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Abstract: An understanding of the dispersion of contaminants in I

turbulent flows is important in many fields ranging from air pollution

to chemical engineering, and random walk models provide one approach to

understanding and calculating aspects of dispersion. Two types of

random walk model are investigated in this thesis. The first type,

so-called "one-particle models", are capable of predicting only mean

concentrations while the second type, "two-particle models", are able

to give some information on the fluctuations in concentration as well.

Many different one-particle random walk models have been proposed

previously and several criteria have emerged to distinguish good models

from bad. In this thesis, the relationships between the various

criteria are examined and it is shown that most of the criteria are

equivalent. It is also shown how a model can be designed to (i)

satisfy the criteria exactly and (ii) be consistent with inertial

subrange theory. Some examples of models which obey the criteria are

described. The theory developed for one-particle models is then

extended to the two-particle case and used to design a two-particle

model suitable for modelling dispersion in high Reynolds number

isotropic turbulence. The properties of this model are investigated in

detail and compared with previous models. In contrast to most previous

models, the new model is three-dimensional and leads to a prediction

for the particle separation probability density function which is in

agreement with inertial subrange theory. The values of concentration

variance from the new model are compared with experimental data and

show encouraging agreement.
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1. INTRODUCTION.

1.1 The Problem of Turbulent Dispersion.

One of the most characteristic properties of turbulence is its

ability to disperse and mix contaminants. Indeed, in many problems

involving turbulent flows, it is the dispersive properties of the

turbulence which are of primary interest. Examples of such problems

include the dispersion of pollutants in the atmosphere, rivers, seas

and oceans; heat transfer in geophysical and engineering flows (in many

respects heat behaves in the same way as a material contaminant); and

mixing processes in chemical engineering. The range of dispersion

problems is large. For example, in the case of atmospheric dispersion,

one might be interested in dispersion over a few hundred metres in the

case of odours from a factory or over several thousand kilometres in

the case of acid rain. To understand these different problems requires

an understanding of the atmospheric eddies over a wide range of scales,

from micrometeorological turbulence to synoptic-scale depressions and

anticyclones (see e.g. Pasquill and Smith (1983)). Further

complications are the chemical properties of the dispersing substance

(which affect, for example, the rate at which the substance is absorbed

by the ground or transformed into other substances) and the density of

the release (as typified by the difference between accidental releases

of dense gases and hot buoyant plumes from chimneys).

In any particular turbulent flow, the flow field and 	 the

distribution of contaminants within the flow evolve in a very

complicated fashion which shows great sensitivity to initial conditions

and is unpredictable in detail. As a result it is usual in the study

of turbulent flows to adopt a statistical approach (see e.g. Batchelor

(1953) or Monin and Yaglom (1971)). In such an approach, the attempt

to calculate the evolution of any particular flow is abandoned and

instead an ensemble of realisations of the flow (in which the external
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conditions are identical but in which the details of the turbulence

differ) is considered. Attempts are then made to understand and

predict the evolution of ensemble average quantities. Examples of such

quantities include the ensemble mean, standard deviation and

probability density function (p.d.f.) of the concentration at a

particular point, and quantities reflecting the spatial and temporal

structure of the concentration field such as correlation functions and

spectra.

In many situations the ensemble mean concentration is the main

quantity of interest. However there are also many flows in which some

understanding of the fluctuations is desirable. At the simplest level

it is useful to have an estimate of the extent to which the true

concentration at a point might differ from the ensemble average. The

fluctuations often have a standard deviation which is many times

greater than the mean concentration (see e.g. Sawford (1987) or Mylne

(1988)) and so the difference between the true and ensemble average

concentrations is not necessarily small. Also, for many quantities in

many situations, ensemble averages are equal to time averages (Monin

and Yaglom (1971, §4.7) give sufficient conditions for this to be so),

and, in such cases, knowledge of the concentration p.d.f., or of some

gross statistic such as the standard deviation of the concentration,

gives an indication of the variability in time of the concentration at

a point. Such knowledge is often needed in atmospheric dispersion

problems, especially those involving toxic, inflammable or odorous

materials, or in flows involving chemical reactions. For example, in

the case of a toxic or inflammable release, the peak concentrations can

constitute a significant risk, even if the time average concentration

is well within safety limits. Similarly, in the case of reacting

substances, the instantaneous reaction rate is a function of the

instantaneous concentrations of the various reacting species. In

non-linear reactions, estimates of the average reaction rate calculated
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from the average concentrations can be badly in error.

In many dispersion problems it is possible to assume that the

contaminant is passive, i.e. the contaminant is non-reacting, moves

only as a result of molecular diffusion and advection by the velocity

field, and is present in sufficiently small concentrations so as not to

affect the motion of the fluid (e.g. through buoyancy effects). 	 This 1

assumption, when it can be made, results in a considerable

simplification of the problem since the contaminant concentration then

satisfies a linear equation (the advection-diffusion equation) and it

is possible to separate the problem of dispersion from the problem of

turbulence, i.e. we can ask the question, "Given the statistics of the

velocity field, what are the statistics of the concentration field?".

Even with this simplification, experience shows that the problem is

still very difficult and that there is little prospect of a solution

being found in the near future, even for the simplest of flows. We

simply do not have the mathematical tools necessary to tackle problems

with so many degrees of freedom.

One of the few exact results that have been obtained, and

certainly one of the most important is that obtained by Taylor (1921).

Taylor considered the motion of fluid elements, i.e. infinitesimal

points which travel at the local fluid velocity, and related their mean

square displacement to the Lagrangian velocity correlation function.

Suppose, for simplicity, that there is no mean flow (or that the mean

flow is constant and that we are using a reference frame moving with

the flow) and consider the motion in one direction only - say the

x-direction. Let X(t) be the trajectory of the fluid element which was

at x=0 at the time zero and let U(t) denote the fluid element velocity

dX/dt. Then Taylor's result states that, provided the velocity U(t) is

a stationary random function, the mean square displacement of fluid

elements is given by
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t

a(t) 2 > = f f
0

C12	 R(t 2 -t 2 )	 dt,	 dt 2 ,

0

(1.1)

where < > denotes an ensemble average, U2 is the variance of the fluid

element velocities and R is the correlation function of the fluid

element velocities, i.e. R(t) = <U(C)U(t'+t)>/a2. For small and large

times (1.1) has a particularly simple physical interpretation. For

small t, <X(t)2> = a2t2. This is simply a consequence of the fact that 1

particle trajectories can be approximated by straight lines over short

periods of time. For large times, provided the Lagrangian integral

time-scale T1 = 4R(t)dt is finite and non-zero, <X(t) 2 > = 2a2Tit.

This type of behaviour, with <X(t) 2 > proportional to t, is similar to

that observed in molecular diffusion problems and can be understood by

regarding the displacement X(t) over a time t, twr i , as the sum of many

approximately independent displacements over intervals which are long

compared to T1 but much shorter than t.

The importance of Taylor's result is that, provided molecular

diffusion can be neglected, it gives an estimate of the spatial spread

of the ensemble mean concentration field resulting from an

instantaneous point source. Often it is possible to make an assumption

about the shape of the ensemble mean concentration distribution.	 When

this can be done, knowledge of the mean square spread can be used to

calculate the ensemble average concentration field. For example,

provided the fluid element velocities are stationary random functions

with T finite and non-zero, it seems likely on the basis of central
2

limit theorem type arguments that the spatial distribution will be

Gaussian at large times. Also the fixed point velocity distribution is

often close to Gaussian and so the ensemble average concentration field

will be close to Gaussian at small times as well. In such situations

it is not too great a leap of faith to believe that the distribution is

always close to Gaussian (see e.g. Monin and Yaglom (1971, Pp540-541)).
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Important as Taylor's result is (and it would be hard to overstate

its importance), it leaves many questions unanswered. For example, in

the majority of flows U(t) is not a stationary random function. Even

in cases where it is, the Lagrangian correlation function R(t) is

usually unknown. The Eulerian (i.e. fixed point) velocity statistics

are usually better known (either from measurements or turbulence

models) but it is not clear how R(t) can be calculated from such

statistics. Also Taylor's theory takes no account of molecular

diffusion. However this is not so serious a problem because molecular

diffusion is generally thought to have a negligible effect on ensemble

mean concentrations in most high Reynolds number flows (Saffman 1960;

Monin and Yaglom 1971, §10.2). (In fact Taylor's result can be

modified to include molecular diffusion (Saffman 1960); however the

result of this modification is to express the mean square displacement

of molecules in terms of the correlation function of the flow velocity

evaluated along molecular trajectories. Such correlations are

generally no better known than Lagrangian correlations.) Finally

Taylor's result gives no indication at all of the size of fluctuations

in concentration which, as noted above, are often of considerable

importance.

1.2 The Random Walk Approach.

In view of the difficulties noted above in calculating turbulent

dispersion directly from the governing equations, it is often necessary

to resort to approximate mathematical models of the dispersion process.

One such modelling technique, which has been much exploited in recent

years and which constitutes the main subject of this thesis, is the

so-called "random walk" technique, also known as the random flight or

random force method (see e.g. Obukhov (1959), Novikov (1963), Lin and

Reid (1963), Jonas and Bartlett (1972), Hall (1975) and Reid (1979) for

a selection of the early applications of this technique). The range of
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dispersion problems to which this approach is applicable is rather

modest compared with the full range of dispersion problems discussed in

§1.1. In particular, random walk models assume that the dispersing

material is passive and that the eddies have at least some of the

randomness properties characteristic of three-dimensional turbulence.

Thus the technique, at least in its basic form, is not directly

applicable to buoyant or heavy plumes, reacting flows, or to long range 
1

atmospheric dispersion problems where the eddies responsible for the

dispersion are predominantly two-dimensional.

The basic idea behind random walk models is to simulate the motion

of many particles of the dispersing substance. The idea is a very

natural one, since it is, of course, the motion of the individual

elements of the dispersing substance which determines the dispersion.

Figure 1.1 shows some simulated trajectories for the case of an

elevated source in a neutral boundary layer. The particles are assumed

to be drawn at random from among all the particles of the dispersing

material in the ensemble of flows. To calculate the ensemble mean

concentration at a particular place and time, a small box is

constructed (metaphorically speaking) around the place in question and

the number of trajectories in the box at the time in question is

counted. In order to obtain statistically reliable values for the

concentration, it is necessary to ensure that many particles pass

through the box, and so a large number of trajectories, typically ten

thousand, need to be computed. Of course in order to implement the

above scheme, it is necessary to have a model of the way the particles

move. The investigation of how such models should be formulated is one

of the main aims of this thesis. In some cases the statistics of the

particle trajectories, and hence the ensemble mean concentration field,

can be calculated from the model analytically, without the need for the

explicit simulation of many trajectories. However such situations are

the exception rather than the rule.



Figure 1.1: 50 trajectories from a random walk simulation of vertical

dispersion downwind of an elevated source, marked x, in a neutral

boundary layer.
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If the trajectories of pairs of particles (instead of single

particles) are simulated, random walk models can be used to predict the

concentration variance as well as the ensemble mean concentration. The

idea that the concentration variance can be expressed in terms of the

motion of particle-pairs is due in essence to Batchelor (1952), but it

is only comparatively recently (Durbin 1980) that this has been

exploited by simulating the motion of particle-pairs numerically.

1.3 Alternative Modelling Approaches.

Of course the random walk approach is not the only possible

approach to dispersion modelling, and it is appropriate to discuss

briefly some of the alternative approaches. A discussion of the

advantages and disadvantages of the random walk approach in relation to

these alternative approaches will be given in chapter 7 after the

random walk approach has been investigated in some detail.

Perhaps the most widely used practical method for modelling the

ensemble mean concentrations resulting from steady sources in the

atmosphere is the Gaussian plume model (see e.g. Pasquill and Smith

(1983, p320)), in which the shape of the concentration distribution

across the plume is assumed to be Gaussian. The reason for choosing a

Gaussian shape is that, for dispersion in homogeneous stationary

turbulence, the fluid element velocities are stationary random

functions, and so a Gaussian shape is expected on the basis of central

limit theorem type arguments (see §1.1). Of course atmospheric

turbulence cannot be assumed to be homogeneous and stationary

(especially in the vertical direction) and so the Gaussian assumption

is unlikely to be exact. However it might be expected to be a

reasonable approximation, an expectation which, in many (but not all)

situations, is confirmed by experimental data (Pasquill and Smith 1973,

§4.2, §4.5 and p320). In Gaussian plume models the width of the plume

in the lateral and vertical directions is determined from tables or



Page 8

nomograms based on experimental observations of plume behaviour.

Although it will be a while before this method is superseded from a

practical point of view, such models are essentially empirical and do

not explain the dispersion in terms of the flow properties.

A second approach which has been extensively applied is the use of

the diffusion equation (see e.g. Monin and Yaglom (1971, §§10.3-10.5) 1

and Pasquill and Smith (1983, MA and 3.2)). In this approach it is

assumed that the turbulent eddies disperse material in a way which is

qualitatively similar to the action of molecular diffusion, i.e. it is

assumed that the turbulent flux of material is proportional to the

concentration gradient, the constant of proportionality being the

diffusivity K. There are various ways in which the "eddy-diffusivity"

K and its spatial and temporal variation can be estimated in terms of

the flow properties. However, the fundamental assumption underlying

the diffusion equation, namely that the length- and time-scales of the

motions responsible for the dispersion are small compared with the

scales on which the concentration and flow properties vary, is not true

in general.	 This leads to a number of qualitative errors in the 	 .

results. For example, the ensemble average plume from an elevated

source grows linearly for small times after release (because fluid

elements travel in straight lines over short distances) whereas the

diffusion equation predicts parabolic growth as in figure 1.2. Also,

in many flows, a substantial part of the turbulence energy is contained

in large eddies whose sizes are comparable to the domain size; in such

cases the diffusion equation can fail to represent the most important

features of the dispersion. A good example of such a flow is the

convective boundary layer (see e.g. Willis and Deardorff (1976, 1978

and 1981), Lamb (1982), de Baas, van Dop and Nieuwstadt (1986), Sawford

and Guest (1987) and Weil (1988)). In such boundary layers the

dispersion is dominated by large scale convective eddies of size

comparable to the boundary layer depth. These large eddies cause many
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Figure 1.2: Plume growth downwind of an elevated source in the

atmospheric boundary layer. The solid line indicates the true

behaviour at short distances from the source and the dash d line give

the result of using the diffusion equation.	 x marks the source

position.
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non-diffusive effects such as the "lift-off" of plumes from ground

level sources. There are however some situations in which the

eddy-diffusivity approach does give good results. For example we saw

above in discussing Taylor's (1921) result that, 	 provided	 the

conditions required for Taylor's result are fulfilled, an

eddy-diffusion assumption is likely to be good at large times. Another

example is the case of vertical diffusion from a surface source in a

neutral surface layer. In this flow the eddies become small as we

approach the surface. 	 If the eddies responsible for dispersing the

contaminant were much smaller than the cloud of contaminant at all

stages of	 the dispersion then we could be confident that an

eddy-diffusivity assumption would be valid. Although this is not the

case (and so an eddy-diffusivity assumption cannot be formally

justified), it is true that the eddies'are never much larger than the

cloud and so an eddy-diffusivity assumption might be expected to be an

acceptable (although inexact) approximation. 	 Experimental evidence

(Pasquill and Smith 1983, §4.6) supports this view.

High-order closure models constitute a promising technique which

overcomes some of the problems associated with eddy-diffusivity models.

However, these models cannot represent the initial stages of the

evolution of the ensemble mean concentration in a natural way and

cannot easily represent	 the dispersion from complex source

distributions (Deardorff 1978). The difficulty is that an

eddy-diffusivity assumption needs to be made for the flux of some

higher order moment, and this assumption is no more justified than the

use of an eddy-diffusivity for the flux of contaminant. The most

common form of high-order closure is second-order closure, and such

models can be (but are not always - see Deardorff (1978)) formulated in

a way which enables them to predict concentration variance as well as

the mean concentration (see e.g. Newman, Launder and Lumley (1981) or

Sykes, Lewellen and Parker (1984)). However, these models sometimes
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have difficulty in providing good predictions of the concentration

variance, especially if the length-scale of the concentration

fluctuations is not closely related to that of the velocity field. The

reason for this is that second-order closure models describe the flow

solely in terms of one-point statistics, and so do not carry

information on the spatial structure of the concentration field. These

difficulties occur even in what is perhaps the simplest possible flow

involving fluctuations in concentration, namely the decay of an

isotropic concentration field in decaying isotropic turbulence. 	 The

grid turbulence experiments of Warhaft and Lumley (1978) and

Sreenivasan, Tavoularis, Henry and Corrsin (1980) provide a good

approximation to this flow and show that the power law exponent of the

decay of concentration variance depends strongly on the ratio of the

length-scales of the scalar and velocity fields. The early

second-order closure models assumed, following Spalding (1971), that

the ratio of the time-scales for the decay of the scalar and velocity

fields was a universal constant and were consequently unable to explain

the variation in decay rate. Newman et al (1981) succeeded in

designing a model which reproduces the observed decay, although at the

cost of violating the principle of superposition of scalar fields (Pope

1983; Lumley and Van Cruyningen 1985), a principle which follows from

the linearity of the advection-diffusion equation. This suggests that

a completely consistent second-order closure model may not be possible.

So-called p.d.f. models (Pope 1985) provide an approach to

modelling which has much in common with both high-order closure models

and the random walk approach. These models enable predictions of the

p.d.f. of the concentration at each point to be obtained. However such

models are usually formulated in terms of one-point statistics and so

are likely to suffer from the same problems as high-order closure

models in predicting properties of the fluctuations in concentration.
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More soundly based models for calculating concentration variance

are provided by two-point closures, of which the "eddy-damped

quasi-normal Markovian approximation" is perhaps the most widely

applied (see e.g. Lesieur (1987)), and two-point two-time closures such

as the direct interaction approximation or its Lagrangian modification

(see e.g. Leslie (1973)). In these models, the description of the flow

includes a specification of the (second-order) spatial structure of the

concentration field. As a result such models avoid the problems

encountered by the one-point closures discussed above and can describe

the decay of an isotropic concentration field in isotropic turbulence

easily and naturally (Larchevéque, Chollet, Herring, Lesieur, Newman

and Schertzer 1980). However such models are usually formulated in

terms of spectra and are hard to extend to flows where the velocity or

concentration field is inhomogeneous (of course in such cases a

description in terms of power spectra is impossible).

A rather different type of approach is possible in cases where the

dispersion of material depends on only a small number of physical

quantities. In such situations it is possible to obtain some

information on the dispersion by dimensional analysis. The results of

such analyses usually imply similarity between some aspects of the

concentration distribution at different times or places, and so the use

of this technique is often referred to as the application of similarity

theory. Although there are only a few situations to which such an

approach can be applied, the technique, when applicable, generally

gives important insights into the dispersion. The two most successful

examples of applications of similarity theory to dispersion have been

in the investigation of vertical dispersion from an instantaneous

ground level source in the neutral atmospheric surface layer (Batchelor

1964) and in inquiries into those aspects of dispersion which are

governed by the inertial subrange part of the turbulence spectrum

(Monin and Yaglom 1975, §§21.6 and 24.1-24.3). A disadvantage of
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similarity theory is that it gives only limited information about the

dispersion.	 For example, in the case of an instantaneous ground level

source in the neutral atmospheric surface layer, it gives no

information on the shape of the concentration distribution in the

vertical, other than that it is the same at all times. In addition the

similarity is usually not exact. For example, it is thought that the

integral length-scale of the turbulent velocity field has a weak

influence on the inertial subrange structure as a result of its effect

on fluctuations in dissipation rate (Monin and Yaglom 1975, §25), an

effect which is neglected in the dimensional analysis.

1.4 Guide to Succeeding Chapters.

The main objective of the work presented in this thesis is to

clarify theoretical aspects of the problem of how to formulate one- and

two-particle random walk models, and to apply two-particle models to

the problem of predicting concentration variance in some simple flows.

No applications of one-particle models are presented here; however many

examples of applications can be found in the references cited.

Chapters 2 and 3 are concerned with various preliminaries which

are necessary for the discussion of random walk models. With the

exception of some ideas in §3.3, most of this material is not original,

having previously been discussed quite extensively by other authors.

The random walk models themselves are most easily expressed in terms of

the language of stochastic differential equations, and chapter 2 gives

a brief description and summarizes the main properties of such

equations. Chapter 3 is concerned with developing the mathematical

framework for describing turbulent dispersion. The equations satisfied

by the fluid dynamic variables are presented (§3.1), the statistical

approach outlined in §1.1 is described in more detail (§3.2) and the

statistical	 relations	 between	 the concentration field and the

trajectories of particles and particle-pairs are described (§3.3). The
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main new results obtained in this thesis are presented in chapters 4, 5

and 6. In chapter 4 the theory of how one-particle random walk models

should be formulated is developed. Chapter 5 extends this theory to

two-particle models and investigates some of the properties of such

models in what is perhaps the simplest possible flow, namely isotropic

turbulence. In chapter 6 predictions of the concentration variance are

compared with experimental data. Finally, in chapter 7, a discussion

is given of the strengths and weaknesses of random walk models, both in

absolute terms and in relation to other modelling techniques.
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2. PROBABILITY AND STOCHASTIC DIFFERENTIAL EQUATIONS.

This chapter outlines some aspects of the theory of probability

and stochastic differential equations, primarily in order to establish

notation and provide a summary of those results which will be used

frequently in chapters 3, 4 and 5. The random processes which are

described in §2.2 and §2.3 were introduced originally to model Brownian 1

motion and molecular diffusion. These applications are discussed

briefly in order to give a physical picture of the processes.

Applications to turbulent dispersion are deferred to chapter 4.

2.1 Notation for Probabilistic Concepts.

The notations which will be used for probabilistic concepts are

similar to those used in so-called p.d.f. models of turbulence by Pope

(1985) and others. The probability density function (p.d.f.) of a

real-valued random variable X, which always exists if "function" is

interpreted in the generalised sense (Pope 1985; Lumley 1970, p9), will

be denoted by px (x). If the expectation of X exists, it will be

denoted by <X>. The joint p.d.f. of several random variables X1,...,Xn

will be denoted by p	 (xl,...,xn) or, if the random variables
X1"n

X1 ,...,X. are the components of a (finite-dimensional) random vector X,

by p
X 
(x).	 The expectation of such a random vector X (defined
 -

component-wise) will be written <X>.	 Superscripts will be used to

denote components of vectors and the summation convention will be used.

Just as expectations can be expressed in terms of probabilities,

so the probabilities associated with a random variable X can be

expressed in terms of expectations. For example, the probability that

the random variable X is less than or equal to x is given by the

expectation of the random variable X. defined by

f

1 if X x
=	

0 otherwise.
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Hence the p.d.f. of X is given by

P( x ) = d<Xx >/dx . <6(x-X)>

where 6 denotes the Dirac delta function. Similarly

P X	 X (x1 ''''' x
	

—
) - <6(X1

— X1
 )...6(xn-X.)>

1 1—, n	 n 

and

p (x) = <S(x-X)>.
X-

In chapter 3 we will need the concept of the X-weighted p.d.f. of

Y, where X and Y are random variables. This is defined, by analogy

with (2.1), to be <X 6(y-Y)>. Just as knowledge of the p.d.f. of Y

enables expectations of functions of Y to be calculated using the

relation <f(Y)> = f f(y) p1 (y) dy, so knowledge of the X-weighted
p.d.f. of Y enables X-weighted expectations to be calculated from

<X f(Y)> = f f(y) <X 6(y-Y)> dy.

If X and Y are random variables, the conditional p.d.f. of X given

Y . y, which is defined by px,y(x,y)/py(y), will be denoted by

px , y (xly). The conditional expectation of X given Y . y will be

denoted by <XIY.y> and is defined by

<XIY=y> = f x pxix (xly) dx.

It has the property that

p (y ) <X1Y=y> . f x px,y (x,y) dx

= f x S(y-y') px,y (x,y') dx dy'
. <X 6(y-Y)>.

The definitions and notations for weighted p.d.f.s, conditional

p.d.f.s and conditional expectations will also be used with the obvious

modifications when X and Y are (finite-dimensional) random vectors or

(finite) collections of random variables.
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2.2 The Wiener Process.

A random process which plays an important role in random walk

models is the Wiener process (Feller 1971, pp99 and 181; Schuss 1980,

§2.1; Gihman and Skorohod 1980, p158), originally introduced to model

Brownian motion.	 A random process C(t) which is defined for WI is a

Wiener process if it has the following properties: (i) all its sample 1

paths are continuous, (ii) for t 2 t i , the increment C(t 2 ) - C(t 1 ) has a

probability distribution depending only on t 2 - t l , (iii) the

increments in non-overlapping intervals are independent (i.e. C(t 4 ) -

C(t 3 ) is independent of C(t 2 ) - C(t 1 ) for t 4 t 3 ..t 2 t 1 ), (iv) for t2:t1,

the increment C(t 2 ) -	 ( t 1) is a Gaussian random variable with zero

mean and variance t 2 - t
1 , and (v) C(0) = 0. We will also be

interested in multi-dimensional Wiener processes Qt) which are simply

vector-valued processes with independent components, each component of

which is a one-dimensional Wiener process. 	 The symbol C will be

reserved throughout this thesis for Wiener processes.

Somewhat surprisingly, any vector-valued process X(t) which is

I

defined for tX) and which has continuous sample paths and stationary •

independent increments (i.e. which satisfies multi-dimensional

analogues of conditions (i), (ii) and (iii)) can be expressed in terms

of a Wiener process by suitable scaling and the addition of a mean

drift and initial (possibly random) displacement, i.e. it can be

expressed in the form

Xi (t) = a i t + b li Ci + Xi(0) (2.2)

for some Wiener process C(t). This is because the increment of such a

process over the interval [t 2 ,t 1 ] can be expressed as the sum of the n

increments which occur over the n non-overlapping time intervals

[t1+(t2-t1)(i-1)/n,t1+(t2-t1)i/n], i=1,...,n. Each of these increments

has the same distribution and also, since the sample paths are

continuous, the expected number of these increments which exceed c (for
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any given 00) tends to zero as n4 ,33 . Hence, by the central limit

theorem, the increment X(t 2 ) - X(t 2 ) must be Gaussian. It follows

that, with an appropriate choice of a and b, X(t) takes the form (2.2).

A more rigorous proof of this can be found in Gihman and Skorohod

(1980, pp189-190).

As is well known, small particles suspended in a fluid (such as I

smoke particles in air) undergo a random motion (called Brownian

motion) as a result of the impacts of the fluid molecules. As

mentioned above, the Wiener process (suitably scaled and with the

addition of an initial displacement) is often used as a model for this

motion (Einstein 1956; Schuss 1980, §2.1; Gihman and Skorohod 1980,

p158; Wax 1954). The displacement of a particle results from the

combined effect of an enormous number of impacts by molecules.

Provided the properties of the medium in which the particle is moving

are uniform in space and time, the effects of these impacts in

non-overlapping time intervals are likely to be independent due to the

random nature of molecular motions; also the p.d.f. of an increment

over an interval is likely to depend only on the length of the

interval.	 Hence the Wiener process should be a good model for such

motions, at least on time-scales much longer than the time-scale on

which the Brownian particle exchanges momentum with the fluid. The

Wiener process is not such a good model over shorter time intervals.

To see this note that the mean square derivative of a Wiener process is

infinite (since the mean square of the increment over an interval At is

equal to At and is not of order (At) 2 ) whereas the velocity of a

particle must of course be finite. In the Wiener process model of

Brownian motion, the velocity of a particle, which has a very large

mean square value (relative to the average velocity of the particle

over a "macroscopic" time interval) and a very short correlation

time-scale (relative to the length of a macroscopic time interval), is

modelled by an idealised process with infinite mean square value and
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zero correlation time-scale.

For similar reasons, the Wiener process is a good model for the

random displacement of molecules in a fluid over time intervals which

are much longer than the time-scale on which a molecule exchanges

momentum with other molecules.

2.3 Stochastic Differential Equations.
	

1

The Wiener process, although a good model for Brownian or

molecular motions in a uniform medium, is not sufficiently general for

our purposes. A natural generalisation is to consider processes in

which the properties of the increments vary with position and time.

Such processes can be described by Ito stochastic differential

equations (Gihman and Skorohod 1979; Schuss 1980):

dXi . ai (X(t),t) dt + b ii (X(t),t) (ICJ .	 (2.3)

Informally this equation can be regarded as a generalisation of (2.2)

with a and b depending on X(t) and t.	 For our purposes it is-

sufficient to regard (2.3) as being the limit as At40 of the difference

equation '

Xi (t+At)-Xi (t) . a i (X(t),t)At + bii(X(t),t)(0(t+At)-(0). 	 (2.4)

For given a and b, equation (2.3) does not of course determine the

process X(t); to do this it is also necessary to specify the

P .d.f. Px f ox of X(0) (assuming the process X(t) is to be defined for..,‘ ,

t:0).	 For suitable choice of a and b, such a process is a good model

of the motion of Brownian particles or molecules in a fluid which is in

motion. Indeed, it will be seen below that (for suitable a and b) the

P.d.f. Px(t) obeys the usual advection-diffusion equation for the

evolution of the concentration of a passive contaminant.



Page 19

For processes described by Ito stochastic differential equations

it is straightforward to derive equations for the evolution of

and px(t) . First note that X(t) is Markovian, i.e. given
Px(t)I(s)

the value of X at time t, the values at times greater than t are

independent of the values at times less than t. A consequence of this

is that D X(t)IX(s) obeys the Chapman-Kolmogorov equation
- 

PX(t)IX(s) QEI Y ) = f Px ( 0 11;(0 0L I E) Px(r) l x(s)(F.Iy) clE

for any r with t . r. s (Schuss 1980, p101; Gihman and Skorohod 1980,

p160). Hence, for t?;s,

PX(t+60111(s) q1 Y ) =	 Px(t4solyo gslE) PX(t)IX(s)(IY) dz

= I Paix(0 0.1- 1 0 Pxmix(s) (Ely) dz

= I Pa i x(t)(klis-k) PX(01X(s)(31-A31150

where AX = X(t+At) - X(t). Now, because the trajectories X(t) are

continuous, the main contribution to the integral will come from values

of Ax close to zero. Expanding in a Taylor series in Ax yields

co	 (...1)1+m+n

PX(t+AOIX(S) (1 Y ) = , E„ E„ E, lim!n1	 x
1=v m=v n=u

(2.5)

al+m+n
X 	

 (qhx1)1(	

1
a2 )m(a3)ni	

)

.u(-.=

1	 > PX(01X(S)(1Y)).(ax1)1(ax2)m(ax3)n

From (2.4), the conditional p.d.f. pa i x (t) ( A119 of AX given X(t)	 x

is Gaussian with mean a(x,t)At and covariance matrix M iJ ( es,t)At where

Bij (x,t)	 Ibbik(x,t)bjk(x,t).	 Hence	 aXi lX(t)=x>	 =	 ai(x,t)At,

<AX i a j lX(t)=x> = 2B"(x,t)At and all higher moments are o(6t). By

letting At40 in (2.5), it follows that px ( o ll(s) (10y) satisfies

22 = _ a	 (ai(L,t)p)	 a__ ( ( x pOP)	 (2.6)
at axi	 axlaxJ

for t:s (Schuss 1980, p109). This is called the forward Kolmogorov or

Fokker-Planck equation for the process X(t). For suitable a and b this
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is, as noted above,	 the usual advection-diffusion 	 equation.

(xly) also satisfies the backward Kolmogorov equation
PX(01X(s)

• e	 I.

	

22 = - a i (y, ․ ) 22— - B ij (y, ․ ) —21E—	 (2.7)
Ds

-	 ay i	 Byiayj

for ts. This can be derived in the same way as the forward equation

starting from the Chapman-Kolmogorov e quation in the form

1

PX(t)IX(s) (I Y. ) = f Px(o l x(s+Aoqlo Px(s+At)IX(s) QI Y ) ciS'

In addition the unconditional p.d.f. 	
)1

p,,,,(x), which can be expressed
1..;k

as

Px(t)(9 = f Px(olx(0)(?i l l2 Px(o) (3) dY'

also satisfies (2.6).

Although (2.3) is formally similar to an ordinary differential

equation, it cannot be manipulated in all respects in the same way as

an ordinary differential equation because the size of the random

increment dC is of order (dt) 112 and not of order dt. As a result, if

f(x,t) is a function of x and t, the differential of f(X(t),t) is given

not by the chain rule, but by ItO's formula (Schuss 1980, pp79-80 and

112):

3f	 af	 • •	
a2f

df(X(t),t) .	 + a i (X(t),t) --- + B1J (X(t),t) 	)dt
axi	 xi x)

+ b 1 i(x(0,0 11— dci.

ax'

(2. 8)
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3. MATHEMATICAL FRAMEWORK FOR RANDOM WALK MODELS.

In this chapter the basic fluid dynamic equations and the

statistical approach to turbulence are outlined and the mathematical

framework which forms the starting point for random walk models is

presented.

3.1 Basic Equations

The basic fluid dynamic equations which describe the evolution of

the velocity and density fields in a Newtonian fluid are well known.

Many derivations can be found in the literature (e.g. Batchelor (1967),

Monin and Yaglom (1971) or Libby and Williams (1980)) and so we simply

state these equations here. The velocity and density fields, u (x,t)

and p(x,t), satisfy the mass and momentum conservation equations

ap/at	 — V.(pu )	 (3.1)

Du /Dt = F	 (3.2)

where D/Dt is the material derivative vat + u .V and F(x,t) is the net

force per unit mass applied to the fluid, either by the fluid itself

(e.g. pressure or viscous forces) or by external forces (e.g. gravity).

The subscript e in u is used to indicate the Eulerian velocity field

and to distinguish it from the last three coordinates of a point (x,u)

in the phase space which will be introduced in §3.3. If the density

and viscosity p of the fluid are constant and the external forces are

negligible (or conservative), equation (3.2) takes the form Du e /Dt = -

(1/p)V11 + vV 2 u. where H is the (modified) pressure and v = pip is the

kinematic viscosity. Although most of our interest will centre on this

case, the consideration of more general situations (in particular

variable density flows) is useful, in that it provides some insight

into a number of aspects of random walk models.
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In this thesis, only the dispersion of passive contaminants (see

§1.1) will be considered. The concentration c(x,t) of a passive

contaminant obeys the equation

ac/at = - V.(cu e ) + V.(KpV(c/p)) + S	 (3.3)

where S(x,t) is the source strength, i.e. the amount of tracer released-

per unit space-time volume, and K is the molecular diffusivity which

will be assumed constant (Libby and Williams 1980). It will be assumed

that the concentration c is zero at the initial time (which will be

taken to be t=0) and hence that all the contaminant enters the flow via

the source strength S and not via the initial conditions. This

assumption of course implies no real restriction on the physics,

referring to the nature of the mathematical description of the flow and

not to the flow itself.

3.2 The Ensemble of Realisations

One does not have to watch a turbulent flow for long to realise

that there is little hope of being able to predict the evolution of the

flow in detail over a time much in excess of the time-scale of a single

eddy. This is because, although the equations governing the flow are

deterministic, the solution of these equations is very sensitive to

initial and boundary conditions, giving the appearance of randomness.

As indicated in §1.1, the usual response to this problem (which will

also be followed here) is to abandon any attempt to calculate the

evolution of a particular flow and to adopt a statistical approach (see

e.g. Batchelor	 (1953,	 §§1.1-2.2)	 or	 Monin	 and Yaglom (1971,

§§3.2-3.3)).

Suppose one decides on a particular set of external conditions for

a turbulence experiment. For example, one might set up a wind tunnel

in a particular way, with a turbulence generating grid and a nozzle for

releasing contaminant into the flow. Because of the great sensitivity

of turbulent flows to the initial conditions, the details of the flow
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will not be predictable, no matter how carefully the experiment is

prepared. There will however be probabilities associated with various

events; for example there will be a certain probability that the

concentration c measured at a given space-time point lies in a given

range.	 As a result it is natural to use the language of probability

theory to describe a turbulent flow. 	 The velocity u, density p,

contaminant concentration c and source strength S are then random

fields. Although in many cases the source strength will be

deterministic, it is useful to allow it to be random. Such randomness

might be caused, for example, by a mechanism for releasing the

contaminant in which the release rate depends on the flow properties,

or by some other source of randomness in the release mechanism,

unrelated to the turbulence.	 The set or "ensemble" of all possible

outcomes or "realisations" of the flow will be denoted by Q.

In the statistical approach, no attempt is made to predict

anything other than the expectations of random variables (or the

probabilities associated with random variables, which, as noted in

§2.1, contain the same information as the expectations). Such an

expectation will often be referred to as an "ensemble average value" or

an "average over the ensemble". In principle, if we had sufficient

knowledge of the probability distribution of the initial and boundary

conditions (and of any probabilistic process within the contaminant

release mechanism), then we could calculate such quantities from the

equations governing the flow. In practice however such a calculation

is, except for some simple low Reynolds number flows for which "direct

simulations" (Schumann and Friedrich 1986) can be carried out, beyond

the reach of the combined forces of today's mathematical knowledge and

computational technology. As a result it is (as noted in §1.2)

necessary to use mathematical models which involve assumptions and

approximations that cannot be justified rigorously. Ultimately such

models can only be justified by comparison with experimental data,
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although of course mathematical and physical arguments can play an

important role in designing such models. Random walk models of the

type to be considered in this thesis are models of this sort. In these

models, the values of certain low order statistics of p, ue and S are

assumed known and, with these values as input, the random walk model

gives predictions for the values of various low order statistics

involving the contaminant concentration. In practice the turbulence

statistics which are required as input could be obtained from

measurements or estimated from turbulence models.

In stationary or homogeneous flows it is often possible to

interpret ensemble average values as time or space averages (for time

averages this was discussed briefly in §1.1). The required conditions

for this to be valid are quite mild and can usually be assumed to be

satisfied (Monin and Yaglom 1971, §4.7). This is particularly useful

in comparing experimental data, which often take the form of

time-averaged quantities, with ensemble average predictions 	 from

models.

3.3 Transition Densities

In this section various relations will be given which express

statistical quantities involving the contaminant concentration in terms

of probabilities associated with the motion of "fluid particles".

These relations form the necessary mathematical framework for

discussing random walk models. The relations in question (equations

(3.4) to (3.7) below) are very natural and indeed, at least in the case

of the ensemble mean concentration, almost obvious. As a result we

simply present these relations here and give the derivation in Appendix

A. Of these relations, (3.4) and (3.6) were originally derived by

Batchelor (1949, 1952) for the case of zero molecular diffusivity and

the extensions to non-zero diffusivity have been discussed by Egbert

and Baker (1984) and Sawford and Hunt (1986).
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Before presenting these relations, some discussion of what is

meant by "fluid particle" is desirable. Two cases arise corresponding

to the presence or absence of molecular diffusion. If K = 0, fluid

particles are simply points which are advected by the flow velocity u .

If K>0 however, fluid particles will be taken to be molecules of fluid

which are advected by ue and also undergo a random molecular motion.

It is convenient to use the term fluid particle to cover both cases,

although in most of the literature the term fluid particle is used only

in the first case. The term "fluid element" will be used when we wish

to emphasise that we are considering the case K = 0.

Let X(t) denote the trajectory of a fluid particle chosen at

random from all fluid particles in the ensemble of flows. A discussion

of the precise meaning of "a fluid particle chosen at random" is given

in Appendix A. Then provided S/p is independent of the velocity and

density fields,

(xly)	 ,s.<c(x,t)> = f	 <S(y)> dy dsPx(01x(s) - -
s:t -

(3.4)

This expresses <c(x,t)> in terms of the p.d.f. of the position of fluid

particles which were at y at time s. The physical interpretation of
-

the assumption that S/p is independent of the velocity and density

fields is that the source simply "marks" a certain fraction of the

fluid particles which pass by, this fraction being independent of the

flow.

Because most random walk models take the form of stochastic

differential equations for the evolution of the position and velocity

of fluid particles, it is useful to obtain a result similar to (3.4)

for the distribution of fluid particles in position-velocity (or

"phase") space.	 gp (x,u,t) and gc (x,u,t) will be used to denote

<p(x,t)8(u-u (x,t))> and <c(x,t)8(u-u (x,t))> respectively. These are

the density- and concentration-weighted velocity p.d.f.s (see §2.1) and
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x gp (y,v, ․ ) <S(y, ․ )/p(y, ․ )> dv dy ds.	 (3.5) 1
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can also be regarded as the phase space mass densities of fluid and

contaminant. If U(t) denotes the value of the flow velocity u at the

location X(t) of the randomly chosen fluid particle, then g . is given

by

This equation indicates how the phase space density of tracer particles

is related to the source g p <S/p> of particles in phase space by the

transition densit y D

' •X(t),U(t)IX(s),U(s)•

In a similar way, let X1 (t) and X2 (t) denote the trajectories of a

pair of fluid particles chosen at random from all pairs of fluid

particles in the ensemble of flows (here a pair of fluid particles

means two fluid particles, both belonging to the same realisation).

Then, again assuming that S/p is independent of the velocity •nd

density fields, <c(x 1 ,t 1 )c(x2 ,t 2 )> is given by

<c(xl ,t i )c(x2 ,t 2 )>

	

	 (x ,x ly ,y ) x= f PX1 (t i ),X2 (t 2 )1X1 (s 1 ),X2 (s 2 ) -1 -2 _2. _2
s119 s 2 s'Ct 2

x <S(y1 ,s 1 ) S(y2 ,s 2 )> dyi dy2 ds, ds 2 . (3.6)

This expresses the covariance function of c in terms of the joint

p.d.f. of the position of the first particle at time t 1 and the

position of the second particle at time t 2 , given that the first

particle was at yi at time s l and the second was at y 2 at time s 2 . If

we define it p and ftc to be

kp (x l ,u 1 ,t i ,xu t )
—2	 2

<p(x1 ,t 1 )p(x 2 ,t 2 )8(u 1 -u (xl ,t 1 )6(u 2 -u (x2,t2))>

and
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then the phase space analogue of (3.6) is

kc =

J PX1 (t i ), 12 1 (t i ),X2 ( t 2 ),U 2 (t 2 )1X 1 ( s 1 ),..,U2 ( s 2 )QE1 9 - 1112 1 Y1 1—t Y2 ) x
st -

x g p (y 1 ,v 1 ,s 1 ,y 2 ,v 2 ,s 2 ) <S(57 1 ,s 1 )S(y 2 ,s 2 )/p(y 1 ,s 1 )p(y 2 ,s 2 )> x

x dv i dyi dsi dv2 dy2 ds 2 ,	 (3.7)

where Ili ( t) = u (Xi (t),t) for 1.1,2.

Equations (3.4) to (3.7) enable us to calculate the values of

<c(x,t)>, <c(x1 ,t 1 )c(x2 ,t 2 )>, g. and kc from models of the motion of

particles and particle-pairs. For example, a stochastic model for the

evolution of X(t) enables D
0X(s)X(	

to be evaluated and hence <c> can
-	 -

be found from (3.4). In many cases such models are not amenable to

analytic treatment; then-PAMIX(s) can be estimated by calculating

many sample trajectories numerically. In practice it is often easier

to evaluate <c> directly by calculating trajectories which have random

initial conditions with density proportional to <S(x,t)>.

If the value of <c(x,t)>, <c(x 1 ,t 1 )c(x 2 ,t 2 )>, g. or kc at a

specific point (or pair of points) is required, it is often convenient

to calculate the trajectories backwards in time from the specified

point to the source. The idea of considering reverse trajectories was

put forward originally by Corrsin (1952) and first utilised in random

walk models by Durbin (1980). It avoids the waste of calculating many

forward trajectories which do not pass near the specified point and so

do not contribute to the result. <c(x,t)>, <c(x 1 ,t 1 )c(x2 ,t 2 )>, g. and

kc can be expressed in terms of the statistics of backward trajectories

by using certain symmetry relations obeyed by the transition densities

(see Lundgren (1981) or Egbert and Baker (1984) for the special case of

constant density flows). Consider the probability of a fluid particle

lying, at time t, in the elemental region dx surrounding the point x

and, at time s, in the region dy surrounding the point y. This
_	 _
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probability is equal to the probability of it occupying the region dx

at time t given that it occupies dy at time s - i.e. 
PX(t)IX(s)

(xly)dx

- multiplied by the probability of it occupying dy at time

i.e. <p(y, ․ )>dy/M, where M is the total mass of the fluid. Hence the

probability equals

PX(01X(s) (xly)<p(y,
․ )>dxdy/M.

By symmetry, the probability is also given by

PX(s)IX(t)(YI
0<p(lc-,t)>dlOy/M

and so

PX(01X(s) (thr)<P(Y ' s)› = Px(s)lx(t)(3110<PQS't)›.

As a result (3.4) can also be expressed as

<c(x,t)>
	  dy ds.

<p(x,t)>	 LPtX(s)13((t)(Yi°

Similarly, by considering a pair of particles,

(3.8)

(3.9)

PX2 (t 1 ),X (t )IX (s ),X (s 
) ( 1 , 2 1y 1 ,	 1y2) < p (y ,s 1 ) p (y ts 2 )> =_

-2 2 -1 1 -2 2	 (3.10)

PX
‘(y2,y2Ix1012) <p(x2,t2)p(x2,t2)>

o-1 (s 1 ) 7 X-2 (s 2 )IX-1 (t 1 )X- 2 (t 2 1

and so,	 from (3.6),	 <c(x 2 ,t 2 )c(x2 ,t 2 )> can be expressed as

<c(x2,t2)c(x2,t2)>

-
(y ,y	 Ix ,x )	 x

PX (s	 ),X (s	 )IX (t	 ),X_(t_)	 -1	 -2_1	 _2
<p(x l ,tdp(x2 ,t 2 )> 2	 -1	 «2	 2<F1s	 s i <t -2

2	 2

<S(y2,s2)S(y2,s2)>
x 	  dy2 dy 2 ds 2 ds 2 . (3.11)

<P(YI,s1)P(Y2,s2)>

Analogous relations also hold in phase space. For example

PX(t),U(t)IX(s),U(s) 4 Y.'9 g o ( Y.' Y ' s) =

X(s),11(s)1X(t),II(t)(Y'vl1C'12)
gp(x,u,t)

(3.12)

and so g. can be expressed in terms of the backwards probabilities. 	 A

similar result holds for pairs of particles.
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Some insight into the way particle-pairs move can be obtained by

considering a pair of particles with trajectories X / (t) and X 2 (t) as a

single entity with a trajectory 	 X(t)	 =	 (X1(t),X2(0)	 in	 a

six-dimensional space. In a single realisation the mass density of

contaminant particle-pairs in the six-dimensional space is given by

e(k,t) = c(x1 ,t)c(x 2 ,t) where St = (x1 ,x 2 ) while the mass density of

fluid particle-pairs is h(R,t) = p(x 1 ,t)p(x2 ,t). It follows from (3.3)

that, away from any sources, 8 evolves according to

aant . - V.(89) + v.(1(1)vcaro)

where U. (t) = (u.(xl,t),u.(x2,0) is the velocity field in the

six-dimensional space. Comparison with (3.3) shows that particle-pairs

are advected and diffused in the six-dimensional space in the same way

that single particles are advected and diffused in three dimensions.

Note that the six-dimensional density and velocity fields 13 and 0 are

consistent with each other in the sense that they satisfy a "mass

conservation" equation which is of the same form as (3.1):

aidat = -
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4. THEORETICAL ASPECTS OF ONE-PARTICLE RANDOM WALK MODELS.

In order to make use of the relations derived in §3.3, it is

necessary to have a model for the way particles (or pairs of particles)

move. In this chapter, models for the motion of single particles are

discussed and the way in which such models should be formulated is

investigated.

4.1 Introduction to One-particle Models.

For simplicity it will be assumed throughout this chapter that K =

0, so that fluid particles are simply advected by the local flow

velocity. In justification we note that it is generally thought that

molecular diffusion has little effect on ensemble mean concentrations

in high Reynolds number flows (Monin and Yaglom 1971, §10.2), although

no proof of this has yet been found. This assumption will be discussed

in more detail when we consider two-particle models in chapter 5. In

this introductory section 4.1 we will assume in addition that the flow

is of constant density.

One of the simplest ways of modelling the motion of single

particles in a turbulent flow is to assume that the turbulent motions

of the particles are similar to the random motions of Brownian

particles or molecules. With this assumption, the particle

trajectories evolve according to a stochastic differential equation of

the form (2.3) and, from (2.6) and (3.4), it can be shown that <c>

satisfies the equation (2.6) with the addition of a source term <S> on

the right hand side. Because <c> satisfies an advection-diffusion

equation, models based on (2.3) are equivalent to the eddy-diffusivity

models discussed in §1.3 (this is of course to be expected since both

types of model are based on analogies with molecular diffusion) and so

suffer from all the problems associated with such models. Some of

these problems are associated with the fact (discussed in §2.2) that,
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for stochastic differential equations of the form (2.3), the mean

square velocity is infinite and uncorrelated in time. While this is

not a bad approximation for * molecular diffusion or Brownian motion

(provided one is not interested in properties of particle motions over

very short time intervals), it is not so good for turbulent diffusion

which takes place by "continuous movements" (Taylor 1921), i.e. the

trajectories of the fluid elements have continuous derivatives.

These problems can be overcome by considering models in which the

position and velocity of a particle satisfy a coupled set of stochastic

differential equations:

dX1. =	 dt	 (4.1a)

dUi = ai(X(t),U(t),t) dt + bii(X(t),U(t),t) d. (4.1b)

In such a model the velocity of a particle changes continuously in

time, while the acceleration has infinite mean square value and is

uncorrelated in time. While this is still unphysical, it is not as

serious a problem as the uncorrelated velocity in models of the form

(2.3). This is because, in high Reynolds number flows, the particle

accelerations are very large (relative to integral length- and

time-scales) and are only significantly correlated over very short

times of the order of the Kolmogorov time-scale Tn (Bonin and Yaglom

1975, pp369-370). In the atmospheric surface layer, rn is typically

between a tenth and a hundredth of a second. As a result it seems

reasonable to hope that a model of the form (4.1) could give a good

description of the motion of particles, at least over time intervals in

excess of the Kolmogorov time-scale. (Note that, although the changes

in velocity over successive intervals At, Atwrn , are only weakly

correlated, they cannot be completely independent or the variance of

the particle velocities would grow indefinitely. Such weak

dependencies are represented in the model through the presence of the

term adt in (4.1b). This term results in a non-zero covariance between-

the acceleration at different times, even though, as a result of the
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infinite mean square acceleration, the correlation is zero.)

Alternative models for particle motions have been proposed which

overcome the worst failings of eddy-diffusivity models, but these tend

to be less successful and less physically plausible than those based on

(4.1). Examples include models in which the particle velocities can

take only a finite number of discrete values with the velocities

changing by discrete jumps at random times (Taylor 1921; Monin and

Yaglom 1971, §10.6) and models in which the velocities change by random

jumps but in which the range of possible velocities is continuous

(Smith 1984; Smith and Thomson 1984). The first of these types of

models has much in common with high-order closure models (van Stijn and

Nieuwstadt 1986).

The first model of the form (4.1) was proposed by Langevin (1908),

not in order to model turbulent diffusion, but in order to give a more

accurate description of Brownian motion than that given by the Wiener

process model described in §2.2 (as noted in §2.2, the Wiener process

model is not a good model for Brownian motion over very short time

intervals). For simplicity, consider the motion of a particle in one

direction only, say the x-direction (here, and also on occasion below,

x, y and z will be used instead of xl , x2 and x3 in order to simplify

notation). In Langevin's model, it is assumed that the velocity U of

the particle in this direction obeys the stochastic differential

equation

dU = -aU dt + b (K. (4.2)

Equation (4.2) is known as the Langevin equation, and the resulting

velocity process is an Uhlenbeck-Ornstein process, or, more precisely,

becomes one when scaled so that a = b = 1 (Feller 1971, p99). An

intuitive interpretation of (4.2) is that over a time interval dt the

particle loses a small fraction aU dt of its momentum to the

surrounding fluid and in return receives a random impulse b cK. It can
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easily be seen (see Appendix B) that U(t) is (or, more precisely, can

be if the distribution of the initial velocity U(0) is chosen

appropriately) a stationary Gaussian process with mean square value

Y2b 2 /a and correlation function R(t) = <U(s)U(s+t)>/<U(s)2> = exp(-at).

If (4.2) is to be a reasonable model for the motion of a particle in

homogeneous stationary turbulence, a and b should be chosen so that the

model velocity process has the correct 	 variance	 and	 integral

time-scale. This will ensure that the mean square displacement of

particles is correct for small and large times (see discussion of

Taylor's (1921) result in §1.1). Hence we must set b 2 . 2a2 /TI and a =

1/T where a2 is the Lagrangian velocity variance and T is the1	 1
Lagrangian integral time-scale 4R(t)dt. (Throughout this thesis, 'CI

will be used to denote the Lagrangian integral time-scale, while T will

be used to indicate some more general measure of the time-scale on

which particle velocities become decorrelated.) For this model, the

mean square displacement of particles can be obtained from Taylor's

result (1.1) and is equal to

t	 t

j1 a2 R(t 1 -t 2 ) dt i dt 2 = 2a2-q(exp(-t/TI)-1+t/TI).
0 0

In addition, because of the Gaussianity of the velocity process, the

distribution of the displacements is Gaussian (see Appendix B). It

follows that at large times the <c> distribution is the same as that

obtained from an eddy-diffusivity model with K = a 2 T I . The model (4.2)

for particle motions in homogeneous stationary turbulence has also been

discussed by Novikov (1963), Lin and Reid (1963), Jonas and Bartlett

(1972) and Durbin (1983), and is closely related to the ideas of

Obukhov (1959) and Smith (1968).

For several reasons the Langevin equation model is a plausible

model for the motion of a particle in homogeneous stationary turbulence

although, as with all turbulence models, a rigorous justification is

impossible, at least with the current state of our mathematical
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knowledge. Firstly the experimental evidence indicates that the

distribution of Eulerian velocities at any single given point is

Gaussian to quite high accuracy in homogeneous turbulence (Batchelor

1953, pp169-170; Monin and Yaglom 1971, p540). Because of Lumley's

result that Lagrangian and Eulerian velocity distributions are equal in

an incompressible homogeneous turbulent flow (see Monin and Yaglom

(1971, pp573-574)), it follows that the single time Lagrangian velocity 1

distributions are also Gaussian. Secondly, as noted above, the

particle accelerations in high Reynolds number turbulence are only

significantly correlated over very short time intervals. Thirdly, the

exponential correlation function, although almost certainly not exact,

has many features which are qualitatively correct (Tennekes 1979) such

as the correct inertial subrange form 1-t/T 1 i-o(t) at small times (Monin

and Yaglom 1975, pp358-359).

For homogeneous stationary turbulence, Taylor's result (1.1)

provides a solid basis for understanding the evolution of <c>, and

random walk models can add only a little to our knowledge. Hence, if

random walk models are to make a useful contribution to our

understanding, it is important that they can be applied to more complex

flows in which the flow properties are non-uniform in space or time

(there is of course no equivalent of Taylor's result for general

flows). Many of the early attempts to do this were based on an

equation of the same form as the Langevin equation (4.2), but with a

and b being made functions of position and time in order to reflect the

fact that the turbulence properties are not uniform.	 More precisely,

%b 2 /a was set equal to the local Eulerian (i.e. fixed point) velocity

variance a2 (x), while 1/a was set equal to an estimate T(x) of the

"local	 Lagrangian time-scale", i.e. the time-scale on which the

velocities of the particles near x become decorrelated. In addition

some of these models dealt with the problem of dispersion in more than

one dimension and took account of the presence of a mean velocity in
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the flow, possibly varying with position. Among such models are those

considered by Hall (1975), Reid (1979), Wilson, Thurtell and Kidd

(1981a), Ley (1982) and Legg (1983).

In many of the situations to which these models were applied,

results were obtained which showed quite good agreement, both

qualitatively and quantitatively, with experimental data. This is in 1

spite of the fact that there is no justification for simply setting a

and b equal to local values. For example, the Eulerian velocity

variance a2 at a given point is not, in general, equal to the velocity

variance of particles of contaminant passing the point in question.

This is because the concentration of contaminant particles at the point

will vary from realisation to realisation and so the set of contaminant

particles passing the given point is not a representative sample of all

fluid particles passing the point. It follows that the velocities of

these particles will not necessarily be a representative sample of the

velocities of all particles passing the point and so will not be a

representative sample of Eulerian velocities at the point. (This line

of reasoning is due in essence to Batchelor (1964), who pointed out

that the Eulerian mean velocity is not in general equal to the mean

velocity of contaminant particles.) Also, the velocity of a particle

moving according to (4.2) depends on the values of a and b at all

points along its path. Hence there is no reason to expect the velocity

variance of model particles passing a fixed point to equal Y2b2/a.

However in situations where the Eulerian velocity variance varies

significantly with position, the results obtained were far from

satisfactory, with the particles accumulating unphysically in regions

where U2 was small (e.g. Janicke (1983)). The reason for this can be

seen by considering a situation where the profile of <c> is initially

uniform. Consider a particle moving according to (4.2) with a and b

chosen as indicated above. The velocity of such a particle depends on
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the values of a 2 at all points along its path, the magnitude of the

velocity being in general larger the larger 02 is. It follows that the

velocity of particles arriving at a given point from a region where a2

is large will be moving faster than those arriving from a region where

a2 is small.	 Hence there will be a net flux of particles into the

region where a2 is small, leading to a non-uniform <c> profile.

A large number of models have been tried in attempting to overcome

this problem (Wilson, Thurtell and Kidd 1981b; Legg and Raupach 1982;

Janicke 1983; Runca, Bonino and Posch 1983; Ley and Thomson 1983;

Wilson, Legg and Thomson 1983; Thomson 1984; van Dop, Nieuwstadt and

Hunt 1985). It does not seem appropriate to review all of these

approaches in detail here - instead we will outline the main ideas

involved. Legg and Raupach (1982), Runca et al (1983) and Ley and

Thomson (1983) noticed that, when the velocity variance varies with

position, the particles passing through a particular point have a

non-zero mean acceleration even if the mean Eulerian velocity is zero

everywhere. For example, suppose the mean velocity is zero and the

turbulence is stationary and homogeneous in the y- and z-directions.

Now consider the motion of particles in the x-direction and suppose the

fixed point variance of the x-component of velocity (to be denoted by

a2 ) varies with x. Then the mean acceleration in the x-direction of

particles passing a given point is equal to

<Du le /Dt> = 00. /20 + <V.(u e u!)> . aa2/ax

(here u l indicates the first component of the Eulerian velocity u	 ande

we have used the fact that the flow is of constant density, i.e. V•u. =

0). Legg and Raupach (1982), Runca et al (1983) and Ley and Thomson

(1983) added this mean acceleration to the right hand side of the

Langevin equation to obtain

dU = (-U/T + ac 2 /3x) dt + (2a2 /T) 112 dC.

Although this model reduces the extent of particle accumulation, it

does not always remove it entirely, especially if the variation of Cr2
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is rapid (Wilson et al 1983).

Concurrently with these ideas, a number of papers appeared in

which attempts were made to force the random walk model to yield a

uniform steady state <c> profile by modifying the Langevin equation

appropriately (Wilson et al 1981b; Janicke 1983; Thomson 1984).

Janicke (1983) and Thomson (1984) in fact required somewhat stronger

conditions to be satisfied, with the strongest condition (that proposed

by Thomson (1984)) being that, if g c = gp at some time, then g c should

remain equal to g p at all subsequent times (g p being assumed known),

i.e. if the particles are well-mixed in phase space they should remain

so. We will call this the well-mixed condition. Somewhat surprisingly

this approach led to the use of a non-zero mean acceleration equal to

that used by Legg and Raupach. The approach also indicated the need

for a number of more subtle modifications of the Langevin equation,

although it was not clear what form these modifications should take.

The suggestions of Thomson (1984) included changing the moments of cg

and, following Wilson et al (1981b), using a Langevin equation for U/a

instead of for U. The need for such modifications was also

demonstrated by van Dop et al (1985) by considering <D(u 1.3 ) 2 /Dt> and

higher order quantities in the same way that Legg and Raupach had

considered <Du l /Dt>.	 Again it is somewhat surprising that the twoe

different approaches (i.e. insisting on a well-mixed steady state and

considering the small time behaviour of the moments of velocity) lead

to similar results.

Although in many situations the approaches of Thomson (1984) and

van Dop et al (1985) (see also Sawford (1986)) yield models which show

little sign of an unnatural accumulation of particles, there are still

some unsatisfactory features in these approaches. In particular,

although these approaches yield a number of constraints on the form of

the model, there are situations in which no model (of the type
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considered by Thomson or van Dop et al) satisfies the constraints. For

example, the models of Thomson (1984) and van Dop et al (1985)

sometimes require the random term in the equation for U to have

negative variance (de Baas et al 1986)! The reason for these problems

is that the models considered were the wrong sort of generalisations of

the Langevin equation. For example, in Thomson (1984), an attempt was

made to construct a process which is more general than that given by

(4.2) but which still looks locally like a process with independent

increments, by generalising the random forcing dC in (4.2) and allowing

it to have a non-Gaussian distribution. This is inadmissible because

of the result quoted in §2.2 - if a process has continuous sample paths

and looks locally like a process with independent increments, then the

infinitesimal increments must be Gaussian. As a result the model

considered by Thomson (1984) is, in general, either non-existent (in

the sense that no random process exists which has increments cK with

the required moments) or has discontinuous trajectories. Consider for

example an inhomogeneous flow in which the fixed point velocity

distribution is Gaussian. 	 For this situation the model in question

requires the first three moments of the random increment dC to be 0(dt)

with higher moments o(dt).	 Now any random variable X must satisfy

(X 3 )2 X2 X4 (Feller 1971, p152). Hence there is no random forcing

with the required moments. As mentioned above, the situation can be

even worse in some cases, with the model requiring increments with

negative variance. Of course in some cases such models can be

implemented in an approximate form, and this has been done with

successful results by a number of authors (Thomson 1984; de Baas et al

1986; Sawford and Guest 1987; Briere 1987). However this approach is

rather unsatisfactory mathematically and it is difficult to estimate

theoretically the effect of such approximations.
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In order to overcome these problems we will consider general

models of the form (4.1) and investigate in §4.2 the constraints on a

and b which are needed to ensure that the model satisfies the-

well-mixed	 condition.	 It	 turns out that the model (4.1) is

sufficiently general to ensure that satisfying the well-mixed condition

is always possible. We will also consider various other constraints

which are satisfied in reality and which we would like random walk

models to obey. Firstly there is the condition (discussed above) that

the velocity distribution of particles from a point source should

evolve correctly at small times (van Dop et al 1985). Secondly the

model should be consistent with the Eulerian equations (3.1), (3.2) and

(3.3) in the sense discussed by van Dop et al (1985) (complete

consistency with these equations would imply the model is exact, which

is rather too much to ask for!). Thirdly, the model should satisfy the

exact result (3.12) which relates the forward and backward transition

probabilities. This type of constraint was originally put forward by

Egbert and Baker (1984) in the context of two-particle models, although

in a somewhat weaker form (Egbert and Baker only considered the

two-particle equivalent of (3.8), i.e. (3.10), and not the two-particle

equivalent of (3.12)). Finally we will consider the constraint

proposed by Durbin (1983, 1984), who suggested that random walk models

should be designed so that they reduce to an eddy-diffusivity model as

the Lagrangian time-scale tends to zero. It will be shown that the

first three of these conditions actually provide the same constraints

on the form of the model as the well-mixed condition, explaining the

somewhat surprising similarity, noted above, between models which were

designed to satisfy the well-mixed condition and models designed to

give the correct small time behaviour. It will also be shown that

Durbin's (1983, 1984) condition is strictly weaker. Although these

conditions provide strong constraints on the form of the model, they do

not determine it completely. Various ways of reducing the remaining
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indeterminacy are discussed in §4.3.

4.2 Some Criteria for the Selection of Random Valk Models.

(i) Some properties of the model (4.1).

Before discussing the various constraints on the formulation of

random walk models described above, it is useful to summarize the 1

results on stochastic differential equations obtained in §2.3, as they

apply to the system (4.1). In discussing physical interpretations of

(2.3) we concentrated, for obvious reasons, on the case where X(t) is a

three-dimensional vector. However, the analysis in §2.3 applies quite

generally to processes in any finite number of dimensions. Now the

system (4.1) can be regarded as a six-dimensional version, and hence a

special case, of (2.3), and so the results obtained in §2.3 can be

applied to (4.1). It follows that n
-X(t),U(t)IX(s),U(s) satisfies the

forward and backward Kolmogorov equations appropriate to the system

(4.1), namely

a a2
(u i p) - a	 (ai(x,u,t)p) + 	  (Bij(x,u,t)p)	 (4.3)

auiauj	
,ax i 	aui

and

2n
(4.4)2E = - v i 2P- - a i (y,v, ․ ) 22- - B	 nrij (y,v, ․ ) -=----

as
ayi	 - -	 avi	 aviavj,

for t:s. Here Bij = M ik b jk as in §2.3. Note that although B does not

determine b, knowledge of a and B is sufficient to determine all-	 -	 _

statistics of the motion of the model particles. Also, away from any

sources of contaminant, gc (x,u,t) satisfies (4.3), expressing the fact

that the flux of contaminant in the x i -direction, u i gc , and that in the

u 1 -direction, a i gc - a(B ij gc )/au j , together balance the rate of change

of the phase space density gc . Equation (4.3) can be written in the

form

at —

at — —	 i
ax-

( ui P) + *x(p) (4.5)
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where,forfficedx. ,Cis a linear operator which maps p (considered as

afunctionofOtoanewfundtionC(p) of u. For many of the

arguments given below it is only assumed that the evolution equations

for p and gc have the form (4.5). A consequence of this is that many

of the results obtained below on the relationships between the

different constraints are applicable to more general models than (4.1),

such as the models with non-Gaussian forcing discussed above (when they

exist) and the models of the type presented by Smith (1984) (see also

Smith and Thomson (1984)). In Smith's model the particle velocities do

not change continuously but in discrete jumps which occur at random

times.

As noted in §2.3, if f(x,u,t) is a function of x, u and t, then

the differential of f(X(t),U(t),t) is given, not by the chain rule, but

by It6's formula. For the model (4.1), this takes the form

df(X(t),U(t),t) =

+ u i 3f . + ai(X(t),U(t),t) 21- + Bij(X(t),U(t),t)  32f  )dt +
ax i	 aui	 aulaui

+ bij(X(t),U(t),t) If- ogi .	 ( 4.6)
aui

Some of the arguments which follow are more easily expressed in

terms of the characteristic functions (Feller 1971, chapter 15) of gc

and g p than in terms of gc and gp themselves. These characteristic

functions will be denoted by -, i.e. kc (x,0,t) = igc(x,u,t)exp(iu.0)du

and kp (x,0,t) = fg p (x,u,t)exp(iu.0)du.	 Note	 that,	 using	 the

definitions of gc and gp given in §3.3, kc and it , can be expressed as

kc	 <c exp(iue .0)> and kp =	 exp(iue.0)>.	 In	 terms	 of

characteristic	 functions	 the evolution equation for gc can be

expressed as

akc	
a2kc

=	
axini	

`.11(k. ) (4.7)
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where	 maps k. to f1i(g.)exp(iu.0)du.

In the following U. will be used to denote the density-weighted

mean Eulerian velocity while V . will denote the density-weighted

covariance matrix of the velocity components at a fixed point, i.e. U.

= <pu. >/<p> and V ie j = < p(uit-U!)(u!-U!)>/<p>. In isotropic turbulence,

a2 will be used to indicate the (density-weighted) variance of any one I

component of the velocity at a fixed point. We will often have cause

to consider situations where the density-weighted velocity distribution

at any point is Gaussian. In such situations, which we will call

Gaussian turbulence, g p takes the form

<p> 
exp{-1/2(ui-U!)(V-1)"(0-U!)}.g p -

(2n) 3/2 (det V)"2

There are a number of situations (e.g. in the atmospheric boundary

layer) where the flow is homogeneous (or approximately homogeneous) in

directions parallel to a certain plane. Often the main interest is

then in dispersion in the direction perpendicular to the plane, which

will be taken to be the x-direction. In such situations, it seems

reasonable to assume that a one-dimensional model in which X l (t) and

Ul (t) evolve according to a coupled pair of stochastic differential

equations will provide a reasonable model of the dispersion. This

assumption is in the same spirit as the assumption	 that	 the

three-dimensional 	 displacement	 and velocity can be modelled by

equations of the form (4.1). However, as an assumption about the

evolution of X l (t) and U l (t) it is slightly stronger, since it implies

that a l and Bll in (4.1) do not depend on U 2 or U 3 . ( Of course it also

implies that a l and Bll do not depend on X 2 or X3 , but this follows

from the assumed homogeneity in the x 2 - and x3 -directions.) In such

situations, as in the discussion of the Langevin equation in §4.1,

quantities such as Xl , Ul , xl and ul will be written as scalar

quantities X, U, x and u to reflect the fact that we are considering a
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one-dimensional situation and the equivalents of a, b and B for our

pair of scalar stochastic differential equations will be written as a,

b and B. Also a2 will be used to indicate the (density-weighted)

variance of the x-component of velocity at a fixed point. u e will

however always be written as a vector as a reminder of the fact that

the turbulent velocity field is always three-dimensional even if the

flow statistics depend on one coordinate only. In addition, gp(x,u,t)

and	 gc (x,u,t)	 will	 be	 used	 to	 denote	 the	 density-	 and

concentration-weighted p.d.f.s of O. , averaged or integrated as

appropriate in the x 2 - and x 3 -directions. g p (x,u,t) and gc (x,u,t) can

also be regarded as the densities of the distributions of X(t) and U(t)

for fluid and contaminant particles respectively.

For some of the arguments which follow it is necessary to make a

mild assumption about the behaviour of gc and g p as lu14. Consider an

expression consisting of g c , g p or a derivative of g c or gp , multiplied

by a number of terms, each term being a component of u, a, B or a

	

derivative of a or B. It is assumed that gc and g	 tend to zero-	 _	 P

sufficiently rapidly as luli w so that the integral of the expression

over u-space exists.

(ii) The well-mixed condition.

The well-mixed condition requires that, if the initial phase space

distribution of contaminant is proportional to the distribution of

fluid, then it should remain so (provided of course that there are no

sources of contaminant subsequent to the initial time). In

mathematical terms this means that g p should satisfy (4.3) when

substituted for p. This leads to the condition

a i 	 a
g . 

P
30

( B i g) + Oi	(4.8)

where 4 i is a function of x, u and t which satisfies
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Note that, from (4.9) and the assumptions about g p discussed at the end

of §4.2(1), it follows that the integral over u-space of a component of

4' times various components of u, a, B and their derivatives must exist.

In particular t40 as 1u14 c0 . It is always possible to choose a, B and cf) I

to satisfy these equations. For example, 4' can be chosen to satisfy

(4.9), B chosen to be any covariance matrix, and then a i set equal to

the right hand side of (4.8) divided by g p . Hence a random walk model

of the form (4.1) can always be made to satisfy the well-mixed

condition, no matter what form g p takes. In terms of ZP, the well-mixed

condition can be expressed as

akp	 a2g.
Op

T— =*x(g)*
axiael	

p
(4.10)

(iii) The small time behaviour of the velocity

distribution of particles.

Consider now the behaviour of the velocity distribution of

particles from an instantaneous point source located at (x . ,t . ). The

p.d.f. of the velocity of these particles will be denoted by h(u,t).

Nov g c is the mass density of contaminant particles in phase space.

Hence g c (x,u,t)/1<c(x,t)>dx is the p.d.f. of the position and velocity

of contaminant particles and so h(u,t) = fgc(x,u,t)dx/f<c(x,t)>dx.

Integrating (4.7) with respect to x and noting that f<c(x,t)>dx is

independent of t yields

(f<c>dx)t = ITI/x(k)dx

where 1(8,t) denotes fh(u,t)exp(iu.0)du. At t = t . , kc is zero except

at x = x . , and so -4/.. can be replaced by	 . Hence, using the

linearity of
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6
aE)	 -
) =	 6(0,ts»,
t	 -s

the subscript t s indicating that the derivative is evaluated at time

t. Initially h is identical to the velocity distribution of fluid

particles at the source and so 1(0,t s ) = kp(x5,0,ts)/<p(xs,ts)>.

Hence, using again the linearity of
d.r.ts

ZI) (E (x ,e,t ))X P 	 •-•	 s

t 
- 

-s
(4.11)

<p(xs,ts)>

At small times however we can calculate the true behaviour of the

velocity distribution of contaminant particles. From (3.1), (3.2) and

(3.3) it follows that

a . a2
(c exp(iue .0))

- 1	 axiaei

and

a a2

ata[
(p exp(iu	 .0))—e-	 1	 •

ax
i
 ael

Taking the ensemble average yields

Du
i c exp(iu .e)

e'Dt

Du
i p exp(iu 

e 
.0) e.-.

—	 Dt

and

I

a	 .	 Dua2	 j ...	 . —e
-5T - 1 	 .	 . g. = 1 <c exp(iue .2 ) 2.51-->

ax' a01

[	

uD
a	 a2 	]
TT — i_g p = i ‹ p eXp011	

—e
e .2) 2./7->.

ax'a0'

(4.12)

(4.13)

By integrating (4.12) with respect to x it can be seen that

Du
(i<c>dx)(-6) = i <Scdx exp(i.ue 

e) e 'bilt> (x-	 at	 s,ts).ts

However the amount of material released in any realisation (i.e. fcdx)

is proportional to the value of p at the source (see §3.3 and Appendix

A) and so, using (4.13), we obtain

Ea-arit) =	
1 	

(ag

2-
a g

P	 .	 P  ]1 	 .	 .	 .)
t	 <p(x s ,td> at	

(414
3)( 1 301s	 (xs,t).

S
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Comparing (4.11) and (4.14) shows that for the velocity distribution of

particles from a point source to behave correctly at small times, it is

necessary and sufficient that

ag,	 .	a 2 g,	 .... 	 _

at = 1	 •	 • 
+ *

x
(g )

ax l ael 	— P

at the source. Hence we see that requiring the correct small time

behaviour of the velocity distribution of particles from a point source 
1

is equivalent to the well-mixed condition (4.10).

(iv) The requirement of compatibility with the Eulerian

equations, and the relation between random walk

and high-order closure models.

As noted in (iii) above, it is possible to derive equations for kc

and k p ( namely (4.12) and (4.13)) from the fundamental equations (3.1),

(3.2) and (3.3). Unfortunately, there is no random walk model of the

form (4.1) for which the evolution equation (4.7) takes the form

(4.12). This is because (4.12) contains terms involving Du /Dt which

cannot in general be expressed exactly in terms of kc and k p . However

a random walk model can produce an evolution equation of the same form

as (4.12) with the right hand side of (4.12) being parametrized in

terms of kc and k p . Comparing (4.7) and (4.12) shows that, for a

random walk model of the form (4.1), the parametrization of the right

hand side of (4.12) is given by

Du-e
i <c exp(iu .0) e 'Tt--> = *x(c).

(4.15)

Although the parametrizations corresponding to some models will clearly

be better than those corresponding to others, there is only one obvious

constraint which the exact equations (4.12) and (4.13) impose on the

parametrization. If c . p in each realisation, then kc . k p and the

right hand side of (4.12) equals the left hand side of (4.13). If the

parametrization of the right hand side of (4.12) is also to have this
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property, then

a	 I.	 ,..,

[-a-i. - . 

ax
1 

a2	

g = lP (g p )	 (4.16)
i a0'	 P	 ).S

must be satisfied. This is simply the well-mixed condition. If we

regard the model as being "compatible" with the Eulerian equations

whenever the parametrization satisfies (4.16), then the model is

compatible with the Eulerian equations if and only if the well-mixed

condition is satisfied. Of course the possibility that (4.12) and

(4.13) imply other more subtle constraints cannot be ruled out - to be

completely consistent with (4.12) and (4.13) there must exist an

ensemble of velocity and density fields satisfying (3.1) for which the

model (4.1) is exact - see §4.2(vii) below.

The equations (3.1), (3.2) and (3.3) give rise to an infinite

sequence of equations for the evolution of the moments <cut...u:> and

<pui....u:>. These equations contain the same information that we have

expressed more compactly in equations (4.12) and (4.13) by using

characteristic functions. By differentiating (4.12) successively with

respect to 0i ,...,0m , and setting 0 equal to zero, we can obtain the

equation for <cu!...u:>. The left hand side of this equation takes the

form

a
7— <.. .> + a	 <cui...umun>
0 t	 e	 e	 e	 e e

axn

while the right hand side contains the terms involving Due /Dt• In high

order closure models of turbulent dispersion (e.g. Deardorff (1978))

the first few equations in this infinite sequence are used with

suitable parametrizations for the unknown terms. As in random walk

models, it is necessary in such models to parametrize the terms

involving Due /Dt. In high-order closure models however, some terms of

the form a<cu i ...u n >mu/axn have also to be parametrized, in order toe	 e e

obtain a closed set of equations. This is a consequence of the fact

that high-order closure models describe only a finite number of the low
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order concentration-weighted velocity moments <cu!...u:> instead of the

entire concentration-weighted velocity p.d.f. g c , and so need to

parametrize some effects which are represented explicitly in random

walk models.

By expressing	 in terms of a and B and using (4.15), it can be

seen that the parametrization (4.15) can be expressed as

Du .	 a2
ai <c exp(iu .0) 0.—

D
-->	 -	 (aigc) + 	  (Bilgc) exp(iu.0)du

 if
« t aui	 auiauj

i0i <cai (x,u e ,t)exp(iue .0)> - 8 i 0 j <cB 1j (x,ue ,t)exp(iu .0)> (4.17)

By noting that i <c exp(iu. .0) O.Du e /Dt> is equal to <c> times the

average value of d(exp(iu(t).0))/dt for particles of tracer at x, It6's

formula for (4.1) can be used to derive (4.17) directly. The first two

moments of this parametrization are given by

<c(Dui../DO> = <cai>

<c(u:.(Du!/Dt) + u!(Du it/Dt))> = <c(u ie-a j + u!ai )> + 2<cBij>.

Now, if the model does satisfy the condition (4.16), it follows that

the two equations above are also satisfied with c replaced by p or,

neglecting variations in p, by unity. Hence, if we neglect variations

in p, the first two moments of the parametrization can be expressed as

<c'(Du ielDt)'> = <c'ai'>
	

(4.18a)

<c1(u1"(Du!/Dt)' + u!'(Duje-/D0')> =

= <C(u!'a ji + u!'ai ')> + 2<c'Bij'>
	 (4.18b)

where a prime denotes the departure of a quantity from its ensemble

average.	 Examples of the parametrizations which arise in specific

cases will be discussed in §4.4 and related to the parametrizations

occurring in high order closure models.
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(v) Forward and Reverse Dispersion.

pIt was shown in §3.3 that, in reality, PX(t),U(t)IX(s),U(s) and g

satisfy

Px(t), u (t ) l x ( s ), u (s ) °.s4Y,Y) g p ( y ,v, ․ ) .	
(4.19)

Px(s),u(s)lx(t),u(t) (Y ' YI 'D g p (ls ,u,t).

I
For t>s

' PX(t) U(t)IX(s) U(s)
(x,uly,v) can be calculated from the model

(4.1), it being simply the p.d.f. of the positions and velocities of

fluid particles which commence at (y,v) at time s. In principle, the
..

quantity D	 (y,v1x,u) could also be calculated from-	 .X(s),U(s)IX(t),U(t)

the model (again for t>s) by considering all trajectories resulting

from a well-mixed distribution of particles (i.e. a distribution with

phase space density function proportional to g) at time s, and then
P

noting the position and velocity at time s of those trajectories which

pass through (x,u) at time t. It seems reasonable to propose that the

values of p obtained in this way should satisfy (4.19) if the model is

to be acceptable. In fact it is easy to see that this requirement is

equivalent to the well-mixed condition. Suppose the well-mixed

condition is satisfied and consider all model trajectories resulting

from a well-mixed distribution of particles at time s. Then the

argument given in §3.3 which leads to (4.19) applies equally well to

the model trajectories and so (4.19) is satisfied. Conversely, if

(4.19) is satisfied, the integral of the left hand side of (4.19) with

respect to y and v is proportional to the phase space density of tracer_..

at time t resulting from a well-mixed distribution at time s, and the

integral of the right hand side is equal to g p (x,u,t). Hence the

well-mixed condition is satisfied.

As an aside from the main theme of this section (namely the

investigation and comparison of various exact results which we would

like random walk models to satisfy), it is of some interest to see if

there is a way of calculating D
'-' 'X(S),U(S)IX(t),U(t)

(y,v_lx,u) for t>s



For this to be so it is

necessary that Px,(c),u,(t')lx,(s,),u,(s,)01Y,y) should satisfy

22_ _ _ a	 (u' i p) - a II_ 	 a i ]p) + 	 ,2	 . (Bijp)
at , -	 iax	 3u'1 gp	 311'13u"
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from the model that is simpler than that given above. For example,

consider a situation with an extended source distribution S(x) and

suppose that we are only interested in the value of <c> at a particular

space-time point.	 In such a situation it is, as noted in §3.3,

wasteful to calculate many forward trajectories, only a few of which

will pass through the point.	 The obvious approach is to try to

simulate the motion of particles backwards in time. In order to do

this, we need a random walk model of the backwards trajectories of

particles which will yield the same results as the forwards model.

However it is not immediately obvious how such a model should be

formulated. We will now investigate this.

Let us set t' = -t and u'= -u (for this section only) so that t'_	 -

increases as we go back in time and denote the stochastic differential

equation which we hope will describe the backward trajectories by

dX' = U'dt'	 (4.20a)

dU' i = a'i(X'W),U'W),t')dt' + b'ij(X1(t'),U'(t'),t')cW. (4.20b)

To simplify notation let A i (x,u,t) = (1/g p )a(Bij gd/au j . Then a = A +

0/g p .	 Using (4.4), (4.8), (4.9) and (4.19) it can be seen that

PX(s),U(s)1X(t),U(t)(Y.'Yl?E'll) satisfies

2E	 - a	 (v i p)	 a ( (.i - Ai )p) - a2	 (Bijp)
as

ayi	 Zvi gp	 aviavj

for t>s, where 0, g p , A and B are all evaluated at (y,v, ․ ). The

forward transition density for our model (4.20), which is defined for

t i :s 1 only, will be denoted by

PX1(t1),W(C)IX'(s1),U'(s') - - - -

We want this to equal the reverse transition density 	 function

for t'›s', where (1) , g p , a and B are evaluated at (x,-u',-t'). 	 If the-
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model (4.20) is to give rise to this forward equation, then we must

have

a'(x,u',t') = - A + 0/g
-	 - p

12'(x,u',t') = b
_

with t, g p , A and b evaluated at (x,-u',-t'). Note that a'(x,u',C) is

not simply equal to a(x,-u',-t') as it would be if we were trying to- -

formulate a backwards version of the ordinary differential equation

dU/dt = a.	 Instead the two parts of a (i.e. a and $/g ) transform-	 A. p

differently under time reversal, with & changing its sign. The above

results show how a model for the reverse trajectories should be

formulated in order to ensure that the predictions for <c> and g c are

the same as would result from a given model for the forward

trajectories.

(vi) The small time-scale limit.

Durbin (1983, 1984) posed the requirement that a random walk model

should reduce to an eddy-diffusivity model as the Lagrangian

time-scale, -t, tends to zero. In this section we investigate this

requirement and its relation to the well-mixed condition.

Suppose the shortest time after the release of material at which

we are interested in the dispersion is T and that the time-scale on

which conditions change as viewed by a particle (due to inhomogeneity

or unsteadiness in the turbulence) is TH.	 In investigating the

behaviour of the model for small T, it is convenient to

non-dimensionalise quantities as follows. Let us non-dimensionalise

all times with respect to min(T,TH ) and all lengths with respect to

some measure of the spatial extent of the <c> field which results from

an instantaneous point source at a time of min(T,TH ) after the release.

To avoid unnecessary notational complexity, a non-dimensional quantity

will be denoted by the same symbol as its dimensional equivalent. 	 In

justification, we note that the non-dimensional quantities are simply
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the ordinary quantities measured in particular units.

Let us now assume that the non-dimensional is small. The

non-dimensional turbulent energy must be large to make up for the small

time-scale (otherwise the non-dimensional spatial extent of the <c>

field at time min(T,i ii ) will not be of order unity) and so we put g p =

Of(x,v,t) where v = s(u - U ) and s is a small parameter. It is not I
—e

yet clear how a and B scale. However, because the particle velocities-

are large and rapidly changing, it is clear that B must be large.	 In

anticipation of the result we put B = p/c4 and assume that t is of

order s° or smaller; if B is not of order E 	 f is larger than s° it-

can be shown, by repeating the analysis below with different

assumptions about the size of B and f, that the non-dimensional spatial

extent of the <c> field is not of order unity at non-dimensional times

of order unity. Of course f needs to be no larger than 0(s) in order

to satisfy (4.9) and in one-dimensional models it cannot be larger than

this. The scaling for B can be made plausible by considering diffusion

in one dimension in homogeneous stationary Gaussian turbulence with no

mean flow. (4.1) can then take the form of the Langevin equation (4.2)

for which the non-dimensional diffusivity at times twr equals a4 /B (a

and B here being non-dimensionalised quantities). s has been defined

so that a2 = 0(s-2 ) and so B must be of order E the

non-dimensional diffusivity is to be of order unity (which it must be

if the non-dimensional extent of the <c> field is to be of order unity

at non-dimensional times of order unity).

Assuming the model satisfies the well-mixed condition, (4.3),

(4.8) and (4.9) yield

agc 	 Li	 TT .] lagc
at =

axi

agc au il „
e	 [13i f 3	 rc))

avi axi e2 avi	 3vj If
(4.21)

1 a	 figc]

E 2 av i	 f
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with t satisfying

aoi	i af	 2 af	 2ui af	 2 i af auje= — CV 	 — + e V	 +at	 e
av i 	axi	 ax i	 avj axi

aui

[	

auie
+ £ 3 -3-L- — + LP --

av i 	at	
e	 •
axi.

From §4.2(ii), it is clear that 040 faster than any power of Ivl as

Ivlica .	 Also, because there is no flux of particles through the phase

space boundary at lul = or, (or alternatively from the assumptions about

gc stated at the end of §4.2(0) it follows that the integral of a i gc -

B(B ij gc )/Bu i over the surface at luI = co is zero. Using (4.8), this

becomes

where dS is an element of the surface at Iv' = w .	 Also, on physical-

grounds, we assume that g c /f remains bounded as Iv1403.

The reasoning which follows is similar to that used by Schuss

(1980, p134). Let us pose asymptotic expansions for g and 0, namely

g= go + egi + e 2 g2 +	 0 . (Po + 4+ 002 +	 .

The leading order ( e-2 ) terms in (4.21) yield

a	

[°iif a	 ri)	
(1)Ogo	 n

E--- =]f	 Bvi	 f

with g o /f bounded and

J	
a	 go 	 ooigo

[0i jf --7	— ----idS i = 0.
3v) f	 f

Because 30/Bv i = 0, this has a solution g o = C(x,t)f; indeed all

solutions are of this form. The order e-1 terms in (4.21) yield

J
	

a	 igc l	 Oigc
- ----)dS i =0

Bv j f	 f

a	 foijf a	 [gill

av i 	avj 4 ))	 3v i	 f	 Bxi

with g i /f bounded and

g i
j [W i t :vj (i-) - f ]dS- = 0.

a

[

0g	 ac0	 = vif
(4.22)

(4.23)
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In order for (4.22) and (4.23) to have a solution it is necessary that

fv 1 f(8C/3x i )dv = 0 which is automatically satisfied. The order c°

equation becomes

@	

[f31 jf a r2]]	
a	 '42] =f (ac .4_ ui ac ]

_
at	 e	 •

aV i 	 80 f	 avi	 f	 8x'

+ Vi --- + --- ----

ag i 	 a	 [4'11

ax i 	av i 	f

with g 2 /f bounded and

a	 ig21	 +(i)g21

	

1 [13" f avi lt )	 f )
dS i = 0.

For these equation to have a solution it is necessary that

	

[ac + ui ac	 a] f
f dv +	 . .1 v 1 g 1 dv = 03t	 e	 •

8x'	 ax"
(4.24)

where g 1 is a solution of (4.22) and (4.23). By noting that f f dv =

<p>, a<p>/at + 8(<p>U!)/8x1 . 0 and C 8x <c>/<p> to leading order in c,

(4.24) yields

a<c>
+ 

a__ 
(<c>U!) =

a	 a	 [<c>]]
[<p>K i j-

at
ax i 	axi	 axi < P>

where Ku j = f(u i -U!) G j du/fg p du and Gk is a solution of

a
 (	

+it Gk
gp a	 (c k	 a

Bu i auj i ll - aui Eid = (uk - It)gp

with G k /g bounded and
P

3	 nk	 (P(i)Gk
s"	 -	 dSi = O.

I
	

au
[B lJ g p --7 7.—	 gp

]	 6P

(Although G is not unique, all solutions differ by g p times a vector

function of x and t which does not affect the value of K.) Hence we see-	 -

that the model reduces to an eddy-diffusivity model. After some

algebra it can be shown that K is positive definite and, if 4,0 = 0,

symmetric.
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Unfortunately, it is not always possible	 to	 calculate	 K-

analytically.	 However,	 for	 the	 class	 of	 models	 in which

(1/g p )(a(B 1j g p )/au J + 4) is a linear function of u - U . , -LiJ ( uj - U!)

say, (i.e. those models for which a is a linear function of u - U e to—

leading order in c), K can be calculated and is given by K ij =

( L-1 ) 1k Vkj .	 This class of models includes most models proposed to

date. K can also be found easily in one-dimensional models.	 In such

models (Po is automatically zero and K 	 f(q 2 /Bg . )du/fg p du where q =

- Udg p (x,u',Odu'. In Gaussian turbulence, this reduces to

f(a4 g /B)du/fg du. These expressions show how the model's diffusivity

is related to a and B. If we know from other arguments what value the

diffusivity should take, then these results can be used to help choose

the values of a and B. This is discussed further in §4.3(iii) below.

We have seen that, if the model satisfies the well-mixed

condition, it reduces to an eddy-diffusivity model as the Lagrangian

time-scale tends to zero. Now the limit T 4 0 is, when rescaled,

equivalent	 to min(t,TH ) 4 ap•
	 Hence, in homogeneous stationary

turbulence (where TH = m), the model becomes an eddy-diffusivity model

as t 4 co . Also, if the inhomogeneity or non-stationarity is weak

(i.e. THwc), then the model is approximately an eddy-diffusivity model

for twr. However, if the inhomogeneity or non-stationarity is stronger

(i.e. TH 'L), then it is not clear whether the model becomes an

eddy-diffusivity model at large times or indeed whether it should.

If (4.1) reduces to an eddy-diffusivity model as the time-scale

tends to zero, then the model need not satisfy the well-mixed

condition. Hence we see that requiring the model to reduce to an

eddy-diffusivity model as T 4 0 is a weaker condition than the

well-mixed condition. Durbin (1984) suggested that, as well as

reducing to an eddy-diffusivity model as T 4 0, a random walk model

should give the correct variance for the particle velocities in
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homogeneous stationary turbulence. However this is insufficient to

ensure the well-mixed condition is satisfied and, strictly speaking,

implies nothing about the behaviour of the model in inhomogeneous or

non-stationary conditions.

(vii) Discussion.

Five constraints which it is desirable for random walk models to

satisfy have been discussed. It has been shown that four out of the

five constraints are equivalent and that the fifth constraint is

satisfied if any of the others are. In retrospect the equivalence of

so many of the constraints is not so surprising; all four of the

equivalent constraints demand that some aspect of the model is

consistent with the assumed form of g p , and so the constraints are all

of a similar nature.

A natural question to ask is, "If the well-mixed condition is

satisfied, is the model completely consistent with the assumed form of

gp , in the sense that there exists an ensemble of mass conserving

velocity and density fields (i.e. an ensemble of velocity and density

fields satisfying (3.1), but not necessarily (3.2)) for which (i) the

phase space density of all the fluid particles equals g p , and (ii) the

random walk model prediction of the dispersion is exactly correct?" If

this is so then it sheds some light on why the well-mixed condition

implies the other constraints - if the model is completely consistent

with gp , then any constraint involving g must automatically be

satisfied. Of course this would not imply that the model predicts the

dispersion correctly for any ensemble for which g p takes the assumed

form and, in particular, will not necessarily give the correct result

for the true ensemble determined by the governing equations. It would

however imply that the model is consistent with any deductions that

could be made from (3.1), (3.3) (with K = 0) and the assumed form of

gp • Conversely, if the answer to the question is no, then the model is
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not consistent with every deduction that can be made from (3.1), (3.3)

and the assumed form of gp.

In fact the answer to the question is yes, at least if we allow

the density fields in the ensemble to involve generalised functions.

To see this, consider the ensemble of particle trajectories obtained

from the model in the case where the initial phase space distribution i

of particles at time zero is well-mixed, i.e. has density function

gp(x,u,0)/M, M being the total mass of fluid in the flow. Because the

model is assumed to satisfy the well-mixed condition, the distribution

of particles at time t has density function gp(x,u,t)/M. We will now

construct an ensemble of velocity and density fields by constructing a

velocity and density field for each particle trajectory. More

specifically, for each particle trajectory (X(t),U(t)), we consider a

density field in which all the material is concentrated at X(t) (so

that the realisation only contains a single particle!) and a velocity

field which is uniform in space and equal to U(t). In mathematical

terms this means p(x,t) = M8(x-X(t)) and u e (x,t) = U(t). The ensemble

of such fields has the required properties. Although the ensemble is

rather unphysical (as noted above, each realisation contains only a

single particle), it is sufficient to explain the equivalence of the

constraints.

One would like there to be a more physically realistic ensemble

with the right properties. It seems likely that such an ensemble

exists although it is not clear how to prove it rigorously. There must

exist a physically realistic ensemble of velocity and density fields

u o (x), p 0 (x) for which the phase space density of fluid particles

equals g p (x,u,0). For each ( u0 ,p0 ), it might be possible to define an

ensemble of velocity and density fields by setting u e (x,0) = uo(x),

p(x,0) = p0 (x) and letting the fluid particles move according to the

model, perhaps with the same realisation of the Wiener process 	 (t)
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being used for all the fluid particles in any particular member of the

ensemble. If this idea can be made precise, the ensemble formed by

superimposing the ensembles formed from each ( u 0 ,p0 ) will have the

right properties, although it is not clear if such an ensemble can be

defined for all 00 (for example there is no guarantee that the

velocity fields will not develop singularities). Also, if g p is such

that p could be constant (i.e. fg p du independent of x and

3(5u i g p du)/3x i = 0), then one might hope that there exists an ensemble

of constant density flows for which the model is exact, but it is not

clear if this is so.

4.3 Choosing a and B - Additional Considerations.

(i) Introduction.

It has been shown that all the criteria considered above will be

satisfied if the well-mixed condition is satisfied, i.e. if aand B-	 _

satisfy (4.8) and (4.9). In one dimension, (4.9) and the fact that cf) 4

0 as lul 4 m determine (I) uniquely and only B is left to be determined

since a can then be found from (4.8). In more than one dimension

however, t is unique only up to the addition of a component which is

solenoidal in u-space and tends to zero rapidly as l u i 4 °2*	 To

determine a and B completely some additional considerations are_

required. For the remainder of this chapter we assume that p is

constant for simplicity.

(ii) The small time behaviour of the particles from a point source.

It was seen in §4.2(iii) that the well-mixed condition ensures

that certain aspects of the small time behaviour of particles from an

instantaneous point source are correct. However it does not ensure the

correctness of all aspects of the small time behaviour. As in

§4.2(iii), we take the point source to be at (x s ,t s ) and consider the

phase space trajectories (X(t),U(t)) of contaminant particles emerging_	 _
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from the source. At times (t-t )«T , where T	 is the Kolmogorov
s

time-scale,	 the	 Lagrangian structure function DiJ = <(Ui (t) -

Ui(t.))(Uj(t) - U j (t . ))> has the form

<(Du ielDt)(Du!/Dt)>(t - t . ) 2 + 0((t - t . ) 3 )	 ( 4.25)

(see Monin and Yaglom (1975, pp359 and 533)). At larger times with the

time lag (t-t . ) lying in the inertial subrange, D ij has the form

8ij C o e (t - t . )	 (4.26)

(Monin and Yaglom 1975, p359) where 8 is the Kronecker delta, e is the

ensemble average rate of dissipation of energy and C o is a universal

constant. The value of C o is rather uncertain. Experimental evidence

indicates C o = 4.0 + 2.0 (Hanna (1981) - our Co is Hanna's 2n2 B) while

recent direct simulations suggest that C o is at least as large as 4.0

(Yeung and Pope 1988). In the model (4.1), the assumption that (X,U)

is a Markov process means that the model can only describe the particle

motions correctly on time-scales larger than Tn . Hence we should

expect the model structure function to have the form (4.26) at small

times. Now at small times (4.1) implies

= 2 <Bij > (t - t . ) + 0((t - t.)2)

where <B> denotes <8(x5,ue,t5)>, i.e. fBg du/fg du. Hence for accurate
p	 p

results at small times we should choose

2 <Bij >	 8"C0 c.	 (4.27)

This idea can be traced back to Obukhov (1959) and Novikov (1963) (see

also Monin and Yaglom (1975, pp547 and 571-573)) and was discussed

further by van Dop et al (1985), Haworth and Pope (1986) and Pope

(1987).	 Van Dop et al (1985) considered (4.27) in the context of a

model in which a was a linear function of U. Van Dop et al found it-

was impossible in general to ensure that the model structure function

had the form (4.26) at small times while also ensuring that the small

time behaviour of the mean and variance of the particle velocities was
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correct. If the mean and variance are correct, their model yields a

structure function which depends on the inhomogeneity or unsteadiness

in the turbulence as well as C. By considering the more general model

(4.1) we have avoided this problem.

So far we have only considered the small time behaviour of the

velocity of particles.	 It is of some interest to consider also the

distribution of particle positions.	 If the model satisfies the

well-mixed condition we have, by applying ItO's formula (4.6),

<X i 	- x i > = <u i >(t - t	 ) + 1
7

[1-<u i > +	 --<ujuj>)(t -	 t s ) 2 +
at	 8	 axi	 e	 e

+	 — ts)3)

and

<(X i 	— X is )( X j	 — x i )› = <U i Ll i >( t — t) 2 	 +e	 e

+ pa-f<u ie ll> 8	 <u i u J u k > - l<B iJ d(t -	 t s ) 3 + 0((t	 -	 ts)4).e	 + axk	 e	 e	 e

We can also obtain an exact	 Taylor	 expansion	 for the	 behaviour of

<X i - x is. > and <(X i - x!)(X j - x!)> at small times (van Dop et al 1985),

although, because small time in the model means that the time lag

(t-t 8 ) lies in the inertial subrange and not that (t-t)	 Tti, we

should not necessarily expect this to agree with the model. In fact

the exact small time behaviour is the same as the model result given

above, but without the -(1/3)<Bij>(t-ts)3 term. Hunt (1985) has shown

how to calculate the small time behaviour of <(X' - x id(X j - x l )> under

the assumption that D is given by (4.26) and not by (4.25). 	 Provided

the model satisfies (4.27), the result is in agreement with the model

result given above, showing that 	 the	 addition	 of	 the	 term

-(1/3)<Bij>(t-ts)3 is the correct way to adjust the Taylor expansion to

account for the fact that (t-t 5 ) lies in the inertial subrange and is

not much less than Tti . It is of interest to note that models in which

a is a linear function of u do not give the correct expression for the

second moments of X (van Dop et al 1985). This is connected with the
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inability of such models to satisfy (4.26) and illustrates again the

advantages of considering the more general model (4.1). In the same

way we can consider higher order moments of X-x .-s

for such moments at small times is

<(X i -	 - x: )>	 <ul...u:>(t - td r +

The model prediction

(1(3	 ma	 1	 (lin] r ( r-1)	 (1' k2 atcu....u.>+---<u....u.u.>	 6	 <B 3 u ...um) > ( t - ts)r+1 +
aXn

4. ou t 	 t5)r+2).

where r is the number of indices i...m and B (ij uk ...0 ) denotes

Bij u k ...um with the indices symmetrized. Apart from the term involving

<Buk...0)>, this is in agreement with the exact small time

expansion.	 However, in contrast to the situation which obtained when

considering the second moments of X-x , we cannot say whether the term-s

is the correct adjustment

expansion to take account of the fact that (t-t . ) is not much less than

Tn .	 This is because the correct value of such an adjustment cannot be

calculated exactly without making further assumptions about 	 the

turbulence.

One way to determine the dependence of a and B on u would be to

conduct a conditional release experiment, i.e. an experiment in which

tracer is released only if the velocity at the source is equal to a

particular value, u s say.	 (In practice such an experiment would-

probably be conditional on just one component of velocity or the

velocity direction, not the vector velocity). For such a situation the

involving <B(ijuk...um)> to the Taylor

model (4.1) yields

<U i - u i > = a 1 (xu
7
 t )(t - ts)-s 7 P.S	 S

+ 0((t — ts)2)

t . ) + 0((t - t s ) 2 )	 (4.28)- u!)(U 3 - ui)> = 2B ii (x s , u s , t s )(t -

<X i - x i > . u i (t — t) +	 ,u ,t )(t - t 5 ) 2 + 0(( t - t )3)
,5 ~5	 S

<(X — <x i >)( Xj — <Xj>)>— t5 ) 3 + 0 (( t - t5)4).
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If the value of u is varied, the dependence of a and B on u could be-

estimated experimentally. Hanna (1979) presented some data in which

tetroon trajectories were grouped into cases with the same initial

velocity, thus providing data similar to that which could be obtained

from a conditional release. This data is consistent with B being-

independent of u and a depending linearly on u - U . . However, these

forms for a and B cannot both be exactly correct in all situations

without violating the well-mixed condition.

Strictly speaking, inertial subrange theory requires the quantity

(U i (t)-U 1 (t 5 ))(11 j (t)-U i (t s )) to be independent of u (x s ,t s ) for small

(t-t s ) ( Monin and Yaglom 1975, p359). If the model is to be consistent

with this, it follows from (4.28) that B(x,u,t) should be independent

of u. However, inertial subrange theory is not exact (Monin and Yaglom

1975, p584-585) and this particular aspect of it is likely to be

violated if the local instantaneous dissipation rate is correlated with

the velocity. For example, in a convective boundary layer it seems

likely that the dissipation is larger in the vigorous updraughts than

in the gently subsiding air.

(iii) Weakly Inhomogeneous Flows.

In flows which are only weakly inhomogeneous or slightly

non-stationary (i.e. TeT) the classical theory of Taylor (1921) and

Batchelor (1949) applies for t-t s «TH . It follows that, when t-ts«TH,

the second moments of the spread of the tracer depend only on V . (the

covariance matrix of the velocity components at a fixed point) and on

the Lagrangian correlation function R(t), which is defined by

R1 (t)	
<U'i(s)U'j(s+t)> 

(ViiVjj)1/2

where U' = U - U and the average is over all particles with given-e

initial position (here, and in all other expressions involving R or T1,
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defined below, the summation convention does not apply). In addition,

Pasquill (1974, pp131-132) has shown that, if the Lagrangian integral

time-scales are fixed, the dispersion is relatively insensitive to the

shape of R. There is therefore some merit in designing the model so

that the Lagrangian integral time-scales

Tl i =	 fm (Rii (t)+10 1. (0) dt
0

are correct. In order to be able to do this it is necessary to be able

to calculate the integral time-scales of the model. From Batchelor's

(1949) three-dimensional extension of Taylor's (1921) theory, the

time-scales of the model are related to the model's diffusivity by

and so the time-scales can be obtained from the

value of K which can in turn be calculated as indicated in §4.2(vi).

Although the shape of R does not strongly	 influence	 the

dispersion, it is of interest to consider what range of shapes can be

obtained from a model of the form (4.1). If a i = -Lii (ui - U!) with L

symmetric, then R takes an exponential form (see Appendix B). In other

cases it is not clear how to calculate R analytically, and so some .

numerical	 calculations	 were	 carried out.	 The details of the

calculation procedure are given in Appendix C and some examples are

shown in Figure 4.1 for the case of Gaussian turbulence. The forms of

B and 4) chosen have no special significance and were chosen simply to

provide a range of different shapes for R. The variations in the shape

of R caused by varying B are small and, although greater variations can

be produced by varying 4), it seems unlikely that the model can be tuned

in this way to produce any desired shape for R(t). This is not a

serious problem because, as noted above, Pasquill (1974, pp131-132) has

shown that, if T1 is fixed, the dispersion is relatively insensitive to

the shape of R(t).	 Also experimental evidence (Draxler 1976) shows

that R can often be approximated by an exponential function.
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Figure 4.1: Results of numerical calculations of R 11 (t) in isotropic

stationary Gaussian turbulence with no mean flow using various random

walk formulations. The various curves correspond to the following

values of B and	 	 , B ij = 8ij a2 /T, 	 = 0; -.-.-, Bij	 61 0.2

gp(_u2,u1,0)/T; 	, B 1 j = 6 i a2 (O. 2+(u l /) 2 )/1 2,T, cf) = 0;

= 1.2.5 11 (7 2 /(0.2+(u 1 /0 2 )T, cf) . 0. With the exception of the first

of these forms for B and 4', T is not the Lagrangian integral

time-scale, but is simply a general measure of the time-scale on which

the particle velocities become decorrelated. In the three examples

with 4' . 0, u 2 and u 3 do not affect u 1 ; hence these are essentially

one-dimensional calculations.
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(iv) Discussion.

For models which satisfy the well-mixed condition, the values of a

and B have been seen to influence some of the more subtle aspects of
_

the dispersion as predicted by the model, e.g. the dispersion from a

conditional release and the shape of the Lagrangian correlation

function. However, because the true evolution of (X,U) does not I

satisfy a pair of equations of the form (4.1), it may well be that some

aspects of the dispersion can only be represented more accurately at

the expense of the representation of other aspects. In the absence of

sufficient data or a theory giving the values of a and B, it is

sensible to keep the model as simple as possible, consistent with

satisfying the well-mixed condition. The simplest choice for B is to

choose B to be independent of u. This also has the merit of being-	 -

consistent with inertial subrange theory. If tet, then, in view of

Pasquill's result quoted above, B should be chosen so that the integral

time-scales of the model are correct. In more general conditions

equation (4.27) offers what is perhaps the most rational choice for B.

In one-dimensional models, the value of B determines the model

uniquely, as discussed in §4.3(i). In three-dimensional models

however, there are many functions t which satisfy (4.9) and tend to

zero at infinity. In order to determine a, and hence fix the model, it

is necessary to select one of these functions. 	 It is not clear in

general what the simplest choice for 4) is. Examples are given in the

next section.

4.4 Some Examples of Random Walk Models.

In this section, some examples of random walk models based on the

theoretical ideas discussed above are presented. Perhaps the simplest

case is that which arises in modelling the motion of particles in one

dimension (say the x-direction) in homogeneous stationary Gaussian

turbulence with no mean flow. If we choose B to be independent of u
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then the model takes the form of the Langevin equation (4.2):

dU = - 
By 

dt + (2B)1/2d.
a2

For this model the Lagrangian correlation function is exp(-tB/a 2 ) and

so, if we are to choose B on the basis of the ideas discussed in

§4.3(iii), we should choose B = a 2 /TI . This leads to the Langevin

equation in its more traditional form:

dU = - 11 dt + (
22.1/2 

d(.

	

T	 T

	

1	 I

The first two moments of the Eulerian parametrization corresponding to

this model are, from (4.18a) and (4.18b),

<e	 l(Du..,/Dt)'> = <c'ul.'>/tI	 (4.29a)

<clu!'(Dul.-/Dt)1> = <c'(ul.')2>/x1.
	 (4.29b)

As in §4.2(iv), a prime denotes the departure of a quantity from its

ensemble average. These parametrizations are qualitatively sensible

and have been used in high-order closure models (Deardorff 1978).

Let us now consider the problem of modelling the motion of a

particle in one dimension in inhomogeneous or non-stationary Gaussian

turbulence. For simplicity we assume the mean flow U . is zero. For

this case the solution of (4.9) for (10,u,t) is

4) _ 1 aa2 	1 aa 2 	1 acy 2 (02.
u +

g p - 7 ax + 2a 2 at	 2a2 ax

If we choose B to be independent of u as above, then, from (4.8), a is

given by

4)a(x,u,t) = - 
11
— u + —

g •
a2	

P

As in the Langevin equation it is useful to put B . a 2 /T. In weakly

inhomogeneous or slightly non-stationary conditions (i.e. when Tet),

the arguments in §4.3(iii) show that T is equal to the Lagrangian
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integral time-scale T1 . In conditions of stronger inhomogeneity or

unsteadiness however, T is not the integral time-scale, but is simply a

(rather loosely defined) "local decorrelation time-scale". This model

can be expressed more simply in the form

(U/u) 
dt +	 dt 

+111/2
d(U/u) _ ax

showing that the model is a simple modification of a Langevin equation

for U/a. This model is essentially that described by Wilson et al

(1983, equation 3") and Thomson (1984, §5). The first two moments of

the Eulerian parametrization corresponding to this model are

<C(Du le /Dt)'> = k i <c' u!'> + k2<c'(u!')2>

(u! ') 2 > + k2(<c'(u!')3> - <c'u le '>a2 )<c'u le '(Du le /Dty>	 k <c'l 

where k1 = ( 1/2a2 )aa2 /3t - 1/T and k2 = ( 1/2u2 )au2 /ax. These equations

contain terms depending on the inhomogeneity and unsteadiness which are

absent in (4.29). It is hard to assess whether these extra terms yield

a more accurate parametrization than (4.29). To the author's knowledge

these terms have not been used to date in high-order closure

parametrizat ions.

For Gaussian turbulence in more than one dimension there are many

possible choices for 40,u,t) satisfying (4.9), of which the simplest

is perhaps

,i	
1 

CV	 CUau i aui
_ 	  +	 e + U1 --I +

a
g o	 2	

at	 e
axl	 ax'

+
[(NC	 e' ) 1i (ay"

+ Um
e

avil aul
e+	 (u j - u!) +

2	 at
----
axm axi

(v- I ) li av"

	

.-	 e49	
(1.1i — U!)(0 — Ut).+ 	 	 (4.30)

2	 ax'

a(x,u,t) is then given by

a i . _Bij(v-ei)jk(uk - uk) 4.
e •	 r 6p
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Various choices for B are possible as indicated in §4.3. The Eulerian-

parametrization	 corresponding	 to this model is similar to the

one-dimensional case and is not presented here. The above model is

similar to that utilised by Thomson (1986a). The form of 0 proposed by

Thomson was slightly more complex, although, in the application of the

model described by Thomson (1986a), the principal axes of V . and B were

assumed parallel - in these circumstances the form of t proposed by 
I

Thomson is identical to (4.30) above. Sawford and Guest (1988) have

recently found an alternative form of 0 satisfying (4.9) and of

comparable "simplicity" to (4.30), and have tested it against (4.30) in

a simple shear flow. The differences between the models were not

insignificant,	 indicating	 the	 desirability	 of	 obtaining some

theoretical arguments as to what form 0 should take. 	 However, it is

far from clear how such arguments might be formulated.

Random walk models can also be designed to satisfy the well-mixed

condition in non-Gaussian turbulence, provided of course that the form

of g . is known or can be estimated. As an illustration, suppose we

wish to model the motion of particles in one dimension in a flow for

which

<p>	  02s20 _	 .)g _	 sv + 1 - Y2s 2 ) exp(-1/21/ 2 )	 (431
P	 (201/2a

where v = u/a - s and s is a parameter. This form of g . was chosen

simply as a convenient form with adjustable skewness which can be

manipulated easily and which depends smoothly on u - otherwise the form

is	 quite arbitrary.	 The first three velocity moments of this

distribution are <0> = 0, gu l ) 2 > . a2 and <0 1 ) 3 > = a3 s 3 , and so s ise	 e	 e

a measure of the skewness of the velocity distribution. Provided Is' <

1, g . is positive everywhere and, if s = 0, the turbulence is Gaussian.

The graph of g . for s 3 = 0.331 (the value used in the simulation below)

is shown in figure 4.2. The solution of (4.9) for 0(x,u,t) is
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Figure 4.2:	 , Gaussian velocity distribution;	 , velocity

distribution implied by equation (4.31); 6, velocity distribution of

particles as given by a numerical computation of dispersion in

homogeneous stationary turbulence with g p given by (4.31), using the

model based on equations (4.32) and (4.33). The results obtained from

the numerical simulation are averaged over the time period between

8a2 /8 and 10a2 /B after the release of the particles.
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<p> 	 v2v4s2 tr + v 3 ((s3
4) -	 - s) t_c: + ihs 2 0. _aa:) +(20112

+ v 2 ((1 + V2s 4 -2s 2 ) 21 + Y2s 2 a 21	 aa3+ v(s - 3s/2)ax	 ax	 ax

]
+ (1 + V2s 2 - V2s 4 ) ;' - Y2s 3 a as exp(42v 2 ).	 (4.32)

1
If B is chosen to be independent of u, it follows from (4.8) and (4.31)

that a(x,u,t) is given by

B(Y2s 2 v 3 - sv2 + (1 - 3s 2 /2)v + s)	 .
a- -	 + --

a(V2s 2 v 2 - sv + 1 - Y2s2)	 g P.
(4.33)

As an illustration, a simulation was conducted of particle

trajectories in homogeneous turbulence with a skew velocity

distribution (s 3 = 0.331). The details of the simulation procedure are

given in Appendix C. The initial velocity distribution of the

contaminant particles was Gaussian. The velocity distribution of the

contaminant particles after a time 8a2 /8 is close to that given by

(4.31) (see figure 4.2), confirming that the analysis leading to (4.32)

and (4.33) is correct. An example of a simulation of dispersion in a

convective surface layer using this model can be found in Thomson

(1987). A similar model, based on the ideas presented here but using a

different form for g p , has been used by Weil (1988) to model vertical

dispersion throughout the depth of a convective boundary layer. The

results of Veil's simulations show	 encouraging	 agreement	 with

experimental data.

4.5 Summary.

We have considered models of particle trajectories in which the

trajectories in phase space are described by a coupled pair of

stochastic differential equations of the form (4.1). This class of

models includes many previously proposed models as special cases. One
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of the advantages of considering the general model (4.1) is that it can

be designed to satisfy the well-mixed condition exactly in any

situation.

Various criteria for determining how such models should be

formulated have been discussed. It has been shown that the well-mixed

condition is equivalent to (i) requiring the small time behaviour of I

the velocity distribution of particles from a point source to be

correct, (ii) requiring compatibility with the Eulerian equations, and

(iii) demanding that the forward and reverse transition p.d.f.s are

consistent. This simplifies the problem of designing a random walk

model because there is no need to consider more than one these

criteria. It has also been found that the well-mixed condition is more

restrictive than Durbin's (1984) requirement that the model reduces to

an eddy-diffusivity model as the Lagrangian time-scale tends zero. The

fact that random walk models can be made consistent with so many of the

physical constraints gives increased confidence in such models.

If the well-mixed condition is satisfied then the model is

consistent with the known one-point density-weighted Eulerian

statistics of the flow. To determine the model uniquely some further

assumptions have to be made about the Lagrangian properties of the

flow. It has been shown in §4.3 how the model can be designed to have

the correct form of the structure function at small times or, if the

flow is only weakly inhomogeneous or slightly non-stationary, the

correct integral time-scales. In contrast to some previous models (van

Dop et al 1985) it is always possible, at small times, to ensure that

the model's structure function and the second moments of the cloud's

spread are consistent with inertial subrange theory.
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5. TWO-PARTICLE RANDOM WALK MODELS.

In this chapter the ideas developed in the previous chapter are

extended to cover two-particle random walk models. Molecular diffusion

plays a more important role in two-particle dispersion than in

one-particle dispersion, and this is discussed in §5.3. Finally a

two-particle model appropriate for isotropic turbulence in a constant 1

density fluid is developed and its properties are compared and

contrasted with previous models.

5.1 Introduction to Two-Particle Models.

Although the statistics of the motions of single particles of

contaminant contain much useful information about the dispersion of the

contaminant, these statistics give a far from complete description of

the dispersion process. For example, it is impossible from such

statistics to tell the difference between (i) a situation in which the

cloud of contaminant is, in every realisation, spread evenly over a

certain area and (ii) a situation in which the cloud remains very

compact, but in which the centroid of the cloud moves to a different

part of the area in each realisation. Such a distinction can be made

from knowledge of the statistics of the motion of pairs of particles,

although of course such statistics also	 give	 only	 incomplete

information. Richardson (1926) was the first to consider pairs of

particles and he showed that the mean square spread of a cloud relative

to its centre of mass (the position of the centre of mass being

evaluated separately in each realisation) is equal to half the mean

square separation of all pairs of particles in the cloud. For our

purposes it is more relevant to note that the second moments of

concentration can be calculated from knowledge of the motion of

particle pairs via (3.6).
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In his 1926 paper, Richardson proposed a model for the separation

of pairs of particles in which the p.d.f. of the separation satisfies a

diffusion equation with an eddy-diffusivity proportional to separation

to the power 4/3. The decrease in the diffusivity with decreasing

separation was intended to reflect the fact that, when the pair

separation is small, all the turbulent eddies which are larger than the

separation simply move the pair around without	 increasing	 the

separation significantly. 	 By taking the diffusivity proportional to

separation to the four-thirds, Richardson produced a model which is

consistent with inertial subrange scaling.	 However this must be

regarded as somewhat fortuitous since Richardson wrote his paper long

before inertial subrange theory was conceived and obtained his

four-thirds law empirically from various experimental data, many of

which were obtained in situations to which inertial subrange theory

does not apply. Although this model does represent what is perhaps the

most important aspect of the separation of pairs, namely the increase

in dispersive power with separation, there are one or two aspects of

the model which are unsatisfactory. Firstly, the use of an eddy

diffusivity is conceptually unsatisfactory (for the same reasons that

it is unsatisfactory in the one-particle case), although it is not

clear how serious a problem this is. If the separation of particles

were governed by eddies which were much smaller than the particle

separation, then an eddy-diffusivity assumption would be reasonable.

Of course in reality the eddy sizes which influence the separation most

are of comparable size to the separation itself. However, because they

are not much larger than the separation, it is possible that, for

particles that are initially close, an eddy-diffusivity assumption

might give acceptable results, as in the case of the vertical diffusion

of single particles from a ground level source in a neutral surface

layer (see the discussion in §1.3). Secondly, the model only describes

the separation of pairs and does not give any information on the motion
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of the centroid of a pair of particles. Such information is, in most

situations, needed if one wishes to calculate the second moments of the

concentration. Batchelor (1952) criticised Richardson's model on the

grounds that the eddy-diffusivity is a statistical quantity and so

should not depend on the particle separation which is a random

quantity. Although this has generated much discussion (Sullivan 1971;

Monin and Yaglom 1975, pp573-577), the criticism does not appear so

serious if we regard a pair of particles as a single entity in a

six-dimensional space, as suggested in §3.3. Indeed, when viewed in

this way, the criticism is no more valid than criticising a single

particle eddy-diffusivity model in which the eddy-diffusivity K is a

function of position, on the grounds that K (a statistical quantity)

should not be a function of the particle position (a random quantity).

A number of more recent models for the motion of pairs of

particles in constant density flows have been proposed which overcome

some of the problems associated with Richardson's model. Novikov

(1963) and Lin and Reid (1963) proposed models which avoid the eddy

diffusivity assumption, but they do not discuss the motion of the

centroid of the pair of particles. In addition, Thiebaux (1975)

proposed a model for the evolution of both the particle separation and

centre of mass, but one which was still based on eddy-diffusivity

concepts. Although it was seen above that an eddy-diffusivity

assumption might be acceptable for the separation of particles, such an

assumption is less satisfactory for the centroid motion, which is

governed mainly by the energy-containing eddies. More recently still,

a number of models have been proposed which avoid the eddy-diffusivity

assumption and describe the motion of the centroid as well as the

particle separation (Durbin 1980; Lamb 1981; Sawford 1982; Gifford

1982; Lee and Stone 1983; Sawford and Hunt 1986). Although such models

have had some success in comparison with experimental data (Durbin

1982; Sawford 1985; Stapountzis, Sawford, Hunt and Britter 1986), the
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correct way to formulate such models has not been investigated in

detail. Recently a number of theoretical problems have been identified

in connection with such models. For example, Durbin's (1980) model is

inconsistent with the constant density constraint and, if the

particle-pairs in the model are well-mixed initially, they do not

remain so (Egbert and Baker 1984; Thomson 1986b). The models can be

divided into two classes according to the predicted shape of the

particle separation p.d.f. (Sawford 1983). The majority of the models

(Lamb 1981; Sawford 1982; Gifford 1982; Lee and Stone 1983) predict

that the p.d.f. is Gaussian (at least for initially coincident

particles), while Durbin's (1980) model leads to a strongly peaked

p.d.f. which tends to infinity at the origin. This difference in shape

is important as it leads to very different predictions for the

concentration fluctuations in some situations. Neither of these shapes

seems very plausible, inertial subrange theory predicting that the

p.d.f. should vary like a-06213 near 6=0 (where A is the magnitude of

the particle separation). This sheds some doubt on whether any of the

stochastic models are showing the correct qualitative behaviour.

Richardson's (1926) model is of course consistent with the inertial

subrange form a-pA213.

In this chapter it will be shown that some understanding of these

problems can be obtained by considering the one-particle theory

described in chapter 4. It was noted in chapter 4 that, in

inhomogeneous turbulence, one-particle stochastic models can be badly

in error unless they are formulated carefully. In §4.1 we considered a

situation in which the mean velocity is zero and the turbulence is

stationary and homogeneous in the y- and z-directions. It was shown in

§4.1 that if the fixed point variance of the x-component of velocity

varies with x, then, unless the model is formulated carefully, a

contaminant which is initially well-mixed becomes "un-mixed" and

non-uniform in space at later times, with the particles accumulating
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where the velocity variance is small. Such problems are also likely to

occur in two-particle models, even in homogeneous turbulence. This is

because of the variation of the two-point velocity covariance with the

separation between the two points, something which is analogous to the

variation of velocity variance with position in a one-particle model.

The aim of this chapter is (i) to extend the one-particle theory I

described in chapter 4 to two-particle models, (ii) to apply this

theory in designing a two-particle model suitable for modelling

dispersion in isotropic turbulence in a constant density fluid, and

(iii) to investigate whether such a model overcomes the theoretical

problems	 described	 above and results in a particle separation

p.d.f. which is consistent with inertial subrange theory. Comparison

of the model predictions with experimental data is deferred to chapter

6. Some initial steps towards these aims were taken by Thomson (1986b)

using a one-dimensional model. In contrast the work presented here is

three-dimensional.	 This is more satisfactory since 	 the	 mixing

processes which affect pair separation and concentration variance are

essentially three-dimensional. Also, unless the three-dimensionality .

of the turbulence is taken account of, it is impossible to choose a

form for the two-point velocity correlation function (a quantity which

needs to be specified in most approaches to two-particle random walk

models) which is consistent with the constant density constraint.

5.2 Theoretical Aspects of Two-Particle Models.

It is straightforward to extend the results of chapter 4 to the

two-particle case. As was noted at the end of §3.3, a pair of

particles with trajectories X 1 (t) and X 2 (t) can be regarded as a single

entity with trajectory k(t) . (X1(t),X2(0) in a six-dimensional space.

The velocity of the particle-pair in this space is defined to be OM =

(1J1(t),U2(0).	 As in the case of one-particle models, dk/dt equals 0

in the absence of molecular diffusion. The type of models which we
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will be considering here are those in which R and 0 satisfy a coupled

set of stochastic differential equations of the the same form as (4.1):

O i dt
	

(5.1a)

dO i = di(R(t),0(t),t) dt + 6 ii (R(0,0(t),t) (5.1b)

(with the superscripts running from 1 to 6 instead of from 1 to 3).

The majority of the models mentioned in §5.1 above are of this type.

As in the one-particle case described in chapter 4, this type of model

implies infinite mean square particle accelerations and so cannot be an

exact model of the motion of pairs. However it seems reasonable •to

hope that such a model may be able to provide a satisfactory

description of particle-pair motions over time-scales in excess of the

Kolmogorov time-scale in . This is because, as in chapter 4, the

particle accelerations in high Reynolds number flows are very large

(relative to integral length- and time-scales) and are only

significantly correlated over very short times of the order of the

Kolmogorov time-scale. Hence the changes in 0(0 over successive time

intervals At are, if At » T
' 
only weakly correlated. Of course, as in

n

the case of single particles, they cannot be completely independent or

the variance of 0 would grow indefinitely. In making the assumption-

that R and 0 obey equations of the form (5.1) it is assumed that this-

dependence can be accounted for by allowing the velocity increments to

depend on the particle-pair's velocity 0 and position R. Of course a

model of the form (5.1) cannot describe the details of the particle

motions over times of order Tn . In the following fO i will be used to

denote Vili ik S ik in the same way as in §2.3 and chapter 4.

It was noted in §3.3 that the mass densities of contaminant

particle-pairs and fluid particle-pairs in the six-dimensional space

(i.e. Mc,t) and P(k,t)) and the velocity field in the six-dimensional-

space (i.e. 0. (k,t)) are related in the same way as c, p and ue are in

ordinary space. Using these quantities we can define phase space

densities of contaminant and fluid particle-pairs in the same way that
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gc and g p were defined in ordinary space by setting

ftc (R,O,t) = <â(k,t)S(6-12.01,0>

and

kp(31,11,t) = <W,t)6(0-0.(k,t)>.

Note that there is a slight change of notation here from that used in

§3.3.	 In §3.3 the quantities which are represented here by kc(R,O,t)

and	 kp(fS/0,t)	 were	 written	 as	 kc(x1,u1,t,x2,u2,t)	 and

k p (x 1 ,u 1 ,t,x 2 ,u 2 ,t) where (x1 ,x 2 ) = R and (11 1 , u 2 ) = u. If the fluid

has constant density, f g p dü is independent of R and g p (R,O,t) is

proportional to the p.d.f. of the velocity 0 . (k,t), i.e. g p contains

the same information as the two-point Eulerian velocity statistics.

It follows immediately from the above that most of the analysis

which was carried out for the one-particle case in chapter 4 holds for

the two-particle case as well, with X, U, x, u, p, c, 1e 	 g p , a, b,

and B replaced by R, U,	 , 0, 13, E, ü,kc , k p , a, 12 , and B. In

particular, it was noted in chapter 4 that, if g c equals gp at some

time, then it will in reality remain equal to g p (the "well-mixed

condition"). In the same way, if k c equals ft p at some time, they will

remain equal. It is clearly desirable that the model should also have

this property and this can be achieved by ensuring that A and A satisfy

the equivalent of (4.8) and (4.9). As in chapter 4, this also ensures

that the small time behaviour of ftc for dispersion from an

instantaneous source is correct, that the relation (3.10) and its phase

space equivalent which relate the forward and reverse transition

probabilities is satisfied, and that the model is compatible with the

Eulerian equations in the sense described in §4.2(iv). Also, it

follows from the discussion in §4.2(iv) that a two-particle model of

the form (5.1) is equivalent to a two-point closure assumption on terms

of the form

<c(xl)c(x2)11!(x1)...u:(xdu:(x2)... u:(1(.2)gitle(1)>'
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Because the particle-pairs are advected and diffused in 5c-space in

the same way as single particles are in x-space it might be thought

that the construction of a stochastic model for the motion of particle

pairs would not be significantly more difficult than for single

particles. However there are some complications due to the special

nature of the flow field il 
e . 

Firstly, because the joint distribution—

of ue (xl , t) and u e (x 2 ,t) depends on the separation x i - x 2 , the field

0	 is always inhomogeneous, even in homogeneous turbulence. This is
—e

not a serious problem but it implies that there is no situation in

which we can use a model as simple as the Langevin equation, which was

seen in chapter 4 to be appropriate for modelling particle motions in

homogeneous stationary velocity fields. 	 Secondly, if A denotes the

subspace of points )1 = ( x1 ,x2 ) with xl = X2 , then, at points in A, the-

direction of IL lies within A (i.e. ue (xl , t) = ue ( x2 ,t) if xi . x2),

thereby preventing particle-pairs escaping from the subspace A except

by molecular diffusion. In other words, if the two particles in the

pair are coincident, they can only be separated by molecular processes.

This complication is discussed in the §5.3 below.

Before describing a third complication resulting from the special

nature of the flow field il e , it is appropriate to comment on the.-

meaning of the word "coincident" in the above. If there is no

molecular diffusion then fluid particles are simply fluid elements, and

two particles which are coincident are simply the same fluid particle,

and so can never separate. If 00 however, we are committed to

interpreting fluid particles as molecules (see §3.3). In this case the

statement that two particles are "coincident" means that the molecule

separation is small compared to all macroscopic scales and not of

course that the two molecules are actually the same molecule! Such

molecules can of course subsequently separate. Alternatively, if we

adopt the stochastic differential equation model of molecular motions

described in §2.3 and Appendix A, we can interpret "coincident"
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literally; in this model of molecular motions there is no difficulty in

two different molecules actually occupying the same position.

The third complication caused by the special nature of O . results

from the fact that the first three components of O. are independent of

X2 and the second three are independent of xl . This is a property of

0 which has no analogue in u
—e . 

Unfortunately it is not clear what the I—e 

full implications of this are, nor is it clear how to ensure the model

is consistent with these implications. One obvious implication of this

third complication (for the case of constant density flows) is the

following. Consider for the moment a single realisation of the flow

and consider the trajectory R(t) = (X1(t),X2(0) of the pair of fluid

elements for which, at time s, the first element is at y i and the

second at y 2 . From this trajectory, we can obtain a single particle

trajectory X i (t) in x-space.	 This trajectory satisfies dydt =

12e1 (X(t),t) and X I (s) = y l , where u le denotes the vector consisting of—

the first three components of O . •	 Because of the property of O.

described above, u le depends only on X 1 and t and hence the single—	 —

particle trajectory obtained would be the same, no matter what value y2

takes (this result can of course also be seen directly by working in

x-space, but it is useful to relate it to the special properties of the

0 field described above). If we now consider the ensemble of such
—e

particle	 and	 particle-pair	 trajectories occurring in the ensemble of

flows (one particle or particle-pair trajectory for each member of	 the

ensemble)	 it is clear that:

For fixed y l ,	 the ensemble of trajectories
(5.2)

X l ( t)	 is the same for all choices of y2.

In particular,	 it follows that

1 P. 1 ( t
1 
),.....2 ( t 2 ,1X	

, , „(x	 x	 ly	 y )
.... 	

, I1 f,s 1 ), A 2 (s 2 )	 ...1
,
 — 2 	_1

9 _2 dx2.... (5.3)

is independent of y 2 .	 This can of course	 also	 be seen directly	 by

noting that (5.3) is simply the one-particle transition density
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) (x
1

ly 1 ). (5.2) also applies to the motion of particles in
PX(t1)1X(si

the presence of molecular diffusion. Indeed the above argument remains

valid in this case, except that the equation for X l (t), i.e. dX1/dt

is modified by the addition of a random term representing11—el (5Y0,0 ,

the molecular motions (see Appendix A). The condition (5.2) will be

discussed further in §5.4, §5.5 and §5.6 below.

5.3 The Role of Molecular diffusion.

In this section the effect of molecular diffusion on the motion of

particle-pairs will be discussed. However it is useful to consider

first the simpler one-particle case. In flows with high Reynolds (Re)

and Peclet (Pe) numbers, such as the atmosphere, it seems very likely

that, except very close to a small source or close to boundaries, the

effect of molecular diffusion on the statistics of the motions of

single particles, and hence on <c>, is small. Although this has not

been proved rigorously, Saffman (1960) has provided a convincing

intuitive argument in its support. Hence, as discussed in chapter 4,

the one-particle models used to calculate 
PX(01X(s)(xly) and <c> can-

be formulated on the assumption that the particles of tracer move at

the local velocity of the fluid.

Close to rigid boundaries however, molecular diffusion becomes

important.	 In the absence of molecular diffusion, particles in the

interior of the flow cannot reach the boundary, nor can particles which

are on the boundary ever leave it. Hence, in the absence of molecular

diffusion, there would be strong gradients of concentration across the

"viscous sub-layer" (see e.g. Monin and Yaglom (1971, §5.3)) which

adjoins the boundary. In practice however K is always finite and

molecular diffusion acts to smooth out the concentration gradients

across the viscous sub-layer. This shows that taking K = 0 will lead

to incorrect estimates of surface concentrations. The time-scale on

which this smoothing process occurs is of order the thickness of the
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viscous sub-layer squared divided by K, i.e. of order (v/u!)Sc where u,

is the friction velocity and Sc is the Schmidt number, which is defined

to be 'v/K. Although this time-scale varies with Sc, it will, in flows

with high Reynolds and Peclet numbers, be much smaller in general than

the time-scale on which <c> varies in the interior of the flow. This

means that molecular diffusion will act sufficiently quickly to produce

an approximately uniform profile of <c> across the viscous sub-layer,

and the values of <c> at the surface will be insensitive to the precise

value of K. It follows that it is not necessary to model the viscous

sub-layer and the effect of K in detail in a random walk model -

provided the particles in the model are provided with the means to

cross the viscous sub-layer in a time which is short compared to the

time-scale on which <c> changes, satisfactory results should be

obtained. (However it should be pointed out that in many laboratory

experiments the Reynolds number is not sufficiently high for this to

apply - see Chatwin (1971)).

The situation for two-particle models is rather more complex.

Consider	 the motion of a particle-pair with trajectory i(t) =

(X1(t),X2(0) in cc-space. Re and Pe are assumed large. If the

particle separation is large it seems likely, as in the one particle

case, that the effect of molecular diffusion on the motion of the

particle-pair is negligible in comparison to the effect of the

turbulence. At large separations the fluid viscosity v also has a

negligible effect on the pair's motion because v affects only the small

scale components of the turbulence. When the particles are close

together however, ue (x l ,t) = u e (x 2 ,t) and so molecular diffusion can

have a significant effect on the particle separation; indeed, as noted

above, if the two particles are coincident they can only separate by

molecular processes. Also v influences the small scale components of

the	 turbulence strongly and so will affect the motion of the

particle-pair when the separation is sufficiently small. In some ways
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this situation is analogous to the case of the motion of single

particles in a flow with a boundary, although the analogy is not exact.

In more detail, there is, adjacent to the "surface" x l = x 2 in Cc-space,

a "layer" in which viscosity affects the velocity field. The thickness

of this layer depends on v and is much less than the outer length-scale

of the turbulence. Also particle-pairs cannot migrate across this

layer without the aid of molecular diffusion.
	 1

In the previous paragraph we have centred our discussion on the

motion of particle-pairs rather than on the quantity <c(x1,t)c(x2,0>.

It has been shown that K has an important effect on the motion of pairs

when they are close together and it follows from (3.6) that K is likely

to have an important effect on <c(x1,t)c(x2,0>. 	 It may help to

clarify things to remark that it is easy to see directly that K has a

significant effect on <c(x 2 ,0c(x 2 ,0>. For example, in a constant

density fluid with no molecular diffusion, the concentration does not

change following a fluid element (Chatwin and Sullivan 1979) and hence

the integral fc 2 dx is conserved (at least at times when there is no

source of contaminant). This is clearly at odds with the observed fact .

that turbulence does lead to a rapid dilution of contaminant, implying

that, in reality, K has an important effect. The connection between

this and the separation of pairs can be seen from (3.11) - if

coincident particle-pairs cannot separate, (3.11) implies that fc 2 dx is-

conserved in constant density flows (at least at times when there is no

source of contaminant). In terms of the concentration field c(x,t),

the effect of K is to smooth out the strong gradients of concentration

which form as a result of the distortion of the cloud of contaminant by

advection (Monin and Yaglom 1971, pp592-593).

How small must the particle separation be for the effect of K or v

on the motion of a pair of particles to be significant? Let d be the

maximum particle separation for which K or v has a significant effect
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on the motion of the pair of particles. Since we are assuming Re and

Pe to be large, d will be much smaller than the outer length-scales of

the turbulence. Hence, from Kolmogorov's theory of the universal

equilibrium of the small scale components of high Reynolds number

turbulence (Monin and Yaglom 1975, chapter 8), d can depend only on K,

v, and the ensemble average dissipation rate c. 	 Dimensional analysis

then yields d = fi(Sc) (\3/)h/4 where f l is a function of the Schmidt I

number Sc = WK. If the particle separation is less than d, then the

typical time taken for the particle separation to reach d will also

depend only on K, v and c, and will be of order t d = f2 (Sc) (v/01/2

where f 2 is another function of Sc. Once the particles have separated

to a distance d any further separation is caused only by the turbulence

occurring in the inertial subrange and on larger scales; molecular

diffusion no longer plays a significant role in the separation process.

For sufficiently large Re and fixed Sc, d and t d can be made

arbitrarily small compared with the outer length- and time-scales of

the turbulence. As in the viscous sub-layer case considered above, it

seems reasonable to expect that the precise manner in which the .

particle separation changes from zero to d (or vice versa) will not be

important in calculating <c(x1,t)c(x2,0>; provided particles in the

model are provided with the means to change their separation from zero

to d in a time which is not greatly in excess of t d , satisfactory

results should be achieved.	 Following Durbin (1980), this can hc,

achieved by ensuring that coincident particles can separate and by

assuming that the the inertial subrange of the turbulence in the model

extends to arbitrarily small scales, so that if the separation of two

particles is positive (no matter how small) they can be separated by

the inertial subrange turbulence. The time required for inertial

subrange turbulence to separate two particles to a distance d is, on

dimensional grounds, of order (d 2 /c) 113 which is, for fixed Sc, of

order td . In a sense this procedure can be regarded as modelling not
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the real flow, but the flow which would occur in the limit Re 4 w with

Sc and the outer length- and time-scales fixed. We will call this the

high Reynolds number limit.

An alternative way to justify this procedure is as follows. First

note that, for fixed values of Sc and the outer length- and

time-scales, the form of <c(x 1 ,t)c(x 2 ,0> for separations Ix 1 - x 21 1

much greater than the Kolmogorov length-scale ( v3 /0 1/4 is insensitive

to the Reynolds number. Also the the fractional change in

<c(x 1 ,t)c(x 2 ,0> as Ix 1 - x 2 I changes from the Kolmogorov scale to zero

(with x i , say, fixed) is, for sufficiently large Re and fixed Sc, a

negligible fraction of <c(x 1 ) 2 >. These two results follow from the

theory of the small scale structure of scalar fields (Batchelor 1959;

Batchelor, Howells and Townsend 1959; Monin and Yaglom 1975, §§21.6 and

22.4). It follows that the form of <c(x 1 ,t)c(x 2 ,0> will converge to a

limit in the limit Re 4 c° and, if the true Reynolds number is

sufficiently high, the form of <c(x1 ,t)c( x 2 ,0> in this limit will be a

good approximation to reality.

It should be pointed out that these arguments break down when

considering measurements of <c(x1 ,0c(x 2 ,0> at points close to small

sources (i.e. points where the travel time from a source whose size is

of order d or less is of order t d or less). The precise value of K is

clearly important in such cases, as it would be for short range

dispersion from a source in a viscous sub-layer.

The above arguments suggest that for sufficiently high Re there is

no need to consider explicitly the effects of viscosity and molecular

diffusivity. The arguments can hardly be called rigorous, but are very

suggestive. Some support for the conclusion has been obtained from the

two-particle model of Sawford and Hunt (1986) which includes diffusive

and viscous effects explicitly. This model also gives an indication of

how large Re must be (for a given Sc) for the high Reynolds number
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limit to be a good approximation. However Sawford and Hunt's model is

based on that of Durbin (1980) which, as will be seen below, is not

completely satisfactory. It would be of interest to repeat their work

with a model based on that described in §5.4 below, although the

following argument suggests that all random walk models of the type

considered here (both one- and two-particle) may have difficulties in

providing a good explicit representation of viscous and diffusive

effects. Firstly note that the arguments which led us to expect models

of the form (4.1) and (5.1) to be able to give a good description of

dispersion depended on the fact that the particle accelerations are

weakly correlated over times much in excess of T n . Over short times of

the order of T (the time-scale on which viscous and diffusive

processes act) the particle acceleration correlations cannot be assumed

small. Secondly, the usual way to include molecular diffusivity in a

random walk model is, as in (A.1), to add a term representing the

random molecular motion of a particle or pair of particles to (4.1a) or

(5.1a) as appropriate (Durbin 1982; Sawford and Hunt 1986). For

simplicity consider the one-particle case. Then (4.1) becomes

dX i = U dt + (20112d'i

dU i = ai(X(t),U(t),t) dt + bij(X(t),U(t),t) (Kj.

where	 is a Wiener process independent of 	 In homogeneous

turbulence, a and b must be independent of X(t) and so the displacement-

of a model particle is simply the sum of the displacements which would

result from the molecular and turbulent processes acting separately.

Hence the model cannot represent the destructive interference between

the two processes discussed by Saffman (1960). In addition such models

cannot satisfy all the criteria discussed in §4.2. For example, for

the above model the well-mixed condition (§4.2(ii)) takes the form

a-g p	 a2a
a2

	

6 P	 -
= i 	  + *x (g p ) + 	  (Kkp)

ax'30 1 	 axiaxi

while demanding that the velocity distribution evolves correctly at
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small times (§4.2(iii)) requires the condition

ak a2-4.
a26 p 	 _

at = i	 .	 . + *x (k )	
	  (KR )

ax l aei	 — P	 ax' ax i 	 P

to be satisfied (here we have assumed p is constant for simplicity).

If gp varies with position these conditions are incompatible. The

above suggests that, although random walk models may be able to provide

1
a satisfactory representation of dispersion by large scale and inertial

subrange eddies, they are not well suited to modelling viscous and

diffusive processes.

5.4 A New Two-Particle Model Applicable to Dispersion in High Reynolds

Number Constant Density Isotropic Turbulence.

In this section the ideas discussed above are used to derive a

model for the motion of particle-pairs. For simplicity we consider

only isotropic constant density flows and always refer to a reference

frame moving with the mean velocity. The Reynolds number is assumed to

be large. This means, as indicated in the discussion in §5.3 above,

that molecular diffusion can be neglected except when the two particles

are coincident, and the inertial subrange of the turbulence can be

assumed to extend to arbitrarily large wave numbers. Except when the

particles are coincident, the particles can be assumed to move at the

local fluid velocity, i.e. as if they are fluid elements.

It is convenient in the following to denote the first three

	

components of 0	 by u . , and the last three by 11 .2 so that 8 . =

(12431/11e2). Also, it is often convenient, following Durbin (1980), to

use a rotated coordinate system in the six-dimensional s-space, in

which the components of a point k = ( X1 ,X2 ) are related to the

components of the separation vector xi -x2 and the centroid x 1 +x 2 . If

we define Ax = (x
1 -x2 )112 and Ex = (x 1 + 2

x )/i2, then, in the new rotated-	 -	 ..,	 -	 .... 	 .-

coordinate system, j! . (6x,Ex). Similarly it is useful in phase space

to define Au = (u 1 -9,2 )/i2 and Eu = (u1+u2)//2, so that, in the rotated



Page 86

coordinate system, 0 = (Au,Eu). In the same way we can define Au e =

(uel -ue2 )/129 Eu e = (uel +u 2)/12, AX (X 1 -X 2 12, EX = (X1+X2)/1/2, AU

= (U 1 -U 2 )/12 and EU = (U 1 +U 2 )/12. It follows that, in the rotated

coordinate system, the Eulerian velocity in the six-dimensional space

is given by Il e = ( Au ,Eu 
e ) and the position and velocity of a— e —

particle-pair are given by R	 (AX,EX) and ü = (AU,EU). In the sequel,

AX will often, for simplicity, be referred to as "the particle I-

separation", ignoring the factor 1/12.

As indicated above, a and t will be selected by applying the

theoretical ideas described in chapter 4 and §5.2. In order to apply

these ideas we need to assume a form for the density function k p . For

simplicity, the two-point velocity distributions, which determine kp up

to a multiplicative constant in a constant density flow, are assumed to

be Gaussian with

<Il i 	=	 = (728iiel el	 e2 e2

(5.4)
<u i u j >	 <u i u j > = a2Rii(Lx)el e2	 e2 el

or, equivalently,

<Au l-Au j > = a2 (8ii - Rij(6x))C e

<Eu i Eu i > = a2 (6i )+ Rij(Ax))e e (5.5)

<Auj Eu i > = 0e e

where R is the two-point velocity correlation tensor. Because we are-

assuming the flow to be of constant density, aR i3 /3Ax j = 0 (Batchelor

1953, p27) and, since R is assumed isotropic, it can be written in the

form

Rii = F(A)A0Ax j + G(6)8"

where A = lAx l and F and G satisfy 4F + A3F/3A + (1/03G/36 . 0.

Following Durbin (1980) we take the longitudinal correlation function,

f = FA2 + G, to be
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f = 1 - (A2 /(A2 + 12))1/3.	 (5.6)

This form is qualitatively reasonable and gives the correct inertial

subrange form at small A. The integral scale L of f, f f(A) d(/2), is

equal to 1.061. In the inertial subrange f . 1 - C(ad2)2/3/(2a2)

(Monin and Yaglom 1975, p353) where C is the Kolmogorov constant which

is taken here to be 2.0 (Monin and Yaglom 1975, p485). Hence, in terms

of a2 and s, 1 = a 3 /(I2). This is consistent with the longitudinal

integral scale being of order 0.8a 3 /e (Townsend 1976, p61). 	 F and G

can be calculated from f. The six-dimensional covariance tensor <01.0>e e

will be denoted by il le- j . The various components of 'V. are given, in the

(xl ,x2 ) coordinate system, by (5.4) and, in the rotated (hx,Ex)- -

coordinate system, by (5.5). In reality ft p is not Gaussian, especially

when A is small (Batchelor 1953, pp170-173), and it is hard to assess

the error incurred by assuming that it is. 	 This deserves further

investigation. (Of course the model does not assume that the velocity

and concentration fields are jointly Gaussian and allows the mixed

velocity-concentration two-point third-order moments to be non-zero.

This is essential in any model of <c 2 > since <c(xi)c(x2)u.(9> =

<Emu (S)> represents the flux of pairs of contaminant particles in

cc-space.)

From §4.2(ii) and the discussion in §5.2 above, it is clear that

in order to satisfy the well-mixed condition it is necessary for & to

satisfy

aikp = aol li g p vaa j + 4, i 	(5.7)

where 4, satisfies

W/au i . _ ag p /at - a(u i g p ) / aR i 	(5.8)

and

.4) 4 0 as 1 11 1 4 '.	 (5.9)

For our value of gp,
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kp	 akl	 axk

is perhaps the simplest choice of 4., satisfying (5.8) and (5.9) (see

equation (4.30)). In our situation the term v23J ill3k l is in fact zeroe

because of the constant density constraint on R.

11 remains to be chosen. In choosing 11 for our two-particle model

we will be guided by the one-particle case discussed in §4.3 and also

by the ideas about the motion of particle-pairs discussed by Novikov

(1963) and Monin and Yaglom (1975, p573). In high Re flows the

acceleration correlation function is short-ranged in space as well as

time (Monin and Yaglom 1975, §21.5) and so the acceleration of any

particle is only weakly correlated with that of any other. However the

accelerations cannot be completely independent or, at large times, all

the particles would be moving independently. In (5.1), the

acceleration of the first particle in a pair of particles consists of

two parts, Ai and 6 1j (Kj /dt, i = 1,2,3. It seems reasonable to suppose

that the part of the acceleration which is uncorrelated from one moment

to the next, namely S ij dO/dt, is also uncorrelated with the position,

velocity or acceleration of the other particle. Also, for simplicity

and consistency with inertial subrange theory, we would like t to be

independent of CI (see §4.3 for a discussion of the analogous one

particle case). Together with the assumed isotropy of the turbulence,

this leads to the choice t ij = 116 1- 3 . Because 11 represents the high

frequency part of the acceleration, 11 should depend only on 6, i.e. B .

%Co s for some C o . (5.1) then implies that the one-particle Lagrangian

structure function D ij = <( U1(t) - Ul(s))(U1(t) - 111(s))> (the average

here being over particles with a given position at time s or,

equivalently, over all particle-pairs with a given X l (s)) takes the

form C0 c(t-s) for small time intervals t-s, as in the case of

one-particle models (see §4.3(ii)).	 Hence, as in the one-particle
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case, C o can be identified with the universal constant occurring in the

inertial subrange part of D. As noted in §4.3(11), Co lies in the

range 4.0 + 2.0 (Hanna 1981). In the calculations presented below, Co

will be taken to be 4.0. The above derivation of the form of 11 can be-

understood more informally by noting that the high frequency part of

the acceleration, being independent from particle to particle, should

take the same form as in the one-particle case discussed in §4.3(ii).

In the following 11 will often be written as a 2 /x. It will be shown

below that T can be interpreted as a Lagrangian time-scale. Because 11

remains constant as A 4 0 the model allows coincident particles to

separate and no special measures are needed to ensure this. With the

above value of E and with 4) given by (5.10), (5.7) becomes

2
ai	 _ a 6./-1 1 iico 4. 1 (V')'ie	 1 ...-1)1j	 lajok.

-c •	 2	 ^-e 	 at	 2 (v	 akk

To complete the specification of the model, we note that the initial

value of 0 for a particle-pair commencing at (y1 ,y ) at time s is_

chosen at random from the two-point velocity distribution at (y1,y2).

When the particles are far apart, the particles move independently

and the motion of a single particle obeys the stochastic differential

equations

dX1 = Uldt

du i 	(-	 +	 uidt + cr(V/2d(.

	 (5.11)

This is an appropriate model for the motion of a single particle in

isotropic Gaussian turbulence and, from the results given in §4.4,

satisfies a one-particle version of the well-mixed condition. (5.11)

can be expressed more simply as

dX 1 = a	 dt-	 -1
(5.12)

(10 1 = - ( 0 1 /i)dt + (2/.01/2R,

where 0	 = U /a.	 In stationary situations this is	 simply	 a
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three-dimensional version of the Langevin equation and so <111(t)U1(s)>

= a26"exp(-(t-s)/T). Hence T is the Lagrangian integral time-scale of

the model. C o = 4.0 implies Ta/L = 0.67 which is within the scatter of

observed values (Pasquill and Smith 1983, §2.7). In non-stationary

conditions T is not the integral time-scale, but is simply a measure of

the time-scale on which particle velocities become decorrelated.

The above model has been designed to be consistent with the

assumed form of kp and can claim to be more faithful in this respect

than previous models. However it is not completely satisfactory as it

ignores one aspect of the field 6. (k,t) which is not reflected in kp,

namely the fact that u	 does not depend on x 2 and 11.2 does not depend

on x 1 (as discussed in §5.2). In particular, the model trajectories do-

not satisfy (5.2). For example consider the evolution of <U1(t)U1(0>

and <1.02(t)W2(0> for particle-pairs with position (y 1 ,y 2 ) in k-space at

time s. If Iy i - y 2 I » 1, the particles move according to (5.11) and

it follows that

<U1(t)U1(0> = <W2(t)U(t)> = 3 2 .	 (5.13)

If the model is to satisfy (5.2), then (5.13) must be true for all

initial separations and hence d i ( t)0 1-(0> = 6a2 for all initial

separations. However, using either the Fokker-Planck equation or It6's

formula for the system (5.1), the above model yields

d 1 (t)0 1 (0> = 6 2 - a4 (F62 (2AdF/dti + 5F))	 (t-s)2 +
A=IYI-Y2I/12

+ 0((t-s) 3 ),	 (5.14)

showing that the model trajectories do indeed violate (5.2) (it is easy

to see that FA 2 (26dF/d6 + 5F) cannot be identically zero).

It is of interest to ask if the model can be modified to satisfy

(5.2) and the well-mixed condition by choosing a different form for

(the physical reasoning leading to the choice of A given above is

strong and so we do not wish to alter the form of A). Although it may
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be possible to choose .4) so that <0 1 (00i (0> is correct to order

(t-s) 2 , the author thinks it is unlikely that can be chosen so that

d1 (001 (0> is correct to all orders, and hence even less likely that

il) can be chosen so that (5.2) is satisfied. The author has however

been unable to prove the impossibility of satisfying both (5.2) and the

well-mixed condition.

Although the fact that the model violates (5.2) is a little

unsatisfactory in principle, the results of a number of numerical

simulations, presented below, suggest that this is not too serious in

practice.

In the calculations of mean and mean square concentration

presented in chapter 6 below, it is convenient to follow the particles

backwards and to use (3.11) (with p assumed constant) to calculate <c2>

at a point (the point from which the trajectories start). When the

trajectories are evaluated in the forward direction, only the mean

square of c averaged over some finite sample volume can be obtained

since a large number of pair trajectories need to pass through the

receptor to reduce statistical error. For the isotropic Gaussian

turbulence considered in this paper the calculation of the reverse

trajectories is straightforward. Let (R'(0,0'(0) denote the ensemble

of forward trajectories starting at (9,-N7) at time -s calculated from
..	 -

the model with a(t), 1(t), s(t) and T(t) replaced by a(-t), 1(-t),

c(-0 and T(-t) respectively. The theory presented in §4.2(v) implies

that the ensemble of trajectories (R(0,0(0) = (R'(-0,-0'(-0) is the

required ensemble of backwards trajectories starting at OM at time

S.
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5.5 Some Previously Proposed Two-Particle Models.

It is appropriate to compare the above model with some of the

models that have been proposed previously, and which were described

briefly in §5.1. In this section several such models will be described

and some of their basic properties discussed. A more detailed

comparison of these models with the new model described in §5.4 will be

given in the next section where the values of the two-particle

transition p.d.f.s for the various models will be compared.

The first model which we will consider is Richardson's (1926)

model.	 In this model it is assumed that the p.d.f. of the separation

of a pair of particles which have separation Ay at 	 time	 s,

i.e. p(016X(s)(6x14) satisfies the equation
AX'

aP _ a (K 	
8t	

aAx i	atoci

where K, the diffusivity, is proportional to A 4/3 . This assumption can

of course also be formulated in terms of a stochastic differential

equation for the evolution of the separation AX(t). It is of interest

that the new model presented above reduces to this form if we (i) allow

Co to tend to infinity, (ii) consider only the particle separation and

not the centroid motion, and (iii) restrict attention to inertial

subrange separations. The reason that the new model reduces to a model

of the same form as Richardson's is that, as C 0 4.3 , the random

increments b i d(j become large and cause the particle velocities to

vary rapidly.	 As a result the analysis given in §4.2(vi) applies and

shows that the model reduces to a diffusion equation model. The

analysis also gives a value for the particle separation diffusivity K

of (3.17/C 0 )0/36413, where, as indicated in §5.4, we have taken the

Kolmogorov constant C equal to 2.0. In the references to Richardson's

model given below it will be assumed that K has this value.
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The second model which we will consider is perhaps the simplest

two-particle model that can be expressed in the form (5.1). It is

defined as follows. For a pair of particles originating at position

(y i , y 2 ) in k-space at time s, choose the initial velocities to be

correlated, with <Ui(s)Ui(s)> = cr 2 Rii ((y 1 -y 2 )/i2).	 To be consistent1	 2	 _ _ 

with the assumptions about k p made in §5.4, we choose U 1 (s) and U2(s)

to be jointly Gaussian. Subsequently each particle moves independently

according to (5.11). We will call this the NGLS model since it owes

much to the ideas of Novikov (1963), Gifford (1982) and Lee and Stone

(1983) (see also Lin and Reid (1963)), although it is not identical to

the models proposed by these authors. For example, Novikov (1963) only

makes assumptions about the second moments of quantities while Gifford

(1982) and Lee and Stone (1983) only consider the component of the

motion in one direction, restrict consideration to stationary

conditions and do not make any specific assumption about the form of

the initial velocity distribution. In addition the models of Gifford

(1982) and Lee and Stone (1983) were intended to be used for following

clusters of particles rather than just two particles, but can of course

be applied to the problem of the dispersion of particle-pairs. We will

adopt the NGLS model as a representative example of the class of models

which yield a Gaussian p.d.f. for the separation of a pair of particles

which are initially coincident (i.e. the models of Lamb (1981), Sawford

(1982), Gifford (1982) and Lee and Stone (1983)).

The NGLS model has the advantage of satisfying (5.2); indeed,

together with a number of variants, it is the only model of the form

(5.1) proposed to date which satisfies (5.2). However it does not

satisfy the well-mixed condition, at least not with any physically

reasonable form for k p ; if the two particles approach closely at some

time after release, the model will not ensure that they have similar

velocities. Of course the NGLS equations for the evolution of the

particle-pair	 trajectories	 are	 consistent with the form kp cc
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a-6 exp(-0 1. 6 i /202 ), but this form is unrealistic in that it implies zero

correlation between velocities at neighbouring points. Also the

initial velocity distribution of the particle-pairs is not consistent

with this form.

The third model which we will consider is based 	 on	 the

one-dimensional model proposed by Durbin (1980), a model which has been

discussed and applied more widely in recent years than any other

(Durbin 1982; Sawford 1983, 1985; Egbert and Baker 1984; Sawford and

Hunt 1986; Thomson 1986b). Here we will consider the extension of this

model to non-stationary conditions (suggested by Durbin and reported in

Stapountzis et al (1986)). This

dAX = AUa (1-f)112dt

dEX	 ED a (1+01/2dt

dAU = - (65/T)dt + (2/x)1/2dC

dED = - (E0/i)dt + (2/T)1/2dC'

(5.15)

where AD = AU/(a(1 - 0 112 ), ED . EU/(a(1 + f) 1/2 ), C and C' are

independent Wiener processes and the correlation function f has the

form (5.6). In the same way as (5.11) was expressed in the form

(5.12), it is straightforward to express Durbin's model in the form

(5.1), although the equations then appear more complex. The initial

values of AD and ED are chosen to be independent and Gaussian with

variance 1. Because this model is one-dimensional, it is appropriate

to comment on the physical interpretation of AX and EX. In most of the

applications of the model that have been made to date (Durbin 1980;

Sawford 1983, 1985; Sawford and Hunt 1986), the values of AX and EX are

interpreted as the values of one component (say the x-component) of AX

and EX, and attention is restricted to source distributions which are-

homogeneous in the y- and z-directions (for more general source

distributions, the second moments of the concentration cannot be

calculated without knowledge of the distributions of the 	 other



Page 95

components of AX and EX).

Like the NGLS model, Durbin's model does not satisfy the

well-mixed condition, at least not with a form of k p which is

consistent with p being constant; indeed if the contaminant is

initially uniform in space (in every realisation), then the model

(5.15) predicts that the mean square concentration will be infinite at

all times after release (Sawford 1983; Egbert and Baker 1984). Durbin

gets round this problem by using the above model to calculate backwards

trajectories (with t in (5.15) interpreted as running in the opposite

direction to real time) and by using the equation

<c(xl , t i ) c(x2 , t 2 )> 	 (y y	 ,x ) x= f PX 1 ( S 1 ), X2 ( S 2 )1X 1 ( t i ), X 2 ( t 2 ) _ 1 9 _2 -1 -2
S1<t1,S2t2

x <S(y1 ,s 1 ) S(y 2 ,s 2 )> dy i dy2 ds i ds 2 (5.16)

to obtain concentration statistics from the trajectory statistics.

This automatically ensures that fluctuations will not appear if the

initial conditions are well-mixed. As in the NGLS model, there is a

form of kp which is consistent with Durbin's model, namely

1	 (Au)2	 (Eu)2

k p	 	  exp - 	
a2 (1-0(1+0 112 	( 2a2 (1-f)	 2a2(1+0J'

but this form implies infinite <p 2 > (<p(x1)p(x2)> is proportional to

f ftp &I).	 In a compressible flow the reverse formulation in the form

(5.16) is not valid and (3.11) should be used instead. 	 By using

(5.16), Durbin is effectively assuming that the behaviour of

<c(x1,t1)c(x2,t2)>

<p(x1 ,t1)p(x2,t2)>

in a variable density flow is similar to that of <c(x 1 ,t 1 )c(x 2 ,t 2 )> in

a constant density flow. Although it seems reasonable that a model

which is not completely consistent with p being constant can be

corrected by this means, it is far from clear that this is adequate for

a model with infinite <p 2 >.	 Thomson (1986b) showed that, in this
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model, particle-pairs released at (y 1 ,y 2 ) have an initial mean relative

acceleration unless ly 1 - y 2 1 » 1. Hence this model, like the new

model presented in §5.4 above, fails to satisfy (5.2).

In the results obtained with the above models presented below, T,

a, 1 and c are assumed to be related as in the new model described in

§5.4.

5.6 Properties of the Two-Particle Transition P.D.F. in the Models.

(i) Introduction.

We can learn something about the models described in §§5.4 and 5.5

above by looking at some of the properties of the two-particle

transition p.d.f.as predicted by the
PlIi(t1),X2(t2)1X1(s1),X2(s2)

models.	 One of the most important quantities that can be calculated

fromPXl(ti),X2(t)1X1(s1),X2(s2)
i s the distribution of the particle2 

separation	 X.	 p A (6x,t1s) will be used to denote the p.d.f. of AX at

time t for particle-pairs with zero separation at time s, i.e.

pA(6x,t1s) = P6X(016x(s)(k10).

In terms of px ft 1 x ft \ix fs 1 x fs‘ , pA can be expressed as
-1 v 1 9 -2 v 2 I -1 v 1 9 -2 v 21

pA (6x,t1s) =

PX1 ( t ), X 2 (01 X1 (s),X2 (s) ((E>-=+k)112,(E-6)11210,O) dE314

Because we are considering isotropic turbulence, this p.d.f. is a

function of 6 . 16x1 only and so is sometimes written as p A (6,t1s) or,

if it is clear what values t and s take, as p(6). However this is not

the p.d.f. of 6 which is equal to 4n6 2 p A (6) (here, and also in similar

situations below, it is convenient to use A to denote both 16)(1 and-

WI; it should be clear from the context which is meant). The reason

why pA is an important quantity is that it has a strong effect on the

mean square concentration, with more strongly peaked shapes leading to

larger values of the mean square concentration (see Sawford (1983) and
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also the discussion of mean square concentration given in chapter 6

below - in particular equations (6.1) and (6.10)). In the same way

p z (Ex,tls) will denote the p.d.f. of EX at time t for particle-pairs

with both particles coincident at the origin at time s. 	 This is a

function of E = lExl only and so will sometimes be written as

p z (E,tls). In addition, for particle-pairs with both particles at the

origin at time s, the distributions of X 1 , AX and EX are spherically

symmetric. For this case al (tIs), aa (tIs) and az (tIs) will be used to

denote the root mean square value of one component of X i , AX and EX

respectively at time t. For one-dimensional models, such as Durbin's

(1980), the above definitions do not apply directly. We note here

that, in such models, p a , p z , aa and az will be used to denote the

p.d.f.s and mean square values of AX and EX for particle-pairs which

are coincident at the origin at time s.

In the following we will investigate the properties of the

two-particle transition p.d.f. from the new model for both stationary

and decaying turbulence. These properties will be compared with the

properties of the other models described in §5.5.

(ii) Stationary turbulence.

Let us first consider the idealised case where the turbulence is

stationary. Only forward trajectory statistics will be described here;

because the flow is stationary, the discussion in §5.4 on the way to

calculate backwards trajectories implies that these statistics can also

be interpreted as the statistics of backwards trajectories. Figure

5.1(a) shows the p.d.f. of the distribution of AX in the new model at

time t for zero separation at time s.	 Unfortunately, ph cannot be

calculated analytically and so numerical results are shown. The

details of the numerical calculations are given in Appendix C. In

fact, in the numerical simulations it is impossible to start with

particles which are truly coincident, and so a small initial separation
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Figure 5.1: The shape of p A (6,t1s) in stationary turbulence. The

curves are normalised with zeroth and second moments equal to unity as

if they were one-dimensional p.d.f.s. (a), (b), (c), (d) and (e) show

the results for the new model: (a) shows the results obtained without

"particle splitting", (b) shows results obtained using the particle

splitting technique, (c) shows results obtained using the particle

splitting technique plotted against 6 213 to show the a-062/3 behaviour

_	 .
near 6 . 0, (d) shows p A (6,tls) and (e) shows p A (6,t1s). (f) shows pA

from Richardson's (1926) model and (g) shows p a from Durbin's (1980)

model. In all cases except (f), the numbers attached to the curves

indicate values of t-s normalised by a 2 /e, and the unlabelled line is a

Gaussian distribution.	 The shape of pA in Richardson's model (figure

5.1(f)) is independent of t-s.
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Figure 5.1 continued.
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Figure 5.1 continued.
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equal to 2x10-6 1 was used. The results are insensitive to changes in

this quantity of an order of magnitude. This is discussed further in

Appendix C. The curves shown consist of straight lines between a

number of data points, each data point representing the average value

of p. over a small interval of A values. It can be seen that the

distribution changes from a strongly peaked distribution to a Gaussian

distribution as t increases. This was also observed by Thomson (1986b) 
1

using what is essentially a one-dimensional version of the model. At

small times, t-s c< T, the shape is independent of t-s. This is to be

expected on dimensional grounds because, from inertial subrange theory,

p. should depend only on A, t-s and E.

One of the problems of having to calculate p. numerically is that

it is very difficult to obtain an accurate value for p.(0). This is

because very few particle-pairs pass sufficiently close to A = 0 and so

the results show a great deal of statistical scatter. In order to

obtain a better estimate of p. near the origin, the following "particle

splitting" technique was applied. 	 Each particle-pair is assigned a

weight which indicates the importance to be attached to the particle in .

calculating the statistics. Whenever, for any integer n in the range 0

to 18, the separation of the particles becomes less than L, .

aA 2' 13 x10-2 , having been greater than An in the previous time-step, the

particle-pair is divided into two copies which then move independently,

each pair being given a weight equal to half the weight assigned to the

parent particle-pair. Similarly whenever the separation of the

particles becomes greater than A. (having been less than A. in the

previous step) the pair has a probability of 1/2 of being annihilated.

If the particle-pair survives, the weighting assigned to it is doubled.

This method ensures that there are a lot of particle-pairs with small

separations, each having a very small weight. A sketch of a proof

showing that this does not introduce a bias into the results but merely

alters the accuracy is given in Appendix C. The value of a. which was
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used in defining An was obtained from the calculations made without the

particle splitting technique. The result is shown in figure 5.1(b).

Because of the increased accuracy at small separations, it is possible

to place the data points from which the curves are constructed closer

together. In order to resolve the behaviour near A.0, the data points

have been placed as close together as is possible without the scatter

becoming unacceptable. More accurate results could be obtained by

following a greater number of particles; however, as with all Monte

Carlo methods, the convergence is slow, the error decreasing as N-1/2

where N is the number of particle-pairs.

It is clear from (3.6) that p a (Lx,t1s) is equal to the value of

<c(x,t)c(x + Ax/2,t)>	 which	 results from an initially isotropic

concentration field with <c(x, ․ )c(x + Ax12, ․ )> . 8(Ax). Now, for A

lying in the inertial subrange, classical theory (e.g. Monin and Yaglom

(1975, p384)) predicts that the concentration covariance function

<c(x,t)c(x + Ax12,0> has the form a-HA 2 " 3 . Hence pa should also have

this form for small A. The model results for small t-s do indeed agree

with this as is shown by the straight-line behaviour near the origin in

figure 5.1(c). At larger t-s (not shown in figure 5.1(c)) the inertial

subrange behaviour ceases to be apparent in the graph of 1) 6 ; this is to

be expected because the region in which the inertial subrange form

should occur (A « 1) becomes small relative to the length-scale a

which p a varies.

Figures 5.1(d) and 5.1(e) show the p.d.f.s of (AX 2 ,AX3 ) and of

ti)( 3 .	 These	 are	 functions of (( n0( 2 ) 2 + (tx3)2)1/2 and 16x31

_	 .
respectively, and will be written as p Aj(A) and pA (A) where A is to be

) 2 + (hx3)2)1/2interpreted, with a slight abuse of notation, as (0,1x 2

or Ax. They are closer to a Gaussian distribution than p a , the peak

in p a at small separations being smoothed by the process of integrating

pt, over Ax' or over Ax' and Ax 2 .	 (The use of superscripts for
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cartesian components becomes a bit clumsy here, but appears unavoidable

- subscripts are already used for distinguishing between particles 1

and 2 and the use of y and z for x 2 and x 3 is liable to be confused

with the use of x and y to denote two points in space.)_	 ..

Figure 5.1(f)shows the shape of p A in Richardson's (1926) model.

For Richardson's model, p A can be found analytically and is equal to 1

m'exp(-0'A2/3 ) where m' and 0' are functions of t-s (Monin and Yaglom

1975, p574). As indicated in §5.1, the shape of p A is in agreement

with the inertial subrange prediction a- 2 ' 3 for small A. It is also

independent of t-s as is expected on dimensional grounds. The shape is

quite similar to that of the new model at small times (fig 5.1(b))

suggesting that, at least as far as the shape of p A is concerned, the

new model is behaving in a way that is not very different from its

asymptotic form for large C o (as noted in §5.5 the new model reduces to

Richardson's model as C04w).

In Durbin's (1980) model, p A can also be calculated analytically

(Durbin 1980) and the result is shown in figure 5.1(g). In Durbin's

model, the distribution is always strongly peaked and infinite at A .

0.	 The singularity in Durbin's p.d.f. would result in infinite mean

square concentration if the forward formulation (3.6) were used. This

is of course associated with the unphysical form of gp with which

Durbin's model is consistent. In the NGLS model p A is exactly Gaussian

at all times.

The similarity in the shape of p A at times t-s « T in the new

model and the model of Durbin is striking. However the difference in

behaviour near the origin has some important consequences. Firstly the

new model can treat the problem of a point source and does not require

the explicit treatment of molecular diffusion which is needed to smooth

the singularity in Durbin's model (Sawford and Hunt 1986). Also,

because of the shapes of p A and p E (see below for discussion of p E ) and
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the fact that aA and aE tend to infinity as t-s 4 co , it follows that,

for any given length-scale, the values of p a and p z from the new model

will show little variation on this scale when t-s is sufficiently

large. It seems reasonable to suppose the same is also true of the

quantit y D
.X (t) X (t)IX (s) X (s)°11'x2137')°'

and hence (using the

above noted fact that the model statistics for forward and backward

trajectories are equal in stationary conditions) of the quantity

PX1(s),X2(s)1X1(t),X2(t)(Y1PY21).	
Now,	 for	 an	 instantaneous

spatially-bounded deterministic source, (3.11) can be written (assuming

p is constant) as

<c(x,0 2 > =	 D S(y 1 )S(y 2 ) y iS(37 1))	 dy2J 'Xi(s),X2(s)1X1(t),X2(t)(n/Y210.0

where s is the time at which the contaminant is released (S here has a

slightly different meaning to the S introduced in §3.1, being the

amount of tracer released per unit volume, not per unit space-time

volume).	 It	 follows from the above property of the quantity

that this can be approximated when
X2 (s),X 2 (s)IX 1 (t),X 2 (t) ( Y1 -

t-s is large by

<c(x,0 2 > =dy, dy2
PX 2 (s), X 2 (s)1X 1 (t), X 2 (t)'	 °	

S(y)S(y2)	 ,
(Y Yl*.D

where y is some point in the source region. Hence, provided the total

amount of material released remains fixed, <c 2 > becomes independent of

source size in the new model. Similar arguments, using I7) A or pa

instead of pA , show that <c 2 > becomes independent of source "size"

(i.e. source thickness) for instantaneous area and line sources also.

In	 contrast, the value of D'),(4(s),X2(s)1X1(t),X2(t)(Ylq211(.0.) 	
in

Durbin's model shows variations on a length-scale 1 or less at all

times due to the singularity in p A . Hence, as discussed by Durbin

(1980) and Sawford (1983), <c 2 > never becomes independent of the source

size for sources of size less than 1. Although it is not clear how to
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prove from first principles that this behaviour is wrong, it seems

intuitively very unlikely.

A partial justification of the idea that <c 2 > should become

independent of source size is possible by considering the equality

noted above between p A (hx,t1s) and the spatial covariance function of a

hypothetical isotropic concentration field. We have already noted that

this implies p A = a-062/3 for 6 lying in the inertial subrange. Now at

large times a2A grows like t and so a cannot decrease faster than t-3/2.

Now a is the variance of our hypothetical concentration field and 0 is

proportional to its rate of dissipation (see e.g. Monin and Yaglom

(1975, p384)). Hence 0/a must become small, since otherwise a would

decrease exponentially. It follows that p A is likely to show little

variation on small scales for large t-s. In addition, it seems likely

that p E will also show little variation on small scales at large t-s

(see discussion of p E below). Hence, for the same reasons as given

above in discussing the behaviour of <c 2 > in the model, it seems likely

that the value of <c 2 > for instantaneous plane, line and compact

sources will become independent of source size at large times.

It should be pointed out that, in most of the applications of

Durbin's model made to date (Durbin 1980; Sawford 1983, 1985; Sawford

and Hunt 1986), p a is, as noted in §5.5, interpreted as the p.d.f. of

one component of AX (this is the logical interpretation since the model

is one-dimensional). Hence it should be compared with the value of pA

from the new model (figure 5.1(e)). If this is done the agreement in

shape is much worse. It is not proposed here to investigate in detail

how much of this difference is due to the one-dimensionality of

Durbin's model and how much is a result of the failure to satisfy the

"well-mixed condition". However, for t-s a T, the model of Thomson

(1986b) (which is essentially a one-dimensional version of the model of

§5.4 and which satisfies the well-mixed condition) also shows a much
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stronger peak at A . 0 than does p a from the new model, suggesting that

the one-dimensionality of Durbin's model may be an important factor.

Figure 5.2 shows the p.d.f. of the distribution of EX. In the new

model it is close to Gaussian at all times. As in figure 5.1, the

scatter at small E is statistical noise. The value of p z in the NGLS

model is of course exactly Gaussian at all times. In Durbin's model I

(not shown) pE is also close to Gaussian (Sawford 1983). A Gaussian

shape for pE is to be expected at small times (as a consequence of the

assumed Gaussianity of the fixed point velocity distribution) and at

large times (on the basis of a central limit theorem type argument

similar to that in §1.1) and so the observed Gaussianity is not

surprising.

Figure 5.3 shows the growth of a l , aa and az in the new model and

in the NGLS model. The behaviour of aa in Richardson's (1926) model is

also shown (in Richardson's model there is of course no prediction for

al or az ). At small times a1 and aE are proportional to t-s as is to

be expected since the particle trajectories can be approximated by

straight lines over short times. In contrast a a grows like (t-s) 312 at

small times. This is to be expected on dimensional grounds since, for

small t-s, aa should depend only on c and t-s (Monin and Yaglom 1975,

p545). The "straight-line approximation" argument does not apply to

cr.	 This is because this approximation yields a a = 0 and so the

departure from straight-line motion dominates the behaviour of a A .	 At

large t-s, al , aA and az grow like (t-s ) 1/2 . The (t-s )1/2 growth of al

is expected on the basis of Taylor's (1921) result (see §1.1). Also Cl

and az are expected to grow in the same way as Cl at large t-s since,

at large t-s, the particle-pairs will have spent most of their time at

large separations where they travel independently. The values of al,

a and a1 from the NGLS model can be obtained analytically and are asA 

follows:
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1 2 3

2

Figure 5.2: The shape of p1 (E,t1s) from the new model in stationary

turbulence.	 The curves are normalised with zeroth and second moments

equal to unity as if they were one-dimensional p.d.f.s. The nnmherr:

attached to the curves indicate values of t-s normalised by a 2 /e, and

the unlabelled line is a Gaussian distribution.



Figure 5.3: al (tIs), aa (tIs) and az (tIs) in stationary turbulence.

The values of al , aA and az obtained from the new model are denoted by

415, A and, and the values obtained from the MGLS model are inrlicarPd

by -.-, --- and ---. The value of a a from Richardson's (1926) model is

denoted by
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a2 (tIs) = 2a 2 T2 (exp(-(t-s)/T) - 1 + (t-s)/T)

°Az 	 )	0.12 _ a2 1 2 (1T (1 - exp(-(t-s)/T))2

a2E (tIs)	 a2j. + U2-2T (1 - exp(-(t-s)/T))2

(see Appendix B).	 In the new model,	 the	 value	 of	 a	 is

indistinguishable from that in the NGLS model. This is as it should be

if (5.2) is not to be seriously violated. This is because, for large

= 0), <(X1) 2 > = <0q) 2 > = <(X 31 ) 2 >initial separation (with X1(s)

2a 2 T 2 (exp(-(t-s)/T) - 1 + (t-s)/T) in the new model (this follows from

a calculation similar to the calculations in Appendix B and the fact

that, for large initial separations, the motion of single particles

obeys (5.11)) and these quantities should be independent of initial

separation since they depend on the motion of one particle only. The

value of aA in the new model is smaller than the value from the NGLS

model. This is to be expected because, if the particles in the new

model approach closely at some time after release, their velocities

become highly correlated again, reducing the rate of growth of 0.6 . The

value of aA in Richardson's model can also be obtained analytically

and, taking K (3.171C 0 ) 0 /3 64/3 (see the discussion in §5.5), is

equal to (12.3/C 30 /2)0/2(t_s)3/2 (Monin and Yaglom 1975, p574). This

is plotted in figure 5.3 for C o = 4.0, the value adopted in the new

model.	 Only the values for small t-s are plotted since Richardson's

model is of course only applicable to inertial subrange behaviour. 	 In

the limit C0 40. , the new model should give the same results as

Richardson's model. The results in figure 5.3 show that aA is

considerably larger in Richardson's model than in the new model,

implying that C o . 4.0 is not sufficiently large for this limiting

behaviour to be found. Some further simulations with the new model

showed that a value of C o as large as 16.0 is needed for the two models

to give values of aA which agree to within 15 per cent, and a value of

32.0 is needed for agreement to within 5 per cent. 	 The Richardson
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model will not be considered further here, mainly because it does not

give predictions for the motion of the centroid of a pair of particles

and so is incapable, in most situations, of leading to predictions for

<c2>.

The results of the simulations enable us to see how seriously the

new model violates (5.2). Figure 5.4 shows the behaviour of certain 1

statistics of Xi for various initial values of the separation, which

was taken to be in the x 3 -direction. For initial separations much
larger than 1, the model reduces to (5.11) and the statistics of X i can

be calculated analytically. The statistics of X I should be independent

of A(s) if (5.2) is to be satisfied. The results show little

dependence on the initial separation. This is encouraging and suggests

that the violation of (5.2) may not be too serious. 	 Further evidence

to this effect is given in figure 5.5. The value of &Al i > does not
show any strong dependence on the initial separation, indicating either

that the higher order terms in (5.14) have a corrective effect or that

the power series expansion ceases to be applicable after a short time.

The general increase in di fr i > which does occur is due to the size of .
the time-step used and is, for small initial separation, much less than

that predicted by the first two terms in (5.14); if the NGLS model

(which satisfies (5.2) exactly) were solved numerically with the same

time-step a similar behaviour would be observed. We also note that the

distribution of X 1 in the model is Gaussian for large initial-

separations (this follows from (5.11) using the methods given in

Appendix B) and hence that it should be close to Gaussian for all

initial separations if (5.2) is to be approximately true. The

simulations indicate that this is in fact the case, with the p.d.f.s of

X	 for various initial separations and travel times (not shown) having
-1

a degree of scatter about a Gaussian distribution similar to that seen

in figure 5.2.
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Figure 5.4: (a) and (b) show values of <X 31 > and <(X 31 ) 2 > from the new

model for particle-pairs released at time s with various initial

separations in stationary turbulence. X 1 (s) is zero. o, a and A

indicate initial separations of 0, 0.021 and 21 respectively, the

initial separation being in the x 3 -direction with X 31 (s) > X(s). In

both figures the solid line indicates the analytic result for large

initial separation. The values of <(X1 ) 2 > and <(X 21 ) 2 > ( not shown) are

indistinguishable from <(X31)2>.
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time s with various initial separations in stationary turbulence. 6,

and A indicate initial separations of 0, 0.021 and 21 respectively.

The solid line is the analytic result for large initial separation.
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There is however one aspect of the new model which violates (5.2)

significantly.	 Consider the quantity SX 1 (t) . X1 (t) - X1 (s) -

U1
 (s)(t-s). This represents the departure in the position of a

-

particle from the position it would have had had it moved in a straight

line (see figure 5.6). 	 For t-s « T, <16)( 1 1 2 > should grow like

C0 c(t-s) 3 , the value which <1X112> takes when A(s) » 1 (this follows-

from (5.11) by a similar calculation to the calculations given in

Appendix B). As in (5.13), the average here is an average over

particle-pairs with a given position in k-space at time s. For A(s) =

0, the value of <16X112> from the model is significantly smaller than-

C0 c(t-s) 3 (see figure 5.7). Some insight into why this is so can be

obtained by considering SAX and SEX, defined in a way analogous to SX1

(see figure 5.6). It is easy to show that <16X 1 1 2 > + < 1SX 2 1 2 > .

<1SAX1 2 > + < 1SEX1 2 > and so, by symmetry, <16)( 1 1 2 > = WISAX1 2 > +

<1 E 1 2> ) . Hence, for t-s « T,

1/2(<186X1 2 > + < 18EXI 2 >) = C0 e(t-s) 3	(5.17)

should hold. In the model the leading order term in the Taylor series

for <1 SAX1 2 > and <1SEX1 2 > is C0 c(t-s) 3 (by, for example, applying It6's

formula) and so (5.17) is satisfied at small times. If A(s) « 1, then,

while A « 1 (i.e. for t-s « T), the stochastic differential equations

for SEX and (HUM = EU(t) - Eli(s) can be approximated by

dSEX = SEU dt,	 dSEU = ( C0 01/2c1

with EU(s) = 0 (the terms which have been omitted in this

approximation have an effect which is only significant over time-scales

of order T). Hence, again by a calculation similar to the calculations

given in Appendix B, <1SEX1 2 > = C 0 c(t-s) 3 for t-s c< T. However the

equations for SAX and SAU = AU(t) - AU(s) are much more complex and, in

addition to a (Co c) 1/2 dC term, the expression for dSAU contains terms-

which, for particle separations lying in the inertial subrange, are of

(0/11.1/	 Over a time of	 der (A2/01/3order	 ) 3 dt.	 ti	 o or	 these terms have an



trajectory

Xi( t)

Figure 5.6: Schematic illustration of the quantities 6X1 (t), 66X(t)

and 6EX(t) for a pair of particles with given positions at time s. For-

clarity, factors of V2 have been ignored, i.e. we have taken AX . X 	 -.-1

X2 and EX . (X1 + X 2 )/2 instead of AX = (X 1 - X 2 )//2 and EX . (X1 +«	 «	 «	 «	 «

X2)//2.
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Figure 5.6 continued.
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effect comparable to the effect of the (C 0 e) 1/2 dC term. Hence <16AX12>

= C0 e(t-s) 3 only holds for t-s	 (A(s)2/01/3. For (5(s)2/e)1/3	 t-s

T, <16AX1 2 > grows like (t-s) 3 but with a different coefficient. This

difference in the coefficient of (t-s) 3 for t-s	 (A(s) 2 1e) 1/3 and for

ms)2/01/3	 t-s	 T is clearly seen in the results obtained with an

initial separation of 2x10 -3 1 (figure 5.7). For this value of the

initial separation, the "cross-over" time (A(s)2/s)1/3 equals 10-2a2/e.

Consider a pair of particles whose initial separation lies well

within the inertial subrange and consider their motion over times for

which the evolution of SX and SAX is dominated by inertial subrange-1	 -

In the model, for which the inertial subrange extends to

arbitrarily high wave numbers and frequencies, this means restricting

consideration to initial separations with A(s) c< 1 and travel times

satisfying t-s « T. By assuming that the covariance between the

accelerations of two particles whose separation lies in the inertial

subrange is negligible, Monin and Yaglom (1975, pp546-547) and Sawford

(1984) deduce that <1 X1 1 2> = <1SAX1 2 > for such initial separations and

travel times. (Monin and Yaglom (1975) and Sawford (1984) were

principally concerned with the case where the initial separation is

zero or where the initial separation is non-zero and the travel time is

sufficiently	 large	 for	 the particles to forget their initial

separation. In this case <16AX1 2 > equals the mean square separation

<I1 2 >. 	 However their analysis applies more generally.) If this is

true it follows that the value of <16AX1 2 > in the model is incorrect

for times in the range (A(s) 2 /0 1/3 t-s T. However the argument in

Appendix D shows that the inertial subrange acceleration covariances

may be important in reality (they certainly are in the model since, as

we have noted, the model value of <16X 1 1 2 > is greater than <16AX1 2 > for

01(s)2/01/3	 t-s	 T), and that it is more likely that <16X 1 1 2 > is,

in reality, greater than <1X12> for times in the range (A(s)2/01/3

t-s	 T. Hence the model value of <16AX1 2 > is not unreasonable and the

eddies.
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cause of the problem could be the model's value for <18EXI2>.

It is not clear if the above problem is a serious flaw in the

model. However it should be pointed out that this flaw is not one

which is apparent in the single-time statistics of particle-pairs whose

trajectories commence at a given position in *-space. The single-time

statistics, at least as judged by the evidence presented earlier in

this section, show little evidence of violation of (5.2). For many

purposes, in particular for predicting concentration fluctuations in

the situations which will be considered in chapter 6, it is only the

single-time statistics which are important. 	 This suggests that the

violation of (5.2) may not matter in practice.

(iii) Decaying turbulence.

A number of simulations were also carried out in decaying

isotropic turbulence. The velocity field was assumed to decay

self-similarly with a2 varying as a:(t/s) -n where a5 is the value of a

at time s.	 n was taken to be 1.35, a value within the scatter of

values observed in grid turbulence (Warhaft 1984; Warhaft and Lumley .

1978). Of course the decay exponent measured in grid turbulence is the

exponent for the decay of a2 with downwind distance in a steady

inhomogeneous flow. However it can be interpreted as the exponent for

the decay in time of isotropic turbulence in the usual way (Bonin and

Yaglom 1975, pp115-116). 	 With this form for a2 , E is equal to

1.5n( a:/s )(t/s)-	 1), which, assuming the relation between a2 ,	 and 1

given in §5.4, implies 1 = (/2/3n)a5s(t/s

Trajectories of particle-pairs were simulated both forward and

backwards in time, the particles being coincident at the time of

release. The same release time was used in all the simulations.

Because the turbulence decays self-similarly, the results can be

resealed (Durbin 1982) to give results for other release times; for

)1-n/2.
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example, for any y > 0,

X X 1

PX (t).X (t)1X
1 (s), X.-2 (s)

( -1 , -2 0,0) =
.-1	 • —2 	 — 

6-3n,
Y	 FX1(yt),X2(yOIX1(yS),X2(ys)‘t1l	 ' ....2.„' 	

10,0).	 (5.18)

The shape of p A is shown in figure 5.8. Because of the scaling

relation (5.18), the shape of p A depends only on t/s. The shape I

becomes quite close to Gaussian as t/s 4 0; however there is some

indication that the shape remains more peaked than a Gaussian

distribution as t/s 4 m . Figure 5.9 shows the values of al , aA and az

from the new model and from the NGLS model. As is to be expected, the

behaviour of al , aA and az for small It-s1 is the same as in the

stationary case.	 For the forward trajectories, al , aA and az become,

at large times, proportional to (t-s) 1-n/2 , which is	 in	 turn

proportional to 1(t). This form of large time behaviour is expected on

dimensional grounds - at large times the particles forget the release

time s and so the spread can depend only on t (or t-s, which differs

negligibly from t at large t-s) and on a:s n , which is the only

dimensional constant in the problem (and is in fact independent of the

chosen value of s). An alternative way of understanding the (t-s

growth of a1 at large times is to consider Taylor's (1921) result

applied to the scaled velocity u1(t)/a(t), which, because the

turbulence is assumed to decay self-similarly, is expected to be a

stationary process when expressed as a function of the stretched time

t' defined by dt' = dt/t (Batchelor and Townsend 1956; Monin and Yaglom

1971, §9.4).	 The values from the NGLS model can be 	 obtained

analytically and are

.	
rq

2a2s2((t/s(r-q))r-q-1 
4- 

(t/s)-q-1 
r	

)
a2(t1s)1	 s	 l 

a2(t1s) . _2 _ 2 2 r/S)—q-1)2a S
A	

01	 s	 q

a2 (tIS) = a2 + 
a2s2((t/s)-q-1)2

E	 1	 s	
q

)1-n/2
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Figure 5.8: The shape of p 6 (6,t1s) from the new model in decaying

turbulence. The curves were obtained using the particle splitting

technique and are normalised with zeroth and second moments equal to

unity as if they were one-dimensional p.d.f.s. (a) shows results for

t>s (forward trajectories) and (b) shows results for t<s (backwards

trajectories).	 The numbers attached to the curves indicate values of

t/s for the forward trajectories and 	 s/t	 for	 the	 backwards

trajectories.	 In both figures the unlabelled line is a Gaussian

distribution.
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Figure 5.8 continued.
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Figure 5.9:	 al (tIs), aa (tIs) and a E (tIs) in decaying turbulence. 	 The

values of al , aa and aE obtained from the new model are denoted by o, A

ands', and the values obtained from the NGLS model are indicated by

-.-, --- and ---. (a) shows results for t>s (forward trajectories) and

(b) shows results for t<s (backwards trajectories).
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where r = a-n/2+1, q . a+n/2-1 for the forward trajectories (t>s) and r

= -a-n/2+1, q . -a+n/2-1 for the reverse trajectories (t<s), with a =

3nC0 /4 (see Appendix B). For the forward trajectories these

expressions were derived by Anand and Pope (1985), although in a rather

different context (Anand and Pope were considering not a random walk

model but a so-called p.d.f. model; however with the aid of some

approximations, Anand and Pope found that some aspects of their model

were related to the NGLS model considered here). As in the stationary

case the value of at, in the new model is considerably smaller than the

value from the NGLS model, while the values of al in the two models are

indistinguishable. The close agreement between the values of a l lends

support, as in the stationary case, to the idea that (5.2) is not

seriously violated. The homogeneity of the flow and equation (3.8)

imply that, in reality, a1 (t1s) . al (slt). This is satisfied exactly

in the NGLS model and to high accuracy in the new model. It is of

interest that the values of al (tIs)/aA (tIs) and al (tIs)/az (tIs) for the

backward trajectories do not tend to unity as t/s 4 0 while the values

for the forward trajectories do tend to unity as t/s 4 co . A

consequence of this is that a6 (tIs) > a(sit) in the limit t/s 4 co,

while, as a result of (3.10), p A (0,s1t) = p a (0,t1s). It follows that

the shape of p a (A,t1s) must be more peaked in the limit t/s 4 m than in

the limit t/s 4 0, as is observed in figure 5.8 (note this argument

does not apply to the NGLS model which does not satisfy (3.10) because

of the inconsistency noted in §5.5 between the initial conditions on

the particle velocities and the form of k p with which the model is

consistent). It will be seen below that this has implications for the

intensity of concentration fluctuations at large times.
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5.7 Summary.

The problem of how to formulate two-particle stochastic models has

been examined and it has been shown how the one-particle theory

discussed in chapter 4 can be applied to the two-particle case. A new

model has been designed for calculating dispersion in isotropic

constant density flows. The new model yields a well-mixed distribution 1

of particle-pairs in (*,Q)-space which is consistent with the constant

density constraint and with a physically reasonable form for the

two-point velocity correlation function. Previous models of the form

(5.1) (e.g. Durbin (1980), Lee and Stone (1983)) are consistent only

with well-mixed distributions which imply <p2 > is infinite or which

fail to account for the correlation of velocities in space. The new

model shows a more physically plausible behaviour for the particle

separation p.d.f. which, in contrast to previous models, agrees with

inertial subrange theory for small separations. The model is not

satisfactory in every respect as it violates the physical constraint

(5.2). However the degree of violation appears to be minor. Of course

the ultimate test of a model is not whether it satisfies certain

physical constraints, but how well it performs in comparison to

experimental data. In the next chapter the model is compared against

experimental data in some simple flows.
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6. PREDICTIONS OF CONCENTRATION VARIANCE FROM THE NEW MODEL.

In this chapter values of concentration variance a2 . <C2>—<C>2c

from the new model described in §5.4 are presented and some comparisons

with experimental data are made. Two types of situation are

considered, namely those involving isotropic concentration fields, and

those involving the inhomogeneous concentration fields which result I

from deterministic source distributions in which all the material is

released at a single time. Throughout this chapter it is assumed that

the fluid density p is constant.

6.1 Isotropic Concentration Fields.

The model described in §5.4 was used to calculate the decay of

isotropic scalar fluctuations in decaying isotropic turbulence. This

is one of the simplest flows involving scalar fluctuations, with the

results depending only on the separation of particle-pairs and not on

the motion of the particle-pair centroids. The results will be

compared below with the experimental data of Warhaft and Lumley (1978)

and Sreenivasan et al (1980). This data refers to the decay of scalar

fluctuations with downwind distance in grid turbulence, but we

interpret it here in the usual way as pertaining to the decay of scalar

fluctuations with time in isotropic turbulence (Monin and Yaglom 1975,

pp115-116). One of the interesting features of this flow is the way in

which the rate of decay of concentration fluctuations depends on the

ratio of the integral scales of the scalar and velocity fields (Warhaft

and Lumley 1978; Sreenivasan et al 1980; Antonopoulos-Domis 1981;

Newman et al 1981). In the experiments of Warhaft and Lumley (1978)

and Sreenivasan et al (1980) the scalar fluctuations were introduced by

a heated screen, or "mandoline", situated some distance downwind of the

turbulence producing grid. This arrangement enabled a range of values

of the length-scale ratio to be obtained. A complicating factor in

comparing the experimental data with the model is the low Reynolds
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number of the experiments and the consequent lack of any inertial

subrange.	 The model presented above has been designed for high

Reynolds number flows and so is not strictly applicable to the

experimental situation.	 However it seems unlikely that the low

Reynolds number of the experiments will have a strong qualitative

effect on the scalar variance decay rate, although there may well be

some quantitative effects.

The time at which the isotropic scalar field is introduced into

the flow will be denoted by s. The scalar field will be assumed to

have mean zero and Q(Ax,t) will denote its covariance function

<c(x+i2Ax,t)c(x,t)>. 	 As pointed out by Durbin (1982), for this

situation (3.11) takes the form

Q(Ax,t) = j 
P AXcol WC(0 ( 

A
y.I

Ax) Q(Ay, ․ ) dhy	 (6.1)

where Q(Ax, ․ ) is the covariance function at the time when the scalar is

introduced and

	

	
is the p.d.f. of the particle

kil,-w;Li

separation vector at time s given that the particle separation vector

equals Ax at time t. The concentration variance can then be obtained

as a2 = Q(0,t). We note in passing that (6.1) leads immediately to thec

(well known) fact that the Corrsin integral fQ(Ax,t)dAx is constant in

time (Monin and Yaglom 1975, §15.2) and shows that this constancy is a

consequence of the conservation of particle-pairs.	 Two forms of

Q(Ax, ․ ) were adopted, namely

a:(s)(1	 -	 (64 / ( 64	 4.	 14c ) ) 1 / 6 )
(6.2)

and

a2c (s)(1 -	
(62 /(62	 +12c))1/3),

in order to see how sensitive the results are to the shape of

(6.3)

Q(Ax, ․ ).

These forms have the correct inertial subrange form at small A. The

first form is closer to the experimental data on the shape of the

correlation function obtained by Yeh and van Atta (1973) downwind of a

heated turbulence producing grid, although of course there is no reason
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why the data of Yeh and van Atta should be especially relevant to the

shape of the scalar correlation function very close to the heated

screen (in fact the scalar field will not even be isotropic close to

the screen; however we will ignore such complications here). Both

forms, and the data of Yeh and van Atta, are shown in figure 6.1. The

integral length-scale Lc of the scalar field is equal to 0.6621	 forc

the form (6.2) and 1.061 c for the form (6.3). As in §5.4, L will

denote the integral length-scale of the velocity field.

Figure 6.2(a) and (b) show the evolution of a: with time as given

by the new model.	 At small times the rate of decay of a2 dependsc

strongly on the initial value of L/L c and, except for large values of

L/L	 in the simulations with Q(Lx, ․ ) given by (6.3), the initialc

variation of 02 is close to a power law, a2 cc t—m .	 This strongc

dependence on Lac was also obtained by Durbin (1982) and is observed

in the experimental data. The power law exponent m at small times is

plotted in figure 6.3 together with the heated screen (or "mandoline")

data of Warhaft and Lumley (1978) and Sreenivasan et al (1980). The

model shows the correct qualitative behaviour although the decay

exponents are generally slightly too large. Better quantitative

agreement could almost certainly be obtained by adjusting the model

parameters (in particular the value of C o ); however this has not been

attempted here.

The variation of decay rate with the initial length-scale of the

concentration field can be understood quite simply in terms of equation

(6.1). If Q(Lx, ․ ) varies little over distances comparable to the

separation at time s of particle-pairs whose separation is zero at time

t, then (6.1) implies

a:(t) = Q(0,t) = Q(0, ․ ) fPAX(s)Ipx(t)(6Y10) dAy

= Q(0, ․ ) = a:(s),



1.0

0.8

0.6

Q(Ax, ․ )

a2 (s)	 0.4
c `

0.2

0

i

A

Figure 6.1: The initial correlation function of the concentration

field.	 • and ---- indicate equations (6.2) and (6.3) respectively

while ---- is the experimental data of Yeh and van Atta (1973). The

curves are normalised so that the separation at which the correlation

drops to 0.5 is the same for each curve.
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obtained with Q given by (6.2) and (b) with Q given by (6.3). The

solid lines in (a) and (b) represent the theoretical decay rates at

large t/s, which are proportional to t -0.975 and t-°'65 respectively.
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Figure 6.3: Comparison of the decay exponent m from the model with

experimental data. o, model values with Q(Lx, ․ ) given by (6.2); o,

model values with Q(Lx, ․ ) given by (6.3); x, values from Warhaft and

Lumley (1978); +, values from Sreenivasan et al (1980). The

length-scale ratios for Warhaft and Lumley's experiments were estimated

from the spectral peak data given in their figure 16. The values of m

given for Sreenivasan et al's experiments were obtained by replotting

their analytic fit to the data (their equation (5)) against distance

from the turbulence grid instead of distance from the heating screen.

When plotted in this way, the decay exponent varies with downstream

distance. The three values which have been plotted are values obtained

at three selected downstream distances. Sreenivasan et al's values of

L/L also vary with downstream distance, and the values plotted

(corresponding	 to the three selected downstream distances) were

obtained from Sreenivasan et al's figure 7.
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showing that a(t) is approximately equal to the initial value a(s).

The larger the length-scale on which Q(6x, ․ ) varies, the more

accurately the above approximation holds and the slower is the rate of

decay of a!.	 At the other extreme, if Q(6y, ․ ) has a very short

length-scale and is negligibly small at values of Ay for which

(0I6x),
136X(s)16X(t)is significantly different from

AX(s)16X(t)(AY.1k)

then (6.1) can be approximated by

.Q(6x,t) =	 X(s)16X(t)°1	
f

60	
Q(Ay, ․ ) dAy	 (6.4)

Because a2 grows like (t-s) 3 at small t-s 1 P ( 5 )1 (t)010' and hencea

also a: (t), decay like (t-s) -9/2 . This shows that, in the limit of

small scalar length-scale, a2 decays faster than any power of t atc

small times after release.

For large times the model decay rates approach a value which is

independent of the initial value of L/L c . The following argument gives

a simple explanation of the asymptotic value of the decay exponent. As

t 4 c° the length-scale on which P6X(s)16X(t)(6)16x) varies increases-

indefinitely. It follows that, provided the Corrsin integral

fQ(6x, ․ )d6x is finite and non-zero, (6.1) can be approximated by (6.4)

(this approximation is similar to the approximations considered in §5.6

when discussing whether source size remains important at large times).

Because aA (s1t) varies like L(t) at large times (see §5.6(iii)), it

follows that a: varies like 1/L 3 , i.e. t - °' 975 , as is observed in the

simulations which were carried out with Q(6x, ․ ) given by (6.2) (figure

6.2(a)). For (6.3) however, the Corrsin integral is infinite with

Q(Ax, ․ ) proportional to 1/6 2 for large 6. In this case the dominant

contribution to the integral in (6.1) comes, at large times, from large

values of 16y1. It follows, by a similar argument to that given above,

that a2 decays like 1/L2 at large times, as is observed in the

simulations (figure 6.2(b)). This difference in behaviour, which is

also found in two-point spectral closures such as the eddy-damped
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quasi-normal Markovian approximation (Larchevèque et al 1980), shows

that the asymptotic value of the decay exponent may be quite sensitive

to the form of Q.

The experimental data show little sign of an approach to a

universal decay exponent. However, as discussed by Larchevéque et al

(1980) and Nelkin and Kerr (1981), this may well be due to the fact 1

that the experimental data do not extend to large enough values of t/s.

There seems little merit in a more detailed comparison of the model

decay curves with the experimental data since the initial shape of

Q(6y, ․ ) is unknown and it was seen above that the large time behaviour..

is quite sensitive to this shape. However we note that for large

initial values of La c , the experimental data (Sreenivasan et al 1980)

shows m decreasing as t/s increases in qualitative agreement with the

model results shown in figure 6.2 (note Sreenivasan et al plot a:

against distance from the heated screen instead of distance from the

turbulence grid; when plotted in this way the data are quite close to a

power law throughout the region in which the measurements were made).

6.2 Instantaneous Deterministic Sources.

(i) Introduction.

In this section deterministic instantaneous sources are considered

and the release time will be denoted by s. For t > s, (3.9) and (3.11)

can then be written as

(5,1x)<c(x,0> = 1 pX(s) I X(t)	 s(y)_ 	dY (6.5)

and

<c(x,t) 2 > .	 D
I . X 2 (s),X 2 (s)IX 2 (t),X 2 (t) ( Y it Y2 1) x

x S(y 2 )S(y 2 ) dy 2 dy 2	(6.6)

where S(x) is the source strength (as in §5.6, S here has a slightly

different meaning to the S introduced in chapter 3, being the amount of
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tracer released per unit volume, not per unit space-time volume).	 It

is useful to apply an approximation introduced by Sawford (1983) and

replace
X(s)IX(t)1 	 in (6 .5 ) by

G 3 (y-x 9
 a2(slt))

•-•
(6.7)

,y2lx,x) in (6.6) byand PX1(s),X2(s)1),;1(t),X2(trY1

PA (4, s 1 t ) G 3 (Ey-xi2,a2E (slt))	 (6.8)

where Ay = (y l - y 2 )/12, Ey . ( y1 + y 2 )/12 and Gx (x,a2 ) denotes a

X-dimensional Gaussian distribution with variance a 2 , i.e.

G 3 (x,a2 ) -	
1 	

exp(-Ix12/2a2)
(20 312 a3

G 2 (x,a2 ) = 1	 exp( -((x2)244x3)2)/2a2)

2 TEcr2

G 1 (x,a2 ) -	
1	 exp(-(x3 )2/2a2).

(201/2a

The assumptions involved here are that the distribution of X and EX are

approximately Gaussian (which is true) and that, for particles with

separation zero at time s, AX and EX are approximately independent.

The latter assumption is hard to verify directly but appears reasonable

because of the weak dependence of dEX on AX, the absence of any

dependence of dbX on EX, and the fact that the covariance of AX and EX

is zero. A comparison presented below between values of a obtained

with and without this approximation gives some indirect support for the

assumption. The advantages of using the approximations (6.7) and (6.8)

are that it reduces statistical noise and makes it easier to see how

the different aspects of the one- and two-particle transition p.d.f.s

, GA ,(e.g. al aE , shape of p a ) influence a.

Calculations of <c 2 > and <c> were carried out for area, line and

compact sources centred on the origin. The source size will be denoted

by aa . The source is taken to be Gaussian, i.e. S(x) = G (x a 2 ) wherex	 o
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X is 1 for an area source, 2 for a line source and 3 for a compact

source. As discussed by Sawford (1983), <c> and <c 2 > are, with the

approximations (6.7) and (6.8), given by

<c(x,t)> = Gx (x,a21 (slt) + a 2o )	 (6.9)

and

<c(x,t) 2 > = f P A ( 11Y, s 1 t ) Gx (tiy,a) dAy G x (x12,a2z ( slt) + a).	 (6.10)

Some calculations will also be presented for two parallel Gaussian area

sources.	 For this situation expressions analogous to (6.9) and (6.10)

can be easily derived.

(ii) Stationary turbulence.

Figures 6.4(a), (b) and (c) show values of a /<c> at x 	 0 for-

area, line and compact sources of various sizes. Some statistical

noise is evident at small values of a /<c>, especially at large times.

This is because, when a /<c> is small, small errors in <c 2 > and <c> can

result in a large error in a. . The results show clearly the strong

effect which source size has near the source and suggest that a./<c>

becomes independent of source size and tends to zero at large time.

Because of statistical noise, it is impossible, in the absence of an

analytic solution to the model, to state with certainty that the model

value of a. /<c> tends to zero. However, if p a (bx,s1t) is exactly

Gaussian at large t , then (6.9) and (6.10) imply

a (ul(11)1-u0)

<0

	

	 N-2%0./2
((026(slo+aga21(slt 11-u0"

(6.11)

at large times. Now al (slt)/aa (slt) and al (slt)/ar (sit) tend to unity

as t m and so, if (6.11) is true, a. /<c> 4 0 at large times. This

behaviour agrees with that shown by the NGLS model but is in marked

contrast to Durbin's (1980) model where ac /<c> tends to a non-zero

constant depending on source size. An argument which suggests that

a /<c> tends to zero in reality at large times can be constructed as
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follows. At large times the two particles in a pair will have spent

most of their time at large separations where they move independently.

Hence it seems likely that X 1 (t) and X 2 (t) become asymptotically

independent as t 4 co . As a result, using the fact that the model's

forward and reverse statistics are identical in stationary conditions,

p
312(s),X2(s)1X2(t),X2(t)(Ylq21)101) =

X ( s )I X ( t ) 1 ' 	 PX(s)IX(t)(Y219

at large times and it follows from (6.5) and (6.6) that ac /<c> = 0.

Values of ac /<c> for an area source, obtained without using the

approximation (6.8) (but still using (6.7)) are shown in figure 6.4(d).

In evaluating (6.6), the two-particle transition p.d.f. was represented

as a sum of a number of delta functions located at the positions of the

particle-pairs in the simulation. At small times the results show good

agreement with the results obtained using (6.8) (figure 6.4(a)),

lending support to the assumption that AX and EX are approximately-

independent. At larger times however the scatter becomes very great

due to the small number of particle-pairs passing through the source.

For example, for small sources at large times the expected number of

particle-pairs passing through the source can be less than one. In

this situation either no particle-pairs pass through and the calculated

value of <c 2 > is zero, or one or more particle-pairs pass through and

a /<c> is large.	 It may be possible to improve matters by smoothing

the two-particle transition p.d.f. and by the use of a suitable form of

particle	 splitting	 to ensure that there are always a lot of

particle-pairs near the source; however this has not been attempted

here.	 For line and compact sources (not shown) the scatter is even

greater.

Figure 6.5 shows a comparison between the model results and the

experimental wind tunnel data of Fackrell and Robins (1982). In the

wind tunnel experiments material was released into a turbulent boundary
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experimental data of Fackrell and Robins (1982). Model results are

indicated by solid symbols and experimental results by open symbols.
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layer from a continuous compact elevated source. For comparison with

the model, the experimental data obtained at a distance x downwind of

the source is regarded as data obtained at time x/U . after the release

of an instantaneous line source in stationary isotropic turbulence

(here U . denotes the mean velocity at the source in the experiments).

Provided the anisotropy of the flow can be neglected, this should be a

good approximation; this is because the intensity of turbulence in the

experiments was small (see e.g. Townsend (1954), Anand and Pope (1985)

or Sawford and Hunt (1986) for a discussion of a similar approximation

- the approximation of a continuous line source by an instantaneous

area source). The wind tunnel results are of course affected by the

shear and the inhomogeneity in the flow and the anisotropy of the

(one-point) velocity covariance tensor <u i. u!>; however the effect of

the shear and inhomogeneity should be unimportant for travel times less

than about 0.5a2 /E, the time at which the tracer first reaches the

ground in significant quantities. In contrast the anisotropy of the

velocity covariance tensor is likely to have some effect on the

results, but, because the anisotropy is not large, the effect is

unlikely to be of major importance. In plotting the experimental

results in figure 6.5, U2 was taken to be the average of the velocity

variances in three orthogonal directions. The agreement between the

model and experimental results is good although, because of the

uncertainty in the universal constant C o and the arbitrary way in which

f was chosen (equation (5.6)), this may be partly fortuitous. It is

somewhat surprising that the agreement remains good for t-s > 0.5a2/c

when the effect of shear and inhomogeneity might be expected to be

significant.	 The observed and modelled behaviour is different to the

type of behaviour seen in Durbin's model where a /<c> increasesc

monotonically to an asymptotic value.
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Figure 6.6 shows examples of profiles of ac for a line source with

ao equal to 2.22x10-2 a3 /8, the source size used in most of Fackrell and

Robins experiments. As time increases the profile evolves through

three stages.	 At first the ac profile has its peak away from the

origin at the point where the gradient of <c> is greatest. 	 As time

advances the peak moves towards the origin and, in what will be

referred to as the second stage, the peak is at x=0. This stage lasts

from t-s = 0.05a2 /€ to t-s = 2a2 /E. In the third and final stage, the

off centre peak reappears. At all times the ac profile is somewhat

wider than the profile of the mean concentration. Similar behaviour is

observed for other small source sizes, although the time of transition

between the first and second stages increases with source size. For

large sources, with ao comparable to a3 /e, the behaviour is somewhat

different, the first stage lasting so long that it merges into the

third stage with the second stage being squeezed out of existence. For

area sources the second stage begins later and ends earlier while the

reverse is true for compact sources. In the case of compact sources

the evidence for the reappearance of the off-centre peak is not so

clear cut, the peak appearing and disappearing repeatedly at large

times due to the statistical scatter discussed above. The first stage

in the evolution of ac is to be expected because, at small times after

release, the fluctuations arise directly from the local gradients of

mean concentration. Some understanding of the second stage can be

obtained by considering (6.9) and (6.10). These equations imply that

the peak will occur off the centre line when

<c(0,t ) 2 > a21 (slt) + cr20

<c(0,t )> 2 a2E (slt) + a(23

in particular, since cr2E 4 2a21 , the peak must be on the centre line when

1.	 At large times pA becomes close to Gaussian. If pA is
c

exactly Gaussian, then (6.9), (6.10) and the fact that a 1 (slt)/aA (slt)

and a1 (slt)/aE (slt) tend to unity at large t imply that the left hand

< 1;	 (6.12)
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side of (6.12) is less than 1 at large t (and approaches I as t 4 02)

and so explains the reappearance of the off-centre peak in the third

stage. The reappearance of the off-centre peak suggests that at large

times ac is again partly determined by local processes, with a c peaking

in the vicinity of the point where the production of concentration

variance from the local mean concentration gradient is a maximum. The

data collected by Fackrell and Robins (1982) were obtained at travel

times in the range 0.26a 2 /c to 1.74a2 /c, times which the model predicts

will lie within the second stage of evolution. The measured ac

profiles are consistent with this, showing a centre line peak and a

similar form to the model profiles.	 The width of the model's 
'IC

profile is in good agreement with the experimental data; for the times

at which the experimental data was obtained, both the model and the

experimental ac profile half widths lie between 1.4 and 1.6 times the

half width of the <c> profile.

(iii) Decaying turbulence.

Figure 6.7 shows model values of ac /<c> at x = 0 for dispersion

from an area source in decaying turbulence. As in the stationary case

the values are strongly affected by the source size at small times, but

become independent of source size at large times. However, in contrast

to the results obtained in stationary conditions, ac /<c> approaches a

small non-zero constant at large time. If p 6 (Ax,s1t) is exactly

Gaussian for t » s then (6.11) holds and this constant can be expressed

as

I (al(510) 2	 )1/2

Lim	 	  -
t/s4 co	 LTA(sit)aE(sIt)	

1

As noted at the end of §5.6, a1 (slt)/a6 (sit) and al (sit)/aE (slt) do not

tend to unity as t 4 03 . Hence, because a21. = (a26 + c4)/2 and because

arithmetic means are greater than geometric ones, this limit is

strictly positive.	 The simulations indicate that the value of this
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Figure 6.7: Comparison of ac /<c> at x = 0 from the model with the

experimental data of Warhaft (1984). The model results for various

source sizes are indicated by the following symbols: A, a o	 0.01a5s;

V, 0-0 0.02ass;• , ao = 0.03as s;+, ao = 0.04a5 s; o, (70 0.05a5s.

The experimental results of Warhaft (1984) are denoted by crosses.

Also shown are the experimental results of Uberoi and Corrsin (1952)

(U), Townsend (1954) (T) and Stapountzis et al (1986) (S).
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limit is about 0.16.

The results of Warhaft's (1984) experiments	 on	 dispersion

downstream of a cross-stream line source in decaying grid turbulence

are also plotted in figure 6.7.	 In the same way as Fackrell and

Robins' (1982) continuous compact source was interpreted as an

instantaneous line source, the continuous line source of Warhaft's 1

experiment is regarded here as an instantaneous area source. It is not

so easy to interpret these experiments as those of Fackrell and Robins

(1982) because the Reynolds number is relatively low and the model

being considered here cannot account for molecular diffusivity and

viscosity explicitly. Molecular diffusion almost certainly results in

an effective source size that is much larger than the width of the wire

used in the experiments.	 It seems reasonable to assume that the

effective source size will be of the same order as the Kolmogorov

micro-scale, n.	 The value of n at the source varies between the

experiments, lying between 0.01a 5 s and 0.016as s. The agreement with

the model results is best for a slightly larger source size of about

0.03as s. At large times the value of ac /<c> in the model falls off

rather too quickly. This is probably because the asymptotic value at

large time is too small. Although the agreement could almost certainly

be improved by adjusting Co and f, it is not proposed to do this here.

The agreement is also poor for (t-s)/s 4. 0.02. This is however to be

expected since molecular diffusion must be significant for (t-s)/s of

order in /s, a quantity which is about 0.04 in the experiments. To

model this region accurately it would be necessary to take account of

molecular diffusivity and viscosity explicitly as in Sawford and Hunt

(1986) and to use a source size more closely related to the wire

diameter. Also shown in figure 6.7 are the experimental results

obtained downwind of a line source in grid turbulence by Uberoi and

Corrsin (1952), Townsend (1954) and Stapountzis et al (1986). 	 These

data show broadly similar behaviour to Warhaft's data and to the model
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results.

Figure 6.8 shows the model profiles of cc for ao . 0.03a s s.

Qualitatively the behaviour is similar to that obtained in stationary

conditions (figure 6.6) and to that observed by Warhaft (1984). At

small (t-s)/s the profiles have an off-centre peak, although the model

peak is rather more pronounced than that in Warhaft's experiments. It 1

seems likely that this discrepancy is due to molecular diffusion which,

in the experiments, must play a significant role in the early stages of

the plume's development. To represent these early stages accurately,

it is probably necessary, as above, to use a source size related to the

wire diameter and to use a model which includes molecular diffusion and

viscous effects explicitly. For 0.11 . (t-s)/s 4. 0.43 in the model and

for 0.073 . (t-s)/s . 1.92 in Warhaft's experiments, the peak is at the

centre of the ensemble average plume, with the off-centre peak

reappearing at large times. Although the off-centre peak reappears

sooner in the model than in the experiments, the model peak value is

only a few per cent larger than the centre line value until (t-s)/s =

2. At large (t-s)/s the model off-centre peak is again rather more

pronounced than that measured in the experiments. As noted above, the

off-centre peak cannot occur if a c /<c> is as large as unity, and so it

seems possible that the more pronounced peak in the model is associated

with the fact that the value of a /<c> in the model is too low at largec

times. The width of the model ac profile is in good agreement with the

experimental data, the half width in both the model and the experiments

lying between about 1.5 and 2.0 times the half width of the <c>

profile.

Figures 6.9 and 6.10 show model values of the correlation between

the concentrations resulting from two parallel instantaneous Gaussian

area sources. The sources are taken parallel to the (x l ,x 2 )-plane and

are separated by a distance d, with the origin (i.e. x = 0) lying
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Figure 6.8: Profiles of ac from the model for an area source in

decaying turbulence. ao = 0.03a s. The numbers attached to the curves

indicate values of (t-s)/s. The unlabelled curve is a C,alls7inn

distribution with the same standard deviation as the profile of <c>.



Figure 6.9: Correlation between the concentration resulting from two

parallel sources separated by a distance d in decaying turbulence. The

correlation is evaluated half way between the two sources. Model

results for a source size of 0.03s are indicated by solid symbols and

experimental results from Warhaft (1984) by open symbols.	 The

different symbol shapes refer to different values of d: 1. d .

0.122as s; V, d = 0.4as s;11, d = 1.26a5 s;,, d = 2.52as s; o, d = 5.2a5s.
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Figure 6.10: Correlation between the concentration resulting from two

parallel sources separated by a distance d in decaying turbulence. The

correlation is shown as a function of x 3 , the origin of x3 being taken

half way between the two sources. (a) shows model results for (t-s)/s

= 1.5 and experimental results (Warhaft 1984) for (t-s)/s . 1.65, while

(b) shows model results for (t-s)/s = 4.0 and experimental results for

(t-s)/s = 4.65. The model results are shown by solid lines and

labelled with the value of d/a s s, while the experimental results for

different values of d are indicated as follows: x, d = 0.06as s; +, d .

0.122a5 s; A, d . 0.2as s; V, d = 0.4as s;r7, d = 0.7as s;<>, d . 1.26a5s;

o, d . 1.76as s. The experimental results are taken from Warhaft's

(1984) figure 13 and the values obtained for positive and negative x3

have been averaged.
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midway between the sources. Also shown are experimental values for two

parallel continuous cross-stream line sources in decaying grid

turbulence (Warhaft 1984). As for the single sources considered above,

the data is interpreted as relating to two instantaneous area sources.

In the model the size of each source was taken to be 0.03a S s, the value

which gives best agreement with the single source data. The values of

the correlation at the origin are shown in figure 6.9.	 The model

values show very similar behaviour to that observed although there are

some quantitative differences when the correlation is negative. The

agreement is much better than that obtained with Durbin's model by

Sawford (1985). For example, Sawford's calculations show show the

correlation approaching a value of 0.15 at large times for d/1 0.2

(see Sawford's figure 7). In contrast, Warhaft's (1984) experimental

values of the correlation reach values as large as 0.9 for d/a s s equal

to 0.06 and 0.122 (which correspond, with our assumptions about the

turbulence, to values of d/1 of 0.17 and 0.35). In Sawford's

calculations no account is taken of the decay of the turbulence in the

experiments; however this is likely to result in better mixing in the

model and hence larger values of the correlation than would otherwise

occur.

The behaviour of the correlation can be understood quite simply in

terms of the following physical picture. It is easier to visualise

this picture in terms of the experimental set-up of two continuous line

sources than in terms of two instantaneous area sources, and so we will

adopt this view point. At small distances downwind from the sources,

the material from the two sources meanders "in phase" due to the

correlation between the velocities at the two source locations. As a

result the correlation is negative. Also, at very small distances,

material only rarely reaches the measurement point and on such

occasions only material from one source is present in significant

quantities; hence the correlation is small and negative.	 At large
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times the plumes from the two sources mix and the correlation becomes

positive. Because the length-scale on which p a (Lx,s1t) varies

increases without limit as t 4 c°, it can be shown from (6.5), (6.6) and

the approximations (6.7) and (6.8) that the correlation (in the model

at least) tends to unity at large times. An alternative way to deduce

that the correlation tends to unity at large times is as follows.	 We

have seen that the value of (72 becomes independent of source size atc

large times and it seems reasonable to expect a! to become independent

of the source shape also. Hence the value of a! due to the two sources

should become equal to the value resulting from a single source of

twice the strength. This can only happen if the correlation tends to

unity. The times at which these different stages in the evolution of

the correlation occur vary greatly with the source separation d, as can

be seen from figure 6.9.

Figure 6.10 shows some examples of the correlation at points away

from the origin. The agreement between the model and the experiments

is again encouraging, although the experimental correlation shows less

variation with x 3 than does the correlation from the model.

(iv) Summary.

Simulations with the new model show that a /<c> is stronglyc

dependent on source size at small times, but becomes independent of

source size at large times. The simulations also suggest that ac/<c>

tends to zero in stationary conditions but approaches a small non-zero

value in decaying turbulence. However, because of statistical noise,

we cannot be certain of the zero limit in the stationary case. The

large time behaviour of ac /<c> in stationary conditions is in marked

contrast to that seen in Durbin's (1980) model for which a /<c>c

approaches a non-zero constant depending on source size. In some ways

the large time limit of ac /<c> in the stationary case is a rather

academic question - in reality inhomogeneity or non-stationarity is
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nearly always important at large times. However it does serve to

highlight the differences in behaviour between the various models

considered here.

The agreement between the new model and Fackrell and Robins'

(1982) experimental data is encouraging. In particular the effect of

varying the source size in the model has the same effect as in the I

experiments.	 The agreement with Warhaft's (1984) line source data is

not so good, but this may be partly due to the low Reynolds number of

the experiments. This data, which was obtained in decaying turbulence,

shows clearly a non-zero limit for ac /<c>, although the value of this

limit is rather larger than the model value. The model also shows

encouraging agreement with the data of Warhaft (1984) on the

correlation between the concentration from two sources separated in

space.
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7. THE RANDOM WALK MODELLING TECHNIQUE - AN APPRAISAL.

It seems appropriate to conclude this study of random walk models

by discussing the strengths and weaknesses of such models, both in

absolute terms and in comparison with other modelling techniques.

Random walk models avoid many of the problems inherent in other

approaches to modelling. For example, they do not require the 1

extensive empirical tuning associated with Gaussian plume models. Also

they do not need to make crude eddy-diffusivity assumptions, either for

the flux of contaminant as in eddy-diffusivity models, or for the flux

of some higher order concentration-weighted velocity moment as in

high-order closure models. As a result, random walk models can

represent the initial stages in the evolution of <c> easily and

naturally and can also model the dispersion from complex source

distributions. In effect, random walk models make a diffusive

assumption in phase space instead of in ordinary space. Although such

an assumption is of course not exact, it seems to cause few problems in

practice and is, as Obukhov (1959) has pointed out, consistent with

inertial subrange scaling. In two-particle models, the description of

the flow at any time includes a specification of the spatial

distribution of pairs of contaminant particles, and hence of the

(second-order) spatial structure of the concentration field. 	 As a

result, such models can represent effects which depend on the

length-scale of the concentration fluctuations. In contrast high-order

closure models and p.d.f. models, which represent the concentration

field solely in terms of one-point statistics, have difficulty in

describing such effects.	 As noted in §1.3, two-point closure models

(such as the eddy-damped quasi-normal approximation) can represent such

effects, but have difficulty in modelling the inhomogeneous

concentration fields resulting from inhomogeneous source distributions.

Random walk models of course have no such difficulty.
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One-particle random walk models are particularly suited to

situations where the flow is inhomogeneous and have proved able to

provide good descriptions of the dispersion in many such situations.

For two-particle models, complex flows are likely to prove more

difficult; indeed very few attempts at modelling the motion of pairs of

particles in flows significantly more complex than the isotropic

turbulence considered in chapters 5 and 6 have yet been made. 	 The 
I

difficulty is that, although random walk models are conceptually

simple, they can be very complex to implement in complex flows. Simple

modifications	 of the model described in §5.4 (e.g. to include,

following Durbin (1980), the effect of a uniform shear) are

straightforward, but it is not clear how to adapt the model to more

complex flows such as surface layers (see Sawford (1985) for an attempt

to extend Durbin's (1980) model to a surface layer). For example, it

is quite hard even to devise a simple expression for the two-point

velocity correlation function which is consistent with

incompressibility and surface layer scaling. Such an expression would

be a necessary prerequisite to designing a model using the approach

developed in this thesis. As a result it seems likely that, for

complex flows, it will only be possible to apply the ideas developed in

this thesis in a simplified form. For continuous sources or

instantaneous area or line sources (as considered in §6.2), the

concentration variance is not very sensitive to the shape of the

particle separation p.d.f. A. This is because, for such sources, a:

_	 .
depends only on the averaged p.d.f.s p a or pa , and these quantities do

not vary as much as pa . This suggests that, with the possible

exception of instantaneous compact sources, it may be possible in

complex flows to use models based on the simpler NGLS model, at least

if we allow ourselves to "tune" the values of C o . For surface sources

in a neutral surface layer, it seems possible that models based on

Richardson's (1926) model might be useful. We saw in §5.6 that the
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shape of po in Richardson's model is quite close to that in the new

model. The value of aa is rather different, but this could be

corrected by adjusting Co . Of course, if an approach based on

Richardson's model is adopted, it would be necessary to postulate a

model for the motion of the particle-pair centroids. For surface

sources in a surface layer, it is known that, because the eddy size

becomes small as we approach the ground, an eddy-diffusivity approach

describes motion of single particles quite well (see §1.3). For the

same reason, it seems likely that such a model could describe the

motion of the particle-pair centroids. If such a model is adopted in

conjunction with Richardson's (1926) model for the particle separations

(suitably modified for surface layer scaling), we would then have quite

a simple model (of a similar type to that proposed by Thiebaux (1975))

for the motion of particle-pairs from a surface source, in which both

the particle separation and the centroid position evolve according to

an eddy-diffusivity formulation. 	 Such a model seems worthy of

investigation.

A difficulty with the random walk approach is the absence, in most

cases of interest, of analytic solutions and the problem of statistical

noise in numerical simulations. An example of this difficulty was

apparent in §6.2, where, because of statistical noise, it was

impossible to conclude with certainty that the model value of ac/<c>

tends to zero at large times in stationary conditions. However the

difficulty in this case was caused by the need to evaluate a very small

difference between two almost equal quantities. For most quantities

not involving small differences it seems likely that, by using the

"particle splitting" technique appropriately, the statistical noise can

be kept under control. It should be pointed out however that this type

of problem is likely to be worse in more complex situations where there

are fewer symmetries which can be averaged over to reduce the noise.

AI



Page 131

In many problems, more knowledge than that given by the first two

one-point moments of the concentration is required. For example, one

may be interested in the variance of the average concentration over a

certain region. Such information can be obtained from two-particle

random walk models, although no such quantities have been calculated in

this thesis.	 Also it is often necessary to know the p.d.f. of the

concentration at a point or averaged over some volume.	 This is

especially true in the case of an atmospheric release of a toxic,

inflammable or explosive substance. Unfortunately such quantities

cannot be obtained from one- and two-particle random walk models.

However there is a growing body of evidence (Lewellen and Sykes 1986;

Sawford 1987; Mylne 1988) to suggest that, for passive contaminants in

the atmosphere, the p.d.f. of the concentration can be parametrized

with reasonable accuracy in terms of the first two moments. In

principle the concentration p.d.f. could be obtained from many-particle

random walk models (Kaplan and Dinar 1988). However only the first

steps in the development of such models have been taken, and it is not

yet clear if such models will prove useful.

There are a number of theoretical problems with random walk

models, some of which suggest that the goal of a universal model,

applicable to all (high Reynolds number) flows may not be achievable.

Firstly, except in one-dimensional one-particle models, the theory

presented in chapters 4 and 5 does not determine • (or uniquely. As

pointed out in §4.4, Sawford and Guest (1988) have shown that the

choice of f does make some difference to the results and it is not at

all clear how arguments can be formulated to determine f. The second

problem concerns the value of C o . In successful simulations of

dispersion in a convective boundary layer, Sawford and Guest (1987) and

Weil (1988) used values of C o of order 2.0 instead of the value 4.0

adopted in §5.4.	 This suggests that the value of C o may need to be

tuned to some extent for different problems - such tuning is of course
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inconsistent with the idea that Co is the inertial subrange constant

which occurs in the Lagrangian velocity structure function (see also

Sawford and Guest (1988)). Finally there is the problem discussed in

§§5.4 and 5.6, namely the fact that it is not clear how to design a

two-particle model to satisfy both the well-mixed condition and (5.2).

However this problem does not appear to be too serious in practice.

If random walk models based on (4.1) or (5.1) do prove to have

serious limitations, there are a number of possible ways of

generalising such models. The most obvious way is to add an equation

for the evolution of the acceleration of the particles. This might

enable such models to give a better description of the trajectories

over time intervals of order T but it is not clear if there are any

other advantages. An alternative approach suggested by Yeung and Pope

(1988) is to add an equation for the value of the turbulent energy

dissipation rate at the location of the particle. Such a modification

might enable the model to take account of the intermittent structure of

the turbulence associated with fluctuations in dissipation rate. There

are of course many more ways of formulating such models than there are

in the case of models of the form (4.1) and (5.1), and the problem of

discovering how such a model should be designed has only just begun to

be investigated.

To sum up, random walk models constitute a promising approach to

the problem of the dispersion of a passive contaminant in a turbulent

flow. Though simple in concept, random walk models avoid many of the

problems inherent in other techniques. Although they involve a number

of assumptions that cannot be justified in any fundamental way, they

show good agreement with experimental data in a wide range of flows.

It seems likely that such models will be increasingly exploited in the

future.
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Appendix A. Derivation of the Statistical Relations given in §3.3.

The purpose of this appendix is to give a derivation of the

statistical relations (3.4), (3.5), (3.6) and (3.7).

Consider a single realisation wE g2 of the flow. Let us assume that

the total mass M of fluid is finite, as would be the case, for example,

if the region occupied by the fluid were bounded. 	 The reason for

making this assumption is that it enables us to consider the

hypothetical operation of choosing a fluid particle at random from all

fluid particles in the flow, with the probability of the fluid particle

belonging to any given subset of the set of fluid particles being

proportional to the mass of fluid particles in that subset. The

assumption is not as restrictive as it might appear since in reality

the region of interest is always finite and in any case the results

apply in greater generality as can be seen from the obvious limiting

argument.

As explained in §3.3, if K>0, the term "fluid particle" means

simply a fluid molecule. For simplicity we shall adopt the stochastic

differential equation model for the motion of fluid molecules discussed

in §2.3, i.e. we shall assume that the molecule trajectories X'(t)

evolve according to the stochastic differential equation

dr = u (X',Odt + (V(Kp)/p)dt + (2K) 1/2 dC	 (A.1)

and have an initial distribution given by

Pr (0) (1S) = P(,S10)/M

(the superscript w in X' is intended to emphasise that we are

considering the realisation w only). Equation (A.1) is simply (2.3)

with a and b chosen so that the equation for the evolution of

PX'(t)IX'(s) ' i.e. equation (2.6), takes the same form as (3.3) with S

= O. Of course px. (0 (1) = p(x,t)/M is satisfied at times t>0 as well

as at time t=0.
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There are a number of advantages of using this model. Firstly the

model molecules have a continuous distribution in space and so there is

no need to invoke the continuum hypothesis to relate the distribution

of molecules to c(x,t). This is a consequence of the idealised picture

of the physics embodied in the model (A.1). The spatial distribution

of the model molecules can be regarded as being a model for the true

distribution of molecules smoothed over a length-scale 6, where 6 is

much smaller than the length-scale on which continuum quantities vary,

but large enough so that a sphere of radius 6 contains many molecules.

Alternatively, the model distribution of molecules can be regarded as

representing an ensemble average over an ensemble of flows which have

the same values for the macroscopic quantities u e , p and c, but in

which the details of the molecular motions are different. Secondly,

because of the way we have chosen a and b, the transition density

satisfies the advection-diffusion equation (3.3) exactlyPV(t)Ir(s)-	 _

(with S = 0).	 This means that the model is consistent with the

description of dispersion embodied in equation (3.3). 	 Of course, as
_
noted in §2.2, the model (A.1) cannot be an exact model of molecular

motions. However the equations of §3.1 are generally believed to give

an accurate description of turbulent flows and so this should not

matter. Finally, when K=0, the model molecules become "fluid

elements", i.e. points which are advected by the velocity u . This

enables us to treat both the cases 00 and K = 0 together. It follows

immediately from (2.6) and (3.3) that c(x,t) can be expressed in terms

of pr mix. (s) as

c(x,t) = f Pxwm i r (s) (xly) S(y, ․ ) dy ds.	 (A.2)

s:t -	-

Let us now consider the entire ensemble of flows and consider

choosing a fluid particle at random from all fluid particles in the

ensemble. By this we mean first taking a random sample of size one

from the set 2 of realisations and then taking a random sample of size
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one from the set of fluid particles in the selected realisation. 	 If

X(t)	 is the trajectory of the particle so chosen, it is clear that the

joint density of X(ti),...,X(tn)	 for various times t i ,...tn	is given by

= <Pr(ti),...,r(tn)(211"—OLn)>'

If we now assume that S/p is independent of u e and	 p,	 equation (3.4)

can be obtained by taking the ensemble average of (A.2):

<c(x,t)> = j <Pr(t)Ir(s)°11Y) S(y,
․ )> dy ds

st

= M (x y) S(y, ․ )/p(y, ․ )> dy dsj <PXw(t),r(s)
s:t

= m f Px(t),x(s)q,Y) <S(y, ․ )/p(y, ․ )› dy ds

st

= f
s.t-

Px(t)lx(s)olly) 	 <S(y, ․ )› dy ds.

Let us now return	 to	 considering	 a	 single	 realisation w and

consider the distribution of u (r(t),t) which will be denoted by

Uw (t). [NO is the velocity at the position r(t) of the randomly-

chosen fluid particle.	 The conditional p.d.f. 
Pir(t)Ir(t)(u 

lx) of

Uw (t) given that r(t) = x is equal to 6(u-u (x,t)), as is the

conditional p.d.f. pu. (01 xwm dcw (s) ( 1211S,Y)- Hence

p(x,t)	 (x,t)) = M Pr(t) (0 PUw(t)1Xw(t)(121)

= M Nw(t),UNt)q't-1)

and

c(x,t) S(u-u (x,t))

jPV(t)1Xw(s)(x1Y) S(y,
․ ) dy ds puwmixwm,xw(s)(1211c,,y)

s:t

(x ,u, 	 S(y, ․ )/p(y, ․ ) dy ds= m f Pr(t),u-(0,r(s)
s‹t

(x u,y,v) S(y, ․ )/p(y, ․ ) dv dy ds.
= m f Pr(t),[r(t),r(s),U'(s) 	 --

s:t

Taking the ensemble average of these equations yields
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gP = M PX(t),U(t)(3,S'12)

	
(A.3)

and

gc = m .1' px(t),u(t),x(s),u(s)(,12,y,y) <S(y, ․ )/p(y, ․ )> dv dy ds.

s:t -	-	 -	 -

By using (A.3) and standard relations between conditional p.d.f.s, g.

can be expressed in the form

(x Ly 7 v) xgc ' f PX(t),U(01X(s),U(s) 7 il- - _ -
s:t

x g p (y,v, ․ ) <S(y, ․ )/p(y, ․ )> dv dy ds.

The results (3.6) and (3.7) for particle-pairs can be derived

similarly.	 Again consider initially a single realisation w and let

V(t) and r(t) be the trajectories of two randomly and independently...1	 «2

chosen fluid particles. Then, from (A.2),

(x x	 ,c(x l ,tdc(x2 ,t 2 ) = f pr( t ) , r( tdir(s 1 ) , x7(s 2 ) -1 , ....2 ....ly 1 y.„2) x

SItl,S2t2

x S(y1 ,s 1 ) S(y 2 ,s 2 ) dy i dy2 ds, ds2.

As in deriving (A.3), taking the ensemble average yields

<c(x1 ,t 1 )c(x2 ,t 2 )> =	 pf -x ( t ) ,x ( t )1 x ( s ),„ ( s ) Q10121.5:1,y2) x
«1 1	 «2 2 «1 1	 «2 2

si4ti,s2t2

x <S(57 1 ,s 1 ) S(y 2 ,s 2 )> dy i dy2 ds i ds2.

The phase space result (3.7) for particle-pairs follows similarly.

'n
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Appendix B. Some Properties of Various Random Valk Models.

In this appendix some of the analytic results which can be

obtained for simple random walk models and which have been quoted above

are derived.

First consider the Langevin equation (4.2), which we write here in

the form

2)1/2
dU = -	 dt + (.2`r d. (B.1)

In addition we assume that the distribution of the initial value of U,

U(0), is Gaussian with mean zero and variance a 2 , and that U(0) is

independent of (t). The Langevin equation can be transformed easily

into the form d(Ue t/T )	(2a2/.01/2et/T dC, which integrates to give

a2 1/2
t ft

et
0(t) = 0(0)e-t/T 	 e ti	 '/Tdr,-,

)LA L	 .
0

(B.2)

Because U(0) and ((t) are (jointly) Gaussian, U(t) is a Gaussian

process. Using the independence of U(0) and C(t), the two-time

covariance of U can be expressed as

<U(t)U(s)> =

2	 t
e	 <d(2	 2a- r f (t,+s')/T	 CC)d s')>)e-(t+15)/T(0(0) > +

•T 30 0

Now <dC(s')dC(t')> = ds' if s' = t' and is zero otherwise. Hence,

assuming without loss of generality that s is less than or equal to t,

we have

<U(t)U(s)> = e-(t+s)/T((j(0)2>	 2a2 IS e2s,/r dSF)

T 0

= e-(t+s)/T (<U(0) 2 > + a2 (e2s/T	 1)). (B.3)

Using <U(0) 2 > = a2 , we obtain <U(t)U(s)> = a2 e-(t-5)/T for s4t, showing

that U(t) is a stationary process (because it is Gaussian and

<U(t)U(s)> depends on It-s1 only), has variance a 2 , and has an

exponential correlation function with integral time-scale T. (B.2) can
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be integrated to yield
t

X(t) = x(o) + u(o)T(1 - e-t/T) 
4. (2a2.0 112 f (1 - e (t ' -" /T ) dC(t').

0

It follows from the (joint) Gaussianity of U(0) and C(t) that the

displacements X(t)-X(0) are Gaussian.

Let us now consider the situation discussed breifly in §4.3(iii),

in which U(t) satisfies
	

I

du i = - Ludt + blidCi

with L symmetric. Note we have set U = 0 as we clearly may do by....ozt

using	 a	 Galilean	 transformation.	 It follows immediately that

<Ui(t)Ui(s)> satisfies

d <Ui(t)Uk(s)> = - Lij<1.0(t)Uk(s)>.
iii

By choosing a coordinate system in which L is diagonal, it can be seen

that the correlation function decays exponentially.

Finally we will describe how to derive the expressions given in

§5.6 for the values of a
1 / a and az in the NGLS model. In stationary 6	 .

,
conditions, each component of U 1 , AU and EU in the NGLS model satisfies-	 -

(B.1) and, for particle-pairs with both particles coincident at the

origin at time zero, 01(0)U1(0)> = 3a2 , <AU i (0)AUi (0)> = 0, and

<EU i (0)EUi (0)> = 6a 2 (for convenience we consider particle-pairs

released at time zero instead of time s as considered in §5.6). It

follows from (B.3) that

<U1(t)U1(s)> = 3a2e-(t-5)/T

<AU i (t)AU i (s)> = 3a2(e- (t—s)pr _ e—(t+s)/T)

<EU i (t)EU i (s)> = 3a2(e—(t-5)/T + e—(t+s)/T)

for s.t. a	 a and a can then be found from the relation
1 /	 6	 E

t
d	 .	 i

<X 1 (t)X (t)> = 2<U1(t)X1(0> = 2 f <14(0111 (s)> ds
dt	 1	 1

0

and the analogous relations for <AX i (t)AX i (t)> and <EX i (t)EX i (t)>.	 In



1
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decaying turbulence, al , a 	 az can be found in the same way,

although the algebra is considerably more complex.



Page 140

Appendix C. Details of the Numerical Simulations.

C.1 Details of Simulations Presented in Chapter 4.

The simulations presented in chapter 4 were carried out by

replacing the infinitesimal quantities dX, dU, dt and dC in (4.1) by

finite differences AX, AU, At and A. 20,000 particles were followed

for the simulations shown in figure 4.1. For the simulations with B-

constant and t = 0, ais a linear function -LiJ ui of u with L-	 -	 -

symmetric; hence the resulting velocity correlation function can be

calculated analytically (see Appendix B). A time-step of 0.05T was

found to be sufficiently small to achieve good agreement with the

analytic result. The same time-step was used for the other case with

constant B. For the remaining two simulations in figure 4.1, At =

0.05T proved unsatisfactory, but a time-step of

At = min(0.05a2 /8 11 ,0.1a/lal), (C.1)

with At varying along the trajectory, gave results which appeared

realistic and were insensitive to further reductions in At. (C.1)

ensures that a particle cannot change its velocity by a large amount

(relative to the velocity-scale a) in any time-step.

For the simulation shown in figure 4.2, 10,000 particles were

followed. The same time-step as specified in (C.1) above was adopted

and proved adequate to achieve good agreement between the analytic and

numerical velocity p.d.f.s, as can be seen in figure 4.2.

C.2 Details of Simulations Presented in Chapters 5 and 6.

The model described in §5.4 is quite complex to implement because

the expression for a contains a large number of terms. In the_

calculations with this model presented in chapters 5 and 6, the model

was simplified by the method used in the one-particle model of Thomson

(1986a). This involves using a different set of finite difference

equations at alternate time-steps.
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When the particle separation is large, the time-scale on which

particle velocities change is T and so we require At « T for accurate

results. When the particles are close together however, the time-scale

of the relative motion of particles is much smaller than T and so a

much smaller time-step is required. In order to allow for this and

also avoid unnecessary waste of computing resources, the time-step was

made a function of the particle separation and was allowed to vary

along the particle-pair trajectory. The time-step At used in most of

the calculations was chosen to be 0.1T(1 - f(A)). This ensures that At

T at all times and also that At « ( e/E) 1/3 when the particle

separation lies in the inertial subrange (062 /0 1/3 is the time-scale

of the eddies which make the dominant contribution to the relative

motion of the particles). A few experiments were conducted with a

time-step of 0.05T(1 - f(A)). This resulted in only small differences

(a few per cent) in most statistics. An exception is the statistic

<I8AX1 2 > shown in figure 5.7. In the case where the initial particle-

separation was 2x10-3 1, a time-step of 0.01T(1 - f(A)) was found

necessary to ensure that the results were independent of At. This is

to be expected since, with At = 0.1T(1 - f(A)), the initial time-step

is about one third of the time interval between the release of the

particles and the time corresponding to the first data point in figure

5.7. Clearly the quantity <ISAX1 2 >, which depends on the departure of

the trajectories from straight lines (and so depends on the difference

between two nearly equal quantities), is unlikely to be well

represented at the time of the first data point when the time-step is

so large.

On the occasions when coincident particles needed to be released

an initial separation of 2x10 -6 1 was used.	 The results appear

insensitive to changes in this quantity of an order of magnitude. It

is of course impossible to have truly coincident particles since this

would necessitate a time-step of length zero.
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30,000 particle-pairs were followed in all the simulations from

which p.d.f.s or concentration statistics were calculated, with the

exception of the simulations involving the "particle splitting"

technique (described in §5.6) for which 10,000 pairs were released.

The remaining simulations were used only to calculate quantities such

as aA , 001 > or <16AXI 2 >. For such quantities, statistical noise is not

as great a problem as it is with p.d.f.s and concentration variances,

and so only 10,000 pairs were followed in these simulations.

In calculating <c 2 > in §§6.1 and 6.2 (with the exception of the

calculations made in §6.2 without the aid of the approximation (6.8)),

pa was calculated from simulations which utilised the particle

splitting technique, and was represented as a series of straight line

segments between data points, each data point representing the average

value of pA over a small interval of A values. The distance between

data points was similar to that used in the graphs shown in figures

5.1(b) and 5.8. The use of a much larger distance would tend to smooth

the peak in p a observed at small travel times, while a much smaller

distance would	 greatly increase the scatter and would produce 	 .

inaccurate results when the source size ao or initial length-scale

1,c (s) is much less than aA . (The integrals in (6.10) and - putting

Ax=0 - in (6.1) are in effect averages of pA over regions of size ao

and La ( s ) . Hence they are most sensitive to statistical noise in pA

when at) and 1,c (s) are small.) For the area and line sources considered

in §6.2, a consequence of (6.9) and (6.10) is that a c depends on pA

only through pa and pa respectively. These quantities do not show such

a marked peak as pA and so the accuracy of the results might be

increased by calculating pA and pa with a larger distance between data

points as in figures 5.1(d) and 5.1(e); however for simplicity this has

not been done here.
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C.3 Justification of the "Particle Splitting" Technique.

Here a sketch of a proof that the particle splitting technique

does not bias the (single-time) statistics from the model is given.

Suppose we are computing an ensemble of realisations of the trajectory

in k-space of a particle-pair, with the initial positions and

velocities of the two particles in the pair having a given probability 1

distribution. Consider the probability P(T A ) of the event FA that the

phase space position of the pair at time t, (i(t),0(0), lies in a

region A of phase space. Knowledge of P(TA ) for all "hyper-cubes" A in

phase space determines the distribution of (i(t),C1(0) and hence

enables any statistic derived from (i(t),0(0) to be calculated. Hence

we need only show that the estimate of P(rA ) obtained from the model is

not biased by the particle splitting technique. Let us also suppose

that we decide to split particle-pairs when they enter a certain region

B of phase space and let A denote the event that the pair enter B

before time t. A' will denote the event that A does not occur. In the

simulations we consider a series of nested regions of phase space in

which splitting occurs as described in §5.6. Here however we will

consider only one region for simplicity. Also, again for simplicity,

we will consider the situation in which splitting and chance

annihilation occur on the first time of entering and leaving B only.

Without particle splitting, the numerical estimate e of Pud
would be equal to the fraction of particle-pairs in the simulation

which lie in A at time t, i.e.

1
e = —Xin.

1=1

where n is the number of pair trajectories computed, and Xi equals

unity if the ith particle-pair trajectory lies in A and is zero

otherwise. For each i, the expectation of X i is equal to P(FA ) and so

the expectation of e also equals P(TA).
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Suppose now that when particle-pairs enter the region B of phase

space for the first time they are "split" into two pairs, each having a

weight of 1/2. If the ith particle-pair is split prior to time t, the

twodaughterPairswillbelabelledilandi2and.and X. will beXil
12

defined as for X i above. P(rA ) would then be estimated as

1 n
e' =	 E X'.

i=1

where XI = Y2(X. + X. ) if the ith pair is split and XI = Xi if it
1 1	 12

isn't.

	

	 Now the expectation of X4 and Xi , conditional on splitting
2

occurring, equals the conditional probability p (rA IA) while	 the

expectation of Xi , conditional on splitting not occurring, equals

p (rA IA'). Hence, because the probability of splitting equals P(A), the

expectation of XI equals P(rA ) and so the expectation of e' also equals

P(FA
). This shows that splitting of particle-pairs does not introduce

any bias.

Now suppose that, as well as particle splitting occurring on

entering B for the first time, each particle-pair has equal chances of

being annihilated or of having its weight doubled on the first occasion

of leaving B. It can be shown in the same way as above that this does

not bias the results either (instead of considering two possibilities

for each particle-pair we need to consider five possibilities

corresponding to whether the particle-pair is split prior to time t

and, if it is split, whether the first daughter pair, the second

daughter pair, both pairs or neither pair leave region B before time

t).
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Appendix D. The relation between <I6.12> and <18AXI2>.

In this appendix, the relation between <11)( 1 1 2 > and <186X1 2> is

discussed.

In reality, the variance of 6X 1 and SAX at time t can be expressed

as

t t
<1/11 1 2 > = j <1114(t1).SU1(t2)> 	 dt i	dt2

S S
rt t

< 1 615X 1 2 > 	 =	 j
s S

<SAD(t1).6AU(t2)> dt i	dt2

with

t ft 2
<SU I (t 1 ).SU l (t 2 )> =	

1j	
2 

<A1 (s 1 ).A1 (s 2 )> ds, ds2

	

S	 S
t 1	 t

	<SAU(ti ).SAU(t 2 )> = 
j	 f
	 <AA(s 1 ).bA(s 2 )> ds i ds2

	

s	 s

wivare(t) is the acceleration of particle i and AA . ( A1 - A2)/12.-1	 -

As in §5.6, the average is over particle-pairs with a given position in

R-space at time s. Also <6A(s 1 ).LA( s 2 )> can be written in the form-	 - 

<A1 (s 1 ).A 1 (s 2 )> - <A1(s1).A2(s2)>.	 (D.1)

For simplicity we will only consider the case where the initial

separation	 lies well within the inertial subrange and restrict

consideration to travel times over which the evolution of 11 1 and SAX-

are dominated by inertial subrange eddies (in the model this means, as

noted in §5.6, imposing the restrictions 6(s) « 1 and t-s T). We

first recall that the acceleration field is only well-correlated over

very short length-scales of the order of the Kolmogorov micro-scale /1

(Monin and Yaglom 1975, §21.5).	 From this Monin and Yaglom (1975,

pp546-547) and Sawford (1984) argue that the second term in (D.1) makes

a negligible contribution to <Isax1 2 > for times t-s	 x. If this is

so, it follows that <1E1 1 1 2 > = <I6AX1 2 > for t-s	 T.	 Although it is

true that <A1 (s 1 ).A2 ( s 2 )> 
is small, the following argument suggests

-	 -
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that it may not be negligible over such times (note it is clearly not

negligible at very large times when < 161s11 2> 	 <Ig1(s)12>( t-s) 2 and

<18a1 2 > 	 < 1,511(s)1 2 >(t-s) 2 ; these cannot be equal unless the initial

separation is so large that the initial velocities of the two particles

are uncorrelated). In the inertial subrange, the Eulerian acceleration

covariance <a.(x,t).a.(x+r,t)> (where s• is the Eulerian acceleration

field Du /Dt) between the acceleration at two points separated by a

distance r = Irl is proportional to E 4/3 r-2/3 (Monin and Yaglom 1975,

p371). On dimensional grounds this covariance is expected to persist

over a time of order E-1/3 r2/3 9 i.e. we expect <so(x,s1).a.(x+r,s2)> to

be of order E4/3 r-2/3 for Is1-s21 < c-1/3r2/3 . Provided that the

Eulerian and Lagrangian acceleration covariances are of the same order

of magnitude and that s i lies well inside the interval [s,t 2 ], this

implies that, for two particles with separation r at time sl,

t 2
<A1 (s 1 ) • A (s 2 )> ds 2- 

is of order ( 0 13 r-213 )(e-1/3 r2/3 ) = E. It follows that, provided t-s

ogs)2/0113 (so that the acceleration covariance <A1 ( s 1 ).A (s 2 )> has- 

time to act), the contribution to <16AX1 2 > from the second term in

(D.1) is of order et 3 , which is (on dimensional grounds) comparable to

<18X 2 > itself. This suggests that the second term in (D.1) is not

negligible and that <16A)11 2 > is not equal to <16)( 1 1 2 > for times in the

range (A(s) 2 /0 113	t-s (.< T.

In fact, for initially coincident particles, <1641 2 > cannot be

greater than <16)11 1 2 > and so, if we accept the above argument, must be

less than <18X112>. To see this consider a single realisation and-

consider all particles in the realisation which are at y at time s.
-

The phase space trajectories of such particles will be denoted by

(r(t),ir(t)) as in Appendix A. ql will denote the average of

Ir(t)-y-U(s)(t-s)1 2 for such particles and q 2 will denote the average
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of 1/21X7(t)-X7(01 2 for pairs of such particles. q 2 is equal to the

mean square of the displacement Ir(t)-1CW01 of such particles

relative to their centre of mass rc' 14 (t) (Batchelor 1952) and so q l = q2

+ IXWO-y-U"(s)(t-s)1 2 and, in particular, q l 	q2.	 Now, for
-

initially coincident particles, SAX 	 AX and so <161 2 > and <I6AX12>

are equal to the ensemble average of q l and q 2 respectively.	 Hence

< 1 8X 1 1 2>	 <16a12>.	 Equality is only possible if XWO = y +

U'(s)(t-s) with probability one. 	 This seems unlikely to be true,

lending further support to the idea that <ISAXI 2 > is less than

<18)(112>.

For pairs of particles which are not initially coincident, it

seems likely that the particles will eventually forget their initial

separation and behave in the same way as initially coincident particles

(Batchelor 1950, 1952). On dimensional grounds we expect this to

happen after a time of order 05(s) 2 /0 1/3 (assuming the initial

particle separation is well within the inertial subrange). Hence, in

the case of particles which are not initially coincident, the arguments

in the previous paragraph support the idea that <16AXI 2 > is less than

< 1 8X 1 2> for travel times t-s much greater than (A(s)2/c)113.
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