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Abstract

We construct clustered spots for the following FitzHugh-Nagumo system:⎧⎪⎪⎨
⎪⎪⎩

ε2∆u + f(u) − δv = 0 in Ω,

∆v + u = 0 in Ω,

u = v = 0 on ∂Ω,

where Ω is a smooth and bounded domain in R2. More precisely, we show that for any given integer K, there

exists an εK > 0 such that for 0 < ε < εK , εm
′
≤ δ ≤ εm for some positive numbers m

′
, m, there exists a

solution (uε, vε) to the FitzHugh-Nagumo system with the property that uε has K spikes Qε
1, ..., Q

ε
K and the

following holds:
(i) The center of the cluster 1

K

∑K
i=1 Qε

i approaches a hotspot point Q0 ∈ Ω.
(ii) Set lε = mini�=j |Qε

i − Qε
j | = 1√

a
log

(
1

δε2

)
ε(1 + o(1)). Then ( 1

lε
Qε

1, ...,
1
lε

Qε
K) approaches an optimal

configuration of the following problem:
(∗) Given K points Q1, ..., QK ∈ R2 with minimum distance 1, find out the optimal configuration that

minimizes the functional
∑

i�=j log |Qi − Qj |.
Subject class: Primary 35B40, 35B45; Secondary 35J55, 92C15, 92C40
Keywords: Pattern Formation, FitzHugh-Nagumo System, Optimal Configuration

1 Introduction

In this paper, we study the steady-states for the FitzHugh-Nagumo system [14], [22]. This is a two-variable

reaction-diffusion system derived from the Hodgkin-Huxley model for nerve-impulse propagation [18]. In a suitably

rescaled fashion it can be written as follows:

(FN)

⎧⎪⎪⎨
⎪⎪⎩

ut = ε2∆u + f(u) − v in Ω,

vt = ∆v − δγv + δu in Ω,

u = v = 0 on ∂Ω.

The unknowns u = u(x, t) and v = v(x, t) represent the electric potential and the ion concentration across the

cell membrane at a point x ∈ Ω ⊂ RN (N = 1, 2, . . .) and at a time t > 0, respectively; ε > 0, δ > 0, and

γ > 0 are real constants; ∆ :=
∑N

j=1
∂2

∂x2
j

is the Laplace operator in RN ; Ω is a smooth bounded domain in RN ;

f(u) = u(1 − u)(u − a) with a ∈ (0, 1
2 ).
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In this paper, we consider steady-states of (FN), namely we study the following elliptic system:⎧⎪⎪⎨
⎪⎪⎩

ε2∆u + f(u) − δv = 0 in Ω,

∆v − δγv + δu = 0 in Ω,

u = v = 0 on ∂Ω.

(1.1)

For simplicity, from now on we assume that γ = 0. (With slight modifications, the results also hold for fixed

γ > 0.) Setting v = δṽ and dropping the tilde we get the system⎧⎪⎪⎨
⎪⎪⎩

ε2∆u + f(u) − δv = 0 in Ω,

∆v + u = 0 in Ω,

u = v = 0 on ∂Ω.

(1.2)

This is the final form of the system which we will study in the rest of the paper.

In the investigation of the system (1.1) we make use of the fact that it arises as the Euler-Lagrange equation

to the energy functional Eε : H1
0 (Ω) → R given by

Eε[u] =
ε2

2

∫
Ω

|∇u|2 −
∫

Ω

F (u) +
δ

2

∫
Ω

uT [u], (1.3)

where F (u) =
∫ u

0
f(s)ds. Here v = T [u] for given u ∈ L2(Ω) is defined as the unique solution v ∈ H2(Ω) of the

linear problem

∆v + u = 0 in Ω, v = 0 on ∂Ω. (1.4)

Let w be the unique solution of

∆w + f(w) = 0, w > 0 in RN , w(0) = max
y∈RN

w(y), w(y) → 0 as |y| → ∞. (1.5)

It is well-known that w is radially symmetric: w(y) = w(|y|) and strictly decreasing: w
′
(r) < 0 for r > 0, r =

|y|. Moreover, we have the following asymptotic behavior of w:

w(r) = ANr−
N−1

2 e−
√

ar(1 + O(
1
r
)), w

′
(r) = −AN

√
ar−

N−1
2 e−

√
ar(1 + O(

1
r
)), (1.6)

for r large, where AN > 0 is a generic constant.

For the uniqueness of problem (1.5), we refer to [2], [4] and [29]. Furthermore, w is nondegenerate, i.e.,

Kernel (∆ − 1 + f
′
(w)) = span

{
∂w

∂y1
, ...,

∂w

∂yN

}
. (1.7)

We denote the energy of w as

I[w] =
1
2

∫
RN

|∇w|2 −
∫

RN

F (w). (1.8)

System (1.1) has been studied among others by DeFigueiredo-Mitidieri [12], Klaasen-Mitidieri [19], Klaasen-

Troy [20], Lazer-McKenna [21], Reinecke and Sweers ([33], [34], [35], [36]).

Note that our regime 0 < β2 = γδ < a is complementary to [36] and the references thererein and so a different

behavior is expected. Our results show that this is actually the case.

Many of the existence results are analogies of the results for the scalar case δ = 0 in [3]. However, numerical

results in one and two-dimensional domains of Sweers and Troy [32] suggest that problem (1.1) admits a rich
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solution structure. In this regard, the papers [36] and [8] show very interesting behavior of minimizers of (1.1)

which are completely different from the single equation case [3]. The system (1.1) with Neumann boundary

conditions has been studied in [27], [28], and [30]. Certain spot-like solutions have been constructed in [31].

Recently (multi)peaks in the interior and near the boundary have been constructed for the Dirichlet case [9].

Multipeaks for the Neumann problem have been derived in [10]. Clusters for the Neumann problem have been

constructed in [11].

In this study, we introduce a new type of spot-like solution, namely a cluster. More precisely, we rigorously

construct a solution of (1.2) which for a given positive integer K is concentrated in K spots for ε, δ small enough.

Further, these spots converge to the same point in the limit ε, δ → 0. This is new for the FitzHugh-Nagumo

system. It shows that the solutions of (1.2) have a rich structure.

They are derived by the so-called “localized energy method” based on Liapunov-Schmidt reduction and

variational techniques. This poses a restriction on the location of the spots. Namely, we prove the existence of

clusters whose limiting spot locations satisfy the following conditions:

(1) the center of the cluster approaches a hotspot point of Ω,

(2) the rescaled cluster (by making the minimum distance between spots to 1) approaches an optimal config-

uration of the following geometric problem in R2:

(∗) Given K points Q1, ..., QK ∈ R2 with shortest distance 1, find the optimal configuration which minimizes

the functional
∑

i�=j log |Qi − Qj |.
We denote the minimum in (*) by m(K).

We remark that, using the same method, also solutions with multiple (separated) spots or clusters can be

constructed. To keep notation and proofs simple, we restrict ourselves to the single-cluster case.

Note that for δ = 0 the system (1.1) decouples. The first equation of (1.1) for δ = 0 becomes

ε2∆u + u(u − a)(1 − u) = 0, u > 0 in Ω, u = 0 on ∂Ω, (1.9)

which has been studied by numerous authors. It is known that this equation has interior spike solutions, see [5],

[7], [26], [25], [37]. It is also known that there are no clusters to (1.9) with the Dirichlet boundary condition.

However, if we replace in (1.9) the Dirichlet by the Neumann boundary condition then there are cluster solutions

with spikes at the boundary, [6], [17]. In the present paper we show that interior clusters do occur for a coupled

elliptic system even with the Dirichlet boundary condition.

We now state our main assumptions. We first assume that N = 2. (It may be possible to generalize the

results to higher-dimensional domains.) Our second assumption is as follows: There exist two positive numbers

m
′
and m such that

εm
′
≤ δ ≤ εm. (1.10)

(This condition on δ is needed for our computations.)

Let G be the Green’s function −∆ = δ in Ω with the Dirichlet boundary condition. Then equation (1.4) is

equivalent to

v(x) =
∫

Ω

G(x, z)u(z) dz.

We decompose

G(Q,x) = K(|x − Q|) − H(Q,x), (1.11)
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where H(Q,x) is the regular part which is C2 in Ω and

K(|x − Q|) =
1
2π

log
1

|x − Q| . (1.12)

We denote by H(Q) := H(Q,Q) the Robin function. Let H0 be the minimal value of H(Q). The set

{Q0 ∈ Ω : H(Q0) = H0 = minQ∈Ω H(Q)} is called the set of hotspots of Ω. For the properties of hot-spots, we

refer to [1].

The main result of this paper is stated as follows:

Theorem 1.1 Let K > 0 be a fixed positive integer. Suppose (1.10) holds. Then, for ε sufficiently small, problem

(1.2) admits a solution (uε, vε) with the following properties:

(1) uε(x) =
∑K

i=1

(
w

(
x−Qε

i

ε

)
+ o(1)

)
uniformly for x ∈ Ω̄, where w is the unique solution of the problem

(1.5) and the points Qε
1, ..., Q

ε
K approach the same point Q0 ∈ Ω.

(2) the center of the cluster 1
K

∑K
i=1 Qε

i → Q0, where H(Q0) = H0.

(3) 1
lε (Qε

1, ..., Q
ε
K) approaches an optimal configuration of the problem (*), where lε = mini�=j |Qε

i − Qε
j | =

( 1√
a

+ o(1))ε log 1
δε2 → 0.

(3) vε(x) = ε2KG(x,Q0)(1 + o(1))
∫

R2 w dy uniformly for any compact subset of Ω \ {Q0}.

Remarks: 1. In the same way one can prove the existence of multiple clusters at the maximum of

F (Q) =
∑

i,j=1,...,K,i �=j

G(Qi, Qj) −
K∑

k=1

H(Qk, Qk). (1.13)

where Q = (Q1, Q2, ..., QK) ∈ ΩK , Qi 	= Qj for i 	= j. We omit the details.

2. Condition (1.10) implies δ is of algebraic order of ε. If δ is exponentially small with respect to ε, i.e.,

δ = e−d/ε for some positive number d, then the existence of multiple spots depends on d. We believe if d is small,

clustered spots become separated multiple spots. If d is large, the existence of multiple spots depends on the

geometry of the domain. It is an interesting problem to investigate the critical threshold of δ for which multiple

interior spots exists (even for simple domains like balls).

Let us now summarize the proof of Theorem 1.1.

We define a configuration space:

Γ :=

{
(Q1, . . . , QK) ∈ ΩK

∣∣∣∣∣ H(Q) ≤ H0 + η,
1 − η√

a
log

1
δε2

≤ |Qi − Qj |
ε

≤
(

log
1

δε2

)2
}

(1.14)

where Q̄ = 1
K

∑K
j=1 Qj and η > 0 is such that

η =
1
40

min(1,m). (1.15)

Let Q = (Q1, ..., QK) ∈ Γ.

Theorem 1.1 is proved by the so-called “ localized energy method”, a combination of the Liapunov-Schmidt

reduction method and the variational principle. The Liapunov-Schmidt reduction method has been introduced

and used in a lot of papers. See [16], [38] and the references therein. A combination of the Liapunov-Schmidt

reduction method and the variational principle was used in [2], [8], [6], [16], and [17]. We shall follow the procedure
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in [16]. This enables us to reduce the energy Eδ to finite dimensions. Then local maxima for the reduced energy

are found by maximizing Eδ over Γ and showing that this maximum actually belongs to the interior of Γ.

As far was we know, this is the first study on steady-state clusters for reaction-diffusions in the interior of

a higher-dimensional bounded domain. For clusters which are supported by the boundary see [6], [17]. The

one-dimensional case has been solved in [39] for the Gierer-Meinhardt system. Cluster ground states for the

Gierer-Meinhardt system in the whole R2 have been constructed in [13].

Let us now give an outline of the paper. In Section 2 we study the geometric problem (*). In Section 3 we

derive the key energy estimates. In Section 4 we reduce the problem to finite dimensions by the Liapunov-Schmidt

reduction method. In Section 5, we compute the reduced energy and show that a critical point for the reduced

energy gives rise to a solution to (1.2). In Section 6 we solve the reduced problem by energy maximization in the

set Γ defined in (1.14) and derive Theorem 1.1.

Throughout this paper, the constants c1, c2, ... are generic constants depending on N and w only.

We write

f(u) = −au + (a + 1)u2 − u3 = −au + g(u), where g(u) = (a + 1)u2 − u3.

Let G[u] =
∫ u

0
g(s)ds.

Acknowledgments. The research of JW is supported by an Earmarked Grant from RGC of Hong Kong.

MW thanks the Department of Mathematics at CUHK for their kind hospitality. We thank the referee for helpful

remarks.

2 Optimal Configurations For Problem (*)

Since problem (*) plays an important role in the formation of the cluster, we study the properties of (*) in this

section.

To begin with, let us fix K points (Q1, ..., QK) ∈ R2K and define

R[Q1, ..., QK ] =
∑
i�=j

log |Qi − Qj |. (2.1)

Set

Σ := {(Q1, ..., QK) ∈ R2K |
K∑

j=1

Qj = 0,min
i�=j

|Qi − Qj | = 1}. (2.2)

Then Problem (*) can be restated as the following minimization problem:

m(K) := inf
(Q1,...,QK)∈Σ

R[Q1, ..., QK ]. (2.3)

The task is to determine this number m(K) and also characterize the configurations for which such an optimal

number is achieved.

We state the following simple lemma.

Lemma 2.1 The minimum in problem (2.3) is always attained by some optimal configuration.
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Proof: Let Qn
1 , ..., Qn

K be a minimizing sequence. Without loss of generality, we may assume that |Qn
1 −Qn

2 | = 1.

We claim that there exists a C(K) such that |Qn
i −Qn

j | ≤ C(K). In fact, since the number m(K) < +∞, we have

for n large, R[Q1, ..., Q
n
K ] ≤ m(K) + 1, which implies that |Qn

i −Qn
j | ≤ em(K)+1. Therefore we have to minimize

the continuous function R[Q1, ..., QK ] on a compact set which implies that the minimum is attained.

�

We know m(3) = 0 which is attained by a regular triangle. m(4) = 1
2 log 3 and m(4) is attained by two equal

triangles with a common side. In general, it is difficult to find the number m(K). This is an interesting geometric

problem.

3 Key Energy Estimates

In this section, we derive some key energy estimates.

Let w be the ground state solution defined in (1.5). For z ∈ R2 let Ψ(z) be defined as

Ψ(z) =
∫

R2
[

1
2π

log
1

|z − y| ]w(y) dy. (3.1)

Then it is easy to see that

Ψ(z) =
1
2π

log
1
|z|

∫
R2

w(y) dy + O(
1
|z| ). (3.2)

Let Q = (Q1, ..., QK) ∈ Γ. We denote the center of Q as Q̄ = 1
K

∑K
j=1 Qj . Without loss of generality, we may

assume that 0 ∈ Ω and let

Ωε = {y|εy ∈ Ω}, Ωε,i = {y|εy + Qi ∈ Ω}, (3.3)

We define

wε,i = w(y − Qi)χ(εy), Ψi = Ψ(y − Qi), wε,Q =
K∑

i=1

wε,i, (3.4)

where χ(x) is a smooth cut-off function such that χ(x) = 1 for d(x, ∂Ω) > d0 and χ(x) = 0 for d(x, ∂Ω) < d0
2 and

d0 = minj=1,...,K d(Qj , ∂Ω).

Note that ‖wε,i(y)−w(εy)‖∞ = O(e−d0
√

a/(2ε)). There is a better way of changing the function w to a function

with Dirichlet boundary condition (and which gives a better error estimate) than using this cutoff, namely by

defining a suitable projection as in [25]. By our choice of δ in (1.10), this estimate is not part of the main terms

in our problem and to keep the presentation simple we choose the cutoff.

We first compute T [wε,Q] near Qj :

For ε|z| < κ (κ > 0 small enough), we compute

T [wε,Q](Qj + εz) =
∫

Ω

G(Qj + εz, ξ)

(
K∑

i=1

wε,i

)
dξ

=
∫

Ω

G(Qj + εz, ξ)w
(

ξ − Qj

ε

)
dξ +

∑
i�=j

∫
Ω

G(Qj + εz, ξ)w
(

ξ − Qi

ε

)
dξ + O(e−

√
ad0/(2ε))

= ε2
∫

Ωε,j

[
1
2π

log
1

ε|z − y| − H(Qj + εz,Qj + εy)
]

w(y)
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+ε2
∑
i�=j

∫
R2

G(Qj + εz,Qi + εy)w(y) dy + O(ε3)

= ε2
(

1
2π

log
1
ε

)∫
R2

w(y) dy + ε2
1
2π

∫
R2

log
1

|z − y|w(y) dy

+ε2

⎛
⎝∑

i�=j

G(Qj , Qi) − H(Qj , Qj)

⎞
⎠ ∫

R2
w(y) dy + o(ε2)

= ε2
(

1
2π

log
1
ε

) ∫
R2

w(y) dy + ε2Ψ(z)

+ε2

⎛
⎝∑

i�=j

K(|Qi − Qj |) − ε2
K∑

i=1

H(Qi, Qj)

⎞
⎠ ∫

R2
w(y) dy + o(ε2). (3.5)

The following lemma is an easy consequence of Lebesgue’s Dominated Convergence Theorem.

Lemma 3.1 Let g ∈ C(R2) ∩ L∞(R2), h ∈ C(R2) be radially symmetric and satisfy for some α > 0, β, c0 ∈ R

g(x) exp(α|x|)|x|β → c0 as |x| → ∞∫
R2

|h(x)| exp(α|x|)(1 + |x|β) dx < ∞.

Then

exp(α|y|)|y|β
∫

R2
h(x + y)g(x) dx → c0

∫
R2

h(x) exp(−αx1) dx as |y| → ∞.

From Lemma 3.1, we then have the following estimate.

Lemma 3.2 It holds that

1

ε2w
(

|Q1−Q2|
ε

) ∫
R2

g

(
w

(
x − Q1

ε

))
w

(
x − Q2

ε

)
dx → γ0 > 0 as ε → 0, (3.6)

where

γ0 =
∫

R2
g(w)e−

√
ay1dy. (3.7)

Moreover, the function ∫
R2

g

(
w

(
x − Q1

ε

))
w

(
x − Q2

ε

)
dx

is a C2 function in |Q1−Q2|
ε and (3.6) holds in the C2 sense.

Let us set

α(
|Qi − Qj |

ε
) =

∫
R2

g

(
w

(
y − Qi

ε

))
w

(
y − Qj

ε

)
dy. (3.8)

Note that for Q = (Q1, ..., QK) ∈ Γ,

α(
|Qi − Qj |

ε
) = γ0w(

|Qi − Qj |
ε

)(1 + o(1)) ≤ Ce−
√

a
|Qi−Qj |

ε ≤ C(δε2)1−η (3.9)

by (1.14).

Using the previous results we will prove the next lemma which is the key energy estimate.
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Lemma 3.3 For any Q = (Q1, . . . , QK) ∈ Γ and ε, δ sufficiently small

Eε(wε,Q) = ε2

[
KI[w] + c1δε

2 log
1
ε

+ c2δε
2 − 1

2

∑
i�=j

α(
|Qi − Qj |

ε
)

+c3δε
2
∑
i�=j

K(
|Qi − Qj |

ε
) − c4δε

2H(Q̄) + o(δε2)

]
. (3.10)

Proof: We compute

Eε[wε,Q] =
1
2

∫
Ω

|∇wε,Q|2 −
∫

Ω

F (wε,Q) +
δ

2

∫
Ω

⎛
⎝ K∑

j=1

wε,j

⎞
⎠ T [wε,Q]

=: I1 + I2, (3.11)

where

I1 =
1
2

∫
Ω

|∇wε,Q|2 −
∫

RN

F (wε,Q), I2 =
δ

2

K∑
j=1

∫
Ω

wε,jT [wε,Q].

For I1, we compute using Lemma 3.2 in the case K = 2∫
Ω

1
2
|∇(wε,1 + wε,2)|2 −

∫
Ω

F (wε,1 + wε,2)

= ε22I[w] +
∫

Ω

2∇wε,1 · ∇wε,2 −
∫

Ω

(f(wε,1)wε,2 + f(wε,2)wε,1) + O(e−d0
√

a/(2ε)) + O((δε2)3/2−η)

= ε22I[w] +
1
2

∫
Ω

(−wε,1∆wε,2 − wε,2∆wε,1) −
∫

Ω

(f(wε,1)wε,2 + f(wε,2)wε,1)

+O((δε2)3/2−η)

= ε22I[w] +
1
2

∫
Ω

(wε,1f(wε,2) + wε,2f(wε,1))

−
∫

Ω

(f(wε,1)wε,2 + f(wε,2)wε,1) + O((δε2)3/2−η)

= ε2
[
2I[w] − 1

2
α(

|Q1 − Q2|
ε

+ O((δε2)3/2−η)
]

.

Note that e−d0
√

a/(2ε) ≤ (δε2)α for all α > 0 if ε is small enough.

For K = 3, 4, ... the proof is similar. See the proof of Lemma 2.6 of [15]. We get

ε−2I1 = KI[w] − 1
2

∑
i�=j

α(
|Qi − Qj |

ε
) + O((δε2)3/2−η)

By (3.9) and (1.10), we have

ε−2I1 = KI[w] − 1
2

∑
i�=j

α(
|Qi − Qj |

ε
) + o(δε2). (3.12)

For I2, we calculate, using (3.5),

∫
Ω

wε,QT [wε,Q] dx =
∫

Ω

⎛
⎝ K∑

j=1

w

(
x − Qj

ε

)⎞
⎠ T [wε,Q](x) dx + o(ε4)
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=
K∑

j=1

∫
Ω

w

(
x − Qj

ε

)
T [wε,Q](x) dx + o(ε4)

= ε2
∫

R2
w(z)

[
K

2π
ε2 log

1
ε

∫
R2

w(z) dz +
K

2π
ε2

∫
R2

log
1

|z − z|w(z) dz

+ε2

⎛
⎝∑

i�=j

K(|Qj − Qi|) −
∑
i,j

H(Qi, Qj)

⎞
⎠ ∫

R2
w(z) dz

]
dz + o(ε4)

= ε4

⎛
⎝c1 log

1
ε

+ c2 + c3

⎛
⎝∑

i�=j

K(
|Qi − Qj |

ε
) −

∑
i,j

H(Qi, Qj)

⎞
⎠

⎞
⎠ + o(ε4)

where

c1 =
K

2π

(∫
R2

w(z) dz

)2

, c2 =
K

2π

∫
R2×R2

w(z)w(z) log
1

|z − z| dz dz, c3 =
(∫

R2
w(z) dz

)2

.

Note that for (Q1, ..., QK) ∈ Γ, we have Qj − 1
K (

∑K
i=1 Qi) = O(ε(log 1

δε2 )2). Hence

H(Qi, Qj) = H(Q̄) + O(ε(log
1

δε2
)2). (3.13)

So we obtain

I2 = δε4

⎛
⎝c1 log

1
ε

+ c2 + c3

∑
i�=j

K(
|Qi − Qj |

ε
) − c4H(Q̄) + o(1)

⎞
⎠ , (3.14)

where c4 = K(K − 1)c2 > 0.

Summarizing the results for I1 and I2, the proof is finished.

�

Our last lemma contains the estimates for the error

Lemma 3.4 Let Q = (Q1, ..., QK) ∈ Γ. Then we have∣∣∣∣∣∆wε,Q + f(wε,Q) − δT [wε,Q]

∣∣∣∣∣
L∞(Ωε)

≤ C((δε2)1−
η
2 + δε2| log ε|). (3.15)

Proof: For the local term, we have∣∣∣∣∣∆wε,Q + f(wε,Q)

∣∣∣∣∣≤ C
∑
i�=j

w(
|Qi − Qj |

ε
) ≤ C(δε2)1−

η
2 . (3.16)

See the proof of Lemma 3.3 in [16].

For the nonlocal term, we have from (3.5) that

δ|T [wε,Q]| ≤ Cδε2| log ε|.

�
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4 Liapunov-Schmidt Reduction

Let

Sε[u] := ∆u − au + g(u) − δT [u]. (4.1)

We now introduce the functional-analytic framework. For u, v ∈ H1
0 (Ωε), we equip it with the following scalar

product:

(u, v) =
∫

Ωε

[∇u∇v + auv]. (4.2)

Then orthogonality to the function ∂wε,i

∂Qi,j
in H1

0 (Ωε) is equivalent to orthogonality to the function

Zi,j = (∆ − a)
∂wε,i

∂Qi,j
(4.3)

in L2(Ωε) equipped with the usual scalar product

< u, v >=
∫

Ωε

uv dy. (4.4)

This section is devoted to the study of the following system in (φ, β):

Sε[wε,Q + φ] =
∑
i,j

βijZi,j , < φ, Zi,j >= 0, i = 1, ...,K, j = 1, ..., N. (4.5)

To this end, we introduce the following norm for a function defined on Ωε: For (Q1, ..., QK) ∈ Γ we define

‖φ‖∞ := sup
y∈Ωε

|φ(y)|. (4.6)

We first consider a linear problem: h ∈ L∞(Ωε) being given, find a function φ satisfying{
Lε[φ] := ∆φ − aφ + g

′
(wε,Q)φ − δT [φ] = h +

∑
i,j βijZi,j ,

< φ, Zi,j >= 0
(4.7)

for some real constants βi,j .

The following Lemma provides an a priori estimate for (4.7) .

Lemma 4.1 Let (φ, β) satisfy (4.7). Then for ε sufficiently small, we have

‖φ‖∞ ≤ C‖h‖∞. (4.8)

Proof: We prove it by contradiction. Suppose not. Then there exists a sequence εk → 0 and a sequence of

functions φk satisfying (4.7) such that the following holds:

‖φk‖∞ = 1, ‖hk‖∞ = o(1), < φk, Zi,j >= 0, i = 1, ...,K, j = 1, ..., N.

For simplicity of notation, we drop the dependence on k.

Multiplying (4.7) by ∂wε,k

∂Qk,l
and integrating over Ωε, we obtain that

∑
i,j

βij < Zij ,
∂wε,k

∂Qk,l
>= − < h,

∂wε,k

∂Qk,l
> +O(δ) = O(‖h‖∞) + O(δ)
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Hence we obtain that

|β| = O(‖h‖∞) + O(δ) = o(1), ‖h +
∑
i,j

βijZij‖∞ = o(1). (4.9)

Note also that

‖T [φ]‖∞ = O(1).

Therefore we have

‖∆φ − aφ + g
′
(wε,Q)φ‖∞ = o(1). (4.10)

Since

‖(g′
(wε,Q) −

K∑
j=1

g
′
(wε,j))φ‖∞ = o(1),

(4.10) is equivalent to

‖∆φ − aφ +
K∑

j=1

g
′
(wε,j)φ‖∞ = o(1). (4.11)

Fix an R > 0. We claim that ‖φ‖L∞(∪K
j=1BR(Qj)) = o(1). In fact, suppose not, we may assume that

‖φ‖L∞(BR(Q1)) ≥ c0 > 0. Then as ε → 0, we have φ(y − Q1) → φ0 in C2
loc(R

N ), where φ0 satisfies

∆φ0 − aφ0 + g
′
(w)φ0 = 0, |φ0(y)| ≤ C. (4.12)

By Lemma 6.4 of [25], φ0 =
∑N

j=1 aj
∂w
∂yj

. But
∫

RN φ0g
′
(w) ∂w

∂yj
= 0 for j = 1, ..., N . So aj = 0, j = 1, ..., N . A

contradiction.

Since ‖φ‖L∞(∪K
j=1BR(Qj)) = o(1), we obtain

‖
K∑

j=1

g
′
(wε,j)φ‖∞ = o(1)

and

‖∆φ − aφ‖∞ = o(1) (4.13)

By the Maximum Principle, ‖φ‖∞ = o(1). A contradiction.

�

Next we consider the existence problem for (4.7).

Lemma 4.2 There exists an ε0 > 0 such that for any ε < ε0, given any h ∈ L∞(Ωε), there exists a unique pair

(φ, β) such that the following hold:

Lε[φ] = h +
∑
i,j

βi,jZi,j , (4.14)

< φ,Zi,j >= 0. (4.15)

Moreover, we have

‖φ‖∞ ≤ C‖h‖∞. (4.16)

11



Proof: The existence follows from Fredholm’s alternative. To this end, let

H = {u ∈ H1
0 (Ωε)| < u,Zi,j >= 0, i = 1, ...,K, j = 1, ..., N}.

Observe that φ solves (4.14) and (4.15) if and only if φ ∈ H1(Ωε) satisfies∫
RN

(∇φ∇ψ + aφψ)− < (g
′
(wε,Q)φ + δT [φ], ψ >

=< h,ψ >, ∀ψ ∈ H1
0 (Ωε).

This equation can be rewritten in the following form

φ + S(φ) = h̄, (4.17)

where S is a linear compact operator form H to H , h̄ ∈ H and φ ∈ H.

Using Fredholm’s alternative, to show equation (4.17) has a uniquely solvable solution for each h̄, it is enough

to show that the equation has a unique solution for h̄ = 0. To this end, we assume the contrary. That is, there

exists (φ, β) such that

Lε[φ] =
∑
i,j

βijZi,j , (4.18)

< φ,Zi,j >= 0, i = 1, ...,K, j = 1, ..., N. (4.19)

From (4.18), it is easy to see that ‖φ‖∞ < +∞. So without loss of generality, we may assume that ‖φ‖∞ = 1 .

But then this contradicts to (4.8).

�

Finally, we solve (4.5) for (φ, β). The following is the main result of this section.

Lemma 4.3 For (Q1, ..., QK) ∈ Γ̄ and ε sufficiently small, there exists a unique pair (φε,Q, βε(Q)) satisfying

(4.5). Furthermore, (φε,Q, βε(Q)) is continuous in Q and we have the following estimate

‖φε,Q‖∞ ≤ C((δε2)1−η + δε2| log ε|2). (4.20)

Proof: We write (4.5) in the following form:

Lε[φ] = −Sε[wε,Q] − Nε[φ] +
∑
ij

βijZi,j (4.21)

and use contraction mapping theorem. Here Nε[φ] is given by

Nε[φ] = g(wε,Q + φ) − g(wε,Q) − g
′
(wε,Q)φ. (4.22)

It is easy to see that

‖Nε[φ]‖∞ ≤ C

(
‖φε‖2

∞

)
. (4.23)

Set B = {‖φ‖∞ < δε2| log ε|2 + (δε2)1−η}. Fix φ ∈ B and we consider the map Aε to be the unique solution

given by Lemma 4.2 with h = −Sε[wε,Q] − Nε[φ]. Then by Lemma 4.2, we have

‖Aε[φ]‖∞ ≤ C‖ − Sε[wε,Q] − Nε[φ]‖∞ ≤ Cδε2| log ε| + (δε2)1−η (4.24)
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and hence Aε[φ] ∈ B. Moreover, we also have that

‖Aε[φ1] −Aε[φ2]‖∞ ≤ C‖Nε[φ1] − Nε[φ2]‖∞ ≤ (δε2| log ε|2 + (δε2)1−η)‖φ1 − φ2‖∞. (4.25)

(4.24) and (4.25) show that the map Aε is a contraction map from B to B. By the contraction mapping theorem,

(4.21) has a unique solution φ ∈ B, called φε,Q.

The continuity of φε,Q, βε(Q)) follows from the uniqueness of (φε,Q, βε(Q)) and the continuity of wε,i,
∂wε,i

∂Qk,l
.

�

The last lemma shows the C1-smoothness of φε,Q.

Lemma 4.4 The map Q : Γ̄ → φε,Q is actually C1.

Proof:

Consider the following map H : Γ̄ × H1
0 (Ωε) × R2K → H1

0 (Ωε) × R2K of class C1

H(Q, φ, β) =

(
(∆ − a)−1(Sε[wε,Q + φ]) − ∑

i,j βij
∂wε,i

∂Qi,j

(φ,
∂wε,i

∂Qi,j
)

)
. (4.26)

The equations (4.5) are equivalent to H[Q, φ, β] = 0. We know that, given Q ∈ Γ̄, there is a unique local

solution (φε,Q, βε(Q)) obtained with the above procedure. We prove that the linear operator

∂H(Q, φ, β)
∂(φ, β)

|(Q,φε,Q,βε(Q)) : H1
0 (Ωε) × R2K → H1

0 (Ωε) × R2K

is invertible for ε small. Then the C1-regularity of s �→ φε,Q follows from the Implicit Function Theorem. Indeed

we have

∂H(Q, φ, β)
∂(φ, β)

|(Q,φε,Q,βε(Q))[φ̂, β̂] =

(
(∆ − a)−1(S

′
ε[wε,Q + φε,Q](φ̂)) − ∑

i,j β̂ij
∂wε,i

∂Qi,j

(φ̂,
∂wε,i

∂Qi,j
)

)
.

Since ‖φε,Q‖∞ is small, the same proof as in that of Lemma 4.1 shows that ∂H(Q,φ,β)
∂(φ,β) |(Q,φε,Q,βε(Q)) is invertible

for ε small.

This concludes the proof of Lemma 4.4.

�

5 Reduced Energy functional

In this section we expand the quantity

Mε(Q) := ε−2

[
Eε[wε,Q + φε,Q] − ε2KI[w]

]
− c1δε

2 log
1
ε
− c2δε

2 : Γ̄ → R (5.1)

in ε, δ and Q, where φε,Q is given by Lemma 4.3.

We proceed by using Lemma 3.3 and estimating the error caused by adding φε,Q.
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Lemma 5.1 Let φε,Q be defined by Lemma 4.3. Then for any Q = (Q1, . . . , QK) ∈ Γ and ε sufficiently small we

have

Mε(Q) = δε2c3

∑
i�=j

K(
|Qi − Qj |

ε
) − 1

2

∑
i�=j

α(
|Qi − Qj |

ε
) − c4δε

2H(Q̄) + o(δε2) (5.2)

where c2, c4 are positive constants, the function K is defined in (1.12), and the function α is defined in (3.8).

Proof. In fact, for any Q ∈ Γ, we have

Eε(wε,Q + φε,Q) = Eε(wε,Q) + Jε(φε,Q) + O(‖φε,Q‖2
∞), (5.3)

Note that

‖φε,Q‖2
∞ = O

(
δ2ε4| log ε|4 + (δε2)2−2η

)
= o(δε4)

by (1.10) and (1.15). Observe also that

Jε(φε,Q) = ε2
∫

Ωε

Sε(wε,Q)φε,Q dy.

We compute

|Jε(φε,Q)| =
∣∣∣∣
∫

Ωε

Sε(wε,Q)φε,Q dx

∣∣∣∣
≤ Cε−2((δε2)1−

η
2 + δε2| log ε|)((δε2)1−η + δε2| log ε|2) = o(δε2)

by Lemma 3.4 and Lemma 4.3.

The proof of Lemma 5.1 is completed.

�

The second and the last lemma in this section concerns the relation between the critical points of Mε(Q) and

those of energy function Eε[u].

Lemma 5.2 Suppose Qε ∈ int(Γ) is a critical point of Mε(Q). Then the corresponding function uε = wε,Qε +

φε,Qε is also a critical point of Eε[u] : H1
0 (Ω) → R and hence a solution of (1.2).

Proof: By Lemma 4.3 and Lemma 4.4, there exists an ε0 > 0 such that for 0 < ε < ε0 we have a C1 map which,

to any Q ∈ Γ, associates φε,Q such that

Sε(wε,Q + φε,Q) =
∑
i,j

βijZi,j (5.4)

for some constants βij ∈ RNK .

Let Qε ∈ Γ be a critical point of Mε(Q). Let uε = wε,Qε + φε,Qε . Then we have

∂

∂Qi,j

∣∣∣∣∣
Q=Qε

Mε(Qε) = 0, i = 1, ...,K, j = 1, ..., N.

Hence we have ∫
Ωε

[∇uε∇∂(wε,Q + φε,Q)
∂Qi,j

∣∣∣∣∣
Q=Qε
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+(−auε + g(uε) − δT [uε])
∂(wε,Q + φε,Q)

∂Qk,l

∣∣∣∣∣
Q=Qε

] = 0

which is equivalent to ∫
Ωε

Sε(uε)
∂(wε,Q + φε,Q)

∂Qk,l

∣∣∣∣∣
Q=Qε

= 0.

Thus we have from (5.4) ∑
i,j

βij

∫
Ωε

Zi,j

(
∂(wε,Q + φε,Q)

∂Qk,l

)
|Q=Qε = 0. (5.5)

Since < Zi,j , φε,Q > 0, we have for Q = Qε that∫
Ωε

Zi,j
∂φε,Q

∂Qk,l
= −

∫
Ωε

φε,Q
∂Zi,j

∂Qk,l
= O(ε1−η).

Note that ∫
Ωε

Zi,j
∂wε,Q

∂Qk,l
= εikεjlA0(1 + o(1)),

where

A0 =
∫

RN

g
′
(w)(

∂w

∂y1
)2 =

∫
RN

[|∇
(

∂w

∂y1

)
|2 + a(

∂w

∂y1
)2] > 0.

Thus (5.5) becomes a system of homogeneous equations for βij and the matrix of the system is nonsingular since

it is dominated by its diagonal. So βij ≡ 0, i = 1, ...,K, j = 1, ...N .

Hence uε = wε,Qε + φε,Qε is a solution of (1.2).

�

6 The Reduced Problem: Proof of Theorem 1.1

In this section, we study a maximization problem.

Fix Q ∈ Γ. Let Φδ,Q be the solution given by Lemma 4.3.

We shall prove

Proposition 6.1 For ε small, the following maximization problem

max{Mε(Q) : Q ∈ Γ} (6.1)

has a solution Qε which belongs to Γ.

Before we prove the above proposition, we present two lemmas on a finite dimensional problem.

Lemma 6.2 Consider the function

h(ρ) = c3δε
2K(ρ) − 1

2
α(ρ), ρ ≥ 1 − η√

a
log

1
δε2

. (6.2)

Then, for δε2 small enough, h(ρ) has a unique maximum point ρmax. Moreover we have

ρmax =
1√
a

log
1

δε2
+ O(log log

1
δε2

) (6.3)
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and

h(ρmax) =
c3

2π
δε2 log

1
ρmax

+ o(δε2). (6.4)

Proof: This is a calculus problem since for ρ large we have w(ρ) = c9ρ
− 1

2 e−
√

aρ(1 + O( 1
ρ ) and K(ρ) = 1

2π log 1
ρ .

Differentiating h with respect to ρ gives an equation for the critical point of h(ρ):(
c3 δε2

1
ρmax

−√
aρ−1/2

max e−
√

aρmax

)(
1 + O

(
1

ρmax

))
= 0.

After taking the logarithm, (6.3) and (6.4) follow. The proof of the uniqueness of the maximum is elementary by

considering the sign of the second derivative. �

Proof of Proposition 6.1:

Since the set Γ is compact, the function Mε(Q) has a maximum point Qε ∈ Γ̄. We need to show that Qε

must lie in the interior of Γ.

We first obtain an upper bound for Mε(Qε). Let Q0 be a point such that H(Q0) = minQ∈Ω H(Q). Let

Q0 = (Q0
1, ..., Q

0
K) be an optimal configuration given in Lemma 2.1. We choose Q = Q0 + ρmaxQ0, where ρmax

is given by Lemma 6.2. It is easy to see that this choice of Q belongs to Γ. Then we have

Mε(Qε) ≥
∑
i�=j

h(ρmax|Q0
i − Q0

j |) − c4δε
2H(Q0) + o(δε2)

≥ K(K − 1)h(ρmax) − 1
2π

δε2R[Q0
1, ..., Q

0
K ] − δε2c4H0 + o(δε2) (6.5)

by Lemma 6.2.

Let lε = mini�=j |Qε
i − Qε

j |. (Without loss of generality, we may assume that lε = |Qε
1 − Qε

2|.) Then lε >

(1 − η) 1√
a
ε log 1

δ . In fact, suppose not. Then we have

Mε(Qε) ≤ h(
lε

ε
) +

⎛
⎝ ∑

i�=j,(i,j) �=(1,2)

[h(ρmax)]

⎞
⎠ − δε2c4H0 + o(δε2) ≤ −C(δε2)(1−

η
2 ) < 0 (6.6)

which contradicts with (6.5).

Consider the rescaled vertex Q̂ε
i = 1

lε Qε
i . Then we have

Mε(Qε) ≤ c3δε
2
∑
i�=j

K(
lε|Q̂ε

i − Q̂ε
j |

ε
) − 1

2

∑
i�=j

α(
lε|Q̂ε

i − Q̂ε
j |

ε
) − c4δε

2h(Q̄ε) + o(δε2) (6.7)

≤ K(K − 1)c3δε
2 1
2π

log
ε

lε
− c3δε

2 1
2π

R[Qε
1, ..., Q

ε
K ] − δε2c4h(Q̄ε) + o(δε2).

From (6.5) and (6.7), we deduce that

K(K − 1)c3δε
2 1
2π

log
ερmax

lε
− c3δε

2 1
2π

(R[Q̂ε
1, ..., Q̂

ε
K ] − m(K)) − δε2c4(H(Q̄ε) − H0) + o(δε2) ≥ 0, (6.8)

where m(K) was defined in (2.3). If either H(Q̄ε) ≥ H0 + c0 or R[Q̂ε
1, ..., Q̂

ε
K ] ≥ m(K) + c0 for some c0 > 0, then

we have

log
ε

lερmax
≥ c5
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which implies that
lε

ε
≤ e−c5ρmax,

and

h(
lε

ε
) ≤ −C(δε2)1−c6 (6.9)

for some c5, c6 > 0. Now arguments similar to those leading to (6.6) give a contradiction.

So we have h(Q̄ε) → H0 and R[Q̂ε
1, ..., Q̂

ε
K ] → m(K) as ε → 0. This implies that |Qε

i − Qε
j | ≤ Clε.

Finally, we claim that lε ≤ Cε log 1
δε2 . In fact, from (6.8) we deduce that lim supε→0

lε

ερmax
≤ 1. It then follows

that limε→0
lε

ερmax
= 1 as otherwise lim infε→0

lε

ερmax
< 1, which is impossible by (6.6) again.

In conclusion, we have proved that limε→ lε

ερmax
= 1, R[Qε

1
lε , ...,

Qε
K

ε ] → m(K),H(Q̄ε) → H0, as ε → 0. This

implies that Qε is in the interior of Γ.

Proposition 6.1 follows from the proof.

�

Completion of the Proof of Theorem 1.1:

Theorem 1.1 is proved by combining Proposition 6.1 and Lemma 5.2. �
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[9] E.N. Dancer and S. Yan, Peak solutions for an elliptic system of FitzHugh-Nagumo type, Ann. Scuola

Norm. Sup. Pisa 2 (2003), 679-709.

17



[10] E.N. Dancer and S. Yan, Multipeak solutions for the Neumann problem of an elliptic system of FitzHugh-

Nagumo type, Proc. London Math. Soc. (2004), to appear

[11] E.N. Dancer and S. Yan, Solutions with interior and boundary peaks for the Neumann problem of an elliptic

system of FitzHugh-Nagumo type, preprint.

[12] D.G. deFigueiredo and E. Mitidieri, A Maximum Principle for an elliptic system and applications to semi-

linear problems, SIAM J. Math. Anal. 17 (1986), 74-83.

[13] M. del Pino, M. Kowalczyk and J. Wei, Multi-bump ground states for the Gierer-Meinhardt system in R2,
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