.8 show local interface contact pressures at the radius of 

points (1) and (2) shown in Figure 6.7. The dashed lines show the positions (1) at the 

bolt and (2) between the bolts. 
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Figure 6.8 Local contact pressure along the radius of points (1) and (2), (see Figure 
6.7) 

From the FE results presented in Figure 6.8 the local pressure change with bolt 

torque is shown in Figure 6.9 for the two positions, at the bolt (1) and between the 

bolts (2). The expressions for local pressure as a function of bolt torque can be found 

from the curves (shown in Figure 6.9). 
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Figure 6.9 Local pressure change at positions (1) and (2) with bolt torque 

159 



6.4 Contact Pressure Measurement and FE Results Verification 

To verify the FE analysis and further research the contact pressure at the brake 

disc/wheel carrier interface, measurements of the interface pressure were conducted. 

Pressurex pressure sensitive paper (Sensor Products Inc.) was used to measure the 

pressure distribution and magnitude at the interface. The change in colour of the 

initially white pressure sensitive paper is directly related to the pressure applied to it. 

The higher the pressure applied the higher the colour intensity, see Figure 6.10 and 

Table 6.4. The paper can be compared with the supplied correlation chart or scanned 

using specially developed software to determine pressure distribution and magnitude. 

CI'oss section of Pressurex ® fUm 

l Transf.r S •• 1 }- fp':r~e'::r film) 4 mils 
66666AAAAAooooaJ- Microcapsule layer 

~mt 

II"'" -~---... ~ Color developing layer 

Developer Sheet Substrate 
(polyester film) 4 mils 

-- a-. 

-- ~ c --i 
~ 

B 

Pressure 

Figure 6.10 Pressurex structure and correlation chart (Sensor Products Inc. 2002) 

Table 6.4 Pressurex specifications (Sensor Products Inc. 2002) 

Temperature Range 5° - 35° C (Higher for brief exposure) 

Humidity Range 20 to 90% RH 

Gauge 25 to 50 microns 

Spatial Resolution 5 to 15 microns 

Substrate Polyethylene Terephthalate (PET) 

Accuracy +/-10% visual +/-1 % utilizing optical measurement system 

Shelf Life 2 Years 

The Pressurex paper is available for six pressure ranges, as shown in Table 6.5. The 

average disc/carrier interface pressure at 300 Nm is 56.2 MN/m
2 

(Table 6.3), with 

this information the medium and high grade papers were considered to be the most 

suitable for the interface pressure measurements. 
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Table 6.5 Pressurex paper sensiti vities (Sensor Products Inc. 2002) 

Paper Type Pressure Range [MN/m2] 

Ultra Low 0.2 - 0.6 

Super Low 0.5 - 2.4 

Low 2.4 - 9.7 

Medium 9.7 -49.0 

High 49.0 - 127.6 

Measurements were conducted on a new brake disc and used (slightly corroded) 

wheel carrier. The clamping faces were cleaned and the pressure sensitive paper 

(requiring careful handling) cut to the profile of the interface. The humidity and 

ambient temperature was recorded as this affects the colour intensity of the paper and 

is required during the analysis of results. The pressure sensitive paper was placed 

between the clamping faces and the components were bolted together. The 

components were tightened first to 100 Nm, opposing bolts tightened alternately to 

avoid high pressure concentration and uneven tightening. The bolts were finally 

tightened to the nominal torque (300 Nm) in the same order. The pressure sensitive 

paper requires that the pressure be sustained for more than 10 seconds. After this 

period, the assembly bolts were loosened in the order described for tightening and 

removed, and then the pressure sensitive paper was removed. 

Figure 6.11 shows the pressure sensitive paper colour change after being clamped 

between the disc and the wheel carrier. It can be clearly seen that the pressure is 

higher in the proximity of the fixing bolts, and reduces with increased distance from 

the bolts. 
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(a) (b) 

Figure 6.11 High (a) and Medium (b) pressure sensitive paper after pressure 
application at 300 Nm bolt torque 

The pressure sensitive paper has been analysed using the Topaq pressure analysis 

system; a service provided by the supplier of the paper (Sensor Products Inc.). Used 

in conjunction with Pressurex pressure indicating papers, Topaq analysis provides 

computer analysis of the pressure distribution and magnitude. The system renders 

high resolution, colour-calibrated images that reflect how force is dispersed at the 

interface. The results obtained from the analysis include 2-D and 3-D contour plots, 

pressure line profiling to determine the pressure profile along a user-defined line, and 

a pressure histogram. The pressure histogram shows the percentage of plot area 

within a range of pressures (the 30 bars add up to 100% of area), displaying where 

pressure is concentrated. Figure 6.12 shows the High range paper results and Figure 

6.13 the Medium range paper results. The pressure histogram plots are shown in 

Figure 6.14. 
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Figure 6.12 Pressurex High paper Topaq results 
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Figure 6.14 Pressure histogram plot for High (a) and Medium (b) paper 

The Figure 6.14 shows that the maximum pressure (above 134 MN/m2) is seen at 

only 1.2% of the measured area, the minimum pressure (below 9 MN/m2) is seen at 

only 4% of the measured area, the predicted average pressure of 56.2 MN/m2 (Table 

6.3) is seen at 7% of the measured area. The high paper contour plots (Figure 6.12) 

reveal higher pressure evenly distributed around the boltholes, the highest pressure 

concentration at the group of two holes between the jacking hole, this is also shown 

by the Line Scan (B) plot. High pressure is also seen close to the internal diameter 

concentrating at the regions close to the boltholes. The Medium paper contour plots 

(Figure 6.13) reveal the pressure reducing from the internal diameter to the outside 

diameter, this is also shown by the Line Scan (A) plot. The boltholes continue to 

influence the pressure distribution close to the outside diameter. The low pressure in 

the region of the outside diameter between the groups of boltholes is not registered 

on the contour plots. The pressure in this region is below the threshold of the 

Medium pressure paper, that is to say it is below 9.7 MN/m2 (Table 6.5). 

Comparison of FE and Measured Results 

The measured pressure sensitive paper results (see Figure 6.12 and Figure 6.13) 

coincide very closely with stress results from the FE analysis (see Figure 6.7). 

Almost identical stress distribution and magnitude has been predicted as shown in 

the Table 6.6 comparing contact pressure at positions (1) and (2) (see Figure 6.7) of 

the FE contour plot (Figure 6.7) and pressure sensitive paper results (Figure 6.12 and 

Figure 6.13). 
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Table 6.6 Comparison of FE and measured contact pressure results 

Position 
Pressure [MN/m2] 

FE model Pressurex Paper 

At bolt proximity (1) 95.0 107 

Between bolts (2) 32.3 38 

The results show that the FE modelling method can be reliably used to predict 

pressure distribution in bolted brake component interfaces. The corresponding 

thermal contact resistance can then be determined from the functions for thermal 

contact resistance with respect to contact pressure, which is detailed in the next 

section. 

6.5 Measurement of Thermal Contact Resistance 

To examine the effects of clamping pressure on the hcond value a defined torque was 

applied to the clamping bolts and effects on (Qcond) through the disc/wheel carrier 

interface measured. Changes in clamping force will affect the contact surface area of 

the components. Improvement of surface finish and the use of interstitial media to 

increase hcond have been investigated in Chapter 9. 

6.5.1 Experimental Set-up 

Experiments have been conducted on the standard front CV brake disc and wheel 

carrier (see Chapter 3 for details). The hcond value between the brake disc and the 

wheel carrier has been obtained as a function of contact pressure for the standard 

interface condition. Figure 6.15 illustrates a schematic of the Spin Rig test assembly. 
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Figure 6.15 Thennal contact resistance experimental set-up 

For the measurement of hcond at the CV disc/wheel carrier interface, the brake disc, 

and wheel carrier were mounted to the Spin Rig shaft. The shaft adapter was 

insulated to prevent heat conducting back to the shaft. The brake disc was heated 

with two hot air guns fitted to the heater box (see Chapter 3 and Figure 6.18); the 

total heating power being 4 kW. The heater box allows hot air to flow over the 

surface of the disc providing unifonn heating. The brake assembly was stationary 

during the heating phase. 

Pressure distribution investigation, conducted in the previous section, indicate two 

distinctive areas; high pressure around the bolts, and low pressure between the bolts. 

Therefore, holes have been drilled into the disc and carrier in these two areas as 

shown in Figure 6.16 and Figure 6.17, and correspond to positions (1) and (2) shown 

in Figure 6.7. The holes are sized to allow secure fitting of the thennocouples. K­

type welded tip glass fibre insulated thennocouples are used (describe in Chapter 3). 

For each area investigated the thennocouples measured the temperature gradient at 

eight points across the interface of the two components (disc and carrier). Heat sink 

compound is applied to the bottom of the drilled holes to improve the contact with 

the thennocouple tip. Measurements are taken when steady-state conditions were 

reached, allowing the thennocouple tip to reach the same temperature as the 

surrounding material, providing accurate results. The thennocouple hole depth was 
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as close to the centre of the components as possible, this was to ensure that only 

conducti ve heat flow was measured and not heat flow to the surface generated by any 

possible (despite insulation) convective or radiative heat loss. 

4 4 4 4 444 14 14 12 9 

32.0° 
40.0· 

~ 

Figure 6.16 Position [mm] of drilled holes for embedded thermocouples 

Figure 6.17 The measurement of hcond. (a) The eight thermocouples (b) The two 
positions (disc only shown), at the bolt (1) and between the bolts (2) 
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Using the thermal conductivity of the disc material (grey cast iron, see Table A2) and 

the temperatures measured at known axial locations on the brake disc, the heat flow 

is determined. The heat flow is found using equation (6.1). Measuring the 

temperature difference at the interface, hcond is determined with equation (6.6). 

It is assumed that there are no heat losses and all heat is conducted from the disc to 

the wheel carrier. Losses have been kept to a minimum by keeping test temperatures 

relatively low (below 200°C). A thermal blanket is also placed over the test 

components to reduce heat losses by convection and radiation, as shown in Figure 

6.18. 

Figure 6.18 Thermal contact resistance test set-up showing; heater box, insulation 
and thermocouple wires 

6.5.2 Experimental Procedure 

The standard CV brake disc and wheel carrier are bolted together at the required 

torque as shown in Figure 6.15. The assembly was heated until steady-state 

conditions were achieved. By controlling the heater power, three temperatures 

temperature levels were achieved, in the regions of approximately, 80, 115 and 

1700C. Figure 6.19 shows the 8 temperatures logged during a typical heating cycle. 
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Temperatures are logged at 0.25 Hz. The criteria for steady-state is a temperature 

change of less than 0.05°C after 400 seconds. 
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Figure 6.19 The typical temperature conditions, logged during experiment, showing 
three steady-state levels across the interface 

Figure 6.20 shows the average steady-state temperatures at the eight points for the 

first test steady-state temperature of 80°C. The temperatures are averaged from 100 

consecuti ve temperature values logged at 0.25 Hz. The distance of the thermocouple 

measurement from the interface is plotted on the x-axis of the graph. The 

temperature gradient at the disc (dT/dx) is 78.9°C/m and at the carrier dT/dx is 

191.3°C/m. The temperature gradients are proportional to the conductivity of the 

material and the steeper gradient of the carrier is a result of its lower conductivity. 

The temperature drop at the interface is measured at the interface line shown on the 

graph; a temperature drop (LlTint) of 1.3°C is shown. Heat flow through the 

components is calculated from dT/dx. The Rcond value is calculated using LlTint. 
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Figure 6.20 Average temperatures at the CV disc/wheel carrier interface 

From the slope of the temperature distribution across the disc, shown in Figure 6.20, 

equation (6.1) gives a value, for the heat flow though the disc/wheel carrier interface, 

of 4140 W/m
2

. With the temperature drop at the interface equation (6.6) and (6.3) 

give an ReoM value of 0.0029 m2K/W, or in the form of h eond, 344.8 W/m2K. The h cond 

value will be used to compare interface conditions and applied to the numerical brake 

model during FE analysis. 

6.5.3 The Influence of Interface Pressure and Temperature 

Experiments have been conducted to examine the change in h cond with contact 

pressure and temperature. A total of 15 tests were performed at three temperatures, 

each test requiring one day to perform. The disc used in the test was new and had a 

fine turned, machine finish (Ra = 2 J,1m), as shown in Figure 6.17(b). The carrier had 

been in service and some corrosion had formed from moisture penetration at the OD 

of the interface (Ra = 1 - 3.3 J,1m). The fixing bolts were tightened to six torque 

levels, all bolts to the same torque, gradually increasing from 50 to 300 Nm as shown 

in Table 6.3, the maximum value corresponding to the nominal bolt tightening 

torque. 

Figure 6.21 shows the hcond values for the two positions (close to the bolt and 

between the bolts), at the three temperature ranges and six pressures. It can be seen 
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that hcond ranges from 2800 to 11400 W/m2K, increasing with the increase in contact 

pressure and temperature. Some results are scattered but the trend is a linear increase 

with pressure. The tendency is for hcond to increase with temperature. The graph also 

indicates that hcolld is higher in the proximity of the bolts, this is seen throughout the 

pressure range tested and shows that contact pressure is higher in these regions 

(confirmed in Section 6.3). 

When the results shown in Figure 6.21 are extrapolated to zero interface pressure, the 

hcond values for the positions at and between the bolts converge to almost equal 

values (around 2333 W/m2K). This is expected because at zero interface pressure, the 

pressure distribution is uniform. 
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Figure 6.21 Thermal contact conductance at standard CV disc/carrier interface 

The hcond function for the standard interface of the disc and wheel carrier, defining its 

relationship with contact pressure, can be calculated by the equations derived from 

Figure 6.21, showing a linear trend: 

Between the bolts hcond = 76 xlO-6 Pavg + 2098 

At the proximity of the bolts hcond = 141 xlO-
6 Pavg + 2287 

Where Pavg is average contact pressure in N/m
2

, 

(6,11) 

(6.12) 
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The local interface pressure results of the FE analysis presented in Figure 6.9 for the 

positions (1) at the bolt, and (2) between the bolts (corresponding to the 

thermocouple positions) are plotted against the average measured h cond values given 

in Figure 6.21. This gives a function for the local h cond value as a function of local 

interface pressure as shown in Figure 6.22. 
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Figure 6.22 Local h cond change with local interface pressure for the standard CV 
disc/carrier interface 

100 

The hcond function for the standard interface of the disc and wheel carrier, defining its 

relationship with local contact pressure (P), can be calculated by the equation derived 

from Figure 6.22, showing a linear trend: 

Local value h cond = 1 xlO-4 P + 1560 (6.13) 

The results for the standard interface are in good general agreement with published 

h cond values, as shown in Table 6.7. It should be noted that there is little published 

data for h cond and the surface roughness, interface materials and clamping conditions 

are different for each value of h cond given. The highest value for hcond is for the 

aluminium interface as expected and the lowest value is given for the grey cast and 

SG iron materials with a poorer surface finish. 
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Table 6.7 Comparison of published and calculated hcond values 

Equation (6.13) Mittelbach, Vogd et at. (1994) Cengle (1988) 

hcond [W /m2K] 1760 5000 3800 

Pressure [MN/m2] 2 2 0.3 - 2.5 

Surface Finish Ra= 1-3.3 ~m Ra= 3.7 ~m Ground 

Material Grey/SG cast iron Aluminium 416 stainless steel 

6.6 Summary 

This chapter has introduced conductive heat dissipation in brakes, which in the past 

has been the least studied mode of heat dissipation from brakes. 

The brake component interface clamping bolt force has been calculated analytically 

and compared with measured results. From the total bolt force, average interface 

pressure has been calculated. A bolted interface FE model was developed and used to 

determine the pressure magnitude and distribution at the interface of the CV disc and 

wheel carrier. The FE method was then verified by placing pressure sensitive paper 

at the interface of the brake assembly and further computer scanning and analysis of 

the paper. 

Spin Rig measurement of CV disc and wheel carrier interface temperatures have 

enabled values of thermal contact resistance to be determined as a function of 

temperature and interface pressure. Over 12 Spin Rig thermal contact resistance 

measurements were conducted at three temperature ranges, requiring 15 days of 

laboratory testing. 

Analytical methods for determining bolt force compare well with measured values. 

Comparisons with the FE interface pressure results and pressure sensitive paper 

measurements showed excellent agreement. The measured thermal contact resistance 

values compare well with the limited data published, determining the parameters 

influencing conductive heat dissipation. 

Conduction cannot be neglected in brake cooling analysis and conductive heat 

dissipation for new brakes being designed can now be predicted. The FE analysis 
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conducted for new brakes in the design phase can be used to predict the thermal 

contact resistance, providing a powerful new tool for studying conductive heat 

dissipation. The phenomenon studied here is not limited to friction brake heat 

dissipation analysis; the thermal contact resistance results can be applied to similar 

multi-solid applications. Scope for further improvement to thermal contact resistance 

based on the findings of this chapter is studied in Chapter 9. 
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Chapter 7 

Radiative Heat Dissipation 

7.1 Theoretical Background 

Thennal radiation is the process by which heat is transferred from a body by virtue of 

its temperature, without the aid of any intervening medium (Kreith 1986). Radiation 

travels at the speed of light, which is a product of the frequency and wavelength of 

the radiation. Thennal radiation always encompasses a range of wavelengths. The 

amount of radiation emitted per unit wavelength varies with wavelength and is called 

monochromatic radiation. At temperatures below 2000 K the wavelength range 

covered by thermal radiation falls approximately between 0.1 and 100 J..1m. This 

range is divided into ultraviolet, visible and infrared. The wavelength for maximum 

monochromatic emissive power decreases with temperature, as shown in Figure 7.23. 
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Figure 7.23 Radiation intensity as a function of wavelength and temperature 
(Planck's Law) (Mikron Instrument Company 2002) 

A blackbody or ideal radiator is a body that emits and absorbs, at any temperature, 

the maximum possible amount of radiation at any given wavelength. It is a standard 

with which the radiation characteristics of other media are compared. The rate of 

radiation emission by a blackbody is equal to its rate of radiation absorption. The 

radiation energy emitted by a black body per unit time and per unit surface area was 

determined experimentally by Joseph Stefan in 1879 and this relation was 

theoretically verified in 1884 by Ludwig Boltzmann. It is expressed as the Stefan­

Boltzmann law, as shown in equation (7.1): 

, T4 qb = (j (7.1) 

Where q'b is the energy flux emitted by the blackbody, (j is the Stefan-Boltzmann 

constant and T is the absolute temperature at the surface in Kelvin. 
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7.1.1 Emissivity 

The emissivity of a surface is defined as the ratio of the radiation emitted by the 

surface to the radiation emitted by a blackbody at the same temperature (Cengel 

1998). Black bodies have an emissivity of one, however most objects have a lower 

value of emissivity. The value of emissivity may change with temperature and 

wavelength for different objects. The effect of temperature on emissivity is shown in 

Figure 7.24, showing that the emissivity of most metals increases with temperature. 
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Figure 7.24 Variation of normal emissivity with temperature for various metals 
(Cengel 1998) 

The emissivity values of common brake disc materials are listed in Table 7.8, 

showing that metals generally have low emissivity values, as low as 0.02 for polished 

surfaces; non-metals such as ceramics have higher values. Oxidisation causes 

significant increases in the emissivity of metals. Heavily oxidised metals can have 

emissivities comparable to those of non-metals. It is interesting to note that, for the 

highly polished cast iron surfaces, emissivity values of 0.05 to 0.07 are given for the 

temperature range 300 to 500K. For the oxidised cast iron surfaces, emissivity values 

are 0.64-0.78 (over 10 times higher) for the same temperature range. 

178 



Table 7.8 Emissivities of common metal surfaces (CengeI1998) 

Material Temperature [K] Emissivity [-] 

Aluminium Polished 300-900 0.04-0.06 

Commercial 400 0.09 

Heavily oxidised 400-800 0.20-0.33 

Iron Highly polished 300-500 0.05-0.07 

Oxidised 0.64-0.78 

Steel Polished 300-500 0.08-0.14 

Commercial 500-1200 0.2-0.32 

Heavily oxidised 300 0.81 

To determine heat losses by radiation, the values of emissivity must be known for 

each surface. Emissivity (£) values will vary for different sections of the brake disc, 

mainly between the friction surface and other areas (e.g. the hat and rim). The energy 

emimed by radiation can be determined by equation (7.2): 

(7.2) 

Where, A is the area emitting radiation, T D is the surface temperature, Too is the 

ambient temperature. 

7.1.2 View Factors 

Radiative heat transfer between surfaces is affected by the orientation of the surfaces 

relative to each other as well as their radiation properties and temperatures, as 

illustrated in Figure 7.25. To account for the effects of orientation on radiative heat 

transfer, the view factor parameter is used. This is purely a geometric quantity, also 

called the shape factor, configuration factor or angle factor. The view factor from a 

surface i to a surface j is denoted by Fi~ and is defined as (Cengel 1998): 

Fi~ = the fraction of the radiation leaving surface i that strikes surface j directly 

Radiation striking surface i does not need to be absorbed by the surface. In addition, 

radiation that strikes a surface after being reflected by other surfaces is not 

considered in the evaluation of the view factors. The underlying assumption is that 
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the radiation received from a source is directly related to the angle the surface 

subtends when viewed from the source. View factors for common geometry are 

evaluated and can be found in the literature (Cengel 1998). 

Surface 1 
Surface 2 

Point 
source 

Figure 7.25 Radiation heat exchange between surfaces (CengeI1998) 

View factors must be considered when modelling heat transfer by radiation for the 

brake disc surface. Heat radiating from the surfaces will be absorbed and reflected by 

adjacent surfaces. 

7.2 Surface Emissivity of Brake Discs 

Measuring the emissivity of the brake surface and the radiative heat dissipation, is 

connected with numerous problems, including non-uniform temperature distribution 

and constant surface condition alteration (such as wear, pad deposits) during the 

brake application. 

7.2.1 Literature Data 

For the cast iron disc surface, different values for emissivity are quoted in literature, 

some of which are presented in the Table 7.9. 

Table 7.9 Cast iron brake emissivity data 

Author Emissivity 

Limpert (1975) 0.55 

Noyes and Vickers (1969) 0.80 

Grieve, Barton et al (1998) 0.40 

Eisengraber, Grochowicz et al (1999) 0.15 - 0.90 
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Limpert (1975) has recommended an emissivity value of 0.55 for cast iron discs and 

Noyes and Vickers (1969) assumed all emissivities to be 0.8 with a background 

temperature of 38°C. No information was given on how emissivity values were 

determined. 

From thermal imaging work carried out on a brake dynamometer, Grieve, Barton et 

al (1998) used an emissivity value of 0.4 for cast iron and MMC rotors. Eisengdiber, 

Grochowicz et al (1999) showed that the surface emissivity needed to be constantly 

corrected during the braking application. Comparing IR sensor measurements with 

thermocouple readings to determine emissivity, values varied between 0.15 and 0.9 

in different dynamometer tests. During a drag test, emissivity values increased from 

0.4 to 0.7. 

7.2.2 Emissivity Measurements 

As shown in Section 7.2.1 values the for surface emissivity of brake discs published 

in literature are limited, inconsistent and sometimes contradicting. A series of 

experiments aimed at providing accurate emissivity measurements for brake cooling 

analyses have been developed. To determine emissivity and radiative heat transfer 

coefficients, temperature measurements have been conducted on metal surfaces using 

infrared sensors and thermocouples. Comparing thermocouple measurements with 

infrared sensor measurements, the emissivity setting of the infrared sensor was 

adjusted until the infrared sensor measurement equalled the thermocouple 

temperature values. This emissivity value is then taken as the surface emissivity of 

the material. 

Three experiments were conducted, one for the study of a new-machined cast iron 

disc at high temperature, the second measured a mild steel plate at high temperature, 

and the third measured the cast iron disc at lower temperatures. The third test was 

conducted at lower temperatures to avoid changing the surface properties due to high 

temperature oxidisation and discolouration of the surface. 
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Experiment 1 

A section of grey cast iron brake disc was heated with a gas flame; temperature 

measurements were taken on the opposite face using a thermocouple and infrared 

sensor, see Figure 7.26. The Raytec infrared sensor was used for the experiment (see 

Chapter 3) mounted to a camera stand. The measuring head was 200 mm away from 

the plate surface (x) giving a measurement spot diameter of 7 mm. The ground disc 

surface blackened at high temperature, the effect of emissivity setting on infrared 

sensor temperature measurement is shown in Figure 7.27. The infrared readings for 

emissivity set to values of 0.2, 0.6 and 1.0 are compared with a thermocouple 

temperature measurement. Figure 7.27 shows good correlation for the blackened disc 

surface when emissivity is approaching a value of 1. 

-. 

Brake disc section 

Infrared 

Thermocouple 

Figure 7.26 Gas flame heating of brake disc and com~ined i~fr~~d and 
thermocouple temperature measurement for assessIng emISSIvIty 
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Figure 7.27 Infrared sensor and thermocouple measurement of grey cast iron disc 
surface temperature 

The brake disc section was heated to 550°C and the temperature measured during the 

cooling phase to avoid hot spots. The surface temperature was measured 

simultaneously by the infrared sensor set to an emissivity value of 0.99 and the 

thermocouple. Figure 7.28 shows that the infrared sensor is in very good agreement 

with the thermocouple, this confirms the emissivity value 0.99 for the material 

surface. The infrared sensor shows slightly higher temperature readings than the 

thermocouple above 250°C, the temperature difference increases with the 

temperature reading. This indicates that the emissivity has increased during the 

cooling stage (see Figure 7.24), demonstrating the complexity of setting correct 

surface emissivity. 
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Figure 7.28 Thennocouple and infrared sensor measurement comparison for grey 
cast iron disc surface (t =0.99) 
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Experiment 2 

The two-piece infrared sensor supplied by Calex (see Chapter 3) was used in 

conjunction with the Spin Rig. This sensor type is more suited to laboratory tests 

within the wheel assembly because of its small measuring head size (14 mm diameter 

x 28 mm long). The emissivity value is also adjustable with this sensor and must be 

set correctly for accurate temperature readings. The infrared sensor provides a 

voltage output that must be calibrated for temperature measurement. A mild steel 

plate was heated with a gas flame to 500°C, as shown in Figure 7.26 (with a plate 

instead of disc section). The plate was then allowed to cool; thermocouple and 

infrared sensor measurements were taken simultaneously. Figure 7.29 shows the 

linear voltage output of the Calex infrared sensor when measuring the surface 

temperature; emissivity was set to 0.9, which is in the range recommended by the 

manufacturer (see Table 7.10). The sensor head was placed 25 mm from the plate 

surface, giving a surface measurement diameter of 12.5 mm. The voltage output 

curve was used to define temperature output. 

Table 7.10 Typical emissivity values for metals, Calex Electronics Ltd. 

Materials Emissivity 

Aluminium 

Un-oxidised 0.02 - 0.1 

Oxidised 0.2 - 0.4 

Alloy A3003, oxidised 0.3 

Roughened 0.1- 0.3 

Iron, Cast 

Oxidised 0.6 -0.95 

Un-oxidised 0.2 

Steel 

Ground sheet 0.4 - 0.6 

Polished sheet 0.1 

Oxidised 0.7 -0.9 
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Figure 7.29 Calex infrared sensor voltage output, € = 0.9, oxidised mild steel 

Experiment 3 

Infrared measurements were conducted on the Spin Rig for a new CV disc using the 

Calex infrared sensor. The disc was heated using the Spin Rig air heater (see Chapter 

3) and then allowed to cool at a constant rotational speed. Emissivity is set to 0.2 as 

recommended by the manufacturer, see Table 3.12, and the sensor head placed 4.5 

rnm from the surface giving a measurement spot diameter of 2.25 mm. Figure 7.30 

shows the linear voltage output of the Calex infrared sensor for a temperature range 

of 30 to 100°C for the machined grey cast iron surface. It can be seen that the voltage 

output is a different function to that shown in Figure 7.29. It was found that the 

voltage output also changes with distance from the disc surface and surface 

condition. This can be due to atmospheric absorption and surface emissivity. 
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Figure 7.30 Infrared sensor voltage output during CV disc temperature rise, E = 0.2 

After calibration of the infrared sensor, the temperature output of the infrared sensor 

is compared with the rubbing thermocouple during the CV disc heat and cool cycle 

(at 500 min-I) as shown in Figure 7.31. Good correlation is achieved between the 

infrared sensor and the rubbing thermocouple temperature measurements. It can be 

seen from the plot that the infrared sensor is sensitive to the electric heater operation 

during the heating cycle, the temperature output being noisier than during the cooling 

phase. However, the infrared sensor readings compare reasonably well to the 

thermocouple readings during the heating phase, and the readings are much closer 

during the cooling phase. 
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Figure 7.31 Heating and cooling (at 500 min-I) of ev disc sutface, infrared and 
thermocouple measurement, E = 0.2 

Discussion of Results 

The emissivity value corresponding to the new machined grey cast iron disc sutface 

was 0.2 at temperatures between 20 and 200oe. For the oxidised 'blackened' disc 

sutface, the emissivity value was much higher, around 0.99 for the wide temperature 

range between 20 and 600oe, as summarised in Table 7.11. The use of the infrared 

sensors proved difficult when compared to the rubbing thermocouple, each infrared 

sensor requiring individual calibration and the distance of the measuring head from 

the sutface affected the output. Problems of emissivity changing with temperature 

are also difficult to compensate for. Infrared devices that are more sophisticated (and 

expensive) may prove more suitable. The infrared sensors used were particularly 

useful for measurement of uneven sutfaces and the determination of non-transient 

emissivity values. Therefore, rubbing thermocouples are more suitable for Spin Rig 

measurements, when compared with infrared sensors, which were originally 

considered more useful for Spin Rig measurements. 

Table 7.11 Measured emissivity values for cast iron, 20 - 200
0 e 

Surface condition E [-] 

New machined (Ra = 2.0) 0.20 

Oxidised (blackened) 0.99 
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7.2.3 Radiative Heat Transfer Coefficients 

For comparison with other modes of heat dissipation, radiative heat dissipation can 

be defined as a radiative heat transfer coefficient (hrad): 

ca('l4 _T4) 
h = D 00 

rad T -T 
D 00 

(7.3) 

Which can be further reduced to: 

(7.4) 

Evaluation of equation (7.4) yields an hrad value as illustrated in Figure 7.32, which 

shows h rad for an emissivity of 0.55. The value of h rad increases rapidly at higher 

temperature when compared to convective and conductive heat transfer coefficients, 

which are nearly constant with temperature (as shown in Chapters 5 and 6). The 

curve show that significant radiative heat dissipation occurs even at low 

temperatures; at 100°C, hrad is equal to 5 W/m2K, comparable to natural convection. 

At 400°C, radiative heat dissipation becomes much more significant with h rad equal 

to 16 W/m2K and at 600°C, h rad rises to 31 W/m2K. 
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Figure 7.32 The hrad increase with surface temperature for € = 0.55 
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In order to observe how radiative heat dissipation changes during a brake application, 

Figure 7.33 shows the calculated hrad values for the CV disc surface for the disc 

operating temperature range. The hrad values are calculated using equation (7.3) and 

are based on measured and referenced emissivity values. The dashed line shows the 

hrad values for a brake disc during a drag brake application, with emissivity change as 

per Eisengraber, Grochowicz et al (1999), see Table 7.9. The three solid lines 

indicate h rad for fixed values of emissivity as indicated in Table 7.11 and Table 7.9. 

The curves show that significant radiative heat dissipation occurs even at low 

temperatures; at 100°C, hrad is equal to 4 W/m2K for an emissivity of 0.55. At 400°C, 

radiative heat dissipation becomes very significant, h rad values vary between 6 

W/m2K for the lowest emissivity (0.2) and 27 W/m2K for the highest emissivity 

considered (0.9). At 600°C, h rad varies between 12 and 52 W/m2K, for the lowest and 

highest emissivity values respectively. 

The results illustrate the importance of correct emissivity values for reliable brake 

cooling prediction. Emissivity values will vary for different disc sections, mainly at 

the friction surface and the oxidised hat and rim areas. The friction surface 

experiences constant surface condition alteration during a brake application or series 

of applications. 
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7.3 FE Modelling of Radiative Heat Dissipation 

Radiation functions of the FE modelling package, SDRC I-DEAS TMG, enable heat 

transfer by radiation within the FE model. Radiation can be dissipated to ambient or 

adjacent surfaces. Upon a radiation request, TMG will detect enclosures, calculate 

view factors, perform shadowing checks, calculate diffuse and reflected radiative 

exchanges and compute radiative heating within the model. A surface layer of thin 

shell elements are required, defined with an emissivity value between 0 and 1. 

All radiative exchange is calculated from one element to another element within an 

enclosure. If the model itself does not define an enclosure, then a Space Enclosure 

entity is created to absorb the energy lost from the model. In effect, a Space 

Enclosure creates one large tetrahedral element that encloses the model and the space 

around it. The software creates this element during the solve and deletes it afterward. 

All elements that have an unobstructed view of each other will have their view 

factors computed first (see Section 7.1.2). Then, a shadowing check is performed on 

the remaining elements using element subdivision to evaluate what portion of the 

element's surface projection on another element's surface is obstructed by an 

obstacle. Radiation calculation can be very expensive in terms of computer time and 

memory requirements. To reduce expense surfaces that are known to radiate heat to 

each other can be grouped together, reducing view factor calculation. 

7.3.1 Analysis of Modelling Methods 

A comparison of FE modelling methods have been performed on a CV disc to 

optimise the analysis procedure and reduce computing costs. The ventilation channel 

is an enclosed cavity (except for the inlet and outlet), therefore radiation emitted 

from the vane surfaces will be absorbed by the opposite surfaces, effectively 

cancelling out the effect of radiation. 

The symmetry of a grey cast iron brake rotor with a standard radial vane design 

allows for a 6° section of the disc to be considered, containing half the vane 

thickness and half of the ventilation channel between the vanes, see Figure 7 .34(b). 

To ensure that modelling only half a ventilation channel provides accurate prediction 
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of the disc's temperatures the 6° model is compared with the 12° model, which 

contains a complete ventilation channel, see Figure 7.34(a). Both models have the 

same boundary conditions and the same heat flux applied; the material properties 

used are given in Table A3. 

Convection coefficients were calculated using equations for convective heat transfer 

as discussed in Chapter 5 for the standard CV disc. A change was made to the inside 

of the ventilation channel of the 6° segment; radiation in this area was switched off 

due to the enclosed nature of the ventilation channel. A bi-linear heat flux (discussed 

in Appendix C) was applied to the rubbing surface representing a 0.5 second brake 

application time and a 2.83 second total braking time, the cycle time was 60 seconds. 

The power applied was equivalent to a 16.5 tonne lorry, with a front to rear braking 

distribution of 50:50, decelerating at 0.7g from 90 kmlh on a level surface. 

Emissivity was set at 0.20 for the friction surfaces and 0.9 for the remaining surfaces 

(based on the values given in Table 7.11 for ground and oxidised cast iron). 

The two models are shown with temperature contours in Figure 7.34. The 12° 

segment model (a) contains 4464 solid elements (eight node bricks), 2032 thin shell 

elements (4 node elements) and 6090 nodes. The 6° segment model (b) contains 

2232 solid elements (eight node bricks), 966 thin shell elements (4 node elements) 

and 3410 nodes. Boundary conditions are applied to thin shell elements. The I-DEAS 

TGM was used for all analysis and I-DEAS was used for pre- and post-processing 

the analysis. 
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(a) (b) 

Figure 7.34 Whole (a) and half (b) ventilation channel CV disc FE model 
comparison of surface temperatures 

The results shown in Figure 7.35 are the average maximum and minimum nodal 

temperatures during 20 repeated braking stops. The 6° segment gives only slightly 

higher temperatures, most probably the result of neglecting heat radiating from the 

inlet and outlet of the ventilation channel (radiation scatter). The maximum 

temperature difference, 13°C (958 - 945°C), is obtained after 1140 seconds, giving a 

maximum error of 1.4%. Considering the small temperature difference, these 

analyses showed that modelling only half a ventilation channel provides a reasonably 

accurate model. The run time for the half ventilation channel model was 25% shorter 

than that of the whole ventilation channel model. 
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7.3.2 Secondary Radiation 

Total heat dissipation from the disc by radiation is defined by local temperatures, the 

emissivity of the surfaces and the amount of heat radiated (reflected) back to the disc 

from the surrounding components. The heat radiated back to the disc from 

surrounding components and the influence on disc temperatures need to be 

investigated. A solid CV disc has been modelled, see Figure 7.36, during a repeated 

brake application. The temperature predictions were compared for the disc only (with 

radiation dissipating to atmosphere) and the model including the wheel assembly, 

which will reflect back some of the radiation dissipated from the disc. 

Wheel and 
wheel carrier 

Figure 7.36 Reflection of radiative heat dissipated from the CV disc 
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Braking from 60 to 0 kmlh at a deceleration of 5 m/s2 with a 60 second time cycle, 

was analysed using FE modelling. Between the stops, the disc is run at 277 min- l (60 

kmlh). The acceleration of the disc from the stop is linear; the 0 to 60 kmIh 

deceleration time is 8.2 s, as shown in Figure 7.37. The test begins at a disc 

temperature of 100°C from the start of the first stop. The braking energy is equal to 

a 19 tonne CV with a front to rear braking distribution of 50:50 and a rolling radius 

of 0.526 m, a .+5 mm thick solid disc is used. 
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Figure 7.37 Vehicle speed and braking power to one front disc for the first five stops 

Figure 7.38 shows the FE mesh of the CV solid disc brake assembly. The solid brake 

disc and wheel assembly are axisymmetric to a high degree (neglecting holes in the 

wheel) and therefore axisymmetric elements have been used in the model. Only the 

inner surface of the wheel carrier and wheel are meshed to reflect radiation, zero 

thickness axisymmetric shell elements are used, and therefore do not conduct any 

heat. Grey cast iron temperature dependent disc material properties were used, as 

listed in Table A2. The mesh consists of 128 axisymmetric shell elements, 652 

axisymmetric solid elements and a total of 759 nodes. 

The boundary conditions were applied to surface shell elements. Convection was 

modelled by applying an average h conv value of 16 W/m2K to all surfaces except at 

the disc/hub and wheel carrier interface surfaces. Conduction to the hub and wheel 

carrier was modelled by applying an average hcond value of 92 W/m
2
K to interface 

surface. Radiation was modelled on all free surfaces except the disc/hub and wheel 

carrier interface surfaces. Temperature dependent emissivity values from 0.4 to 0.7 
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were used for the disc friction surfaces and an emissivity of 0.9 was used for the 

remaining disc and inner wheel assembly surfaces (the h' h '" I 19 eInlSSlvlty va ue 

representing heavily oxidised steel covered by brake dust). The temperature of the 

inner wheel carrier and wheel surface was kept constant, as emissivity will change 

very little during the brake application. A maximum heat flux of 2.1 MW/m2 was 

applied to the rubbing surface representing the braking duty. 

Figure 7.38 Axisymmetric FE mesh of the CV solid disc brake assembly 

The route simulation was run for eleven repeated brake applications with (as shown 

in Figure 7.38) and without the wheel carrier and wheel modelled. Figure 7.39 shows 

the predicted disc bulk temperatures of the simulation. It can be seen that initially 

there is no effect from radiation reflection, however after the 4th stop the radiation 

reflection model shows a higher disc temperature. The temperature increase becomes 

greater as the disc temperatures rise and the effects are pronounced above bulk 

temperatures of 350°C. After the 11th brake application the bulk temperature of the 

radiation reflection model is 20°C higher than the disc only model. 
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Figure 7.39 Radiation reflection effect on CV solid disc bulk temperatures during 
repeated brake applications 

The results show a distinct reduction of the heat dissipation and higher disc 

temperatures due to emitted radiation being reflected back to the disc by the wheel 

assembly. The effect is more distinct than the use of a 6° segment ventilated disc 

model as opposed to a full ventilation channel model (shown in the previous section). 

It should be noted that a very high emissivity value was used (0.9), in some cases 

very low emissivity values are possible. A new aluminium wheel assembly 

emissivity can be in the region of 0.1 (Table 7.10) causing much more radiation 

reflection to take place, further increasing disc temperatures. 

7.4 Summary 

The theoretical background of radiation has been discussed, in particular the 

parameters that define emissivity and reflection. Radiative heat transfer coefficients 

have been used to study the relationships of radiative heat dissipation with 

temperature and surface conditions. 

Radiative heat dissipation was studied experimentally on the Spin Rig by measuring 

brake temperatures using two types of infrared sensors and compared with 
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thermocouple temperature measurement. Discs temperatures were measured 

simultaneously using thermocouples and infrared sensors during the heating and 

cooling stages. Several disc and surface conditions were tested throughout the disc 

operating temperature range and emissivity values evaluated. 

FE modelling methods have been investigated and the ventilated disc design has 

been considered in respect of the radiative heat loss at the ventilation channels and 

radiation reflected back to the disc by the CV wheel assembly. 

Published emissivity values used for brake temperature prediction have revealed that 

most authors in the past have assumed constant emissivity for brake thermal 

modelling. However, a wide range of emissivity change during a brake application 

has been recently published, and the values of emissivity for the disc friction surface 

during a drag baking application are proposed. It has been shown that this is very 

important for brake heat dissipation analysis and cannot be neglected. 

The advantages of infrared temperatures sensors were evaluated with the calibration 

requirements and necessity of correct emissivity setting. Thermocouples have been 

found to be more suitable for Spin Rig brake temperature measurements, however 

more expensive and sophisticated infrared sensor equipment may be more 

straightforward to use. 

From the extensive FE modelling investigations, brake disc model complexity has 

been reduced along with analysis time. Reflection within the wheel assembly was 

found to noticeably reduce radiative heat dissipation from the disc. Disc bulk 

temperatures are shown to be higher when radiation reflection is modelled. 

Radiation cannot be neglected due to its substantial influence at high temperatures 

and low rotational speeds. The change of emissivity during braking is an important 

conclusion. Using the developed modelling methods and proposed transient 

emissi vity values will achieve efficient and more accurate brake temperature 

prediction. 
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Chapter 8 

Cooling Performance Simulation and 

Validation 

8. 1 Introduction 

The heat dissipation from friction brakes has been studied in previous chapters by 

independently considering each mode of heat transfer; convection, conduction and 

radiation. Ventilated brake disc airflow has also been considered separately. The 

objective of this chapter is to bring all this research together, combining the modes of 

heat transfer to define their cumulative contribution to brake cooling. Real service 

duties of commercial vehicles (CV) and TGV trains are modelled. The model 

predictions are compared with experimental dynamometer test results, enabling the 

boundary conditions defined in previous chapters to be verified. The validated 

modelling methods will be used for cooling optimisation modelling in Chapter 9. 

8.2 Modelling Methods 

Simulation results have already been presented in previous chapters, however it is 

considered more suitable for the details of modelling methods to be given here. 

Appropriate finite element model representation will reduce effort required for model 

development, computing power, time and cost. The disadvantages of model 
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simplification include, the difficulty 'to picture' the model and sometimes the loss of 

peak values that may occur in simplified areas (Mottram and Shaw 1996). Therefore, 

one must be careful to ensure that the modelling techniques do not affect the required 

accuracy. 

8.2.1 Software Packages 

Two computer packages were available for use, SDRC I-DEAS-8 TGM and 

ABAQUS-5.9; both solve non-linear and transient heat transfer processes including 

conduction, radiation and free and forced convection. To choose the most suitable 

package for the project, an identical thermal model of a CV brake disc segment 

(described in Chapter 7) was solved using each package. The solution was transient, 

included distributed heat flux input and heat dissipation by convection, conduction 

and radiation. It should be noted that SDRC I-DEAS was used for pre- and post­

processing of both the analyses because of its far superior solid modelling and results 

analysis facilities. This required the element mesh to be imported from SDRC I­

DEAS to ABAQUS for solving by ABAQUS and after the solve it was necessary to 

export the results back to SDRC I-DEAS. 

The computer time to solve the model using ABAQUS was twice that of SDRC I­

DEAS. However, the run time cannot be directly compared as ABAQUS could only 

be run on a networked computer workstation, as opposed to SDRC I-DEAS, which 

was available on a more powerful stand-alone computer workstation (SGI-320). Very 

similar temperatures were predicted by both methods with temperature differences of 

less than 3°C. Therefore SDRC I-DEAS was chosen as the primary modelling 

package for this thesis taking advantage of using a single package, the speed, 

availability and reliability of a standalone installation. 

8.2.2 Model Solution 

Options for the method used by SDRC I-DEAS TGM to solve the transient thermal 

model must be selected by the user. There are four available solutions methods; 

Backward, Forward, Forward - Backward and Exponential Forward. 
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The Backward solution method has been used during the analysis, it is an implicit 

differencing scheme, where the element heat balance equations are evaluated at the 

end of the integration time step. Because the method is implicit, all element 

temperatures must be solved iteratively at every time step; this makes it less efficient 

than the Forward method for a given time step. However, the Backward technique is 

unconditionally stable (will not diverge) for any value of integration time step. This 

method is recommended for most applications (SDRC 2000); it is the most reliable 

and easy to use option. It is more accurate than the Forward-Backward method under 

conditions of rapid temperature change, such as those experienced during single or 

repeated brake applications. 

Transient thermal models are solved by integrating over discrete time intervals. The 

Time Step is the time "mesh" for the transient solution. Smaller values (a finer mesh) 

will always give more accurate results at the price of increased computation time. 

Model solve time is inversely proportional to the size of the Time Step. Large or 

rapid temperature changes require a finer time step (SDRC 2000). 

As a guide to the most suitable time step to be used with the implicit method, the 

well-known stability criterion, the mesh Fourier number (Fo) has been employed, 

expressed by equation (8.1) (Patankar 1980): 

(8.1) 

Where ~t is the time step value, ~x is the minimum element size and ais the thermal 

diffusi vity of the material. From this initial value, the time step was increased when 

temperature changes were small or slow, i.e. during the cooling phase and low 

braking power input (heat flux). 

8.2.3 Model Optimisation 

In general, an accurate solution will only be obtained when the mesh is sufficiently 

fine. But there is no need to define a fine mesh where temperature (n varies slowly 

with distance (x). A fine mesh is required where the T -x variation is steep, therefore 
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the mesh spacing should directly relate to the T change with x. The mesh may be 

coarse in areas where detailed results are not necessary and the thermal behaviour is 

found to be non-influential to the rest of the model. The design of a suitable mesh for 

the FE models of this thesis has been guided by qualitative expectations and 

modification of preliminary coarse mesh solutions. The use of a non-uniform mesh 

enabled the computing power to be deployed effectively. 

The choice of element types can be optimised; the higher the number of nodes 

present on an element, the more computer effort required. For pure thermal analysis a 

linear element is recommended (SDRC 2000), as a parabolic element will increase 

computational time without improving results. 

The choice of an adequate geometry description is the most effective method of 

simplification. The physical problem being modelled may allow a reduction in the 

number of dimensions. If the problem has symmetry of material properties and 

boundary conditions, geometric symmetry may be exploited (Mottram and Shaw 

1996): 

If it is assumed that heat is generated uniformly over the entire disc friction surface 

and not just in the area of the friction pad, a uniform heat flux can be applied over the 

friction surface of the disc. Morgan and Dennis (1972) suggest previous work has 

shown that although large circumferential variations in temperature do exist in a disc 

brake, the mean surface temperature and bulk temperature are not affected by 

neglecting these circumferential variations. 

The circumferential symmetry of the brake disc has been utilized throughout the FE 

thermal analysis of this thesis. For the solid disc a 2-D axisymmetric model has been 

used (Chapter 7). This significantly reduces run time and storage requirements 

allowing a more refined mesh to be used if required. The ventilated CV brake disc 

incorporates cooling vanes and channels that only allow for circumferential 

symmetry for each adjoined vane and cooling channel (see Figure 7.12 in Chapter 7), 

permitting modelling of an angular segment of 6°. For the ventilated TOV railway 

disc, an angular segment of 22.5° was analysed to account for the ventilation pillars 

and mounting lugs of the disc design, see Figure 8.11. 
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Problems may occur if the 3-D segment CV ventilated disc model is to be further 

simplified in order to increase speed and reduce model size. A 2-D axisymmetric 

model, shown in Figure 8.1, required the vane to be removed and thermo-coupling of 

the inboard and outboard cheeks, convective cooling in this area must also be 

increased to account for the reduced vane surface area dissipating heat (the vanes 

being removed). With the vanes removed the disc mass is substantially reduced, 

which in tum reduces the thermal capacity of the disc, causing further errors and 

must be adjusted accordingly. 
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Figure 8.1 Thermal coupling of CV disc cheeks for 2-D axisymmetric representation 

Figure 8.2 shows a comparison of the 2-D axisymmetric and 3-D segment models for 

34 repeated braking applications. Identical results could not be achieved, due to 

inaccurate modelling of the vane and the reduced thermal capacity of the disc (shown 

by high temperatures during heat build up between 0 to 1000 seconds) but give the 

same steady-state condition. From the findings of this investigation it was decided to 

limit the 2-D axisymmetric modelling method to solid disc analysis only, with 3-D 

modelling for all ventilated discs. 
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Figure 8.2 Axisymmetric and 3-D model temperature prediction comparison 

8.3 Commercial Vehicle Route Simulation 

To enable the prediction of brake disc temperatures for real vehicle servIce 

conditions, route simulations have been performed. A CV route simulation has been 

designed for the anti-coning brake disc (see Chapter 3). The disc model, which 

included all thermal boundary conditions taken from previous results, is compared 

with dynamometer test results. 

8.3.1 Duty 

The fade test comprises of repeated brake applications from 60 to 0 kmlh at a 

deceleration of 5 rnIs2 (braking time is 3.33 seconds) with a 60 second time cycle. 

Figure 8.3 shows the vehicle speed and braking power to one front disc for the first 

five stops. There is no forced air cooling (cross flow) and between the stops the disc 

is run at 277 min-1 (60 krnIh). The acceleration of the disc from the stop is linear; the 

o to 60 krnIh acceleration time is 8.2 s. The initial disc temperature is 100°C, at the 

start of the first brake application. The braking energy represents a 19000 kg CV 

with a front to rear brake force distribution of 50:50, and a rolling radius of 0.526 m. 
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Figure 8.3 Vehicle speed and braking power to one front disc for the first five stops 

8.3.2 FE Modelling 

Figure 8.4 shows the mesh for a 6° section of the CV disc. The mesh consists of 

3310 solid elements, 1278 thin shell elements (for the inclusion of boundary 

conditions), and a total of 4554 nodes. Grey cast iron temperature dependent material 

properties were used in the model, as listed in Table A2. 

Convection was modelled by applying average h conv values on all surfaces except the 

disc/hub interface surface. Speed dependent h conv values were used, calculated using 

equation (5.14). A value of 17.8 W/m2K was used at the maximum speed (60 kmlh) 

and 2.8 W/m2K at the minimum speed (0 kmlh). At this stage pad and calliper 

components were not included. The friction surface area of the disc covered by the 

pad reduces the surface area available for convective and radiative cooling. This was 

outside the scope of the research and requires detailed analyses at a later date. 

Conduction to the hub was modelled by applying an average h cond value of 92 

W /m2K to disc/hub interface surface. The hcond value was calculated using equation 

(6.6) and Spin Rig thermal contact resistance test data (see Chapter 6). The measured 

heat flux (14518 W/m2) at the interface (at 170°C and 300 Nm) was used with the 

ambient air temperature (20°C). 

Radiation was modelled on all free surfaces except the vane and disc/hub interface 

surfaces. An emissivity change from 0.4 - 0.7 was used for the friction surfaces. 

These values are based on measured values and 'enhanced' by using measurements 
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from Eisengraber, Grochowicz et al. (1999). The change of emissivity during the 

brake application is shown in Figure 7.11. The remaining surfaces were given an 

emissivity value of 0.9. 

A bi-linear heat flux (see Appendix C) was applied to the rubbing surface 

representing the braking duty, with a 0.5 second peak braking power time. Equation 

(C2) was used and a maximum heat flux value of 2.106 MW/m2 calculated. 

Disclhub interface 

Friction surface 

Figure 8.4 FE mesh of anti -coning CV brake disc 

The route simulation was run for eleven repeated brake applications. Figure 8.5 

shows the predicted disc temperatures for the repeated brake simulation, four nodal 

temperatures are shown; their positions within the model are given in Figure 8.4. The 

fade test applies a very high energy over a very short period, resulting in high peak 

temperatures being predicted. Bulk disc temperatures are in the region of the value 

shown for node 2195. It can be seen that the disc temperatures begin to plateau with 

maximum peak brake temperatures reaching 600°C. 
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Figure 8.5 FE simulation temperatures for the brake fade test 

(temperature dependent material properties) 

700 

To investigate the effect of fixed disc properties on the FE temperature predictions, 

an analysis was run with modified fixed material properties, shown in Table A3. The 

results are presented in Figure 8.6. The temperature predictions are lower than for the 

temperature dependent model. After eleven stops the difference is 35°C. This is a 

result of the higher specific heat value used throughout the disc temperature range, 

causing lower temperature rise. Temperature dependent values of specific heat are 

40% lower at 1000 when compared to the value at 600°C. The temperature dependent 

value of conductivity reduces with temperature, causing higher surface temperatures 

and combined with increasing emissivity should provide greater heat dissipation for 

the temperature dependent material properties model, but the effect is not so 

predominant as that of the specific heat values. 
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Figure 8.6 FE simulation temperatures for the brake fade test 

(fixed material properties) 

8.3.3 Analytical Temperature Prediction 

700 

Using equation (CI7), (CI8) and (CI9) from Appendix C the analytical temperature 

predictions of bulk disc temperatures are shown in Figure 8.7 for the repeated brake 

application. Fixed material properties were used given in Table A3 and the cooling 

parameters are taken from Spin Rig cooling measurements of Chapter 5. Equation 

(CI7) predicts the brake temperature after a series of identical stops. Equation (CI8) 

and (CI9) predict temperatures before and after the stop. The bulk temperatures of 

the analytical functions closely resemble the FE analysis results. Equation (CI6) 

predicts temperatures approximately 70°C lower than equation (CI9). 

207 



700 

600 

500 

v 
~ 400 

g 
~ a. 
i 
.:; 300 
:; 
III 

200 

100 

- Equation C17 

- Equabon C18,19 

O~----~~----~--____ ~ ______ ~ ______ ~ ______ ~ ____ ~ 
o 100 200 300 400 500 600 700 

Tim. [$] 

Figure 8.7 Analytical bulk temperature prediction of route simulation fade test 

• Equation (C17) (Newcomb and Spur 1967) 

• Equation (C 18, C 19) (Limpert 1999) 

8.3.4 Dynamometer Test 

Dynamometer tests were conducted at ArvinMeritor UK (see Chapter 3). The test is 

identical to modelled fade test. There was no cross flow in the dynamometer test, but 

an extraction fan is employed to remove brake dust particles, which is necessary for 

health and safety reasons. Figure 8.8 shows the friction surface temperatures 

measured during dynamometer testing. 

Temperatures were measured using bronze, bead type thermocouples (see Chapter 

3), one placed at the mean radius of the each friction surface. From Figure 8.8 it can 

be seen that temperature rise during the brake application is lower than expected for 

such a high deceleration. The position, adjustment and high thermal contact 

resistance of the rubbing thermocouples is most probably the cause of lower than 

expected measured temperatures. Also the large difference in temperature between 

the inboard and outboard friction faces is unexpected and can only be explained by 

poor rubbing thermocouple contact or uneven friction pad application. It should be 

noted that the test was performed with extremely worn friction pads that had been 
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used for previous high power braking tests. The main consl'derat ' C Ions lor temperature 
measurement and prediction are investigated in Section 8.5. 
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Figure 8.8 Repeated braking dynamometer test, friction surface temperatures at 
mean radius 

8.3.5 Results Comparison 

700 

A comparison of FE (fixed and temperature dependent material properties), 

dynamometer and analytical results are presented in Figure 8.9. As mentioned before 

the dynamometer results show lower temperatures than the FE model, in order to 

predict temperatures in the same region as the dynamometer using FE methods a 

higher hconv value was applied to the model. Higher emissivity and conductivity heat 

transfer coefficients could not be realistically increased, leaving convection as the 

variable mode of heat transfer. As mentioned previously, the dynamometer test was 

carried out with an extractor fan removing friction pad dust. The cross flow air 

velocity produced by the extractor is unknown but an increase in the convective 

cooling is expected. However, for the FE model to predict similar temperatures to 

those measured it was necessary to double the hconv values. This is unrealistically 

high, equivalent to a cross flow of 4.5 m1s (according to the hconv equation for the 

rotating disc in cross flow (Morgan and Dennis 1972). It is worth noting that Fukano 

and Matsui (1986) mentioned higher cross flow air velocities (7 m1s) for the 

passenger car brake during repeated high speed braking applications. 
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comp~ng the predicted temperatures with the test results after the first stop they are 

approxImately 50°C lower and they are in the region of 200°C lower at the end of 

eleven stops. The analytical equation (C17) shows very good agreement with FE 

results. These results highlight the problems of brake tern t pera ure measurement and 

prediction. This is discussed further in Section 8.5. 
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Figure 8.9 Comparison of measured and predicted CV disc surface temperatures 

8.4 TGV Route Simulation 

A route simulation has been studied for the ventilated TGV railway disc, this is a 

drag application to evaluate disc braking and thermal performance. Part of the test 

schedule is shown in Appendix E. Again, the disc model included thermal boundary 

conditions taken from previous results and predicted temperatures are compared with 

dynamometer test results. 

8.4.1 Duty 

The simulation comprises of a drag brake for 20 minutes at a vehicle speed of 60 

kmlh (358 min-I) with a braking power equal to 21 kW, see Figure 8.10. After the 

drag application, the disc is allowed to cool for 20 minutes at a constant rotational 
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speed (358 min-I), with no forced air cooling (cross flow). The drag braking power 

corresponds to a load of 4 tonnes per disc travelling at a constant speed (60 kmlh) on 

a 3.2% gradient. 
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Figure 8.10 Drag braking power input to disc 

8.4.2 FE Modelling 

Figure 8.11 shows the element mesh for the TOV disc. Circumferential symmetry 

allowed a 22.5° section of the disc and hub to be modelled. The mesh consists of 

13894 solid elements, 5997 thin shell elements (for applying boundary conditions) 

and a total of 9514 nodes. Convection was modelled by applying the average h conv 

value of 32 W/m2K, obtained from the convective cooling measurements (see 

Chapter 5), to all free surfaces. The friction surface area of the disc covered by the 

pad and calliper reduces the surface area available for convective and radiative 

cooling. This was outside the scope of this research and requires detailed analyses at 

a later date. 

Conduction to the hub was modelled by applying an average hcond value of 2500 

W/m2K to disc/hub interface surface, using a layer of thin shell interface elements. 

The hcond value was obtained from Spin Rig thermal contact resistance tests (see 

Chapter 6), using the h cond value for a standard bolted interface with a 40 Nm bolt 

torque. Conduction from the hub to the shaft was modelled by applying an average 

hcond value of 92 W Im2K to hub/shaft interface surface. The hcond value was 

calculated using equation (6.4) and Spin Rig thermal contact resistance test data (see 

chapter 6). The pressure at the interface due to the interference fit was 50.6 MN/m
2

• 

The measured heat flux (14518 W/m2) at the interface (at 170°C and 300 Nm) was 

used with the ambient air temperature of the model (20°C). 
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Radiation was modelled on all free surfaces except the vane and hub/shaft interface 

surfaces. An emissivity change from 0.4 - 0.7 was used for the friction surfaces. 

These values are based on measured values and 'enhanced' by using measurements 

from Eisengraber, Grochowicz et al. (1999). The change of emissivity during the 

brake application is shown in Figure 7.11. The remaining surfaces were given an 

emissivity value of 0.9. 

A heat flux value of 52.1 kW/m
2 

was applied during the drag application, to the 

rubbing surface representing the braking duty with a 3 second pressure rise 

(response). The Disc material, 15CDV 6 steel was modelled with temperature 

dependent material properties, as listed in Table A4. 
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Figure 8.11 FE mesh of ventilated TGV railway disc 

Figure 8.13 shows the predicted disc temperatures for the drag braking and cooling 

simulation together with the dynamometer temperatures, five nodal temperatures are 

shown; their positions within the model are given in Figure 8.11. For clarity, 

temperatures for only one side of the disc are given; the disc cheeks temperatures are 

very similar. Figure 8.13 indicates that the disc surface temperature rises to a 
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maximum of 330°C (at the end of the drag). After 20 minutes of cooling at a constant 

speed the disc surface temperature drops to 100°C. The hub temperature remains 

relatively low throughout the brake application reaching a maximum of 60°C, a 

result of the small disc luglhub contact area. 

8.4.3 Dynamometer Tests 

Dynamometer tests were conducted with identical parameters to those modelled. The 

test was performed at SabWabco UK (see Chapter 3). Figure 8.12 shows a TOV disc 

under braking during a dynamometer test. 

Figure 8.13 shows the friction surface temperatures measured during dynamometer 

testing (TC2 and TC5). Bronze, bead type thermocouples (see Chapter 3) were used, 

one placed at the mean radius of the each friction surface. From Figure 8.13 it can be 

seen that temperature rise during the brake application is not equal for each friction 

face. The TC2 rubbing thermocouple is probably measuring temperatures in a hot 

band (appearing after 150 seconds) and TC5 is probably measuring temperatures in a 

cool band of the friction area, an example of hot banding on a TOV disc is shown in 

Figure 8.12. 

Figure 8.12 Hot banding of TOV disc friction surface, Sab Wabco Ltd. 
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8.4.4 Results Comparison 

Comparing the predicted temperatures with the test results, the predicted surface 

temperatures are lying between the two measured temperatures and show a good 

correlation throughout the drag brake application and cooling period. 
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Figure 8.13 FE simulation and dynamometer temperatures during the drag and cool 
test 

Using equation (C13) and (CIS) from Appendix C, the analytical temperature 

predictions of bulk disc temperatures are shown in Figure 8.14 for the drag brake 

application. Fixed FE material properties at 200°C were used (Table A4) and the 

cooling parameters are taken from Spin Rig cooling measurements (see Chapter 5). It 

can be seen from the curves that equation (CIS) predicts bulk temperatures close to 

the dynamometer and FE analysis results. Equation (C13) predicts temperatures 

approximately 100°C lower at the end of the drag. 
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Figure 8.1"" Analytical bulk temperature prediction of route simulation drag test 

• Equation (C13) (Newcomb 1979) 

• Equation (CIS) (Limpert 1999) 

8.5 Sources of Error in Temperature Measurements and Predictions 

When evaluating route simulation FE predictions and experimental measurements 

(Sections 8.3.5 and 8.4.4) the limitations and difficulties of comparison can be 

appreciated. Several sources of error can be identified in temperature measurements 

and predictions. In temperature predictions, these include heat flux calculation; 

vehicle mass, deceleration, braking time and f3 values will not be identical to test 

values. Heat dissipation boundary conditions will also not be identical to those found 

under test conditions due to airflow caused by dust extraction. Furthermore, the 

effect of thermoelastic instability (TEl) on brake temperature measurement and the 

use of rubbing thermocouples make FE temperature prediction and measured 

temperature comparisons difficult. To investigate the main influencing factors of 

temperature measurement and prediction more inclusive, FE modelling has been 

conducted. This is to include rubbing thermocouple response and TEl influence on 

brake temperatures. 
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8.5.1 Rubbing Thermocouple Measurement Response 

It is very difficult to accurately measure surface temperature with a thermocouple. 

The presence of a thermocouple will influence the temperature distribution at the 

point of measurement due a change of heat capacity and transfer characteristics at the 

surface. The heat transfer characteristics are changed by the installation, that is, the 

surface emissivity or effective thermal conductivity will be altered or the wires may 

act as fins providing additional heat transfer paths (Otter 1970). 

When measuring changing surface temperatures, the response of the attached rubbing 

thermocouple may cause a significant error. The response time of the thermocouple 

itself will have little significance on the surface measurements if the heat path 

between the surface and the measuring junction is poor. The time required for the 

measuring junction to change temperature causes the thermocouple output to lag the 

surface temperature in time and decreases its amplitude. Thermal contact resistance 

between the junction and the surface will cause a temperature gradient that will 

prevent the measuring junction from attaining the surface temperature. 

The measurement of moving surfaces by holding the thermocouple against the body 

results in errors caused by friction. This initially causes an increase in surface 

temperature by a few degrees. Figure 5.16 of Chapter 5 shows the copper bead 

thermocouple as used in the dynamometer tests, a decrease of 10°C during disc 

deceleration from 450 to 0 min- l can be seen. Rubbing thermocouples are more 

suitable to determine cooling rates and heat transfer coefficients on the Spin Rig 

because low rates of temperature change are measured and not absolute values. 

To investigate the rubbing thermocouple errors further and allow a closer correlation 

between rubbing thermocouple surface temperature measurements and simulation 

surface temperatures, FE modelling of the rubbing thermocouple and disc surface has 

been conducted. In particular, attention is paid to thermal contact resistance at the 

thermocouple and disc interface. 

Figure 8.15 shows the axisymmetric FE mesh of a circular 'cut-out' section of the 

friction surface of the disc and copper rubbing thermocouple body. The tip of the 
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thermocouple is actually located 1 mm from the friction surface. The mesh consists 

of 96 axisymmetric solid elements, 24 axisymmetric shell elements (for the boundary 

conditions) and a total of 120 nodes. The mesh is simplified but sufficient for all the 

effects studied. 

Boundary conditions are similar to the CV anti-coning disc model of Section 8.3.2. 

Convection was modelled at the disc surface by applying an average hconv value of 17 

W/m2K. Radiation was modelled on all free surfaces. An average emissivity value of 

0.55 was used for the friction surfaces, based on own measurements and literature 

data (see Chapter 7), a value of 0.7 was used for the copper rubbing thermocouple 

body (Cengel 1998). A thermal contact resistance in the form a conductive heat 

transfer coefficient was applied to the axisymmetric interface elements at the disc 

and rubbing thermocouple interface. The temperature of the disc elements were set as 

a boundary condition, the rubbing thermocouple initial temperature was 20°C. Grey 

cast iron temperature dependent material properties were used for the disc, as listed 

in Table A2. The copper rubbing thermocouple body material properties are listed in 

Table 8.1. 
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Figure 8.15 FE axisymmetric model 
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Table 8.1 Copper material properties for FE modelling (Cengel 1998) 

Property Value 
Mass density [kglm3] 8933 
Conductivity [W/mK] 400 

Specific heat [J/kgK] 385 

Figure 8.16 shows the temperature contour plot for a 300°C disc temperature and an 

interface h cond of 500 W /m
2
K, for the steady-state condition. It is shown that the 

thermocouple body temperature is uniform and a temperature gradient can only be 

seen at the interface. 

200e;.oJ2 

__ ';..;;..;..B3e..ooz 

Figure 8.16 Rubbing thermocouple temperature distribution for hcond= 500 W/m2K 

A parametric study was conducted for vanous disc, rubbing thermocouple and 

interface conditions. Figure 8.17 shows the rubbing thermocouple response for a 

range of h cond values. The curves show the effect of increasing hcond values from 500 

to 2000 W Im2K on the response time, which reduces with increased h cond. 

In Chapter 6, the thermal contact resistance was measured for bolted joints. By 

extrapolating the results given in Figure 6.22 for the change in hcond value with 

pressure, at a pressure (the spring force of the thermocouple is practically negligible) 

the hcond value is approximately 2000 W/m2K. The hcond value at the disc/rubbing 

thermocouple interface is considered to be less than this due to friction pad deposits 

on the disc surface. 
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It should noted here that an hcond value of 3500 + 1000 W/m2K h b f' - as een con lrmed 

by Day (1990) in an experiment for the sliding contact of a specific friction material 

sliding on a cast iron mating surface. 
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Figure 8.17 Rubbing thermocouple response and thermal contact conductance 
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Further studies included disc temperature, thermocouple position and convective heat 

transfer coefficients, and some of the results are shown in Figure 8.18. The blue 

curve shows the rubbing thermocouple response for the disc surface at 800°C, the 

rubbing thermocouple takes 30 seconds to reach a maximum temperature, which is 

125°C lower than the actual surface temperature. The pink curve shows that the 

distance of the thermocouple from the surface does not practically affect its response, 

moving the thermocouple from 1 mm to 0.5 mm results in the same temperature 

prediction (disc surface 300°C). The red curve shows the effect of increased 

convecti ve cooling of the thermocouple. Due to surface drag the airflow around the 

thermocouple will be similar to that of the disc surface and convective cooling of the 

rubbing thermocouple head will increase with the rotational speed of the disc. The 

increasing of the hconv value by a factor of ten (from 5 to 50 W Im
2
K) results in a 

temperature drop of 35°C for a disc surface temperature of 300°C. 
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Figure 8.18 Rubbing thennocouple temperature response (hcond = 500 W/m2K) 
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The analysis clearly demonstrated the sensitivity of the rubbing thennocouple to 

different influences. Substantially different readings are seen for identical 

temperatures, even during steady-state conditions. In reality transient conditions exist 

and Figure 8.19 shows the predicted rubbing thennocouple response for the transient 

disc surface temperatures (temperatures are from FE modelling of the anti-coning 

disc during repeated braking, see Section 8.3.2). The hcond value at the interface is 

varied between 2000 and 500 W/m2K, convective cooling of the rubbing 

thennocouple body is 20 W/m2K. From the results it can be seen that an hcond value 

of 1000 W/m2K shows a similar thennocouple response as seen during dynamometer 

tests. 
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The predicted rubbing thermocouple temperatures show that the time lag and 

amplitude reduction mean that the peak temperature seen during the brake 

application cannot be measured by uSIng rubbing thermocouples. With these 

considerations in mind the FE predicted and measured repeated brake application 

temperatures given in Section 8.3 correlate well. If the thermocouple response factor 

is considered along with the increased cooling effect by the extraction fan used 

during the dynamometer test, predicted and measured temperatures of the repeated 

braking test show good agreement. 

8.5.2 Thermoelastic Instability Influence on Brake Temperatures 

The FE results of the CV route simulation (Section 8.3.2) were very close to 

dynamometer temperature measurements taking into consideration that a 'perfect 

match' is not possible due to complexity of the friction process. Practically all brake 

applications are conducted in the thermoelastic instability (TEl) regime (discussed in 

Appendix C), which means permanent change of interface pressure distribution, heat 

generation and wear on the friction surface. The state of the friction surface is also 

influenced by pad deposits. Furthermore, the studied brake applications are a 

transient heat transfer phenomenon, with rapid change of temperatures. As a result, 

during and for some time after braking, surface temperatures can substantially vary 
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between very close points on the disc surface. All this makes every brake application 

quite unique and 'accurate' temperature measurements impossible. Under these 

conditions, the use of relatively robust rubbing thermocouples in dynamometer tests 

is the only mechanically reliable option, enabling the measurements of 'average' 

surface temperatures. 

To account for TEl effect on generated disc temperatures and indirectly on brake 

cooling, the FE analyses discussed in Section 8.3 were performed with both uniform 

heat input during braking and TEl simulated heat input. 

For the TEl simulated heat input each friction surface area was divided up into four 

concentric areas (rings) as shown in Figure 8.20a. To simulate the hot bands of the 

TEl heat input the inner most ring and the 3rd ring (counting from ID to aD) have a 

heat flux increase 180% of the uniform heat input. The heat flux input of the other 

areas (rings) were reduced accordingly, to ensure adequate total heat (power) input. 

This ratio of heat flux was alternated for each area (ring) at each stop. Temperature 

dependent material properties were used, as shown in Table A2. 

TEl heat flux Uniform heat flux 

CD @ @ @ CD @ @ @ 

(a) (b) 11111111111I1111 

Figure 8.20 Assumed non-uniform TEl (a) and uniform (b) heat flux application 

The temperature results are shown in Figure 8.21, the effect of the alternating heat 

flux is shown by the nodal temperatures (see Figure 8.4 for location of nodes), even 

at the disc hat. However, TEl heat input has a negligible effect on the disc bulk 

temperatures, since temperatures become quickly uniform during the cooling cycle. 

222 



Therefore, predicted temperatures incorporating TEl effects (Figure 8.21) are quite 

close to the uniform heat input disc bulk temperatures (shown in Figure 8.6). 
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Figure 8.21 FE simulation temperatures for the dynamometer fade test, TEl 
simulated heat input 
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It would be expected that disc cooling increased with TEl heat input, in the areas of 

high heat flux input, surface temperatures are higher than for uniform heating (23°C 

for the first stop). At high temperatures radiative thermal power loss will be greater 

because it increases to the 4th power of temperature. However, the heat flux is 

applied only for a short period (3.33 seconds) and this effect is shown to be 

negligible. Increased cooling effects can be more prominent during a drag braking 

application where a constant heat flux is applied. 

8.6 Contribution of Modes of Heat Transfer to Disc Heat Dissipation 

So far the modes of heat transfer have only been considered individually. It is 

important to determine their contribution to disc heat dissipation to understand the 

complex cooling mechanism and the influence of temperature and vehicle speed. 

This understanding will provide the foundation for improvement and optimisation 

(see Chapter 9). 
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8.6.1 Commercial Vehicle Disc 

To study the contribution of individual modes of heat transfer to brake cooling an FE 

brake model of the CV wheel assembly was created and a drag brake application 

modelled, as defined by ECE Directive 13 (type 2, 30 kmlh on 6% incline). The FE 

model included the standard CV disc, wheel carrier and wheel (truncated), as shown 

in Figure 8.22. Making use of the circumferential symmetry, a 3-D segment of 6° 

was modelled. Material properties are given in Table A3 (disc) and A4 (wheel carrier 

and wheel). 

Appropriate boundary and interface conditions were modelled as discussed in 

Section 8.3.2. Convection was modelled, for the 'disc only' in still air, as given in 

Figure 5.23. It has been shown in Chapter 5 that the wheel assembly does not 

significantly reduce convective heat transfer coefficients. An emissivity change from 

0.4 - 0.7 was used for the friction surfaces. The change of emissivity during the 

brake application is shown in Figure 7.11. The remaining surfaces were given an 

emissivity value of 0.9. A layer of surface elements are used at the disc/wheel carrier 

interface to model the thermal contact resistance. A value of 7000 W /m
2
K was used 

for hcond to model a standard interface (see Chapter 6). 
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Figure 8.22 FE analysis temperature contour plot of CV disc brake with wheel and 
carner 

Transient thermal FE analysis of the drag brake application was performed and the 

average friction surface temperatures are shown in Figure 8.23. Temperatures 

increased throughout drag braking (not reaching steady-state conditions) rising to 

over 750°C at the end of the drag, at 720 seconds. The proportion of heat dissipated 

by conduction, convection and radiation were studied in detail when the average 

friction surface temperature is at 600°C. This temperature was reached after 430 

seconds of drag brake application. 
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Figure 8.23 Average friction surface temperature during drag braking simulation 

To study the contribution of individual modes of heat dissipation on brake cooling, 

the thermal power equations for conduction, convection and radiation (equations 

(5.15), (5.16) and (5.17)) are used. The vertical line shown in Figure 8.24 indicates 

the total thermal power loss and the contribution of the individual modes, for the 

drag braking application, when the average fiction surface temperature is 600°C 

(rotational speed is 150 min-I). The results show that the total heat dissipation from 

the disc is about 11.5 kW. 
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Figure 8.24 Heat dissipated by each mode of heat transfer for the standard CV disc 
at 600°C 
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The contributions of the individual modes of heat dissipation are (approximately): 

conduction 2 kW (18%), convection 4.5 kW (39%) and radiation 5 kW (43%). It is 

interesting to note that under these conditions more heat is dissipated by radiation 

than convection, showing that radiation remains to be the cooling mode that can 

prevent disc overheating, especially at low speeds and high temperatures. The results 

have been expanded for the range of rotational speeds, from the very low 40 min-t (8 

kmIh) to the maximum vehicle speed at 450 min- t (90 kmlh). Conduction and 

radiation are speed independent, and the ratio between individual contributions 

changes with speed. At the minimum speed considered (8 kmlh), convection 

contributes only about 18% to the total heat dissipation. However, at maximum 

speed (90 km/h), convection is the dominant cooling mode, accounting for 57% of 

total dissipated heat. 

It has been shown that radiation is speed independent and can be the primary cooling 

mechanism at high disc temperatures when vehicle speeds are low. This situation is 

commonly found in braking from high speed or long downhill drag braking, when 

convection cooling is limited. Radiative heat dissipation is usually considered 

insignificant at lower temperatures, and neglected by many authors in brake analyses. 

This assumption cannot be accepted, since even at relatively low disc surface 

temperatures of 100°C to 150°C and at very low vehicle speeds, the amount of 

radiative heat dissipation is similar to the heat dissipated by natural convection 

(Voller, Tirovic et al. 2002). 

Heat dissipation was further analysed for a friction surface temperature of 100°C and 

is shown in Figure 8.25. The results show that the total heat dissipation from the disc 

is approximately 722 W at the drag speed (150 min-t). The contributions of the 

individual modes of heat dissipation are (approximately): conduction 76 W (10%), 

convection 596 W (83%) and radiation 50 W (7%). Convection is the most dominant 

mode of cooling at low surface temperatures (ten times that of radiation). Conduction 

and radiation dissipate little heat at low temperatures. Once again the results have 

been expanded for the range of rotational speeds, from 40 min-
t 

to 450 min-to The 

ratio of individual contributions changes with speed but convection is the dominant 

mode throughout. 
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Figure 8.2S Heat dissipated by each mode of heat transfer for the standard CV disc 
at 100°C 

8.6.2 TGV Disc 

To study the contribution of individual modes of heat transfer during high speed 

railway brake cooling, the TOV disc route simulation results (see Section 8.4) have 

been used to calculate the thermal power dissipated by conduction, convection and 

radiation. The same methods as described for the CV disc have been used to 

determine the distributions of thermal power. The results are shown in Figure 8.26 

for an average surface temperature of 300°C (achieved at approximately 1000 

seconds into the drag, see Figure 8.13). The vertical line (Figure 8.26) indicates the 

total thermal power loss and the contribution of the individual modes, for the drag 

braking application, at drag speed (358 min-I). The results show that the total heat 

dissipation from the disc is about 14.7 kW. The contributions of the individual modes 

of heat dissipation are (approximately): convection 12.1 kW (82%), radiation 2.2 kW 

(15%) and conduction 0.4 kW (3%). In this condition convective cooling is 

dominant, however at higher temperatures radiation will playa larger role (as shown 

in Figure 8.24 for the CV disc). Conductive heat dissipation is very low due to the 

small contact surface area of the lugs, which conduct heat to the hub and axle. 

The results are again expanded for the range of rotational speeds, from 0 min-
1 

to 

1800 min- 1 (300 kmlh). When the disc is stationary, convection contributes 
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approximately 50% to the total heat dissipation. However, at maximum rotational 

speed, convection is much more dominant, and accounts for 87% of total dissipated 

heat. 
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Figure 8.26 Heat dissipated by each mode of heat transfer for the TGV disc at 300°C 

The analyses shown in this section and literature data, suggest that in most vehicle 

service conditions the majority of heat is dissipated from brakes by convection. Since 

convection is the dominant mode of heat dissipation, it potentially offers most scope 

for further improvement. However, other modes must not be neglected in brake 

thermal analysis. 

8.7 Summary 

This chapter has investigated modelling methods to enable confident modelling of 

heat dissipation optimisation solutions. Route simulations have been performed to 

validate the overall work of the previous chapters. 

FE software has been carefully selected and modelling methods have been discussed, 

investigating simplification techniques. Route simulations have been performed for 

the CV and TOV railway brake discs for repeated and drag braking applications and 

validated using analytical calculations and dynamometer test measurements. The 
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results of Spin Rig experiments and CFD modelling were used to provide the 

boundary conditions. The effect of temperature dependent material properties on the 

brake temperature predictions were investigated and compared with fixed property 

values. The use of rubbing thermocouples has been investigated, to determine their 

response limitations. To account for thermoelastic instability effects on generated 

disc temperatures and indirectly on brake cooling, further FE analyses were 

performed to simulate this phenomenon. Finally, drag braking simulations of the CV 

wheel assembly and TOV disc have been used to study the contribution of individual 

modes of heat transfer to brake cooling. The proportions of heat dissipated by each 

mode were studied in detail for a range of brake temperatures and rotational speeds. 

The investigation of modelling methods has ensured the best use of computer 

resources, making best use of simplification techniques to provide efficient but 

accurate solutions. The FE temperature predictions compare well with dynamometer 

and analytical results and it has been shown that the use of temperature dependent 

material properties has a substantial influence on predicted temperatures. The study 

of thermocouple response has shown that peak surface temperatures cannot be 

measured with used equipment during the repeated braking simulation studied. It has 

also been shown that thermoelastic instability simulated heat input does not have a 

significant effect on the predicted bulk temperatures or mean surface temperatures 

during cooling. 

A more accurate evaluation of route simulation predictions and measurements can 

now be accomplished and the limitations and difficulties of comparison are more 

fully understood, giving confidence in future brake temperature prediction. The 

detailed analysis of the contribution of the modes of heat transfer to brake heat 

dissipation allows areas with potential for improvement to be established and 

provides a good foundation for the investigation of heat dissipation optimisation (in 

Chapter 9). 
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Chapter 9 

Heat Dissipation Improvement and 

Opti m isation 

9. 1 Objectives 

The objective of this chapter is to investigate the ways of increasing disc brake 

thermal performance by improving conductive, convective and radiative heat 

dissipation. To achieve this, influencing factors, design modifications, the gains, 

limits and practical aspects are considered to provide technically acceptable and 

commercially viable recommendations for higher performance brake designs. 

Experiments have been conducted to examine the influence of modifications 

designed to improve heat dissipation. Their cumulative effects are further 

investigated in FE simulations. FE modelling of route simulations were successfully 

conducted in Chapter 8 and in this chapter, FE models have been modified to include 

the specific effects to increase heat dissipation. The final temperature results have 

enabled the evaluation of actual gains in brake cooling. 
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9.2 Analysis of Methods to Improve Heat Dissipation 

The commercial vehicle (CV) disc has potential for an increase in conductive heat 

transfer coefficient with modification of the disc/wheel carrier interface. Convection 

can be increased by improving the airflow around the disc within the wheel 

assembly. Increasing radiation cooling is limited because of the difficulties in 

modifying the surface emissivity of the disc and wheel assembly. 

The TGV railway disc also has limited scope for the improvement of radiative heat 

dissipation. This is also true for conductive heat dissipation, as the contact area for 

conduction is relatively small (0.2% of the total surface area). The TGV railway disc 

is axle mounted and airflow is not affected by the wheel (as for the CV disc) and in 

order to increasing convective heat dissipation the disc ventilation design must be 

studied. However, increasing airflow through the disc ventilation channels can lead 

to serious pumping losses (discussed in Chapter 4) and therefore the ventilation 

design must be carefully considered. A method for assessing 'ventilation design 

efficiency' has been developed. 

9.2.1 Airflow and Convection 

Airflow and convection are very closely linked. Convective heat transfer coefficients 

(hconv) increase with air velocity (cross flow), more so than with rotational speed, as 

shown in Chapter 5. Convective heat dissipation (Qconv) increases with temperature 

difference between the brake surface (Ts) and surrounding air (T co). If air is allowed 

to flow over the disc (cross flow) then the surrounding air heated by the disc is 

transported away and replaced by cooler air, reducing T co. 

Disc ventilation has been the subject of much focus as a method of increasing 

convective heat dissipation, however for large discs fitted to high speed vehicles the 

power to rotate the ventilated disc can be very high leading to much energy loss, as 

shown in Chapter 4. An efficient pump design is not necessarily an efficient heat 

dissipater, for example, the high pumping efficiency curved vane CV disc has 

cooling rates that are very similar to the standard radial vane disc (shown in Chapter 

5). 
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As the high pumping efficiency value of the curved disc design suggests airspeed 

through the ventilation channels is greater than the radial vane design for the same 

rotational speed. From the hcollv equations (2.14) to (2.17) of Chapter 2, which state 

that hcom' increases with air velocity; QC01IV would be expected to be higher for the 

curved vane disc. However, the poorer than expected cooling rate of the curved vane 

design is due to the flow pattern through the ventilation channel. The high pumping 

efficiency of the design is achieved by encouraging the airflow to follow the contours 

of the vane, providing laminar flow within the channel. The airflow remains attached 

to the walls of the vanes. This results in a low temperature difference between the air 

at the surface and the wall surface because the film of air is heated but not 

transported away from the wall, only along it, see Figure 9.1. This reduces heat 

transfer as demonstrated by Newton's law of cooling (equation (5.1». This suggests 

that to increase ventilated disc cooling, turbulent flow must be encouraged, to 

transport heat dissipated (initially by conduction) to the surface film of air, away 

from the surface and introducing cooler air to the surface of the ventilation channel. 

Design considerations (discussed in Chapter 4) such as blade (vane) angles, blade 

width, number of blades, filleting radii and filling increase airflow but should be 

considered carefully, as encouraging laminar airflow may not increase heat 

dissipation. 
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Figure 9.1 (a) Laminar and (b) turbulent airflow heat dissipation of the ventilation 
channel 

The radial vane design offers the best overall cooling characteristics, as shown in 

Chapter 5. However, at very low rotational speeds, the pillared disc design has higher 

convective cooling, due to good natural convection characteristics. The pillared vane 

design also requires the least power to rotate from the designs tested in Chapter 4. 

For large discs rotating at high speeds, there must be a compromise between good 

cooling characteristics and low pumping losses, this is clear in the studies of 

Chapters 4 and 5. The required heat dissipation must be decided upon and efficient 
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disc ventilation designed accordingly. Any cooling above requirements will increase 

pumping losses unnecessarily. 

9.2.2 Conduction 

To increase the average conductive heat transfer coefficient (hcond) at the CV 

disc/wheel carrier interface a higher bolt torque and thus clamping pressure can be 

applied. However pressure differences also increase with increased bolt torque. 

Increasing the bolt torque can therefore produce reduced clamping pressure at the 

areas between the bolts, reducing hcond in that area (a result of increased bolt torque 

and deformation at the interface). If high bolt torques are used in order to increase 

hcond then it would also be necessary to increase the number of bolts used. Increasing 

the number of bolts used to clamp the components would provide a more uniform 

pressure distribution and an overall higher magnitude of pressure. The resulting 

reduced area of contact and the conductance through the bolts must be considered 

when the number of bolts is increased, along with structural integrity, assembling 

and maintenance issues. 

Conductive heat transfer at the interface can also be increased by improving the 

interface surface finish, increasing the actual contact area. Improving the surface 

finish of the components increases their manufacturing costs and is not feasible with 

the manufacturing methods used. Alternatively, thermal contact conductance can be 

increased by replacing the air within interstitial areas at the contact interface with a 

medium of higher conductance. As discussed in Chapter 2 interstitial fillers may take 

the form of grease, metal foil, wire screens or powders, this is investigated further in 

Section 9.3.2. 

The studied railway brake designs are of a 'slip joint' type connection between the 

disc and the hub (see Chapter 3). In such designs, disc/hub contact areas are very 

small and conductive cooling is very limited despite the high thermal conductivity 

bronze washers (used to reduce friction) applied at the interface. This is clearly 

shown in the contributions of modes of heat transfer to heat dissipation in Chapter 8. 
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9.2.3 Radiation 

Most authors in the past have assumed constant emissivity for brake thermal 

modelling. However, emissivity change on the disc surface has been measured, 

shown in Chapter 7. Only very recently, during the course of this project, other data 

on this phenomenon has been published (Eisengraber, Grochowicz et al. 1999). The 

wide range of emissivity values (0.2 to 0.9) is in agreement with the findings of 

Chapter 7. The change of emissivity in such a wide range is a very important 

conclusion, and care must be taken to ensure adequate values are used in brake 

thermal modelling to avoid large errors in temperature predictions. There is a distinct 

reduction in the heat dissipation, leading to higher disc temperatures, due to emitted 

radiation being reflected back to the disc by the wheel assembly. This is shown in the 

results of simulations presented in Chapter 7. Therefore, the effect of radiation being 

reflected back to the disc by the wheel carrier, wheel and dust shield must also be 

considered in the analysis of brake disc heat dissipation. 

The design and surface condition of surrounding components must be very carefully 

considered, when designing a vehicle wheel assembly. Using wheels of low 

emissivity (such as aluminium) can mean that more of the heat radiated from the disc 

surface is reflected back to the disc, increasing disc temperature. However, the 

increased conductivity of aluminium may provide thermal benefits from heat 

conduction, this is investigated further in Section 9.3.3. The steel wheel carrier and 

wheel can absorb more of the radiated heat from the disc because of the material's 

higher emissivity value. However, in real life conditions, the inside surface of the 

wheel assembly will be coated by a layer of brake and road dust. An increased 

emissi vity value is expected on this dull, blackened surface allowing more heat to be 

absorbed by radiation. But, its low conductivity (and thermal capacity) will limit 

thermal energy that the dust can absorb and transmit to the wheel assembly. 

Under the circumstances, there is not much that the brake or vehicle designers can do 

to improve radiation from the friction surface or even non-friction disc surfaces. The 

friction surfaces are large, but their characteristics not favourable. The non-friction 

surfaces are relatively small and exposed to corrosion that increases radiative losses. 
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Probably, the only solution in increasing emissivity of disc friction surface is a 

'special pad formulation' that would 'condition' disc surface. 

9.3 Commercial Vehicle Brake Assembly 

Various methods aimed at improving heat dissipation from the disc have been 

implemented based on the results of the research presented so far. Gains in 

convective and conductive heat transfer coefficients have been measured 

experimentally and the cumulative effects of these gains are investigated in 

numerical route simulations. 

9.3.1 Wheel Carrier Ventilation 

The standard CV wheel carrier was modified with the aim of increasing the airflow 

in order to improve convective cooing of the CV disc. Ten 35 mm diameter 

ventilation holes were machined in the standard wheel carrier, as shown in Figure 

9.2. 

Figure 9.2 Modified CV wheel carrier 

10 through 
holes 010mm 
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The standard wheel assembly shrouds the disc and can restrict airflow to and from 

the ventilation channel inlet and exit (measured in Chapter 4). However, the standard 

radial disc ventilation channel inlet is on the inboard side and is not restricted by the 

wheel assembly, as shown in Figure 9.3. 

Figure 9.3 Standard disc and wheel assembly 

However, for the anti-coning disc, which has the ventilation channel inlet on the 

outboard side, the wheel assembly seriously restricts the airflow of the disc 

ventilation channel inlet, shown in Figure 9.4. This reduces the cooling perfonnance 

of the disc as shown in the measurements of Chapter 5. 

Figure 9.4 Anti -coning disc and standard wheel carrier 
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Modifying the wheel carrier and introducing ventilation holes improves airflow to 

the disc ventilation channel inlet. The aim is to allow 'l1r t b d f ' 
UJ. 0 e rawn rom outsIde of 

the wheel assembly and through the wheel carrier ventilation holes by the pumping 

action of the disc ventilation channels as shown in FI'gure 95Th' '11' , .. IS WI Increase 

airflow through the disc ventilation channels, improving convective heat dissipation. 

Figure 9.5 Anti-coning disc and modified wheel carrier 

The cooling rates of the disc fitted with the modified wheel carrier assembly were 

measured on the Spin Rig (procedures described in Chapter 5). Six wheel assembly 

configurations were tested at four speeds; the 24 tests required twenty days to 

complete, Figure 9.6 shows the cooling rates for the standard radial vane disc 

rotating at 450 min- l with three wheel assembly types. The unventilated wheel 

assembly is the standard wheel assembly with the wheel ventilation holes blocked. 

The standard wheel assembly has ventilation provided by the holes in the wheel only 

(see Chapter 3). The ventilated wheel carrier wheel assembly provides ventilation at 

the wheel carrier and the wheel, The cooling curves show that the introduction of the 

ventilation holes to the wheel assembly has very little effect on the cooling rate of the 

standard disc, resulting in only a small improvement in cooling performance. This is 

because the ventilation channel inlet is on the (free) inboard side. Blocking the 

ventilation holes of the wheel also shows little effect on the disc cooling rate. 

238 



150 

U 130 
L .. 
3 
1; 

~ 110 
E 
!! .. 
U 
It 

~ 90 
c: 
o 
~ 
E 
& 70 .. 
~ .. 
> 
c{ 

so 

o soo 1000 1500 

Time [s] 

2000 

Venti lated wheel 
carrier assembly 

- Unventilated wheel 
assembly 

- Standard wheel 
assembly 

2500 3000 

Figure 9.6 Effect of wheel assembly ventilation on standard CV disc cooling, 
rotating at 450 min-1 

Figure 9.7 shows the cooling rates for the anti-coning disc rotating at 450 min-1 with 

the standard and the ventilated wheel carrier assembly. It can be seen that the 

introduction of ventilation holes has a much more prominent effect on the cooling 

rate of the anti-coning disc. The ventilation holes provide improved air supply to the 

(outboard) ventilation channel inlet of the anti-coning disc (see Figure 9.5). Blocking 

the ventilation holes of the wheel have been shown to have little effect on the disc 

cooling rate (Figure 9.6) and has not been investigated for the anti-coning disc. 
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Figure 9.7 Effect of ventilated wheel carrier on, t~f anti-coning CV disc cooling, 
rotating at 450 IIDn 
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The average heat transfer coefficient values (havg ) values for different anti-coning 

disc and wheel assemblies are compared in Figure 9 8 The' d I' . . Improve coo Ing rate 

with the addition of ventilation holes to the anti-coning disc wheel assembly is 

clearly visible. The havg values for the ventilated wheel carrier are 64% higher than 

those for the standard wheel carrier at 450 min-I. Increased performance is seen 

throughout most of the speed range. The havg values of the disc with the ventilated 

wheel assembly are approaching those measured for the disc without the wheel 

assembly. 
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Figure 9.8 Total heat transfer coefficient values for the anti-coning disc assemblies 
at 100°C 

To further demonstrate the effectiveness of the ventilated wheel carrier when used in 

conjunction with the anti-coning disc, the chart of Figure 9.9 shows the thermal 

power dissipated during a drag brake application at 30 kmlh (150 min-I) when the 

friction surface reaches 600°C. The chart shows the contributions of each mode of 

heat dissipation, the results are obtained using the methods developed in Chapter 8. 

The total thermal power dissipated when using the modified wheel assembly is 

increased by 14%. 
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Figure 9.9 Thennal power distribution of the anti-coning disc at 600°C rotating at 
150 min-I 

Airflow Visualisation 

Flow visualisation provides qualitative global pictures of the flow without 

introducing probes, which invariably disturb the flow. Single component air velocity 

measurement gives no indication of flow patterns and direction; to study these details 

a smoke machine has been used (described in Chapter 3). 

Smoke tests were conducted at 50 min-I; a relatively low rotational speed is 

necessary to avoid a break up of smoke particles in turbulent flow. Smoke was 

introduced to the anti-coning radial vane CV brake assembly with the SAF ventilated 

wheel carrier (similar to the modified standard wheel carrier, see Chapter 3 for 

details), to visualise the flow pattern at the ventilation holes of the wheel assembly 

and the ventilation channel inlet. Figure 9.10 shows, (a) the airflow into wheel carrier 

ventilation holes, (b) airflow exiting wheel ventilation holes, and (c) airflow into 

vane inlet. It is clear from Figure 9.10a, that air is drawn into the wheel assembly 

through the ventilation holes of the wheel carrier. Air is drawn into the wheel 

assembly by the ventilated disc, which is acting as a centrifugal pump as shown in 

Figure 9.10c. Figure 9.10b shows that air is exiting the wheel assembly through the 

wheel ventilation holes; this air is forced out of the wheel cavity by the air exiting the 

disc ventilation channel. 
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Figure 9.10 Airflow visualisation tests around the anti-coning CV disc 
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9.3.2 Thermal Contact Resistance 

The interface surfaces of the disc and wheel carrier are not perfectly flat or smooth, 

causing a reduction in the conductive heat transfer coefficient (hcond). The influence 

of the condition of contact surfaces on h colld has been studied for newly machined and 

'normal vehicle service state' (somewhat corroded) disc/carrier contact surfaces. In 

order to increase h colld, high thermal conductivity paste is available and similar effect 

maybe achieved using a thin aluminium gasket. These interstitial materials can 

increase the area of micro contact and fill the surface interstices as discussed in 

Chapter 6. In order to increase hcolld at the disc/wheel carrier interface, three modified 

interface conditions were tested. Six tests were performed at three disc temperatures, 

each test required one day to complete. 

The first method of interface conditioning was the insertion of a thin aluminium foil 

'gasket' at the interface; see Figure 9.II(c). As discussed in Chapter 2 it has been 

shown that h cond can be increased by a factor of up to seven by inserting a metallic 

foil at the interface. Aluminium foil is made from 99.5% aluminium (European 

Aluminium Foil Association 2002) and is of high conductivity as shown in Table AI, 

aluminium is also very soft providing good contact at the interface surface. The foil 

used in the tests was I5J..lm thick, standard kitchen foil. 

Figure 9.11 Interface conditions, (a) corroded (b) new machined (c) aluminium foil 
gasket 

The second method of interface conditioning involved the use of a high thermal 

conductivity paste to increase hcond, this has the added benefit of easy application by 

brush or spay (an advantage in the vehicle servicing environment). A heat sink 

compound has been used in the experiments; a two metal oxide filled paste of high 
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thermal conductivity, approximately 35 times higher than air at 20°C. The paste is 

commonly used to improve heat transfer between semiconductor devices and heat 

sinks. The paste is chemically inert, shock absorbent, and moisture repellent with 

long-term stability. The compound contains a silicone base reducing any 

contamination risk. The manufactures specification is shown below in Table 9.1, 

unfortunately specific heat and density values were not available. 

Table 9.1 Technical specification of heat sink compound 

Property Silicone Heat Sink Compound 

Dielectric strength 18 kV/mm 

Volume resistivity 1015 W cm 

Thermal conductivity 0·9 W/rnK 

Temperature range -100 to +200°C 

The third method tested for improving conduction across the interface was the 

machining of the interface surfaces (shown in Figure 9.11b). This allows the 

measurement of hcond for an 'as new' interface condition. This process permits the 

removal of corrosion on the surface and a reduction of the surface roughness. 

Improving the surface finish increases the contact area at the interface. Table 9.2 

shows the measured surface finish for the two test specimens, at the disc and carrier 

interface 

Table 9.2 Brake assembly interface surface finish 

Component Surface Condition Surface Finish, Ra, [Ilm] 

Front CV disc As supplied (new machined) 2.0 

Standard CV wheel As supplied (some corrosion), Figure 9.11(a) 1.0 - 3.3 

carrier Machined, Figure 9.11 (b) 2.1 

Measurements of hcond were taken at three temperatures, in the range of 70 to 180°C 

for all three modified interface conditions, using the same procedure as described in 

Chapter 6. Average hcond values have been used to compare the modification 

techniques. Figure 9.12 compares the average hcond at this temperature range for the 
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four interface conditions tested at the nominal interface pressure (at a 300 Nm bolt 

torque). The chart clearly shows the increase in average h cond for the modified 

interface conditions. The average h cond values range from 7 to 67 kW/m2K. All three 

interface modifications increased h cond• The 'base' corroded condition has an h cond 

value of 7 kW/m
2
K. The use of aluminium foil provides the highest increase in h cond 

(approximately 10 times higher) with an average value of 67 kW/m2K. Next, is the 

use of heat sink paste with an average value of 59 kW/m2K (approximately 9 times 

higher). Finally, the machining of the disc surface increased h cond with and average 

value of 12 kW/m2K (approximately 40% higher). The sequence shown in Figure 

9.12 indicates the possible variation in h cond for the life of the vehicle, from the new 

interface to the corroded interface. 

New Corroded Paste Aluminium 

Figure 9.12 Average hcond at the CV disc/wheel carrier interface at the nominal bolt 
torque (300 Nm) 

9.3.3 Simulation of Modified CV Wheel Assembly 

The influence of the above methods of improving convective and conductive heat 

. b ki h b examined The standard CV dissipation on disc temperatures dunng ra ng as een . 

brake assembly has been modelled for two different ECE Directive 13 brake tests. 

Seven route simulations were performed, requiring 40 hours of computer time. 
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9.3.3.1 Component Materials 

Conduction plays an important role in brake disc heat dissipation, especially at high 

disc temperatures and low vehicle speeds, as shown in the contribution of the heat 

dissipation mode charts of Chapter 8. Conduction is increased with increase in 

material conductivity, contact area and temperature gradient (as defined in Chapter 

6). Contact area and temperature gradient cannot be easily increased to improve 

conductive heat dissipation and a more feasible option is to select a material with 

higher conductivity. Aluminium is widely used as an engineering material, having a 

good strength to weight ratio and casting and machining properties. Aluminium also 

has a high conductivity compared to cast irons and steels (3 to 4 times higher, see 

Appendix A). An aluminium wheel carrier with the same thermal capacity as the 

standard CV SO iron wheel carrier has only half its mass, corresponding to the 

saving of 21 kg/axle. Aluminium wheels are widely available and an aluminium 

wheel carrier design has been considered to optimise brake heat dissipation. 

To examine the influence of the use of an aluminium wheel carrier and wheel on 

conductive heat dissipation from the disc and ultimately on disc temperatures, a 

repeated brake application was modelled. Three assemblies were modelled 

comprising of a standard CV grey cast iron brake disc with steel and aluminium 

wheel assemblies. In the analysis it was assumed that there is no thermal contact 

resistance at the component interfaces (since hcond is very high) to allow the full 

potential of the aluminium components to be appreciated. The repeated braking 

analysis follows the requirements of the ECE Directive 13 Type 1 test for the 

effectiveness of hot brakes. The energy to the disc corresponds to a deceleration of 3 

rnIs2 from 60 to 30 krnIh, with a cycle time of 60 seconds for 37 stops (BCE requires 

only 20 stops), based on a 16500 kg CV. The front brake was considered and the 

effects of rolling and air resistance, engine braking and retarder engagement have not 

been included. The analysis is therefore braking under extreme conditions. The front 

to rear brake force distribution was assumed to be 50:50. 

The FE analysis was based on the model used in Chapter 8 (see Figure 8.22) for the 

standard CV disc and wheel assembly. The material properties used for the 

aluminium components are given in Table AI. The lower strength of aluminium 

(compared with steel) requires an increase in component wall thickness to keep 
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stresses within safe limits. The wall thickness of the aluminium components was 

increased by a factor of 1.5 to model more closely, real component geometry. The 

emissivity value of aluminium is very low compared to steel (up to 10 times lower). 

This will increase the amount of heat radiated from the disc surface reflected by the 

wheel carrier and wheel, as discussed in Chapter 7. Further research into the 

emissivity of aluminium has shown that the values can be as low as 0.04 for a 

polished plate and 0.07 for a rough plate (Kreith 1986). Higher values are also 

published; 0.2 to 0.33 for heavily oxidised surfaces (Cengel 1998)). A heavily 

oxidised aluminium surface has been considered, which is blackened with brake dust, 

much higher values of emissivity are expected and an estimated value of 0.5 has been 

used. 

Figure 9.13 shows the friction surface temperatures during the brake application for 

three wheel assemblies, a standard CV grey cast iron brake disc with an all steel 

wheel assembly, a combination assembly of SO iron wheel carrier and aluminium 

wheel, and an all aluminium wheel assembly. A small reduction in friction surface 

temperature is gained from the use of an aluminium wheel but temperatures 

eventually equal the standard steel assembly. The conduction path from the disc 

friction surface to the wheel is very long and temperatures at the carrier/wheel 

interface are relatively low, in the region of 60°C. Therefore, little heat can be 

absorbed by the wheel. The addition of an aluminium wheel carrier initially increases 

friction surface temperatures. This is seen during the first 15 stops where 

temperatures are increased by up to 30°C (a results of radiation reflection). As the 

heat generated in the disc conducts through the disc hat and into the wheel carrier, 

temperatures eventually become lower to those found for the standard steel 

assembly. Eventually a temperature reduction of 10°C is seen after 37 stops. These 

findings suggest that the aluminium wheel assembly would provide lower friction 

surface temperatures during long brake applications, e.g. mountain descents. 

247 



800 

700 

600 

500 
G' 
L .. .. 
i 400 .. .. 

- Steel carier and wneel 

- Steel carrier. aluminium wneel 
Q. 

E - Aluminium carrier and wneel .. 
t- 300 

200 

100 

0 
0 500 1000 1500 2000 

Time [$] 

Figure 9.13 Standard CV disc friction surface temperatures with aluminium and 
steel wheel assemblies 

9.3.3.2 Thermal Contact Resistance and Cross Flow 

To further examine the influence of thermal contact resistance and wheel carrier 

ventilation on the heat dissipation and disc temperatures, a drag brake application has 

been modelled. The drag braking analysis follows the requirements of ECE Directive 

13 Type 2 test for the effectiveness of hot brakes following long inclines. The 

braking energy corresponded to 6 km drag braking at 30 kmIh on a 6% incline, based 

on a 16500 kg CV. The front brake was considered and the effects of rolling and air 

resistance, engine braking and retarder engagement have not been included. The 

analysis is therefore drag braking under extreme conditions. The front to rear brake 

force distribution was assumed to be 50:50. 

To model the drag application, an FE model of the wheel assembly has been used, as 

shown in Chapter 8, with the addition of a layer of interface elements at the 

component interfaces to model the thermal contact resistance. Numerous analyses 

have been conducted for different disc, wheel and carrier materials and designs, 

investigating the influence on temperature rise. 
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Based on the conducted analyses, the average friction surface temperature during 

drag braking for four cases of wheel assembly arrangements and boundary conditions 

are shown in Figure 9.14. The relative average friction surface temperatures at the 

end of the brake application for the assemblies are shown in Table 9.3. It can be seen 

that the standard CV wheel assembly 0), i.e. standard cast iron disc, SO carrier and 

steel wheel (with the 'standard' thermal contact resistance at the interface, see Figure 

9.12) provides the lowest cooling performance. The friction surface temperature 

reaches a maximum of 765°C at the end of the drag. 

It was found that the reduction of thermal contact resistance at the disc/carrier 

interface (i.e. aluminium gasket, see Figure 9.11) did not significantly reduce the 

friction surface temperature (only by approximately 7°), therefore results are not 

shown in Figure 9.14 or Table 9.3. However, the modified carrier with ventilation 

holes (2), combined with aluminium gasket at disc/carrier interface and 2 mls cross 

flow reduces the temperature by 72°C. It should be noted that the gains would be 

much higher with the anti-coning disc fitted. 

The use of an aluminium wheel assembly (wheel and carrier) (3) offers some further 

improvements, although very small. The hcond value was set to the values of the 

aluminium gasket measurements (see Figure 9.12). The high thermal conductivity of 

aluminium carrier did improve the conduction heat transfer, but the effect was 

limited due to relatively low disc material (grey cast iron) conductivity, leading to 

low disc flange temperatures. Final temperatures are reduced by 79°C, to 90% of the 

standard assembly. 

A more dramatic increase in cooling performance is achieved when the cross flow is 

further increased to 3.5 mls (4). Final friction surface temperatures reached were 

6300C, a reduction of 135°C on the standard Sa/steel wheel assembly. The cross 

flow value of 3.5 mls is not considered to be excessive. It is believed that this value 

can be achieved if the modified wheel carrier with ventilation holes is used. 

Published airspeed values for cross flow by Fukano and Matsui (Fukano and Matsui 

1986) are twice as high (7 mls) for the passenger car brake during repeated high 

speed braking applications. 
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Figure 9.14 Effect of wheel assembly on disc friction surface temperature during 
drag braking 

Table 9.3 Average friction surface temperatures (Tavg) and relative temperatures 
(Trel) values at the end of the drag application 

Assembly Tavg rOC] Tre1 [-] 

1 765 1.00 

2 693 0.91 

3 686 0.90 

4 631 0.82 

9.4 TGV Railway Disc 

700 

Pumping loss is insignificant for commercial vehicles but for the high speed train this 

is a very important issue, as shown in Chapter 4. Low ventilated disc pumping power 

loss (Qpump) is necessary for the economic operation of high speed vehicles. Pumping 

losses can be reduced by restricting airflow through the disc ventilation system but 

this is at the expense of convective cooling performance (Qconv), which decreases 

with reduced ventilation airflow. Therefore, a good balance is required and disc 

design efficiency determined. Different designs are compared based on low pumping 
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losses and good convective cooling. In order to quantify the above requirement, the 

ventilated brake disc efficiency ratio is proposed. 

9.4.1 Ventilated Brake Disc Efficiency Ratio 

The pumping power is proportional to the Vw component of the absolute velocity, 

which is the velocity of whirl in the direction tangential to the vane circumference 

(see Chapter 4). This can be reduced by incorporating a backward curved vane 

design, however this is not an option for the railway disc that is required to operate in 

both directions. SabWabco's approach to the problem is to use a vane/pillar 

combination that pumps air onto pillars, the pillars reduce pumping power but still 

provide good cooling by increasing the 'wetted' surface area (see Chapter 3). Other 

manufactures use somewhat different designs based on the same principle (avoiding 

vanes). 

To aid the design of large high speed ventilated discs a method to compare the 

efficiency of ventilation designs with regards to thermal and pumping efficiency an 

efficiency ratio has been developed. The ventilation system of a ventilated disc 

affects only the convective component of thermal power loss (radiation is enclosed 

within the vane channel and conduction is minimal). The ventilation efficiency ratio 

'1v has been defined as the ratio of convective power dissipation (Qconv) and pumping 

power (Qpump), by the following equation: 

1J 
- Qconv 

v-
Qpump 

(9.1) 

The ratio 'lv increases with increase in convective thermal power dissipation and 

reduces with increase in pumping power. That is to say, the higher the ratio the more 

energy efficient the ventilation system is in dissipating heat. The thermal and 

, 'f t' I ed' the thermal power dissipation is pumpIng power are functIons 0 rota lona spe , 

also a function of disc surface temperature. The ratio '1v for a particular ventilated 

disc is thus a function of rotational speed and temperature. 
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Figure 9.15 shows the ratio 'lv for the TGV pillared/radial vane disc with a surface to 

ambient temperature difference (T D - Too) of 170°C, based on Spin Rig results. 

Thermal power dissipation increases with rotational speed at much lower rate than 

the pumping power loss, therefore there is a sharp increase in 'f/v at low speeds. 
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Figure 9.15 TGV pillared/radial vane disc ventilation efficiency ratio 'lv 

The hconv value can be considered (for the purpose of this ratio) to be a linear 

relationship with disc angular velocity (shown in Chapter 5). Figure 9.16 shows the 

equation of the curve for hconv with respect to angular velocity. 
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Figu~e 9.16 Approximate TOV pillared/radial vane disc hconv change with angular 
velOCIty (based on Spin Rig TOV disc measurements) 

From Figure 9.16 and using equation (5.17) for Qconv the empirical equation (9.2) can 

be defined, which allows Qconv to be determined from angular velocity and the 

temperature difference between the disc surface and ambient air (T D - Too). 

Qconv = (0.5417 ill + 11. 77)AD (TD - Too ) (9.2) 

If pumping losses are assumed to be constant throughout the operating temperature 

range (Chapter 4 shows surrounding air temperatures between 20 and 100°C), then 

Qpump can be found as a function of disc angular velocity only. The Qpump value has a 

non-linear relationship with angular velocity (see Chapter 4). The relationship can be 

determined from a logarithmic plot of Qpump, as shown in Figure 9.17. 
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Figure 9.17 Logarithmic plot of TOV pillared/radial vane disc pumping power loss 
(based on Spin Rig TOV disc measurements) 

From Figure 9.17 the empirical equation (9.3) has been determined for Qpump with 

respect to angular velocity. Equation (9.3) shows that Qpump has an angular velocity 

relationship of approximately the 3rd power, which is in agreement with the fan 

theory of Chapter 4. 

Q = 1 946x10-4 OJ2.94 
pump • 

(9.3) 

Substituting equations (9.2) and (9.3) into equation (9.1) and eliminating the known 

surface area of the TOV pillared/radial vane disc that dissipates heat by convection, 

equation (9.4) can be derived to empirically determine 17v: 

(0.7207OJ+16.4855)(TD -Too) 
1Jv = 1.946 x 10-4 OJ2.94 

(9.4) 

This can be simplified to equation (9.5): 

(3703.49OJ + 84714.78) ~T 
1Jv = OJ2.94 

(9.5) 

Where: 
(9.6) 
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The general form of the 1J1' ratio equation (9.5) can be written as: 

_ (am + b ) ~ T 
17,. - (' 

m 
(9.7) 

Where a, band c are constants specific to disc design, a is the forced convection 

component (a function of rotational speed), b is the natural convection component 

(independent of rotational speed) and the exponent c is the pumping power 

relationship with rotational speed (a value of 3 for the radial vane design, see Chapter 

4). 

The ratio 1Jv is a useful measure of disc ventilation design performance, with high 17v 

values showing good cooling and low pumping loss. Figure 9.18 shows a comparison 

of the measured values of 1Jv for the TOV pillared/radial vane disc and the calculated 

values of 1Jv using the empirical formula given by equation (9.5). A good 

approximation is made for 1Jv, throughout the speed range of the disc. At very low 

speeds the calculated values of 17v tend to be lower than measured values of 17v. 
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9.4.2 Disc Design Comparison 

To demonstrate the new vane efficiency ratio (Y/v), four axle mounted railway disc 

designs (radial/pillared vane, radial vane, tangential vane, and solid disc) have been 

investigated and '1v has been compared for the operating speed range. Details of the 

radial/pillared vane disc are given in Chapter 4. The (a) radial and (b) tangential vane 

discs are shown in Figure 9.19. The solid disc is not shown but has the same internal 

and outside diameters as the other three discs. The pumping and convective cooling 

losses for the ventilated discs are based on data published by SabWabco (Watson 

2002), which give cooling rates and pumping losses for each ventilation design up to 

a rotational speed of 1600 min-I , Pumping loss data for the solid disc is based on 

Spin Rig data by blocking the inlets and outlets of the radial/pillared disc ventilation 

channels (see Chapter 4). Convective thermal power loss for the solid disc is based 

on heat transfer coefficients calculated for the disc surface, equations for a rotating 

disc and cylinder (Morgan and Dennis 1972) have been used (see Chapter 2). 

Figure 9.19 Axle mounted railway discs, a) Radial and b) tangential vane 
(SabWabco 2002) 

Figure 9.20 shows the pumping losses (Qpump) for each disc design, Qpump is mai~IY 
. . h " I d The radial vane dISC due to ventilation channels and Increases WIt rotattona spee . 

h" h I 492 kW at 1600 min- 1 The solid disc (unventilated disc) shows very Ig osses, . . 

256 



shows relatively low QPUIllP values of 0.32 kW at 1600 m' -I I' f 
In ,resu hng rom surface 

drag and resistance at the mounting bolts and lugs. The radial/pillared disc shows the 

lowest QpUIllP values for the ventilated discs, showing a value of 0.82 kW at 1600 

min-I. The tangential vane disc has a higher Qpump value, 1.63 kWat 1600 min-I, 

At 600 min-I the radial vane disc still shows a high Q value of 0 24 kW Q 
pump " pump 

values of the other designs become negligible below this speed. Below 500 min- I all 

designs show negligible Qpump values. 
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Figure 9.20 Comparison of disc design pumping losses 

1600 

Figure 9.21 shows the convective cooling losses (Qconv) for each disc design for a 

disc temperature of 200°C. It can be seen that the radial vane disc has the highest 

Qconv values, reaching 75 kW at 1600 min-I. At low rotational speeds, less than 300 

min-I, the radial vane disc design blocks natural convection and does not cool as well 

as the other ventilated discs (pillared/radial and tangential vane). The pillared/radial 

and tangential vane discs show very similar cooling characteristics throughout the 

speed range. The radial/pillared vane disc has a higher (1.3%) Qconv value (56.6 kW) 

than the tangential vane disc at 1600 min-I. The solid disc shows the lowest Qconv 

values, with a Qconv value of 39 kW at 1600 min-I, which is 48% lower than the radial 

vane disc. 
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Figure 9.21 Comparison of convective thermal power loss (TD-Too = 180aC) 

Figure 9.21 clearly show that the radial vane disc provides the highest convective 

heat dissipation of the four discs under investigation, for speeds above 300 min-I. 

However, the radial disc also has the highest pumping loss values as shown in Figure 

9.20. The solid disc has the lowest Qpump values but the poorest Qconv values. The 

pillared/radial disc and tangential disc have similar Qconv values but the 

pillared/radial disc shows better Qpump values than the tangential disc. From this 

information, it is difficult to distinguish which disc is the best overall performing 

disc (most energy efficiently dissipating heat). This is where the 17v ratio can help; 

Figure 9.22 shows the 17v ratio calculated using equation (9.1) for each disc based on 

the Qconv and Qpump values. The 17v ratio clearly shows that the pillared/radial vane 

disc provides the best overall performance at rotational speeds below 800 min-I. At 

higher speeds the solid disc has the highest 17v value, this is a result of the low 

pumping losses compared to the high pumping losses of the ventilated discs. 

Below 800 min-I, 17v values increases, with a reduction in rotational speed, for all disc 

designs. At 400 min- I the pillared/radial disc has an 17v value of 2915. The tangential 

vane and solid discs show lower values (approximately 60% lower) of 1185 and 

1110 at the same speed. The radial vane disc is least efficient (86% lower than the 

pillared/radial disc) with an 17v value of 405 at 400 min-I. 
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Figure 9.22 Comparison of ventilation design efficiency ratios 

Figure 9.22 shows the 'lv ratio to be very useful as a method of ranking ventilation 

designs throughout the speed range. This is highlighted in the case of the 

pillared/radial and tangential discs. Both discs dissipate heat equally well (see Figure 

9.21), but when considered along side the pumping losses it is clear that the 

pillared/radial disc is far superior in overall performance. This is shown for the speed 

range of the disc in Figure 9.22. 

The 'lv ratio provides a method of selecting the best 'overall' performing disc for the 

required speed range. It should be noted that the cooling requirements must be first 

considered before conSUlting the 'lv ratios. Another consideration is disc thermal 

capacity, assuming the compared disc designs are of the same material, the disc mass 

will have an effect on the disc cooling rate. 

It must be emphasised that 'lv, particularly when discs with similar characteristics are 

compared, can be determined based on CFD analysis. This can be done in the early 

design stages before any prototypes are made. 

259 



9.5 Summary 

Based on the earlier investigations effective modifications have been made to the 

brake/wheel assembly to increase and optimise heat dissipation. 

A modified CV wheel carrier with ventilation holes, designed to increase brake 

convective cooling, was studied with two disc designs on the Spin Rig. The cooling 

rates and average heat transfer coefficients were compared with the 'standard' wheel 

assembly. Flow patterns have been examined using visualisation techniques for the 

anti-coning CV disc, with and without the wheel assembly. The influence of the 

condition of component interface surfaces on thermal contact resistance was also 

studied using the Spin Rig, and included newly machined and 'normal vehicle 

service state' disc/carrier contact conditions. In order to increase conductive heat 

dissipation, high thermal conductivity paste and the use of a thin aluminium gasket at 

the interface have been tested. FE route simulations of the modified CV wheel 

assembly have been performed to study the effect on brake temperatures. 

It has been shown that the novel ventilated wheel carrier vastly improves the cooling 

rate of the anti-coning CV disc and can also improve the cross flow over the disc 

surface. The measurement of thermal contact resistance for the modified interface 

conditions showed that very substantial improvements in the conductive heat transfer 

coefficient can be achieved. FE simulations studying the influence of proposed 

design modifications have demonstrated that heat dissipation can be substantially 

improved. Very good agreement has been achieved when comparing the calculated 

and measured ventilated disc efficiency values. 

The final FE temperature results have enabled the evaluation of actual gains in brake 

cooling for the braking duties modelled, as a result of introduced design changes. It 

has been shown that proposed methods provide real improvement of heat dissipation. 

A method for ranking ventilated disc performance using efficiency ratios, based on 

heat dissipation and pumping efficiency, has been developed. This is a particularly 

important parameter for large and fast rotating high speed vehicle discs such as the 

high speed train TGV disc. Appropriate mathematical relationships established for 

convective heat and pumping losses, lead to the equation for ventilated disc 

260 



efficiency, as a function of disc rotational speed and temperature. Four types of disc 

design have been evaluated using this proposed ranking method. 
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Chapter 10 

Conclusions and Recommendations 

10.1 Introduction 

This thesis presents research into the understanding and improvement of heat 

dissipation from friction brakes. The problems of adequate brake cooling are 

associated with all brake types and despite the very practical aspects of this research, 

a 'generic heat transfer approach' was applied, not restricting the findings to friction 

brakes, or specific brake designs. All relevant parameters were considered, measured 

and recorded in order to provide a wider knowledge base for all modes of heat 

transfer. As a result, methodologies have been developed for determining disc brake 

airflow and cooling characteristics both experimentally (Spin Rig, dynamometer) and 

theoretically (analytically, CFD, FE). These generic methods are effective design 

tools for the development of new disc brakes. 
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10.2 Conclusions 

Spill Rig 

A dedicated Spin Rig, designed, built and commissioned for the measurement of 

brake heat dissipation and airflow characteristics, proved to be very valuable 

equipn1ent, enabling accurate and repeatable tests to be performed. This facilitated 

the establishn1ent of the differences in performance between very similar brake 

designs and the analysis of all n10des of heat transfer. 

Airflow 

A procedure has been developed for pumping losses and airflow measurements, for a 

Yariety of brake discs, on the Spin Rig. Experiments clearly showed the differences 

in flow characteristics for the compared CV discs, which rotate at relatively low 

speeds. The anti-coning disc design is frictionally the most desirable, low coning 

enabling equal pad/disc wear and judder free operation. Its cooling characteristics are 

similar to the standard disc when rotating in free air, but when considered within 

\,'heel assembly (as used on the vehicle), its cooling characteristics are affected due 

to restricted air supply. Experiments conducted on the TOV frequently stopping disc 

(incorporating radial vanes and pillars) provided valuable data concerning pumping 

losses and air speeds. This, large railway disc for high speed trains, requires 

particular attention regarding airflow, since high rotational speeds result in 

considerable pumping losses. 

Prediction of airflow characteristics using analytical methods can be very fast and 

relatively accurate for discs with continuous (from ID to aD) vanes. CFD has shown 

to be a very powerful tool for studying airflow for discs with different ventilation 

system designs (vanes, vanes and pillars). Experimental verifications proved that 

accurate CFD prediction of disc aerodynamic characteristics is possible at moderate 

costs. The developed methodologies provide effective airflow and power 

requirement predictions. 
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COllvective Heat Dissipation 

An accurate and very efficient procedure has been developed for establishing 

convective cooling characteristics in Spin Rig tests. Calculated average heat transfer 

coefficients, as a function of temperature and rotational speed, enabled comparison 

of convective cooling for variety of CV discs. This showed that literature claims of 

the superiority of discs with curved vanes are untrue for commercial vehicle 

applications, where vehicle speeds are quite low. It must be noted that the wheel 

assembly (compared to free air cooling) has the most detrimental effect on 

convective cooling of the anti-coning disc design. This negative effect can be 

rectified by using a ventilated wheel carrier, which dramatically improves cooling, 

up to the levels for the disc rotating in free air. TGV disc measurements also 

provided valuable information, the high disc thermal capacity requiring a different 

disc heating method. 

Developed CFD methodologies showed that efficient cooling predictions can be 

made in an economical way. Predicted average convective heat transfer coefficients 

were \'ery close to the values measured on the Spin Rig. The advantage of the CFD 

modelling is the ability to investigate local heat transfer coefficients and airflow, to 

improve cooling. The biggest advantage is that CFD modelling can be performed in 

the design stages, for efficiently generating novel disc designs. 

Based on performed experiments, literature studies and CFD analyses, the most 

suitable procedures and formulas have been recommended for determining 

convective heat transfer coefficients. This allows comparative analysis of design 

changes and the determination of the most efficient design improvements for specific 

duties and applications. 

Conductive Heat Dissipation 

The review of published work has shown that conduction is the least studied mode of 

heat transfer, leading to often crude and inadequate brake thermal modelling. 

Performed research, which included temperature measurements, interface pressure 

distributions studies (measurements and FE analyses) and surface conditioning of the 

disc/wheel carrier interface, vastly improved the knowledge and understanding of 
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this heat transfer mode. Conduction can be a very important cooling mode and 

certainly should not be neglected. Interface conditioning offers an inexpensive way 

of substantially increasing this mode of heat dissipation, which should be exploited 

(if found appropriate), in variety of brake designs and applications. 

Conducted research resulted in the development of the procedure for studying this 

nl0de of heat transfer. Equally importantly, a generic formulae for calculating 

conductive heat transfer across a bolted joint, has been established. Based on 

theoretical (FE) prediction of the interface pressure distribution, conductive heat 

transfer can be accurately predicted for a variety of brakes and general engineering 

assemblies, at the very early design stages. This offers a variety of possibilities for 

design enhancenlents. 

Radiative Heat Dissipation 

Experimental studies, performed on the Spin Rig, showed a substantial variation of 

emissivity values, not only for different disc surface conditions, but also for different 

temperatures. This confirmed the results of a recent published work about the 

emissivity variations during a drag brake application. Investigations showed the 

importance of adequate emissivity values for accurate temperature predictions. Finite 

element modelling showed that a substantial part of energy emitted by radiation can 

be reflected back to the brake disc. 

Based on research findings, recommendations have been made for radiative heat 

dissipation modelling by including adequate emissivity values and variations with 

surface condition and temperatures, as well as the effect of surrounding components. 

Cooling Performance Simulations 

The integration of the findings for the individual modes of heat transfer enabled the 

conduction of route simulations in order to validate the overall research work. The 

comparison of the analytical and FE temperature predictions with the dynamometer 

data showed very good overall agreement. However, the complexity of temperature 

measurements at the friction surface and variety of influencing factors cause 
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difficulties in conducting these comparisons. A methodology for addressing the 

perforn1ance of rubbing thermocouples has been developed. 

It has been shown that the use of temperature dependent material properties has a 

substantial influence on predicted temperatures. It has also been shown that 

them10elastic instability simulated heat input does not have a significant effect on the 

predicted heat dissipation. This is the result of small amount of heat dissipated during 

braking and fast disappearance of the 'hot spots' due to relatively high disc thermal 

conducti\'ity. E\'en for drag brake applications, the influence of thermoelastic 

instability effects on brake cooling is very limited. 

The measurements and analyses enabled accurate determination of the contribution 

of indi\'idual heat transfer modes in total heat dissipation. In most vehicle service 

conditions, the majority of heat is dissipated by convection. However, conduction 

and radiation must not be neglected, as they can be the primary modes of heat 

dissipation at low vehicle speeds and high temperatures. Detailed studies of all 

modes of heat dissipation enabled accurate temperature predictions in all braking 

conditions. Brake design features which have scope for improvement, were 

established, providing a good foundation for further investigation into heat 

dissipation optimisation. 

Heat Dissipation Optimisation and Improvement 

Based on conducted research, effective modifications have been made to the brake 

and wheel assembly to increase and optimise heat dissipation. A modified CV wheel 

carrier, with ventilation holes, designed to increase brake convective heat dissipation, 

demonstrated the highest overall gain in heat dissipation. Conditioning of the CV 

disc/wheel carrier interface is inexpensive and practical method for dramatically 

reducing thennal contact resistance and increasing conductive cooling. However, to 

achieve the full potential, this method should be combined with an aluminium wheel 

carrier and ideally, higher conductivity disc material (such as aluminium MMC's). 

For the high speed ventilated railway disc brake, the balance of pumping losses and 

convective heat dissipation is shown to be the main area of potential improvement. 

266 



The developn1ent of an original ventilated disc design efficiency ratio has allowed 

disc designs to be accurately and efficiently evaluated and compared, even for small 

differences in heat dissipation and/or cooling characteristics. 

The conducted research enables n10re efficient disc designs to be developed in much 

shorter time and at lower costs. 

10.3 Recommendations for Further Work 

Further research work is envisaged in several areas of heat dissipation from friction 

brakes. Firstly, the practical application of the conducted research is going to take 

place in a Life Cycle Cost Prediction Project, the process is shown in the form of the 

flowchart in Figure 10.1. In this Project, currently being established with a railway 

brake manufacturer, the heat dissipation forms a central part, defined as 'Thermal 

Route Simulation' (Figure 10.1). The project aims to fully define life and cost 

characteristics of friction pair components, enabling the most cost effective solutions 

(combinations) to be chosen. Heat dissipation has a crucial role in ensuring, initially, 

that the friction pair operates within acceptable thermal limits. If this requirement is 

satisfied, pad and disc lives are predicted for the given operating route. Providing the 

lives are acceptable, cost optimisation can be conducted by choosing the most cost 

effective solution. 
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Apart fron1 this ilnmediate application, the following areas of heat dissipation from 

friction brakes are considered to be of prime interest for further research: cross flow 

investigations, novel disc designs, development of advanced wheel carriers for CV 

vehicles, road and rail vehicle ventilated disc aerodynamic studies and route 

simulations. Further work is also envisaged in the study of radiative heat dissipation. 

These studies will require further development of the testing facilities, the Spin Rig 

\\'ould require updating to include a more powerful heating system, rotational 

telen1etry and cross flow. Also, development of CFD analyses will improve accuracy 

and speed of obtaining results. CFD codes are developing fast and part of the further 

research would require assessment of the most suitable code to be used. 

The research presented in this thesis has considered heat dissipation in still air 

conditions. Although cross flow has no influence on conductive and radiative heat 

transfer, its influence on convective heat transfer can be substantial. It must be noted 

that for railway application, the most widely accepted dynamometer procedure is 

testing in still air, which represents the most demanding environment. This is 

justified by the very different flow conditions that may exist on brake discs installed 

in different position on the train rake. However, there is no doubt that cross flow has 

substantial influence, in particular for high speed trains, therefore further research of 

complete vehicle aerodynamics combined with disc flow analyses will be required. 

Automotive disc cooling characteristics are more sensitive to cross flow, as a result 

of disc position (within the wheel) and lower rotational speeds. Obviously, cross 

flow increases convective heat dissipation, however, the cross flow speed around the 

disc is lower than vehicle speed, and many other factors influence the flow 

(suspension components etc.). Therefore, the cross flow studies of discs will be only 

the first step in addressing this issue. Vehicle aerodynamics and flow around the 

wheels and brakes must be fully understood to provide adequate inclusion of this 

effect on brake cooling. The research should also investigate the influence of brake 

callipers (and pads) and dust shields; ventilated CV wheel carrier designs are being 

addressed by Odell (2003). 
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Research into novel heat dissipation efficient disc designs l'S a th . , no er Important area 

of future work. The analyses of four different types of CV discs showed the 

linlitations of addressing the problem by investigating only d' fl h " 
lSC ow c aractenshcs. 

A much nl0re global, combined flow-thermal vehicle and 'whe I d' h . , e en approac IS 

required. The potential benefits are clearly demonstrated in this the' SIS. 

The four railway disc brakes analysed, showed considerable differences in cooling 

and punlping characteristics. The developed approach in determining 'ventilated 

brake disc efficiency coefficient' (pumping efficiency) is a good foundation of 

objecti\'ely assessing new disc designs, even with small differences in heat 

dissipation and/or cooling characteristics. Further work is required to fully explore 

this approach. The development of a new disc design with adequately 'balanced' 

pumping and cooling characteristics is possible at very little cost, as a result of 

validated theoretical procedures developed in this project. 

Further research is also envisaged for radiative heat transfer. The research presented 

in this thesis clearly defines a practical approach and gives general guidance in 

choosing suitable values of surface emissivity. The radiative heat dissipation would 

require more research to examine emissivity and its variation with temperature and 

friction surface condition. 

Heat dissipation research is also required to better understand the cooling 

characteristics of brakes made from novel materials, such as carbon fibre ceramic 

composites. These materials have very different properties from commonly used 

friction pairs (cast iron, steel and aluminium MMC's discs combined with sinter or 

organic pads). Therefore, all modes of heat transfer; conduction, convection and 

radiation must be carefully studied, taking into consideration issues specific to these 

materials. It must be noted that fundamentally different material properties and 

manufacturing methods will result in different optimised disc designs. Until now, the 

designs of these brake assemblies were led by 'copying' existing, commonly used 

designs. The design changes were mainly influenced by manufacturing method 

limitations and specific design problems (failures). The process of disc and friction 

, d' t" t' t fully explore the advantages and address limitation of paIr eSlgn op lmlsa lon, 0 

these new materials, is still to be performed. The research results obtained in this 
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thesis are of fundan1ental value in maximising heat dissipation, but future work is 

required to provide optilnal solutions for novel designs. 
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Appendix A 

Material Properties 

Table Al Aluminium, temperature dependent material properties (Cengel 1998) 

Property 100°C 200°C 400°C 600°C 

Mass density [kglm3
] 2702 2702 2702 2702 

Specific heat [J/kgK] 482 798 949 1033 

Conductivity [W/mK] 302 237 240 231 

Table A2 Grey cast iron, temperature dependent material properties (Gilbert 1977) 

Property 100°C 200°C 300°C 400°C 500°C 600°C 

Mass density [kglm3
] 7050 7050 7050 7050 7050 7050 

Conductivity [W/mK] 52.5 51.5 50.5 59.5 48.5 48.5 

Specific heat [J/kgK] 265 265 355 400 425 445 
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Table A3 Grey cast iron, fixed material properties (Kreith 1986) 

Property Value 

Mass density [kg/m3] 7050 

Conductivity [W/mK] 50.5 

Specific heat [J/kgK] 445 

Elastic Modulus [GN/m2
] 100 

Poisson's ratio [-] 0.26 

Table A4 15CDV 6 steel, temperature dependent material properties (Sarwar 2002) 

Property 20°C 100°C 200°C 300°C 400°C 500°C 

Mass density [kg/m3] 7830 7830 7830 7830 7830 7830 

Conductivity [W/mK] 42.3 42.3 41.9 40.2 36.8 34.8 

Specific heat [J/kgK] 420 440 499 568 617 637 

Elastic Modulus [GN/m2
] 226 224 192 188 182 162 

Poisson's ratio [-] 0.28 0.28 0.28 0.28 0.28 0.28 

Table AS Standard ESC air properties (SDRC 2000) 

Property Value 

Mass density [kg/m3] 1.207 

Coefficient of thermal expansion [K-1
] 3.41 E -03 

Thermal conductivity [W ImK] 2.63 E-02 

Specific heat at constant pressure [J/kgK] 1.007 E+03 

Viscosity (dynamic) [kg/ms] 1.85 E-05 

Specific heat at constant volume [J/kgK] 7.19 E+02 

Prandtl number [-] 7.15 E -01 

Gas constant [J/kgK] 2.87 E+02 
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Table A6 Thermal contact conductance of metal surfaces (CengeI1998) 

Material Surface Roughness Ra Temperature Interface pressure hcond 
condition [Mm] [DC] [MN/m2] [W/m2K] 

Identical metal pairs 

.+16 Stainless Ground 2.54 90-200 0.3-2.5 3800 
Steel 

304 Stainless Ground 1.14 20 4-7 1900 
Steel 

Aluminium Ground 2.54 150 1.2-2.5 11400 

Copper Ground 1.27 20 1.2-2.0 143000 

Copper Milled 3.81 20 1-5 55500 

Copper Milled 0.25 30 0.7-7 11400 
(Vacuum) 

Dissimilar Metal Pairs 

Stainless - 20-30 20 10 2900 
Steel-

20 3600 
Aluminium 

Stainless - 1-2 20 10 16400 

Steel-
Aluminium 

20 20800 

Steel Ct-30- Ground 1.4-2.0 20 10 50000 

Aluminium 15-35 59000 

Steel Ct-30- Milled 4.5-7.2 20 10 4800 

Aluminium 30 8300 

Aluminium- Ground 1.3-1.4 20 5 42000 

Copper 15 56000 

Aluminium- Milled 4.4-4.5 20 10 12000 

Copper 20-35 22000 
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Appendix B 

Brake Components 

81 Commercial Vehicle 

Figure Bl Renault 18 tonne commercial vehicle, supplied with ArvinMeritor brake 
discs (Trucks 2002) 
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B1.1 Standard disc (al/ dimensions in mm) 
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81.5 Steel wheel 
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81.6 Wheel carrier 
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81.7 Modified wheel carrier (ventilation holes added) 

18.0· 
10 equally spaced holes 

82 TGV High Speed Train 

Figure B2 TOV high-speed trains supplied with SabWabco brake systems 
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82.1 TGV ventilated axle mounted brake disc assembly 

-¢640 150 

Figure B3 TOV axle mounted brake disc assembly 
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Appendix C 

Temperature Prediction 

C1 Braking Energy 

Brake disc temperatures rise due to the friction force applied at the friction area of 

the rotating brake disc by the brake pads. The temperature increase at the friction 

surface causes heat conduction though the disc or drum. Convection and radiation 

cooling will lose part of the heat produced, heat will also be transmitted to adjacent 

components by conduction. 

Calculations for predicting brake temperatures were first applied to drum braking 

(Newcomb 1958-9). Single stop temperatures and regular repetitive stop transient 

temperatures were determined. In the 1960's when the use of disc brake systems 

began to increase methods for determining the temperature distributions in brake 

discs were published. Newcomb (1960) developed equations to enable calculation of 

the temperatures reached during single stop braking and transient temperatures 

reached in during repeated braking. Typical curves are given showing the agreement 

between temperatures determined theoretically and experimentally at the friction 

surface during single and repeated brake applications. 

C1 



C 1.1 Heat Generation 

If a vehicle decelerates at a uniform rate, kinetic and potential energies are converted 

into thermal energy through the pad and disc interface. The heat generated is 

proportional to the work done by the friction pair. When considering braking on a 

level surface from the initial velocity (U2) to a lower velocity (Uj) the approximate 

(neglecting any losses) braking energy (q) for a vehicle of mass (m) is given by: 

(Cl) 

To determine the energy input to the brake friction surface the average heat flux can 

be calculated. The equation (C2) is used by Day (1998) and gives the average 

braking heat flux (q ') on a level surface: 

, _ f3rm(l + ')u 2 

q - 2As (C2) 

Where, 'is a fraction of 0.05 for rotational energy to kinetic energy of vehicle, y is 

the front to rear brake distribution and P is the proportion of energy absorbed by the 

disc. The equation neglects aerodynamic and rolling resistance and therefore gives an 

over estimated energy input value. Energy entering the disc is assumed uniform over 

the friction area. 

Figure C4, shows a graph of the bi-linear braking power graph; the first period of the 

graph corresponds to the time taken to develop the nominal pressure value. The 

rising braking power is assumed linear. The falling braking power is due to the 

deceleration, which is assumed constant (the friction coefficient is considered as 

constant during the whole brake application). 
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Power 

Time 

Figure C4 Brake friction surface pressure and braking power 

C1.2 Energy Partition 

The braking power developed at the disc/pad interface is distributed between the pad 

and the disc, is directly related to the thermal resistance of the interfacing materials, 

their thickness and their surface area. Newcomb (1960) has derived equations to 

determine the proportion entering the disc (fJ). Equation (C3) assumes that the two 

bodies are of infinite thickness: 

(C3) 

If the distribution is required for longer braking periods the proportion of heat 

generated entering the disc can be obtained from the equation (Newcomb 1961): 

(C4) 

Equation (C4) will give reasonable results for friction materials of low conductivity. 

Other formulae proposed for predicting the distribution of energy can be found for 

short brake applications and continued braking, the following authors finding them 

satisfactory (Limpert 1972; Fukano and Matsui 1986; Sheridan, Kutchey et al. 1988): 

Short application times: 
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, 
/3= ,qD , ____ 1 __ _ 

qD + qp 1 +( ppcpkp )1/
2 

PDcDkD 

Repeated or continued braking: 

Equation (C6) accounts for pad thickness and surface heat transfer. 

(C5) 

Work by Day and Ahsi (1990) on heat flow and temperatures in friction material 

during braking indicates that the interface thermal contact conductance ranges from 

1000-10000 W/m2K for resin bonded composite friction material sliding on cast iron. 

The values are expected to depend on the friction material, mating surfaces and also 

the conditions of frictional contact. A value of 3500 + 1000 W/m2K has been 

confirmed by Day (Day 1990) in an experiment for the sliding contact of a specific 

friction material sliding on a cast iron mating surface. 

Values for p are typically between 0.90 and 0.99. For asbestos-free materials of the 

semi-metallic type sliding against cast iron discs, f3 = 0.98 when Ap/AD = 1.00 (Day 

1998). 

C1.3 Disc/Pad Interface Energy Distribution 

Most friction brake applications are performed in the thermoelastic instability (TEl) 

regime, which causes variation of interface pressure and heat generation over the 

nominal disc/pad contact area. Irregularities in the surface will cause the pressure 

distribution to be non-uniform. Barber (1969) showed experimentally the formation 

and movement of these areas are determined by the thermo-mechanical process of 

thermal deformation and wear. The highest part of the surface will carry the greatest 

pressure, reach the highest temperature and consequently expand more than the 

surrounding surface. Thus the thermal expansion tends to exaggerate the initial 
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irregularity of the surface. The wear at the interface has an opposite effect, but under 

suitable conditions the process can be unstable. 

The higher temperatures in these areas cause the material to expand and rise above 

the level of the surrounding surface, which increase pressure and thermal loading. 

High thennal stresses produced in these areas can cause surface cracking. 

Work on various brake types has shown that hot spots are a very common occurrence 

in disc bakes. Fec and Sehitoglu (1985) examined the thermal-mechanical damage in 

train wheels due to hot spotting; constraints and thermal expansion cause stresses 

that eventually initiate and propagate fatigue cracks. 

Anderson and Knapp (1990) studied vanous types of hot spots in detail and 

described different types of hot spots found in automotive brakes. It is suggested that 

the most critical operating conditions involve high sliding speeds, low bulk 

temperatures, long friction contacts, thick materials and low material wear rates. 

In the study of brake interface pressure distributions by Tirovic and Day (1991) the 

thennal effects on brake perfonnance are discussed describing how the pressure and 

contact at the brake friction interface can be broken down into three levels. The first 

relates to large scale pressure variation over the full rubbing surface, induced by bulk 

defonnations and application of actuating forces. The second relates to 

'macroscopic' interface pressure variation, arising from localised deformations or 

distortion of the rubbing surfaces. High peaks of interface pressure cause high rates 

of localised frictional heat flux generation, which initiate heat spotting, banding and 

ultimate cracking, crazing and failure. The third level represents frictional contact on 

the microscopic scale, fundamental to the study of friction and wear. 

Lee and Barber (1994) have investigated TEl experimentally showing that the onset 

of instability is clearly identifiable through the observations of non-uniformities in 

temperatures measured using imbedded thermocouples. 

Hot spots from TEl are usually anti-symmetric (Hartsock, Hecht et al. 1999), and 

will not occur below a critical speed. This speed is dependent on the disc and pad 
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material properties, pad/disc relative size, pad thickness, disc thickness, and the 

coefficient of friction. Results show that critical speed is a weak function of the 

number of hot spots per revolution, which means the number of hot spots obtained in 

a practical brake system will be sensitive to initial conditions. 

Kao, Richmond et al. (2000), has demonstrated experimentally and theoretically that 

in addition to the thermal growth the thermoelastic unstable warping or buckling 

induces excitation to hot spotting and disc cracking, as well as torque variation and 

hot judder. The non-uniform heat distribution caused by hot spots result in higher 

than expected surface temperatures, effecting convective and radiative heat 

dissipation. 

C2 Predicted Temperatures during Braking 

Disc temperatures can be calculated based on braking energy and disc and pad 

geometry and materials. For short braking applications (a single stop) cooling can be 

neglected. For longer braking applications (repeated and drag) brake cooling must 

also be considered. The temperature prediction equations given in this section have 

been used in Chapter 8 for comparison with dynamometer test measurements and 

route simulations. From the experience of the author and other brake designers, it is 

always worth checking the bulk brake temperature with the simple energy equation: 

q =mcp l1T (C7) 

C2.1 Single Stop Braking 

When a vehicle brakes to rest at a high deceleration, heat dissipation can be 

neglected. The braking application time is less than the time required for heat to be 

dissipated. Under these conditions, it is assumed all braking energy is absorbed by 

the disc and brake. If it is assumed that heat is generated uniformly over the disc 

surface and not just in the area of the friction pad, a 2-D heat equation can be 

formulated to find the temperatures within the disc. This will only cause very small 

errors; the rotational speed of the disc is very high except at the end of braking when 

heat developed is very small (Newcomb 1979). Two forms of solution are given 

depending on the value of the parameter A, where tD is the disc thickness: 
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(C8) 

If A > 1.21 the disc can be considered to be infinitely thick and the mean temperature 

rise at a given time, s, is given by: 

(C9) 

Where, Sb is the stopping time. The maximum temperature reached is: 

T = O.S3q'( Sb )Yz l kpcp 

(CIO) 

If A <1.21 the disc can no longer be considered infinitely thick and the mean 

temperature rise is given by: 

(CII) 

Limpert (1972) has derived an equation that computes temperatures at any location 

beneath the friction surface (z) as a function of time (s); convection cooling is also 

included: 

(CI2) 

Where nb is the number of stops. The values of '¥ nbt/2 is determined from the 

transcendental equation: 
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A few common solutions for values of 'Pnb tcl2 for the above equation are given in 

Table C7. For most analyses, only three terms are required. 

Table C7 Values of \{' tcl2 

ht/21k '1'1 t/2 '1'2 t/2 'l'3 t/ 2 'I' 4 t/2 'Ps t/2 'P6 t/ 2 

0.01 0.0998 3.1448 6.2848 9.4258 12.5672 15.7086 

0.02 0.1410 3.1479 6.2864 9.4269 15.5680 15.7092 

0.04 0.1987 3.1543 6.2895 9.4290 12.5696 15.7105 

C2.2 Drag Braking 

Drag braking occurs when the brakes are applied during a downhill decent to keep 

the velocity constant. The duration of the application is long and cooling must be 

considered in temperature analysis. Cooling increases with brake disc temperature 

increase (discussed in Chapter 2), and the brake disc will reach a state of equilibrium, 

where the generated thermal power equals the thermal power dissipated. Newcomb 

(1979) gives an expression for the excess brake temperature at the end of the braking 

time, which applies Newton's law of cooling and gives reasonable accuracy: 

, 
T = L{l-exp( -bSb)} 

Ah 
(C14) 

Where the cooling rate b can be found experimentally (see Chapter 2) or by equation 

(CIS) (Newcomb and Millner 1965): 

b= Ah 
vpcp 

(CIS) 

In a continuous brake application braking power (Q) is constant. Limpert (1999) has 

also published an equation for the temperature response during continuous braking: 
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(CI6) 

Where, Q is the braking power absorbed by the disc and s is the time during which 

the brakes are applied. 

C2.3 Repeated Braking 

As with drag brake applications, cooling must be considered. The temperature for the 

first brake application is calculated as outlined in Section C2.I, cooling is then 

considered up until the next brake application. Newcomb and Spur (1967) give an 

expression for the brake temperature after a series of identical stops, also applying 

Newton's law of cooling: 

= {I- exp ( -nbso ) } 
Tn 1'; +~T () 

b I-exp -bso 
(CI7) 

Where, So is the regular interval time between braking and t1T is the increase in bulk 

temperature of the disc, equation (C7). The value of b can be determined from the 

heat transfer coefficient, h, see equation (CI5), or from cooling parameters based on 

cooling tests on a brake assembly as discussed in Chapter 2. 

Limpert (1999) also developed an equation to calculate brake temperatures during 

repeated braking assuming the disc is a lumped system and heat transfer coefficients 

and material properties are constant. The relative brake temperature before (1) the 

nb
th brake application is: 

(CI8) 

The relative brake temperature after (2) the nb
th 

brake application is: 
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(C19) 

C4 Temperature Measurements 

In the literature some of the measured temperatures are given for various braking 

applications. For a cast iron rotor at 725°C the hub temperature was found to be 

175°e (Sisson 1978). A vented rotor undergoing a 97 kmIh fade stops reached a 

maximum temperature of 5000 e at the disc surface and a maximum temperature of 

1000 e at the mounting flange (Noyes 1979). During a transient simulation disc 

surface temperatures reached a maximum of 145°e and the pad backing plate 

reached a maximum shown temperature of 65°C, this value however continued to 

rise. Measured temperatures of a passenger car brake during repeated braking gave 

maximum disc surface temperatures of 525°e and maximum calliper bridge 

temperatures of 1600 e after 2000 seconds (Lee 1999). These results give good 

indications of the temperatures that can be expected during braking. 
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Appendix D 

Spin Rig Design 

D1 Initial Design 

From the design brief detailed in Chapter 3 an initial design was chosen for the Spin 

Rig and included a schematic detailing the location of various components, see Table 

D8 and Figure D5. Calculations performed to determine the parameters of the 

component specifications are detailed in Sections D 1.1 to 1.6. The initial 

specification is detailed in Table D12. 

Table D8 Spin Rig components 

Position Component 

1 Electric motor 

2 Bearing housing 

3 Slip rings or telemetry 

4 Torque transducer 

5 Wheel assembly 

6 Platform 

7 Base 

8 Motor control 

8 Data acquisition system 

9 Rubbing thermocouples 

10 Wheel 

11 Brake disc 

12 Imbedded thermocouples 

13 Electric heater 
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01.1 Motor 

Motor selection is based on torque and speed r . . 
equlrement, calculatIons have been 

performed to determined these requirements The tw 1" .. 
'. . 0 app IcatIons reqUlnng the 

hIghest rotatIon speed were considered the brake dI'S f . 1 

the brake disc of a high speed train. 
' c 0 a SIng e seat race car and 

1. Maximum rotational speed of FSAE race car wheel travelling at 160 kmIh 

160 kmIh = 44.7 mls 

= 520mm wheel diameter 

therefore, (J) = VIr = 44.7/0.26 m = 171.94 rad/s 

171.94 rad/s = 171.94 x 60/2 11: = 1642 min-1 

2. Maximum rotational speed of train wheel travelling at 300 kmlh 

300 kmlh = 83.3 mls 

train wheel diameter = 0.9 m 

therefore, (J) = vIr = 83.3/0.45 = 185.11 rad/s 

185.94 rad/s = 185.94 x 60/211: = 1768 min-1 

Calculations 1 and 2 show that a rotational speed of 1800 min-1 is sufficient for 

simulations. A design specification of 2000 min-1 is adequate for the maximum 

angular velocity. 

Ventilated disc brakes on trains can cause considerable energy loss, Russell and 

Williams (1990) stating each disc absorbs 3 kW of power when running at 270 kmlh. 

The Spin Rig therefore requires a motor with sufficient power to overcome and 

accelerate the disc. A 7.5 kW motor is a standard size and is sufficient for this 

application. To determine how quickly the motor can accelerate a disc up to speed, 

the acceleration has been estimated for the rotation of a TGV disc and hub, this is the 

largest disc to be used on the rig. 
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Rotating mass 

Disc mass = 120 kg 

Hub mass = 55 kg 

Total Mass = 175 kg 

Radius of gyration 

Radius of gyration for disc, J = mr2/2 = 120 x 0.352/2 

Radius of gyration for hub, J = mr2/2 = 55 x 0.052/2 

Total J = 7.42 kg.mm2 

Max torque available, 48 Nm (7.5 kW motor) - 15 Nm (losses) 

Acceleration 

Max acceleration = TorquelRadius of gyration 

(Dl) 

= 33/7.42 

= 4.45 rad/s2 

To reach 1750 min-I, 183.3 rad/s from 0 rad/s: 

Speed/acceleration = 183.3/4.45 = 42.3 seconds 

= 7.35 kg.mm2 

= 0.069 kg.mm2 

A time of 43 seconds is thought to more than adequate for the disc to reach 

maximum speed and so a 7.5 kW motor is sufficient. 

D 1 .2 Shaft Analysis 

The shaft and bearings are required to support a maximum load of the TGV train 

disc, hub and shaft adaptor. The total mass is 250 kg rotating at a maximum speed of 

2000 min-I. 

To determine the size of shaft required the ASME design code for transmission 

shafting has been used. First, a nominal diameter of 75 mm was chosen for the shaft 

and bearing. The stress and deflection calculations were performed; see Figure B6 

and Figure D7. 
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Bending Moments 

~ 

Ra 
(motor) 

0.2m 

Bearings 

~ ~ 

~ 

Rb 
(bearing) 

0.3 m 

250mm 

250 kg 

J~ 
L::::. 

R: 
(bearing) 

Wheel 

250 kg 

0.25m 

... 

.... 
~, 

Figure B6 Bending moments of shaft at wheellbrake bearing assembly 

M =250x9.81xO.25 (Ra=ON) 

= 613.1 Nm 

Taking moments about Rb: 

0.55x250x9.81+0.3xRc =0 

-0.55x250x9.81 
R =------

c 0.3 

R =-4496N c 

Taking moments about Rc: 

0.25x250x9.81-0.3xRb = 0 

0.25x250x9.81 
R =------

b 0.3 

Rb = 2044N 
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O.3m O.25m 
2453 N 

r 
Shear 

2044N 

-2453 N 

Bending 

613Nm 

Figure D7 Bending moment diagram for Spin Rig shaft 

Bending Stress 

Me 
a=-

I 

nr4 

where I =-
4 

For max stress c = radius of shaft 

For 0 50 mrn shaft: 

I = nO.025
4 

= 306x10-9 

4 

For 0 75 mrn shaft: 

I = nO.0375
4 

= 1.553 x 10-6 

4 

a = 613xO.025 = 50MN/m2 

306x10-9 

(D2) 

a = 613xO.0375 = 15MN/m2 

1.553x10--6 

Taking the yield strength of steel to be 300 MN/m2, the bending stresses found in the 

shaft are small for static loading with safety factors over 6. 
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Radius of Curvature 

1 M 
Curvature = - = -

e EI 

Radius of Curvature 

For steel E = 200 GN/m2 

For 0 SOmm shaft: 

EI 
, e=-

M 

200xl09 x306xlO-9 
e = 613 = 100m 

For 0 7 Smm shaft: 

200xl09 xl.SS3xlo-6 

e= =SOOm 
613 

Deflection 

Maximum deflection at wheellbrake assembly 

-PL3 

y = 3EI 

For 0 SOmm shaft: 

-2S0x9.81xO.2s3 
-4 

Y = = -2.1xl0 m 
3x200xl09x306xl0~ 

For 07 Smm shaft: 

- -2S0x9.81xO.2S
3 

_ 4 1 10-5 y- --. X m 
3x 200xl09 xl.SS3xl0-6 

(D3) 

(D4) 

(DS) 

The radius of curvature and deflection of shaft are found to be small even when a SO 

mm diameter shaft is considered. However, for out of balance calculation clearance 

tolerance must also be considered (O.OS mm). 

Angle of Twist 

T _ G(} . () _ Tl 
--- .. --
J 1 GJ 

1[r4 

Where J=-
2 

For steel G = 77 xl 0 9 N / m 2 

Max torque on shaft = SO Nm 

(D6) 
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Length of shaft =0.7m 

For 050 mm shaft: 

Jl"0.025"~ 
J = 2 = 613.59xlO-9 m 4 

() = 50xO.7 _ -6. 

77xl09 x613.59xlO-9 - 740.80xlO radians = 0.042° 

For 075 mm shaft: 

Jl"0.0375~ 
J = = 3 106xlO-6 m 4 

2 . 

() = 50xO.7 _ -6. 

77xl09 x3.106xlO-6 -146.33xlO radzans = 0.008° 

Angle of twist found in the shaft at maximum torque is very small for both the 50 

and 75 mm diameter shaft. 

Shear Stress 

Tc 
r=-

J 

For 050 mm shaft: 

50xO.025 / 2 
r= =2.04MN m 

613.59 X 10-9 

For 075 mm shaft: 

r = 50xO.0375 = 0.60MN/m2 
3.106x10-6 

(D7) 

The shear stress calcultaions show that the shear stress in the shaft at maximum static 

load is negligible. 

Fatigue 

The shaft analysis so far has been for static loading. However during shaft rotation 

dynamic loads occur. For sinusoidal stress, the suggested fatigue limit is UTS/2 for 

smooth steel specimens of less than 1000 MN/m2 (Sherrate 1990). All the stresses 

calculated in the Spin Rig shaft are well below this value. 
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The ASME design code for transmission shafting equation for determining the 

diameter of a solid shaft is: 

where, ns is the factor of safety and (je = ka kb kc kt ke kf kg (j'e 

Where: 

Table D9 Shaft material data, 817M40 hot rolled alloy steel 

Property 

UTS 

cry 

Min shoulder radius at bearing 

Torque 

Bending moment 

Reliability 

Expected diameter, constant 

ka = surface factor 
b 

ka = aG'UTS 

for hot rolled steel a = 57.7, b = -0.718 

:. k = 57.7(1000)-0·718 = 0.405 
a 

kb = size factor 

assumed dia. 75 rnm shaft 

kb = 1.85d-o·19 

For d > 50 rnm, kb = 0.815 

kc = reliability factor 

Value 

1000 :MPa 

770 :MPa 

1.5mm 

50Nm 

490.5 Nm 

99.9% 

75mm 

for 0.999 nominal reliability kc = 0.753 

kI = temperature factor 

for temperature between -57°C and +204 °C kt = 1 

ke = duty cycle factor 

value of 1 for, no shock loads or high stop/starts, ke = 1 

k
f 
= fatigue stress concentration factor 

(D8) 
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q = notch sensitivity, from table 

for 1 mm notch radius and UTS of 100 MPa, q = 0.85 

kt = geometric stress concentration factor, from table 

for a dia. Ratio Did = 100/75 = 1.333 and radius/dia. Ratio rid 

= 1.5/75 = 0.02, kt = 2.8 

k = 1 
j 1 + 0.85(2.8 -1) 

k j = 0.395 

kg = miscellaneous effects factor 

The miscellaneous factor is taken as I, kg = I 

(j'e = endurance limit of test specimen (N/m2) 

Solution: 

Endurance limit, 

Therefore, 

O"e = 0.5040' UTS < 1400MPa 

O"e = 0.504x1000 = 504MPa 

O'e = 0.405xO.815xO.753xlxlxO.395xlx504xI06 

a e = 49.48MPa 

Material and loads are known thus ns = 2 

d [32X2 ( 490.5 J2 3( 50 J2]1/ 3 
= 1l 49.48x106 + 4 770xl06 

d = 58.668xI0-3 

Therefore from the ASME design code the nominal shaft diameter = 58.67 mm, this 

gi ves the chosen shaft diameter of 75 mm a safety factor of 2.5. 

01.3 Wheel Assembly 

The Spin Rig is required to rotate a wheel assembly up to the size of a commercial 

vehicle, this type of vehicle has a standard wheel diameter of 22.5", the tyre diameter 

measures 1.050 m and has a width of 0.250 m. The Spin Rig and its guarding must 
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have clearance for this. The maximum expected mass of this assembly including the 

shaft adaptor is 200 kg, see Chapter 3 A specification mass of 250 k· ff·· . g IS SU lclent to 
accommodate any future requirements. 

D1.4 Frame 

The Spin Rig frame is required to support the loaded shaft when rotating at 

maximum speed. The frame must be sufficiently heavy and stiff to support the over 

hanging weight of the wheel assembly at the end of the shaft. Vibrations need to be 

controlled to reduce fatigue problems and protect instrumentation. To aid 

manufacture the framework will be design using welded steel square section tubing. 

The frame will stand on anti-vibration feet, bolted to the floor. 

D1.5 Instrumentation 

The Spin Rig is used for measurements of brake and air temperatures, shaft torque 

and shaft speed, airflow measurements are measured using a handheld velocity meter 

as described in Chapter 3. These measurements are to be logged on computer for 

processing and analysis, the airflow measurements are logged separately. The speed 

of the Spin Rig shaft needs to be controllable requiring the use of a motor controller 

this should be operated using the 'logging' computer. A torque transducer is required 

to measure shaft torque; this is to be fitted in-line between the motor and the 

bearings. The ideal position for the torque transducer is in-line between the bearing 

and the wheel assembly. This would eliminate measurement of losses generated by 

the bearings. However, the torque traducer would be unable to support the dynamic 

loads of the wheel assembly and should be located between two bearings (motor and 

shaft bearings). The losses from the bearing assembly will therefore be measured and 

subtracted from the measurements. From the motor analysis, a torque measurement 

range of 0 to 50 Nm is required and for speed measurement a range of 0 to 2000 

. -1 
In1n . 

For measurement of temperature different types of sensors are to be used, rubbing 

thermocouples, embedded thermocouples and infrared sensors. It was envisaged that 

up to 16 embedded thermocouples and 16 surface temperature measurements would 

be required using rubbing or infrared sensors. The rubbing thermocouples and 
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infrared sensors can measure surface temperature of a rot t' . 
a Ing or movIng surface, the 

embedded thermocouple however rotates with the mat . lb' 
ena elng measured and the 

thermocouple output need to be transmitted to the data . " d' . 
acquISItIon eVIce uSIng a 

wireless system. The two methods are available to transffil't therm I d f 
ocoup e ata rom a 

rotating shaft, slip rings and telemetry. 

Slip rings use contact rings and brushes to transmit data from a rotating shaft to the 

data acquisition device, see Figure D8. A ring is required for each channel. The 

problems associated with slip rings are noise and wear. Though they have been use 

for brake temperature measurement in the past (see Chapter 2) the output from a 

thermocouple is small, in the range of 40 IlV/oC for the K-type thermocouple. For 

this reason a more robust method of data transfer is desired. 

Figure D8 Slip ring assembles to transmission electrical signals from rotating shafts, 
HBM Mess- und Systemtechnik GmbH, Germany 

To avoid the problems of noise and wear a non-contacting means of transmitting 

measurement data to stationary and data processing equipment is available. Several 

devices are available on the market today. The sensor outputs are connected to a 

miniature transmitter, power pick up loop or battery pack are attached to the rotating 

shaft or component. The transmitter converts the transducer outputs into a form that 

enables transfer from the rotating shaft to a stationary pickup. Transmission options 

include inductive, infrared, radio and capacitive. A pickup, combined with an 

energising head in the case of inductively powered systems, collects the data and re­

transmits via cable to the system demodulator and readout. The received data is 

decoded into analogue voltage or current form, or alternatively converted to serial 

data for input into a PC, see Figure D9. Table D 1 0 shows the Spin Rig telemetry 
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requirements. Three companIes have quoted for a I6-channel thermocouple 

telemetry system to be fitted to the Spin Rig; details are shown in Table Dil. 

Table DIO Telemetry specification 

Capacity: 16 ungrounded thermocouples 

Sample rates: 2.5 seconds per channel 

Thermocouple type: K-type 

Measurement range: 0- 600°C 

Accuracy: 0.5% of measurement range 

Operating temperature: 0-75 °C 

Operating time: 2 hours maximum 

Dimensions: To fit on 75 mm diameter shaft 

Environment: Dry, clean 

Table DII Telemetry system suppliers 

Company Specification Cost, £ 
(+VAT) 

Accumetrics Associates, 16 thermocouple inputs 
Inc. 

Induction powered shaft collar transmitter 
NY, USA 

Inductive pickup loop 10,125 

16 channel recei ver 

Astech Electronics Ltd. 16 channel battery powered shaft collar transmitter 

Hampshire, UK Inductive pickup loop 14,450 

16 channel receiver 

SRC/ PMD Inc. 1.75" diameter 16 channel digital transmitter 

Florida, USA 16 channel digital receiver 6,657 

Digital telemetry software 
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1. Low-profile transmitter 

2. Transmitter counterweight to balance 

assembly 

3. Combined power source & signal pickup 

4. Split-ring shaft clamp assembly 

incorporating transmitter and power 

pickup loop 

Figure D9 Wireless telemetry system to transmit measurements from a rotating 
shaft, Astech Electronics Ltd., UK 

01.6 Brake Disc Heater 

To determine cooling characteristics of the brake disc, the disc must be heated to 

sufficient temperatures. Bulk operating temperatures of brake disc can be as high as 

600°C with surface temperature reaching much higher. The largest disc to be used on 

the Spin Rig has a mass of 90 kg. In order to increase the disc temperature by 600°C 

in 30 minutes the power requirement is (excluding losses): 

mCpfl.T 
Q=-~-

t 

Q = 90x419x600 
30x60 

Q=12.6kW 

(D9) 

The heating system needs to be adaptable for heating the range of discs to be tested, 

motorbike disc (1 kg) to the train disc (90 kg). The heater is required to heat the disc 

quickly and also must be removed quickly to allow cooling measurements to 

commence. Various heating systems were considered. 

D 1.6.1 Induction 

Induction heating is a method of providing fast, consistent heat to metals or other 

electrically conductive materials. The process uses electrical currents within the 

material to produce heat. The basic components of an induction heating system are 
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an AC power supply, induction coil, and work piece. The power supply sends 

alternating current through the coil, generating a magnetic field. When the work 

piece is placed in the coil it enters the magnetic field and eddy currents are induced 

within the work piece, this generates precise amounts of localized heat without any 

physical contact between the coil and the work piece. 

There is a relationship between the frequency of the alternating current and the depth 

to which it penetrates in the work piece; low frequencies are effective for thicker 

materials requiring deep heat penetration, while higher frequencies are effective for 

smaller parts or shallow penetration. Power levels and heating times are closely 

related to the characteristics of the work piece and the design of the induction coil. 

Coils are nonnally made of copper with appropriate water cooling and are shaped to 

suit the application. 

This method of heating has the advantage of providing controlled high power heating 

enabling quick heating of the disc. The company crn Ltd UK provided a proposal to 

supply a suitable system, including a water cooler and heating head, the price quoted 

was £34,506 + VAT. Induction heating may be the best method for disc heating but 

it is also the most expensive, it could not be used since it was outside the project 

budget. A cheaper version was tested but proved to be unsuitable, lacking power and 

generating high electrical interference. 

D1.6.2 Radiative 

Heating by radiation can be achieved using heating elements including quartz short 

wave infrared, shown in Figure DID, and ceramic long wave infrared. Elements can 

be supplied providing up to 1 kW of power. The quartz heater, though more 

expensive than other radiation heaters has high efficiency and fast response time. The 

surface condition of the brake disc makes the radiation heater is unsuitable. The low 

emissivity of the disc surface means the majority of the thermal radiation from the 

heater will reflect back to the heater, causing over heating of the element. 
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Figure DIO Quartz infrared heater, Hawco Ltd, UK 

D 1.6.3 Cartridge 

A wide range of cylindrical stainless steel cartridge heaters are available giving a 

maximum surface temperature of around 700°C providing localised heat with good 

thennal control, shown in Figure D 11. Tube heaters can be fonned to a desired shape 

and can provide up to 3 kW of power. Both of these methods require fixing or 

inserting the element into the disc. The disc can not rotate when the heaters are fitted 

and must be removed before cooling measurements conducted. Uniform heating will 

be difficult when the disc is stationary. 

Figure DII Cartridge and tube heater, Hawco Ltd, UK 

D1.6.4 Air 

Industrial high temperature air heaters (Figure D12) are designed for continuous high 

temperature operations up to 650°C, supplying an airflow rate up to 1400 l/min. Hot 

air flowing over a rotating disc provides uniform heating and can be switched off 

instantly, ready for cooling measurement. This method of heating will work best with 

the ventilated disc, which has a large surface area for heating. 
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Figure DI2 Hot air heater, Hawco Ltd, UK 

D 1.6.5 Industrial Oven 

An industrial oven has been used in the past for disc heating experimental work on 

disc brake cooling. This requires the removal of the disc from the Spin Rig for 

heating then handling of the hot disc when taken from the oven and mounting to the 

Spin Rig. High disc temperatures can be achieved but handling problems arise and 

the time to mount the disc to the Spin Rig allows substantial heat loss before 

measurements can start. 

Dl.6.6 Gas Flame 

Flame heating the disc allows controllable localised heat input and uniform heating 

with the disc rotating through the flames. This method can provide high temperatures 

and instant on/off. The use of a gas flame poses safety concerns and deposits will be 

left on the disc surface from the flame, making surface temperature measurement 

difficult. 

D1.6.7 Heater Selection 

From the study of disc heating methods it became clear that the best method is 

induction heating, providing localized heat quickly and efficiently. The high cost of 

such a system makes it unfeasible at this stage; budgets require a low cost system. 

Therefore, a hot air heating system providing uniform heating, taking advantage of 

the brake disc's heat dissipating design is the preferred method of disc heating, with 

a gas flame heater for higher temperature studies and industrial oven for large discs. 
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D2 Design Specification 

From the design analysis a design specification (Table D 12) was produced for Spin 

Rig manufacture. Manufacture was to be carried out by a specialist company. A solid 

model of the Spin Rig initial design was produced using SDRC I-DEAS to aid the 

final design process, performed by the manufacture, see Figure D13. 

Figure D13 Solid model of initial Spin Rig design 
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Table D12 Spin Rig design specification 

Position Component Specification 

1 Electric motor Power 7.5 kW, Torque 50 Nm, Speed control 0 - 2000 min-I, 
reversible rotation 

2 Shaft assembly 2 bearings to support 75mm dia. shaft and wheel assembly 

3 Telemetry To carry 16 thermocouples 

4 Torque transducer Maximum torque corresponding to maximum torque of motor 

5 Brake assembly Maximum mass 250 kg, maximum diameter 1.05 m 

6 Platform Height adjustable by hand to simulate ground effect 

7 Base Heavy frame with flat steel machined top 

8 Data acquisition system To condition and acquire data from torque transducer, speed 
sensor, 16 thermocouples infrared sensors 

8 Computer + software Data logging and processing and motor control 

9 
Brake surface temperature 

16 sensors, temperature range 0 - 500°C 
sensors 

10 Wheel Motorbike, car or lorry wheel, mounted to removable hub 

11 Brake disc 
Motorbike, car, lorry, and railway brake mounted to shaft 
adaptor 

12 Imbedded thermocouple 
16 imbedded thermocouples in rotating components, 
temperature range 0 - 500 °C 

13 Electric air heater To heat disc to 300°C 

D3 Manufacture and Commissioning 

Three test rig design and manufacture companies in the UK were approached and 

given the opportunity to prepare a quotation for the Spin Rig project. The Table DI3 

shows a summary of their proposals. 
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Table D13 Quotations for the design and manufacture of the Spin Rig 

Company Cost, £ (+VAT) 

BEL Developments Ltd., Chessington, 92,000.00 

Surrey, KT9 ISZ, UK 

Rivercircle Ltd., Peterborough, Cambs., 92,000.00 

PE 1 5T A, Peterborough, UK 

Industrial Measurements Ltd. (IML), 48,300.00 

Derby, DE74 2NP, UK 

All three companies produced proposals based on the same design specification. On 

examining the companies it was considered that all three companies had facilities 

capable of delivering the Spin Rig. All three companies were located within 

reasonable distance from BruneI University, the deciding factor therefore was cost 

and Industrial Measurements Ltd (IML) won the Spin Rig contract. 

From the initial budget of £50,000 a reduced budget of only £20,000 was finally 

allocated for the total cost of the Spin Rig. This allocation required the revision of 

the Spin Rig specification. The possibility of several build stages were discussed 

with IML, each stage with its own cost including design and assembly. IML provided 

a revised quotation, shown in Table D 14. 

Table D14 Build stages for Spin Rig 

Phase 1 Framework 

Shaft and bearings 

Guard £13,800 
Motor and controller 

Torque transducer 

Temporary data acquisition 

Phase 2 Telemetry system £19,500 

Phase 3 Disc heating system £15,000 
Data acquisition system 

. T bl D14 that a telemetry system and full data acquisition system 
It IS clear from a e 

. f th iven budget. Phase 1, with the addition of the disc 
are outSIde the scope 0 e g 

D20 



heating system would provide a functional Spin Rig withl'n the' b d h gl ven u get, t e data 
acquisition system being obtained at a later date A . d . . reVIse quotatIon for Phase 1 was 

prepared by IML providing an operational Spin Rig with a basic data acquisition 

system and disc heating system shown in Table D 15 The I C Ph ' . proposa lor ase la and 

1 b of the build was agreed and the final design and manufacture of the Spin Rig 

began. 

Table D1S Revised Spin Rig phase 1 quotation 

Phase la Framework 

Shaft and bearings 

Guard 

Motor and controller £ 16,968 

Torque transducer 

Basic 16 channel data acquisition 

Configuration of free issue PC 

Phase Ib Air heater 

Controller £ 2,250 

Air ducting 

Total £ 19,218 

D4 Modifications 

It was necessary to modify some aspects of the Spin Rig during the final design and 

manufacture. The ground effect platform presented clearance and mounting problems 

for the commercial vehicle wheel assembly. A decision was made to remove this 

from the design as ground effect on cooling performance was considered very small 

and a platform could be added at a later stage if necessary. The data acquisition and 

logging PC was linked to the motor controller to provide a simple on/off control of 

the motor via the PC. 

The most significant modification was to the Spin Rig heater system. In initial tests, 

the air heater was located at the inlet of the CV disc cooling vanes, see Figure D 14. 

With the heater air temperature set to 600°C, airflow set to 45 IImin and disc rotating 

at 25 min-to A 30 minute heating cycle produced an average disc temperature of 40°C 

with the temperatures reaching a steady state condition. This was a temperature rise 
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Figure D14 Heating of ventilated CV disc with air heater 

The problem with the air heater method was the high heat loss. Hot air flowed 

through the disc vanes to the vane exit. Very little of the heat had transferred from 

the air to the disc, the vane exit air temperatures being very high. Also the disc 

dissipated heat to the atmosphere and to adjacent components during the heating 

phase, these losses made the air heater very inefficient. To use the heated air more 

efficiently it must flow over more of the disc surface to transfer heat to the disc and 

the disc requires insulating to avoid heat loss during the heating phase. A special 

enclosure was therefore developed, as shown in Chapter 3. 
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Appendix E 

SabWabco Dynamometer Test 

Schedule 

SAB WABCO (ltR.OMBOROUGH)Lm 

I ! =. ", TEST SCHEDULE I PAGE 41iOP" 66 

DRAG BRAKE APPLICATION. 21 kW (DISC PERFORMANCE) 
.~Cl· 

Inertia 
Simulated mass 

792 kg m2 
4.0 tonnes 

* 

Cooling Air Flow 

Data Logger Scan Rate 

Log all channels 

STOP BRAKE ENTRY 
No. SPEED 

km/h r.p.m 
--~ 

.-~- .. - .. -.-.. 

1 01 60 358 

None uuring drag (see also below) 

2 scans / sec 

SWITCH SPEED FORCE/PAD FORCE/PAD BRAKE 
STAGE 2 ENTRY STAGE 1 

km/h r.p.m kN kN TEMP °c 
nd • • ~ •• ____ ~_.v"""" - . 

* 50 

Force to be applied to keep constant braking power of 21kW 
during 20 minutes drag. ~~'\ 
For the rotational speed 358 r.p.m. constant torque of 560 
is reguired. ~ 
AssUJRl.ng mu=O. 35, clamp force = 3.24 kN.\ {) tf' 

An audio/visual.recording.of this se9uence is requi~ed for 
smoke, hot bandl.ng and nOl.se evaluatl.on. If there l.S' no 
evidence of smoke emissions, hot banding or excessive noise, 
a note to this effect shall be recorded on the day sheet and 
the audio/visual recording shall be logged as relevant to the 
test. 
A£ter drag disc 1 to be cooled in still air at 358 r.p.m 
(60 loa/h)' for 30 minutes. All chanels to be logged. 

~ 
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